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Abstract

The inter and intra subject variability is a common problem in several tasks associated to

the examination of histopathological samples. This variability might hinder the evaluation

of cancerous diseases. The development of automatic image analysis techniques and com-

puterized aided diagnostic tools in pathology aims to reduce the impact of such variability

by offering quantitative measurements and estimations. These measurements allow an accu-

rate evaluation and classification of the diseases in virtual slide images. The main problem

addressed in this thesis is evaluating the correlation of the automated identification of pat-

hological markers with cancer malignancy and aggresivenes. Hence, a set of classifier models

are trained to detect known pathological patterns. The classifiers are then used to quantify

the presence of the pathological markers. Finally, the resulting measurements are correla-

ted with the cancer risk recurrence. Results show that the automated detectors are able to

quantify patterns that show differences across several cancer risk groups.

Keywords: Histopathology, Digital pathology, Pathological marker



Resumen

La variabilidad inter e intra sujeto es un problema frecuente en muchas tareas asociadas al

exámen de muestras histopatológicas. Esta variabilidad puede incidir negativamente en la

evaluación de patoloǵıas relacionadas con el cáncer. El desarrollo de técnicas para el análisis

automático de imágenes y de herramientas de soporte al diagnóstico en patoloǵıa tiene como

objetivo reducir el impacto de la variabilidad inter/intra sujeto mediante la obtención de

medidas y estimaciones cuantitativas. Estas medidas permiten una evaluación y clasificación

más precisa de las enfermedades observables en láminas virtuales. El principal problema

abordado en esta tesis consiste en evaluar la correlación de la identificación automática de

marcadores patológicos con la agresividad del cancer. Aśı, un conjunto de clasificadores son

entrenados para detectar marcadores patológicos conocidos. Los clasificadores son posterior-

mente usados para cuantificar la presencia de los marcadores patológicos. Finalmente, las

mediciones resultantes son correlacionadas con el riesgo de recurrencia del cáncer. Los resul-

tados muestran que los detectores automáticos son capaces de cuantificar los patrones que

muestran diferencias entre diferentes grupos de riesgo.

Palabras clave: Histopatoloǵıa, Patoloǵıa digital, Marcador patológico
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1. Introduction

A virtual microscope system is comprised by a set of computational tools that allows the

exploration and analysis of digitized slides (Virtual slides). The virtual slides contain a large

amount of information that require an efficient interface and adequate storage. Deployment

of virtual microscopy (VM) systems in the last decade has had a wide impact in medical

education and training [2, 17, 25, 28, 30, 32, 36]. Unlike the pervasive support of tech-

nologies in these specific medical applications, integration of computerized tools into the

routine diagnostic pathological workflow has been limited, likely because these systems re-

quire specialized facilities related with acquisition, digitization, storage and visualization of

the histological samples. Moreover, strategies and tools providing diagnostic assistance do

not offer criteria that aids the interpretative task in the analysis of histophatological images.

Figure 1-1.: Virtual microscopy system graphics interface. Navigation tools allow panning

and zooming operations onto the virtual slides mimicking the operations availa-

ble in a light microscope. Additional features, such as sharing and annotation

tools, are highly regarded. However, the integration of computerized aiding

tools to help the pathologist analysis is still lacking.

Inter and intra subject variability is a crucial problem in several diagnostic tasks. This

variability inevitably introduces noise and biases evaluation of difficult pathological entities.
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The development of automatic analysis and computerized aided diagnostic tools aims to

reduce the impact of such variability by offering quantitative measurements and estimations.

Research Problem

From a visual examination standpoint, many pathological entities are hardly distinguishable.

This difficulty is even worst when establishing the malignancy grade of cancer diseases, case

in which architectural and cellular distortions are present. Identification of visual features

characterizing such changes (pathological markers) are used as evidence of the medical diag-

nosis, yet the visual signs can be very subtle and definitely dependent on the pathologist’s

experience.

Research Question

The research question herein addressed was: How to identify, in an efficient and reproducible

way, visual patterns that allow the discrimination of diseases with different risk/aggressiveness?

Virtual microscopy and variability in histopathology analysis

Histopathology is the study of pathological signs using the microscopic examination of a

biopsy or histological specimen that has been previously processed and spread onto a glass

slide [4]. Visualization of cellular structures by microscopical inspection is achieved with

histological dyes that can bind to several microscopical structures in the tissue. The He-

matoxylin and Eosin (the H&E stain) are the dyes most frequently used for pathological

examination. The hematoxylin has more affinity for chemical components present in the

cellular nucleus, staining the nuclei with a dark blue color, while the eosin is commonly

bounded to chemicals present in the cytoplasm and connective tissue. These elements are

commonly observed in a pink/red color. Work6Hours In spite of the avalanche of medical

imaging modalities (such as magnetic resonance imaging (MRI) or computerized tomography

(CT), among others) providing non-invasive examination of the pathological lesions, histo-

logical examination remains the gold standard for diagnosis of a considerable number of

diseases, including the entire set of cancer diseases [4].

An histopathological examination is performed by an expert pathologist. This analysis con-

sists in a subjective evaluation driven by years of medical training [12, 18, 42]. In general,

a pathologist inspects the tissue structure, the cell distribution, and the cell shape and size

of the pathological sample [54]. Afterwards, the expert reaches a decision about the tissue

anomalies associated to benign or malignant changes. This process is laborious and, as said

before, hampered by inter/intra subject variability. The computerized tools aim to reduce the

impact of this variability by providing the quantitative analysis of several tissular features

[33].
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Automatic analysis of histopathological images

Design and implementation of systems that support pathological diagnosis, require the use

of digital image processing techniques such as: image segmentation, feature extraction algo-

rithms or classification algorithms among others [9]

The visual feature extraction at cellular level allows a nuclei/cell quantification of morpho-

logical characteristics. These quantitative measurements can determine anomalies and their

malignancy grade by quantifying local features, but with no special consideration about the

spatial distribution of the cells. For each nucleus/cell, visual features associated to color,

orientation, intensity and shape (nuclei area, perimeter, eccentricity, among others) can be

extracted [22, 11, 51, 24, 3]. Likewise, at tissular level, features correlating with spatial cell

distribution such as texture information or fractal descriptors capture and describe some

pathological entities [40, 23].

Some applications of the previously mentioned algorithms, integrated to systems supporting

diagnostic decisions have also been proposed. Some pathologies include the neuroblastoma

detection [34, 63], the assisted analysis of renal cancer [68], prostate cancer detection [24]

and breast cancer [51].

Contributions and academic products

This thesis presents some contributions to the virtual microscopy and digital pathology fields.

A main contribution corresponds to the study of the prognostic use of automated pathological

markers in cancer disease. Machine learning algorithms (Deep neural networks and bag of

features representations) were used to assess key histological criteria in digitized histological

samples. Afterwards, quantification of these histological features was compared with either

manual visual inspection grading or alternative gene test scores (which are directly correlated

with cancer recurrence risk). Additional contributions are a novel method that normalizes

the color stains in microscopical studies, microscopical image stitching, and the construction

of graph local features that describe complex histopathological patterns.

The academic products of this work include three (3) accepted journal papers and six (6)

conference papers:

Pre-processing in virtual microscopy

Visualising and analysing histological images require several pre-processing operations. This

issues was studied by a set of publications in which we developed a colour separation of

the hematoxylin and eosin channels from the H& E stain [13]. Since the image depends on

the concentration of these chemicals, the fundamental application of this technique is the

nuclear detection/segmentation and color normalization of digital slides. Also, we proposed
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a robust stitching method for construction of whole slide images acquired by a motorized

microscope[56].

David E. Romo, Jonathan Tarquino, Juan D. Garćıa-Arteaga and Eduardo Romero.

