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2 Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

3 Know-Center GmbH†, Inffeldgasse 21a, 8010 Graz, Austria
4 Knowledge Management Institute, Graz University of Technology, Graz, Austria

Abstract

Detecting the task a user is performing on her computer desktop is important for pro-
viding her with contextualized and personalized support. Some recent approaches propose
to perform automatic user task detection by means of classifiers using captured user con-
text data. In this paper we improve on that by using an ontology-based user interaction
context model that can be automatically populated by (i) capturing simple user interaction
events on the computer desktop and (ii) applying rule-based and information extraction
mechanisms. We present evaluation results from a large user study we have carried out
in a knowledge-intensive business environment, showing that our ontology-based approach
provides new contextual features yielding good task detection performance. We also argue
that good results can be achieved by training task classifiers ‘offline’ on user context data
gathered in laboratory settings. Finally, we isolate a combination of contextual features
that present a significantly better discriminative power than classical ones.1

1 Introduction

Today knowledge workers have to handle incessantly increasing amounts of digital information,
in terms of text documents, emails, multimedia files, etc., located on their own computer desk-
tops, on company networks and on the World Wide Web. Personal information management,
search and retrieval systems can help coping with this ever growing challenge. They can do so
even more efficiently if they provide contextualized and personalized support. Various research
areas have already emphasized the use of contextual information as one of the key elements
for enhancing current applications. Examples can be cited in personal information manage-
ment (Sauermann et al., 2005; Catarci et al., 2007; Chernov et al., 2008; Jones et al., 2008),
user modeling (Van Kleek and Shrobe, 2007), information retrieval (Callan et al., 2007; Tang
et al., 2007; Mylonas et al., 2008), technology-enhanced learning (Schmidt, 2005; Wolpers et al.,
2007), etc.

An important issue in the context detection area is automatic user task detection on the
computer desktop (Dey et al., 2001; Coutaz et al., 2005). If the user’s current task is automati-
cally detected, the user can be better supported with relevant information, such as learning and



work resources or task guidance. A classical approach has been to model task detection as a
machine learning problem. However, the focus so far has been on using only text-based features
and switching sequences (Oliver et al., 2006; Shen et al., 2007; Chernov et al., 2008; Granitzer
et al., 2008) for detecting the user’s task, which do not rely on ontology models. Furthermore
controlled user studies and standard datasets for the evaluation of task detection approaches
are still missing. This entails that the mechanisms underpinning the achievement of good task
detection performance are yet to be unveiled.

In this paper we focus on (i) proposing new contextual features yielding improvements over
the current results achieved by task detection techniques, and (ii) studying some aspects of the
task detection problem in order to better understand in which settings it can be successfully
applied. The first part of our contribution consists in proposing a generic ontology-based user
context model for increasing the performance of user task detection. Our approach is based on
using context sensors to capture simple interaction events (keyboard strokes and mouse clicks)
from the user’s computer desktop. Then, we utilize rule-based and information extraction tech-
niques to automatically populate our user interaction context model by discovering instances
of concepts and deriving inter-concepts relationships. Using an ontology-based user context
model brings several advantages, such as an easy integration of new contextual attention meta-
data (Wolpers et al., 2007), a simple mapping of the raw sensor data into a unified model, and
an easy extendability of the user context model with concepts and properties about new re-
sources and user actions. We present an evaluation of our approach based on a large2 controlled
user study (containing five task classes and 220 task instances recorded from 14 participants)
that we have carried out in a knowledge-intensive business environment. It shows that using an
ontology-based representation of the user context allows to derive new ontology-specific features
for machine learning algorithms, which increase their performance.

The second part of our contribution consists in investigating the following questions. (i) How
good can the performance of a task classifier be when used in a real work environment, while
being trained with contextual data gathered in laboratory settings? (ii) Which are the auto-
matically observable contextual features that allow for good task detection performance? Both
questions are concerned with work efficiency. The goal of the first one is to determine whether
a task classifier can be trained ‘offline’. This would spare the user the burden of performing
a manual training during work processes, which might slow down her computer and have a
negative influence on her work efficiency and user experience. The second one aims at find-
ing the most discriminative features among the automatically captured contextual features, in
order to achieve a good balance between task detection accuracy and classification workload.
This would also influence which context sensors have to be developed to perform user task
detection. To get a first impression on the answers to these questions, we have analyzed the
classification results provided by the user study previously mentioned. In this study, users have
performed their tasks both on a single laboratory computer and on their personal workstations.
Our first results indicate that: (i) reliable detection of real tasks via ‘offline’ training is possible,
(ii) the good discriminative power of the classical window title feature (Oliver et al., 2006; Shen
et al., 2007; Granitzer et al., 2008) is confirmed, and (iii) classification accuracy is significantly
increased by using a combination of six features specific to our approach.

The rest of the paper is organized as follows. First we describe how we define, conceptualize
and model the user interaction context. We mainly focus on the presentation of our ontology-
based context model. Then we elaborate on the sensors recording the interaction events and the
techniques used to automatically populate the proposed ontology. Next we present the approach
we follow to perform user task detection, and how we evaluate it. Our experimental results are
discussed in the following section, including a comparison of several contextual feature sets in
terms of task detection accuracy, as well as an analysis of several aspects of the task detection
problem. Finally we provide concluding remarks and an outlook on future work.

