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Preface  

The University of Sydney allows thesis containing publication. This thesis consists of 

ten chapters and encompasses the candidate’s published papers, papers under 

consideration for publication, the bridging chapters for the papers, along with 

introduction, discussion and conclusion chapters, as instructed in the University of 

Sydney guideline for thesis containing publications. Each chapter can be read 

independently as it is presented as a self-reliant section and includes its own references. 

The thesis layout is shown below.  

• Chapter 1 is an introduction to the thesis. It provides an overview of the added 

benefits of whole slide imaging to breast pathology, summarizes the 'gaps' in 

the existing literature and explains the objectives to be addressed by this thesis.  

• Chapter 2 presents a detailed review of the literature on computer‑based 

image analysis in breast pathology. It discusses, compares and contrasts the 

previous studies to find key remaining challenges in computer-assisted analysis 

of breast histopathological images. This chapter was published as the review 

paper “Computer-based image analysis in breast pathology” in the Journal of 

Pathology Informatics, 7:43, 2016.  

• Chapter 3 serves as a bridging chapter for the paper presented in chapter 4 and 

provides a detailed background about mitotic figures, their importance, and the 

magnitude of disagreement among pathologists in the recognition of mitotic 

figures. It also briefly justifies the necessity of study presented in Chapter 4.  

• Chapter 4 presents the published journal paper “Determining image 

processing features describing the appearance of challenging mitotic figures 

and miscounted nonmitotic objects,” which was published in the Journal of 

Pathology Informatics, 8:34, 2017. It explores the relationship between image-

based features and the difficulties in the recognition of mitotic figures.  

• Chapter 5 is a bridging chapter for introducing the paper presented in Chapter 

6 and provides a detailed background about nuclear grading, its importance, 

and challenges toward a reproducible nuclear grade.  

• Chapter 6 presents COMPASS (COMputer-assisted analysis combined with 

Pathologist’s ASSessment), which is a personalized tool for reproducible 

nuclear atypia scoring and it is based on the pathologist’s assessment of six 
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criteria related to the nuclear atypia along with computer-extracted features. 

This paper is currently being peer-reviewed for publication.  

• Chapter 7 serves as a bridging chapter for the study presented in chapter 8. It 

discusses the importance of the correct identification of carcinoma and benign 

subtypes and the necessity of the study presented in Chapter 8.  

• Chapter 8 introduces MuDeRN, a framework for classifying Hematoxylin-

Eosin stained breast histopathological images either as benign or cancer; 

categorising cancer cases into four subclasses, namely ductal carcinoma, 

lobular carcinoma, mucinous carcinoma, and papillary carcinoma; and 

subdividing those cases classified as benign into four subcategories, namely 

adenosis, fibroadenoma, phyllodes a tumour, or tubular adenoma. This paper 

is currently being peer-reviewed for publication.  

• Chapter 9 provides an overview of the main findings of this thesis and their 

interpretation. It also discusses the findings in the context of literature and 

states the implications of the findings. Finally, it identifies the limitations of 

the studies and possibilities for future work. 

• Chapter 10 succinctly summarizes this thesis, its findings, and implications. 

I used publicly available de-identified databases throughout the studies included in this 

thesis, therefore the studies were exempt from the ethical approval by the University 

of Sydney.  
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Abstract 

Aims: This thesis aims at determining if computer-assisted analysis can be used to 

better understand pathologists’ perception of mitotic figures on Hematoxylin-Eosin 

(HE) stained breast histopathological digital slides. It also explores the feasibility of 

reproducible histologic nuclear atypia scoring by incorporating computer-assisted 

analysis to cytological scores given by a pathologist. In addition, this thesis 

investigates the possibility of computer-assisted diagnosis for categorizing HE breast 

images into different subtypes of cancer or benign masses.  

To achieve these aims, this thesis 1) examines the existing literature regarding 

computer-assisted analysis of HE images in breast pathology to identify knowledge 

deficiencies; 2) assesses the feasibility of relating image-processing features with 

disagreement in recognition of mitotic figures among pathologists; 3) proposes a tool 

for reproducible grading of nuclear atypia on HE breast images; and it 4) proposes a 

tool for automatic classification of HE breast images in multiple categories.  

Materials and Methods: This thesis is comprised of three original research studies. 

Study 1: A data set of 453 mitoses and 265 miscounted non-mitoses within breast 

cancer digital slides were considered. The MITOSIS-ATYPIA dataset, which is a 

publicly available dataset, was used in this experiment. In this dataset, two pathologists 

were asked to annotate the mitotic figures and label them either as a “true  mitosis” or 

“probably a mitosis”. In case of disagreement, the opinion of a third pathologist was 

requested.  Based on the confidence level of three pathologists who annotated the 

mitoses, they were classified in three groups: those recognized by both two first 

pathologists (C1), those missed by one of the first two pathologists and recognized as 

a “true mitosis” by the third pathologist (C2), and those labelled as “probably a 

mitosis” by the majority of the readers (C3). The miscounted non-mitoses were 

annotated as a mitosis by only one of the pathologists, whereas the true mitosis were 

annotated by at least 2 of the pathologists. Shape-based, intensity-based and textural 

features were extracted from the objects in different channels of eight colour spaces. 

Two global descriptors representing the size of nuclei and chromatin density of each 

image were also extracted. Using Kruskal-Wallis H-test followed by the Tukey-

Kramer test, the significantly different quantitative features among three categories of 
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mitotic figures and miscounted non-mitoses within the breast slides were identified. 

The study also extracted some rules, describing a trend which was observed from C1 

(easily identifiable mitoses) to C3 (the most challenging mitoses).  

Study 2: A new tool for reproducible nuclear atypia scoring in breast cancer 

histological images was proposed in this study. The new tool was tested on 600 images 

for which expert-consensus derived reference nuclear atypia scores were available. 

The images were acquired from 300 areas, once scanned by Aperio Scanscope XT 

scanner and once by a Hamamatsu Nanozoomer 2.0-HT scanner. The developed tool 

is called COMPASS (COMputer-assisted analysis combined with Pathologist’s 

ASSessment) and it relied on two sets of features, where the first set is comprised of 

the scores given by the pathologists to six nuclear atypia-related cytological features, 

and the second set contained computer-extracted features. COMPASS was designed 

to assist junior pathologists to achieve an accuracy in nuclear grading comparable to 

that of senior pathologists. It was retrospectively tested for three junior pathologists 

who gave scores to six atypia-related criteria for each image. 

Study 3: The third study proposed and tested MuDeRN (MUlti-category classification 

of breast histopathological image using DEep Residual Networks), which is a 

framework for classifying hematoxylin-eosin stained breast digital slides either as 

benign or cancer, and then categorizing cancer and benign cases into four different 

subtypes each. MuDeRN provided the diagnosis for each patient by combining outputs 

of deep residual networks’ processed images in different magnification factors using 

a meta-decision tree. Images for each patient were heterogeneous and a meta-decision 

tree could potentially capture the nonlinearity for mapping the image-level diagnosis 

to the patient-level diagnosis.  MuDeRN’s performance was tested on a dataset of 7786 

images from 81 patients where each patient had images at four magnification factors 

(x40, x100, x200, and x400) available. Images per each patient were heterogeneous, 

therefore for obtaining patient-level diagnosis from the image-level diagnoses instead 

of simple averaging or majority voting,  

Results:  

Study 1: It was found that the most challenging mitotic figures (C3) were smaller and 

rounder compared to other mitoses (C1 and C2). On the other hand, the sizes of the 
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miscounted non-mitoses were identical to those of easily to identify mitoses (C1 and 

C2) but miscounted non-mitoses were rounder than true mitoses. Compared to 

intensity-based features, textural features exhibited more differences between 

challenging mitotic figures (C3) and the easily identifiable mitoses (C1), while the 

intensity-based features from chromatin channels were the most discriminative 

features between the miscounted non-mitoses and the easily identifiable mitotic figures 

(C1). Among the texture features, features extracted using Gabor filter were the most 

discriminative features.  

Study 2: The percentage agreement between the reference nuclear scores (consensus 

of pathologists) and COMPASS, if it had been adopted by the three junior pathologists, 

was 93.8%, 92.9%, and 93.1% respectively. The agreement rates were comparable to 

those of senior pathologists assessing the same dataset (i.e. 90.6% and 86.9%). The 

paired Mann-Whitney U test showed that the grades given by COMPASS when tested 

on Aperio images and the given grades for Hamamatsu images were not significantly 

different (junior pathologist 1: z=-1.1, P=0.29; junior pathologist 2: z=0.48, P=0.63; 

junior pathologist 3: z=0.86, P =0.39).   

Study 3: For the malignant/benign classification of images, MuDeRN obtained correct 

classification rates (CCR) of 98.52%, 97.90%, 98.33%, and 97.66% in x40, x100, 

x200, and x400 magnification factors respectively. For eight-class categorization of 

images, CCRs were 95.40%, 94.90%, 95.70%, and 94.60% in x40, x100, x200, and 

x400 magnification factors respectively. For making patient-level diagnosis in eight-

class categorization, MuDeRN obtained a CCR of 96.25%. 

Conclusion: The findings from the first research study suggested that computer-aided 

image analysis can provide a better understanding of image-related features related to 

discrepancies among pathologists (the mitoses recognition task was evaluated). Two 

tasks done routinely by the pathologists are making diagnosis and grading the breast 

cancer. The second and third studies indicated that computer-assisted analysis can aid 

in both nuclear grading (COMPASS) and breast cancer diagnosis (MuDeRN). 

Therefore, three important tasks in breast pathology could benefit from the findings 

presented in this thesis. The results could be used to improve current status of breast 

cancer prognosis estimation through reducing the inter-pathologist disagreement in 

counting mitotic figures and reproducible nuclear grading. It can also improve 
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providing a second opinion to the pathologist for making a diagnosis and hence reduce 

diagnostic discrepancies among pathologists. 
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Introduction 
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Breast cancer (BCa) is the most common non-skin cancer among women worldwide 

[1]. In spite of the increase in the incidence rate of BCa over the last few decades, the 

mortality rate from this disease  in the developed countries has been decreasing due to 

improvements in treatment options [1] and early detection through screening 

mammography [2]. Mammography is the standard imaging examination for BCa 

screening and randomized clinical trials conducted between 1970 and 1990 supported 

its efficacy as a population-based organized BCa screening tool [3-5].  

Radiologists might recall women attending screening for further imaging or a biopsy. 

In the USA, Elmore et. al (2015) estimated that 49% of women screened annually for 

a ten year period will experience at least one false-positive mammogram, and 19% will 

undergo a breast biopsy unnecessarily [6]. In another study, it was shown that in each 

round of a screening program, 10.6% of women with false-positive mammograms 

undergo fine needle aspiration or breast biopsy [7]. In the UK 4% of women attending 

screening mammography were called back for further examinations, and in total 1.76% 

of screened women undergo a biopsy [8]. Therefore, each year, pathologists evaluate 

a large number of breast histopathological slides, from which only one in four contains 

malignancy, and benign lesions and normal biopsies are far more prevalent [9]. 

Approximately 1.6 million women in the United States have breast biopsies each year 

[10]. In breast pathology, pathologists are responsible for different tasks such as 

determining whether a given lesion is benign or malignant, staging of BCa, 

determining cancer type, identifying the subtype of a benign lesion, grading, assessing 

surgical margins, and biomarker testing [11]. The tasks done by pathologists in routine 

clinical practice while interpreting the breast slides are illustrated in Figure 1. The 

pathologists’ tasks which are related to this thesis are shown by check mark. 

When a malignant mass is present, the pathologist should also stage the BCa. For 

staging BCa, pathologists evaluate the mass size and determine if the cancer is present 

in the lymph nodes (that is, determine whether the cancer has metastasized) [11].  

Normally, cancer type is also stated in the pathology report. Pathologists also grade 

the cancer, as the cancer grade shows the tumour’s aggressive potential [11]. Different 

grading methodologies have been proposed [11, 12]. Different cytological and 

histological components are taken into account in each one of these grading systems. 

Different grading systems, their contributing factors, and their reproducibility have 
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been discussed in Chapter 5. Among these grading systems,  Scarff-Bloom-Richardson 

grading system (Nottingham grading system) is one of the most popular [12] as it is 

recommended in the US National Comprehensive Cancer Network (NCCN) 

guidelines1. This system considers three factors: the percentage of tumour area forming 

glandular/tubular structures, nuclear pleomorphism (changes in nuclear appearance), 

and number of mitoses per 10 high power fields [12].   

Her2 
Positive             Negative

Estrogen 
Positive             Negative

YesYesNoNo

Breast specimen 

Nuclear atypia scoring

Mitotic count

Glandularity  scoring

Grading the breast cancer
Grade 1          Grade2            Grade 3

Staging breast cancer 
Lymph node metastasis

Quantification of 
immunohistochemistry

If YES

Malignant?

Identifying benign subtype Identifying cancer subtype 

Progesterone 
Positive             Negative

 

Figure 1- Tasks done by pathologists while interpreting the breast slide; the tasks 

covered in this thesis are shown by check mark.  

                                                 

1 http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf 
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Finally, the pathologist examines the expression of the biomarkers in BCa samples 

[11]. In BCa patients, three important biomarkers are evaluated: the estrogen receptor 

(ER), progesterone receptor (PR), and HER2 receptors.  ER and PR statuses predict 

whether the patient can benefit from endocrine therapy or not [11]. An overexpression 

of HER2 shows a higher risk of cancer recurrence and predicts that patients can benefit 

from anthracycline and taxane-based chemotherapies but not endocrine therapy [13]. 

Usually, the pathological report of a breast biopsy is considered as the gold standard 

for further patient management and selection of the treatment options. However, recent 

studies have shown that there are disagreements among pathologists interpreting breast 

specimens. Table 1 summarizes findings of studies investigating discordance among 

pathologists in making a diagnosis about breast slides. Usually, an expert consensus 

review panel is considered as the gold standard and disagreement with the expert-

driven consensus can lead to overinterpretation (overdiagnosis) or underinterpretation 

(undertreatment).  

As shown in table 1, the expert breast pathologists have a high agreement rate in the 

diagnosis of invasive BCa, but the disagreement rates for the diagnosis of benign 

lesions and of atypical lesions can be high. The concordance level is usually measured 

using the agreement rate or the Cohen’s kappa. The agreement rate is the number of 

concordance cases divided by total number of cases. Cohen’s kappa measures inter-

observer agreement for categorical items and is a more robust measure than the 

agreement rate, as it considers the possibility of the agreement happening by chance. 

It usually interpreted as follows: kappa≤ 0 shows no agreement, 0.01–0.20 as none to 

slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 0.81–

1.00 as perfect agreement.  

The high disagreement rates for the diagnosis of benign and atypical lesions is 

concerning as the treatment follow-up that each diagnosis would have received is 

different [26].  Considering the percentages from the studies presented in Table 1, if 

100,000 core biopsies are performed per year, about 4,000-9,000 of them will lead to 

diagnosis of atypia [26]. Based on the numbers provided in [26] and [27], about half 

of these cases may lead to overdiagnosis and unnecessary invasive treatments. 



-5- 

Table 1-Findings of studies investigating discrepancies among pathologists making 

diagnosis of breast specimens. 

 

Nc represents number of cases while Np represents number of cases.   

Included categories Study NC NP Finding 

Usual hyperplasia, 

atypical hyperplasia, 

or carcinoma in situ 

[25] 24 6 

Complete agreement among all six 

pathologists was seen in 58% of cases; 

five or more agreed for 71% of cases, and 

four or more arrived at the same 

diagnosis for 92% of cases. 

Benign, benign with 

atypia, non-invasive 

malignant, and 

invasive malignant 

[26] 30 26 

Overall kappa of 0.71; kappa of 0.95 for 

malignant/benign classification; and 

kappa was nearly perfect for selection of 

benign versus malignant categories. 

There was less agreement for the 

categories of non-invasive malignant and 

benign with atypia (kappa coefficients of 

0.59 and 0.22, respectively). 

Benign with and 

without atypia; ductal 

carcinoma in situ, and 

invasive BCa 

[22] 1970 12 
A significant discrepancy of 3.35% for  

histologic classification 

Benign with and 

without atypia; ductal 

carcinoma in situ, and 

invasive BCa 

[27] 240 115 

Overall agreement rate of 87% for  

benign without atypia;  overall agreement 

rate of 48 %, with 17%  

overinterpretation and 35%  

underinterpretation for  benign with 

atypia;  overall agreement rate of 84 %, 

with 3%  overinterpretation and 13%  

underinterpretation for  ductal carcinoma 

in situ cases;  overall agreement rate of 

96% for  invasive cases. 
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Table 2 lists the findings of studies investigating the magnitude of disagreement among 

pathologists in grading BCa slides. As stated earlier, different grading systems have 

been proposed for grading BCa, however since the most popular is Nottingham 

grading system, I only included the inter-pathologists’ studies using this grading 

system. As shown in the table, agreement is poorest for nuclear pleomorphism grade 

(fair to moderate) and it is strongest for tubular formations (substantial to perfect); and 

it is moderate to substantial for mitotic count. Studies presented in Table 2 used 

Cohen’s kappa, however, it should be noted that as breast cancer grade is an ordinal 

variable, weighted Cohen’s kappa represent the degree of disagreement better than 

Cohen’s kappa. Disagreement among pathologists can also happen in biomarker 

reporting. Based on [22], biomarker profile was the second most common item with 

significant discrepancy (50 cases out 1970) between initial and second review 

pathology reports. The highest agreement was observed for HER2 grading, while ER- 

status of 19 patients and PR- status of 20 patients were changed.  

Different reasons could cause disagreement among the pathologists. Allison et al. [23] 

divided underlying reasons into three categories, which were pathologist-related, 

diagnostic coding/study methodology-related, and specimen-related. Among 

pathologist-related factors, “professional differences of opinion on features meeting 

diagnostic criteria” was ranked first [23]. Diagnostic coding-related root causes were 

mostly miscategorizations of descriptive text diagnoses while specimen-related root 

causes included poor slide quality, artefacts, and limited diagnostic material [23]. 

Recent advances in digital scanners can potentially help in further understanding of 

the underlying reasons for discrepancies, and providing computerized tools for giving 

second opinions to the pathologists. 
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Table 2-Findings of studies investigating disagreement and agreement among 

pathologists for BCa grading 

 

1-2- Whole slide imaging in breast pathology 

1-2-1-What is whole slide imaging?  

Whole slide imaging (WSI) refers to the scanning of an entire glass slide with high 

magnification and producing “digital slides” or “virtual slides” [24].  Pathologists use 

Study NC NP Finding 

[14] 50 5 

Approximately 80% complete agreement was achieved for 

tubule formation, nuclear score, and mitotic count, with 

kappa values ranged from 0.46 to 0.69. 

[15] 40 3 

Pairwise kappa for agreement ranged from 0.68-0.83 

(median 0.68) for overall grade. Kappa values were 0.54, 

0.34 and 0.36 for tubule formation, nuclear pleomorphism 

and mitotic count respectively. 

[16] 93 7* 

Agreement rate of 31% in overall grade with kappa of 0.54; 

the agreement was best for tubular formations and poorest for 

nuclear grade. 

[17] 35 13 

Kappa ranged from 0.5 to 0.7, with the greatest agreement 

obtained in categorizing grade I (kappa=0.7), and grade III 

(kappa=0.7) tumours. 

[18] 166 3 Overall agreement rate for grading of  72.3% of all cases 

[19] 72 6 

Pairwise kappa values from 0.43 to 0.74 for histologic grade. 

Generalized kappa values were 0.64, 0.52, and 0.4 for tubule 

formation, mitotic count, and nuclear pleomorphism. 

[20] 10-23 5-7 

Kappa ranged from 0.50 to 0.59 for overall grade. Pairwise 

kappa was the lowest for nuclear pleomorphism 

(kappa=0.37–0.50), highest for tubularity (kappa=0.57–

0.83), and intermediate for mitotic count (kappa=0.45–0.64). 

[21] 50 5 

The polychoric correlations** among observers were 0.803, 

0.712, 0.797 and 0.602 for the final grade, tubule formation, 

nuclear pleomorphism and mitotic figures, respectively. 

There were significant differences in thresholds and hence 

significant differences in classification of grades. 

* seven pathology departments within the southern healthcare region of Sweden 

** An estimate of the correlation between two normally distributed continuous variables 
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monitors instead of light microscopes for assessing the digital slides and the WSI 

systems provide the pathologists with different options for annotating the slides, send 

them to a colleague for consultation, searching the database, and retrieving similar 

slides.   

WSI involves software for data acquisition, archiving, slide viewing, and image 

processing and hardware for scanning the glass slide [28]. In late 1990s, the first virtual 

microscope was introduced. Although it was a major step towards digital pathology, 

the capabilities of the early virtual microscopes were limited, especially due to the 

length of time it took to scan a slide [28]. Today, most modern slide scanners are 

capable of producing high-resolution digital slides in a reasonable time, and many 

pathology labs are starting to undergo a transition from traditional workflow to fully-

digital [29]. At first impression, the transition from glass slide to digital slides might 

seem to be like elimination of films in radiology. However, there are some 

fundamental differences between these two and transition toward digital pathology has 

its own considerations and benefits for the pathology department [28]. This section 

summarizes these advantages and considerations.  

1-2-2- Advantages of WSI in breast pathology 

WSI has the potential to be utilized in telepathology for primary diagnosis [15-41] and 

quality assurance (QA) [22, 42-48], clinical education [50-57], data management [60-

63], and digital image analysis to aid pathologists [28, 64, 65]. In this section, the 

potential added advantages of WSI adoption in breast pathology are briefly discussed. 

1-2-2-1- Telepathology for primary diagnosis 

Telepathology can be used for diagnosis in remote areas and can eliminate cost and 

delays associated with posting a glass slide from areas without in-site pathologists as 

well as reduce pathologists’ travels to remote area for reading slides. However, before 

broad adoption of digital pathology, some challenges should be tackled, such as 

improving the speed of the scanners, enhancing auto-focusing systems, and also 

developing appropriate software for data management in pathology labs. However, the 

most important challenge for adoption of WSI systems for primary diagnosis is 

proving that the performance of pathologists while using WSI is at least as good as 

their performance with light microscopy.  
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Recent studies showed that pathologists’ performance in reading breast slides while 

using WSI platforms was comparable to conventional microscopy in BCa grading [17], 

benign/malignant determination [22], mitotic activity scoring [23],quantification of 

ER and PR [18,20], HER2 scoring [15,16,19,21,24] and also Ki-67 assessment 

[21,24].  However, some differences between conventional and virtual microscopy 

were reported in the studies as well; for example, in [30], it was reported that WSI had 

better sensitivity and lower specificity for HER2 scoring in comparison with light 

microscopy and  Kondo et al [31] showed that the pathologists tended to assign higher 

HER2 scores with WSI than with glass slides [31]. Interestingly, Shaw et al [32] 

showed that performance with WSI is better for detecting tubule formation [32] and in 

[33], Cohen’s kappa (κ) was used for measuring the agreement between the 

pathologists while assessing ER and PR expression in virtual slides. The κ between 

conventional and virtual microscopy ranged from 0.33 to 0.78 and the results showed 

that digitized evaluation of nuclear immunostaining was as precise as the manual 

evaluation of routine glass slides.  

Recent advances in telepathology also made robotic microscopy possible.  A robotic 

microscopy system is a fully-automated complex system which allows for the 

production of digital slides from tissue biopsies; it consists of a WSI system for 

producing and storing the slides, electromechanical part handling specimens, a pump 

for immersion oil (if necessary for producing slides), controls, and support accessories 

[34]. For example in [35], Singh et al investigated the feasibility of remote diagnosis 

of BCa slides using robotic microscopy. Although the agreement between diagnosis 

using light microscopy and robotic microscopy was promising, it has been stated that 

adoption of robotic microscopy was not feasible at the time of the study due to 

operational and technical problems.    

Terpe et al used telepathology for an intraoperative frozen section service and showed 

that the error rate was similar to light microscopy [36]. However, in [37], it was 

reported that using telepathology for intraoperative analysis of the sentinel lymph node 

by frozen section caused decrease in sensitivity. As both studies had large number of 

patients (298 vs 628), lack of power is not the source of differences. Differences in the 

slide scanners’ model or pathologists’ level of expertise may be the reason of the 

observed behaviour.  
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Although the results obtained from comparison of diagnosis based on glass slides to 

digital slides were promising, certain limitations must be taken into account. First, in 

order to design a study for validation of WSI systems in breast histopathology, a test-

set containing different types of cancers, benign, and normal tissues should be used. 

As suggested by [38], the magnitude of agreement between decisions made on glass 

slides and digital slides may differ for various biomarkers (or more generally tasks) 

and this suggests that a validation study for a specific task cannot be simply 

generalized to other pathology tasks. However, there are more than 10,000 possible 

diagnoses that a pathologist can render [39], and assessing all of them is not feasible. 

Rather than including all possible diagnoses in a test-set, I can make sure that the 

diagnostic features that comprise each diagnoses are properly represented in the WSI. 

