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We propose a joint segmentation and groupwise registration method for cardiac perfusion images by using temporal information.
The nature of perfusion images makes groupwise registration especially attractive as the temporal information from the entire
image sequence can be used. Registration aims to maximize the smoothness of the intensity signal, while segmentation minimizes
a pixel’s dissimilarity with other pixels having the same segmentation label. The cost function is optimized in an iterative fashion
using B-splines. Tests on real patient datasets show that compared to two other methods, our method shows lower registration error
and higher segmentation accuracy. This is attributed to the use of temporal information for groupwise registration and mutually
complementary registration and segmentation information in one framework, while other methods solve the two problems
separately.

1. Introduction

Dynamic contrast-enhanced (DCE) magnetic resonance
(MR) images (or perfusion MRI) have developed as a pop-
ular noninvasive tool for the functional analysis of internal
organs. Contrast agent is injected intravenously into the pa-
tient, and a series of MR images are acquired over a period of
time. As the contrast agent flows through the blood stream,
the intensity of corresponding regions increases. Since the
image acquisition process can take up to 20 minutes, patient
movement is inevitable. Additionally, elastic deformation of
cardiac tissues due to patient breathing needs to be cor-
rected. Perfusion images are characterized by rapid intensity
change over time, low spatial resolution, and noise and
make registration challenging. Previous techniques mostly
employed a pairwise registration approach, that is, all images
of a sequence are individually registered to a fixed reference
image [1–3]. The success of such approaches depends upon
the robustness of the cost function to intensity change.
Although intensity change due to contrast agent flow poses
challenges, it also provides important temporal information

for registration and segmentation of the perfusion image
sequence. In this work, we propose a method which makes
use of the temporal dynamics of contrast agent flow to
achieve joint segmentation and groupwise registration of an
MR cardiac image sequence.

The changing intensity due to contrast agent flow pro-
vides valuable segmentation by highlighting the organ of in-
terest. It is interesting to note that different regions of a
cardiac image sequence have different intensity-time charac-
teristics (Figure 4). Temporal flow information was used for
registration [4] and segmentation [5] of perfusion images. In
[6], the registration framework constrained the deformation
field such that different regions follow a particular intensity-
time profile. But it is an accepted fact that improved regis-
tration leads to accurate segmentation and vice versa. In pre-
vious works [7, 8], we have approached the problem of joint
registration and segmentation of cardiac MRI. However, we
did not make use of the temporal information from the
image sequence, rather focusing on pairwise registration of
images. In this paper, we make use of temporal information
to achieve registration and segmentation of the entire image
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sequence. Instead of pairwise registration, we solve the
problem using groupwise registration as it allows us to
impose constraints based on temporal information.

Of late, groupwise registration methods have gained pop-
ularity because of a need to register large number of datasets
for atlas construction [9, 10]. Groupwise registration is gen-
erally approached by two techniques. The first approach uses
pairwise registration between a template and all other images
in the population as in [11–13]. Yang et al. in [13] utilize
the voxelwise geometry and orientation information for
registration. Different measurements and rotation invariant
features are used in a deformable matching mechanism for
image alignment. However, pairwise registration has two
limitations. First, selecting a fixed template may not accurate-
ly represent the population. Secondly, pairwise registration
is not very effective when registering two images with signi-
ficant anatomical differences. Only those subjects that are
close to the template are registered properly.

To overcome the above limitations, there are many meth-
ods that achieve registration using all images from the popu-
lation. This approach is more faithful to the term “groupwise
registration.” The goal is to warp all subjects in a population
towards a hidden common space simultaneously within
a single framework [14, 15]. The groupwise registration
problem is formulated as one of optimization, with a global
cost function defined on all aligned images [16, 17]. The cost
function in [16, 17] is defined as the stack entropy or the
entropy of corresponding voxels in different volumes. The
justification is that if images are properly aligned, intensity
values at corresponding voxels from all volumes will form
a low entropy distribution. With this constraint, groupwise
registration is achieved within a B-spline-based free-form
deformation framework.