2Involving 14 users, this study is much larger than previous studies reported in the field which involve only a
few users (Oliver et al., 2006; Shen et al., 2007; Granitzer et al., 2008).



2 Modeling the User Interaction Context

Our view of the “user context” goes along with Dey’s definition that context is “any infor-
mation that can be used to characterize the situation of entities that are considered relevant to
the interaction between a user and an application, including the user and the application them-
selves” (Dey et al., 2001). We specifically focus here on the user interaction context that we
define as the interactions of the user with applications and resources on the computer desktop.
With this definition in mind, we will sometimes simply use the term user context in the sequel.
Our perspective puts the individual user and her actions into the center of attention. It aims
at learning as much as possible about this individual and her actions. Our goal is to study
the relations between the event objects generated by the user’s interactions with the computer
system, and their meaning and relevance to the user’s task.

2.1 Conceptual Model - The Event Aggregation Pyramid

Figure 1: The event aggregation pyramid represents our conceptual view of the user interaction
context.

The conceptual representation we propose for the user interaction context is the event ag-
gregation pyramid (see Figure 1). Its layers represent the different aggregation levels of the
user’s actions. At the bottom of the pyramid are event objects (or simply events) that result
from the user’s interactions with the computer desktop. Above are aggregate events (or simply
event-blocks), which are sequences of events that belong logically together, each event-block
encompassing the user’s actions associated with a specific resource acted upon. At the top are
tasks, defined as groupings of event-blocks representing well-defined steps of a process. This
model also integrates the idea of delivering resources that are relevant to the user’s actions
based on her information needs.

2.2 UICO - User Interaction Context Ontology

A context model is needed to store the user context data in a machine processable form. Vari-
ous context model approaches have been proposed, such as key-value models, markup scheme
models, graphical models, object oriented models, logic-based models, or ontology-based mod-
els (Strang and Linnhoff-Popien, 2004). The ontology-based approach has been advocated as
being the most promising one mainly because of its dynamicity, expressiveness and extensibility
(Strang and Linnhoff-Popien, 2004; Baldauf et al., 2007). In our specific case we argue that an
ontology-based context model brings the following advantages: (i) It allows to easily integrate
new context data sensed by context observers and to map the sensor data into a unified con-
text model. (ii) It can be easily extended with concepts and properties about new resources
and user actions. (iii) The relationships between resources on various granularity levels can be
represented. (iv) The evolution of datatype properties (i.e. data and metadata) into objecttype



properties (i.e. relations between instances of ontology concepts) can be easily accomplished.
(v) Being a formal model, it also allows other applications and services to build upon it and to
access the encapsulated context information in a uniform way. Most importantly we show in the
sequel that the performance of user task detection can be enhanced by using an ontology-based
context model.

Our User Interaction Context Ontology (UICO) can be seen as the realization of the event ag-
gregation pyramid with the support of semantic technologies. We follow a bottom-up approach
and build the UICO by incrementally adding relations when new sensor data or algorithms are
added. The UICO holds the contextual information representing the user interaction context.
This includes the data provided by the context sensors observing the user’s actions on the
computer desktop and the information automatically derived from it. Based on the application
domain in which the UICO is used we can decide which relations and concepts are useful or not.
In the case of ontology-based task detection, we study concepts and relations that are significant
for a specific task, i.e. highly discriminative between tasks. At the moment the UICO contains
88 concepts and 272 properties, and is modeled in OWL-DL3 using the Protégé ontology mod-
eling tool4 (see Figure 2). From these 272 properties, 215 are datatype properties and 57 are
objecttype properties. From a top level perspective, we define five different dimensions in the
UICO: the action dimension, the resource dimension, the information need dimension, the user
dimension and the application dimension.

Action Dimension The action dimension consists of concepts representing user actions,
task states and connection points to top-down modeling approaches. User actions are distin-
guished based on their granularity, corresponding to the levels of the event aggregation pyramid:
Event at the lowest level, then EventBlock and then Task. The ActionType concepts specify
which types of actions are defined on each level. Currently we only distinguish action types on
the event level (EventType concept): there are 25 of them (Open, Save, Print, Copy, Reply,
ClipboardChange, DesktopSearch, etc.). As an example, if the user clicks on the search button
of a search engine’s web page, this user interaction will generate an Event of type WebSearch.
The TaskState concept and its sub-concepts model the way the user manages and executes
tasks. We borrow the types of task states from the Nepomuk Task Management Model (Groza
et al., 2007). These types allow to model a user creating, executing, interrupting, finishing,
aborting, approving and archiving a task. Besides, each change in task state is tracked via
the TaskStateChange concept. The Model concept has been introduced to have connection
points to top-down modeling approaches. Currently only one connection point is available: the
TaskModel concept. This concept is similar to what is defined in the areas of workflow man-
agement systems and task process analysis. At the moment, the TaskModel concept is used to
categorize a task. An example of instances of the TaskModel and Task concepts is “Planning a
journey” and “Planning the journey to CHI 2011” respectively.

Resource Dimension The resource dimension contains concepts for representing resources
on the computer desktop. We specifically focus on modeling resources commonly used by the
knowledge workers we have interviewed. We have identified 16 key resource concepts (email,
person, image, file, folder, etc.) but more can be easily added if required. A resource is
constructed from the data and metadata captured by the context sensors. Relations can be
defined between concepts of the resource dimension and of the action dimension for modeling
on which resources what kind of user actions have been executed. For example, if the user
enters a text in a Microsoft Word document, all keyboard entries will be instances of the
Event concept, connected via the isActionOn objecttype property to the same instance of a
TextDocument (and a FileResource) representing that document.