Virtual slide mosaicing using feature descriptors and a registration consistency mea-

sure, Proceedings of the IX International Seminar on Medical Information Processing

and Analysis, 2013.

Raul Celis, David Romo and Eduardo Romero. Blind colour separation of H&E stai-

ned histological images by linearly transforming the colour space, Journal of Microscopy,

vol. 260, no 3, p. 377-388, 2015.

Automated histological concept identification

In these set of publications, the ability of multi-scale descriptors and graph based features

to capture the differences in histopathological concepts from skin whole slide images was

investigated. Specifically, strategies to distinguish between normal histological structures

and basal cell carcinoma were explored [55, 57, 58].

David E. Romo, Juan D. Garćıa-Arteaga, Pablo Arbeláez and Eduardo Romero. A

Discriminant Multi-Scale Histopathology Descriptor using Dictionary Learning, Pro-

ceedings of the SPIE Medical Imaging, 2014.

David Romo-Bucheli, Ricardo Moncayo, Angel Cruz-Roa and Eduardo Romero.

Identifying histological concepts on basal cell carcinoma images using nuclei based sam-

pling and multi-scale descriptors, Proceedings of the 2015 IEEE 12th International

Symposium on Biomedical Imaging (ISBI), New York, 2015, pp. 1008-1011.

David Romo-Bucheli, Germán Corredor, Juan D. Garćıa-Arteaga, Viviana Arias,

and Eduardo Romero. Nuclei graph local features for basal cell carcinoma classification

in whole slide images., Proceedings of the 12th International Symposium on Medical

Information Processing and Analysis (SIPAIM), pp. 101600Q-101600Q, 2016.

Cancer grading - comparison with manual grading

In this publication a multi-scale descriptor is used to characterize the nuclear pleomorphism

grading of breast cancer images [50]. The construction of a nuclei dictionary using the multi-

scale descriptor enables a bag of feature strategy to correctly highlight differences between

microscopical fields labelled with different nuclear grades. The proposed method achieved a

second place in the atypia classification task at the mitos-atypia 2014 challenge 1.

1https://mitos-atypia-14.grand-challenge.org/results2
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Ricardo Moncayo, David Romo-Bucheli, and Eduardo Romero. A Grading Strategy

for Nuclear Pleomorphism in Histopathological Breast Cancer Images Using a Bag of

Features (BOF), Progress in Pattern Recognition, Image Analysis, Computer Vision,

and Applications, LNCS, 2015.

Automated pathological markers and outcome - comparison with

genomic tests

In these set of publications, the correlation between automated pathological markers (such

as mitotic activity and normal gland formation within cancerous regions) and cancer risk

as asserted by genomic test were investigated[61, 59, 60]. In a large set of high power fields

extracted from a population of estrogen receptor positive breast cancer, the pathological

markers were quantified and the correlation with the cancer risk was evaluated.

David Romo-Bucheli, Andrew Janowczyk, Eduardo Romero, Hannah Gilmore, Anant

Madabhushi. Automated tubule nuclei quantification and correlation with oncotype DX

risk categories in ER+ breast cancer whole slide images , Proceedings of the SPIE

Medical Imaging, 2016.

David Romo-Bucheli, Andrew Janowczyk, Eduardo Romero, Hannah Gilmore, Anant

Madabhushi. Automated tubule nuclei quantification and correlation with oncotype DX

risk categories in ER+ breast cancer whole slide images, Nature Publishing Group,

Scientific Reports, vol. 6, no. 32706, 2016.

David Romo-Bucheli, Andrew Janowczyk, Eduardo Romero, Hannah Gilmore, Anant

Madabhushi. A deep learning based strategy for ideintifying and associating mitotic ac-

tivity with gene expression derived risk categories in estrogen receptor positive breast

cancers, Cytometry Part A, 2017. doi:10.1002/cyto.a23065

Thesis outline

The remaining chapters of the thesis are organized as follows:

Chapter 2: Automated tubule nuclei quantification and correlation with

oncotype DX risk categories in ER+ breast cancer whole slide images

This chapter presents a comparison between the automated tubule quantification and

the cancer risk in breast cancer. A deep learning model was used to identify nuclei

belonging to a tubular structure. After this, the model is used to quantify the tubule

formation in groups of low, intermediate and high risk breast cancer. The resulting

measurements are correlated with the different cancer risk groups.
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Chapter 3: A deep learning based strategy for identifying and associa-

ting mitotic activity with gene expression derived risk categories in Es-

trogen Receptor Positive Breast Cancers In this chapter a deep learning model

to identify mitosis is presented. The model is used to quantify the mitotic activity in

a population of breast cancer specimens that have a high, intermediate and low risk

of recurrence, as asserted by the Oncotype DX genome test. The quantified mitotic

activity is compared with the risk groups.

Chapter 4: Conclusions The final chapter in this work presents some conclusions

and discuss the potential impact of automated pathological markers in histological

image analysis. Also, future research directions and perspectives are discussed.



2. Automated Tubule Nuclei

Quantification and Correlation with

Oncotype DX risk categories in ER+

Breast Cancer Whole Slide Images

Early stage estrogen receptor positive (ER+) breast cancer (BCa) treatment is based on

the presumed aggressiveness and likelihood of cancer recurrence. Oncotype DX (ODX) and

other gene expression tests have allowed for distinguishing the more aggressive ER+ BCa

requiring adjuvant chemotherapy from the less aggressive cancers benefiting from hormonal

therapy alone. However these tests are expensive, tissue destructive and require specialized

facilities. Interestingly BCa grade has been shown to be correlated with the ODX risk score.

Unfortunately Bloom-Richardson (BR) grade determined by pathologists can be variable. A

constituent category in BR grading is tubule formation. This study aims to develop a deep

learning classifier to automatically identify tubule nuclei from whole slide images (WSI) of

ER+ BCa, the hypothesis being that the ratio of tubule nuclei to overall number of nuclei

(a tubule formation indicator - TFI) correlates with the corresponding ODX risk categories.

This correlation was assessed in 7513 fields extracted from 174 WSI. The results suggests

that low ODX/BR cases have a larger TFI than high ODX/BR cases (p < 0,01). The low

ODX/BR cases also presented a larger TFI than that obtained for the rest of cases (p < 0,05).

Finally, the high ODX/BR cases have a significantly smaller TFI than that obtained for the

rest of cases (p < 0,01). The complete content of this chapter was published in Scientific

Reports Journal [59].

2.1. Introduction

The primary conundrum in treatment and management of early stage estrogen receptor

positive (ER+) breast cancer (BCa) is identifying which of these cancers are candidates

for adjuvant chemotherapy and which patients will respond to hormonal therapy alone.

ODX and other gene expression tests have allowed for distinguishing the more aggressive

ER+ BCa requiring adjuvant chemotherapy from the less aggressive cancer benefiting from

hormonal therapy alone. However these gene expression tests tend to be expensive, tissue
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destructive and require physical shipping of tissue blocks for the test to be done. Interestingly

BCa grade in these tumors has been shown to be highly correlated with the ODX risk score

[38, 65, 1]. Unfortunately studies have shown that Bloom Richarsdon (BR) grade determined

by pathologists can be highly variable [21]. The three constituent categories within the

BR grading system are mitotic index, tubule formation and nuclear pleomorphism. Tubule

formation is defined as the percentage of cancer tissue that still contains normal tubules.

According to Elston and Ellis guidelines [26], tumor cell clusters with glandular formation are

also counted (Figure 2-1 shows some examples of tubule delineations for low and high risk

BCa). Tubule scoring is determined by estimating tubule area and assigning to one of three

categories: (i) > 75 %, (ii) between 10 %−75 %, and (iii) < 10 %. However, this estimation is

highly influenced by experience of the pathologist. Additionally, previous studies have shown

the correlation between manually determined tubule score and ER+ breast cancer prognosis

and ODX risk categories[29, 39].