When across-subject variation is very large, it is generally
difficult to achieve good registration by simply registering
each image to a template image. Therefore, many approaches
make us of intermediate templates for registration [18–21].
In [18, 21], an intermediate template which does not belong
to the original dataset is created to aid registration between
two images. Tang et al. in [21] warp the template image with
a set of simulated deformation fields learnt using principal
component analysis (PCA) on a set of training deformation
fields. Such approaches do not guarantee that the intermedi-
ate template is realistic which may affect registration results.
Jia et al. in [19] construct a tree structure where each node
of the tree is represented by an image, and similar images
are represented by connected nodes. Each image is registered
with the help of intermediate templates determined along its
own path with respect to the final template.

Groupwise registration methods are particularly suitable
for perfusion DCE-MRI. Each region of the scanned organ
is characterized by a different intensity profile over time. For
example, in cardiac perfusion MRI, the contrast agent first
flows into the right ventricle (RV) and then into the left ven-
tricle (LV) before being flushed out of the cardiovascular
system. Thus, a pixel within the RV shows a peak intensity
magnitude early in the scanning sequence, while for the
LV blood pool, the intensity peak occurs later (Figure 4).
With this available information, we can formulate the cost

function such that, after registration, pixels from certain
regions follow a particular intensity time profile. This is
achieved by joint segmentation and groupwise registration
of DCE-MRI. There are not many works dealing with joint
segmentation and groupwise registration of cardiac perfu-
sion MRI, although Zhang et al. in [22] describe a method
for the rigid registration of brain perfusion images. The cost
function is derived from the total quadratic variation of
image intensity. Metz et al. in [23] propose a method for
groupwise registration of dynamic lung data using both spa-
tial and temporal constraints where groupwise optimization
of B-splines is used.

The temporal intensity patterns of pixels also determine
their segmentation labels (i.e., RV, LV blood pool, myocar-
dium background, etc.). Thus, the image sequence can be
segmented along with groupwise registration. It is a well-
known fact that registration and segmentation are mutually
complementary approaches. Many works have combined
them in a joint registration and segmentation framework
[24–26]. Including segmentation information into the cost
function reduces registration error and improves segmenta-
tion accuracy. In this paper, we propose a joint segmentation
and groupwise registration (JSGR) approach for cardiac
perfusion MRI. Our method combines intensity information
from the entire image sequence (for registration) and
maximizes the similarity between a pixel and other pixels
belonging to the same class (for segmentation). We describe
our method in Section 2, present experimental results in
Section 3, and conclude with Section 4.

2. Theory

JSGR aims to find the transformation for every image to
minimize a cost function. We do not have an explicitly
defined reference image but constrain the transformations
such that the registered images approach a common image
space (which is the reference image) and are approximated
to be the center of the images being registered. Wu et al. in
[27] have highlighted the importance of a sharp mean image
for accurate groupwise registration. Their observations are
derived from constructing atlases for a large population of
brain images. Such datasets show a lot of variability, and a
fixed reference image is sure to introduce bias. Our method
is used to achieve registration and segmentation using images
from the same dataset, where each patient has multiple
frames from different time intervals.

The general objective function for JSGR consists of two
terms, that is,

E = Edata + Esmooth, (1)

where Edata is the data cost and Esmooth is the smoothness
cost. The data cost depends upon the type of images being
registered, and the smoothness cost depends upon the opti-
mization framework.

Perfusion images are characterized by rapid intensity
change over time. Instead of relying on low-level infor-
mation, we aim to exploit the temporal information for
groupwise registration. First, we give a brief description of
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Figure 1: B-spline registration results for cardiac perfusion images. (a) Reference image; (b) floating image; difference image; (c) before
registration; (d) after registration using JRGS; (e) deformed grids obtained from JRGS.

B-splines and their optimization. Then we explain the for-
mulation of our data cost (Edata).

2.1. B-Spline-Based Registration. A B-spline-based freeform
deformation (FFD) transformation model was presented in
[28] for the elastic registration of breast images. The basic
idea of FFDs is to deform an object by manipulating an un-
derlying mesh of control points. The resulting deformation
controls the shape of the 3D (or 2D) object and produces a
smooth and continuous transformation. The transformation
field consists of a global and local component and is defined
as

T(x) = Tlocal

(
Tglobal(x)

)
, (2)

where Tglobal is an affine transform obtained using [1], and
Tlocal is the deformation based on B-splines. The DCE-MR
images are first affinely registered to a chosen reference
image. Note that this reference image is only for the purpose
of rigid registration and is usually the scan showing all
tissues without ambiguity. For elastic registration, there is
no explicitly defined reference image. Further discussion is
restricted to Tlocal.

