1,168 research outputs found

    High-Level GPU Programming: Domain-Specific Optimization and Inference

    Get PDF
    When writing computer software one is often forced to balance the need for high run-time performance with high programmer productivity. By using a high-level language it is often possible to cut development times, but this typically comes at the cost of reduced run-time performance. Using a lower-level language, programs can be made very efficient but at the cost of increased development time. Real-time computer graphics is an area where there are very high demands on both performance and visual quality. Typically, large portions of such applications are written in lower-level languages and also rely on dedicated hardware, in the form of programmable graphics processing units (GPUs), for handling computationally demanding rendering algorithms. These GPUs are parallel stream processors, specialized towards computer graphics, that have computational performance more than a magnitude higher than corresponding CPUs. This has revolutionized computer graphics and also led to GPUs being used to solve more general numerical problems, such as fluid and physics simulation, protein folding, image processing, and databases. Unfortunately, the highly specialized nature of GPUs has also made them difficult to program. In this dissertation we show that GPUs can be programmed at a higher level, while maintaining performance, compared to current lower-level languages. By constructing a domain-specific language (DSL), which provides appropriate domain-specific abstractions and user-annotations, it is possible to write programs in a more abstract and modular manner. Using knowledge of the domain it is possible for the DSL compiler to generate very efficient code. We show that, by experiment, the performance of our DSLs is equal to that of GPU programs written by hand using current low-level languages. Also, control over the trade-offs between visual quality and performance is retained. In the papers included in this dissertation, we present domain-specific languages targeted at numerical processing and computer graphics, respectively. These DSL have been implemented as embedded languages in Python, a dynamic programming language that provide a rich set of high-level features. In this dissertation we show how these features can be used to facilitate the construction of embedded languages

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. MĂ€rz 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen UniversitĂ€t Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform fĂŒr den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur KnĂŒpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und AnsĂ€tze einem breiten Publikum aus Wissenschaft und Wirtschaft zu prĂ€sentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjĂ€hriges Bestehen hat ihn zu einer festen GrĂ¶ĂŸe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium fĂŒr Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu prĂ€sentieren. Vertreter der Projekte Generische Plattform fĂŒr SystemzuverlĂ€ssigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwĂ€rtigen Arbeiten vor. Dies bereichert denWorkshop durch zusĂ€tzliche Themenschwerpunkte und bietet eine wertvolle ErgĂ€nzung zu den BeitrĂ€gen der Autoren. [... aus dem Vorwort

    A Compositional Approach to Embedded System Design

    Get PDF
    An important observable trend in embedded system design is the growing system complexity. Besides the sheer increase of functionality, the growing complexity has another dimension which is the resulting heterogeneity with respect to the different functions and components of an embedded system. This means that functions from different application domains are tightly coupled in a single embedded system. It is established industry practice that specialized specification languages and design environments are used in each application domain. The resulting heterogeneity of the specification is increased even further by reused components (legacy code, IP). Since there is little hope that a single suitable language will replace this heterogeneous set of languages, multi-language design is becoming increasingly important for complex embedded systems. The key problems in the context of multi-language design are the safe integration of the differently specified subsystems and the optimized implementation of the whole system. Both require the reliable validation of the system function as well as of the non-functional system properties. Current cosimulation-based approaches are well suited for functional validation and debugging. However, these approaches are less powerful for the validation of non-functional system properties. In this dissertation, a novel compositional approach to embedded system design is presented which augments existing cosimulation-based design flows with formal analysis capabilities regarding non-functional system properties such as timing or power consumption. Starting from a truly multi-language specification, the system is transformed into an abstract internal design representation which serves as basis for system-wide analysis and optimization.Ein wesentlicher Trend im Entwurf eingebetteter Systeme ist die steigende KomplexitĂ€t der zu entwerfenden Systeme. Neben der zunehmenden FunktionalitĂ€t hat die steigende KomplexitĂ€t eine weitere Dimension: die resultierende HeterogenitĂ€t bezĂŒglich der verschiedenen Funktionen und Komponenten eines eingebetteten Systems. Dies bedeutet, daß Funktionen aus verschiedenen Anwendungsbereichen in einem einzelnen System eng miteinander kooperieren. Es ist in der industriellen Praxis etabliert, daß in jedem Anwendungsbereich spezialisierte Spezifikationssprachen zum Einsatz kommen. Da wenig Hoffnung besteht, daß eine einzige geeignete Sprache diesen heterogenen Mix von Sprachen ersetzen wird, gewinnt der mehrsprachige Entwurf fĂŒr komplexe eingebettete Systeme an Bedeutung. Die Hauptprobleme im Bereich des mehrsprachigen Entwurfs sind die sichere Integration der verschieden spezifizierten Teilsysteme und die optimierte Implementierung des gesamten Systems. Beide Probleme verlangen eine zuverlĂ€ssige Validierung der Systemfunktion sowie der nichtfunktionalen Systemeigenschaften. Heutige cosimulationsbasierte AnsĂ€tze aus Forschung und Industrie sind gut geeignet fĂŒr die funktionale Validierung und Fehlersuche, haben aber SchwĂ€chen bei der Validierung nichtfunktionaler Systemeigenschaften. In der vorliegenden Arbeit wird ein neuartiger kompositionaler Ansatz fĂŒr den Entwurf eingebetteter Systeme vorgestellt, der existierende cosimulationsbasierte EntwurfsflĂŒsse um FĂ€higkeiten zur Analyse nichtfunktionaler Systemeigenschaften ergĂ€nzt. Ausgehend von einer mehrsprachigen Spezifikation, wird das System in eine abstrakte homogene interne Darstellung transformiert, die als Grundlage fĂŒr die systemweite Analyse und Optimierung dient