Using pathologists from only one centre is the second limitation of the reviewed 

studies. Only Nassar et al [40] did a study in three different sites. They achieved 

comparable percentages of agreement between light microscopy and WSI across 

different sites [40]. Moreover, in a perfect study design, intra-observer variability 

should be considered as well. To do so, Campbell et al [41] asked the pathologists to 

examine the cases using conventional microscopy twice, with one reading considered 

as the original, and calculated intra-observer variability of the second reading using 

WSI [41]. Particularly when the pathology task is more subjective, such as detecting 

pleomorphism, stroma, the nature of the tumour border and lymphocytic infiltration, 

considering readers’ variability while reading glass slides is crucial [32]. In summary, 

it can be concluded that WSI has the potential to be utilized in telepathology for 

primary diagnosis [15-41]. 

1-2-2-2- Telepathology in breast pathology quality assurance and 

consultation 

Applications of telepathology for teleconsultation and QA were also assessed recently.  

The discrepancies between the interpretations of two different pathologists have been 

studied [22], and a high disagreement rate was observed, especially in classification of 

borderline cases, emphasizing the key role of QA in pathology labs. One of the major 

barriers to QA is problems associated with shipping glass slides between facilities, 

which raises risk of damage, time delays, and transporting costs.  Telepathology allows 

fast inter-institutional QA.  
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Leong et al [42, 43] performed a clinical trial to investigate the accuracy of 

telepathology in the U.K. breast screening pathology QA program. The diagnostic 

accuracy, invasive tumour typing, tumour grading of telepathology compared to light 

microscopy was 98.8%, 91.3%, and 86.4% respectively. The study concluded that 

because of comparable results, telepathology can be used for QA purposes [42, 43]. In 

another study, Zito et al [44] used an internet-based platform to evaluate inter-observer 

reproducibility between pathologists using virtual slides (VS) of stereotactic core 

biopsy specimens of non-palpable breast lesions. The study showed similar results to 

those quality control studies using circulating glass slides and it concluded that 

telepathology can be used for quality control [44]. In [45], Terry et al presented the 

Canadian Immunohistochemistry Quality Control, which is a web-based program for 

QA developed in Canada. They showed that the telepathology can be used for inter-

instantiation quality assurance and consultation. 

Della Mea et al [46] performed one of the earliest studies on teleconsultation. It has 

been shown that digital pathology is effective for remote consultation [46].  However, 

they used only 48 cases, which is a limited number. In a similar study done in 

Germany, the impact of web-based service for teleconsultation in pathology was 

investigated [47].  The result indicated that the quality of telepathological diagnosis 

was as good as that of conventional diagnosis. In addition, it was reported that by using 

telepathology, the response was 1 to 2 days faster, as it avoided the delay of 

conventional post [47]. Later, the updates to the software for tackling some technical 

problems were presented in [48]. In another study done for evaluating performance of 

a WSI-based same-day second-opinion service, it was shown that in only 1.3% of the 

cases the original glass slide was requested to make a final decision [49]. In summary, 

the previous studies provided very strong evidences for supporting use of 

telepathology for quality assurance and consultation.  

1-2-2-3- Virtual microscopy in breast pathology education  

WSI systems have a lot of potential applications in clinical education because they 

provide the readers with different options for annotating, searching the database, and 

retrieving similar slides [50-52]. For example, Lundin et al [50] developed an 

educationally useful publicly available atlas of breast histopathology by using web 

based virtual microscopy technology. The user can see the virtual slides either with 
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supplementary diagnostic information or without it for self-assessment [50]. Khushi et 

al [51]  also developed an open source tool for virtual slides management and archiving 

which can be used for educational purposes [51]. Bondi et al [52] used an e-learning 

platform (Docebo) to archive digital slides and showed that WSI systems are 

appropriate for proficiency tests and case sharing for consultation with more 

experienced colleagues [52].  

One of the most important things in training the pathology residents is finding the best 

training methods for the residents to develop their diagnostic skills [53]. Recently a 

few studies analysed the gaze patterns of pathologists and residents while interpreting 

breast cancer virtual slides to understand the development of visual perception skills 

[53-57]. The results of this type of study can be used for optimizing clinical training 

of pathology residents.  

1-2-2-4- Facilitation of Data Management 

The advent of WSI systems could facilitate data management in breast pathology 

through faster and easier slide archiving, indexing, and retrieving.  Recently, different 

online and offline tools were developed for storing, indexing, and content-based 

retrieval of breast virtual slides. For example, Schnorrenberg et al [58] developed the 

Biopsy Analysis Support System (BASS), which is software for indexing and content-

based retrieval of breast digital slides [58]. As another example, in [59] Pathology 

Analytic Imaging Standards (PAIS), a data model was presented and a database was 

implemented based on it to manage data and retrieve slides relevant to the sent query. 

Zheng et al [60] developed a method for content-based slide retrieval from an archive 

of breast virtual slides. This software is capable of finding slides with the spatial 

texture property similar to the one queried [60]. INSPIRE is a web-based integrated 

informatics interface for aggregating annotation data of digital slides to perform and 

present statistical analyses [61]. Wright et al [62] developed RandomSpot which is a 

web-based tool for systematic random sampling of virtual slides [62].  

One of the major issues of data management software for storing or transmission of 

pathology slides is the extremely large size of digitized slides. In [63], the usefulness 

of a visual discrimination model (VDM), as well as other distortion metrics for 

predicting the bit rates for visually lossless compression of breast digital slides, was 

investigated. It has been shown that VDM metrics could be utilized as a guide for 
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determining the compression rate of breast virtual slides and they reduced the data size 

5–12 times of reversible compression methods [63].  

1-2-2-5- Possibility of computer-assisted analysis  

One of the major advantages of WSI systems in comparison with conventional 

microscopy is the possibility of analysing the digital slides using computer-based 

algorithms. Quantitative assessment of breast tissue for grading and quantifying 

biomarker status can be slow procedures whose accuracy may be affected by 

subjectiveness of the decisions made by pathologists.  Recently many researchers and 

companies started working on computer-assisted systems for breast histopathology 

analysis. The primary purpose of the studies focusing on computer-assisted analysis 

of breast virtual slides can be classified in four categories: (i) segmentation of nuclei, 

tubule, or mitotic figures on BCa slides, (ii) classification of BCa slides as malignant 

or benign, (iii) BCa grading, and (iv) immunohistochemistry quantification. In chapter 

2, computer-assisted image analysis in breast histopathology is reviewed in detail.  

1-2-3- Considerations 

At first impression, the transition from glass slide to digital slides might seem to be 

like elimination of films in radiology. However, there are some fundamental 

differences between these two [28, 64, 65]. First of all, in digital radiology, the images 

are acquired in digital format while in pathology, an additional step should be added 

to conventional microscopy system to scan the slides and produce digital images. 

Despite the rapid evolution in the technology associated with slide scanners, there are 

still some barriers in this area such as developing accurate and fast, fully automatic 

focusing systems and potential delay and extra expenses caused by adding the scanning 

step [28]. Secondly, the sizes of the digital slides are significantly larger than 

radiologic images.  For example, the size of 100 slides at magnification of 40× (typical 

resolution of 0.25 micron/pixel) is approximately 80 Gigabytes. Therefore, huge 

storage devices and particular data management software are needed for archiving the 

virtual slides. Thirdly, workflow of radiologists is different from that of pathologists 

[65]. Studies done by McClintock et al [66] and Isaacs et al [67] showed that full 

adoption of WSI in the current workflow of a high-volume histology laboratory 

without making significant changes was not feasible [66, 67]. 
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Moreover, the appropriate image standards, image compression protocol, guidelines 

for selecting suitable monitors for viewing the slides, and regulations are required to 

be established for adoption of whole slide imaging [64]. In April 2017, the Philips 

IntelliSite Pathology Solution WSI system, , manufactured by Philips Medical 

Systems Nederland BV, received clearance from US Food and Drug Administration 

(FDA) for primary diagnostic use [68]. This is the first and currently only WSI system 

which was allowed to be  marketed for primary interpretation of surgical pathology 

slides in the United States, but the FDA gave 510(k) clearances to some manufacturers 

for manual and/or quantitative analysis of Immunohistochemistry [28]. To gain FDA 

approval and confidence from the pathologists, some investigations have been done to 

compare the performance of the pathologist under microscope and while assessing 

digital slides [28]. As discussed in the section 1-2-2-1 recent studies showed that 

pathologists’ performance in reading breast slides while using WSI platforms was 

comparable to conventional microscopy in different tasks in breast pathology.  

1-3- Knowledge deficiencies in the literature  

After reviewing previous work on added benefits of computer-assisted analysis of 

Hematoxylin-Eosin stained breast histopathological digital slides, which is explained 

in the literature review (Chapter 2), the following shortcomings were identified: 

• Lack of studies which link image processing features with 

disagreement among pathologists: previous studies investigated the 

quantitative image processing features related to disagreement among 

radiologists and expert consensus ground truth [69-71]. However, 

association of the image processing features with pathologists’ 

decisions were not explored in breast pathology. Finding these 

associations can help in better understanding of underlaying reasons for 

disagreement among pathologists and potentially improve the 

diagnostic agreement.  

• As stated earlier Nottingham grading system has three components. 

Previous studies achieved promising results for automatic mitotic 

figure detection [72-74] and also tubule segmentation [75-78], 

however, there is room for improving the results obtained for nuclear 

pleomorphism grading. Also as stated earlier the agreement is the 
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poorest for nuclear pleomorphism grade among three contributing 

factors in Nottingham grading system. As the breast cancer grade is 

related to the breast cancer prognosis [11], reproducible grading is 

highly required.   

• Although many studies focused on automatic binary classification of 

breast histopathological slides as either malignant or benign [79-82], 

less attention was paid to multi-category classification of breast slides 

and differentiation of benign subtypes and identification of cancer 

subtypes. As different benign and cancer subtypes might require 

different patient management (especially in terms of how aggressive 

the treatment should be), accurate diagnosis is crucially important [11] 

1-4- Aims and objectives 

The aim of the studies included in this thesis was to explore the added benefits of 

computer-assisted analysis of Hematoxylin-Eosin stained breast histopathological 

digital slides. To realise this aim, the following objectives have been identified: 

1) Conducting the literature review (a) to understand which tasks in breast 

pathology have been already addressed; (b) which image analysis techniques 

have been used; (c) to find the publicly available datasets, and (d) to determine 

the main deficiencies from the literature (Chapter 2). 

2) (a) Determining the significantly different quantitative features among easily 

identifiable mitotic figures, challenging mitotic figures, and miscounted non-

mitoses within breast slides and (b) identifying which colour spaces capture 

the difference among these groups better than others. The challenging mitotic 

figures are those mitoses for which the majority of the readers could not make 

a decision confidently while miscounted non-mitoses are false positive 

decisions. This study is an example of a framework for analysing the 

association of the pathologists’ decisions (false-positive, true-positive, or false-

negative) with image processing features (chapters 3 and 4). 

3) Developing a tool for reproducible scoring of nuclear pleomorphism: The tool 

combines computer-extracted textural features with pathologists’ assessment 

of cytological criteria. It considers each individual’s unique perceptual pattern 
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and eliminates systematic over- or under-estimating of each grader (chapters 5 

and 6).  

4) Differentiation among benign and cancer subtypes in breast histopathological 

slides by aggregating outputs of multiple deep residual networks analysing 

images from different magnification levels (chapters 7 and 8). 

1-5- Thesis structure 

The reminder of the thesis is organised as follows: 

Chapter 2 presents a review of the previous studies which used computer‑based 

image analysis in breast pathology. It aims at discussing the previous studies to find 

which features have been previously extracted from digital slides and which image 

processing tools have been used for stain normalization, segmentation, and 

classification of breast digital slides. The findings of these studies are summarized and 

compared while some key remaining challenges were identified. This chapter was 

published as the review paper “Computer-based image analysis in breast pathology” 

in the Journal of Pathology Informatics, 2016.  

Chapter 3 is a bridging chapter that provides a detailed background about the mitotic 

figures, their importance and introduces the original article which is presented in 

Chapter 4.  

Chapter 4 presents the published original article “Determining image processing 

features describing the appearance of challenging mitotic figures and miscounted 

nonmitotic objects.” This was published in the Journal of Pathology Informatics in 

2017. It sought to explore which image processing features differed significantly 

among easily identifiable mitoses, challenging mitoses (false negatives), and 

miscounted nonmitoses (false positives). It also compared the discriminative power of 

different colour spaces for distinguishing these three groups. I implemented the 

functions for extracting features that were used in this study using MATLAB and C++ 

(called as mex files in MATLAB).Where appropriate, MATLAB built-in functions 

were used.  
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Chapter 5 is a bridging chapter that provides a detailed background about the nuclear 

grading, its importance, and challenges toward a reproducible nuclear grade. It 

introduces the journal paper which is presented in Chapter 6.  

Chapter 6 presents the original study “COMPASS: Pleomorphism Grading of Breast 

Cancer by Computer-Assisted Analysis Combined with Pathologist’s Assessment.” 

The paper introduces COMPASS (COMputer-assisted analysis combined with 

Pathologist’s ASSessment), a tool proposed for reproducible nuclear pleomorphism 

scoring.  This paper was submitted for publication to the Journal of the American 

Medical Informatics Association, 2017. It also presents the results for evaluating the 

performance of COMPASS for the three junior pathologists and discusses whether it 

could complement the senior pathologist’s performance to some extent. I implemented 

the functions for extracting features that were used in this study using MATLAB. 

Where appropriate, MATLAB built-in functions were used.  

Chapter 7 is a bridging chapter that provides a detailed background about the 

importance of identifying the carcinoma subtype as well as determining the subtype of 

the benign lesion. It introduces the journal paper which is presented in Chapter 8.  

Chapter 8 presents the original article “Determining benign and cancer subtypes in 

breast histopathological slides by aggregating outputs of multiple deep residual 

networks analysing images from different magnification levels.” This paper was 

submitted for publication to Artificial Intelligence in Medicine in 2017. The paper 

describes the proposed framework for classifying Hematoxylin-Eosin stained breast 

histopathological images either as benign or cancer, subdividing cancer cases into four 

subcategories, namely ductal carcinoma, lobular carcinoma, mucinous carcinoma, and 

papillary carcinoma, and classifying those cases classified as benign as adenosis, 

fibroadenoma, phyllodes a tumour, or tubular adenoma. This study has been 

implemented using Python (Keras library with TensorFlow backend). 

Chapter 9 discusses the findings of the work, their implications, as well as limitations 

of the studies and possible avenues for improving this work and conducting future 

studies. 

Chapter 10 concludes the thesis and summarizes the studies and their results.  
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3-1- Introduction 

Mitosis is an essential stage of the cell cycle and represents division of the nucleus. 

The mitotic (M) phase of a cell cycle consists of mitosis and cytokinesis cytokinesis 

(division of the cytoplasm) and involves the division of the mother cell into two 

daughter cells [1]. Therefore, number of mitotic figures, or mitotic count, in a sample 

represent how active tissue is [1]. In the current practice of pathology, pathologists 

count the mitotic figures in a selected area of the most mitotically active part of the 

tumour on glass slides using light microscopy in ten high power fields or per unit area 

(2 mm2) [2]. The active area of the tumour, selected for counting the mitotic figures, 

satisfies the following criteria: (1) areas with exclusively infiltrating breast cancer 

(BCa), such that any in situ component is avoided; (2) the periphery of the tumour 

section in which active growth is most likely to occur and in areas where there is no 

necrosis, inflammation, or calcifications; and (3) areas with high density of mitotic 

figures [2]. The mitotic count is a contributing factor in BCa grading since it indicates 

how much the tumour cells are dividing [1]. In addition, it was shown that the mitotic 

count has an independent prognostic value because it measures cellular proliferation, 

which is related to tumour aggressiveness [2]. 

Previous studies assessing the magnitude of agreement between pathologists for 

mitotic grading are summarized in Table 1. As shown the kappa values ranged from 

0.38 (fair) to 0.70 (substantial), with the average of 0.51 (moderate) when considering 

studies in different countries. Among these studies, in [3] and [4] object-level 

recognition was studied. Malon et al [3] evaluated pathologists’ agreement on  the 

recognition of individual mitotic figures rather than mitotic count. They used a set of 

more than 4200 candidate mitotic figures taken from 2444 high power fields in 94 

breast slides and asked three pathologists from USA and Japan to classify them either 

as mitotic figures or non-mitotic figures. The pairwise Cohen’s kappa ranged from 

0.13 to 0.44 with an average of 0.38. In [4], it was shown that pathologists, especially  

less experienced ones, often do not agree on recognition of mitotic figures and the 

disagreement rate is higher for smaller mitoses.  

To aid pathologists for mitotic grading, recently different digital image analysis 

algorithms have been used for automatic mitotic figure detection. These studies were 

summarized in Chapter 2. In the study presented in chapter 4, the image processing 
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features previously used to automatically detect mitotic figures were utilized for 

determining the appearance of challenging mitotic figures and also the characteristics 

of non-mitotic figures that were miscounted as a mitosis by pathologists. This is the 

first time that such analysis has been done on mitotic figures.  

Table 1- Magnitude of agreement for mitotic grading among pathologists in different 

studies. Np and Nc show number of pathologists and number of cases respectively.  

Study Site Year NP NC Kappa 

[5] Greece 1982 6 158 0.42 

[6] Australia 1992 2 76 0.64 

[7] USA 1995 6 75 0.52 

[8] Australia 1995 5 50 0.70 

[9] UK 1998 7 702* 0.39 

[10] Sweden 2000 7** 93 0.46 

[11] USA 2005 5-7 10-23 0.45 

[12] Italy 2005 10 20 0.57 

[3] USA, Japan*** 2012 3 94 0.38 

[13] Netherlands 2013 2 100 0.64 

[4] Netherlands 2016 3 84 0.72 
* 360 familial breast cancer subjects, 114 with BRCA1 mutation, 73 with 

BRCA2 mutation, 528 unselected for family history.  
** Seven pathologists, each in a different pathology department in 

southern healthcare region of Sweden.  
*** object-level recognition 

 

Pathologists should distinguish true mitotic figures from other similar components in 

the tissue, such as apoptotic cells, tissue artefacts, and dark nuclei. Moreover, true 

mitoses have a broad range of appearances. Therefore, recognition of mitotic figures 

and exclusion of non-mitotic figures are challenging tasks. The features of challenging 

mitotic figures and the characteristics of non-mitotic objects misrecognised as mitotic 

figures can be discussed in the training sessions with the pathologists or pathology 

trainees. Previous studies suggested that the reproducibility of grading could improve 

to some extent after various teaching strategies [14-16]. For example, in [14], it was 

shown that, in a teaching session, use of a decision tree, which characterizes the 

diagnosis using the histological features, is to some extent effective in improving the 

proficiency of Gleason grading of prostatic cancer by general pathologists. As another 

example, in [16], it was shown that sharing the features of cases on which pathologists 

disagreed in a training session can improve the inter-pathologist agreement for breast 

cancer grading when agreement is measured approximately one hour after the teaching 

session.  
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In the study presented in the next chapter, I aim to identify the quantitative features 

extracted from the mitotic figures or their background contributing to the recognition 

difficulty of such figures, and to find rules to describe the appearance of miscounted 

non-mitotic objects. Identifying these features may be helpful in enhancing the training 

provided to registrars and pathologists in recognition of mitotic figures. By providing 

better training, the disagreement rate in the recognition of mitotic figures can be 

potentially reduced. In addition, predicting less easily identifiable mitotic figures may 

be useful for retrieving challenging slides during training procedures of pathologists. 

Moreover, the significantly different features among mitotic and non-mitotic objects 

can be used to automate the process of mitotic counting. Automatic mitotic counting 

can potentially reduce the pathologists’ workload.   The framework proposed for 

analysing mitotic figures and prediction of their difficulties could be extended to other 

tasks in breast pathology to construct rules for describing how the challenging cases 

in a specific task look like.  

3-2- Materials and Methods 

In chapter 4, I provide the methodological approach which enabled us to extract rules 

for describing the characteristics of challenging mitoses and non-mitoses. While the 

methods and results are explained in detail in the paper (Chapter 4), some further 

explanatory points about the dataset are discussed here. 

3-2-1- Dataset 

The images were obtained from the Mitosis Atypia 2014 data set [17]. In this dataset, 

images were available in three zoom levels (x10, x20, and x40). The locations of 

mitotic and non-mitotic figures were saved in .csv file. A sample hierarchy of files for 

a patient in the dataset is shown in figure 1. All slides were scanned by two different 

scanners, Aperio Scanscope XT and Hamamatsu Nanozoomer 2.0-HT. The 

specifications of these two scanners are shown in Table 2.  
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Figure 1- A sample hierarchy of files for a patient in the dataset. For each case, there 

are three folders, i.e. atypia, frames, and mitosis. The atypia folder contains the csv 

files for cytological criteria and nuclear grading and the mitosis folder contains the csv 

files for the location of mitotic figures. The mitoses were also overlaid on the original 

image and saved as a jpeg file. In the frames folder there were three subfolders, i.e. 

x10, x20, and x40. Each subfolder contained images in the corresponding 

magnification levels. For each image in the lowest magnification level (x10), four 

images in the intermediate magnification level (x20) and 16 images in the highest 

magnification level (x40) were provided. The naming protocol of images in x20 and 

x40 magnification factors is also shown. For naming the images in x20 A, B, C, and 

D were concatenated with the image name in x10 magnification factor. In naming the 

images in x40 a, b, c, and d were concatenated with the image name in x20 

magnification factor. 

 

In this dataset, two pathologists have annotated objects within the images as true 

mitosis, probably a mitosis, or not a mitosis. In case of disagreement between these 

two pathologists, the opinion of a third experienced pathologist was requested, and the 

object has been labelled as mitosis or not mitosis according to the majority opinion. 
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Therefore, for some of the figures three opinions are available, while for others, only 

the opinions of two first pathologists were available. The dataset contains four 

different categories of objects with four confidence levels that show the probability of 

being a mitotic figure. Objects with a confidence level of 0.65 or above were 

considered as mitotic figures in the dataset.   

 

Table 2- Specifications of two scanners 

 Aperio Scanscope XT Hamamatsu Nanozoomer 2.0-HT 

Resolution at x40 0.2455 µm per pixel 
0.227299 µm per pixel (horizontal) 

0.227531 µm per pixel (vertical) 

Dimensions of a x20 

frame 

1539 × 1376 pixels 

755.649 × 675.616 µm2 

1663 × 1485 pixels 

755.996474 × 675.76707 µm2 

Dimensions of a x40 

frame 

1539 × 1376 pixels 

377.8245 × 337.808 µm2 

1663 × 1485 pixels 

377.998237 × 337.883535 µm2 
 

 

 

Table 3- Sample figures from each category and the definitions of the categories 

CL Images Label Definition 

1 
 

C1 

Mitoses that were 

recognized by both 

pathologists as a “true 

mitosis” 

0.8 
 

C2 

Mitoses that were 

missed by one of the 

first two pathologists 

and recognized as a 

“true mitosis” by the 

third pathologist 

0.65  C3 

Mitoses that were 

labelled as “probably a 

mitosis” by the majority 

of the readers 

0.2 
 

C4 

Non-mitotic objects that 

were recognized as a 

mitosis by only one 

reader and labelled as 

non-mitosis by other 

two pathologists 

CL: confidence level in the dataset  
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Also in the Mitosis-Atypia dataset, three pathologists were asked to assess six criteria 

related to the nuclear atypia on each image. They gave a score from 1 to 3 to these 

criteria which are described in table 4. They were used as global descriptors of each 

image as one of the hypothesis that were tested in the paper (chapter 4) is whether the 

contextual features from the image affect the detectability of mitotic figures.  

For segmentation of mitotic figures we used k-means clustering algorithm. It is a well-

known clustering algorithm, which has been used in different data science applications 

such as load clustering [18, 19], radiologist’ eye fixation clustering [, segmentation of 

structure within medical images, and etc.  

Further information about the dataset is presented in the chapter 4, where the 

significantly different features among different categories are discussed thoroughly. It 

was found that the most challenging mitotic figures (C3) were smaller and rounder 

compared to other mitoses (C1 and C2). On the other hand, the sizes of the miscounted 

non-mitoses were identical to those of easily to identify mitoses (C1 and C2) but 

miscounted non-mitoses were rounder than true mitoses. Compared to intensity-based 

features, textural features exhibited more differences between challenging mitotic 

figures (C3) and the easily identifiable mitoses (C1), while the intensity-based features 

from chromatin channels were the most discriminative features between the 

miscounted non-mitoses and the easily identifiable mitotic figures (C1). Among the 

texture features, features extracted using Gabor filter were the most discriminative 

features. This is an interesting finding as the Gabor filter bank mimics human visual 

system and in perceptual tasks features based on Gabor filter banks exhibited high 

discriminative power.  
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Table 4- Six nuclear atypia criteria which were presented in the Mitosis-Atypia dataset  

criterion Score Definition 

Size of nuclei 

1 
0%-30% of tumour nuclei are bigger than normal 

epithelial nuclei. 

2 
30%-60% of tumour nuclei are bigger than normal 

epithelial nuclei. 

3 
More than 60% of tumour nuclei are bigger than normal 

epithelial nuclei. 

Size of nucleoli 

1 
0%-30% of tumour cells have nucleoli size bigger than 

nucleoli of normal epithelial nuclei. 

2 
30%-60% of tumour cells have nucleoli size bigger than 

nucleoli of normal epithelial nuclei. 

3 
More than 60% of tumour cells have nucleoli size bigger 

than nucleoli of normal epithelial nuclei. 