3http://www.w3.org/2004/OWL
4http://protege.stanford.edu



Figure 2: The concept hierarchy of the User Interaction Context Ontology (UICO) visualized
with the Protégé tool. The left area contains the action dimension, the right area contains the
resource dimension, and the bottom area contains the user dimension and the information need
dimension.



Information Need Dimension The information need dimension represents the context-
aware pro-active information delivery aspect of the UICO. An information need is detected
by a set of fixed rules, based on the available contextual data. An InformationNeed concept
has properties defining the accuracy of the detection and the importance to fulfill this need
within a certain time-frame. An information need is associated with the user’s action(s) that
trigger(s) it, thus creating a connection between the information need dimension and the action
dimension. The information need dimension is also connected to the resource dimension, since
each resource that helps in fulfilling the user’s information need is related via the objecttype
property suggestsResource to the InformationNeed.

User Dimension The user dimension contains only two concepts: User and Session5. Its
main interest is to maintain a link between a user and the interaction events she performs. The
User concept defines basic user information such as user name, password, first name and last
name. The Session concept is used for tracking the time of user logins and the duration of a
user session in our application. The user dimension is connected to the action dimension in that
each Action is associated with a User via the objecttype relation hasUser. It is also indirectly
related to the resource and information need dimensions via the action dimension.

Application Dimension The application dimension is a “hidden” dimension, since it is not
modeled as concepts in the UICO. It is however present in that each user interaction happens
within the focus of a certain application, such as Microsoft Word or Windows Explorer. The
Event concept holds the information about the user interaction with the application through the
datatype properties hasApplicationName and hasProcessId. Standard applications that run
on the Microsoft Windows desktop normally consist of graphical user interface (GUI) elements.
Console applications also contain GUI elements such as the window itself, scroll bars and buttons
for minimizing, maximizing and closing the application. Most of GUI elements possess an
associated accessibility object6 that can be accessed by context sensors. Datatype properties
of the Event concept hold the data about the interactions with GUI elements. We show later
on that these accessibility objects play an important role in task detection. A resource is
normally accessed by the user within an application, hence there exists a relation between the
resource dimension and the application dimension. This relation is indirectly captured by the
relation between the resource dimension and the action dimension, i.e. by the datatype property
hasApplicationName of an Event.

2.3 Related Ontologies

The UICO is similar to the Personal Information Model Ontology (PIMO) (Sauermann et al.,
2007) developed in the NEPOMUK research project7, in terms of representation of desktop
resources. However, they differ in terms of granularity of concepts and relations. The UICO is
a fine-grained ontology, driven by the goal of automatically representing low-level captured con-
textual information, whereas the PIMO enables the user to manually extend the ontology with
new concepts and relations, to define her environment for personal information management.
The native operations (NOP) ontology8, used in the Mymory project (Biedert et al., 2008),
models native operations (e.g., AddBookmark or CopyFile) on generic information objects (e.g.,
email, bookmark or file) recorded by system and application sensors. Native operations are
similar to the UICO’s ActionType concepts, and more specifically to the EventType concepts.
The DataObject concepts describe several desktop resources in a more coarse-granular way

5The user dimension should not be mistaken with a user profile containing preferences, etc. Maintaining such
a profile is out of the scope of this work.

6Microsoft Active Accessibility: http://msdn.microsoft.com/en-us/accessibility
7http://nepomuk.semanticdesktop.org
8http://usercontext.opendfki.de/wiki/NopOntology



than we do for the UICO’s Resource concepts. In (Xiao and Cruz, 2005) a layered and seman-
tic ontology-based framework for personal information management following the principles of
semantic data organization, flexible data manipulation and rich visualization is proposed. The
framework consists of an application layer, a domain layer, a resource layer and a personal
information space. The resource dimension of the UICO can be seen as a combination of these
domain and resource layers, since resource instances are mapped to concepts of the domain
layer.

3 Automatic Population of the Context Ontology

It is not realistic to have a user manually providing the data about her context on such a fine-
granular level, as is defined in our UICO. Hence semi-automatic and automatic mechanisms
are required to ease the process of “populating” the ontology. We use rule-based, information
extraction and machine learning techniques to automatically populate the ontology and auto-
matically derive relations between the model’s entities. We now describe how we build instances
of concepts and augment relations between the concept instances. We also show which kind
of sensors we use to observe user interaction events on the computer desktop, how we discover
resources the user has utilized, unveil connections between resources, and aggregate single user
interaction events into event-blocks and tasks.

3.1 Context Observation

Context observation mechanisms are used to capture the user’s behavior while working on
her computer desktop, i.e. performing tasks. Simple operating system and application events
initiated by the user while interacting with her desktop are recorded by context observers,
acting as event object sources. Our use of context observers is similar to the approach fol-
lowed by contextual attention metadata (Wolpers et al., 2007) and other context observation
approaches (Dragunov et al., 2005; Van Kleek and Shrobe, 2007). Context observers, also re-
ferred to as context sensors, are programs, macros or plug-ins that can be distinguished based
on the origin of the data they deliver. System sensors are deep hook into the operating system.
Application sensors are developed for standard office applications. We focus on supporting
applications that knowledge workers use in their daily work, which is generally in a Microsoft
Windows environment. Table 1 presents a list of the available system and application sensors,
and a description of what kind of contextual information they are able to sense. The produced
events are sent as an XML stream via an event channel to the context capturing framework
(i.e. our event processing agent) for storage9, processing and analysis. We also refer to this
contextual attention metadata stream as the event stream. Our event processing network is
rather a static one, evolving only when new sensors are added.