Figure 2-1.: Breast Cancer tissue showing (left) high and (right) low tubule formation.

Lumen is delineated by blue lines. Tubules are delineated by orange lines,

where nuclei inside these boundaries represent the tubule nuclei used in our

approach. Green and red dots correspond to nuclei candidates classified as

tubule or non-tubule nuclei by our DNN classifier. In the high ODX (right)

image, the cells have lost their capacity to form tubules with a rounded lumen.

.

Since histologic criteria (such as tubule, nuclei pleomorphism, and mitotic activity) are used

in pathological grading systems, several works using automated extraction algorithms have

been proposed to quantify such criteria [67]. Tubule detection has been previously addressed

in the literature [20, 7, 48]. Typically these approaches focus on the identification of tubule

lumen (see Figure 2-1). Strategies focused on identifying tubules based off the lumen present
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categories in ER+ Breast Cancer Whole Slide Images

a couple of challenges. Firstly the shape and size variability of the gland lumen makes

accurate modeling of the tubules difficult. Secondly several structures, besides tubules, also

contain lumen, i.e., blood vessels and other types of glands. Morphological operators have

been used to connect proximal cancerous cells and generate blob structures [20]. These

blobs were identified as tubules when they were found to be surrounding a white space or

lumen. Another approach using the O’Callaghan neighborhood graph to impose structural

constraints on lumen, allowed for identification of true lumen with an accuracy of 86 % [7].

An accuracy of 89 % was obtained in the classification task of low (tubular BR score 2 and 3)

and high tubule formation (tubular BR score 1). A similar strategy, using k-means to identify

lumen followed by a level set based segmentation approach enabled the identification of the

surrounding nuclei layer [48].

The deep neural network (DNN) is a deep learning architecture that comprises more than

two hidden layers. In supervised classification settings, a DNN uses the backpropagation

algorithm to update its internal weights according to the label of input exemplars [41]. Some

applications of the DNNs in histological image analysis include the mitosis identification task

[16] and the localization of regions of interest in histological images [19].

With the recent emergence of whole slide tissue scanning and digital pathology [47, 10, 31]

there has been substantial interest in developing automated computerized histologic pre-

dictors of tumor grade and outcome for several diseases including oropharyngeal squamous

cell carcinoma [46], prostate cancer [45, 44] and glioblastoma [14]. The correlation of com-

puterized extracted features with breast cancer survival has also been explored. Beck et al.

[8] performed a comprehensive analysis of several automatically quantified morphological

features and their relationship with breast cancer survival. The authors reported a strong

association of automatically extracted stromal features with survival in a set of 576 H&E

breast cancer tissue microarray (TMA) images. Tambasco et al. [64] used fractal analysis

to compute the morphological complexity of 379 pan-cytokeratin stained TMA images. A

significant association of survival with the computed fractal dimension was found. The corre-

lation of automated extracted features with Oncotype DX risk score and risk categories has

been investigated in a couple of studies. Basavanhally et al. [6] showed that nuclear graphs

built using Delaunay triangulation and minimum spanning trees can be used to distinguish

breast cancer images with low and high recurrence ODX scores (RS). The authors used 37 H

& E stained images from a cohort of 17 patients at 20× magnification and obtained a mean

accuracy of 84,15 % in distinguishing samples with low and high RS. Also, the combination

of computer extracted features from both H&E and CD34 IHC stained images in a cohort of

29 patients (9 with low RS, 11 intermediate RS and 9 with high RS) [5] was shown to distin-

guish high and low ODX risk patients. The authors reported an average classifier accuracy of

91 % for distinguishing high and low RS cases. Other studies have explored the association

between manually identified pathological measurements (e.g. nuclei grade, mitotic index,

tubule degree) and the Oncotype DX score. Both Flanagan et al. [29] and Klein et al. [39]

used regression analysis to obtain a set of equations that predicts Oncotype DX score based
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on histological variables such as nuclei grade, mitotic index, tubule formation degree among

others. After eliminating cases from the intermediate risk category, concordance between

the ODX score and the estimated score (using the obtained equations) range from 96,9 % to

100 %.

The contributions of the work presented in this paper are twofold. Firstly we aim to evalua-

te a customized DNN for automatic quantification of tubules in whole slide images (WSI).

Secondly we seek to evaluate whether tubule score automatically identified by the DNN is

correlated with the risk categories determined by ODX in a cohort of 174 patients. Our

approach comprises the following main steps. First, a blue ratio transform is used to detect

nuclei candidates. Image patches, each containing a nucleus, are then extracted. These pat-

ches are manually labeled as containing a tubule or not. The patches are used to train a

DNN classifier to identify tubule nuclei in WSI. After tubule nuclei identification, the ra-

tio between tubule nuclei and overall number of nuclei is computed as a tubule formation

indicator (TFI).

The rest of this paper is organized as follows: Section 2 describes the methodology used for

training and testing the DNN tubule nuclei classifier. Section 3 presents the experimental

design to study the correlation of the TFI with ODX risk categories. Section 4 describes the

results of the statistical experiments and the distribution of the TFI for the ER+ BCa cases.

Finally, in Section 5 we present the main conclusions of our work.

2.2. Methodology

The whole methodology to use the automated TFI to study its correlation with ODX score

and BR grading in WSI is presented in Figure 3-1.

2.2.1. Nuclei detection

First, an automated algorithm based on blue ratio transformation[15] is used to detect nuclei.

After computing the blue ratio transform, a global threshold computed by using Otsu’s

method [52] is used to obtain a binary image. Then, an opening operation is applied. The

centroid of each connected component corresponds to the centroid of a nucleus candidate. The

nuclei detection algorithm is a lightweight method that provides a nuclei rough estimation

that was found to be representative of the true nuclei population in terms of the TFI, as

shown by the experiments described in the supplementary information (See Appendix G).

2.2.2. Curating the Learning Set

An RGB patch is extracted (size 64 × 64 at 20× magnification with a spatial resolution of

approximately 0,5µm per pixel) around the centroid of each candidate nuclei. This patch
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categories in ER+ Breast Cancer Whole Slide Images

Figure 2-2.: Overall diagram flow showing the steps to analyze the correlation of the tubule

formation indicator with ODX score and BR grade. Several high power fields

from a whole slide images are extracted. A nuclei detection method is then

applied on each high power field. Each of the candidate nuclei is classified as

tubule or not using a DNN classifier. Subsequently, the mean tubule nuclei

ratio to total number of nuclei per high power field for each whole slide image

is computed and analyzed with respect to the corresponding ODX risk category

and BR grade.

is labeled as either tubule or not, according to an annotation supplied by an expert pat-

hologist (The expert breast pathologist annotation corresponds to a manual delineation of

each tubule). These pathologist annotated patches are then used to train the DNN classifier.

Exemplar RGB patches belonging to the tubule class and non-tubule class are presented in

Figure 2-3.

Figure 2-3.: Examples of image patches used for training. Top Row: The tubule class.

Bottom row: The non-tubule class. Each patch center corresponds to a nu-

cleus candidate centroid.

The DNN architecture is illustrated in Figure 3-2 and is composed of three blocks: a con-

volution neural network (CNN), a Rectifier Linear Unit (ReLU) and a maximum pool (max

pool) operator. Finally, two fully connected layers yield the probability representing the

membership of the nucleus to the tubule class.
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2.2.3. Independent testing of the DNN classifier

During testing, the nuclei detection algorithm is used to identify candidate nuclear centroids.

These patches then fed to the DNN, as shown in Figure 3-2. This process enables the

generation of their tubule class membership probability. If the probability is higher than 0,5,

the patch is assigned to the tubule class.