Density of 

chromatin 

1 
0%-30% of tumour cells have chromatin density higher 

than normal epithelial cells. 

2 
30%-60% of tumour cells have chromatin density higher 

than normal epithelial cells. 

3 
More than 60% of tumour cells have chromatin density 

higher than normal epithelial cells. 

Thickness of 

nuclear 

membrane 

1 
0%-30% of tumour cells have nuclear membrane 

thickness higher than normal epithelial cells. 

2 
30%-60% of tumour cells have nuclear membrane 

thickness higher than normal epithelial cells. 

3 
More than 60% of tumour cells have nuclear membrane 

thickness higher than normal epithelial cells. 

Regularity of 

nuclear 

contour 

1 
0%-30% of tumour cells have nuclear contour more 

irregular than normal epithelial cells. 

2 
30%-60% of tumour cells have nuclear contour more 

irregular than normal epithelial cells. 

3 
More than 60% of tumour cells have nuclear contour more 

irregular than normal epithelial cells. 

Anisonucleosis* 

1 

Within the population of tumour cells, all nuclei are 

regular and/or nuclei size is not bigger than twice the size 

of normal epithelial cell nuclei. 

2 
For cases that are not fitting neither with case 1 nor with 

case 3. 

3 

Within the population of tumour cells, either nuclei size is 

irregular or nuclei size is bigger than 3 times the size of 

normal epithelial cell nuclei. 
* size variation within a sample 
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5-1- Background 

The aggressive potential of a tumour determines the prognosis of breast cancer (BCa) 

[1] and is an estimate of the expected outcome of a BCa such as the recurrence 

probability (the risk of the cancer coming back after treatment) and the patient’s life 

expectancy [1-4]. Prognostic factors are helpful in the selection of a treatment regimen; 

for example, expensive treatments, which may cause serious side effects, such as 

hormonal treatments and adjuvant chemotherapy [4], are only advisable for patients 

with a poor prognosis [1]. 

It has been shown that the Nottingham modification of the Scarff-Bloom-Richardson 

(NSBR) BCa grading system [2] could be used to estimate BCa prognosis [3]. 

However, in the routine BCa patient management, NSBR score is not being used due 

to the considerable inter-pathologist variability in the score which could affect 

patients’ risk assessment for hormonal treatment and adjuvant chemotherapy [4]. The 

NSBR grade is the average of scores given by a pathologist to three contributing 

components, namely, the degree of gland formation, the magnitude of nuclear atypia, 

and the number of mitotic figures [2].  

Table 1 summarizes the results of the previous studies [5-12] investigating the 

magnitude of inter-observer variability in NSBR grading and its components. As 

shown, the agreement on the nuclear atypia score was the weakest [5-11] with Cohen’s 

kappa ranging from 0.19 to 0.64, with the average of 0.39 across all eight studies (fair 

agreement) [5-12]. Nuclear atypia score represents the cytological features of tumour 

cells relative to normal cells [1]. Different characteristics should be taken into account 

for nuclear atypia scoring, such as nuclei shape, size, margin and chromatin, and 

nucleoli size and appearance [1], and with the lack of quantitative or semi-quantitative 

measurements, it is very difficult to ascertain nuclear atypia scores [5].  

The NSBR grading system was originally developed for patients with invasive ductal 

carcinoma, which accounts for about 80% of all invasive BCa. Invasive lobular 

carcinoma, which is the second most common type of BCa, has different histological 

and cytological characteristics compared to the invasive ductal carcinoma and the 

NSBR grade of lobular carcinoma lack the prognostic implications it has for ductal 

carcinoma [13, 14].  
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For invasive lobular carcinoma, nuclear atypia score is the most useful prognostic tool 

in comparison with the NSBR grade [15, 16]. Tubule formation and mitotic count 

differ slightly among patients with invasive lobular carcinoma and hence nuclear 

atypia score could be a more informative prognostic factor compared to the NSBR 

grade [15].  

Nowadays, fine-needle aspiration is being used for pre-operative diagnosis of BCa. 

Assessing tubule formation and counting mitotic figures in ten different tumour areas 

is not feasible on fine-needle aspiration of the breast [17, 18]. Hence, much of the 

emphasis for assessment of fine-needle aspiration of the breast should be placed on 

nuclear atypia scoring [17, 18].  

Table 1- The results of studies investigating Cohen’s kappa values for inter-pathologist 

agreement in Nottingham histologic grading and also scoring its components. Np and 

Nc show number of pathologists and number of cases respectively. For each study, the 

weakest agreement is shown in bold.  

Study Site Year NP NC 
Tubularity 

(k) 

Nuclear 

(k) 

Mitotic 

(k) 

Overall 

(k) 

[5] Greece 1982 6 158 0.45 0.19 0.42 0.30 

[6] Australia 1992 2 76 0.65 0.46 0.64 0.60 

[7] USA 1995 6 75 0.64 0.40 0.52 0.55 

[8] Australia 1995 5 50 0.67 0.64 0.70 0.70 

[9] UK 1998 7 702* 0.51 0.23 0.39 - 

[10] Sweden 2000 7** 93 0.61 0.44 0.46 0.54 

[11] USA 2005 5-7 10-23 0.73 0.27 0.45 0.58 

[12] Italy 2005 10 20 0.74 0.47 0.57 0.45 
 

* 360 familial BCa subjects, 114 with BRCA1 mutation, 73 with BRCA2 mutation, 528 

unselected for family history.  
** Seven pathologists, each in a different pathology department in southern healthcare region 

of Sweden 

 

Owing to the importance of the nuclear atypia grade and the poor agreement among 

pathologists in scoring it, recently a few studies aimed at devising automatic 

algorithms for nuclear pleomorphism scoring [19, 20]. In the paper presented in 

chapter 6, COMPASS (COMputer-assisted analysis combined with Pathologist’s 

ASSessment), a novel tool for reproducible scoring of nuclear atypia, is explained. 

Unlike previous nuclear atypia grading algorithms which aimed at providing an 

independent second opinion to the pathologists [19,20], COMPASS combines the 

pathologist’s assessment of six criteria related to the nuclear atypia with computer-

extracted features and assigns a nuclear pleomorphism score to the image based on 
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both subjective scores and objective features. In the previous automatic nuclear 

grading methods, the features were either extracted from the segmented nuclei 

(segmentation-based methods [19]) or from the entire tissue [20]. However, 

COMPASS is a hybrid segmentation-based and texture-based approach to extract the 

computer-related features from the digitized slides. It involves a coarse segmentation 

to restrict further analysis to a few regions of interest, followed by textural feature 

extraction from these areas.  

COMPASS combines the pathologists’ assessment of cytological criteria with 

computer-extracted features and outputs nuclear atypia score. It uses cytological 

features as previous studies showed that cytological grades are correlated to both the 

histologic nuclear score and NSBR grade.  The cytological features considered in six 

cytological grading systems and their relationship with histological grading are shown 

in Table 2. Cytological criteria that were taken into account by COMPASS are shown 

in bold in the table. As shown, an inter-pathologist variation exists in cytological 

grading. Computer-extracted textural features were added in COMPASS to mitigate 

the inter-pathologist variation in assessment of cytological features, describe the 

overall appearance of nuclei, and complement the cytological characteristics for 

outputting nuclear atypia score.  

An additional uniqueness of COMPASS is that, being a personalized model, it 

considers each individual’s unique perceptual pattern, and eliminates systematic over- 

or under- estimating of each grader. Previous studies in the filed of medical image 

perception showed that readers have their own error making pattern [31-33] and their 

own visual search strategies [34, 35]. 

5-2- Materials and Methods 

In the paper presented in chapter 6, I discuss the steps of COMPASS and the obtained 

results in detail. Some further explanatory points about the dataset and a few 

supplementary points which were not covered in the paper (chapter 6) are discussed 

below.  

5-2-1- Dataset 
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The images were obtained from Mitosis Atypia 2014 data set [36]. As explained in 

chapter 3, in this dataset, images were available in three different magnification factors 

(x10, x20, and x40). All slides were scanned by two different scanners, Aperio 

Scanscope XT and Hamamatsu Nanozoomer 2.0-HT. 

Two experienced senior pathologists were asked to provide a nuclear atypia score for 

300 images of 11 patients at x20 magnification. All images were selected based on 

opinion of a pathologists so that they included the tumour. In case of disagreement, the 

opinion of a third pathologist was requested. As nuclear atypia scoring needs the 

evaluation of size and shape of a large population of nuclei, a wide area should be 

considered. Therefore, scoring was done at x20 magnification. The majority voting 

was used for assigning the final score for image. The output files were saved in two 

.csv files with the format of XXX_cna_score all.csv (scores) and XXX_cna_score 

decision.csv (vote of the majority) where XXX is image ID. 

The nuclear atypia score could be 0-3. A score of 0 was given to an image when it does 

not contain enough tumour epithelial cells. Only three images were scored as 0 by all 

three pathologists. These images were excluded from analysis. A score of 1 is assigned 

to an image where the tumour epithelial nuclei are small with little increase in size in 

comparison with cells, have regular margins and uniform nuclear chromatin. A score 

of 2 is given to an image where the tumour epithelial cells are larger than normal, have 

open, vesicular nuclei with visible nucleoli, and both size and shape vary moderately. 

Finally when noticeable variation is size and shape are seen in the image, especially 

when large and bizarre nuclei are present, and nuclei are vesicular with prominent, 

often multiple nucleoli, a score of 3 is given.  Four sample images per each grade are 

shown in Figure 1.  

As stated in chapter 3, in addition to nuclear atypia scores, three junior pathologists 

were asked to assess six criteria related to the nuclear atypia on each image at x40 

magnification factor. The criteria were nuclei size, nucleoli size, anisonucleosis (size 

variation within a population of nuclei), chromatin density, regularity of nuclear 

contour, and membrane thickness. The detailed definition of these parameters can be 

found in chapter 3 in section 3-2-1.  
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Table 2- Comparative table of cytological grading systems for BCa. 

Year 

[Ref] 
Considered features 

Relation with 

histological 

grading 

Kappa* 

1980 

[21] 

Cell dissociation: isolated or in cluster 

Nuclei: enlarged or not, anisokaryosis, naked, 

budding, level of hyperchromasia 

Nucleoli: enlarged or not 

Mitosis: count 

[22] AR: 66.66% 
[23]AR: 68% 
[23]SC: 0.613 
[23]k=0.42 
[24]AR: 77.19% 
[24]SC: 0.715 
[24]k=0.57 

[23]0.561 
[24]0.65 

1980 

[25, 

26] 

Nuclei: size (I: normal, II: twice, III: three-fold), 

membrane contour (I: round & smooth, II: 

smooth, III: irregular), anisonucleosis (I: absent, II: 

moderate, III: marked),  level of hyperchromasia 

Nucleoli: presence of macro-nucleoli 

[23]AR:76.3% 
[23]SC: 0.654 
[23]k=0.53 
[24]AR: 70.18% 
[24]SC: 0.535  
[24]k= 0.48 

[23]0.616 
[24]0.63 

1994 

[27] 

Cell: size (I: 1-2 rbc, II: 3-4 rbc, III: ≥5rbc), 

pleomorphism 

Nuclei: membrane contour (I: smooth, II: Fold, 

III: buds or clefts), chromatic (I: vesicular, II: 

granular, II: clumped and cleared) 

Nucleoli: appearance (I: indistinct, II: noticeable, 

III: Prominent) 

Cell dissociation: isolated or in cluster 

[28]AR: 78.57% 
[28]SC: 0.804  
[22] AR: 83.33% 
[24]AR: 77.19% 
[24]SC: 0.799 
[24]k= 0.62 

[23]0.708 
[24] 0.71 

2000 

[29]  

Cell: Size (I: 1-2 rbc, II: 3-4 rbc, III: ≥5rbc), 

nuclear/cytoplasmic ratio  (I: 50, II: 50-80, III: >80) 

Nuclei: pleomorphism, chromatic (I: fine, II: 

granular, II: coarse), level of hyperchromasia 

Nucleoli: appearance (I: indistinct, II: noticeable, 

III: Prominent) 

Necrosis: presence 

[23]AR: 66.60% 
[23]SC:0.615 
[23]k=0.401 
[24]AR: 75.44% 
[24]SC: 0.686 
[24]k= 0.53 

[23]0.618 
[24]0.59 

2003 

[30] 

Cell: cellularity (I: scanty, II: moderate, II: 

abundant) 

Nuclei: size (I: 1-2 rbc, II: 3-5 rbc, III: >5rbc), 

membrane contour (I: smooth, II: Fold, III: buds 

or clefts) 

Nucleoli: appearance (I: indistinct, II: noticeable, 

III: Prominent and macro) 

Cell dissociation: isolated or in cluster 

Lymphatic response: degree of presence 

Mitosis: count 

[23]AR: 72.20% 
[23]SC: 0.696 
[23]k=0.515 
[24]AR: 66.67% 
[24]SC: 0.744 
[24]k= 0.46 

[23]0.615 
[24] 0.68 

rbc = red blood cell 

AR: agreement rate (percentage of concordance cases) between histologic and cytological 

grades, SC: Spearman’s correlation between histologic and cytological grades, k= Cohen’s 

kappa for measuring the agreement level between histologic and cytological grades 
* kappa values for inter-pathologist agreement in cytological grading  

Further information about the dataset is presented in the chapter 6.  
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Figure 1- Sample images in x20 magnification level with the nuclear atypia score of 

1(top), 2(middle), 3(bottom). 

5-2-2- Supplementary points for implementation 

COMPASS is a personalized tool which combines the pathologist’s assessment of six 

atypia-related criteria with computer-extracted features and assigns a nuclear atypia 

score to the image based on both subjective scores and objective features. Figure 2 

shows the framework for COMPASS. As the model is personalized, first the 

parameters of the model are estimated for each pathologist by asking the readers to 

assign scores to six nuclear atypia criteria on the images in the database for which the 

expert-consensus derived reference nuclear atypia scores are available. After this 

training stage, COMPASS can be used to score new images. To do so, the pathologist 

is asked to assign the scores to six atypia criteria and then COMPASS, whose 

parameters are now adjusted for the reader, gives a nuclear pleomorphism score to the 

image by combining the scores given by the pathologist with computer-extracted 

features. 
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Database for 
training COMPASS

The pathologist will be 
asked to give scores to six 
criteria related to nuclear 
atypia in the images from 

database.

Tuning the parameters of 
COMPASS to build a 

personalized model for the 
pathologist

New image

Nuclear pleomorphism score

These steps need to be 
done only once to train 

COMPASS

 
Figure 2- The framework for COMPASS. 

COMPASS is comprised of two independent modules. The first module relies on the 

pathologist’s assessment on six criteria related to nuclear atypia. These criteria were 

fed into a non-linear regression model, RM1, which assigns the atypia score to the 

input image. The second module involves another non-linear regression model, RM2, 

which assigns atypia scores to patches from the input image based on the computer-

extracted textural features. From each input image, ten patches containing epithelial 

cells were automatically selected by COMPASS in a way that the patches were 

cantered at locations with high density of cancerous epithelial cells. For each image, 

RM2 assigns ten scores corresponding to ten patches selected from that image. Finally, 

the score given by RM1, along with minimum, median, and maximum of ten scores 

given by RM2 were fed into the third non-linear regression model, RM3, which 

produces a three-scale nuclear atypia score.  

Different steps of COMPASS are further explained in the paper (chapter 6). In this 

section, two supplementary points about the process for automatic selection of patches 

and the procedure for training and testing COMPASS using the dataset are covered.  

5-2-2-1- Automatic selection of patches 

For automatic selection of the patches, first the stain normalization method suggested 

in [32, 33] was utilized to minimize inconsistencies in staining of different images and 

differences between images from two scanners. The output of the stain normalization 

step for a sample image from both scanners is shown in Figure 3.  
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Figure 3- Original images (left column) scanned by the two scanners and the respective 

stain normalized images (right column).  

Colour deconvolution was utilized to separate H and E channels of the stained-

normalized image [37, 38]. The complement of the H channel was then processed with 

morphological closing (a dilation followed by an erosion) using a disk of radius 2. This 

was followed by filling holes within the image to generate HP (the processed image). 

In the context of greyscale images, holes are areas of dark pixels surrounded by lighter 

pixels. Finally, the candidate locations for epithelial cells are detected by thresholding 

HP and removing the connected components whose areas are less than 30 pixels. The 

threshold value was found empirically and set to 80. The thresholded image is called 

HTh1. 

In order to extract appropriate image patches, I needed to make sure that the imperfect 

areas (e.g. folded tissues) and areas with normal epithelial and lymphocyte cells were 

excluded from HTh1. To eliminate these areas, three different masks were generated 

and subtracted from HTh1. The first mask was obtained by thresholding the complement 

of the E image followed by removing all connected components whose areas were 

smaller than 5000 pixels. Next, the holes were filled to generate Mask1. To generate 

Mask2, the complement of the H channel was filtered by a Gabor filter bank with the 

wavelength of 20 pixels/cycle and 8 equally-spaced orientations. Next, the maximum 

filter response was recorded for each pixel. Finally, the maximum response image was 

thresholded to generate Mask2. Mask3 includes areas with normal epithelial tissue and 

lymphocytes which are darker, smaller in size, rounder, and without irregularities or 
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broken areas in the membrane. Filtering the HP with a Laplacian of Gaussian (LoG) 

followed by thresholding of the filtered image was used to detect normal epithelial 

tissue and lymphocytes. Previously, LoG was utilized to detect epithelial cells [39] and 

mitotic figures [40]. The standard deviation of the filter determines the size of the 

structure which is detected by the LoG. Here I found the appropriate size empirically 

and set it to 20 pixels. The output of LoG filter was then thresholded and the connected 

components with an area smaller than 2000 pixels were eliminated from Mask3. All 

three masks were subtracted from HTh1 to generate HTh2 was generated. As stated 

previously, I wanted to find hypercellular areas. To do so, HTh2 was convolved with a 

Gaussian filter to generate HF. Therefore, when multiple cells are present in a 

neighbourhood of a pixel, it will have a high value in HF. Finally, HF was normalized 

and ten points whose intensity is at least 0.75 were randomly selected from HF. The 

pairwise distance among all selected points should be greater than 100 pixels. 

A sample image, along with separated H and E channels are shown in Figure 4 (a)-(c). 

The complement of the H channel was then processed with morphological closing (a 

dilation followed by an erosion) using a disk of radius 2. This was followed by filling 

holes within the image to generate HP (the processed image). In the context of 

greyscale images, holes are areas of dark pixels surrounded by lighter pixels. Finally, 

the candidate locations for epithelial cells are then detected by thresholding HP and 

removing the connected components whose areas are less than 30 pixels. The threshold 

value was found empirically and set to 80. The HP corresponding to the image shown 

in Figure 4 (a) is  shown in Figure  4 (d) and the thresholded image (HTh1) overlaid 

on the original image using green colour is indicated in Figure 4 (e). 

 



-75- 

Figure 4- (a) Original image; (b) and (c) outputs of colour deconvolution separated H 

and E channels respectively; (d) the H channel image after being processed; (e) the 

thresholded image in the first step; (f-h) three masks; (i) HF (j) HF if the masks were 

not subtracted from the thresholded image. 

 

5-2-3- Evaluation procedure of the COMPASS 

To evaluate COMPASS’ performance, I had to first train and then test the trained 

model on unseen instances. To do so, I used leave-one-image-out cross validation. 

Each time one of the images served as the test data, while the rest of the images (the 

training data) were utilized for estimating the parameters of COMPASS.  Thus, the 

test data was not used for training the model and the trained model is completely blind 

to the test data. In the training process, the parameters of RM1, RM2, and RM3 should 

be estimated. As RM3 combined the output of RM1 and RM2, before training RM3, 

the parameters of RM1 and RM2 should be estimated. Therefore, in each iteration of 

leave-one-out cross validation, the training procedure had two steps: (1) training RM1 

and RM2; (2) training RM3. Therefore, the training set should be divided so that part 

of the training set was used in the first step and part of the training set was used in the 

second step.   

Each time (in each iteration of leave-one-out cross validation), the training data was 

partitioned into five subsets with roughly identical sizes and roughly the same class 

proportions as in the original dataset. Four subsets were utilized to estimate the 

parameters of RM1 and RM2. Next, the images in the remaining subset were inputted 

to RM1 and RM2. As stated earlier, four features were extracted from the scores given 

by RM1 and RM2 to each instance in this subset and used to train RM3. Finally, a 

score was given to the test data by the trained model. Figure 5 shows the procedure for 

training COMPASS. This procedure was repeated five times; each time one of the 

subsets was used to estimate the parameters of RM3, the rest of them were used to 

estimate the parameters of RM1 and RM2. Therefore, five scores were given to each 

test data. The median value of all these scores was assigned to each image. For training 

RM3, the instances from grade 1 and 3 were up-sampled by applying the Synthetic 

Minority Oversampling TEchnique (SMOTE) [41]. SMOTE is a common approach to 

oversample a dataset and it is typically used when the dataset is imbalanced. The 

SMOTE algorithm oversamples the minority class, which has a smaller number of 

samples. In oversampling, a sample from the dataset is taken, and its k nearest 
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neighbours are taken into account. In order to make a synthetic data point, one of these 

neighbours are selected randomly and a vector between this neighbour and the current 

data point is considered. The vector is then multiplied by a random number between 0 

and 1 and added to the current point to generate the synthetic data point [36]. The 

numbers of nearest neighbours to use were set to 3 and 5 for grade 1 and 3 respectively 

and the percentage of SMOTE instances to create was set to 200% and 400%. The 

hyper-parameters of RM3 were also set by using Bayesian optimization.   

To set the hyperparameters of RM1, RM2, RM3, in each of the five repetitions, ten-

fold-cross-validation was used for the Bayesian optimization. In the training process 

of each one of the regression models, first, their hyper-parameters were set by using 

Bayesian optimization, and then the internal parameters of RM3 with the optimal 

hyper-parameter was estimated. The Bayesian optimization uses a 10-fold-cross 

validation. I did so to automate the entire parameter estimation (both hyper-parameters 

and parameters). Usually there is a bias because of manually selecting hyper-

parameters by trial and error. However, here we have a fully automatic method. This 

is really important in this experiment as our sample size was really small and the 

manual selection of parameters may lead to overfitted models to the utilized data. In 

the implementation of Bayesian optimization, to achieve a result robust to partitioning 

noise, at every iteration, the cross-validation was repartitioned. I used MATLAB 

2017a (Mathworks Inc, Natick, MA) for training and testing the regression tree 

ensembles (RM1, RM2, and RM3) and also for optimizing their hyperparameters.  
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Leave one image out as the test sample

RM2 RM1

RM3: Late decision fusion  

Partitioning the rest of the images into five 
subsets with roughly equal size and roughly the 

same class proportions

SMOTE 

1/5 of training data  4/5 of training data  

Median value of score from five repetitions: The 
nuclear pleomorphisim score of test image

Repeating these 
steps five times for 

all five folds

For testing RM1 and 
RM2, estimating RM3

For estimating RM1 
and RM2 parameters

 
Figure 4- The procedure for training and testing COMPASS using the dataset. Each 

time one of the images served as the test data, while the rest of the images (the training 

data) were utilized for estimating the parameters of COMPASS.  In each iteration of 

leave-one-out cross validation, training procedure had two steps: (1) training RM1 and 

RM2; (2) training RM3. In each iteration of leave-one-out cross validation, the training 

data was partitioned into five subsets with roughly identical sizes and roughly the same 

class proportions as in the original dataset. Four subsets were utilized to estimate the 

parameters of RM1 and RM2. Next, the images in the remaining subset were inputted 

to RM1 and RM2 and their output was used to train RM3. Finally, a score was given 

to the test data by the trained model. This procedure was repeated five times and each 

time after training all three models, the test instance was inputted and therefore, five 

scores were given to each test data. The median value of all these scores was assigned 

to each image. 
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Abstract— The inter-pathologist agreement for nuclear atypia 

grading of breast cancer is poor due to the non-quantitative 

nature of the scoring. In this paper, we proposed COMPASS 

(COMputer-assisted analysis combined with Pathologist’s 

ASSessment), a tool for reproducible nuclear atypia scoring. 

COMPASS relies on two sets of features, where the first set 

includes the scores given by the pathologists to six cytological 

characteristics related to nuclear atypia, while the second set 

includes textural features extracted by computer. The 

COMPASS’s performance was evaluated using 300 images for 

which expert-consensus derived reference nuclear pleomorphism 

scores were available and were scanned by two scanners from 

different vendors. A personalized model was built for three 

junior pathologists who gave scores to six atypia-related criteria 

for each image. Leave-One-Out cross validation was used and 

COMPASS was trained and tested for each junior pathologist 

separately. Percentage agreement between COMPASS and the 

reference nuclear scores was 93.8%, 92.9%, and 93.1% for three 

junior pathologists. The COMPASS’s performance in nuclear 

grading was almost identical for both scanners, with Cohen’s 

kappa ranging from 0.80-0.86 for different pathologists and 

different scanners. Cohen’s kappa of COMPASS were 

comparable to the Cohen’s kappa for two senior pathologists 

(0.79 and 0.68) assessing the same dataset. 

 
Index Terms— Breast, Breast Cancer, Microscopy, Nuclear 

atypia grading, Nuclear pleomorphism grading, Pattern recognition. 