3.2 Resource Discovery

The resources that populate the ontology model are for example links, web pages, persons,
organizations, locations, emails, files, folders, text documents, presentations or spreadsheets.
Resource discovery is about the identification of resources and the extraction of related metadata
in the event stream. It is also about unveiling the resources the user has interacted with, and
the resources that are included or referenced in a used resource. We say that a resource is
included in another one if its content is part of the content of another resource, e.g. when
copying some text from an email to a text document. A resource is referenced by another one if
its location appears in the content of another resource, e.g. when a link to a web page appears

9We store the recorded contextual data in a triple store, and more precisely a quad store featuring named
graphs and SPARQL query possibilities.



Sensor Observed Data and Metadata
Application Sensors

Microsoft Word document title, document url, language, text encoding, content of visible
area, file name, folder, user name

Microsoft
PowerPoint

document title, document url, document template name, current slide num-
ber, language, content, file name

Microsoft Excel spreadsheet title, spreadsheet url, worksheet name, content of the currently
viewed cell, authors, language, file name, file uri, folder, user name

Microsoft Internet
Explorer

currently viewed url, urls of embedded frames, content as html, content as
plain text

Microsoft Explorer currently viewed folder/drive name, url of folder/drive path
Mozilla Firefox 2.x

and 3.x
currently viewed url, urls of embedded frames, content as html

Mozilla Thunderbird (html/plain text) content of currently viewed or sent email, subject, unique
path (uri of email/news message) on server, user’s mail action (compose,
read, send, forward, reply), received/sent time, email addresses and full
names of the email entries

Microsoft Outlook
2003/2007

(create, delete, modify, open and distribute) tasks, notes, calendar entries,
contacts, data about email handling

Novell GroupWise
email client

(create, delete, modify, and distribute) tasks, notes, calendar entries, todos,
data about email handling

System Sensors
File System Sensor copying from/to, deleting, renaming from/to, moving from/to, modification

of files and folders (file/folder url)
Clipboard Sensor clipboard changes (i.e. text copied to clipboard)
Network Stream

Sensor
header and payload content from network layer packets (http, ftp, nttp,
smtp, messenger, ICQ, Skype. . . )

Generic Windows
XP System Sensor

mouse movement, mouse click, keyboard input, window title, date and time
of occurrence, window id/handle, process id, application name

Accessibility Object
Sensor

name, value, description, help text, help text description, tooltip of the
accessibility object

Table 1: List of our application and system sensors, and data recorded by these sensors.

in the content of an email. The resources identified by the resource discovery mechanisms are
related to instances of the Event concept by the isActionOn objecttype property.

We apply three different techniques to discover resources: regular expressions, informa-
tion extraction and direct resource identification. (i) The regular expression approach identifies
resources in the event stream based on certain character sequences predefined as regular expres-
sions. This is used to identify files, folders, web links or email addresses. (ii) The information
extraction approach extracts person, location and organization entities in text-based elements
in the event stream. This extraction is rule-based and utilizes natural language specifics. The
extracted entities are mapped to concepts of the UICO, based on the available contextual in-
formation. As an example, when the name of a person is identified in a text document, it is
mapped to an instance of a Person concept and a relation specifying that this person is men-
tioned in that document is built. (iii) The direct resource identification approach finds data
about the resource to build directly in the sensor data, and directly maps certain fields of the
event stream data to the resource. An example is the ClipboardSnippetResource, which is
built from the content of the clipboard application sensed by the clipboard observer. Another
example is the sensor data about an email opened by the user. In this case the sensor sends
the information that a specific email identified by its server message id has been opened
for reading. Additional metadata about the email is attached by the sensor and added to the
discovered resource.



3.3 Event to Event-Block Aggregation

Context sensors observe low-level contextual attention metadata that result in simple events.
For logically aggregating events that belong together (i.e. grouping user’s actions) into blocks of
events, so-called event-blocks, static rules are used. “Logically” here implies grouping the events
that capture the interactions of a user with a single resource. Resources can be of various types
and opened in different applications. Therefore, for different types of applications, different
rules are applied in the grouping process. An application can handle multiple resource types,
as is the case, e.g. for Microsoft Outlook or Novell GroupWise, in which emails, tasks, notes,
appointments and contact details are managed. The complexity and accuracy of the static rules
depend on the application mechanisms for identifying a single resource and on the possibility
to capture this resource id with a sensor. If it is not possible for a sensor to capture a unique
resource id in an application, heuristics are used to uniquely identify the resource.

Two types of rules can be distinguished for the event to event-block aggregating process.
The first type is a set of rules designed for specific applications, and is referred to as application
specific rules. An example of such a rule is: aggregate all events that happened on the same
slide in the Microsoft PowerPoint application. The second type of rules, referred to as default
application rules, are applied if no application specific rule is applicable. They also serve as
backup rules, when there is not enough information in the event stream to apply an application
specific rule. The goal of these rules is to heuristically aggregate events into event-blocks, based
on event attributes that can be observed operating-system-wide by the context sensors. These
attributes are the window title of the application, the process number and the window handle
id10. The window title and the process number perform best for a generic event to event-block
aggregation in which no application specific attribute is present. The discriminative power of
the window title has been observed in other work as well (Oliver et al., 2006; Shen et al., 2007;
Granitzer et al., 2008).