Figure 2-4.: Deep learning architecture used to classify nuclei. A patch containing a nucleus

feeds the deep neural network. The probability of the nucleus being part of a

tubule is based on the output of the deep neural network classifier.

The DNN performance was evaluated on a dataset with 61 high power fields that were

extracted from 11 WSI. Whole tubule structures (including epidermis surrounding the lumen)

had been previously annotated by an expert pathologist. A 5-fold cross validation setup was

used, ensuring each fold was split at the patient level.

Evaluation measures (Fscore, precision, recall (sensitivity) and specificity for the tubule nuclei

class[53]) were computed for each of the 5-folds. The average +/- standard deviation of the

Fscore, precision, recall and specificity were: 0,59±0,14, 0,72±0,12, 0,56±0,2 and 0,9±0,06

respectively (see Figure 2-5).

Observe that the recall for the tubule identification is lower than the specificity, indicating

that a classification error is more likely for a tubule nuclei than for a non-tubule nuclei.

Also, the variability of tubule sizes and shapes may explain the higher standard deviation

obtained with the recall measure. Detailed results for each fold are presented in Table 2-1.

The detection results in Table 2-1 suggest that the tubule detector has a high specificity,

a finding that might be caused by the unbalanced nature of the problem (there is a larger

number of non-tubule nuclei as opposed to tubule nuclei in the BCa specimens). Also the

tubule nuclei exhibit a substantially large inter-subject variation. The tubule nuclei samples

used during training might not be adequate to capture all the variability observed in tubules

from different patients.
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Figure 2-5.: Performance evaluation measures for the tubule nuclei detection task in a 5-

Fold cross validation setup and involving images extracted from N = 11 pa-

tients.

2.3. Experimental Design

2.3.1. Data Description

A set of WSI extracted from 174 patients with ER+ BCa were used in this study. At most 50

high power fields per WSI were selected: the selected high power fields were those with the

lower number of tubule nuclei ratio. This selection avoids high power fields with unusually

large number of detected tubule nuclei (outliers). All of these high power fields were sampled

from cancerous regions previously identified by an expert pathologist.

2.3.2. Correlation with ODX risk groups via t-test analyses

After identifying the tubule nuclei the TFI was computed: the ratio between the tubule

nuclei and the total number of nuclei. This TFI is evaluated as a potential risk predictor.

In order to compare the TFI with the risk associated to each BCa sample, the set was

divided into a) High, b) Intermediate and c) Low risk categories according to the ODX

score. Additionally, the BR grade is also used to define: d) The high ODX-high grade group

(with both high ODX and BR score-HH), e) The low ODX-low grade group (with both

low ODX and BR score-LL), f) All the BCa cases that don’t belong to the HH group (HHc
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F-score Precision Recall (Sensitivity) Specificity

Fold 1 0,34 0,89 0,21 0,98

Fold 2 0,7 0,73 0,67 0,9

Fold 3 0,71 0,81 0,63 0,93

Fold 4 0,64 0,59 0,7 0,84

Fold 5 0,59 0,59 0,59 0,83

Average 0,59± 0,14 0,72± 0,12 0,56± 0,2 0,9± 0,06

Table 2-1.: 5-Fold validation results for the tubule detection across N = 11 patients. The

F-score, precision, recall and specificity for the tubule classification are shown.

The final row presents the average and standard deviation for each of the four

measures across all N = 11 patients and across the 5 folds.

group) and g) All the BCa cases that don’t belong to the LL group (LLc group). The dataset

categorization is indicated in Table 2-2.

The t-test statistical analysis was applied to compare the distribution of the automated TFI

with the high, intermediate and low ODX risk groups as well as the BCa cases with both a

high ODX score and high grade and also cases with both low ODx score and low BR grade.

The t-test for all the experiments was performed with equal mean and unequal variance

hypothesis. Specifically, the t-test was applied to compare the different groups as described

below:

The high ODX group against the low ODX group

The high ODX group against both the intermediate and low ODX group

The low ODX group against both the high and intermediate ODX group

The high ODX-high grade (HH Group) against the low ODX-low grade (LL group)

The high ODX-high grade (HH Group) against all the other cases (HHc group) and

The low ODX-high grade (LL group) against all the other cases (LLc group)

2.3.3. Correlation with ODX risk groups via ROC analysis

The risk prediction capability of the TFI was also evaluated using a Receiver Operating

Curve (ROC). For doing so, the binary classification task was based solely in the tubule

nuclei ratio: each WSI with a mean tubule ratio above a particular threshold is classified as

low ODX. By varying the threshold from [0, 1] is possible to generate the ROC curve. In this

particular experiment the goal was to distinguish the HH and LL categories (see Table 2-2).
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BCa Groups Description Number of cases

High ODX ODX > 30 24

Low ODX ODX < 18 95

Intermediate ODX 18 ≤ ODX ≤ 30 55

High ODX-high grade (HH) Both ODX > 30 and BR > 7 15

Low ODX-low grade (LL) Both ODX < 18 and BR < 6 42

HHc group All BCa cases that do not belong to HH group 159

LLc group All BCa cases that do not belong to LL group 132

Table 2-2.: ODX score and BR grading rules used to split the dataset into high, intermediate

and low ODX categories. The corresponding number of cases for each group is

presented in the last column.

2.4. Results

2.4.1. Correlation with ODX and BR risk categories via t-test analyses

The DNN classifier was applied to the 174 WSI previously described. Qualitative results for

high, intermediate and low ODX cases can be seen in the Figure 2-6. The significant t-test

results for the comparison between the risk groups is presented in Table 3-1.

Risk group p-values

comparison (Unequal variance)

H vs L 0.1633

H vs L and I 0.2731

H and I vs L 0.0998

HH vs LL 0.0021

LLc vs LL 0.0145

HH vs HHc 0.0097

Table 2-3.: Statistical comparison of the deep learning tubule classifier in distinguishing

different risk groups. Note that statistically significant differences were only

observed for 3 of the 6 comparative experiments performed.

When observing the group distribution according to ODX score, it is difficult to distinguish

between low and high ODX groups. However, when combined ODX and BR groups are

analyzed, the high and low risk groups show different distributions as shown in Figure 2-7.

Results in Figure 2-7 reveal that the automated TFI is significantly different for the groups

that have low ODX-low grade and high ODX-high grade. The HH group had a mean tubule

nuclei ratio per high power field of 0,029. In contrast, the LL group had a mean tubule

nuclei ratio of 0,126. The two groups are significantly different (p < 0,01 with 95 % CI [0,04,

0,16]). The differences in the TFI is still significant when we compare the HH group against

the BCa cases that did not belong to this group (p < 0,01 with 95 % CI[0,013, 0,085]). The

mean for non HH cases was 0,078. Finally, the difference in the average TFI value was also

significant when comparing the LL group with the BCa cases outside this group (p < 0,05
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Figure 2-6.: Tubule nuclei identification process for high power fields extracted from low

ODX (top row), intermediate ODX (middle row) and high ODX (bottom row)

breast cancers. In the first column, the high power field at ×20 magnification is

depicted. In the second column, the resulting mask showing the nuclei centroids

after the nuclei detection process is presented. The third column shows the

DNN classification of each nucleus either as a tubule nucleus (green dot) or a

non-tubule nucleus (blue dots). Each image in the right column corresponds

to a close up in the selected region (orange rectangle) depicted in the left most

column. For the low ODX high power field, a significant number of tubule

nuclei are identified. Observe also that some false negatives are not uncommon

in the nuclei surrounding the tubule lumen. On the other hand, the high and

intermediate cases have a substantially lower number of tubule nuclei. Some

false positive (false tubule nuclei) errors are also visible in the right most

column.
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Figure 2-7.: Violin plots depicting the mean tubule nuclei ratio in high power fields ex-

tracted from the different ODX risk groups. The histogram associated to each

violin plot is smoothed using a normal kernel. Red lines in the violin plot show

the location of the lower quartile (q1), the median and the upper quartile (q3).

