20 research outputs found

    Automatic Cardiac Segmentation Using Semantic Information from Random Forests

    Get PDF
    We propose a fully automated method for segmenting the cardiac right ventricle (RV) from magnetic resonance (MR) images. Given a MR test image, it is first oversegmented into superpixels and each superpixel is analyzed to detect the presence of RV regions using random forest (RF) classifiers. The superpixels containing RV regions constitute the region of interest (ROI) which is used to segment the actual RV. Probability maps are generated for each ROI pixel using a second set of RF classifiers which give the probabilities of each pixel belonging to RV or background. The negative log-likelihood of these maps are used as penalty costs in a graph cut segmentation framework. Low-level features like intensity statistics, texture anisotropy and curvature asymmetry, and high level context features are used at different stages. Smoothness constraints are imposed based on semantic information (importance of each feature to the classification task) derived from the second set of learned RF classifiers. Experimental results show that compared to conventional method our algorithm achieves superior performance due to the inclusion of semantic knowledge and context information

    Cardiac MRI Segmentation Using Mutual Context Information from Left and Right Ventricle

    Get PDF
    In this paper, we propose a graphcut method to segment the cardiac right ventricle (RV) and left ventricle (LV) by using context information from each other. Contextual information is very helpful in medical image segmentation because the relative arrangement of different organs is the same. In addition to the conventional log-likelihood penalty, we also include a "context penalty” that captures the geometric relationship between the RV and LV. Contextual information for the RV is obtained by learning its geometrical relationship with respect to the LV. Similarly, RV provides geometrical context information for LV segmentation. The smoothness cost is formulated as a function of the learned context which helps in accurate labeling of pixels. Experimental results on real patient datasets from the STACOM database show the efficacy of our method in accurately segmenting the LV and RV. We also conduct experiments on simulated datasets to investigate our method's robustness to noise and inaccurate segmentation

    Joint Segmentation and Groupwise Registration of Cardiac Perfusion Images Using Temporal Information

    Get PDF
    We propose a joint segmentation and groupwise registration method for dynamic cardiac perfusion images that uses temporal information. The nature of perfusion images makes groupwise registration especially attractive as the temporal information from the entire image sequence can be used. Registration aims to maximize the smoothness of the intensity signal while segmentation minimizes a pixel's dissimilarity with other pixels having the same segmentation label. The cost function is optimized in an iterative fashion using B-splines. Tests on real patient datasets show that compared with two other methods, our method shows lower registration error and higher segmentation accuracy. This is attributed to the use of temporal information for groupwise registration and mutual complementary registration and segmentation information in one framework while other methods solve the two problems separatel

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    Méthodes de segmentation du ventricule gauche basée sur l'algorithme graph cut pour les images par résonance magnétique et échocardiographiques

    Get PDF
    L’échocardiographie et l’imagerie par résonance magnétique sont toutes deux des techniques non invasives utilisées en clinique afin de diagnostiquer ou faire le suivi de maladies cardiaques. La première mesure un délai entre l’émission et la réception d’ultrasons traversant le corps, tandis que l’autre mesure un signal électromagnétique généré par des protons d’hydrogène présents dans le corps humain. Les résultats des acquisitions de ces deux modalités d’imagerie sont fondamentalement différents, mais contiennent dans les deux cas de l’information sur les structures du coeur humain. La segmentation du ventricule gauche consiste à délimiter les parois internes du muscle cardiaque, le myocarde, afin d’en calculer différentes métriques cliniques utiles au diagnostic et au suivi de différentes maladies cardiaques, telle la quantité de sang qui circule à chaque battement de coeur. Suite à un infarctus ou autre condition, les performances ainsi que la forme du coeur en sont affectées. L’imagerie du ventricule gauche est utilisée afin d’aider les cardiologues à poser les bons diagnostics. Cependant, dessiner les tracés manuels du ventricule gauche requiert un temps non négligeable aux cardiologues experts, d’où l’intérêt pour une méthode de segmentation automatisée fiable et rapide. Ce mémoire porte sur la segmentation du ventricule gauche. La plupart des méthodes existantes sont spécifiques à une seule modalité d’imagerie. Celle proposée dans ce document permet de traiter rapidement des acquisitions provenant de deux modalités avec une précision de segmentation équivalente au tracé manuel d’un expert. Pour y parvenir, elle opère dans un espace anatomique, induisant ainsi une forme a priori implicite. L’algorithme de Graph Cut, combiné avec des stratégies telles les cartes probabilistes et les enveloppes convexes régionales, parvient à générer des résultats qui équivalent (ou qui, pour la majorité des cas, surpassent) l’état de l’art ii Sommaire au moment de la rédaction de ce mémoire. La performance de la méthode proposée, quant à l’état de l’art, a été démontrée lors d’un concours international. Elle est également validée exhaustivement via trois bases de données complètes en se comparant aux tracés manuels de deux experts et des tracés automatisés du logiciel Syngovia. Cette recherche est un projet collaboratif avec l’Université de Bourgogne, en France

    Computer Vision Techniques for Transcatheter Intervention

    Get PDF
    Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and treatment of cardiovascular diseases. For example, TAVI is an alternative to AVR for the treatment of severe aortic stenosis and TAFA is widely used for the treatment and cure of atrial fibrillation. In addition, catheter-based IVUS and OCT imaging of coronary arteries provides important information about the coronary lumen, wall and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial for the evaluation and treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation, motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods.We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence it is important to understand the application domain, clinical background, and imaging modality so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on background information of transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area

    Joint Segmentation and Groupwise Registration of Cardiac Perfusion Images Using Temporal Information

    Get PDF
    We propose a joint segmentation and groupwise registration method for dynamic cardiac perfusion images that uses temporal information. The nature of perfusion images makes groupwise registration especially attractive as the temporal information from the entire image sequence can be used. Registration aims to maximize the smoothness of the intensity signal while segmentation minimizes a pixel’s dissimilarity with other pixels having the same segmentation label. The cost function is optimized in an iterative fashion using B-splines. Tests on real patient datasets show that compared with two other methods, our method shows lower registration error and higher segmentation accuracy. This is attributed to the use of temporal information for groupwise registration and mutual complementary registration and segmentation information in one framework while other methods solve the two problems separately

    Analysis of cardiac magnetic resonance images : towards quantification in clinical practice

    Get PDF

    Segmentation 3D multi-objets d'images scanner cardiaques : une approche multi-agents

    No full text
    International audienceNous proposons une nouvelle méthode de segmentation permettant une détection multi-objets, semi-interactive et à caractère générique, appliquée à l'extraction de structures cardiaques en imagerie scanner multibarettes. L'approche proposée repose sur l'élaboration d'un schéma multi-agents combiné à une méthode de classification supervisée qui permet l'introduction d'a priori dans le processus de segmentation ainsi que des temps de calcul rapides. Le système multi-agents proposé est centralisé autour d'un agent communiquant qui contrôle une population d'agents situés dans l'image dont le rôle est d'assurer la segmentation au moyen d'interactions de type coopératif et compétitif. La méthode proposée a été testée sur plusieurs bases de données patient. Quelques résultats représentatifs sont finalement présentés et discutés
    corecore