3.4 Event to Task Aggregation

Aggregating interaction events into tasks cannot be done with the previous rule-based approach,
since it would require to manually design rules for all possible tasks. This might be a reasonable
approach for well-structured tasks, such as administrative or routine tasks, but is obviously not
appropriate for tasks involving a certain freedom and creativity in their execution, i.e. for
knowledge-intensive tasks such as “Planning a journey” or “Writing a research paper”. A
solution is to automatically extract tasks from the information available in the user interaction
context model by means of machine learning techniques. Once detected, these tasks will enrich
the ontology model.

4 User Task Detection

Here, by task detection we mean task class detection also referred to as task classification, as
opposed to task switch detection. Task classification deals with the challenge of classifying usage
data from user task executions into task classes or task types. Task switch detection involves
predicting when the user switches from one task to another (Oliver et al., 2006; Shen et al.,
2007).

4.1 Task Classification Approach

Task detection is classically modeled as a machine learning problem, and more precisely a
classification problem. This method is used to recognize Web-based tasks (Kellar and Watters,
2006; Gutschmidt et al., 2008), tasks within emails (Kushmerick and Lau, 2005; Dredze et al.,

10The window handle is a unique window identifier, constructed by the Microsoft Windows operating system.



2006; Shen et al., 2007) or from the complete user’s desktop (Oliver et al., 2006; Shen et al.,
2007; Granitzer et al., 2008). All these approaches are based on the following steps: (i) The
contextual data is captured by system and application sensors. (ii) Features, i.e. parts of
this data, are chosen to build classification training/test instances at the task level: each task
represents a training/test instance for a specific class (i.e. a task model) to be learned. (iii) To
obtain valid inputs for machine learning algorithms, these features are first subjected to some
feature engineering (Witten and Frank, 2005), which may include data preprocessing operations,
such as removing stopwords (Granitzer et al., 2008) and application specific terms (Oliver et al.,
2006), or constructing word vectors. (iv) Feature-value selection (Witten and Frank, 2005; Shen
et al., 2007; Granitzer et al., 2008) is (optionally) performed to select the best discriminative
feature values. (v) Finally, the classification/learning algorithms are trained/tested on the
training/test instances built from the feature values. Having multiple task models results in a
multi-class classification problem. In this work, we also adopt this classical approach for task
detection. We use the machine learning toolkit Weka (Witten and Frank, 2005) for parts of the
feature engineering (steps (ii) to (iv)), and classification (step (v)).

4.2 Feature Engineering

Based on the UICO, we have defined 50 features that can be grouped in six categories: on-
tology structure, content, application, resource, action and switching sequences. The ontology
structure category contains features representing the number of instances of concepts and the
number of datatype and objecttype relations used per task. The content category consists of
the content of task-related resources, the content in focus and the text input of the user. The
application category contains the classical window title feature (Oliver et al., 2006; Shen et al.,
2007; Granitzer et al., 2008), the application name feature (Granitzer et al., 2008) and our
newly introduced GUI elements (accessibility objects) features. The resource category includes
the complete contents and URIs (URLs) (Shen et al., 2007) of the used, referenced and included
resources, as well as a feature that combines all the metadata about the used resources in a ‘bag
of words’. The action category represents the user interactions and contains features about the
interactions with applications (Granitzer et al., 2008), resource types, resources, key input types
(navigational keys, letters, numbers), the number of events and event-blocks, the duration of
the event-blocks, and the time intervals between event-blocks. The switching sequences category
comprises features about switches between applications, resources and event or resource types.

The process of transforming the event attributes associated with our 50 features into fea-
ture values that are usable by machine learning algorithms (step (iii) of the task classification
approach) is referred to as feature engineering (Witten and Frank, 2005). The following steps
are performed to preprocess the content of text-based features (in this sequence): (i) remove
end of line characters, (ii) remove markups such as \&lg or ![CDATA, (iii) remove all charac-
ters but letters, (iv) remove German and English stopwords, (v) remove words shorter than
three characters. For each text-based feature, we generate values as vector of words with the
StringToWordVector function of Weka. For example, for the window title feature, possible
generated values are “{review, Notepad}”, “{Adobe, Reader, ontology}”, “{firefox, google}”,
“{Microsoft, Word, Document}”, etc. For numeric features, we apply the Weka PKIDiscretize

filter to generate values as intervals rather than numbers.

4.3 Evaluation Methodology

Evaluating a task detection approach is complex and requires assessing the impact of the various
factors involved. In this work, we evaluate the influence of the following parameters on the task
detection performance: (i) the set of used features, (ii) the number of used values generated from
the features and (iii) the learning algorithm (classifier). The set of used features is varied by
including (i) each feature individually, (ii) each feature category individually, (iii) all feature cat-
egories or (iv) the top k best performing single features, with k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}.