Low (blue), intermediate (yellow) and high (green) ODX groups are shown in

the top row (a). The distribution of the low and intermediate groups (cyan)

against the high ODX group is presented in (b). The low group against the

intermediate and high ODX groups (magenta) are presented in (c). The dis-

tribution for the groups with low ODX-low grade and high ODX-high grade

are depicted in (d). High ODX-high grade against all the other BCa cases and

low ODX-low grade against all the other BCa cases are presented in (e) and

(f) respectively.
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with 95 % CI[0,014, 0,12]). The cases that did not belong to the LL group had a mean tubule

nuclei ratio of 0,057.

2.4.2. Correlation with ODX and BR risk categories via ROC curve

The distribution of the histologic images (ODX score vs tubule nuclei ratio) for the HH and

LL groups is shown in the left column of Figure 2-8. While a low mean tubule nuclei ratio

appears to require additional analysis to determine its risk category, it is observed that a

WSI with a high tubule nuclei ratio is very likely to be member of the low ODX risk category.

Figure 2-8.: (a) Receiver operating characteristic (ROC) curve for the prediction of low

ODX using only the tubule nuclei ratio feature. (b) Mean automated tubule

nuclei ratio for each whole slide image. The high (red) and low (blue) ODX

score groups are depicted. The x-axis represents the underlying ODX score of

each sample. The y-axis represents the tubule nuclei ratio. Observe that the

high ODX image have a low tubular density. A high tubule nuclei ratio is very

likely associated with a low ODX image. Optimal threshold obtained for the

ROC curve (threshold at which the ROC curve is closest to point [0, 1]) is also

shown.

The Receiver Operating Curve (ROC) for the binary classification task using only mean

tubule nuclei ratio for each WSI is presented in the right column of Figure 2-8. The WSI

with a mean tubule ratio above the threshold is classified as low ODX. The ROC curve shows

that the tubule nuclei ratio yields an area under the curve (AUC) of 0,76 in distinguishing

the low ODX-low grade from the high ODx-high grade categories.
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2.5. Concluding Remarks

In this paper we rigorously investigated the problem of objectively computing the tubule

nuclei ratio, a potential computational histologic image biomarker of disease risk and ag-

gressiveness in ER+ BCa. To evaluate whether automatically TFI was associated with the

risk category determined by the Oncotype DX test, a deep learning classifier was developed

to automatically identify tubules based off the surrounding nuclei. The automatically deter-

mined TFI was then evaluated in terms of its ability to distinguish the low and high ODX

risk categories and cases with different permutations of ODX risk and grade. On a cohort of

174 WSI, the TFI was found to be significantly different for the BCa cases with low ODX-low

grade and high ODX-high grade. When comparing the high ODX-high grade group with all

the other BCa cases, the TFI was still significantly lower. Likewise, the calculated tubule

quantification measure was larger in the BCa cases with low ODX-low grade compared to

the remaining BCa cases.

The automated TFI appears to have a slightly weaker correlation with ODX risk categories

than other previously investigated computerized image features such as nuclear architecture

[6]. However it has been previously shown that using a combination of automated features

(even extracted from differently stained samples from the same patient), might increase the

ability to predict the corresponding ODX risk category [5]. Hence, developing strategies to

integrate information from predictors that use different histological features (e.g. nuclear

architecture, mitotic count, tubule density) will be a future research endeavor.

Automated tubule quantification could be potentially useful in streamlining clinical patho-

logy workflows. The automated quantification aims to standardize the breast cancer grading

and risk assessment process and reduce inter-reader variability. Our newly presented method

was evaluated within manually selected cancerous regions. However, automatic delineation

of regions of diagnostic interest is an open research problem [19]. Future work will focus on

improving the tubule detector performance, validating our approach on larger test cohorts

and incorporating automatic region of interest selection methods.



3. A deep learning based strategy for

identifying and associating mitotic

activity with gene expression derived

risk categories in Estrogen Receptor

Positive Breast Cancers

The treatment and management of early stage estrogen receptor positive (ER+) breast can-

cer is hindered by the difficulty in identifying patients who require adjuvant chemotherapy

in contrast to those that will respond to hormonal therapy. To distinguish between the more

and less aggressive breast tumors, which is a fundamental criterion for the selection of an ap-

propriate treatment plan, Oncotype DX (ODX) and other gene expression tests are typically

employed. While informative, these gene expression tests are expensive, tissue destructive,

and require specialized facilities. Bloom-Richardson (BR) grade, the common scheme em-

ployed in breast cancer grading, has been shown to be correlated with the Oncotype DX

risk score. Unfortunately, studies have also shown that the BR grade determined experiences

notable inter-observer variability. One of the constituent categories in BR grading is the mi-

totic index. The goal of this study was to develop a deep learning (DL) classifier to identify

mitotic figures from whole slides images of ER+ breast cancer, the hypothesis being that

the number of mitoses identified by the DL classifier would correlate with the corresponding

Oncotype DX risk categories. The mitosis detector yielded an average F-score of 0,556 in

the AMIDA mitosis dataset using a 6-fold validation setup. For a cohort of 174 whole slide

images with early stage ER+ breast cancer for which the corresponding Oncotype DX sco-

re was available, the distributions of the number of mitoses identified by the DL classifier

was found to be significantly different between the high vs low Oncotype DX risk groups

(p < 0,01). Comparisons of other risk groups, using both ODX score and histological grade,

were also found to present significantly different automated mitoses distributions. Additio-

nally, a support vector machine classifier trained to separate low/high Oncotype DX risk

categories using the mitotic count determined by the DL classifier yielded a 83,19 % classi-

fication accuracy. The complete content of this chapter was published in Cytometry Part A

journal [60].
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3.1. Background

Modern treatment of early stage estrogen receptor positive (ER+) breast cancer requires

a precise identification of which cases will benefit from additional adjuvant chemotherapy

versus those indicating solely hormonal therapy. A distinction between the more and less

aggressive breast tumors, required for planning the treatment, is usually performed with

Oncotype DX (ODX) and other gene expression tests. In general, the more aggressive cancers

require adjuvant chemotherapy while the more benign respond well to hormonal therapy

alone. However these gene expression tests tend to be expensive, tissue destructive, and

require specialized facilities for processing.

The Oncotype DX risk score has been demonstrated to be highly correlated with breast can-

cer grade [38, 65, 1]. Unfortunately, the grades yielded by the standard Bloom-Richardson

system (BR) have been found to be highly variable as a result of both observer experience

and tumor presentation[21]. The BR consists of assigning a value to stratify three proper-

ties: (a) the nuclear pleomorphism score aims to characterize the variance in nuclear size

and appearance, (b) the tubule density score is intended to reflect the percentage of cancer

tissue that contains normal tubules, and (c) the mitotic index aims to quantify the number

of mitoses in a specific number of high power fields (HPFs; typically 10)[27]. Although the

number of mitoses is regarded as an important prognostic indicator, the overall predictive

power is limited by significant inter-reader variability due to potentially differently selec-

ted fields[49]. In spite of these challenges, studies have shown that Oncotype DX is highly

correlated with the mitotic grade for ER+ breast cancers[29].

The recent addition of whole slide imaging capabilities to pathology has sparked notable

interest in the use of automated computerized histologic predictors of tumor grade and

outcome [46, 45, 44, 14]. In the context of breast cancer, Basavanhally et al. [6] showed that

nuclear graphs built using Delaunay Triangulation and Minimum Spanning Trees can be

used for distinguishing low and high recurrence score breast cancer cases.

