79 research outputs found

    WORKING GROUP ON NEPHROPS SURVEYS (WGNEPS ; outputs from 2020)

    Get PDF
    The Working Group on Nephrops Surveys (WGNEPS) is the international coordination group for Nephrops underwater television and trawl surveys within ICES. This report summarizes the na-tional contributions on the results of the surveys conducted in 2020 together with time series covering all survey years, problems encountered, data quality checks and technological improve-ments as well as the planning for survey activities for 2021.ICE

    A New Coastal Crawler Prototype to Expand the Ecological Monitoring Radius of OBSEA Cabled Observatory

    Get PDF
    The use of marine cabled video observatories with multiparametric environmental data collection capability is becoming relevant for ecological monitoring strategies. Their ecosystem surveying can be enforced in real time, remotely, and continuously, over consecutive days, seasons, and even years. Unfortunately, as most observatories perform such monitoring with fixed cameras, the ecological value of their data is limited to a narrow field of view, possibly not representative of the local habitat heterogeneity. Docked mobile robotic platforms could be used to extend data collection to larger, and hence more ecologically representative areas. Among the various state-of-the-art underwater robotic platforms available, benthic crawlers are excellent candidates to perform ecological monitoring tasks in combination with cabled observatories. Although they are normally used in the deep sea, their high positioning stability, low acoustic signature, and low energetic consumption, especially during stationary phases, make them suitable for coastal operations. In this paper, we present the integration of a benthic crawler into a coastal cabled observatory (OBSEA) to extend its monitoring radius and collect more ecologically representative data. The extension of the monitoring radius was obtained by remotely operating the crawler to enforce back-and-forth drives along specific transects while recording videos with the onboard cameras. The ecological relevance of the monitoring-radius extension was demonstrated by performing a visual census of the species observed with the crawler’s cameras in comparison to the observatory’s fixed cameras, revealing non-negligible differences. Additionally, the videos recorded from the crawler’s cameras during the transects were used to demonstrate an automated photo-mosaic of the seabed for the first time on this class of vehicles. In the present work, the crawler travelled in an area of 40 m away from the OBSEA, producing an extension of the monitoring field of view (FOV), and covering an area approximately 230 times larger than OBSEA’s camera. The analysis of the videos obtained from the crawler’s and the observatory’s cameras revealed differences in the species observed. Future implementation scenarios are also discussed in relation to mission autonomy to perform imaging across spatial heterogeneity gradients around the OBSEA

    Deep learning based deep-sea automatic image enhancement and animal species classification

    Get PDF
    The automatic classification of marine species based on images is a challenging task for which multiple solutions have been increasingly provided in the past two decades. Oceans are complex ecosystems, difficult to access, and often the images obtained are of low quality. In such cases, animal classification becomes tedious. Therefore, it is often necessary to apply enhancement or pre-processing techniques to the images, before applying classification algorithms. In this work, we propose an image enhancement and classification pipeline that allows automated processing of images from benthic moving platforms. Deep-sea (870 m depth) fauna was targeted in footage taken by the crawler “Wally” (an Internet Operated Vehicle), within the Ocean Network Canada (ONC) area of Barkley Canyon (Vancouver, BC; Canada). The image enhancement process consists mainly of a convolutional residual network, capable of generating enhanced images from a set of raw images. The images generated by the trained convolutional residual network obtained high values in metrics for underwater imagery assessment such as UIQM (~ 2.585) and UCIQE (2.406). The highest SSIM and PSNR values were also obtained when compared to the original dataset. The entire process has shown good classification results on an independent test data set, with an accuracy value of 66.44% and an Area Under the ROC Curve (AUROC) value of 82.91%, which were subsequently improved to 79.44% and 88.64% for accuracy and AUROC respectively. These results obtained with the enhanced images are quite promising and superior to those obtained with the non-enhanced datasets, paving the strategy for the on-board real-time processing of crawler imaging, and outperforming those published in previous papers.This work was developed at Deusto Seidor S.A. (01015, Vitoria-Gasteiz, Spain) within the framework of the Tecnoterra (ICM-CSIC/UPC) and the following project activities: ARIM (Autonomous Robotic sea-floor Infrastructure for benthopelagic Monitoring); MarTERA ERA-Net Cofund; Centro para el Desarrollo Tecnológico Industrial, CDTI; and RESBIO (TEC2017-87861-R; Ministerio de Ciencia, Innovación y Universidades). This work was supported by the Centro para el Desarrollo Tecnológico Industrial (CDTI) (Grant No. EXP 00108707 / SERA-20181020)