To build a task instance, we select the g feature values having the highest Information
Gain (IG) (Witten and Frank, 2005), where g is varied among 50 different integers distributed
between 3 and 10000. Half of these integers are equally distributed between 3 and the number
of available feature values, with an upper bound of 5000. The other half is defined by G = {3,
5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500,
4000, 5000, 7500, 10000}, the upper bound being 10000 or the maximum number of available
feature values, whichever is less. We have chosen to use IG to select feature values because it is
one of the fastest and most popular methods in the text classification field. Comparing it with
other feature selection methods is out of the scope of this paper. We use the IG computation
functionality of Weka. For a given feature value v and a given set of classes C, we have

IG(v) =
∑
c∈C

P (v, c) log
P (v, c)

P (v)P (c)
(1)

The classifiers we evaluate are Näıve Bayes (NB), J48 decision tree (J48), k-Nearest Neighbor
(KNN-k) with the number of neighbors k ∈ {1, 5, 10, 35}, and Linear Support Vector Machine
(SVM-c) with cost parameter c ∈ {2−5, 2−3, 2−1, 20, 21, 23, 25, 28, 210}11. The Weka machine
learning library (Witten and Frank, 2005) and the Weka integration of the libSVM12 pro-
vide the necessary toolkit to evaluate these algorithms. For J48 decision tree, we use the
default version of Weka, which performs some pruning (using the subtree raising approach)
but no error pruning. To evaluate the learning algorithms, we perform a stratified 10-fold
cross-validation (Witten and Frank, 2005). Besides, the training set and test set instances are
strictly parted (i.e. constructed and preprocessed independently) to avoid any bias. Finally, we
compute the mean values across all folds of the achieved accuracy, micro precision and micro
recall.

5 Experimental Results

5.1 Experiment Design

Our experiment was carried out in the knowledge-intensive domain of the Know-Center. It was
preceded by an analysis phase, during which several requirements were defined, by interviewing
knowledge workers. Users required to know what kind of data was recorded, to be able to access
and modify it, and that the evaluation results were anonymized. They could practice with the
recording tool for a week before the experiment in order to reduce the unfamiliarity bias. This
study was exploratory, the comparison was within subjects and the manipulations were achieved
by the working environment (laboratory vs. personal workstation) and the executed task (five
different tasks).

The first manipulation was achieved by varying the working environment (i.e. the computer
desktop environment) of the participants. Each participant performed the same set of tasks
both on a laboratory computer on which a set of standard software used in the company had
been installed beforehand, and on their company personal workstations with their personal
computer desktop settings and access to their personal files, folders, bookmarks, emails and so
on. Half of the participants worked first on the laboratory computer and then on their personal
workstations, and vice versa for the other half. The assignment of the participants to each
group was randomized.

The second manipulation resulted from varying the tasks themselves. During a preliminary
meeting, the participants of the experiment agreed on a selection of five tasks typical of the
Know-Center domain: (1) “Filling in the official journey form”, (2) “Filling in the cost recom-
pense form for the official journey”, (3) “Creating and handing in an application for leave”,

11These values are borrowed from the libSVM practical guide: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
12http://www.cs.iastate.edu/∼yasser/wlsvm/



(4) “Planning an official journey” and (5) “Organizing a project meeting”. It is worth noting
that these tasks present different characteristics, in terms of complexity, estimated execution
time, number of involved resources, granularity and so on. A short questionnaire was issued
before starting the experiment to make sure that the probands understood the tasks they had
to perform, and also to have them think about the tasks before they actually executed them.

The dataset gathered during the experiment contains 220 task instances recorded from 14
users. Each user was supposed to perform all five tasks at least twice within both working
environments, which should have produced at least 56 instances for each task class, and a total
of at least 280 task instances. However, some instances were lost because of technical problems,
and some were simply not performed by the users. The representatives of each task class are
almost equally distributed (see Table 2) except for Task 5. Since most users expressed that
this task was too difficult to perform on the laboratory computer (due to the lack of personal
calendar, files, e-mails, etc.), we discard it in some parts of the subsequent analysis.

Task 1 Task 2 Task 3 Task 4 Task 5

Laboratory computer 30 26 26 24 3
Personal workstations 25 19 25 28 14

Sum 55 45 51 52 17

Table 2: Distribution of the task instances with respect to the task class and the environment.

5.2 Comparison of Contextual Feature Sets

Since comparing different approaches cannot be done directly because of the difference in
the granularity of training instances, we have decided to focus our comparison on the fea-
ture engineering part. We compare the performance of various combinations of contextual
features, in terms of task detection accuracy. We use features that are specific to our ontology-
based approach, and more classical features, as used in the TaskPredictor (Shen et al., 2007),
SWISH (Oliver et al., 2006) and Dyonipos (Granitzer et al., 2008) systems. When using features
from other approaches, we preprocess them based on the information available in the papers
mentioned above, and evaluate the performance according to our experimental setup.