We define an initial nx × ny × nz grid of control points
denoted as Φ. The grid points are denoted as Φi, j,k and have
uniform spacing. The free-form deformation can be written
as the 3D tensor product of 1D cubic B-splines,

Tlocal(x) = x +
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)Φi+l, j+m,k+n,

(3)

where x = (x1, x2, x3) is the displacement vector, i = �x/nx�−
1, j = �y/ny� − 1, k = �z/nz� − 1, u = x/nx − �x/nx�, v =
y/ny − �y/ny�, w = z/nz − �z/nz�, and Bl is the lth cubic
B-spline basis function given by the following equations:

B0(u) = (1− u)3

6
,

B1(u) =
(
3u3 − 6u2 + 4

)

6
,

B2(u) =
(−3u3 + 3u2 + 3u + 1

)

6
,

B3(u) =
(
u3
)

6
.

(4)

Since our datasets are in 2D, the corresponding equations
are

Tlocal(x) = x +
2∑

l=0

2∑

m=0

Bl(u)Bm(v)Φi+l, j+m. (5)

B-splines are locally controlled, which makes them com-
putationally efficient even for a large number of control
points. In particular, the basis function of cubic B-splines
have a limited support, that is, changing control point Φi, j

affects the transformation only in the local neighborhood of
that control point.

The local deformation of the cardiac tissues should be
characterized by a smooth transformation. To constrain the
spline-based FFD transformation to be smooth, one can
introduce a penalty term which regularizes the transforma-
tion. The general form of such a transformation in 3D takes
the following form:

Esmooth

= 1
V

∫ X

0

∫ Y

0

∫ Z

0

⎡
⎢⎢⎢⎢⎢⎢⎣

(
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∂x2

)2

+

(
∂2T

∂y2

)2
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)2

+

2

(
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∂xy

)2

+2

(
∂2T
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)2

+2

(
∂2T

∂yz

)2

⎤
⎥⎥⎥⎥⎥⎥⎦
dx dy dz,

(6)

where V denotes the volume of the image domain. Our
registration algorithm deals with 2D images in the spatial
domain. Therefore, the smoothness cost can be formulated
as

Esmooth

= 1
A

∫ X

0

∫ Y

0

⎡
⎣
(
∂2T

∂x2

)2

+

(
∂2T

∂y2

)2

+ 2

(
∂2T

∂xy

)2
⎤
⎦dx dy,

(7)

where A is the area of the image domain.

2.2. Similarity Measure. The images are first affinely aligned
with respect to a reference image using [1]. Note that this
reference image is only for rigid alignment and is not used
for groupwise registration. Seed points belonging to RV, LV
blood pool, myocardium, and background are identified (as
shown by red arrows in the first image of the first row
of Figure 3), and the labels of other pixels are determined
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Figure 2: Registration and segmentation results of the LV for each of the 12 datasets. (a) Registration error (in pixels); (b) segmentation
accuracy in %.

Figure 3: Contours of segmented regions overlaid on images from the dataset. First column shows results for JSGR, second column for
Met 1, third column for Met 2, and fourth column for JRS. Each row corresponds to a different dataset.

using graph cuts. The initial labeling is used to calculate
the cost functions in the first round of iteration. After the
B-spline grid of each image is updated, the images are
transformed and the segmentation labels are also updated
based on the transformed images. We define the data cost as
a combination of two terms which, individually, exploit the
different characteristics of the perfusion datasets. Thus, Edata

is defined as

Edata = w1 × EW + w2 × EQ, (8)

where EQ calculates the total quadratic variation of the
dataset, EW calculates the within-class distance of each

pixel, and w1,w2 are weights that determine the relative
contribution of each term. w1 = .4 and w2 = 1. Two weights
are used in order to examine the relative contribution of
each term to the results (discussed in Section 3.4). Below we
explain each term in greater detail.