 
I. INTRODUCTION 

REAST cancer is a heterogeneous disease and different 

treatment options are available for the women diagnosed 

with it. Prognostic factors, which represent the aggressive 

potential of the tumor, could provide valuable information for 

the selection of a treatment regimen. For example, hormonal 

treatment and adjuvant chemotherapy, which are used to 

increase patient survival, are expensive and could  cause 

serious side effects, and hence are only advisable for high risk 

patients [1, 2]. 
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Previous studies have shown that the Nottingham modification of 

the Scarff-Bloom-Richardson  (NSBR)  breast  cancer grading 

system [3] provides useful prognostic information [4]. However, 

application of the NSBR score is still limited in routine patient 

management due to various reasons. Among them, the 

considerable inter-pathologist variability and subjectiveness are 

major hindrances. In [5], it was shown that inter-reader variations 

impact on a  patient’s  risk  assessment for hormonal treatment 

and adjuvant chemotherapy. 

The NSBR grading system has three contributing components, 

namely, the degree of gland formation, the magnitude of  nuclear 

pleomorphism, and the number of mitotic figures [3]. The overall 

NSBR score is an average of scores of these three components. 

Previous studies investigated the magnitude of inter-observer 

variability in NSBR grading and  its  components. The percentage 

agreement among pathologists in previous studies ranged from 

43% to  74%,  with  Cohen’s kappa ranging from 0.19 to 0.74 [6-

11]. It was also shown that among these three components, the 

agreement on the nuclear pleomorphism score was the weakest, 

with percentage agreement of 55-68% and Cohen’s kappa  

ranging  from 0.27  to 0.5 [6, 9]. 

Nuclear pleomorphism (or atypia) score represents the 

variations in size, shape, and appearance of  tumor  cells  relative 

to normal cells. In the clinical practice, with  the lack  of 

quantitative or semi-quantitative measurements, the pathologist 

must decide how to categorize a nucleus with  mixed features (for 

example, small but with  an  irregular  shape) and that might 

explain why the agreement among  readers is very poor. 

In addition to being a contributing factor of the NSBR grade, the 

nuclear atypia score might be a  more  useful  prognostic tool 

compared to the overall NSBR grade for patients with invasive 

lobular carcinoma, as mitotic activity and tubule formation vary 

little in these patients[12]. Due to the  importance of the nuclear 

atypia grade and the lack of agreement among pathologists for 

grading it, recently a few studies aimed at devising automatic 

algorithms for nuclear pleomorphism scoring [13-16]. 

In this paper, we propose a method for reproducible nuclear 

pleomorphism scoring called COMPASS (COMputer-assisted 

analysis combined with Pathologist’s ASSessment). Unlike 

previous algorithms which aimed at providing an independent 



> JBHI-00775-2017 2 
 

second opinion to the pathologists, COMPASS combines the 

pathologist’s assessment of six criteria related to the nuclear 

atypia with computer-extracted features and assigns a nuclear 

pleomorphism score to the image based on both subjective scores  

and objective features. Another novelty of COMPASS  is being 

a hybrid segmentation-based and texture-based approach to 

extract the computer-related features from the digitized slides. In 

the previous automatic nuclear grading methods, the features 

were either extracted from  the  segmented nuclei (segmentation-

based methods [13, 14]) or from the entire tissue[15]). However, 

COMPASS involves a coarse segmentation to restrict further 

analysis to  a  few  regions of interest followed by textural feature 

extraction from these areas. Another uniqueness of COMPASS 

is that, being a personalized model, it considers each individual’s 

unique perceptual pattern, and eliminates systematic over- or 

under- estimating of each grader. In [17], it was shown that some 

pathologists are prone to under-grading while others 

systematically over-grade the cases. Junior pathologists are target 

users for COMPASS as in general less experienced pathologists 

have lower agreement levels with a consensus of expert readers 

[11, 17] and could benefit significantly  from such an algorithm. 

Unfortunately, due to lack of expert pathologists with 

subspecialty training in reading breast biopsies, many specimens 

are currently interpreted by less experienced or general 

pathologists. This paper aims at investigating possibility of 

improving junior pathologists’ performances to a level 

comparable to the expert readers’ performance by using 

computer-extracted features combined with a systematic 

evaluation of cytological features by the pathologists. 

 

II. MATERIALS AND METHODS 

A. Dataset 

Three-hundred images were obtained from the Mitosis Atypia 

challenge 2014 data set [18], which is publicly  available.  Three 

of the images were excluded as there was no tumor region present 

in them and hence no atypia grade was  associated with them. 

Nuclear pleomorphism scores were given by two experienced 

senior pathologists. In case of disagreement, a third 

pathologist scored the image and the final score was obtained 

based on a vote of the majority. Based on  NSBR [3],  a score  of 

1 is given to an image when there is  little increase in the  size of 

nuclei in comparison with  normal  breast  epithelial cells, the 

outlines of nuclei are regular, and the nuclear chromatin is 

uniform. When the cells are larger than normal with visible 

nucleoli and have open vesicular nuclei, with moderate variations 

in size and shape among cells, a score of 2 is assigned. A score 

of 3 is appropriate when nuclei are vesicular with prominent, 

often multiple nucleoli, have noticeable variations in shape and 

size, and large and bizarre nuclei are present in the sample [3]. 

All images  were scanned by two different scanners, namely, 

Aperio Scanscope XT and Hamamatsu  Nanozoomer  2.0-HT.  

The  pathologists  graded at 

×20  magnification,  which  covered  approximately  0.511 mm2
 

of tissue. 

In addition, three junior pathologists were  asked  to  evaluate six 

criteria related to nuclear atypia and give a score  from one to 

three for each criterion. These criteria were nuclei size, nucleoli 

size, anisonucleosis (size  variation  within  a population of 

nuclei), chromatin density, regularity of nuclear contour, and 

membrane thickness. Some of these criteria  (nuclei size, nucleoli 

size, and  regularity of nuclear contour)  are explicitly mentioned 

in NSBR grading [3]. These criteria  are also components of some 

other nuclear grading  systems [19, 20] which tried to quantify 

other factors that  contribute  the pathologists’ judgments about 

nuclear atypia grading. For example, in Fisher's modification of 

Black's nuclear grading, anisonucleosis, nuclear membrane, 

chromatin density, and nucleoli size are taken into account [21], 

while in Robinson’s nuclear grading system, which showed high 

level of concordance with NSBR grade [20], nuclei size, nucleoli 

size, cell uniformity, regularity of nuclear contour, and 

membrane thickness were taken into account [22]. 

For   each   image   at   ×20   magnification,   the   criteria  were 

evaluated on four images at ×40 magnification (resolution of 

0.2455 µm/pixel for Aperio and horizontal resolution  of  0.2273 

µm/pixel and vertical resolution  of  0.2275  µm/pixel for 

Hamamatsu) to make sure that the detailed nuclei features were 

visible  to the junior  pathologists.  Hence,  for an image at 

×20  magnification,  each  pathologist  gave  24  (6  criteria×4 
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images) scores. 

B. CAMPASS 

1) Overview 

The steps of COMPASS are depicted in Fig. 1. As shown, 

COMPASS consists of two independent modules, where the first 

module generates a score based on the pathologist’s assessment 

of the four images at ×40 magnification, and the second module, 

which generates ten scores corresponding  to ten image patches, 

is based on textural features from the image at ×20 magnification. 

In the last stage of  COMPASS,  the scores corresponding to each 

image from both modules are combined by using an ensemble of 

trees for regression and a single score is given to the image. 
2) Computer-aided feature extraction 

In this step, the patches containing epithelial cells were 

selected from each image and the textural features were extracted 

from these image patches, whose size was 251×251 pixels and 

were centered at locations with high density of cancerous 

epithelial cells. To find the centers  of the patches, the stain 

normalization method suggested in [23] was utilized  to minimize 

inconsistencies in staining of different images. 

Color deconvolution was utilized to separate H and E channels 

of the stained-normalized image [23]. A sample  image, along 

with separated H and E channels are shown in  Fig. 2 (a)-(c). The 

complement of the H channel was then processed with 

morphological closing (a dilation followed by  an erosion) using 

a disk of radius 2. This was followed by filling holes within the 

image to generate HP (the processed image). In the context of 

greyscale images, holes are areas of dark pixels surrounded by 

lighter pixels. Finally, the candidate locations for epithelial cells 

are then detected by thresholding HP and removing the connected 

components whose areas are less than 30 pixels. The threshold 

value was found empirically and set to 80. The HP corresponding 

to the image  shown in  Fig. 2 (a) is shown Fig. 2 (d) and the  

thresholded  image (HTh1) overlaid on the original image using 

green color is indicated in Fig. 2 (e). 

In order to extract appropriate image patches, we needed to 

make sure that the imperfect areas (e.g. folded tissues)  and areas 

with normal epithelial and lymphocyte cells were excluded from 

HTh1. To eliminate these areas, three different masks were 

generated and subtracted from HTh1. The first mask was 

obtained by thresholding the complement of the E image 

followed by removing all connected components whose areas 

were fewer than 5000 pixels. Next, the holes were filled  to 

generate Mask1. In order to generate Mask2, the  complement of 

the H channel was filtered by a Gabor filter bank with the 

wavelength of 20 pixel/cycle and 8 equally- spaced orientations. 

Next, the maximum filter response was recorded for each pixel. 

Finally, the maximum response image was thresholded to Mask2. 

Mask3 includes areas with normal epithelial tissue and 

lymphocytes which are darker, smaller in size, rounder, and 

without irregularities or broken  areas  in  their membrane.  

Therefore filtering the HP  with a Laplacian  of Gaussian (LoG) 

followed by thresholding of the filtered image was used. 

Previously, LoG was utilized to detect epithelial cells [24] and 

mitotic figures [25]. The standard 
TABLE I 

  EXTRACTED FEATURES FROM EACH IMAGE PATCH  

Feature Type (feature name) 

First order statistics features 

(AVE, STD, 1st, 5th, 25th, 50th, 75th, 95th, 99th percentile of intensity) 

Haralick texture features averaged over four direction for d= 3 

pixels 

(Contrast, Correlation, Cluster Prominence, Cluster Shade, 

Dissimilarity, Energy, Entropy, Homogeneity, Sum of squares, Sum 

average, Sum entropy, Difference variance, Difference entropy, 

Information measure of correlation 1 and 2, Inverse difference 

normalized, Inverse difference moment normalized) 

 
Features from grey level run length matrix 

(Short run emphasis, Long run emphasis, Grey level non-uniformity, 

Run percentage, Run length non-uniformity, Low grey level run 

emphasis, High grey level run emphasis) 

Gabor-based features 

(AVE energy of filtered image using Gabor filter bank in one scale 

and six 

orientations) 

Features based on Maximum response filters 

    (AVE energy of in eight filtered images)  

AVE and STD are average and standard deviation respectively. 

     
(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
 

Fig. 2. (a) Original image; (b) and (c) outputs of colour deconvolution separated H and E channels respectively; (d) the H channel image after being 

processed; (e) the thresholded image in the first step; (f-h) three masks; (i) HF (j) HF if the masks were not subtracted from the thresholded image. 

Local binary patterns 

(uniform local binary patterns with number of number of neighbours = 

8) 
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deviation of the filter determines the size of the  structure  which 

is detected by the LoG. Here we found the appropriate size 

empirically and set it to 20 pixels. The output  of  LoG filter was 

then thresholded and  the  connected  components with an area 

less than 2000 pixels were eliminated  from  Mask3. All three 

masks were subtracted from HTh1 and HTh2 was generated. As 

stated previously, we want to find hypercellular areas. To do so, 

HTh2 was convolved with a Gaussian filter to generate HF. 

Therefore, when multiple cells are present in a neighborhood of 

a pixel, it will have a high value in HF. Three masks and HF are 

shown in Fig 2 (f)-(i). Figure 2 (j) depicts HF if the masks were 

not subtracted from HTh2. As shown, the subtraction is essential 

to restrict the analysis to the tumor areas. Finally, HF was  

normalized and  ten pixels whose intensity is at least 0.75 were 

randomly selected from HF. The distance of the selected points  

should  be more than 100 pixels. 

Next, the textural features listed in Table I were extracted from 

each patch. The textural features were extracted from H- channel, 

blue-ratio channel [26], and each one of three RGB channels. The 

images were also converted to Lab, YUV, HSL, and LMS color 

spaces and the features were extracted from each channel of these 

color spaces. 

3) Regression models 

As shown in Fig. 1, in the intermediate steps of COMPASS 

there are two regression models, namely, Regression model 1 

(RM1) and Regression model 2 (RM2). The input  of  RM1 were 

the scores given by the pathologists while RM2 relied on the 

textural features. Both RM1 and RM2 were ensembles of trees 

for regression which comprised of a  weighted combination of 

multiple regression trees. 

Junior pathologists scored six atypia-related criteria on four 

images at ×40 magnification for each image in  the  dataset. This 

resulted in a 24-dimensional feature vector for  each image. If 

bizarre nuclei were present in one of the four images at ×40 

magnification, the grade of the image is 3, and this does not 

depend on the arrangement of the four images. Therefore, for an 

input image, all 24 possible combinations of  the shuffling of 

these four ×40 images were generated. Then RM1 assigns a score 

to each of these 24 possible permutations, and the final score of 

the image is the median of these values. For each test image, ten 

patches were selected as suggested in 2-2- 

2. Each one of these patches was inputted to RM2. 

For training RM1 all 24 possible combinations of four ×40 

images were generated for each ×20 image in the training set. 

This increases the size of the training set by 24 times  and makes 

RM1 invariant to the spatial layout of structures within the image. 

For training RM2, each patch was considered as an instance, and 

the grade of the image (from  which the  patch  was selected) was 

considered as the grade of the patch. Hence, the size of the 

training set for RM2 was ten times larger than  the number of the 

images. 

One of the main challenges in using ensemble models is setting 

the hyper-parameters of the model because they could affect the 

performance of the model. We used Bayesian optimization for 

hyperparameter tuning [27]. Here the optimization searched over 

the ensemble method, namely,  either Bag (bootstrap 

aggregation) or LSboost (least squares boosting), over the 

number of weak learners, over the learning rate for shrinkage of 

the LSBoost method, over the minimum 

number of leaf node observations in the  template  tree,  and over 

the number of features to select at random for  each split  in the 

tree. 

4) Late decision fusion 

As shown in Fig. 1, the median of 24 values given by RM1  to 

24 possible permutations of four ×40 images, along with 

minimum, median, and maximum scores given by RM2 to ten 

patches of each image built the feature vector for RM3. RM3 was 

an ensemble of trees for regression as well. In  order to  find the 

cut-off values to threshold the scores from regression models and 

produce three-scale atypia grades, two receiver operating 

characteristic (ROC) curves were generated, one for detecting 

high grade images (grade 3 against combined grade 

1 and 2) and one for low grade images (grade 1 against combined 

grade 2 and 3) and their optimal operating points were found. 

For training RM3, the instances from grade 1 and 3 were 

upsampled by applying the Synthetic Minority Oversampling 

TEchnique (SMOTE) [28]. The numbers of nearest neighbors  to 

use were set to 3 and  5 for grade 1 and 3 respectively and  the 

percentage of SMOTE instances to create was set to 200% and 

400%. The hyper-parameters of RM3 were also set  by using 

Bayesian optimization [27]. 

C. Evaluation of COMPASS 

As COMPASS is a personalized tool, first the parameters of 

the model should be estimated for each pathologist by asking the 

readers to assign scores to six nuclear atypia criteria on the 

images for which the expert-consensus derived reference nuclear 

pleomorphism scores are available. After this training stage, 

COMPASS can be used to score new images. Therefore for 

evaluating COMPASS’ performance, we need to first train the 

model and then test the trained model  on unseen data. To  do so, 

leave-one-image-out cross validation (LOOCV) was used. 

Hence, each time one of the images served as  the test data, the 

rest of the images (training data) were utilized for estimating the 

parameters of COMPASS. The percentage agreement and 

Cohen’s kappa [29] were calculated for each junior pathologist. 

In each iteration of LOOCV, the training data was 
 

Fig. 3. The evaluation procedure of COMPASS. 
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TABLE II 

CONFUSION MATRICES; COLUMNS ARE TRUE LABELS WHILE ROWS ARE LABELS 

FROM COMPASS. COMPASS’ PERFORMANCE FOR IMAGES SCANNED BY (A)-(C) 

APERIO SCANNER (D)-(E) HAMAMATSU SCANNER. JP STANDS FOR JUNIOR 

PATHOLOGIST. 

 

(a) JP1 (b) JP2 (c) JP3 

 
G1 

G2 

G3 

(d) JP1 (e) JP2 (f) JP3 

 
G1 

G2 

G3 

 

partitioned into five subsets with roughly identical size and 

roughly the same class proportions as in the original dataset. Four 

subsets were utilized to estimate the parameters of RM1 and 

RM2. Next, the images in the remaining subset were inputted to 

RM1 and RM2. As stated earlier,  four  features were extracted 

from the scores given by RM1 and  RM2  to each instance in this 

subset and used to train RM3. Finally, a score was given to the 

test data by the trained model. Fig. 3 shows the procedure for 

training COMPASS. This procedure was repeated five times; 

each time one of the subsets was used to estimate the parameters 

of RM3, the rest of them were used to estimate the parameters of 

RM1 and RM2. Therefore, five scores were given to each test 

data. The median value of all these scores was assigned to each 

image. In order to set the hyper-parameters of regression models, 

in each of the five repetitions, ten-fold-cross-validation was used 

for Bayesian optimization. To achieve a result  robust to 

partitioning noise,  at every iteration, the cross-validation was 

repartitioned. 

TABLE III 

COHEN’S KAPPA AND PERCENTAGE AGREEMENT OF COMPASS AND SENIOR 

PATHOLOGISTS. THE HIGHEST ACCURACY IS SHOWN IN BOLD. 

III. RESULTS 

A. Performance of COMPASS 

As described in section II-C leave-one-image-out cross 

validation was used to evaluate  the  performance  of COMPASS 

for each scanner. COMPASS is  personalized  hence it should be 

trained and tested for each  reader  separately. Table II shows the 

confusion matrices of  COMPASS for each scanner and each 

junior  pathologist. In  the table, the upper triangular part of the 

matrix represents “under-graded instances” and the lower part 

represents “over- graded instances” based on COMPASS. 

The paired Mann-Whitney U test was used to compare the 

grades given by COMPASS when tested on Aperio  images with 

the given grades for Hamamatsu images.  The  differences among 

grades from different pathologists were not significantly different 

(junior pathologist 1: z=-1.1, P=0.29; junior pathologist 2: 

z=0.48, P=0.63; junior pathologist 3: z=0.86, P =0.39). Also, 

Spearman’s rank-order correlation coefficients between the  

scores  (before thresholding it to produce three scale grades) 

given to the images from two scanners were 0.74, 0.77, and 0.75 

for three junior pathologists. 

B. Comparison of COMPASS with senior pathologists 

We simulated the adoption of COMPASS by the junior 

pathologists and compared the performance of COMPASS to that 

of senior pathologists. The average CCR per each grade is shown 

in Table III for all junior pathologists.  The  values are  an average 

of the two scanners. Similarly, on the right side of the table, CCRs 

are shown for the senior pathologists. As shown, the overall 

performance of COMPASS  was  comparable to that of the senior 

pathologists. 
 

Both were correct Both were incorrect 

Only COMPASS was correct Only senior pathologist was correct 

Senior Pathologist 1  Senior Pathologist 2 

G3 G3 

G2 G2 

G1 G1 
0% 50% 100% 0% 50% 100% 

 

G3 G3 

G2 G2 
JP stands for junior pathologist; I (E): The cases to which the readers could 

not assign  a grade  were included (excluded); SA: Aperio. SH: Hamamatsu G1 G1 
Nanozoomer 2.0-HT Scanner. G and T stand for grade and total. 

0% 50% 100% 0% 50% 100% 

TABLE IV 

AUC VALUES FOR DETECTION OF GRADES 3 AND 1. 

G3 G3 

G2 G2 

G1 G1 

0% 50% 100% 0% 50% 100% 

 

JP represents the junior pathologist for whom COMPASS was trained and tested. 

SA and SH represent the performance of COMPASS for Aperio and Hamamatsu 

scanners.* Shows that AUC value for cumulative score (Sum column) is 

significantly lower than the compared AUC. The P-values were calculated based 

on [30]. 

Fig. 4. The percentage of concordant and discordant cases for each atypia 

category based on scores given by COMPASS and the senior pathologists. 

The values are the average of two scanners. G1, G2, and G3 indicate grade 1, 

2, and 3 respectively. Each row represents one of the junior pathologists. 

G1 G2 G3 

18 1 0 

5 215 5 

0 6 47 

 

G1 G2 G3 

20 3 0 

3 213 6 

0 6 46 

 

G1 G2 G3 

16 3 0 

7 214 8 

0 5 44 

 
G1 G2 G3 

16 0 0 

7 212 5 

0 10 47 

 

G1 G2 G3 

19 3 0 

4 207 5 

0 12 47 

 

G1 G2 G3 

16 1 0 

7 217 5 

0 4 47 

 

Senior pathologists COMPASS 

1 2 JP1 JP2 JP3 

I 0.79 0.68 SA 0.86 0.85 0.80 

E 0.85 0.73 SH 0.81 0.81 0.85 

G1  78.3% 82.6% 73.9% 84.8% 69.6% 

G2  90.1% 91.4% 96.2% 94.6% 97.1% 

G3  98.1% 69.2% 90.4% 89.4% 87.5% 

T    90.6% 86.9% 93.4% 92.9% 93.3% 

 

Detection of grade 3 Detection of grade 1 

JP Sum RM1 SA SH Sum RM1 SA SH 

1 0.631 0.784* 0.977* 0.941* 0.591 0.638 0.934* 0.888* 

2 0.708 0.786 0.975* 0.959* 0.756 0.746 0.948* 0.907* 

3 0.635 0.744* 0.963* 0.926* 0.754 0.779 0.935* 0.850 
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Fig. 5. oxplots for displaying the distribution of scores given by each approach among three grades. G1, G2, and G3 represent grade 1, 2, and 3. Numbers 

above uble arrows in the figure show the P-values of Tukey-Kramer test for each pair. When the P-values were not shown between a  pair, it means P- value< 

001. The red numbers show insignificant differences between a pair. 

Cohen’s kappa was also calculated to measure  the  magnitude 

of agreement of COMPASS with the ground truth. The value is 

calculated for each pathologist and each scanner separately and 

shown in Table III. Similarly, Cohen’s kappa was calculated for 

the senior pathologists. In the databases, there were nine images 

to which  the senior  pathologists did  not assign once with and 

once without these images. As shown the agreement level is 

perfect except when COMPASS was adopted for the third 

pathologist and images from Aperio scanner were used. The 

Cohen’s kappa value is substantial for this arrangement. For the 

senior readers, the agreement level was substantial to perfect. 

The joint distribution of grades from COMPASS and each   of 

the senior pathologists was investigated to find the percentage of  

the images that both graded correctly, only one  of them graded 

correctly, or both  graded  incorrectly.  The result is shown in Fig 

4. Results for both scanners were combined to generate the plots. 

Each row in the plot shows COMPASS as adopted by one of the 

junior pathologists, and each column represent one of the senior 

pathologists. Among misclassified images, the percentage of 

images which were graded incorrectly by both COMPASS and 

senior pathologists (orange areas in the plots) were lower than 

those which were graded correctly by one of them. Hence, to 

some extent, COMPASS could complement the senior 

pathologist’s performance. 

C. Added benefits of textural features 

The added benefit of textural features was investigated by 

comparing the performance of COMPASS against that of two 

baseline approaches that only used the scores given by the 

pathologists to the cytological characteristics of images. The first 

one was grading based on the total  cumulative  score  given to 

all criteria. Most of the nuclear grading systems produce the final 

nuclear grade of each sample by summing up all scores given to 

the considered criteria [19, 20]. Hence, we also used this 

approach for comparison. The second approach 

was based on the score assigned by RM1. One possible benefit of 

COMPASS is to use a complex non-linear regression model to 

associate the scores given by the pathologists to the nuclear 

grade. This part is done by RM1 in COMPASS. Therefore we 

compared the performance of COMPASS with that of RM1 to 

investigate the importance of the added textural features. The 

boxplots, which display the distribution of scores among 

different grades, are shown in Fig. 5. The plots were generated 

from two baseline approaches as well as COMPASS for both 

scanners. The Kruskal-Wallis test resulted to P-values<0.0001 

for all approaches and all pathologists, except for the first 

approach (sum) when adopted for the first pathologist, which led 

to a P-value of 0.007 (χ2(2,297)=5.03). The Rank-based version 

of Tukey's HSD (Tukey-Kramer) test showed that differences 

between all possible multiple pairs for all approaches were 

significant (P<0.05) except for grade  1  against grade 2 for the 

first and second  approach  when  adopted by the first reader. The 

results of the rest of the comparisons are indicated in the figure. 

Also, the AUC for detecting high grade images (i.e. grade 

3) and low grade images (i.e. grade 1) is reported in Table IV. 