We consider all task instances recorded for Tasks 1 to 5, without taking into account the
difference in working environment, which corresponds to the number of instances presented in
the last row of Table 2. To evaluate the classification results, we apply a stratified 10-fold
cross-validation, which varies the partition of the task instances between the training set and
the test set. Table 3 presents a comparison of the best algorithm runs in terms of task detection
accuracy for various features and feature categories. It shows that the best performing feature
set is the Top 4 features, as defined in our UICO approach, namely the accessibility object name,
the window title, the accessibility object value and the content in focus. The window title is a
very classical feature used in all other approaches, but the other features are new and specific
to our approach. The paired t-tests we have performed show that the Top 4 features performed
statistically significantly better than all other features and feature combinations on a p < 0.05
significance level. The results in Table 3 also highlight that the J48 decision tree and the Näıve
Bayes algorithms perform much better than the others. From the paired t-tests computed based
on the classifiers achieved accuracy, we can derive the following partial order of these classifiers:
{J48, NB} � {KNN-1, KNN-5, KNN-10, KNN-35} � {SVM }, with� indicating a statistical
significance on a α = 0.005 level.



f l g a p r

All Categories J48 750 86.71 0.96 0.85
Application Category J48 50 86.71 0.96 0.84
Resource Category NB 3000 66.49 0.89 0.72
Content Category NB 4000 65.15 0.87 0.65
Ontology Structure Category J48 359 63.38 0.86 0.64
accessibility object name J48 50 86.21 0.96 0.86
window title J48 75 81.26 0.94 0.81
accessibility object value J48 25 71.15 0.90 0.69
content in focus J48 1500 64.72 0.87 0.64
content of event-block KNN-1 75 63.74 0.87 0.66

UICO Top 4 features J48 5000 88.55 0.97 0.87
Top 5 features J48 1000 88.53 0.97 0.87
Top 2 features KNN-10 25 88.12 0.96 0.89
Top 20 features J48 500 88.07 0.96 0.87
Top 3 features J48 3500 87.66 0.96 0.88
Top 7 features J48 300 87.19 0.96 0.85
Top 6 features J48 250 87.16 0.96 0.86
Top 8 features J48 3000 87.14 0.96 0.84
Top 10 features J48 300 86.73 0.96 0.85
Top 15 features J48 500 86.28 0.96 0.85
Top 9 features J48 300 85.76 0.96 0.83

ApplicationName (A) J48 24 48.20 0.78 0.52
Content (C) KNN-1 125 63.38 0.86 0.63
WindowTitle (W) NB 100 78.87 0.93 0.80

Dyonipos A C J48 150 68.27 0.89 0.69
AW J48 100 80.28 0.94 0.80
C W NB 750 82.58 0.95 0.85
A C W NB 300 83.51 0.95 0.85

SWISH W J48 150 79.35 0.93 0.78

TaskPredictor W & filepath J48 1387 79.42 0.94 0.81

Table 3: Overview of the best accuracies a achieved by various feature sets f . The learning
algorithm l, the number of used features values g, the micro precision p and the micro recall r
are also given.

5.3 Investigating Task Detection

We now focus on investigating the following questions: (i) How good can the performance of a
task classifier be when used in a real work environment, while being trained with contextual data
gathered in laboratory settings? (ii) Which are the automatically observable contextual features
that allow for good task detection performance? To carry out our analysis, we consider only the
203 task instances associated with Tasks 1 to 4 (see Table 2). We use the tasks recorded from
the laboratory computer as the training set (106 task instances), and those recorded from the
personal workstations as the test set (97 task instances). An overview of the results about the
performance of detecting real workstation tasks by training on contextual data from laboratory
settings is given in Table 4.

The best feature category is the application category, that correctly identifies 91.75%
of the real tasks (l=NB, g=500, p=0.97, r=0.92). Approximately 5 points behind in terms
of accuracy, is the content category (l=NB, a=86.60%, g=500, p=0.95, r=0.87). Using all 50
features results in a 82.47% accuracy, which is about 9% worse than the best performing feature
category. This illustrates that using all available features together does not necessarily provide
the best results. This is interesting because it suggests that smaller feature combinations, that



f l g a p r RG

Application Category NB 500 91.75 0.97 0.92 3
Content Category NB 500 86.60 0.95 0.87 5

Feature All Categories NB 750 82.47 0.93 0.83 8
categories Resource Category NB 1000 68.04 0.86 0.67 14

Ontology Structure Category J48 359 65.98 0.86 0.67 15
Action Category SVM-25 11 59.79 0.81 0.58 17
Switching Sequence Category NB 1832 40.21 0.66 0.39 20

window title J48 100 85.57 0.95 0.87 6
content in focus NB 150 84.54 0.94 0.84 7
accessibility object name J48 100 80.41 0.92 0.81 9
event-block content NB 200 73.20 0.89 0.76 10

Single accessibility object value J48 150 71.13 0.89 0.72 11
features UICO datatype relations J48 221 70.10 0.88 0.71 12

used resources metadata J48 1000 68.04 0.86 0.68 13
used resources content NB 175 62.89 0.84 0.65 16
content of resources NB 250 58.76 0.81 0.61 18
accessibility object role J48 31 54.64 0.79 0.55 19

Top k k = 6 NB 250 94.85 0.98 0.95 1
best single k = 5 NB 150 92.78 0.97 0.94 2
features k = 4 NB 500 89.69 0.96 0.91 4

Table 4: Overview of the best accuracies a (ranked within each section) achieved while detecting
real workstation tasks by training on contextual data from laboratory settings, for each feature
category, all feature categories combined, each single feature as well as the k top performing
single features f . The learning algorithm l, the number of used feature values g, the micro
precision p, the micro recall r, and the global ranking RG across sections are also given.

are less computationally expensive to deal with, can achieve a better accuracy. This has directed
our decision to study single features in greater details.