2.3. Total Quadratic Variation (EQ). After registration of
DCE-MRI, we expect the intensity time variation of pixels
to be smooth after motion correction. The total quadratic
variation, EQ, measures the smoothness of the intensity
signal by a combination of its first- and second-order
derivatives. The sum of first derivatives over the entire
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Figure 4: Intensity change with time for pixels on epicardium, RV, and endocardium. (a) Before groupwise registration; (b) after groupwise
registration.

sequence contributes to a smooth signal, while the sum of
second derivatives favours a piecewise linear model of the
signal. During the precontrast and postcontrast stages, or
for regions without contrast enhancement, the first-order
derivative is relevant because we expect the intensity of the
same tissue to remain constant (i.e., the first-order derivative
of a constant signal is zero). During the wash-in and wash-
out stages, we expect the intensity of the same tissue to
increase or decrease approximately with a constant rate. In
an unregistered image sequence, the derivatives during the
wash-in and wash-out stage will alternate between positive
and negative values. However, as the image sequence is
registered, the intensity changes are gradual and the sum of
derivative values is minimal. We also use the second-order
derivative of the intensity vector to encourage a piecewise
linear intensity signal, as the second derivative of a linear
signal is zero. Except for position of peak enhancement, the
second derivative is zero at other time points.

Let In denote the image at the nth time point (or the nth
frame in the dynamic sequence. The intensity of its ith pixel
at time t is given by In,i(t), where t = 1, . . . ,T . Thus EQ is
given by

EQ =
N∑

n=1

∑

i

T∑

t=0

(
I′n,i(t) + I′′n,i(t)

)
dt. (9)

Here, I′ and I′′ are, respectively, the first and second
derivatives of the intensity signal, and N is the total number
of pixels in each image. Note that both the first and second
derivatives are used for the entire image sequence.

2.3.1. Within-Class Distance (EW ). The within class distance,
EW , integrates segmentation information into the JSGR
framework. EW ensures that pixels of the same class have

similar intensity time profiles. In other words, pixels with the
same label are made similar to a representative signal from
that class. We use the mean intensity vector for representing
each class of pixels. For a pixel i with known label l, its
intensity vector provides greater information about the class
labels. The within-class distance is calculated as the difference
with respect to the mean intensity vector of class l(Il) and is
given by

EW =
∑

i

∥∥Ii − Il
∥∥. (10)

Note that if pixel i belongs to class l (as determined from
the current labels), then its difference only with respect
to the mean intensity vector of class l is calculated; ‖ · ‖
denotes the Euclidean distance of the vectors. If a pixel has
been correctly labeled as LV blood pool (or RV), then the
residual error from the mean of LV blood pool (or RV)
will be low. On the other hand, if the labeling is wrong,
then the corresponding error is high. Initially, due to many
unregistered pixels, the mean intensity vector may not be
a very accurate representation of the class. But after every
iteration, the mean intensity vector becomes smooth with the
update of segmentation labels and starts to truly represent
the particular class. In an iterative method, these constraints
(EQ and EW ) ensure that the labels converge correctly.
Although the blood pool shows a lot of intensity change, it
does not affect our method. By combining the contributions
of the registration and segmentation terms, we overcome the
effects of intensity change.

Here, we need a representative intensity vector for a
particular class. Although the mean vector is not necessarily
the best representative vector at the beginning of registration,
it is the best choice for a balance between registration accu-
racy and computational complexity. PCA could be a more
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accurate choice for the representative vector but significantly
increases computation complexity. Moreover, we observe
that with increasing number of iterations, the mean vector
does converge to the representative vector of the class. This is
supported by the fact that the registration and segmentation
accuracies are the same when using the mean vector (after
convergence) and principal components. But by using PCA,
the computation time increases by more than 1.5 times.

2.4. Optimization. B-splines are used to optimize the cost
function in (1). A uniform grid is initialized for all images.
The first image’s grid coefficients are updated based on
the present value of the energy function. The image is
transformed, and the segmentation labels are immediately
updated. The next image’s grid coefficients are then updated
followed by image transformation and update of segmenta-
tion labels. This is repeated for all images of the sequence
corresponding to different time points. This constitutes one
iteration for JSGR. The segmentation labels are updated after
the iteration to be used as the starting point for the next
iteration. We repeat the process until the cost function does
not decrease further.

The advantage of dynamic update of segmentation labels
is that it reflects the value of the energy function of the
updated image sequence based on the latest transformations.
Thus, if the energy function value does not change while
updating the grid coefficients of three consecutive images,
then JSGR can be immediately terminated. Once the process
has been terminated, the final segmentation labels can be
immediately obtained using graph cuts.