The AUC for detecting high grade images (i.e. grade 3) shows 

the binary classification for categorizing images as high grade 

(grade 3) and low/intermediate grade (grade 1 and 2). The AUC 

for low grade images (i.e. grade 1) shows the performance of 

binary classification for categorizing images as high/intermediate 

grade (i.e. grade 2 and 3) and low grade (i.e. grade 1).  As shown, 

the cumulative score led to the poorest results for detecting grade 

3 for all pathologists, however, the differences between AUC of 

the cumulative score and RM1 were not significant for the second 

pathologist. For detecting low grade (i.e. grade 1) RM1 

outperformed the cumulative score for pathologist 1 and 3 while 

the two approaches resulted in an almost similar AUC values for 

pathologist 2. 

 

IV. DISCUSSION 

In this paper, COMPASS, a personalized algorithm for 

reproducible nuclear pleomorphism grading, was introduced. The 

Leave-one-out cross validation was used and a percentage 

agreement of 93.4%, 92.9%, and 93.3% was achieved between 

COMPASS and the reference nuclear grade for three 

pathologists. Therefore, the percentage agreement was almost 
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identical for three junior pathologists. The results also  suggested 

that the performance of COMPASS was approximately similar 

for both scanners.  However, the CCRs  of COMPASS varied 

among different nuclear grades. As  shown in tables II and III, 

CCRs were the highest in grade two and the lowest in grade one 

for all three junior pathologists. Similarly, on average, senior 

pathologists achieved the highest CCR in grade two. 

Most of the previous algorithms  aiming  at  automatic nuclear 

grading segmented the cells within an image and then extracted 

features from the segmented areas. COMPASS also detects the 

nuclei, however, it does not improve the coarse segmentation and 

extracts the textural features from neighborhoods with a high 

density of nuclei. Therefore, the impact of segmentation errors 

on the features extracted by COMPASS has been compensated to 

some extent. A recent fully-automatic algorithm based on 

textural features was proposed in [15]. It achieved CCRs of 

65.22%, 90.09%, and 69.23% for the three nuclear grades and a 

Cohen’s kappa of 0.6123 (substantial agreement) on the same 

images that  we used here. By taking advantage of  scores  from  

pathologists and restricting the analysis to the areas with high 

nuclear density, COMPASS obtained average (across three junior 

pathologists) CCRs of 76.1%, 96.0%, and 89.1% for the three 

nuclear grades and a Cohen’s kappa of 0.83 (perfect agreement). 

As shown in Table 4, the scores given by RM1 (which relies on 

features from pathologist’s assessment) achieved an average 

AUC of 77% for detecting high grade cases. This shows the 

higher discriminative ability of scores given by the pathologists 

in detecting high grade images compared to low grade images 

(average AUC of 72%). 

Cohen’s kappa ranged from 0.80-0.86 for different 

pathologists and different scanners. The values were comparable 

to the Cohen’s kappa for senior pathologists while assessing the 

same dataset. Fig. 5 shows the percentage of images on which 

COMPASS agreed with each one of the  senior pathologists. It 

should be noted that even two senior pathologists did not agree 

with each other on all images. Their agreement rate was 74%, 

84%, and 69% for the three nuclear grades. Estimating the 

internal parameters of COMPASS was computationally 

expensive and this procedure should be done for each pathologist. 

Specifically, this was due to the fact that we set the hyper-

parameters of COMPASS by using Bayesian optimization and 

repeated the late decision fusion step five times to avoid 

partitioning noise. However, the training step should be done 

only once and after that COMPASS  can  be used to assess new 

images. 

The study has a number of limitations; first, the prevalence  of 

different grades in the dataset was different from  real  clinical 

practice. Therefore, the agreement rate reported here and Cohen’s 

kappa will change if the  class  proportions  change. However, 

having a balanced data set may improve the CCRs of the grade 1 

and 3, as more data will be available for training the model. Here, 

we dealt with the class imbalance problem by adopting the 

SMOTE [28] algorithm  for upsampling of minority classes (i.e. 

grade 1  and  3); nonetheless COMPASS could benefit from 

larger sample size. Secondly, intra-pathologist variability in 

scoring six atypia- related criteria should be investigated. 

Thirdly, the reported results were based on 300 images from 

eleven patients. Here 

we used leave-one-image-out cross validation to evaluate the 

performance of COMPASS. However, the results would be more 

realistic if the test images  were from different  patients.  In the 

publicly available challenge dataset, 124 test  images from 

different patients were provided, however the junior pathologists 

did not asses those images. Hence, COMPASS could not be used 

for grading them. 

Fourthly, as the ultimate goal of breast cancer grading is 

utilizing it as a prognostic factor in patient management, 

investigating the association between the nuclear grade outputted 

by COMPASS and  patient  survival  would strengthen the study. 

Relating COMPASS’ output to patients’ prognosis could be a 

future step of this study. Also,  the  internal parameters of 

COMPASS are estimated based on the current performance of 

the junior pathologist. However, the scores given by the junior 

pathologists could change as they gain experience. Therefore, the 

parameters of  the  model  should be updated on a regular basis. 

Investigating paradigm  for updating the parameters and 

algorithmic considerations  (e.g. whether the hyper-parameters 

should be updated or not) could be a possible avenue for future 

work.  Finally,  COMPASS was tested retrospectively and  we  

assumed  that the junior pathologists would accept the  nuclear 

grade given  by COMPASS. However, in a more realistic set-up, 

the junior pathologists would score six atypia-related criteria and 

then COMPASS would combine these scores with the computer- 

extracted textural features using previously trained non-linear 

regression models and output the nuclear grade to the junior 

pathologists, who would assign the final nuclear grade to the 

image. 

In summary, COMPASS, which is a personalized tool, can 

assist junior pathologists in nuclear grading of breast cancer  and 

achieved a performance that was comparable to that of the senior 

pathologists. This study has also demonstrated that COMPASS, 

if it had been adopted by the junior pathologists, could play the 

role of the second reader, and it could also complement the senior 

pathologist’s performance to some extent. The findings also 

underscore the importance of textural computer-extracted 

features to supplement the junior pathologist’s assessment of the 

case. 
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7-1- Introduction 

A recent study in the USA showed that an estimated 19% of women screened annually 

for a ten year period will undergo a breast biopsy [1]. Therefore, each year, large 

numbers of breast histopathological slides are interpreted in pathology labs. Benign 

breast lesions are far more prevalent, and only one in four cases depicts malignancy 

[2]. Interpretation of all these slides is very time-consuming and subject to inter-

pathologist variations. As the pathologists’ diagnoses on the cases are considered the 

gold standard for further treatment of the patients, incorrect diagnoses can lead to 

inappropriate patient management [3-5]. Misdiagnosing invasive or pre-invasive 

breast cancer as being a benign lesion could result in worse outcomes as the cancer 

may advance [6]. On the other hand, overinterpretation of benign cases is also harmful 

as the patients may undergo unnecessary treatments [7].  

Correct recognition of the subtype of benign breast lesions and breast cancers is very 

important as further patient management is dependent on the pathological diagnosis 

[3-7]. For example, the risk of developing invasive cancer in the future varies among 

different benign subtypes [11] and misclassifying benign lesions may result in 

overestimation or underestimation of the subsequent breast cancer risk, which could 

lead to inappropriate patient management [7].  On the other hand, determining the 

malignancy subtype can be helpful in predicting the patient’s response to therapy, for 

example, appropriate treatment options for invasive lobular cancer are different from 

those for invasive ductal cancer [3-6, 10].  

The magnitude of disagreement among pathologists for generating a diagnosis in 

breast pathology has been previously studied [3-5, 8, 9]. One of the earliest studies 

was carried out in 1992 [8], where six pathologists were asked to classify 24 cases into 

three categories, namely, usual hyperplasia, atypical hyperplasia, or carcinoma in situ. 

Complete agreement among all six pathologists was seen only in 58% of cases. Later, 

Wells et al. (1998) included 30 cases with benign, benign with atypia, non-invasive 

malignant, and invasive malignant and asked 26 pathologists to diagnose the cases [9]. 

The overall kappa for agreement of pathologists with expert-consensus was 0.71. 

Elmore et al. (2015) [4] investigated the degree of disagreement of 115 pathologists 

with expert consensus-derived reference in diagnosing benign without atypia, benign 
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with atypia, ductal carcinoma in situ, and invasive cancer. Their results suggested that 

3% of benign cases without atypia and 17% of benign cases with atypia were 

overinterpreted as ductal carcinoma in situ or invasive carcinoma and 10% of ductal 

carcinoma in situ or invasive carcinoma cases were underinterpreted as benign cases 

with or without atypia.  

Lawton et al. (2014) investigated the magnitude of the discrepancies among ten 

pathologists for distinguishing fibroadenomas from phyllodes tumours, which are two 

subtypes of benign lesions without atypia. Their results suggested that all pathologists 

agreed about the final diagnoses in only 53% of cases [10]. In [11], the agreement 

among pathologists in classifying benign lesions into three categories, namely 

fibroadenoma, phyllodes tumour, and other benign subtype was explored. It was 

shown that the overall Cohen’s kappa for inter-pathologist agreement only 0.48, which 

suggested moderate agreement [11].   Longacre et al. [12] showed that inter-

pathologist disagreement exist for identifying the subtypes of invasive breast 

carcinoma as well [12]. They showed that the agreement of diagnoses with expert 

consensus-derived reference diagnoses were 75.0%, 62.5%, 95.8%, 56.3%, 41.7%, 

90.0%, and 92.0% for tubular, papillary, mucinous, medullary, metaplastic, lobular, 

and ductal carcinoma (other than medullary and tubular) respectively [12]. 

Beside the inter-pathologist agreement, Jackson et al. (2017) showed that diagnostic 

disagreement is observed even when the same pathologist interprets the same case at 

two time points [13]. The reported intra-pathologist disagreement rates were 8% for 

invasive breast cancer, 16% for ductal carcinoma in situ, 47% for benign with atypia, 

and 16% for benign without atypia. 

Studying the underlying reasons for disagreement could be helpful in improving 

agreement. In [3], the  reasons for disagreement were divided into three groups, namely 

pathologist-related, diagnostic coding/study methodology-related, and specimen-

related. “Professional differences of opinion on features meeting diagnostic criteria” 

was ranked first among pathologist-related reasons [3]. Computer-aided analysis 

which provides an objective categorization can help pathologists reduce the 

discrepancies in diagnostic disagreement.  
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As discussed in chapter 2 (literature review paper), textural, intensity‑based, and 

morphological features were previously used for binary [14-16] or multi-class 

classification [16] of breast histopathological images.  Recently deep learning has been 

also used for categorizing breast histopathological slides [17-19]. However, these 

studies [17-19] mainly focused on benign/malignant classification of images. 

Moreover, usually majority voting is used for making patient-level diagnosis based on 

the image-level diagnosis and no non-linear trainable method was proposed. Fianlly, 

none of the previous studies provided an algorithm for combining the diagnoses for 

different magnification factors. 

In the paper presented in chapter 8, MuDeRN (MUlti-category classification of breast 

histopathological images using DEep Residual Networks), a novel a framework for 

eight-class categorization of hematoxylin-eosin stained breast digital slides is 

explained. MuDeRN classifies the cases either as benign or cancer, and then 

categorizes cancer and benign cases into four different classes each. More specifically, 

MuDeRN aims at: 

• Classification of breast histopathological images as benign or malignant 

• Categorization of malignant images as ductal carcinoma, lobular carcinoma, 

mucinous carcinoma, or papillary carcinoma 

• Classification of benign images as adenosis, fibroadenoma, phyllodes tumour, 

or tubular adenoma 

Some of the subtypes differentiated by MuDeRN share several similar features but 

require different patient management strategies. Among benign subtypes, 

fibroadenoma and benign phyllodes are both benign fibro-epithelial tumours. They 

share many similar features, and the benign phyllodes tumour looks similar to a giant 

fibroadenoma [20]. However, treatment is different for these two subtypes. The benign 

phyllodes tumours should be surgically removed as their growth is very fast and if they 

remained untreated, eventually they create a visible lump and may cause pain; however 

fibroadenoma does not necessarily have to be surgically removed. Tubular adenoma 

and adenosis are both benign epithelial proliferations without atypia. Tubular adenoma 

is completely benign and does not result in an increased risk of subsequent breast 

cancer [21], while adenosis is associated with a higher risk of the development of 

invasive cancer compared to the general population [22-24]. Among malignant 
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subtypes, in both mucinous carcinoma and invasive lobular carcinoma, mucin 

production might increase, but prognosis from mucinous carcinoma is better than that 

of invasive lobular carcinoma [25, 26], and hence more aggressive treatment options 

are only advisable for invasive lobular carcinoma [27].  

The performance of MuDeRN was evaluated using the BreakHis database [28]. It is a 

publicly available dataset of hematoxylin-eosin stained breast histopathological slides, 

where the images were acquired in four visual magnification factors. BreakHis was 

previously used for malignant/benign classification [17-19, 28] and eight-class 

categorization [19]. The major contributions of this work compared to [17-19, 28] are:  

• Enhancing the correct classification rate in both image-level (i.e. making a 

diagnosis for each image independently without considering the patient 

information) and patient-level (i.e. assigning a label to each patient by 

combining the class labels appointed to all images of that patient) 

• proposing a framework for combining classification results of a patient’s 

images from different magnification factors to make the ultimate patient-level 

diagnosis  

7-2- Materials and Methods 

In chapter 8, I provide the detailed description about the steps of MuDeRN, but some 

further explanatory points about the dataset are discussed here. 

7-2-1- Dataset 

The BreakHis database [28] is a publicly available dataset of hematoxylin-eosin 

stained breast histopathological slides in four visual magnification factors, namely 

x40, x100, x200, and x400. The effective pixel size and objective lens for each 

magnification factor are shown in Table 1. The database contains images from four 

BCa subtypes and four benign subtypes. It contained 7786 images, which were 

acquired from 81 patients, but the number of images per patient differed from patient 

to patient, however on average 96 images were provided per patient. The areas covered 

in the images were selected by an experienced pathologist in each magnification level 

in a way that the image contains diagnostically relevant features of the disease. So, 

depending on the opinion of the pathologist, different number of images was available 
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for different magnification level. Detailed number of images per case per 

magnification factor is provided in [28], where the dataset has been introduced. 

  In this section, microscopic characteristics of each subtype included in the BreakHis, 

are briefly explained. It should be noted that in real clinical practice scanning a test 

sample four times using four different microscopic lenses will not be required for using 

MuDeRN. Slides can be scanned at the highest magnification level and down sampled 

to produce the lower magnification factors.  

Table 3- effective pixel size and objective lens for each magnification factor 

Visual magnification Objective lens Effective pixel size (μm) 

x40 x4 0.49 

x100 x10 0.20 

x200 x20 0.10 

x400 x40 0.05 

 

7-2-1-1- Benign subtypes 

7-2-1-1-1- Adenosis 

Adenosis is a benign breast lesion without atypia which involves epithelial 

proliferations of small acini and terminal ducts. It accounts for 12 - 28% of all benign 

lesions [24-27].  Usually in adenosis the number of glands are greater than usual and 

lobules are enlarged and collagen is often present. Diagnosing adenosis is important 

as it is associated with 1.5 to 2-fold increased risk of developing subsequent invasive 

breast cancer [22]. Figure 1 depicts an adenosis from the BreakHis database. 
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Figure 1- A sample image in adenosis class (patient ID=22549G) at x40 magnification 

factor (image ID: SOB_B_A-14-22549G-40-026). 

 

7-2-1-1-2- Fibroadenoma 

Fibroadenoma is a common benign lesion (accounting for 18.5% of all benign biopsies 

[29]) which mostly affect women in their 20s and 30s. Tumours are mostly firm and 

well circumscribed. Fibroadenoma is comprised of epithelial and stromal components. 

Figure 2 shows a fibroadenoma from the BreakHis database. 

 

Figure 2- A sample image in fibroadenoma class (patient ID=14134E) at x40 

magnification factor (image ID: SOB_B_F-14-14134E-40-002). 

 

7-2-1-1-3- Phyllodes tumour 

Phyllodes tumours are usually observed in middle age women and make up 0.20% of 

all benign breast lesions [30]. They are mostly firm, round and well circumscribed. 

Their main feature under the microscope is stromal hypercellularity and overgrowth, 

normally no nuclear atypia is observed. Similar to fibroadenoma, they arise from 

interlobular stroma, however they are much larger and more cellular than 
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fibroadenoma. Phyllodes in Greek means leaf-like. The phyllodes tumour gets its name 

as in these tumours, projection of stroma into ducts create leaf-like pattern.  In the 

BreakHis database only benign phyllodes tumours were included, however, in general, 

phyllodes tumours could be benign, borderline or malignant. In benign phyllodes 

tumours, less than 2 mitotic figures are observed in ten high power fields, while in 

borderline tumours and malignant ones 2-5 and more than 5 mitosis are observed 

respectively[31, 32]. Figure 3 presents a phyllodes tumour from the BreakHis 

database. 

 

Figure 3- A sample image in phyllodes tumour class (patient ID=21998AB) at x40 

magnification factor (image ID: SOB_B_PT-14-21998AB-40-004). The leaf-like 

architecture can be seen in the figure.  

 

7-2-1-1-4- Tubular adenoma 

Tubular adenoma accounts for up to 10% of benign lesions and is usually observed in 

younger women. It is characterized by being well circumscribed, as well as absence of 

atypical nuclei and presence of densely packed tubules. No or scant stroma is often 

observed [31, 32]. Figure 4 indicates a tubular adenoma from the BreakHis database. 
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Figure 4- A sample image in tubular adenoma class (patient ID=3411F) at x400 

magnification factor (image ID: SOB_B_TA-14-3411F-400-012). As shown no 

atypical cells are present and the tubule is densely packed. 

 

7-2-1-2- Malignant subtypes 

7-2-1-2-1- Invasive ductal carcinoma 

Invasive ductal carcinoma is the most common type of BCa, accounting for 75% to 

80% of all BCa. Most of the time when the lesion lacks diagnostic criteria of any other 

BCa subtypes, it is diagnosed as invasive ductal carcinoma (i.e. a diagnosis of 

exclusion) [24-27]. Tumours in this category are typically firm with ill-defined borders 

and noted chalky streaks are observed on cut sections, however some tumours may 

show a clear border. The tumour cells could grow in sheets, nests, cords or individual 

cells. Degree of tubule formation and nuclear atypia differ among patients and mitotic 

figures are obvious [31]. Figure 5 depicts an invasive ductal carcinoma from the 

BreakHis database. 
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Figure 5- A sample image in invasive ductal carcinoma class (patient ID=2523) at x40 

magnification factor (image ID: SOB_M_DC-14-2523-40-010). 
 

7-2-1-2-2- Invasive lobular carcinoma 

Invasive lobular carcinoma is the second most common type of BCa, accounting for 

10%-15% of BCa [33]. Mostly the tumour nuclear grade is 1 or 2 and tumour cells 

differ slightly from normal cells in size, shape, and appearance; the chromatin is evenly 

dispersed and typically no nucleoli is observed. Cells are often encircling normal ducts 

[31].  

Compared to ductal carcinoma, cells of lobular carcinoma are smaller, more uniform 

and discohesive which grow in Indian file or singly. Discohesion of tumour cells is a 

consequence of lack of E-cadherin, which is an epithelial calcium-dependent protein 

for cell adhesion. Most of the time, tubularity grade is 3, as cells do not form tubules 

[31]. Figure 6 indicates an invasive lobular carcinoma from the BreakHis database. 

 



102 

 

Figure 6- A sample image in invasive lobular carcinoma class (patient ID=15570C) at 

x40 magnification factor (image ID: SOB_M_LC-14-15570C-40-021). As shown cells 

are small, uniform and discohesive.  

 

7-2-1-2-3- Mucinous carcinoma 

Mucinous carcinoma is a subtype of BCa, accounting for 0.5% to 3% of all BCa cases 

[34]. It is characterized by low grade tumour cells floating in a lightly stained 

amorphous mucin and cells may be solid, acinar, or detached. Mitotic figures and in 

situ epithelial component are usually not present and tumours are often enclosed by 

connective tissue bands. The prognosis of mucinous carcinoma is usually better than 

invasive ductal carcinoma [35]. Figure 7 shows a mucinous carcinoma from the 

BreakHis database. 

 

Figure 7- A sample image in mucinous carcinoma class (patient ID=18842D) at x100 

magnification factor (image ID: SOB_M_MC-14-18842D-100-004). Prominent 

amount of mucin in spaces can be seen. 
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7-2-1-2-4- Papillary carcinoma 

Another subtype of BCa included in the BreakHis database is papillary carcinoma. It 

is typically observed in the central part of breast and is very uncommon subtype of 

BCa, accounting for 1%-2% of this disease [31, 36]. It is usually characterized by 

being well circumscribed and the presence of a delicate network of fibrovascular 

stroma in an arborizing pattern. Either papillary or solid foci formed by ducts almost 

filled by a solid neoplastic proliferation is observed under the microscope while 

myoepithelial cells are often absent. Usually the histologic grade of the tumour in this 

category is 1 or 2 [32]. Figure 8 depicts a papillary carcinoma from the BreakHis 

database. 

 

Figure 8- A sample image in papillary carcinoma class (patient ID=9146) at x40 

magnification factor (image ID: SOB_M_PC-14-9146-40-004).  

 

7-3- Evaluation of MuDeRN 

For evaluation of MuDeRN, 27-fold cross validation was used. The main reason that 

I used cross validation instead of splitting the data into training, validation, and test 

sets, was that there was not enough data available for training the ResNets and 

Metadata without losing significant testing capability. Hence, eighty-one patients were 

randomly divided into 27 subsets, from which 24 contained one benign patient and 

two cancer patients and 3 contained three cancer patients. Also, I made sure that all 

subsets contained at least one patient with ductal carcinoma. This was done because 

for some categories I had only a few patients and I wanted to make sure that all these 

patients were not grouped into one subset. Each time one of the sets served as the test 

set and the rest of the patients were split into the training set with 70 patients and the 
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validation set with 8 patients. The parameters of the ResNets were estimated based on 

the training data while the validation data was used for training the MDT for the 

patient-level diagnosis. As the number of benign images were approximately half of 

the malignant images, I upsampled the benign class by extracting twice as many 

patches from the training and validation sets.  
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Abstract 

Motivation: Identifying carcinoma subtype can help to select appropriate treatment options, and 

determining the subtype of benign lesions can be beneficial to estimate the patients’ risk of developing 

cancer in the future. Pathologists’ assessment of lesion subtypes is considered as the gold standard, 

however, sometimes strong disagreements among pathologists for distinction among lesion subtypes 

have been previously reported in the literature. 

Objective: To propose a framework for classifying hematoxylin-eosin stained breast digital slides either as 

benign or cancer, and then categorizing cancer and benign cases into four different subtypes each.  

Materials and Methods: We used data from a publicly available database (BreakHis) of 81 patients where 

each patient had images at four magnification factors (x40, x100, x200, and x400) available, for a total of 

7786 images. The proposed frame work, called MuDeRN (MUlti-category classification of breast 

histopathological image using DEep Residual Networks) consisted of two stages. In the first stage, for each 

magnification factor, a deep residual network (ResNet) with 152 layers has been trained for classifying 

patches from the images as benign or malignant. In the next stage, the images classified as malignant 

were subdivided into four cancer subcategories and those categorized as benign were classified into four 

subtypes. Finally, the diagnosis for each patient was made by combining outputs of ResNets’ processed 

images in different magnification factors using a meta-decision tree.  

Results: For the malignant/benign classification of images, MuDeRN’s first stage achieved correct 

classification rates (CCR) of 98.52%, 97.90%, 98.33%, and 97.66% in x40, x100, x200, and x400 

magnification factors respectively. For eight-class categorization of images based on the output of 

MuDeRN’s both stages, CCRs in four magnification factors were 95.40%, 94.90%, 95.70%, and 94.60%. 

Finally, for making patient-level diagnosis, MuDeRN achieved a CCR of 96.25% for eight-class 

categorization.  

Conclusions: MuDeRN can be helpful in the categorization of breast lesions.  

Keywords: benign breast lesion, Breast cancer, breast cancer subtypes, deep learning, deep residual 

networks.  
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1- Introduction  

Breast cancer (BCa) is the most common non-skin cancer among women worldwide. In spite of the 

increase in incidence rate of BCa over last few decades, the mortality rate from BCa in the developed 

countries has been decreased due to improvements in treatment options and early detection of BCa 

through screening mammography [1]. For every 1000 women who have participated in screening 

mammography, 15.6 to 17.5 need a needle biopsy [2] but only one in four are diagnosed with BCa [3]. 

Therefore, each year, pathologists evaluate a large number of breast histopathological slides, from which 

only about 25% contains malignancy, and benign lesions are far more prevalent. 

The diagnoses made by pathologists on the cases are usually considered as the gold standard for further 

treatment of the patients. However, recent studies have shown that the pathologists might disagree with 

an expert consensus-derived reference diagnoses in distinguishing benign cases from cancer [4-6]. In [5], 

6900 individual case diagnoses made by 115 pathologists were compared with an expert consensus-

derived ground truth and 17% of benign cases with atypia and 3% of benign cases without atypia were 

misdiagnosed as ductal carcinoma in situ or invasive carcinoma, while 10% of invasive carcinoma or ductal 

carcinoma in situ were misdiagnosed as benign cases with or without atypia. Also, it was shown that 

pathologists who interpret a smaller number of cases per week and those working as a general 

pathologists make more diagnostic errors than experts [3-5]. Allison et al. [4] divided underlying reasons 

for disagreement among the pathologists into three categories, which were pathologist-related, 

diagnostic coding/study methodology-related, and specimen-related. Among pathologist-related factors, 

“professional differences of opinion on features meeting diagnostic criteria” was ranked first. Computer-

assisted analysis can be helpful in reducing the discrepancies in benign/malignant classification by 

providing an objective classification.  