After evaluating the performance of each single feature separately, we confirm that the
window title (Oliver et al., 2006; Shen et al., 2007; Granitzer et al., 2008) is the best discrimina-
tive feature, with an accuracy of 85.57% (l=J48, g=100, p=0.95, r=0.87). Of great interest are
the good performances of our newly introduced accessibility object features: the accessibility
object name with an 80.41% accuracy (l=J48, g=100, p=0.92, r=0.81) and the accessibility
object value with a 71.13% accuracy (l=J48, g=150, p=0.89, r=0.72). Simply counting the
number of UICO datatype relations is also quite efficient (a=70.10%). Seeing the good results
achieved by the single features individually, we were wondering whether we could do even bet-
ter by following the simple approach of combining the k single features performing best with
respect to classification accuracy.

We have studied the performance of the top k features, with different values for k. With
the top 6 features, with the NB classifier and 250 used feature values, we obtain the highest
accuracy (a=94.85%), precision (p=0.98) and recall (r=0.95), among all studied features, fea-
ture categories and top k feature combinations. This is an accuracy increase of 9.28, a precision
increase of 0.03, and a recall increase of 0.08, compared to the performance of the window title
feature alone. These top 6 features are: window title, content in focus, accessibility object name,
event-block content, accessibility object value, and UICO datatype relations. The number of used
feature values (g=250) of this best performing approach also supports prior work showing that
a good choice for it is between 200 and 300 feature values (Shen et al., 2007).



5.4 Discussion

Our results only give a first impression on the fact that the working environment in which
users perform their tasks has no significant influence on the task detection performance. Since
only four tasks were involved in this analysis, the generalizability of our results is of course
limited, and further experiments (with other tasks, other users, and in other domains) are
needed. However, it is well recognized that the window title feature has a good cross-domain
discriminative power, and we think it should be true for other contextual features.

Context detection frameworks, that observe user contextual information, differ in terms
of utilized sensors and of granularity of the captured contextual data. Our approach is very
fine-granular. We observe not only the content currently viewed by the user or the window
title of the application in focus, but also the user’s interactions with all desktop elements and
application controls (accessibility objects). In our approach, every single interaction of the
user with an application and a resource is deemed important, and hence captured, stored and
analyzed. Using a different context detection framework could result in leaving out contextual
features having a good discriminative power, and could hence have a negative impact on the
task detection performance.

On the other hand, the strong positive influence of specific context features on task detection
performance is an indication that it may not be necessary to track all the user’s interactions
with her computer desktop, but only the most relevant elements. This obviously has an impact
on what kind of sensors have to be developed, i.e. which context features have to be sensed,
to achieve a reasonable task detection performance. It would also impact the user’s system
performance because capturing less data should lead to less CPU requirements. Furthermore,
if we know which features are performing well for supervised machine learning algorithms in
laboratory settings, it could provide a first indication on which features could be used in an
unsupervised learning approach and in real world settings. However, this requires further ex-
periments in laboratory and real world settings.

6 Conclusion

We have studied the question of automatically detecting the task a user is performing on
her computer desktop. We have introduced an ontology-based user interaction context model
(UICO) that extends the spectrum of features that can be used for task detection. Based on
these novel features we were able to provide a combination of features that outperforms other
feature sets, especially those including only classical features. This result has been obtained
on the dataset collected from a large user study carried out in a knowledge-intensive business
environment. Our experiment has also shown that it is possible to obtain good task detection
results for real user tasks with a classifier trained ‘offline’ on laboratory contextual data. We
have also studied the discriminative power of individual and combined contextual features. The
good performance of the classical window title feature has been confirmed and even significantly
outperformed by a specific combination of 6 features. Within this combination are contextual
features that are specific to our UICO approach.

The analysis presented in this paper was limited to very classical machine learning algo-
rithms. This was a reasonable first step, as similar analysis reported in the literature use the
same methods. To extend our study we now plan to use more state-of-the-art algorithms for
classification and feature selection. For example, it could be interesting to use multi-class poly-
nomial SVMs, since they allow to model feature conjunctions and dependencies. Also, instead
of using the IG method for feature selection, we could use more sophisticated, multi-variate
methods, such as the Recursive Feature Elimination method.

We plan to study the discriminative power of our ontology-specific contextual features more
thoroughly by performing further experiments with tasks having different characteristics, since
the results we have obtained here are maybe domain-specific. We have already started to



investigate this point. We have performed two similar experiments in another domain, and the
results obtained confirm what is reported here (Rath et al., 2010). In general, we would like
to understand why some features perform better than others for task detection. Our objective
is to exhibit a small combination of contextual features with a strong discriminative power,
independently of the domain, in order to enhance automatic task detection performance. More
generally, since the number of controlled user studies in the task detection area is low, we plan
to perform further ones to get a deeper insight on which kind of tasks can be automatically
detected and in which settings. As an example, we have recently shown that knowledge-intensive
tasks can be detected as well as routine tasks (Rath et al., 2010).

This work is integrated in our Knowledge Services framework KnowSe, which strives to pro-
vide highly contextualized and personalized knowledge services to the user. Besides providing
a user task detection module, KnowSe can also perform information need discovery. Other
services focus on context-aware information retrieval and proactive context-aware information
delivery, which involve spreading activation on the graph-based representation of the user con-
text model, and a ranking of search results based on resource usage and inter-connectivity.
Among the services are also tools developed for visualizing the individual and organizational
context of the user (graph views, time-lines and self-organizing map views).
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