Of late, there has been substantial interest in automating the process of identifying mitotic

figures in whole slide pathology images [67]. Larsen et al. [43] used color intensity histograms,

gradient orientation histogram and shape index histograms to identify mitoses. Wang et al.

[69] proposed to use a convolution neural network and a set of handcrafted features combined

with a random forest classifier to identify mitotic figures in WSI. Janowczyk et al. [37] used

deep learning approaches to perform several histologic image analysis tasks, including mitotic

identification. Veta et al. [66] evaluated the performance of several state-of-the-art mitotic

detection methods and found that a Deep Neural Network (DNN) yielded the best overall

performance with an overall F-score of 0,61 [16] in the test set of the AMIDA2013 challenge

[66].

A neural network architecture consisting of more than two layers is commonly referred as a

deep neural network. In supervised classification settings, a DNN uses the backpropagation

algorithm to update its internal weights according to the label of input exemplars [41]. The
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DNN for mitotic detection is usually trained using a set of image patches that are within a

defined d pixel radius to a mitotic nuclei [16].

The contributions of the work presented in this chapter are twofold. Firstly we aim to

evaluate a customized DNN for automatic quantification of mitosis in WSI. Secondly, we

seek to evaluate whether the automated mitotic index identified by the DNN correlates with

the risk categories determined by ODX.

3.2. Experimental Methods

The methodology used to automate mitotic nuclei identification and classify WSI into risk

BCa groups as defined by both ODX score and BR grading is illustrated in Figure 3-1.

Figure 3-1.: Overall diagram flow showing the steps to analyze the correlation of the au-

tomated mitotic count with ODX and to use mitotic information in BCa risk

stratification. In the training stage, high power fields (HPFs) from several WSI

are extracted and a nuclei detection method is applied on each high power field.

Each of the candidate nuclei is classified as mitotic or not using a DNN clas-

sifier. Subsequently, the mitotic information is used to train a linear support

vector machine classifier. At testing stage, nuclei identification algorithm and

the DNN classifier are used again in the cancerous regions of the WSI. Fi-

nally, the resulting mitotic information is used by the support vector machine

classifier to predict the WSI risk either as high or low.
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3.2.1. DNN for mitotic identification

The mitosis detection module involved the training of a DNN model with Hematoxylin

and Eosin stained images. Candidate nuclei were found by an automated nuclei detection

algorithm at 40X magnification. Candidate nuclei, separated by less than 20 pixels from

the expert annotations, were labeled as mitotic. The approach starts by mapping each RGB

point to a grayscale intensity value [15] using: Br = 100B
1+R+G

∗ 256
1+B+R+G

(blue ratio transform).

The resulting image highlights the chromatin information (observable in mitotic nuclei) and

an adaptive threshold converts the blue ratio image into a binary map, using the gray-level

histogram information. The optimal threshold is supposed to maximize the separability of

two resulting pixel clusters [52]. Subsequently, a set of morphological operations (closing

and opening) further improve the selection of the candidate nuclei by removing noise. The

connected components are finally selected as candidate nuclei. The centroid of each candidate

nucleus corresponds to the center of the associated RGB color patch (size 64 × 64 at 40×
magnification) which is then fed into the DL classifier to determine whether or not it is a

mitotic nucleus.

Figure 3-2.: Deep learning architecture for mitosis detection. A 64 × 64 size patch is ex-

tracted at 40× magnification. The patch contains a candidate nucleus which

is fed to the DNN. The DNN is composed of several convolutional neural net-

works, each followed by non-linear and pooling operations. At the end, two

fully connected layers are used to estimate the probability of a patch contai-

ning a mitotic figure. The probability that the image patch contains a mitotic

nucleus is then assigned by the classifier.

The DNN architecture in Figure 3-2 consists of three identical blocks, each composed of

a convolution neural network (CNN), a Batch normalization layer, a Rectifier Linear Unit

(ReLU) and a maximum pool (max pool) operator. Each CNN layer corresponds to a set of

convolutional filters learned from the mitotic and non-mitotic classes. The Batch normaliza-

tion layer imposes a transformation of the neural weights to solve the internal covariate shift

problem[35]. In practice, this normalization layer allows the method to achieve improved

learning rates during the DNN training stage. The proposed network architecture reduces

the input patch to an output signal which coincides with the probability that the input

contains a mitotic event. Stochastic gradient descent is used to minimize the negative log



3.3 Experimental Design 25

likelihood loss criterion, which is a measure that quantifies the classification error in the

neural network.

The light design of the DNN, along with the nuclei sampling strategy, reduces the compu-

tational burden at test time as the cancerous regions in whole slide images can cover over

500 HPFs at 40× magnification. As such, an appropriate strategy combined with a suitable

DNN architecture is necessary to meet the time constraints and requirements of a typical

clinical workflow.

The DNN classifier was trained using image patches extracted from two open access datasets:

225 (from MITOS2012 [62]) and 516 mitotic events (from AMIDA2013 [66]). Non-mitotic

candidate nuclei were extracted using an automatic nuclei detector. The performance of the

DNN was evaluated with the AMIDA2013 training dataset under a 6-fold cross-validation

setup and each fold was split at the patient level. The Fscore, Precision and Recall measures

[53] for the mitotic nuclei class were computed across the 6-folds. The average and the

standard deviation for the Fscore, precision and recall measures of the 6 folds were: 0,556±
0,21, 0,47 ± 0,24 and 0,78 ± 0,11, respectively. The mitotic classifier was also evaluated on

the MITOS2012 testing set (using the AMIDA2013 and MITOS2012 training sets to train

the DNN) obtaining a 0,78 Fscore.

3.2.2. Support Vector Machine for BCa risk stratification

The DNN mitotic detector can be used on several HPFs from a WSI to assess the mitotic

frequency in the respective cancerous regions. The obtained mitotic frequency information

is then used to build a feature vector of 10 dimensions, each bin (dimension) representing

the number of high power fields with [k ∈ 0, 1..,8, and k ≥ 9] mitotic figures. Since the

cancerous regions in each BCa case have a different number of HPFs, the feature vectors are

normalized. Each feature vector is centered and scaled by a unitary standard deviation. The

collected feature vectors were used to train a support vector machine with a linear kernel in

order to distinguish BCa cases labeled either as low or high risk.

3.3. Experimental Design

3.3.1. Whole Slide Data Description

The 174 Whole Slide Images (WSI) are diagnosed with the Bloom Richardson (BR) grading

system and ODX. The dataset was split into (a) High (24 WSI, ODX > 30), (b) Intermediate

(55 cases and 18 ≤ ODX ≤ 30) and (c) Low Risk categories (95 WSI and ODX < 18).

Additionally, BR score defined another two risk subgroups: (d) 15 cases with both high

ODX and high BR grade (BR > 7) and (e) 42 cases with both low ODX and low BR grade

(BR < 6).
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From the 174 WSI, a total of 20082 high power fields were extracted. Each high power field

corresponds to an image of 2000×2000 pixels at 40× magnification (a pixel is ≈ 0,0625µm2).

The performance of the DNN mitosis detector described in Subsection ‘DNN for mitotic

identification’ was also evaluated in a subset of the images from these 174 WSI. A total

of 40 HPFs were randomly selected from BCa cases that have either high ODX-high grade

or low ODX-low grade. Mitoses in these images were annotated by an expert pathologist

collaborator. Evaluation of the DNN performance yielded an overall 0,56 F-score measure

in the aforementioned set of images. This measure is within the range previously reported

(0,556± 0,21) in Subsection ‘DNN for mitotic identification’. A detailed presentation of the

results is included in the Supplementary File B (See Appendix I).

