4,284 research outputs found

    Hardware-In-The-Loop Assessment of Robust Fuzzy Control Solutions for Hydroelectric and Wind Turbine Models

    Get PDF
    The interest towards renewable energy resources is increasing, and in particular it concerns wind and hydro powers, where the key point regards their efficient conversion into electric energy. To this end, control techniques can be used to meet this purpose, especially the ones relying on fuzzy models, due to their capabilities to manage nonlinear dynamic processes working in different conditions, and affected by faults, measurement errors, uncertainty and disturbances. The design methods addressed in this paper were already developed and validated for wind turbine plants, and important results can be achieved from their appropriate design and application to hydroelectric plants. This is the key issue of the paper, which recalls some considerations on the proposed solutions, as well as their validation to these energy conversion systems. Note that works available in the related literature that consider both wind and hydraulic energy conversion systems investigate a limited number of common issues, thus leading to little exchange opportunities and reduced common research aspects. Another important point addressed in the paper is that the proposed control design solutions are able to take into account the different working conditions of these power plants. Moreover, faults, uncertainty, disturbance and model reality mismatch effects are also considered when analyzing the reliability and robustness features of the derived control schemes. To this end, proper hardware in the loop tools are considered to verify and validate the developed control schemes in more realistic environments. Copyright (C) 2022 The Authors

    Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    Get PDF
    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system

    Decentralized fault-tolerant control of inland navigation networks: a challenge

    Get PDF
    Inland waterways are large-scale networks used principally for navigation. Even if the transport planning is an important issue, the water resource management is a crucial point. Indeed, navigation is not possible when there is too little or too much water inside the waterways. Hence, the water resource management of waterways has to be particularly efficient in a context of climate change and increase of water demand. This management has to be done by considering different time and space scales and still requires the development of new methodologies and tools in the topics of the Control and Informatics communities. This work addresses the problem of waterways management in terms of modeling, control, diagnosis and fault-tolerant control by focusing in the inland waterways of the north of France. A review of proposed tools and the ongoing research topics are provided in this paper.Peer ReviewedPostprint (published version

    Geometry optimization of a francis turbine for efficiency, cavitation and erosion using computational fluid dynamics

    Get PDF
    In recent years, the application of numerical computational models based on computational fluid dynamics (CFD) to industrial problems has been increasing; Today CFD is used to optimize and develop equipment and processes in many types of industry including the energy industry. The main advantage of the solutions with CFD is in the obtaining of the operating conditions and the analysis of internal and external flows, which experimentally is very difficult and expensive to achieve. This document presents the results of the research project of a master's degree in engineering with an emphasis in mechanical engineering where the geometry that minimizes the erosive wear by hard particle and cavitation for the different operating regimes maintaining the efficiency of the 10MW Francis turbine of the Amaime hydroelectric plant was obtained. To achieve this, a Simplified Virtual Laboratory (SVL) methodology was implemented, consisting of the use of Computational Fluid Dynamics and an optimization technique. First, the simulation of the current geometry of the turbine was carried out to characterize and verify, with experimental data, that the model represents the current operating conditions; this required to generate 3D CAD geometries by means of planes and reverse engineering using three-dimensional scanning of complex elements of the turbine such as blades. Second, it was required to optimize the geometry of the runner blades, guide vanes, covers and labyrinths by the combined use of factorial design of experiments, artificial neural networks (ANN) and optimization techniques by genetic algorithms.MaestríaMAGISTER EN INGENIERÍA ÉNFASIS EN INGENIERÍA MECÁNIC

    An approach to a practical optimization of reliability centered maintenance. Case study: power transformer in hydro power plant

    Full text link
    [EN] Any industrial organization has to analyse the maintenance strategy that it is applying to ensure the maximum efficiency of the system. This includes to define the maintenance policy, a well-analysed maintenance plan, and correct maintenance management and operational procedures. The maintenance department in most industrial organizations has to be continuously justifying the costs associated with their activities to avoid the continuous cuts requested by management based on the economic business plan for asset management. This paper presents the bases of the reliability centered maintenance and describes a practical case referring to a critical electrical equipment of an electrical system, such as the power transformer of a hydroelectric power plant. The power transformer in a hydroelectric power plant constitutes a fundamental electrical equipment because a failure in its operation can generate a long lasting unavailability of the system in the electrical generation with the consequent losses associated to the business. Martinez-Monseco, FJ. (2020). An approach to a practical optimization of reliability centered maintenance. Case study: power transformer in hydro power plant. Journal of Applied Research in Technology & Engineering. 1(1):37-47. https://doi.org/10.4995/jarte.2020.13740OJS37471

    Applications of aerospace technology in the electric power industry

    Get PDF
    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented

    A Virtual Hydroelectric Power System for Distributable Industrial Control System Security Research

    Get PDF
    Cyber security for industrial control systems (ICS) has been a rapidly growing area of interest and research for the last several years. The lack of an easily distributable platform on which ICS components can be built for use in security testing and result comparison among researchers presents a major issue. This thesis details the use of a virtual testbed environment to build a representative virtual hydroelectric power system (VHPS). The VHPS generates realistic Modbus/TCP network traffic between two separate ICS devices, a Master and a Slave, located on separate VMs. For security testing purposes, a method of session hijacking has been implemented as well as a Function Code Scan attack and a Setpoint Manipulation attack. The virtual environment, the VHPS, and the attacks have been packaged into an LXDE-based Fedora Spin VM for easy distribution

    Optimizing Hydroelectric Power Generation: The Case of Shiroro Dam

    Get PDF
    Abstract—Hydroelectric power, one of the most important sources of mass generation of electric power, is a renewable source of energy. The amount of electricity that can be produced by a hydro-electricity generating system depends on systemic variables viz; plant efficiency, volumetric water flow through the turbine and the head of the water from the water surface to the turbine. The availability of the Water in the reservoir is a function of some hydrological variables principal among which are rainfall, reservoir inflows and evaporation. Understanding the dynamics of these variables, and the correlation between them are core to proper planning and management of a hydroelectric power station. In this Study, simple mathematical methods that include linear programming and statistical analysis based on simulation techniques were used to evaluate vital parameters based on the hydrologic data obtained from the Hydrologic Units of the Shiroro Power Stations in Nigeria. The overall aim of the study is to idealize power generation at Shiroro dam in and out of rain season so as to ensure optimum generation of electricity all year round in order to achieve energy sufficiency in Nigeria

    Dickey-Lincoln School Lakes, Maine, U.S.A. and Quebec, Canada : Design Memorandum No. 2 Hydrology and Hydraulic Analysis: Section 1 - Climatology and Stream Flow

    Get PDF
    This section I is the first of four sections comprising Design Memo-randum No. 2. The other sections are: II - Dickey Dam - Spillway Design Flood, III - Lincoln School Dam - Spillway Design Flood and IV - Flood Analysis and Reservoir Regulation. la section I, hydro-logic studies will be confined generally to the drainage area of the Saint John River above the gaging station at Fort Kent, Maine. The purpose of section I is to present the climatological and streamflow data for the Saint John River above Fort Kent in order to establish hydrologic criteria for the design of the Dickey and Lincoln School dams
    • 

    corecore