In order that the images are registered to a common
image space, the average deformation of a pixel is constrained
to be zero. This is achieved by making the sum of coefficients
for the corresponding grid point over all images to be zero.
After the grid of every image is updated, the images are
transformed, and the segmentation labels are dynamically
updated, thus ensuring that the change in grid coefficients
reflects immediately in the registration process. It also leads
to more accurate registration than updating the segmenta-
tion labels at the end of each iteration. The algorithm is
summarized in Algorithm 1.

3. Experiments and Results

Cardiac images were acquired on a 1.5T Siemens Sonata
MR scanner following bolus injection of Gd-DTPA contrast
agent. There are 12 sequences acquired from 12 patients in
whom it was important to look at myocardial perfusion.
Each sequence comprised of 60 frames with a total of 720
frames. The datasets were acquired with electrocardiographic
(ECG) gating such that the images were acquired during
the same phase of the cardiac cycle. This minimized cardiac
motion, but some deformations were still observed due to
patient breathing. The pixel spacing ranges from (1.5 × 1.5)
to (2.8× 2.8) mm2. The acquired images were from the same
midcavity slice. The images were corrected for rotation and
translation motion before segmentation. The initial labeling
was obtained using graph cuts [5]. The B-spline grid was of

size 10 × 10 with the spacing between grid control points
varying from 7 to 9 pixels.

3.1. B-Spline Grids. An example of B-spline-based illus-
tration is shown in Figure 1. A reference image, floating
image, difference images before and after registration, and
the deformed grid obtained after registration are shown.
The initial grid is uniform and without any deformations.
This example has been used for illustration purpose in
which a reference image was fixed and all other images
were registered using JRGS. From the difference images and
deformed grid, we can conclude that the deformations of the
floating image are captured by B-spline registration.

3.2. Registration Results. We compare the registration error
from JSGRwith [16] (Met 1), [28] (Met 2), and our pairwise
joint registration and segmentation method in [7] (JRS).
Met 1 does not define an explicit reference image and
uses the entropy of the pixel stack for the cost function.
Met 2 uses pairwise registration with normalized mutual
information (NMI) as the similarity measure. It has been
used before for registering contrast-enhanced breast MRI.
JRS is a joint registration and segmentation method, but
it only uses information from a pair of images and not
from the entire image sequence. Our algorithm converged
after 6 iterations. The threshold cost difference above which
registration continues is set at 0.1. We present qualitative
and quantitative results of our method (JSGR) in terms of
registration error and segmentation accuracy. For Met 1,
the number of iterations required for convergence was
5, while on an average, Met 2 needed 4 iterations for
convergence while registering a pair of images. JRS is a one-
time optimization method and is not iterative. The reported
results are after convergence of all algorithms.

The outline of the LV (epicardium and endocardium)
and RV is manually identified by expert observers in the
original image sequence. These contours are denoted as
Corg. The transformation of each image is used to map the
contours to the registered image space. Let these contours
be denoted as Ctrans. Since it is practically impossible to have
ground truth value for elastic registration, we take a different
approach to calculate registration error. In a perfusion image
sequence, the shape of the heart should be same for ideal
registration of all images. To calculate the registration error,
we fix one image as reference (usually the first image of the
sequence) and calculate the contour distance between the
LV (or any object of interest) in all other images and the
reference image. At the end of our JSGR method, not only
has the sequence been registered but the segmentation labels
of each frame have also been determined. Thus, we just need
to find the contour distance between regions with the same
labels. By contour, we refer to the outline of the segmented
region. Note that the same procedure as above can be used
to calculate the registration error before registration. The
contour distance is calculated using the following steps:

(1) let the reference contour for the registered image
sequence be denoted as Cref

trans,
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(1) Determine the initial labeling Lf of the image sequence.
(2) Set t = 1 for first registration round.
(3) Initialize uniform B-spline grid for all images.
(4) Calculate the value of energy function using the data cost formulation ((9) and (10)) and the smoothness cost (7).
(5) Update the B-spline grid for the image, transform the image, and update the segmentation labels.
(6) Repeat the above steps for all images of the sequence.
(7) Repeat for all images until convergence.

Algorithm 1: Joint segmentation and groupwise registration framework.

Table 1: Summary of registration and segmentation performance on cardiac perfusion datasets. The values indicate average and standard
deviations for all datasets.