Recently, with the advent of whole slide imaging and production of digital histopathology slides, many 

researchers have started developing computer-aided detection tools for classification of breast slides as 

benign or malignant [7]. For example, Weyn et al. [8] used wavelet‑based, Haralick, intensity‑based, and 

morphological features extracted from segmented nuclei and their surrounding for classification of breast 

histopathological slides as benign or malignant, and achieved a correct classification rate (CCR) of 79% for 

case-based classification. In [9], 84 features (morphological, intensity‑based, and textural) extracted from 

isolated nuclei were utilized for classifying images as either benign or malignant. A sensitivity of 97% and 

a specificity of 94% has been achieved. However, both methods are computationally expensive as the 

epithelial nuclei were segmented first. Unlike these methods, Yang et al., [10] extracted textural features 

using a texton-based approach without segmenting the structures in slides. Using this method, 89% of 

images were classified correctly.  

Pathologists are responsible for not only identifying whether a lesion is malignant or benign but also 

determining the benign or cancer subtypes, as both benign and malignant breast lesions encompass 

different subcategories with heterogeneous categories. Different treatment options are available for BCa 

patients and determining the BCa subtype could be helpful in predicting the patient’s response to therapy, 

for example, invasive lobular cancer gains a clear benefit from systemic therapy when compared to 
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invasive ductal cancer [11]. The correct recognition of benign lesion type is also important because the 

patient’s risk of developing subsequent BCa varies among different types of benign lesions [12].  

Cserni et al. [13] showed that there are discrepancies among pathologists for determining benign lesion 

subtypes. The study asked six pathologists to classify benign lesions into three categories, namely 

fibroadenoma, phyllodes tumor, and anything other these subtypes. The overall Cohen’s kappa for 

categorizing was 0.48, which suggests a moderate agreement [14]. Lawton et al.  [15] investigated the 

agreement among ten pathologists for distinguishing fibroadenomas from phyllodes tumors and found 

that there was 100% agreement only in 53% of cases. In [16], the interobserver agreement for 

classification of invasive breast carcinoma was studied and the highest agreement rates among 13 

pathologists were achieved for mucinous, lobular, and tubular subtypes, with agreement rates of 96.0%, 

78.7%, and 78.0% respectively.  

Similar to the malignant/benign classification, computer-assisted analysis could help pathologists to 

increase diagnostic agreement in multi-class categorization of lesions. In spite of the importance of 

determining the lesion subtype, only a few previous studies aimed at automatic classification of breast 

lesions into different subtypes. In [10], six subtypes of BCa were divided into two subgroups: cancer class 

I that contains ductal carcinoma in situ and lobular carcinoma in situ, and cancer class II containing invasive 

ductal carcinoma, invasive lobular carcinoma, lymph-node-negative metastasis, and soft tissue 

metastasis. Using a texton-based approach, images were classified into three classes, i.e. benign, cancer 

type I, and cancer II and a CCR of 80% was achieved.  

Recently there has been growing research on the application of deep learning in medical image 

segmentation and classification. A few studies have applied deep learning for analyzing breast 

histopathology slides. In [17], it was used to detect mitotic figures within breast slides. Wang et al. used 

deep learning for identifying metastatic BCa and obtained an area under the receiver operating curve of 

0.925 [18]. Spanhol et al. used AlexNet for classifying breast histopathological images as benign and 

malignant [19]. In [20], a context-aware stacked convolutional neural network architecture was used for 

classifying whole slide images as benign, ductal carcinoma in situ, or invasive ductal carcinoma.  

This paper focused on three tasks which are: (i) classification of breast histopathological images as benign 

or malignant, (ii) categorization of malignant images as ductal carcinoma, lobular carcinoma, mucinous 

carcinoma, or papillary carcinoma; and (iii) classification of benign images as adenosis, fibroadenoma, 

phyllodes tumour, or tubular adenoma. Previously Han et al. [21] used GoogLeNet [22]  for classifying 

breast histopathological images into similar eight categories and used majority voting for patient 

classification. Although this aimed at addressing an almost similar problem, we improved both the image-

level (i.e. considering each image individually without incorporating the patient information for decision 

making) and the patient-level (i.e. appointing a single label to each patient by aggregating the class labels 

assigned to all images of that patient) classification CCRs. This was achieved by first carrying out the stain 

normalization as a pre-processing step. Secondly, we used a deeper network and a two-stage classifier 

and thirdly, we utilized a meta-decision tree (MDT) [23] for making the patient-level diagnosis based on 

the four magnification factors. 
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In this study, we proposed a frame work, called MuDeRN (MUlti-category classification of breast 

histopathological image using DEep Residual Networks) for classifying patients based on hematoxylin-

eosin stained breast digital slides either as benign or cancer, and then categorizing cancer and benign 

cases into four different subtypes each. MuDeRN used a very deep residual neural network [24], i.e. a 

deep residual network with 152 layers (ResNet-152), for classification of breast histopathological images 

as benign or malignant. Images were acquired in four different magnification factors and for each factor, 

a separate network has been trained. Malignant images were then subdivided into four subcategories 

while benign images were classified as four benign subtypes. Eventually, the final diagnosis for a patient 

was made by combining outputs of networks for different magnification factors using an MDT [23]. It 

considers the confidence level of the label given by the networks for each magnification factor and also 

the CCR of the assigned labels to select the best magnification factor for making a patient-level diagnosis. 

The major contributions of this work are using ResNet for the first time for differentiation of benign and 

malignant subtypes and also proposing a framework for combining outputs based on different 

magnification factors to make the ultimate diagnosis for a patient. 

2- Materials and Methods 

In this section, the dataset we used and MuDeRN’s steps are discussed. This study was exempt from the 

requirement for approval by the Human Research Ethics Committees at the University of Sydney because 

the data was obtained from a publicly available dataset and all images were de-identified. 

The steps of MuDeRN for categorization of lesion subtypes is shown in Figure 1. Briefly, for each patient 

a set of images from four magnification factors (x40, x100, x200, and x400) were available. To mitigate 

the color variations, images were normalized by two different methods, which are explained in 2-3. From 

each normalized image, square image patches were extracted and fed into a ResNet for classification. In 

each magnification factor, a separated network was trained. The classification was done in two stages. In 

the first stage (S1) patches were classified either as benign or malignant and an image-level decision was 

made by using weighted majority voting. On average 24 images were available per patient per each 

magnification factor. For making patient-level diagnosis, an MDT [23] was used to combine the 

probabilities of being malignant given to the different images of a patient. The second stage consists of 

two modules, M and B. The images which were classified as malignant by the first stage were fed into 

module M where they were subdivided into four cancer subtypes, while those classified as benign were 

inputted to module B, where they classified into four categories. The architectures of the module in the 

second stage was almost identical to that of the first stage but for the four classes.  

2-1- Dataset 

To evaluate the performance of MuDeRN, we used the BreakHis database [25], which is a publicly available 

dataset of hematoxylin-eosin (HE) stained breast histopathological slide. The images were acquired in four 

visual magnification factors, namely x40, x100, x200, and x400 with the effective pixel size of 0.49 μm, 

0.20 μm, 0.10 μm, and 0.05 μm respectively. The images were stored in a format of three-channel red–

green–blue (RGB) TrueColor (24-bit color depth, 8 bits per color channel) color space.  For each patient, 

the pathologist identifies a region of interest (ROI). The undesired areas, such as text annotations or black 
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border, were removed and the images were cropped to a dimension of 700 ×460 pixels. Finally, out-of-

focus images were also discarded.  

 

 

Figure 1- The steps of MuDeRN 

 

On average 24.23, 25.28, 24.46, and 22.15 images were available per patient in x40, x100, x200, and x400 

respectively. The BreakHis database comprises of 82 folders corresponding to 82 patients, however, one 

of the patients (Patient ID: 13412) was a borderline case (has features of both ductal and lobular 

carcinoma) and hence was placed in both ductal and lobular groups. This patient was included in 

benign/malignant classification but excluded for tumor sub-type recognition. Figure 2 shows the 

distribution of images over different sub-types.  
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                                                                                                     (a) 

 
                                                                                                       (b) 

Figure 2- Distribution of (a) benign (b) malignant images by magnification factor and class, number of patients in each category 

is shown in parentheses. Numbers in each row represent number of images in BreakHis for all patients per each subtype.  

2-2- Deep Residual Network  

Deep neural networks are cascades of layers of nonlinear processing units that form a hierarchy 

corresponding to multiple levels of the data representation, starting by learning low-level features (such 

as edges and lines) to higher-level features (which combine the low-level features to elements of tissue). 

They are increasingly popular models for automatic classification and segmentation in medical image 

analysis when large-scale labeled data is available. Although the deep neural networks originated from 

previously existing artificial neural networks, training their deep architectures have recently become 

practical due to emergence of high-performance GPU computing, which makes it feasible to train 

networks with many hidden layers in a reasonable time.   

The AlexNet [26] is one of the earliest deep neural networks which contains five convolutional layers 

followed by fully connected layers. It won the ImageNet Large Scale Visual Recognition Competition-2012. 

The AlexNet aimed at classification of images into 1000 object categories. Unlike the conventional neural 

networks which use hyperbolic tangent as the activation function, the AlexNet uses rectified linear units 

(ReLU) as they are several times faster.  

Recent evidence indicated that deeper networks (a network with more layers), such as VGG19 (19 layers) 

[27] and GoogLeNet (22 layers) [22] achieved better results on the ImageNet dataset. However, simply 
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stacking more convolutional layers will not lead to a lower classification error and “overly deep plain 

networks” have higher training error compared to their shallower counterpart [24]. This phenomenon, 

which is called the degradation problem, could be due to the optimization difficulty of finding the weights 

of all hidden layers in a feasible time when the network is overly deep. To tackle this problem, ResNet was 

proposed in [24]. In Figure 3, the building block of the ResNet is compared to the plain network. In the 

plain networks (Figure 3(a)) the mapping from input to output can be represented by the nonlinear H(x) 

function. Assume that instead of H(x), F(x)= H(x)-x is used. As shown in Figure 3(b), at the output of the 

second weight layer x was added to the F(x) and then their sum passes to the ReLU. He et al. [24] showed 

that adding this shortcut from input to the output of the stacked layers could tackle the optimization 

difficulties of the deeper networks as the gradient can flow directly from later layers to the earlier layers. 

As in ResNet, the shortcut connections simply perform identity mapping, extra parameters (and hence 

extra computational complexity) is not added to the optimization task.  

 
                                                     (a)                                                                                                       (b) 

Figure 3- Building block of (a) a plain net (b) a ResNet. ReLU is a rectified linear unit. 

ResNet models with 50, 101, and 152 layers were trained and tested on the ImageNet dataset [24]. As 

expected the error was the least for the ResNet with 152 layers. Previously ResNet-152 was used for 

analysis of histopathological slide in [28]. It achieved an overall accuracy of 93.0% for classification of 

colorectal whole-slide images into six classes (five types of colorectal polyps and the normal class) and 

performed better than ResNet with 50 and 101 layers. Therefore, in this study, we used the ResNet-152 

for classification.   

2-3- Stain normalization 

Inconsistencies in color are major issues in analysis of histopathological slides. The inconsistencies could 

be due to different reasons such as the use of different chemicals for staining, variations in color 

concentrations, or differences in scanners from different vendors. Different algorithms have been 

suggested for stain normalization. Each algorithm has its own advantages and limitations and works better 

for a group of images but has some flaw when applied to other images. Hence, here we used two different 

stain normalization methods and produce two stain normalized images, 𝐼𝑁1 and 𝐼𝑁2, for  each image.  
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𝐼𝑁1 was produced using a stain normalization algorithm based on histogram specification [29], where the 

images from a patient were transformed to a set of new images so that the histograms of the output 

images in different color channels approximately match the target image histogram in the corresponding 

channel. Figure 4 indicates the target image that used in this study. This image was selected from the 

Mitosis-Atypia database1 based on the opinion of a pathologist who was asked to select an image with an 

appropriate staining which includes lumen, stroma and epithelial cells and does not have any artifact or 

tissue folding. We did the histogram matching for the stack of images of a given patient in each 

magnification factor rather than doing the normalization image by image. This was done to mitigate the 

visual artifacts in the images due to the assumption of the histogram specification that the proportion of 

pixels in each color is almost identical in the source and target image. If each time only a single image had 

been considered, this assumption might have been violated as only a very small tissue area with limited 

tissue elements and hence limited number of colors would have been taken into account. The second 

approach used for stain normalization was first proposed in [30], where the mean and standard deviation 

of each channel of the images were matched to that of the reference image by using a set of linear 

transformation in La*b* color space.  

 

Figure 4- This target image was used as a reference image to which all the images were mapped. 

2-4- Stage 1: Benign/Malignant classification 

As shown in figure 1, in the first stage binary classification was performed for detecting the malignant and 

benign cases. In this section, first we explain the steps of MuDeRN for classifying images of a patient as 

                                                           
1 http://mitos-atypia-14.grand-challenge.org/ 
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malignant or benign. Then we explain in details how MuDeRN was trained and tested by using BreakHis 

database.  

The first stage was composed of four ResNets, where each was trained for classifying breast 

histopathological images of a specific magnification factor. The input size of the ResNets was 224 x 224 

while the images in BreakHis database were 700 ×460 pixels. Therefore, both 𝐼𝑁1 and  𝐼𝑁2, were resized 

to 341×224.  Then five overlapping patches with size of 224 x 224 were extracted from each one of the 

stained normalized images by using a sliding window. Therefore for each image, ten patches (five from 

𝐼𝑁1 and five from 𝐼𝑁2) were extracted. As stated in section 2.1, for each patient, images in four 

magnification factors were available. 𝑁𝑥40, 𝑁𝑥100, 𝑁𝑥200, and 𝑁𝑥400 indicate the number of images in x40, 

x100, x200, and x400 magnification factors. Assume the ith image in the xth magnification factor of a patient 

was inputted to the ResNet for the xth magnification factor, then the probability that the image is 

belonging to the jth class, was found using (1).  

𝐶𝐿𝑗
𝑖,𝑥 =

∑ 𝑐𝑙𝑗,𝑝
𝑖,𝑥10

𝑝=1

10
    , 𝑗 ∈ {𝑀, 𝐵}, 𝑝 ∈ {1, . . ,10}                                                  (1) 

Where (𝑖, 𝑥) ∈ {(1, 𝑥40), … , (𝑁𝑥40, 𝑥40), (1, 𝑥100), … , (𝑁𝑥100, 𝑥100), … , (𝑁𝑥200, 𝑥200), … , (𝑁𝑥400, 𝑥400)}.  

𝑀 and 𝐵 represent malignant and benign classes and 𝑐𝑙𝑗,𝑝
𝑖  shows the probability of the pth patch of the ith 

image belonging to the jth class. To find the class label for each image, the weighted majority voting was 

used. Therefore, the label assigned to the ith image was  𝐽𝑥,𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝐶𝐿𝑗
𝑥,𝑖. The image-level CCR was 

calculated as the number of images in each magnification factor which were classified correctly by the 

total number of images in that magnification factor.   

In order to make the final diagnosis for a patient, image-level diagnoses for four magnification factors 

have been combined using a MDT. As stated earlier, on average we have approximately 24 images per 

patient per magnification factor. First, in each magnification factor, the average probability of a patient 

belonging to jth class was calculated using (2) where 𝑁𝑥  shows number of images in the xth magnification 

factor. 

𝐶𝐿𝑗
𝑥 =

∑ 𝐶𝐿𝑗
𝑖,𝑥𝑁𝑥

𝑖=1

𝑁𝑥
                                                                                      (2) 

In each magnification factor, the class maximizing 𝐶𝐿𝑗
𝑥 , 𝐽𝑥 =  𝑎𝑟𝑔𝑚𝑎𝑥

𝑗
𝐶𝐿𝑗

𝑥, was found and for each patient, 

we had { 𝐽𝑥40, 𝑚𝑎𝑥
𝑗

𝐶𝐿𝑗
𝑥40 , 𝐽𝑥100  , 𝑚𝑎𝑥

𝑗
𝐶𝐿𝑗

𝑥100 , 𝐽𝑥200  , 𝑚𝑎𝑥
𝑗

𝐶𝐿𝑗
𝑥200 , 𝐽𝑥400  , 𝑚𝑎𝑥

𝑗
𝐶𝐿𝑗

𝑥400}. This was then fed into 

the MDT (S1) to make the final diagnosis for a patient. We used MDTs as suggested in [23] for combining 

multiple classifiers. The output of the MDT identify ResNet from which magnification factor should be 

considered to assign the label for a test data by considering the confidence level of the label assigned in 

different magnification factors and the performances of each magnification factor when used for 

classifying the validation set. So, the MDT specifies the best magnification factor for a specific test patient. 

For example if the confidence of the ResNet in the magnification factor of x200 was 100% (the highest 

one compared to all other magnification factors) for a test data and the CCR of the ResNet in x200 for the 
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validation set was also 100%, then the MDT would assign the label of test data as outputted by the ResNet 

in the magnification factor of x200.  

For evaluation of MuDeRN, 27-fold cross validation was used. The main reason that we used cross-

validation instead of splitting the data into training, validation, and test sets, was that there was not 

enough data available for training the ResNets and Metadata without losing significant testing capability. 

Eighty-one patients were randomly divided into 27 subsets, from which 24 contained one benign patient 

and two cancer patients and 3 contained three cancer patients. Also, we made sure that all subsets 

contained at least one patient with ductal carcinoma. This was done because for some categories we had 

only a few patients and we wanted to make sure that all these patients were not grouped into one subset. 

Each time, one of the sets served as the test set and the rest of the patients were split into the training 

set with 70 patients and the validation set with 8 patients. The parameters of ResNets were estimated 

based on the training data while the validation data was used for training the MDT for the patient-level 

diagnosis. 

As the number of benign images were approximately half of the malignant images, we upsampled the 

benign class by extracting twice as many patches from the training and validation sets. Therefore, for each 

benign image, 20 patches were extracted from 𝐼𝑁1 and 𝐼𝑁2 while ten patches were extracted from each 

malignant image.  

Training the ResNet from the scratch (i.e. the random initialization of the network’s weight and training 

the model) requires a very large scale dataset as the network has a large number of parameters. 

Therefore, we fine-tuned the ResNet, previously trained on the ImageNet (1.2M labeled images) by 

continuing to train it on the training set using stochastic gradient descent (SGD) with back-propagation 

with a small learning rate (0.0001) for 50 epochs. Although the classification task done on the ImageNet 

data set is completely different to breast histopathological image classification, due to lack of training 

data, making a model from the scratch was not feasible. In [21], it was shown that the accuracy of 

GoogLeNet for eight-class classification of breast histopathological slides was higher for fine-tuning in 

comparison with training from the scratch. Before start training, the last classification layer of the pre-

trained ResNet model was removed and replaced with a classification layer with only two classes as 

ResNet had been trained for classifying image into 1000 categories.  

Image augmentation artificially creates training images through different ways of processing or 

combination of multiple processing and is usually required to improve the performance of deep networks 

and avoid overfitting of the network to the training set. Here the training data was augmented by random 

combination of image rotation by 90o, 180o, or 270o, flipping about horizontal or vertical axes, and random 

horizontal and vertical shifting between ±10 pixels. In each epoch, one pass over the training patches was 

completed and in each pass, the image patches were randomly augmented.  

The validation set has only eight members, which makes training the MDT difficult. Therefore, an up-

sampling strategy was required. Assume 𝑃𝑗| 𝑗 ∈ {𝑀, 𝐵} indicates total number of patches extracted from 

an image. Here we set 𝑃𝑀 and 𝑃𝐵 to 10 and 20 respectively as number of benign images were 

approximately half of that of the malignant images. For upsampling, we randomly grouped patches from 
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different images of a single patient together in a way that each group contains only one patch from a 

particular image; hence for each patient,  𝑃𝑗  samples were generated. For example, when the validation 

set contains 2 benign and 6 malignant patients, in total 100 samples, i.e. 2 (number of benign patients) × 

20 (𝑃𝐵)+ 6 (number of malignant patients) × 10 (𝑃𝑀). Therefore, for the confidence level of each group of 

patches,𝐶𝐿̂𝑗,𝑝
𝑥 , we will have 

𝐶𝐿̂𝑗,𝑝
𝑥 =

∑ 𝑐𝑙𝑗,𝑝
𝑖,𝑥𝑁𝑥

𝑖=1

𝑁𝑥
                                                                                      (3) 

Similar to (2), for each magnification factor, the class with the maximum value, 𝐽𝑥,𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝐶𝐿̂𝑗,𝑝
𝑥 , was 

found. Therefore we have 𝑃𝑗 samples for each patient and the data used for training the MDT had the 

format of { 𝐽̂𝑥,𝑝, 𝑚𝑎𝑥
𝑗

𝐶𝐿̂𝑗,𝑝
𝑥

| 𝑥 ∈ {𝑥40, 𝑥100, 𝑥200, 𝑥400}, 𝑗 ∈ {𝑀, 𝐵}, 𝑝 ∈ {1, … , 𝑃𝑗}}.  

After estimating the parameters of the ResNets in four magnification factors and also the parameters of 

the MDT, for each test image, ten patches were randomly selected from 𝐼𝑁1 and 𝐼𝑁2. Patches in each 

magnification factor were fed into the corresponding ResNet, which outputted 𝑐𝑙𝑗,𝑝
𝑖,𝑥

. Using (1) and (2), the 

value of 𝐶𝐿𝑗
𝑥 was calculated for each image. Finally for each patient in the test subset { 𝐽𝑥40, max

𝑗
𝐶𝐿𝑗

𝑥40 ,

𝐽𝑥100  , max
𝑗

𝐶𝐿𝑗
𝑥100 , 𝐽𝑥200  , max

𝑗
𝐶𝐿𝑗

𝑥200 , 𝐽𝑥400  , max
𝑗

𝐶𝐿𝑗
𝑥400} was generated and inputted to the trained 

MDT to make the final diagnosis for each patient. 

2-5- Stage 2: Differentiation of lesion sub-types 

Based on the decision made in the first stage, malignant images were fed into the module M as shown in 

Figure 1, and categorized into four cancer subtypes, while benign images were inputted to the module B 

and classified into four categories.  

The architecture of both modules were almost identical to what was used in the first stage. However, 

there were two differences between them. First, in S1 we used the model pre-trained on the ImageNet 

data set as a starting point for the fine-tuning. Here, we used the ResNet trained at the S1 as the starting 

point. We hypothesized that the first few layers of the ResNet already learned the low-level features for 

describing the breast histopathological images and hence it could be a better starting point.  

Second, the number of classes in this stage is four per each module, therefore we have 𝑗 ∈ {1,2, 3,4}.  In 

the module for processing benign images, the total number of patches extracted from images in the 

training and validation sets for each class, 𝑃𝑗, were  24 for adenosis and phyllodes tumor, 10 for 

Fibroadenoma, and 16 for tubular adenoma. Similarly the minority classes were upsampled in the module 

M, resulting to 10, 70, 40, and 60 patches per image for ductal carcinoma, lobular carcinoma, mucinous 

carcinoma, and papillary carcinoma respectively. Each time half of the patches were extracted from 𝐼𝑁1 

while the other half were extracted from 𝐼𝑁2. In S1, a sliding window was used to extract overlapping 

image patches, here we used sliding window but we also randomly rotated (0o, 90o, or 180o) and flipped 

(none, horizontal, or vertical) the image patches as well. This was done because for the minority classes 
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we extracted 20-35 patches per normalized image and different patches are almost identical with a very 

slight shift.  

3- Results 

The values of CCRs for the ResNets processing images of different magnification factors in the first stage 

are shown in figure 3. For all magnification factors, CCRs for the benign category were lower than those 

for the malignant one. The differences between CCR of benign and malignant categories are significant 

for all magnification factors (x40: z=-2.32, p-value=0.020; x200: z=- 2.48, p=0.013; x200: z=- 2.88, p-

value=0.004; x400: z=- 3.07, p-value=0.002). The overall CCR varied across different magnification factors 

and ranged from 97.9% to 98.3%, but the differences among overall CCRs of different magnification 

factors were not statistically significant.  

 

Figure 5- Accuracy of ResNets in the first stage for malignant/benign classification of images in different magnification factors 

The CCR values for the recognition of different benign and malignant subtypes in various magnification 

factors are listed in Tables 1 and 2 respectively. In table 1, we included all benign images, no matter 

whether they were detected correctly by the malignant/benign classification module. Similarly, all 

malignant images regardless of their labels from the first stage were included in table 2. Table 3 indicates 

the overall CCRs when outputs from both stages were combined. Hence, the image was considered 

correctly classified when it was assigned the appropriate label by the first stage and then in the next stage, 

the subtype was correctly identified.  Here we presented results for both four-class categorization (Tables 

1 and 2) and eight-class categorization (Table 3) separately because we wanted to show the performances 

of stand-alone modules for distinction among benign subtypes and distinguishing among cancer subtypes, 

as some pathologists might prefer to classify images into benign and malignant themselves and use 

MuDeRN to aid in the distinction among subtypes, so that the error from the first stage does not 

propagate in the classification done by the second stage.  