3.3.2. Experiments and statistical analysis

The correlation of the automated mitosis with the ODX and BR groups was assessed in two

different ways. First, a t-test evaluated the differences of the obtained mitotic counting for

the different risk groups defined in Subsection ‘Whole Slide Data Description’. Second, to

evaluate the hypothesis that the automatically estimated mitotic count enables discrimina-

tion of the high/low ODX groups, a Support Vector Machine classifier was trained and used

to classify WSI into high and low risk BCa.

A mean “mitotic count per ten high power fields̈ıs computed for each WSI. The distribution

is then compared for the two risk groups using a two tail t-test. The null hypothesis is that

both distributions are sampled from the same normal distribution with equal mean. The

t-test is applied using an equal variance for the different risk groups, specifically: (a) The

high ODX group against the low ODX group, (b) The high ODX group against both the

intermediate and low ODX group, (c) The high ODX-high grade (HH Group) against the

low ODX-low grade score (LL group), (d) The high ODX-high grade (HH Group) against

the rest of cases (HHc group) and (e) The low ODX-low grade (LL group) against the rest of

cases (LLc group). The main hypothesis to test in each of the aforementioned experiments

is that the BCa groups with higher ODX score and BR grading have a higher number of

mitotic figures.

The discriminability of the number of mitotic figures automatically identified by the deep

learning classifier was assessed in a BCa risk stratification task. The support vector machine

classifier, described in Subsection ‘Support Vector Machine for BCa risk stratification’, was

evaluated using a leave-one-out cross-validation scheme for each of the BCa cases (WSI)

labeled either as high risk (BCa cases with high ODX score 24 cases) or low risk (BCa

cases with low ODX score and low grade - 95 cases). The SVM classifier was trained with a

regularization hyperparameter C = 1.
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Figure 3-3.: Mitosis identification process in HPFs extracted from low ODX BCa (top row),

intermediate ODX BCa (middle row) and high ODX BCa (bottom row). In

the first column, results of the mitosis detection for the original HPF at 40X

magnification is depicted. In the second column, the mask after the nuclei

detection process is presented. The third column shows a close up for the

DNN detection of the mitoses (green circles) depicted in the left most column.

Mitosis are rare events: at the selected HPF size the low ODX Bca cases usually

does not have mitosis. Meanwhile, intermediate and high ODX HPFs have a

slightly larger mitosis count.
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3.4. Experimental Results and Discussion

3.4.1. Statistical Analysis

The DNN classifier was applied to the 174 WSI previously described in Subsection ‘Whole

Slide Data Description’. Qualitative results for high, intermediate and low ODX cases can

be seen in Figure 3-3. Distributions of the average mitotic count for the high, intermediate

and low ODX groups are depicted as violin plots in Figure 3-4 (see caption for violin plot

description). Additionally, the intermediate group is paired either with the high or the low

group to compare the resulting distributions.
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Figure 3-4.: Violin plots depicting the mean mitotic activity in 10 HPFs for the different risk

ODX risk groups. The histogram associated with each violin plot is smoothed

using a normal kernel. Red lines in the violin plot show the location of the

lower quartile (q1), the median and the upper quartile (q3). Low (orange),

intermediate (yellow) and high (green) ODX groups are shown in the top row

(a). The mitotic distribution of the low and intermediate groups (cyan) against

the high ODX group is presented in (b). The mitotic distribution of the low

group against the intermediate and high ODX groups (purple) are presented

in (c). The mitotic distribution for the groups with low ODX-low grade and

high ODX-high grade are depicted in (d). The mitotic distribution for the high

ODX-high grade against the rest of BCa cases, and low ODX-low grade against

the rest of BCa cases are presented in (e) and (f) respectively.
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The mean mitotic distribution in 10 HPF was computed for high ODX and BR scores (HH)

and for low ODX and BR scores (LL), as illustrated in the bottom row of Figure 3-4. The

distributions of both groups was compared against the rest of BCa cases. The t-test results

are presented in Table 3-1.

Risk group p-values

comparison (Equal variance)

H vs L 0,1× 10−30,1× 10−30,1× 10−3

H vs L and I 3,6× 10−33,6× 10−33,6× 10−3

H and I vs L 2,3× 10−32,3× 10−32,3× 10−3

HH vs LL 0,2× 10−30,2× 10−30,2× 10−3

LL vs rest of Bca cases (LLc) 0,0320,0320,032

HH vs rest of Bca cases (HHc) 0,6× 10−30,6× 10−30,6× 10−3

Table 3-1.: Statistical evaluation of the DNN mitotic classifier in distinguishing different

breast cancer ODX risk groups: High ODX risk group (H), Low ODX risk group

(L) and Intermediate ODX risk group (I). Additionally, the Bloom Richardson

grading scheme was also used to define the high ODX-high grade group (HH) and

the low ODX-low grade group (LL). Note that statistically significant differences

were observed for all the 6 comparative experiments performed.

Results in Figure 3-4 and Table 3-1 reveal that the average number of mitoses for the low

ODX group is significantly different than those obtained for the high risk group. The low

ODX group obtained a mean number of 3,1 mitoses per 10 HPFs while the high ODX group

obtained a mean number of 7,2 mitoses per 10 HPFs (p = 0,1 × 10−3 with 95 % CI[−6,2,

−2,1]). When grouping the intermediate ODX group with the low ODX group, the statistical

test shows that the resultant mitoses distribution is different with respect to the high ODX

group distribution, with a mean number of 3,8 mitoses per 10 HPFs for the low/intermediate

ODX group (p = 3,6 × 10−3 with 95 % CI[−5,8, −1,15]). Besides, if the intermediate ODX

group is combined with the high ODX group, the mixed distribution results different to

the low ODX group distribution, with a mean number of 5,6 mitoses per 10 HPFs for the

intermediate/high ODX group (p = 2,3× 10−3 with 95 % CI[−4,1, −0,9]).

The analysis of the groups defined by both ODX score and BR grade also show a different

number of mitotic figures. Cases with a low ODX-low grade yielded a mean number of 2,7

mitoses per 10 HPFs while those with high ODX-high grade showed a mean number of 8,8

mitoses per 10 HPFs (p = 0,2×10−3 with 95 %CI [−9,2,−3,1]). The low ODX-low grade cases

continue to have a different number of mitoses when compared with all the remaining cases in

the dataset (those that did not have both low ODX and low grade). In this case, the average

number of mitoses per 10 HPFs for the 132 (LLc) cases was 4,74. The two distributions are

closer but still significantly different (p = 0,03 with 95 %CI [−3,98, −0,18]). Finally, when

comparing the high ODX-high grade cases with the remaining cases, a significant difference

was found. For those cases that did not have both high ODX and high grade, the mean

number of mitoses per 10HPFs was 3,8 (p = 0,6× 10−3 with 95 %CI [−7,8,−2,2).



30
3 A deep learning based strategy for identifying and associating mitotic activity with
gene expression derived risk categories in Estrogen Receptor Positive Breast Cancers

3.4.2. Support Vector Machine Classification Results

The distribution of mitoses per high power field was used to train a linear support vector

machine classifier to discriminate the high/low ODX BCa cases, yielding an average accuracy

of 83,19 %. Now, if one considers that the outcome of the leave one out evaluation in this

case is binary, an error of the classification gives a null accuracy for that classifier. From

the 119 different experiments, 20 resulted in a null accuracy. The confusion matrix, shown

in Table 3-2, was obtained by computing the aggregation of the confusion matrices over

each fold along the leave-one-out experiment (119 experiments in this case). The results

reveal that most of the WSIs with low ODX score are correctly classified as Low Risk.

Leveraging a SVM classifier resulted in a mean increase of approximately 15 % in the observed

accuracy (83,19 %) versus using a simple thresholding method (68,07 %). The details on how

to compute the optimal threshold are described in the Supplementary File A (See Appendix

H).