    Biodiversity and spatial ecology of arctic sponge grounds in the Nordic Seas

    Get PDF
    Sponge grounds are biogenic habitats formed by large structure-forming sponges in the deep-sea. They are biodiversity hotspots because they provide associated fauna a place of refuge, additional substratum, foraging areas, and can act as nursery grounds for many demersal fish. Sponge grounds have a global distribution, though there has been an increased focus in the North Atlantic in recent years due to the Horizon 2020 funded SponGES project. While there are a variety of sponge ground types based on their main sponge composition (monospecific and multispecific) or distribution (temperate, boreal, and arctic), there has been relatively little scientific focus on arctic sponge grounds, in terms of biodiversity, community ecology, and distribution. With potential imposing threats (e.g., climate change, bottom fishing, deep-sea mining) to arctic deep-sea communities such as arctic sponge grounds, there is a clear need to form a baseline understanding of these communities and their spatial ecology. The main aims of this thesis were to fill the current knowledge gaps of arctic sponge ground biodiversity and spatial ecology in the Nordic Seas. More specifically, this project aimed to: 1) describe the megafauna composition and diversity of arctic sponge grounds to improve on their current habitat classification; 2) examine biotic interactions occurring within the sponge grounds to evaluate the ecological services arctic sponge grounds provide; 3) investigate the spatial distribution of arctic sponge grounds and the characterising megafauna to identify how communities are distributed on a seascape and how megafauna are assembled within a habitat; and 4) explore the primary abiotic drivers that influence the distribution and community structure of arctic sponges grounds and their inhabitants in order to understand what conditions sponge grounds need to form and thrive. This thesis provides the first description of the oceanographic setting of Schulz Bank, a seamount on the Arctic Mid-Ocean Ridge used as a case study site for majority of the thesis and evaluates how the oceanographic conditions benefit the communities the seamount supports (Paper 1). The visual data collected from remotely operated vehicles (ROV) at various sites allowed us to test and refine annotation and statistical methodology that can be employed in future research for characterising benthic communities, exploring their distribution, and identifying their abiotic drivers (Papers 2–4). Furthermore, this thesis further highlights the potential of using AUVs for habitat mapping at small scales (<10 m) by identifying the fine-scale spatial patterns of arctic sponge ground fauna for the first time and visualizing how megafauna are assembled within their habitat (Paper 2). The work presented in the thesis forms a baseline understanding of the different types of arctic sponge grounds on Schulz Bank and builds on the limited scientific understanding of arctic sponge ground community and spatial ecology. Based on the results of this thesis, various new arctic megabenthic communities (biotopes), comprised of vulnerable marine ecosystem (VME) characterising taxa, were classified and are being proposed to the habitat classification system, European Nature Information System (EUNIS). These classifications can further improve habitat mapping and species distribution modelling capabilities of arctic megabenthic communities in the future. The extensive annotation of visual data identified key ecological roles that the sponge grounds provide to the associated megafauna, which can be further evaluated. Our work enhances the current understanding of abiotic drivers that influence arctic sponge ground distribution, although there is still a clear need to further build on this knowledge. Furthermore, our findings show that Schulz Bank is a prime candidate for protection due to its diverse and vulnerable communities, the ecological services the communities provide, and the relatively pristine condition the seamount is currently in. The work from this thesis has improved the understanding of sponge ground community and spatial ecology and developed tools and datasets that have been used in other work in the field. This thesis shows that arctic sponge grounds are important habitats in the Nordic Seas and highlights the need to form a baseline understanding of arctic benthic communities, especially in light of potential anthropogenic disturbances in the future.Svampebunner er biogene habitater dannet av store strukturdannende svamper i dyphavet. De har høyt biologisk mangfold fordi de gir tilhørende fauna et tilfluktssted, ekstra substrat, tilgang på mat og kan fungere som oppvekstområder for mange bunnfisk. Svampebunner har en global utbredelse, selv om det har vært et økt fokus i Nord-Atlanteren de siste årene på grunn av det forskningsprosjektet SpongES som var finansiert av EU-programmet Horisont2020. Selv om det finnes en rekke ulike svampebunner definert av sammensetningen av store svamper (monospesifikke og multispesifikke) eller utbredelsen (tempererte, boreale og arktiske), har det vært relativt lite vitenskapelig fokus på arktiske svampebunner når det gjelder biologisk mangfold, samfunnsøkologi, og distribusjon. Med potensielle fremtidige trusler (f.eks. klimaendringer, bunnfiske, dyphavsgruvedrift) mot arktiske dyphavssamfunn som svampebunner, er det et klart behov for å øke den grunnleggende forståelsen av disse samfunnene og deres romlige økologi. Hovedmålene med denne oppgaven var å fylle kunnskapshull om biologisk mangfold i arktisk svampebunn og romlig økologi i de nordiske hav. Mer spesifikt hadde dette prosjektet som mål å: 1) beskrive megafaunasammensetningen og mangfoldet av arktiske svampebunner for å forbedre deres nåværende habitatklassifisering; 2) undersøke biotiske interaksjoner som forekommer innenfor svampebunnene for å evaluere de økologiske tjenestene arktiske svampebunner tilbyr; 3) undersøke den romlige fordelingen av arktiske svampebunner og den karakteristiske megafaunaen for å identifisere hvordan samfunnet er fordelt på havbunnen og hvordan megafauna er utbredt innenfor habitatet; og 4) utforske de primære abiotiske drivkreftene som påvirker utbredelsen og samfunnsstrukturen til arktiske svampebunner og deres innbyggere for å forstå hvilke forhold svampebunner trenger for å dannes og trives. Denne oppgaven gir den første beskrivelsen av de oseanografiske forholdene ved Schulzbanken, et undersjøisk fjell på den arktiske midthavsryggen som er studieområdet for størstedelen av oppgaven, og evaluerer hvordan de oseanografiske forholdene er til nytte for samfunnene undersjøisk fjellet støtter (artikkel 1). De visuelle dataene samlet inn fra remotely operated vehicles (ROV) på forskjellige steder gjorde det mulig å teste og raffinere annotering og statistisk metodikk som kan brukes i fremtidig forskning for å karakterisere bunndyrsamfunn, utforske deres utbredelse og identifisere deres abiotiske drivere (artikkel 2–4). Videre fremhever denne oppgaven potensialet ved å bruke AUV-er for habitatkartlegging i liten skala (<10 m) ved å identifisere de finskala romlige mønstrene til arktisk svampebunnfauna for første gang, og visualisere hvordan megafauna er satt sammen i deres habitat (artikkel 2). Arbeidet som presenteres i avhandlingen danner en grunnleggende forståelse av de forskjellige typene av arktiske svampebunner på Schulzbanken og utvider den begrensede vitenskapelige forståelsen av arktisk svampebunnsamfunn og romlig økologi. Basert på resultatene av denne avhandlingen, ble ulike nye arktiske megabentiske samfunn (biotoper), som består av dyregrupper som karakteriserer Vulnerable Marine Ecosystems (VMEer), klassifisert og foreslått til habitatklassifiseringssystemet, European Nature Information System (EUNIS). Disse klassifiseringene kan ytterligere forbedre habitatkartlegging og artsfordelingsmodelleringsevner for arktiske megabentiske samfunn i fremtiden. Den omfattende annoteringen av visuelle data identifiserte viktige økologiske roller som svampebunnene har for den tilhørende megafaunaen. Avhandlingen forbedrer den nåværende forståelsen av abiotiske drivere som påvirker arktisk svampebunnfordeling, selv om det fortsatt er et klart behov for å bygge videre på denne kunnskapen. Videre viser funnene våre at Schulzbanken er en førsteklasses kandidat for beskyttelse på grunn av dets mangfoldige og sårbare samfunn, de økologiske tjenestene samfunnene leverer, og den relativt uberørte tilstanden havfjellet er i. Arbeidet i denne avhandlingen har forbedret forståelsen av svampebunnssamfunn og romlig økologi og utviklet verktøy og datasett som har vært brukt i annet arbeid på feltet. Denne oppgaven viser at arktiske svampebunner er viktige habitater i de nordiske hav og fremhever behovet for å danne en grunnleggende forståelse av arktiske bunndyrsamfunn, spesielt i lys av potensielle menneskeskapte forstyrrelser i fremtiden.Doktorgradsavhandlin