As shown in Table 1, overall CCR value of x200 magnification factor was the highest, however, the 

differences among the CCR values for different magnification factors were not significantly different. For 

adenosis and Fibroadenoma, the x200 magnification factor achieved the highest CCR value while for the 

95.0%

95.5%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%
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Phyllodes tumor class, the highest CCRs was achieved when images from the lowest magnification factor 

were classified. For tubular adenoma CCR value of x100 magnification factor was the highest. 

Table 1- Accuracy of the MuDeRN’s module for the recognition of different benign subtypes in various magnification factors. The 

highest CCR for each class is shown in bold.  

 x40 x100 x200 x400 

Adenosis 89.47% 87.61% 89.19% 86.79% 

Fibroadenoma 98.02% 96.15% 99.24% 97.47% 

Phyllodes tumor 94.50% 92.56% 93.52% 94.78% 

Tubular adenoma 94.63% 96.67% 95.00% 95.38% 

Overall 95.04% 94.10% 95.51% 94.56% 

 

As shown in Table 2, the overall CCR value for x200 magnification factor was the highest, which is similar 

to the results presented in Table 1 for the recognition of different benign subtypes. Here for each class, a 

different magnification factor resulted in the highest CCR for each class.   

Table 2- Accuracy of the MuDeRN’s module for the recognition of different malignant subtypes in various magnification factors. 

The highest CCR for each class is shown in bold.  

 x40 x100 x200 x400 

Ductal carcinoma 98.44% 97.82% 98.26% 98.29% 

Lobular carcinoma 97.58% 97.81% 97.71% 98.20% 

Mucinous carcinoma 96.59% 96.85% 97.45% 96.45% 

Papillary carcinoma 95.86% 96.48% 96.30% 96.38% 

Overall 97.78% 97.52% 97.89% 97.80% 

 

Table 3 shows the MuDeRN’s CCR at the image-level in each magnification factor and for each class. As 

shown, for two benign subtypes and two cancer subtypes, x100 magnification factor performed the best 

and for the rest of the subtypes, x200 magnification factor outperformed others.  

Table 3- Accuracy of MuDeRN in different magnification factors. The highest CCR for each class is shown in bold. 

 x40 x100 x200 x400 

Adenosis 82.46% 85.84% 89.19% 86.79% 

Fibroadenoma 96.44% 92.31% 95.83% 93.25% 

Phyllodes tumor 93.58% 93.39% 92.59% 89.57% 

Tubular adenoma 93.29% 92.67% 91.43% 92.31% 

Ductal carcinoma 97.96% 97.13% 97.57% 97.38% 

Lobular carcinoma 95.16% 95.62% 96.18% 94.59% 

Mucinous carcinoma 95.61% 94.59% 95.41% 93.49% 

Papillary carcinoma 95.17% 96.48% 95.56% 95.65% 

Overall 95.60% 94.89% 95.69% 94.63% 

 



15 

Finally, as explained in section 2.5, MDT were used to make a patient-level diagnosis through combining 

the outputs from different magnification factors. A CCR of 98.77% was achieved in the first stage for 

classification of patients either as benign or malignant while the overall CCR for the patient-level diagnosis 

was 96.25%.   

Training the MDT added an extra computational burden to the algorithm, so one might question the 

advantage of MDT over a non-trainable aggregation strategy. The most common nontrainable way to 

aggregate image-level classification and produce patient-level diagnose is majority voting of the image-

level results. We compared the performance of MDT with that of majority voting to explore the added 

benefit of using MDT for aggregating the image-level results. Figure 6 shows the comparison of two 

aggregation methods. As shown overall the MDT method performed about 4% better than nontrainable 

method. As it can be seen, the differences between two methods varied for different diseases. The 

advantage of MDT was more prominent for different types of benign diseases. 

A few recent studies used AlexNet and GoogleNet [22] for binary-class classification using data from the 

same database. In table 4, the image-level CCRs in different magnification factors of our algorithm were 

compared with those of studies that used the same database. Z-test for proportions showed that the CCR 

of MuDeRN was significantly higher than other methods in all magnification factors (p<0.05). As shown in 

table 4, for eight-class categorization of images, the CCRs were also improved significantly compared to 

GoogLeNet exept for x100 magnification.  

In patient-level, the GoogLeNet achieved the best CCR for x40 magnification factor which was 97.1% while 

the best CCR for AlexNet was 90% at the same magnification factor. MuDeRN outputted a single patient-

level diagnosis for all magnification factors which differed significantly from that of AlexNet (z= 2.42, p-

value=0.015) but was not significantly different from that of GoogLeNet (z= 0.75, p-value=0.453). For 

eight-class categorization in patient-level, the CCR of MuDeRN was about 1.55% higher that than that of 

the GoogLeNet (the best result was obtained for x200) but the difference was not significant (z=-0.45, p-

value= 0.624).  

Table 4- Comparison of the MuDeRN with the state-of-the-art accuracy for malignant/benign classification and malignant and 

benign subtype identification of images. The second highest CCR for the patient-level classification and also the second highest 

CCR for image-level classification per magnification factor have been underlined. 

Image-level Patient-level 

Two-class classification x40 x100 x200 x400 x40 x100 x200 x400 

Hand-crafted features [25] 82.8% 80.7% 84.2% 81.2% 83.8% 82.1% 85.1% 82.3% 

AlexNet (32*32 patches) [19] 89.6% 85.0% 84.0% 80.8% 88.6% 84.5% 85.3% 81.7% 

Combination of AlexNets [19] 85.6% 83.5% 83.1% 80.8% 90.0% 88.4% 84.6% 86.1% 

Deep features[31] 84.6% 84.8% 84.2% 81.6% 84.0% 83.9% 86.3% 82.1% 

AlexNet17 [21] 85.6% 83.5% 83.1% 80.8% 90.0% 88.4% 84.6% 86.1% 

GoogLeNet [21]  95.8% 96.9% 96.7% 94.9% 97.1% 95.7% 96.5% 95.7% 

MuDeRN 98.5% 97.9% 98.3% 97.7% 98.77% 

Eight-class classification 

AlexNet17 [21] 86.4%  75.8% 72.6% 84.6% 74.6% 73.8 % 76.4% 79.2% 
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GoogLeNet [21]  92.8%  93.9%  93.7 % 92.9%  94.1% 93.2% 94.7% 93.5% 

MuDeRN 95.6% 94.9% 95.7% 94.6% 96.25% 

 

4- Discussion 

In this paper, MuDeRN, a framework was proposed to classify patients based on HE stained breast 

histopathological images either as benign or malignant, and also categorize them into eight classes, 

representing different subtypes of benign lesions and carcinomas. MuDeRN consisted of two stages. The 

first stage had a single module composed of four ResNets, where each one dealt with a specific 

magnification factor and a MDT for combining image-level predictions to classify patients either as benign 

or malignant. The second stage was comprised of two modules, one for categorizing malignant images 

into four subtypes and one for classifying benign images into four subcategories. MuDeRN was tested on 

a database containing 7786 images in four magnification factors from 81 patients. It achieved an average 

CCR of 98.10% over all magnification factors for classifying the images as benign or malignant while an 

average CCR of 95.15% for classifying images into eight classes. At the patient-level, MuDeRN achieved a 

CCR of 98.77% for malignant/benign classification, and 96.25% for the eight-category classification. 

As shown in table 3, the CCR values varied among different subtypes. This could be due to the fact that 

numbers of patients in different subtypes were not similar. For example, ductal carcinoma which was 

achieved the highest CCR had the highest number of patients as well. By providing larger number of cases, 

the ResNets learn the characteristics of lesion better. For the adenosis subtype, the CCR was the lowest. 

That could be due to the reason that the adenosis has different subtypes (i.e. sclerosing, tubular, apocrine, 

microglandular) and larger number of cases is required so that the network learns features of different 

variations of the disease.  

For binary classification, the ResNet processing the images from the lowest magnification factor, i.e. x40, 

achieved the highest overall CCR. This is in line with the results obtained in [25] where the conventional 

classifiers and the textural features were used for the binary classification the BreakHis database. The 

pathologists also start by evaluating the slide in the lowest magnification factor and then zoom in to a few 

areas at the higher magnification factors for making the final diagnosis. This behavior could explain the 

fact that the images in the lowest magnification factor of the database (i.e. x40 magnification factor) had 

slightly more discriminative power compared to other magnification factors. For eight-category 

classification, the ResNet analyzing images of x200 magnification factor achieved the highest CCR value. 

This could imply that the x40 magnification factor is more informative for making decision about existence 

of malignancy however further information, especially cytological features, from the higher magnification 

factors is required for identification of lesion subtypes.  

As shown in table 4, ResNet performed better than GoogLeNet which itself had a higher CCR compared 

to the AlexNet in image-level binary classification. This could be due to the fact that ResNet is deeper than 

GoogLeNet which is deeper than AlexNet. Another contributing factor for achieving a higher CCR in this 

study could be stain normalization; as in [21], the images were not stain normalized. Also, the images 

were downsized to 256 × 256 in [21]. As the aspect ratio of the original images in BreakHis was about 1.52, 

resizing them could change the aspect ratio of the structures within the tissue and result in altering some 



17 
 

 
 

informative features of the image. Here we extracted square patches from the images and then used the 

weighted majority voting for image-level classification. Similarly, for eight-class classification of images, 

the ResNet outperformed the GoogLeNet and the differences were significant in all magnification factors. 

In the patient-level, the differences between the performance of GoogLeNet (at the best magnification 

factor) and MuDeRN was not significantly for both binary and eight-category classification. This could be 

due to small sample size and also absence of borderline cases. By including in situ cases to the database, 

which are more challenging, the differences between the performances could become significant.   

This study has a number of limitations. First, cases with non-invasive BCa (ductal carcinoma in situ and 

lobular carcinoma in situ) were not included in the BreakHis database. These types of BCa are pre-invasive 

and demonstrate features between benign and invasive cancer and making diagnoses for these cases are 

more difficult. Although the results obtained in this study are promising, that could be to some extent 

because of lack of the borderline cases in the database. Therefore, including in situ cases could be a 

possible avenue for future work. Secondly, the regions of interest were manually selected by the 

pathologists in the BreakHis database, which makes MuDeRN semi-automatic. Therefore, one potential 

future work could be adding a preprocessing stage which automatically selects the diagnostically relevant 

areas of the whole slide images. Also, the target image for stain normalization was selected manually 

based on opinion of a pathologist. Selecting a different image as the target image could affect the 

appearance of stain normalized images and some variability exists in this selection, which will propagate 

through the framework.  Thirdly, in the BreakHis database only four benign subtypes and four cancer 

subtypes were considered, however, both benign lesions and invasive cancer have other subtypes which 

should be included. In addition, for some subtypes, only a few cases were included and the performance 

of MuDeRN should be investigated on a larger database including more patients from theses subtypes. 

Also, the performance of MuDeRN as the second reader should be evaluated. Providing an independent 

second opinion could be particularly helpful when the slides were evaluated by general or less 

experienced pathologists. 
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9-1- Thesis Overview and Major Contributions 

Each year pathologists evaluate a large volume of breast specimens from 

which only 25% are diagnosed with breast cancer and the rest of them are 

benign [1]. The pathologists’ workflow when assessing a breast biopsy is 

shown in figure 1. As shown, pathologists determine whether the biopsy 

is malignant or benign and then identify the subtype of benign or 

malignant lesions [2]. When a malignant mass is present, they also 

determine the stage and grade of breast cancer [2]. For staging breast 

cancer, pathologists evaluate the mass size and determine whether the 

cancer has metastasized (that is, whether the cancer has spread to the 

lymph nodes) [3]. As shown in figure 1 (under grading the breast cancer), 

for grading a breast cancer three factors are considered: the magnitude of 

glandularity (glandular/tubular structures formation in tumour area), 

magnitude of nuclear atypia (changes in nuclear appearance), and number 

of mitoses per 10 high power fields [4]. Making diagnosis, grading and 

staging are done based on assessing Hematoxylin-Eosin stained slides, but 

pathologists are also responsible for the quantification of three 

immunohistochemical stains (i.e., estrogen receptor, progesterone 

receptor, and human epidermal growth factor 2) [2].  

Pathologists prepare a report including the diagnosis as well as the grade 

and stage of a breast cancer (if present) for other clinicians involved in 

patient care, such as a surgeon or a breast physician. The pathology reports 

are considered as the gold standard and used for selecting the appropriate 

treatment for the patient. However, recent studies have shown that there 

are discrepancies among pathologists in making diagnosis, staging and 

grading breast cancer [5-16]. Some of these discordances could lead to 

delay in treatment, unnecessary treatments [7, 8], inappropriate 
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undertreatment [17], differences in patient management [7, 8], and also 

impact patients’ risk for having a subsequent breast cancer  [18]. 

With the advent of whole slide imaging, computer-assisted analysis of 

breast histopathological slides became possible [19, 20]. Computer-

assisted analysis can aid pathologists in making diagnoses, staging and 

grading the breast cancer, and quantification of immunohistochemical 

stains [21]. It also can be used to enhance educational schemes, to reduce 

disagreement and provide better understanding about image-related 

features that lead to discordance among pathologists [22-24]. 

YesYesNoNo

Breast specimen 

Nuclear atypia scoring

Mitotic count

Glandularity  scoring

Grading the breast 
cancer

Staging the 
breast cancer

Quantification of 
immunohistochemistry

Estrogen 

Progesterone 

human epidermal growth 
factor receptor 2

COMPASS 
(Chapter 6)

Chapter  4

MuDeRN 
(Chapter  8)

Malignant?

Identifying benign subtype Identifying cancer subtype 

 

Figure 1- Pathologists' workflow while interpreting a breast biopsy; tasks 

shown in green boxes are done based on Hematoxylin-Eosin stained breast 

histopathological digital slides while tasks shown in blue boxes require 

immunohistochemical staining. The focus of this thesis is on computer-

assisted analysis of Hematoxylin-Eosin stained breast images. The 

emphasis of different chapters is also indicated. As shown, the studies 
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involved in this thesis covered five components of pathologists' workflow 

for interpreting Hematoxylin-Eosin stained breast slides.  

This thesis aimed at addressing some of the main deficiencies of the 

existing literature in computer-assisted analysis of breast 

histopathological digital slides. Based on thoroughly reviewing the 

existing studies, it was found that previous studies showed high agreement 

between computer-assisted methods and the expert scoring in the 

quantification of three clinically important estrogen receptor, 

progesterone receptor, and human epidermal growth factor 2. Therefore, I 

narrowed down the focus of this thesis to computer-assisted analysis of 

Hematoxylin-Eosin stained digital breast slides. As shown in figure 1, the 

studies done in this thesis cover all components of pathologists' workflow 

for the interpretation of Hematoxylin-Eosin stained breast slides except 

glandularity scoring and staging the breast cancer.  

The breast cancer grade is the average of scores assigned by a pathologist 

to three contributing components, namely, glandularity, the level of 

nuclear atypia, and the miotic count [4]. Previous studies indicated that 

scoring tubule formation achieved substantial to perfect inter-pathologist 

agreement [9-16] and the agreement level for this component is the 

strongest among the three contributing factors in breast cancer grading. 

Also, although only a few studies focused on automatic segmentation of 

tubules in the tumour area, the agreement with the expert segmentation 

was quite high [25, 26]. Therefore, among the three factors evaluated for 

breast cancer grading, this thesis focused on the mitoses count and the 

nuclear atypia score. Among the three contributing components, most of 

the previous studies were devoted to the automatic detection of mitotic 

figures [27-35], and the state-of-the-art methods achieved high accuracy 

in detection of mitotic figures [36]. Hence, this thesis focused on the 
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mitotic counting task from the medical image perception angle and aimed 

at determining the computer-extracted features related to the disagreement 

among pathologists in recognition of mitotic figures (chapters 3 and 4). 

The framework presented here for linking quantitative image processing 

features with inter-pathologists variations in recognition of mitotic figure 

could be extended to other tasks in breast pathology. There were previous 

studies that focused on nuclear atypia scoring, however, most of them 

aimed at classifying each individual cell into different atypia grades [37, 

38] or only addressed the segmentation of epithelial nuclei [39-45] and 

did not extend their methodology to provide the nuclear atypia score based 

on the features of segmented nuclei. Given the fact that the inter-

pathologist variation in nuclear atypia scoring was the highest among 

three components of breast cancer grading system, COMPASS, a method 

for reproducible nuclear atypia scoring was proposed in this thesis 

(chapters 5 and 6). 

As shown in figure 1, pathologists classify the slides into benign or 

malignant and also determine the exact subtype of the lesion. Many 

previous studies focused on the benign/malignant classification of breast 

histopathological images [37, 38, 46-49], however, less attention was paid 

to determining the cancer/benign subtypes. Also, most of the previous 

studies worked on classifying a region of interest (ROI) in an image while 

in the clinical practice pathologists assess different ROIs in a slide at 

single or multiple zoom levels and make the final diagnosis for a patient 

rather than for each ROI. In this thesis, MuDeRN was proposed to address 

these two shortcomings for computer-aided diagnosis; MuDeRN aimed at 

identifying the cancer subtypes and differentiating benign subtypes, and it 

involves a framework for patient-level diagnoses which incorporates 

information from different ROIs and different magnification levels. 
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Staging breast cancer involves the segmentation of the tumour area and 

the assessment of metastasis. The state-art-of-the art methods for 

segmenting the tumour area achieved a level of agreement with expert 

segmentation [50, 51]. As part of staging a breast cancer, pathologists 

evaluates whether the tumour had spread to the lymph nodes, chest wall, 

or skin. Therefore, assessing tissues other than breast might be required. 

Therefore, this thesis did not cover the application of computer-assisted 

methods in staging of breast cancer. 

In summary, MuDeRN could assist pathologists in the first step of their 

workflow for interpreting Hematoxylin-Eosin stained breast slides where 

the patients are classified as benign or cancer, and the subtype of cancer 

or benign mass is identified. In the second phase of pathologist’ workflow, 

in case of presence of breast cancer, COMPASS could assist in achieving 

a reproducible nuclear atypia score. The study presented in chapter 4 could 

be helpful in reducing the discrepancies among the pathologists for 

recognition of mitotic figures. In the rest of this section, the findings of 

this thesis are discussed in the context of existing literature. In particular, 

the objectives, which were listed earlier in the introduction chapter 

(chapter 1) and met in this thesis, are discussed in each sub-section. 

Reviewing the image processing techniques which worked successfully in 

analysing Hematoxylin-Eosin stained digital slides and their main showed 

that: 

• The reviewed automated methods for stain assessment 

showed high agreement with the expert scoring in the 

quantification of four clinically important 

immunohistochemical stains (i.e., estrogen receptor, 
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progesterone receptor, Ki‑67, and human epidermal growth 

factor). 

• The automatic methods for segmentation of tumour area 

achieved a high agreement with the expert’s segmentation.  

• Many studies focused on benign/malignant classification but 

there is lack of studies aimed at identification of the cancer 

subtypes or differentiation of benign subtypes from each 

other.  

• Among three components of Scarff‑Bloom‑Richardson 

grading system, the mitotic figure detection got the most 

attention in the previous studies. Although only a few studies 

focused on tubule formation, the agreement with the expert 

segmentation was quite high. There were studies that focused 

on nuclear atypia scoring, however, most of them were in 

cell-level, i.e., classifying each individual cell. Given the fact 

that the agreement on the nuclear atypia score was the 

weakest among three components of 

Scarff‑Bloom‑Richardson grading system, further 

developments on reproducible nuclear atypia scoring are 

required.      

• I identified a lack of studies which link quantitative image 

processing features with disagreement among 

pathologists. 

• Pathologists evaluate different regions of interest (ROI) in a 

histopathological slide and assess the slide at different zoom 

levels. Most of the reviewed papers worked on ROIs and 

there is still room for improving the framework for patient-
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level diagnoses which incorporate information from 

different ROIs and different magnification levels. 

• There is also a lack of studies testing the proposed algorithms 

in a prospective manner, where the computer-assisted 

algorithm provides feedback to the pathologist and then the 

pathologist makes the final decision taking into account this 

feedback.  

• There is also lack of personalized computer-assisted 

analysis tool, which consider each pathologist’s unique error 

making patterns. 

The literature review paper presented in chapter 2 was limited to the added 

benefits of computer-assisted analysis in breast pathology. Although some 

studies conducted in other pathology subspecialties or animal tissues 

could be extended to breast pathology, I only focused on breast pathology 

in the review. Previously, in [19] and [20], broader reviews on the current 

status of digital pathology in general, its benefits and potential challenges 

were carried out. Gurcan et al. (2009) reviewed the computer assisted 

analysis in histopathology in general [21] and Irshad et al (2014) reviewed 

computer aided segmentation of nuclei in histopathology in general [52]. 

Finally, our study can complement the review done by Veta et. al (2014) 

[53] on breast cancer histopathology image analysis. Our review covered 

more recent studies and included more studies in breast slide 

classification, while [53] focused on studies aimed at segmentation of 

elements within the breast digital slides and less emphasis was placed on 

breast histopathological image classification. 

9-1-1- Feasibility of relating quantitative features with discrepancies 

among pathologists 
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The first study of this thesis aimed to explore the feasibility of relating 

quantitative image processing features with disagreement among 

pathologists. The study focused on the mitotic recognition task1. 

In summary, the results of this study showed that quantitative image-

processing features can capture the differences between appearances of 

challenging mitotic figures and the easily identifiable mitoses, and also 

between miscounted objects (false positives) and mitotic figures. It was 

also found that the discriminative power of different colour spaces for 

distinguishing miscounted objects from mitotic figures varies and two 

perceptually motivated colour spaces (LMS and XYZ) capture the 

difference better than other colour spaces.   

Examination of the shape-based features showed that challenging mitotic 

figures are rounder and smaller than other mitotic figures. This could be 

due to the fact that the recognition of mitoses specifications, such as hairy 

outline, is more difficult for smaller objects. Previous studies suggested 

that providing precise constraints in mitoses counting protocol can lead to 

standardization of the mitotic index and eventually decrease discrepancies 

in grading among the pathologists [54-56]. Our results showed that the 

miscounted non-mitotic objects are rounder than the true mitoses, thus 

suggesting that considering a quantitative roundness measure (such as 

compactness) as a constraint in mitoses counting may decrease 

disagreement among pathologists for counting mitotic figures.  

The circularity measure showed that the miscounted objects were rounder 

than mitotic figures. As in the early metaphase, the circularity measure is 

high, it could be hypothesized that most of miscounted objects were 

                                                 

1 “Determining image processing features describing the appearance of challenging mitotic figures and 

miscounted non-mitotic objects”, Journal of Pathology Informatics, 2017 
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mistaken by cells in their early metaphase. The results suggested that by 

restricting counted circular objects to those with very evident features of 

mitoses in early metaphase (round with clotted visible hairy extensions of 

nuclear material [54-56]), the number of miscounted non-mitoses can be 

reduced.     

The challenging mitoses and the easily identifiable mitoses exhibit an 

almost similar level of hyperchromicity, as most of the intensity-based 

features did not differ significantly between them, however texture-based 

features significantly differed between these two groups. On the other 

hand, for comparing non-mitoses and easily identifiable mitoses, 

intensity-based features were the most discriminative ones. So, constraints 

on cells based on the level of hyperchromicity can reduce the number of 

miscounted non-mitoses objects.   

Among the scene descriptors, the results suggested that the higher density 

of chromatin and smaller size of surrounding nuclei led to higher 

magnitude of difficulty in the identification of mitotic figures. This could 

be due to the fact that the above-mentioned factors led to a higher 

probability of finding similar objects in the slide and made the scene more 

complex for pathologists. The results also showed that the miscounted 

non-mitoses were often annotated in images with smaller cell size. These 

findings could be used to notify the pathologists that counting in a 

particular slide with the above-mentioned features leads to error so that 

they pay extra attention.  

9-1-2- Computer-assisted nuclear atypia grading 

The second original study presented in this thesis was aimed at developing 

a tool for reproducible nuclear atypia grading. A personalized tool, 
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called COMPASS (COMputer-assisted analysis combined with 

Pathologist’s ASSessment), was proposed and its performance was 

evaluated.   

In summary, COMPASS relies on two modules processing two different 

sets of features. The first set includes the scores given by the pathologists 

to six cytological characteristics related to nuclear atypia, while the second 

set comprises textural computer-extracted features. COMPASS’ 

performance was evaluated using the Mitosis-Atypia database, which 

includes 600 images with expert-consensus derived reference nuclear 

atypia scores. Half of the images were produced by Aperio Scanscope XT 

scanner and half of them were acquired by Hamamatsu Nanozoomer 2.0-

HT scanner. COMPASS was retrospectively personalized for three junior 

pathologists who gave scores to six atypia-related criteria for images in 

the database.  

The magnitude of COMPASS’s agreement (for all junior pathologists and 

both scanners) with expert-consensus reference nuclear grade was 

comparable to that of senior pathologists while assessing the same dataset. 

Owing to stain normalization [57] in the pre-processing step, as expected 

COMPASS’ performance did not differ between two scanners.  Also, it 

was shown that COMPASS could supplement the senior pathologist’s 

performance, as only a few images were mis-graded by both senior 

pathologists and COMPASS, and for most of the images at least one of 

them provided the correct grade.    

