2,182 research outputs found

    Learning to Generate Posters of Scientific Papers

    Full text link
    Researchers often summarize their work in the form of posters. Posters provide a coherent and efficient way to convey core ideas from scientific papers. Generating a good scientific poster, however, is a complex and time consuming cognitive task, since such posters need to be readable, informative, and visually aesthetic. In this paper, for the first time, we study the challenging problem of learning to generate posters from scientific papers. To this end, a data-driven framework, that utilizes graphical models, is proposed. Specifically, given content to display, the key elements of a good poster, including panel layout and attributes of each panel, are learned and inferred from data. Then, given inferred layout and attributes, composition of graphical elements within each panel is synthesized. To learn and validate our model, we collect and make public a Poster-Paper dataset, which consists of scientific papers and corresponding posters with exhaustively labelled panels and attributes. Qualitative and quantitative results indicate the effectiveness of our approach.Comment: in Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16), Phoenix, AZ, 201

    Graphic Novel Subtitles:Requirement Elicitation and System Implementation

    Get PDF

    An Overview of Video Shot Clustering and Summarization Techniques for Mobile Applications

    Get PDF
    The problem of content characterization of video programmes is of great interest because video appeals to large audiences and its efficient distribution over various networks should contribute to widespread usage of multimedia services. In this paper we analyze several techniques proposed in literature for content characterization of video programmes, including movies and sports, that could be helpful for mobile media consumption. In particular we focus our analysis on shot clustering methods and effective video summarization techniques since, in the current video analysis scenario, they facilitate the access to the content and help in quick understanding of the associated semantics. First we consider the shot clustering techniques based on low-level features, using visual, audio and motion information, even combined in a multi-modal fashion. Then we concentrate on summarization techniques, such as static storyboards, dynamic video skimming and the extraction of sport highlights. Discussed summarization methods can be employed in the development of tools that would be greatly useful to most mobile users: in fact these algorithms automatically shorten the original video while preserving most events by highlighting only the important content. The effectiveness of each approach has been analyzed, showing that it mainly depends on the kind of video programme it relates to, and the type of summary or highlights we are focusing on

    TimeBender: Interactive Authoring of 3D Space-Time Narratives

    Get PDF
    Communication of scientific results and discoveries to, for example, fellow domain experts, business partners, students, or the general public, is an important part of research. Communication through visualization has been proven to be effective when the representations are memorable and engaging, and research has shown that these communicative visualizations can be further enhanced with narratives for certain audiences. A challenge faced by scientists is to create memorable and engaging visualizations for communication which traditionally has been done by trained illustrators and designers. Therefore, we created TimeBender, a framework and prototype implementation to bridge this gap specifically for authoring narrative posters in a 3D environment with a space-time dimension. The posters feature multiple scenes forming the narrative, which are connected by an elongated object encoding the narrative flow. We demonstrate that our approach is capable of aiding the authoring of these posters through a 3-step pipeline where, first, the scenes are set up individually, then, the global layout of scenes in the poster space is determined, before details, such as textual elements, are added. TimeBender supports animation as each scene is rendered dynamically within the poster. The framework and example results were evaluated in an expert interview with a professional illustrator.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    Wholetoning: Synthesizing Abstract Black-and-White Illustrations

    Get PDF
    Black-and-white imagery is a popular and interesting depiction technique in the visual arts, in which varying tints and shades of a single colour are used. Within the realm of black-and-white images, there is a set of black-and-white illustrations that only depict salient features by ignoring details, and reduce colour to pure black and white, with no intermediate tones. These illustrations hold tremendous potential to enrich decoration, human communication and entertainment. Producing abstract black-and-white illustrations by hand relies on a time consuming and difficult process that requires both artistic talent and technical expertise. Previous work has not explored this style of illustration in much depth, and simple approaches such as thresholding are insufficient for stylization and artistic control. I use the word wholetoning to refer to illustrations that feature a high degree of shape and tone abstraction. In this thesis, I explore computer algorithms for generating wholetoned illustrations. First, I offer a general-purpose framework, “artistic thresholding”, to control the generation of wholetoned illustrations in an intuitive way. The basic artistic thresholding algorithm is an optimization framework based on simulated annealing to get the final bi-level result. I design an extensible objective function from our observations of a lot of wholetoned images. The objective function is a weighted sum over terms that encode features common to wholetoned illustrations. Based on the framework, I then explore two specific wholetoned styles: papercutting and representational calligraphy. I define a paper-cut design as a wholetoned image with connectivity constraints that ensure that it can be cut out from only one piece of paper. My computer generated papercutting technique can convert an original wholetoned image into a paper-cut design. It can also synthesize stylized and geometric patterns often found in traditional designs. Representational calligraphy is defined as a wholetoned image with the constraint that all depiction elements must be letters. The procedure of generating representational calligraphy designs is formalized as a “calligraphic packing” problem. I provide a semi-automatic technique that can warp a sequence of letters to fit a shape while preserving their readability

    Health privacy : methods for privacy-preserving data sharing of methylation, microbiome and eye tracking data

    Get PDF
    This thesis studies the privacy risks of biomedical data and develops mechanisms for privacy-preserving data sharing. The contribution of this work is two-fold: First, we demonstrate privacy risks of a variety of biomedical data types such as DNA methylation data, microbiome data and eye tracking data. Despite being less stable than well-studied genome data and more prone to environmental changes, well-known privacy attacks can be adopted and threaten the privacy of data donors. Nevertheless, data sharing is crucial to advance biomedical research given that collection the data of a sufficiently large population is complex and costly. Therefore, we develop as a second step privacy- preserving tools that enable researchers to share such biomedical data. and second, we equip researchers with tools to enable privacy-preserving data sharing. These tools are mostly based on differential privacy, machine learning techniques and adversarial examples and carefully tuned to the concrete use case to maintain data utility while preserving privacy.Diese Dissertation beleuchtet Risiken für die Privatsphäre von biomedizinischen Daten und entwickelt Mechanismen für privatsphäre-erthaltendes Teilen von Daten. Dies zerfällt in zwei Teile: Zunächst zeigen wir die Risiken für die Privatsphäre auf, die von biomedizinischen Daten wie DNA Methylierung, Mikrobiomdaten und bei der Aufnahme von Augenbewegungen vorkommen. Obwohl diese Daten weniger stabil sind als Genomdaten, deren Risiken der Forschung gut bekannt sind, und sich mehr unter Umwelteinflüssen ändern, können bekannte Angriffe angepasst werden und bedrohen die Privatsphäre der Datenspender. Dennoch ist das Teilen von Daten essentiell um biomedizinische Forschung voranzutreiben, denn Daten von einer ausreichend großen Studienpopulation zu sammeln ist aufwändig und teuer. Deshalb entwickeln wir als zweiten Schritt privatsphäre-erhaltende Techniken, die es Wissenschaftlern erlauben, solche biomedizinischen Daten zu teilen. Diese Techniken basieren im Wesentlichen auf differentieller Privatsphäre und feindlichen Beispielen und sind sorgfältig auf den konkreten Einsatzzweck angepasst um den Nutzen der Daten zu erhalten und gleichzeitig die Privatsphäre zu schützen
    • …
    corecore