182,021 research outputs found

    An evaluation of pedagogically informed parameterised questions for self assessment

    No full text
    Self-assessment is a crucial component of learning. Learners can learn by asking themselves questions and attempting to answer them. However, creating effective questions is time-consuming because it may require considerable resources and the skill of critical thinking. Questions need careful construction to accurately represent the intended learning outcome and the subject matter involved. There are very few systems currently available which generate questions automatically, and these are confined to specific domains. This paper presents a system for automatically generating questions from a competency framework, based on a sound pedagogical and technological approach. This makes it possible to guide learners in developing questions for themselves, and to provide authoring templates which speed the creation of new questions for self-assessment. This novel design and implementation involves an ontological database that represents the intended learning outcome to be assessed across a number of dimensions, including level of cognitive ability and subject matter. The system generates a list of all the questions that are possible from a given learning outcome, which may then be used to test for understanding, and so could determine the degree to which learners actually acquire the desired knowledge. The way in which the system has been designed and evaluated is discussed, along with its educational benefits

    Exploiting the user interaction context for automatic task detection

    Get PDF
    Detecting the task a user is performing on her computer desktop is important for providing her with contextualized and personalized support. Some recent approaches propose to perform automatic user task detection by means of classifiers using captured user context data. In this paper we improve on that by using an ontology-based user interaction context model that can be automatically populated by (i) capturing simple user interaction events on the computer desktop and (ii) applying rule-based and information extraction mechanisms. We present evaluation results from a large user study we have carried out in a knowledge-intensive business environment, showing that our ontology-based approach provides new contextual features yielding good task detection performance. We also argue that good results can be achieved by training task classifiers `online' on user context data gathered in laboratory settings. Finally, we isolate a combination of contextual features that present a significantly better discriminative power than classical ones

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy
    corecore