COMPASS is a hybrid method in a sense that it involves a coarse nuclei 

segmentation as well as textural analysis. Previous automatic nuclear 

grading methods either extracted the features from the segmented nuclei 

(segmentation-based methods [37, 58]) or from the entire tissue (textural 
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analysis [58]). However, COMPASS uses the initial segmentation for 

restricting the analysis to diagnostically relevant ROIs.  

Previously, in the field breast radiology, personalized computer-aided 

analysis tools were developed[59]. COMPASS is the first personalized 

computer-assisted analysis tool in breast pathology. Dunne and Going 

(2001) showed that some pathologists are prone to under-grading while 

others systematically over-grade the cases [60]. COMPASS is a 

personalized model, trained based on scores given by each individual; 

hence it can reduce systematic over-grading and under-grading for each 

individual. 

The results showed that COMPASS outperformed a recent fully-

automatic algorithm based on textural features [58] tested on the same 

dataset for the three nuclear grades. This was achieved by using 

cytological scores given by junior pathologists, and also limiting the 

analysis to the ROIs with high nuclear density.   

Also, the added-benefits of computer-extracted features to the cytological 

features assessed by the pathologist were evaluated. To do so, the 

performance of COMPASS was compared with two baseline approaches 

that only consider the scores given by the junior pathologists to the 

cytological features. The grade of the first approach was simply the total 

cumulative score given to all criteria while the second approach build a 

non-linear model to link six scores given by the junior pathologists to a 

reference nuclear atypia grade. The fact that COMPASS achieved the 

highest accuracy (compared to two baseline approaches) suggested that 

textural features provide complementary information to cytological 

scores.  
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Although the added benefit of textural features was observed both for 

distinguishing grade I from higher grade tumours (grade II and III), and 

also grade III from lower grade tumours (grade I and II), the magnitude of 

this added benefit (increment in the performance of the junior 

pathologists) was higher for distinguishing grade I tumours. This suggests 

that the included cytological features have higher discriminative power for 

distinguishing grade III tumours from borderline ones (grade II) while 

more information about the characteristics of image is required for 

differentiating grade I from grade II.    

In recent years use of fine needle aspiration (FNA) for the pre-operative 

diagnosis of breast cancer increased. In the National Cancer Institute of 

USA workshop on FNA, it was recommended that breast cancer grade 

should be stated in the pathology report for the management of a given 

patient based on prognostic information [61, 62].  Due to the limited 

sample size in FNA, histological grading is not completely feasible based 

on FNA and previous studies emphasized that the cytological grade on 

FNA should correspond to the histologic grade [61, 62]. Various 

cytological grading systems based on different cytological features have 

been proposed [63-68] but their agreement rate with the histologic grade 

ranged from 66.6% to 78.57%, and none of them reached a substantial 

agreement (that is, agreement rate above 80% which is equivalent to 

Cohen’s kappa above 0.61) [69-71]. Our results suggest that computer-

extracted features can supplement cytological features for predicting 

histologic nuclear grade and hence can be used for grading FNA breast 

specimens.  

9-1-3- Computer-assisted diagnosis 
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The last study of this thesis is presented in chapter 82 and aimed at 

addressing the lack of studies on identification of the cancer subtypes 

or differentiation of benign subtypes. It also aimed at proposing a 

framework for providing patient-level diagnoses through aggregating 

information from different ROIs and different magnification levels.  

MuDeRN (MUlti-category classification of breast histopathological 

image using DEep Residual Networks) has been proposed and evaluated 

in the study. MuDeRN comprised of two stages; in its first stage, images 

at each magnification factor were classified as benign or malignant while 

in its second stage, the images classified as malignant were subdivided 

into four cancer subcategories, i.e., ductal carcinoma, lobular carcinoma, 

mucinous carcinoma, or papillary carcinoma, and those labelled as benign 

were classified into four subtypes, i.e., adenosis, fibroadenoma, phyllodes 

tumour, or tubular adenoma. Finally, the diagnosis for each patient was 

made by combining outputs of images in different magnification factors 

using a meta-decision tree. MuDeRN was tested on a publicly available 

dataset, called BreakHis which includes 7786 images in four 

magnification factors from 81 patients. 

In the binary classification task, MuDeRN achieved higher accuracy for 

the malignant group. That could be due the fact that number of malignant 

patients were approximately 2.5 times higher than that of benign cases, 

and hence more data were provided for MuDeRN to learn the variant 

appearances of malignant cases.  

                                                 

2 “MuDeRN: Multi-category Classification of Breast Histopathological Image Using Deep Residual 

Networks,” Journal of Artificial Intelligence in Medicine, 2018. 
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In the eight-category classification task, on average the accuracies were 

higher for malignant subtypes across all magnification factors. Among 

different subtypes, invasive ductal carcinoma achieved the highest correct 

classification rate (CCR), and this may be owing to the fact that this 

category has the highest number of patients in BreakHis, and hence 

MuDeRN learnt its various characteristics well. The lowest and the second 

lowest CCRs correspond to the adenosis and phyllodes tumour subtypes, 

for which BreakHis included only four and three patients, respectively. No 

patients with mixed adenosis and phyllodes tumour were included in the 

database. Invasive lobular carcinoma subtypes had also only four patients, 

however, the differences between included lobular carcinoma cases and 

other malignant cases were very clear. No patients with mixed ductal and 

lobular carcinoma were included. Another possible reason for explaining 

the low CCR of adenosis could be fact that the adenosis has four sub-

categories (i.e. sclerosing, tubular, apocrine, and microglandular) and thus 

a large number of cases is required so that the network can learn the 

features of the different variants of the disease.  

Similar to [72] where hand-crafted features (manually designed features 

such as Haralick texture features, intensity based-features, etc used in 

traditional machine learning frameworks) were used for binary-

classification of BreakHis, MuDeRN achieved the highest CCR in the 

lowest magnification factor for the binary-classification task, while for the 

eight-category classification task, the highest CCR  was obtained for x200 

magnification factor. This suggests that the lowest magnification factor is 

more informative for differentiating malignant from benign, however, 

further information, especially cytological features, from higher 

magnification factors is essential for the accurate determination of lesion 

subtypes. This is similar to the pathologists’ behaviour in the clinical 
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practice where they start exploring the image in the lowest available 

magnification level and then select the final diagnosis from a list of 

potential diagnosis after zooming in to a few areas at a higher 

magnification.  

Cserni et al. (2006) showed that there is only moderate agreement among 

pathologists for classifying benign lesions into fibroadenoma, phyllodes 

tumour, and other benign subtypes other than these two [18], and Lawton 

et al. (2104) indicated that only in 53% of cases pathologists reached 

agreement for distinguishing fibroadenomas from phyllodes tumours [73]. 

As stated, MuDeRN is able to differentiate these two subtypes and hence 

it can provide a second opinion and assist the pathologist. The other 

benign subtypes which are handled by MuDeRN are adenosis and tubular 

adenoma. They are both due to hyperplasia of lobuli and exhibit several 

similar features [74], therefore MuDeRN can assist pathologists for 

differentiating these two subtypes by providing an objective diagnosis. 

Previous studies also showed that diagnostic discrepancies exist for 

categorising the subtypes of invasive breast carcinoma, and the magnitude 

of disagreement ranged from 38.5% for papillary carcinoma to 8% for 

ductal carcinoma [75]. Hence, a second opinion from MuDeRN could be 

helpful for pathologists.  

MuDeRN achieved the highest CCR compared to the previous automatic 

methods tested on the BreakHis database for benign/malignant 

classification [72, 76-78]. The second best algorithm [78] also used a deep 

neural network called GoogLeNet [79], however, the residual neural 

networks used in MuDeRN are deeper and also include shortcuts from 

input to the output of the stacked layers [80]. Only one previous algorithm 

[78] addressed the eight-category classification task of BreakHis database 



-147- 

using GoogLeNet [79]. The results showed that MuDeRN outperformed 

the previous study [78]. This better performance was achieved through 

applying stain normalization as a pre-processing step, using a deeper 

network and a two-stage classifier and utilizing a meta-decision tree [81] 

for making the patient-level diagnosis by aggregating outputs of multiple 

deep residual networks analysing images at different magnification 

factors.  

9-2- Limitations  

In this thesis, I used the Mitosis-Atypia3 and BreakHis4  databases, which 

are both publicly available. Although using publicly available databases 

makes our study comparable to the previous studies in the literature and 

facilitates replicating our work in future studies, it should be noted that the 

availability of certain data types was limited, and this may have hindered 

certain aspects of the three studies described here.  

I used the Mitosis-Atypia database in the first and second original research 

studies. The number of included patients in Mitosis-Atypia database is low 

(only eleven patients). Also, the prevalence of different nuclear grades in 

the dataset was different from real clinical practice and images in grade II 

considerably outnumber those in grades I and III. In addition, in both 

mitotic recognition and COMPASS studies intra-pathologist variability in 

scoring was not investigated as the data for multiple assessments from a 

single pathologist was not available in the Mitosis-Atypia database.  

The BreakHis database, which was used for evaluating MuDeRN, only 

contained benign patients without atypia and invasive carcinoma, that is, 

                                                 

3 https://mitos-atypia-14.grand-challenge.org/ 
4 https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/ 
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no in situ breast cancer (ductal carcinoma in situ and lobular carcinoma in 

situ) or benign lesions with atypia (atypical ductal hyperplasia and typical 

lobular hyperplasia) were included. Previous studies showed that the 

degree of diagnostic discrepancies among pathologists are higher for in 

situ breast cancer and benign lesions with atypia compared to benign 

lesions without atypia and invasive carcinoma, as they exhibit borderline 

diagnostic features [5, 7, 8]. Also, the numbers of patients in three 

subtypes (adenosis, invasive lobular carcinoma, and phyllodes tumours) 

were smaller than five, and this may limit the generalizability of results 

obtained from MuDeRN, particularly for these categories. 

In spite of above-mentioned limitations of the utilized data, using the 

publicly available datasets enabled us to compare our results with those of 

others and also made it possible for other researchers to further extend our 

work. 

In both Mitosis-Atypia 2014 and BreakHis databases, the initial ROIs 

were manually selected by expert breast pathologists, which makes both 

COMPASS and MuDeRN semi-automatic. This limits the capacity of 

COMPASS and MuDeRN for being used in a completely automated 

clinical practice.  

Also, the images were stain normalized before feeding to COMPASS and 

MuDeRN.  Various stain normalization methods are available [82], and 

selecting a different stain normalization could affect the appearance of 

stain normalized images and therefore change the obtained results. All of 

the current stain normalization method have their own advantages and 

disadvantages[82] and further research in this filed is ongoing  [83-85].  
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The studies presented in this thesis required use of high performance 

computing facilities and cannot be finished in a reasonable time using an 

ordinary desktop computer. Extracting various image processing features 

from different colour spaces in the mitotic figure recognition study, 

training and testing COMPASS using leave-one-out cross validation and 

setting its hyper-parameters using Bayesian optimization, and finally, 

evaluation of MuDeRN using 27-fold-cross validation were 

computationally expensive tasks which were accomplished by means of 

high performance computing service at the University of Sydney. 

However, this is not a major limitation for the studies, as nowadays high 

performance computing services are available with reasonable costs. More 

importantly, extracting rules, training COMPASS, or MuDeRN should be 

done only once, as after that they can be used easily without any extensive 

computation.     

Moreover, studies in this thesis focused on grading and making diagnoses 

based on Hematoxylin-Eosin stained images. Another important task done 

by the pathologists based on Hematoxylin-Eosin stained slides is staging 

the breast cancer, which involves determining size of tumour, assessing 

whether the cancer spread to nearby lymph nodes and other parts of body, 

but this was not examined in this thesis.  

Finally, one major limitation of using the tools presented in this thesis and 

using whole slide imaging in general, is the extra time required for 

scanning (i.e. digitizing the slides). Although current commercial slide 

scanners are quite fast compared to their previous generation and the 

current speed is about 4 minutes per 2'x2' slide at the highest magnification 

level, further improvement is still required in terms of their speed. Also, 

the current auto-focusing algorithms can be improved. A set of slides can 

be loaded to most of the new scanners at the same time and the slides can 
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be scanned overnight. Moreover, the images can be down sampled 

digitally, so usually scanning at the highest magnification level will be 

sufficient for algorithm like MuDeRN, which may require images from 

multiple magnification factors. 

9-3- Future directions 

As stated in the previous section, lack of data, particularly for certain 

categories, may limit generalisability of findings presented in this thesis. 

One possible avenue for future work will be including more patients in the 

databases. More specifically, COMPASS will benefit from including 

more patients with nuclear atypia grade of I and III and MuDeRN will 

benefit from increasing number of patients in adenosis, invasive lobular 

carcinoma, and phyllodes tumours subtypes as wells as adding carcinoma 

in situ and benign with atypia subtypes. The mitotic recognition study will 

benefit from having a dataset whose ground truth was obtained based on 

both Ki-67 label and Hematoxylin-Eosin stained images data, as a 

combination of these images leads to more reliable labelling of mitotic 

figures. Specifically for those objects labelled as “probably a mitosis” by 

the majority of senior pathologists, the Ki-67 label could be beneficial in 

establishing the ground truth. Furthermore, in the Mitosis-Atypia 

database, senior pathologists annotated the mitotic figures on images. One 

potential avenue for future work could be asking pathology trainees or less 

experienced pathologists to annotate the images and repeat the framework 

proposed in chapter 4 for them as the quantitative features describing the 

appearances of challenging mitoses for less experienced observers could 

be different from those features extracted for the experienced ones. 
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A future step for improving COMPASS and MuDeRN could be adding a 

pre-processing block for analysing the entire whole slide image and 

automatically selecting the tumour areas which will be then fed into 

COMPASS and MuDeRN. In a recent study, GoogLeNet was used for 

segmenting the tumour area and an accuracy about 98% was achieved 

[51], hence adding this pre-processing step is feasible. In addition, three 

studies presented here only focused on images from a particular 

magnification levels, which were available in the utilized databases. A 

nice future work will be studying other magnification levels and 

investigating the performance of computerized tools presented here in 

other magnification levels.  

Dealing with the borderline cases presenting categories of various diseases 

are crucially important. Especially as these tools will ultimately play the 

role of “surrogate second reader”, investigating the performances of tools 

presented in this study and future computerized tool on the borderline 

cases is really important. Such as investigation will help us to optimize 

how computerized tools should be implemented in clinical practice of 

pathologists.  

Also, as discussed in the Introduction, pathologists make the final 

diagnosis based on both Hematoxylin-Eosin stained and 

immunohistochemical images. As shown Chapter 2, the current 

computerized methods perform really well in quantification of 

immunohistochemical results. These tools can be incorporated with the 

computerized histological assessment tools to provide the final diagnosis 

for the patient.  

Another potential future work could be investigating the pathologists’ 

performances in recognition of mitotic figures after a training session 



152 

 

where it was discussed the obtained rules which described the appearances 

of easily identifiable mitoses, challenging mitoses (false negative), and 

miscounted non-mitoses. Previously Paradiso et al. showed that extracting 

the methodological skills required to enhance performance from a quality 

control study [16] and reviewing these skills in a training course can 

increase the pathologists’ performance in a short-term [86]. Also, the rules 

can be used to develop a training software for breast pathologists which 

retrieves the mitotic figures and non-mitoses objects with different levels 

of difficulty at different stages of their learning curves.  Another future 

step could be extending the framework presented in chapter 4 for 

recognition of mitotic figure to other tasks in breast pathology. Exploring 

the association between quantitative image processing features with 

disagreement among pathologists in different pathology tasks could help 

in training pathology registrars and improving the understanding about 

underlying reasons for diagnostic errors.  

Moreover, nowadays by using whole slide imaging, it is possible to record 

pathologists' navigation pattern. In future, we can relate the image features 

to pathologists' navigation patterns and diagnostic errors. From the 

perceptual studies done on radiologists, it is well-known that radiologists' 

first impression of the image, often referred as the gist response, could 

predict the ultimate diagnoses of the case [87, 88]. Considering the size 

virtual slides and the hierarchical search pattern (from low magnification 

factor to high magnification factor), understanding the importance of 

peripheral processing of pathological images might help in understanding 

about underlying reasons for diagnostic errors.  

Another potential avenue for future work is testing COMPASS and 

MuDeRN in a prospective scenario. In this thesis COMPASS and 
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MuDeRN were tested retrospectively where it was assumed that the 

pathologists would accept the decision of COMPASS and MuDeRN. 

However, in a more realistic set-up, they will provide a feedback to 

pathologists who would make the ultimate decision. In medical imaging, 

both in radiology and pathology, the human interaction with computerized 

programs is poorly understood.  One possible direction for the future 

projects can be testing different conditions and determining the best 

implementation of using computerized tools in practice. At least the 

following conditions should be explored: 

1. Condition A: pathologists will read cases as a blinded second reader to 

the computerized tool.  They will be aware that their decision will be 

compared with the computerized tool’s decision afterwards.   

2. Condition B: pathologists will read the cases as an informed second 

reader to the computerized tool readings.   

3. Condition C: pathologists will be asked read the cases as a third reader, 

having both the first pathologist’s decision and the computerized tool 

decision. 

The added benefit of these conditions should be compared with 

pathologists while reading on their own. 

In chapter 6, it was shown that COMPASS, if it had been adopted by the 

junior pathologists, could be used as a second opinion for senior 

pathologists as it complements the senior pathologist’s performance to 

some extent. A potential future step could be performing similar study for 

MuDeRN to investigate its usefulness as a second opinion for senior 

pathologists. Studying the performances of both MuDeRN and 

COMPASS in double reading scenarios when the first reader is a less 
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experienced pathologist could be also done in the future. This will be very 

useful in practice as providing an independent second opinion could be 

particularly helpful when the slides were evaluated by general or less 

experienced pathologists [1, 5, 7]. 

In the future, COMPASS can be extended by adding a module which 

relates the nuclear grade outputted by COMPASS (or the feature sets used 

by COMPASS) to the patient survival.  As stated earlier, nuclear grading 

is utilized as a prognostic factor in patient management. Therefore, 

outputting an index showing patient survival will strengthen COMPASS. 

In practice, both benign and malignant entities might be present on one 

slide. In the current study, the utilized databases did not include such 

cases. One potential future work will be examining the performance of 

MuDeRN on a database containing cases with benign and malignant 

entities. Moreover, 10 to 50 whole slide images might be available for a 

patient. Current version of MuDeRN combines image-level diagnoses for 

four magnification factors using a meta-decision tree in order to make the 

final diagnosis for a patient. A potential extension of this work can be 

extending MuDeRN so that it can handle multiple slides per case.  

Another possible future work could be investigating MuDeRN when 

tested on tissue where none of these eight categories are encountered. It 

can be hypothesize that  if the new benign sample from a category other 

than the ones included in the BreakHis database share some features with 

other benign categories in terms of cells’ approaches, tissue texture, etc 

and these characteristics have been captured by the trained network, then 

MuDeRN might be able to categorize it as a benign (although this new 
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disease category was not included in the BreakHis). However, in future 

this hypothesis should be investigated.  

Finally, specific microscopic details (eg, mitotic figures) were reported to 

be difficult to identify [87] as under the microscope some 3-dimensional 

information can be captured by optically zooming in and out. As an 

avenue for future studies, the performance of tools with whole slide 

images that are acquired with an additional z-axis in their entirety can be 

explored to take advantage of 3-dimensional information. 

9-4- Summary 

In summary, the findings presented in this thesis contribute to the 

existing literature by: 

i. Showing that quantitative image processing features are 

associated with disagreement among pathologists in 

recognition of mitotic figures, the results suggested that 

precise constraints based on quantitative features can be placed 

in mitotic figure counting protocol to decrease discrepancies 

in mitotic figure recognition among the pathologists. 

ii. Indicating that holistic features, which explain the 

characteristics of the entire image rather than just the mitotic 

figures themselves, are related to disagreement among 

pathologists in recognition of mitotic figures. For example, 

smaller size of surrounding nuclei led to higher degree of 

difficulty in the identification of mitotic figures.  

iii. Proposing COMPASS, an individualized tool for reproducible 

nuclear atypia grading, and indicating that: 
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•  COMPASS outperformed the previous automatic 

algorithms for nuclear atypia grading tested on the same 

database; 

• COMPASS has a performance comparable to senior 

breast pathologists in nuclear atypia grading. 

iv. Demonstrating the value of combining pathologist’s 

assessment on cytological features and computer-extracted 

textural features for reproducible nuclear atypia scoring. 

v. Confirming the value of a hybrid approach for nuclear atypia 

grading which involves an initial coarse nuclei detection 

followed by textural analysis in areas with high density of 

epithelial cells. 

vi. Illustrating that included cytological features to some extent 

contain information for predicting histologic nuclear atypia 

grade and computer-extracted features can complement this 

information.    

vii.  Proposing MuDeRN, a framework based on deep residual 

networks for multi-category classification, and indicating that 

MuDeRN outperformed previous automatic classification 

algorithms tested on the same database. 

viii. Proposing a framework based on meta-decision tree for 

providing patient-level diagnoses through aggregating the 

decisions made at the different magnification levels. 
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Breast cancer is the most commonly diagnosed non-melanoma cancer 

among women worldwide [1] and hence large numbers of breast biopsies 

are examined by pathologists each year. For example, annually in the 

USA, pathologists evaluate 1.6 million breast specimens [2, 3]. Therefore, 

even slightly improving current practice in breast pathology through 

computer-assisted analysis can benefit many women. This thesis aimed at 

determining if computer-aided analysis of Hematoxylin-Eosin (HE) 

stained breast histopathological digital slides can be used to better 

understand pathologists’ perception of mitotic figures. It also investigated 

the possibility of reproducible nuclear atypia scoring by combining 

computer-assisted analysis with cytological scores given by a pathologist. 

Furthermore, this thesis examined the feasibility of computer-assisted 

analysis for classification of HE breast images into various subcategories 

of benign or cancer masses.  

This thesis involved a literature review on the current status of computer-

assisted analysis in breast pathology along with three original research 

studies addressing deficiencies from the existing literature of computer-

assisted analysis of Hematoxylin-Eosin stained images in breast 

pathology. The first study explored the feasibility of relating quantitative 

image processing features with disagreement among pathologists in the 

mitotic recognition task.  

The results of the first study suggested that there are quantitative image-

based features that differ significantly among easily identifiable mitotic 

figures, challenging mitotic figures, and miscounted non-mitoses within 

breast slides. The rules, which were extracted in this study and described 

the appearances of easily identifiable mitoses, challenging mitoses (false 

negatives), and miscounted non-mitoses (false positives), could be helpful 
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in providing detailed and more objective constraints in mitoses counting 

protocols to mitigate the discrepancies among pathologists in the 

recognition of mitotic figures. These rules can be also discussed with the 

pathologists in training sessions. Moreover, these rules can be utilised to 

develop an educational software for pathology trainees which starts 

instruction with retrieving easy mitoses and non-mitoses and retrieves 

more difficult objects as training continues.  

The second original research study proposed a personalized tool for 

reproducible nuclear atypia scoring.  The tool, called COMPASS 

(COMputer-assisted analysis combined with Pathologist’s ASSessment), 

relies on both computer-extracted features and scores given by the 

pathologists to cytological characteristics. COMPASS was designed to 

assist junior pathologists. It achieved a performance comparable to a 

senior pathologist in nuclear grading and hence could be potentially used 

to reduce inter-pathologist variations in nuclear grading [4-11], which was 

observed more among less experienced pathologists [12, 13]. It was also 

shown that textural features provide complementary information to 

cytological scores for histologic nuclear grading. Currently, fine needle 

aspiration (FNA) is being increasingly utilized and providing breast 

cancer grade based on FNA in the pathology report is recommend, as it 

could be beneficial for the management of a given patient [14, 15]. 

Because of limited sample size in FNA, histological grading is not 

completely practical based on FNA, and several attempts have been made 

to produce a cytological grade on FNA which corresponds well with 

histological grade. Our findings suggested that computer-extracted 

features complement the cytological scores for predicting histologic 

nuclear grade and therefore can potentially be used in grading FNA breast 

biopsies.  
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In the last study, MuDeRN (MUlti-category classification of breast 

histopathological image using DEep Residual Networks) has been 

proposed and tested. It distinguishes malignant patients from benign ones 

based on Hematoxylin-Eosin breast images and then categorizes cancer 

and benign cases into four different subtypes each. MuDeRN achieved a 

correct classification rate of 96.25% for eight-class categorization of 

patients. This high accuracy suggests that MuDeRN could be helpful in 

the categorization of breast lesions to reduce discrepancies among 

pathologists’ diagnoses. 

In conclusion, the findings presented in the first research study of this 

thesis demonstrated that computer-aided image analysis can help in better 

understanding of image-related features related to discrepancies among 

pathologists (the mitoses recognition task was evaluated). The second and 

third research studies indicated the feasibility of computer-assisted 

nuclear grading (COMPASS) and computer-assisted diagnosis 

(MuDeRN). Therefore, three important tasks in breast pathology could 

benefit from the findings presented in this thesis. The results could be used 

to improve current status of breast cancer prognosis estimation through 

reducing the inter-pathologists disagreement in counting mitotic figures 

and reproducible nuclear grading. It can also improve provide a second 

opinion to the pathologist for making diagnosis and hence reduce 

diagnostic discrepancies among pathologists.  
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