Registration error (mm) Segmentation result

Before After registration DM (%)

Registration JSGR Met 1 Met 2 JRS JSGR Met 1 Met 2 JRS

LV epicardium 2.2± 1.2 0.7± 0.1 1.0± 0.2 1.1± 0.1 0.8± 0.4 93.6± 0.7 90.1± 0.3 90.6± 0.6 92.1± 1.1

LV endocardium 2.8± 1.0 0.5± 0.2 0.9± 0.1 0.9± 0.2 0.7± 0.3 92.8± 0.6 88.9± 0.1 88.4± 0.3 92.1± 0.8

LV overall 2.6± 1.1 0.5± 0.2 0.9± 0.3 1.0± 0.1 0.7± 0.4 93.1± 0.5 89.4± 0.2 88.8± 0.8 92.1± 0.9

(2) let the ith point on Ctrans be denoted by Ctrans(i) and
let the jth point on Cref

trans be denoted by Cref
trans( j),

(3) for every Ctrans(i) find the point on Cref
trans( j) such

that the distance between Ctrans(i) and Cref
trans( j) is

minimum

d
(
i, j
) = min

j

∥∥∥Ctrans(i)− Cref
trans

(
j
)∥∥∥, (11)

(4) for each point Ctrans(i), the corresponding d(i, j) is
calculated. The contour distance (CD) is the average
distance and is defined as

CD =
∑

i d
(
i, j
)

∑
i

. (12)

The average error measures for 12 datasets are given in
Table 1. Lower the registration error better is the method’s
performance. We observe that JSGR has the lowest regis-
tration, while Met 2 has the highest error. Met 2 registers
all images to a fixed reference image. Intensity change is
common between two images of the dataset. Consequently,
registration is prone to error while using a simple NMI-based
similarity measure. Groupwise registration has the advantage
that information from the entire sequence can be exploited
for registration which is particularly important for DCE-
MRI. The importance of dynamic information is highlighted
by the fact that JRGS shows slightly higher accuracy than
JRS which is a pairwise joint registration and segmentation
method. JRS’s performance is better than Met 1 although
Met 1 is a groupwise registration method. This indicates that
inclusion of segmentation information improves registration
more than the inclusion of dynamic information. Between
Met 1 and JSGR, the latter performs better because it
combines segmentation and registration information in the

cost function. Subsequently, the final registration errors for
JSGR are lower than Met 1. In Figure 2(a), we show the
error measures for the LV for each of the 12 datasets.

The time taken for registering one full dataset (includ-
ing 60 images) is 1 hr 33 minutes using JSGR, 58 mins
using Met 1, 45 mins using Met 2, and 55 mins using JRS.
JSGR and JRS were implemented using MATLAB 7.5 on
a PC having a Pentium 4, 3 GhZ processor. Met 1 was
implemented by the authors using ITK and thus has low
execution time. Met 2 was also implemented in MATLAB for
pairwise registration. Since JSGR is a joint segmentation and
groupwise registration method, it takes more than twice the
time compared to Met 2.

3.3. Segmentation Results. Segmentation accuracy is calcu-
lated based on Dice metric (DM) values between manual seg-
mentation and automatic segmentation for different meth-
ods. Manual segmentations for each slice are obtained after
registration by each method. After registration is complete
for each method, the segmentation labels are obtained by
applying graph cuts on the intensity vectors. Now, the seg-
mentation labels for corresponding pixels on different slices
will be the same. These labels are compared with the
manual segmentations to get the segmentation accuracy
using DM. For JSGR, the labels are already obtained after the
registration process.

The average DM values for the LV over all 12 datasets are
shown in Table 1. Figure 2(b) shows the average DM values
of the LV for each dataset over all frames of the sequence. The
DM values are highest for JSGR thus indicating maximum
accuracy amongst the three methods.