    Oversikt over tokt og stasjoner tatt i 2017

    Get PDF
    publishedVersio

    Challenges of biodiversity inventories in mosaic archipelagoes - a case study from the northern Baltic Sea

    Full text link

    Epibenthic biodiversity, habitat characterisation and anthropogenic pressure mapping of unconsolidated sediment habitats in Algoa Bay, South Africa

    Get PDF
    Implementation of an ecosystem-based management approach for marine systems requires a comprehensive understanding of the biophysical marine environment and the cumulative human impacts at different spatio-temporal scales. In Algoa Bay, South Africa, this study describes the epibenthic communities occurring in unconsolidated marine habitats. It further investigates the potential abiotic factors that influence their distribution and abundance, compares epibenthic communities with existing habitat information and evaluates the protection status of the marine environment in the Bay. Seabed imagery, covering a total area of 171.4m², and sediment samples were collected from 13 stations from which 106 epibenthic species were identified. Multivariate analyses revealed two statistically distinct communities that did not align with the Algoa Bay benthic habitat types defined in the current National Biodiversity Assessment (NBA, 2012). Further assessment indicated that community differences were driven by the presence of rock substrate. A range of abiotic factors were tested against the epibenthic communities to explore patterns and identify potential drivers. The combination of abiotic factors depth, mean grain size, mean bottom temperature and mean bottom current explained 55% fitted variation in epibenthic data. The degree of long-term variability in several of these parameters were likewise identified as explanatory variables, including bottom temperature, current speed and dissolved oxygen. The link between abiotic factors and the epibenthic communities observed indicate that these variables can act as surrogates for habitat mapping in the future. The existing and proposed Marine Protected Area (MPA) in conjunction with the NBA 2012 habitat types does well in protecting the majority of habitats in the Bay, however there remain habitats that lack protection. Utilising the benthic communities and potential drivers identified in this study, the proposed MPA boundary delineations should be somewhat altered to include missing habitat types

    Report on potential emerging innovative monitoring approaches, identifying potential reductions in monitoring costs and evaluation of existing long-term datasets.

    Get PDF
    This report highlights the potential for using emerging and innovative technologies for pre-consent surveys of key receptor groups at proposed marine renewable energy sites. The report also identifies potential reductions in cost through comparison of currently-used survey methods. This comes as part of the RiCORE project, which aimed to promote the use of offshore renewable energy projects in the EU by streamlining consenting processes
    corecore