1,230 research outputs found

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    Despeckling of Multitemporal Sentinel SAR Images and Its Impact on Agricultural Area Classification

    Get PDF
    This chapter addresses an important practical task of classification of multichannel remote sensing data with application to multitemporal dual-polarization Sentinel radar images acquired for agricultural regions in Ukraine. We first consider characteristics of dual-polarization Sentinel radar images and discuss what kind of filters can be applied to such data. Several examples of denoising are presented with analysis of what properties of filters are desired and what can be provided in practice. It is also demonstrated that the use of preliminary denoising produces improvement of classification accuracy where despeckling that is more efficient in terms of standard filtering criteria results in better classification

    Effective SAR image despeckling based on bandlet and SRAD

    Get PDF
    Despeckling of a SAR image without losing features of the image is a daring task as it is intrinsically affected by multiplicative noise called speckle. This thesis proposes a novel technique to efficiently despeckle SAR images. Using an SRAD filter, a Bandlet transform based filter and a Guided filter, the speckle noise in SAR images is removed without losing the features in it. Here a SAR image input is given parallel to both SRAD and Bandlet transform based filters. The SRAD filter despeckles the SAR image and the despeckled output image is used as a reference image for the guided filter. In the Bandlet transform based despeckling scheme, the input SAR image is first decomposed using the bandlet transform. Then the coefficients obtained are thresholded using a soft thresholding rule. All coefficients other than the low-frequency ones are so adjusted. The generalized cross-validation (GCV) technique is employed here to find the most favorable threshold for each subband. The bandlet transform is able to extract edges and fine features in the image because it finds the direction where the function gives maximum value and in the same direction it builds extended orthogonal vectors. Simple soft thresholding using an optimum threshold despeckles the input SAR image. The guided filter with the help of a reference image removes the remaining speckle from the bandlet transform output. In terms of numerical and visual quality, the proposed filtering scheme surpasses the available despeckling schemes

    Classification of Pre-Filtered Multichannel Remote Sensing Images

    Get PDF
    Open acces: http://www.intechopen.com/books/remote-sensing-advanced-techniques-and-platforms/classification-of-pre-filtered-multichanel-rs-imagesInternational audienc
    • …
    corecore