Figure 3 shows the segmented contours for LV endo-
cardium overlaid on a representative image of the database.
The representative image is chosen such that the blood pool
is visible without any ambiguities. The manual segmenta-
tions are shown in red, while the automatic segmentations
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Table 2: Average registration and segmentation accuracy of LV with change in w1.

w1 0 0.1 0.2 0.4 1 1.5 2 2.5 3 4 5

Registration error (pix) 1 0.9 0.7 0.6 0.6 0.7 0.7 0.8 0.9 1.2 1.5

DM values (%) 89.3 90.6 91.9 93.8 93.7 93.1 92.9 91 89.9 89.3 88.8

Table 3: Average registration and segmentation accuracy of LV with change in w2.

w2 0 0.1 0.2 0.4 1 1.5 2 2.5 3 4 5

Registration error (pix) 1.4 1.2 1 0.8 0.6 0.6 0.7 0.75 0.8 1.1 1.4

DM values (%) 88.2 89.5 90.4 91.7 93.8 93.5 92.7 92.1 91.8 89.2 88.3

are shown in green. The first row also shows the initial
segmentation in yellow. The initial segmentation is a result
of applying graphcut to the unregistered image sequence and
using the intensity vector of each pixel. Note that the auto-
matic segmentations are the average contours over all frames
of the sequence and the manual segmentations are also the
average of the manually drawn contours. Since the segmenta-
tion labels are calculated from the intensity vectors, the labels
will be the same for corresponding pixels in all frames. The
first column shows results for JSGR, second column shows
results for Met 1, the third column shows results for Met 2,
and the fourth column shows results for JRS. Each row
shows results for different datasets. Again we observe that
JSGR shows the best agreement with manual segmentations
due to the combination of registration and segmentation
information. The other two methods being solely focused
on registration perform inadequately for cardiac perfusion
images. The accuracy measures highlight the importance of
integrating registration and segmentation information. This
combination is particularly important when images have
low contrast, and also when segmentation information is
available to be exploited for registration. Although the DM
and registration error for JRGS and JRS are similar, a t-
test gives P < 0.032, thus indicating statistically different
results, and hence improvement in results by using dynamic
information.

Figure 4 shows the intensity variations with time for
pixels on the LV blood pool, RV, and endocardium. Edge
pixels are chosen for epicardium and RV, and therefore, the
intensity change before registration (Figure 4(a)) is noisy.
After registration using JSGR, the intensity variation is
smoother (Figure 4(b)) and highlights the success of our
method for time-varying data.

3.4. Importance of EQ and EW . It is important to look at
the contribution of EQ and EW to the overall registration
procedure. EQ can be termed as the registration energy,
while EW is the segmentation energy. We examine the
improvement brought about by EW to registration accuracy,
and also the improvement in segmentation accuracy due to
EQ. We vary w1 (8) from 0 to 5 (keeping w2 = 1 fixed)
and calculate the registration and segmentation accuracy
values for the LV (shown in Table 2). It is observed that
as w1 increases from 0, the registration and segmentation
performance both improve. In fact, when w1 ≤ 0.4, the

registration accuracy is less than or comparable to Met 1 but
improves with greater contribution of EW . However, if w1 >
2, the registration accuracy starts to degrade (evident from
higher registration error), and the DM values also decrease
due to unbalancing of each terms contribution.

Similarly, when we increase the value of w2 (with w1 =
0.4) from 0 to 5, we observe low DM values when w2 < 1.
The best segmentation accuracy is obtained for 1 ≤ w2 ≤ 3.
However, when w2 > 3, the DM values start to decrease and
the registration error also increases. Table 3 shows the change
in registration error and DM values with change in w2. The
best results are obtained for w2 = 1 and w1 = 0.4.

4. Conclusion

We have proposed a novel method for joint segmentation
and groupwise registration of the LV in cardiac perfusion
images. By maximizing the smoothness of the temporal
intensity signal, our method uses available temporal infor-
mation from the entire image sequence. This helps to over-
come the effects of intensity change. Segmentation infor-
mation is incorporated by minimizing the error between a
pixel’s intensity vector and mean intensity vector of the
same class. Compared to manual segmentations, our method
gives higher segmentation accuracy than other methods.
The registration errors for our method are the lowest from
amongst the three methods. Our being a joint segmentation
and groupwise registration approach, both registration and
segmentation performance are better than conventional
methods. This is because of two factors: (1) exploiting tem-
poral information from DCE-MRI sequence in a groupwise
registration framework and (2) use of mutually comple-
mentary registration and segmentation information, while
most other methods solve registration and segmentation
separately. Our method has the potential to be used for other
data types having time-varying characteristics, and in future,
we aim to use our method on other dynamic datasets.
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