Low ODX High ODX

Classified as LR 83 8

Classified as HR 12 16

Table 3-2.: Confusion matrix for the risk stratification task using mitotic information. The

BCa cases are classified either as low risk (LR) or high risk (HR).

3.5. Concluding Remarks

In this paper we rigorously investigated the problem of automated computation of the mitotic

activity in WSI, a potential histologic image biomarker of the disease risk and aggressiveness

in ER+ breast cancers. To evaluate whether the mitotic index was associated with the risk

category determined by the Oncotype DX test, a DNN classifier was developed to identify

mitoses. The mitotic count was then evaluated in terms of its ability to distinguish the low

and high ODX risk categories as well as low and high grades. Likewise, the strategy was

able to discriminate cases with different permutations of ODX risk and grade. On a cohort

of 174 whole slide images, the automated mitotic count was significantly different for the

low ODX group when compared against the high ODX risk group, thereby demonstrating

that this quantification captures important prognostic information. This result also extends

to the BCa cases group with both low ODX and low grade. On the other hand the mitotic

detector failed to show differences between high and intermediate ODX groups.

The mitotic information extracted using the DNN achieves a sufficient level of precision and

deals with patient tissue variability. The prognostic information is captured by the support

vector machine classifier which properly distinguishes between BCa cases with both high

ODX and low ODX score.
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The lightweight DNN approach herein presented shows a similar performance to other DNN

approaches, yet the particular sampling strategy herein integrated analyzes a HPF in around

8 seconds using a conventional GPU (Nvidia Quadro K4000). Other DNN approaches in the

literature report a full HPF processing in about 8 minutes [16]. In a typical WSI, some of

the cancerous regions may have more than 500 HPFs. Consequently, the lightweight DNN

approach herein introduced is more appropriate for a diagnostic routine workflow.

The results of this study have significant clinical applicability even though the high and

intermediate risk ODX groups cannot be separated via the DNN. Patients with low ODX

have demonstrated low risk, and those patients are unlikely to derive a significant benefit

from adjuvant chemotherapy. It is less clear that it is safe to omit chemotherapy in patients

with intermediate and high risk scores, and oncologists routinely have to discuss the risks

and benefits of chemotherapy in these circumstances.

Mitotic activity of a tumor, whether measured as number of mitoses per hight power field

(as in traditional histopathologic grading), proliferation index as measured by Ki67 count by

immunohistochemistry, or as measured by gene expression by predictive/prognostic assays

such as ODX cannot be used alone to separate patients into low, intermediate or high risk

categories. Mitotic activity is an important component of these analyses but it is not the lone

determinant of the score. The fact that the mitotic activity figures from the DNN can alone

separate low versus intermediate/high is quite remarkable and has direct clinical utility. It is

possible that if this model were coupled with additional algorithms aimed at other pathologic

features in the future, the risk category could be defined further.

Future work on improving the robustness of the mitotic detector to stain variation and

including image information in the Z-axis (i.e pathologist frequently change the Z-axis of

optical microscopes to determine if a confounding nuclei is mitotic) might improve the mitosis

detector and allow for even more accurate estimation of mitotic rate. Also, future work will

involve independent validation of these findings using a separate test cohort.



4. Conclusions

This thesis has investigated the correlation of automatically extracted breast cancer biomar-

kers in histological images and the cancer risk. It is notorious that grading systems in breast

cancer (such as Bloom-Richardson system) use three histological criteria to assess the cancer

risk: tubule formation, mitotic activity and nuclear pleomorphism. Hence, a hypothesis of

this work is that automated strategies that quantify these criteria, or surrogate measures

related to them, hold enough prognostic information to discriminate high/low risk breast

cancers. This hypothesis was assessed by training a set of deep learning models to automa-

tically identify mitoses and tubular nuclei in breast cancer cases. Firstly, the computation

of a ratio between the number of tubule nuclei and the number of nuclei in the high power

fields (Tubular Formation Index - TFI) was investigated as a potential automated image

biomarker of the disease risk and aggressiveness. Secondly, the automated computation of

the mitotic activity in WSI was also studied as a potential histologic image biomarker in

ER+ breast cancers.

In the present investigation, the automated quantification of the TFI and the mitotic activity

was correlated with the risk category determined by the Oncotype DX test. For doing so,

a cohort of 174 breast cancer cases with their corresponding Oncotype DX recurrence score

and their pathological grade were used. The TFI was significantly different for the BCa

cases with low ODX-low histological grade and high ODX-high histological grade. When

comparing the high ODX-high grade group with the remaining BCa cases, the TFI was

still significantly lower. Likewise, the calculated tubule quantification measure was larger

in the BCa cases with low ODX-low grade when compared to the remaining BCa cases. In

the same cohort, the automated mitotic count was found to be significantly different for

the low ODX group when compared against the high ODX risk group, demonstrating that

automated quantification of mitoses captures important prognostic information. This result

can also be extended to the BCa cases with both low ODX and low grade. The mitotic

detector and the TFI nevertheless failed to show differences between high and intermediate

ODX groups. The mitotic information extracted using the DNN achieves a sufficient level of

precision and deals with patient tissue variability. The prognostic information is captured by

the support vector machine classifier which properly distinguishes between BCa cases with

high/low ODX score.

The computed TFI shows a slightly lower correlation with the ODX risk categories than the

automated mitosis and other automated histological features such as nuclear architecture [6].

However, information of the different features is complementary and strategies to integrate
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these features could potentially boost the accuracy of cancer risk assessment. Some previous

work has successfully combined automated features (even extracted from differently stained

samples from the same patient) and predicted the corresponding ODX risk category [5].

Therefore, fusion strategies to integrate information from different histological features (e.g.

nuclear architecture, mitotic count, tubule density) is a future research path.

The usefulness of the automated quantification of tubule formation and mitotic activity in

the clinical pathology workflows is still a pending issue to be demonstrated. These automated

quantification tools aim to reduce the inter-reader variability and to quantify the cancer risk.

These features could facilitate the streamlining and standardization of the clinical workflows.

The presented quantification algorithms were used within cancerous regions previously se-

lected by an expert pathologist. However, the automatic selection of diagnostically relevant

regions in whole slide images is an open research topic on its own, and accurate delineation

strategies have been recently introduced [19]. Future work should focus on improving the

performance of tubule and mitosis detectors, validating the presented approach on larger

test cohorts and incorporating automatic selection of region of interest.

The potential applicability of the results of this study to the clinical practice has been

demonstrated even though high and intermediate ODX risk groups could not be completely

separated. Patients with low ODX have demonstrated low risk, case in which the adjuvant

chemotherapy could be unnecessary. It is less clear how safe it could be to omit chemotherapy

in patients with intermediate and high risk scores, and oncologists routinely discuss about

chemotherapy risks and benefits in these cases. The automated quantification of histological

features (such as tubule formation or nuclear pleomorphism) might provide a clearer picture

in such cases. The mitotic activity of a tumor, that can be estimated as the number of

mitoses per high power field, or as the proliferation index by the Ki67 immuno-histochemistry

count, or as the gene expression by predictive/prognostic assays such as ODX, cannot be

used alone to determine if a breast cancer has low, intermediate or high risk of recurrence.

Mitotic activity is an important feature but not the only histological criterion. The fact that

the mitotic activity figures from the DNN can alone separate low versus intermediate/high

is quite remarkable and has clinical utility. It is possible that if this model were coupled

with additional algorithms specialized in other pathologic features, the risk category could

be defined more accurately.

The deep learning algorithms used in this study presents several limitations, that once over-

come could lead to more robust and accurate tubule/mitoses detections. The main disadvan-

tage is that generalization from a small set of annotations to the whole populations is not a

feasible task. The performance of detectors shows an important variability across H&E whole

slide images with staining variations. Future work should focus on improving the robustness

of the mitotic and tubule detectors in case of such stain variations
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