    Automated Software Transplantation

    Get PDF
    Automated program repair has excited researchers for more than a decade, yet it has yet to find full scale deployment in industry. We report our experience with SAPFIX: the first deployment of automated end-to-end fault fixing, from test case design through to deployed repairs in production code. We have used SAPFIX at Facebook to repair 6 production systems, each consisting of tens of millions of lines of code, and which are collectively used by hundreds of millions of people worldwide. In its first three months of operation, SAPFIX produced 55 repair candidates for 57 crashes reported to SAPFIX, of which 27 have been deem as correct by developers and 14 have been landed into production automatically by SAPFIX. SAPFIX has thus demonstrated the potential of the search-based repair research agenda by deploying, to hundreds of millions of users worldwide, software systems that have been automatically tested and repaired. Automated software transplantation (autotransplantation) is a form of automated software engineering, where we use search based software engineering to be able to automatically move a functionality of interest from a ‘donor‘ program that implements it into a ‘host‘ program that lacks it. Autotransplantation is a kind of automated program repair where we repair the ‘host‘ program by augmenting it with the missing functionality. Automated software transplantation would open many exciting avenues for software development: suppose we could autotransplant code from one system into another, entirely unrelated, system, potentially written in a different programming language. Being able to do so might greatly enhance the software engineering practice, while reducing the costs. Automated software transplantation manifests in two different flavors: monolingual, when the languages of the host and donor programs is the same, or multilingual when the languages differ. This thesis introduces a theory of automated software transplantation, and two algorithms implemented in two tools that achieve this: ”SCALPEL for monolingual software transplantation and τSCALPEL for multilingual software transplantation. Leveraging lightweight annotation, program analysis identifies an organ (interesting behavior to transplant); testing validates that the organ exhibits the desired behavior during its extraction and after its implantation into a host. We report encouraging results: in 14 of 17 monolingual transplantation experiments involving 6 donors and 4 hosts, popular real-world systems, we successfully autotransplanted 6 new functionalities; and in 10 out of 10 multlingual transplantation experiments involving 10 donors and 10 hosts, popular real-world systems written in 4 different programming languages, we successfully autotransplanted 10 new functionalities. That is, we have passed all the test suites that validates the new functionalities behaviour and the fact that the initial program behaviour is preserved. Additionally, we have manually checked the behaviour exercised by the organ. Autotransplantation is also very useful: in just 26 hours computation time we successfully autotransplanted the H.264 video encoding functionality from the x264 system to the VLC media player, a task that is currently done manually by the developers of VLC, since 12 years ago. We autotransplanted call graph generation and indentation for C programs into Kate, (a popular KDE based test editor used as an IDE by a lot of C developers) two features currently missing from Kate, but requested by the users of Kate. Autotransplantation is also efficient: the total runtime across 15 monolingual transplants is 5 hours and a half; the total runtime across 10 multilingual transplants is 33 hours

    Software Technologies - 8th International Joint Conference, ICSOFT 2013 : Revised Selected Papers

    Get PDF

    Intelligent business processes composition based on mas, semantic and cloud integration (IPCASCI)

    Get PDF
    [EN]Component reuse is one of the techniques that most clearly contributes to the evolution of the software industry by providing efficient mechanisms to create quality software. Reuse increases both software reliability, due to the fact that it uses previously tested software components, and development productivity, and leads to a clear reduction in cost. Web services have become are an standard for application development on cloud computing environments and are essential in business process development. These services facilitate a software construction that is relatively fast and efficient, two aspects which can be improved by defining suitable models of reuse. This research work is intended to define a model which contains the construction requirements of new services from service composition. To this end, the composition is based on tested Web services and artificial intelligent tools at our disposal. It is believed that a multi-agent architecture based on virtual organizations is a suitable tool to facilitate the construction of cloud computing environments for business processes from other existing environments, and with help from ontological models as well as tools providing the standard BPEL (Business Process Execution Language). In the context of this proposal, we must generate a new business process from the available services in the platform, starting with the requirement specifications that the process should meet. These specifications will be composed of a semi-free description of requirements to describe the new service. The virtual organizations based on a multi-agent system will manage the tasks requiring intelligent behaviour. This system will analyse the input (textual description of the proposal) in order to deconstruct it into computable functionalities, which will be subsequently treated. Web services (or business processes) stored to be reused have been created from the perspective of SOA architectures and associated with an ontological component, which allows the multi-agent system (based on virtual organizations) to identify the services to complete the reuse process. The proposed model develops a service composition by applying a standard BPEL once the services that will compose the solution business process have been identified. This standard allows us to compose Web services in an easy way and provides the advantage of a direct mapping from Business Process Management Notation diagrams

    Management: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 551 reports, articles, and other documents introduced into NASA scientific and technical information system in 1980
    • 

    corecore