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Abstract

HLS-ENABLED

DYNAMIC STREAM PROCESSING

CONTENTS, TOOLS AND IMPLEMENTATION

Charalampos Kritikakis
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2021

High Level Synthesis (HLS) tools enable application domain experts to implement
applications and algorithms on FPGAs. The majority of present FPGA applications
follows a stream processing model which is almost entirely implemented statically.
Thus, most of the HLS FPGA designs do not exploit the benefits enabled by partial
reconfiguration.

In this thesis, we propose a generic approach for implementing and using partial
reconfiguration through an HLS design flow for Maxeler platforms, directly from the
Maxeler user experience through a language extension. Our flow extracts HLS gener-
ated HDL code from the Maxeler compilation process in order to implement a static
FPGA infrastructure as well as run-time reconfigurable stream processing modules.
As a distinct feature, our infrastructure can accommodate multiple partial modules in a
pipeline daisy-chained manner, which aligns directly to Maxeler’s dataflow program-
ming paradigm. In addition, design choices are enabled through the proposed flow,
through software and hardware implementations. Through this approach, application
domain experts can design and integrate a dynamic system without focusing on the
low-level details required by partial reconfiguration, while allowing flexibility by arbi-
trarily changing of mutually exclusive functions. All the above are done directly from
the HLS aspect, with reduced implementation time of a minimum of 25% and with up
to 10ms configuration overhead. The benefits of the proposed flow are demonstrated by
two case studies. In the first, a dynamically reconfigurable video processing pipeline,
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which delivers 6.4GB/s throughput, will be presented. This case study showcases the
benefits of a dynamic implementation flow over a fully static flow. In addition, a case
study for filtering database module acceleration is presented in a Maxeler platform.
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Chapter 1

Introduction

Over the last years, there is a steep rise in the use of social networking platforms and
applications, and social networks, thus the big data domain constantly grows [8]. This
massive amount of data play a crucial role in the machine learning domain [9] and
requires substantial processing for the data analysis. All the above have driven an
increasing demand in the need for both storage and processing systems to cope with
large volume of data. The steep increase of big data and its market forecast is depicted
in Figure 1.1.

Moreover, due to the fact that data volume and velocity are grown with an expo-
nential trend, the processing capabilities of super computers and data centers should
increase remarkably to catch up with the current, as well as the expected, processing
requirements. Thus, research is ongoing about the possible solutions, in order to sig-
nificantly increase performance of computing systems. The outcome of this research
is mostly bound to many-cored computing systems or heterogeneous computing.

Figure 1.2 depicts the rate of increase of both processing power and data growth
(data traffic and storage capacity). Over the last decades, the community was rely-
ing on Central Processing Units (CPUs) for performance increase, following the von
Neumann paradigm. The above was enabled by the radical increase in transistors in
processors, as predicted by the Moore’s law [10] and by achieving higher CPU clock
frequency over the years (the clock frequency rise is less significant in the last decade).
In addition, multiple CPUs were used in parallel in data centers to enhance the exist-
ing performance. However, due to the growing concerns over energy efficiency of the
CPUs, there are various ongoing research efforts focusing on heterogeneous computing
to increase performance in applications.
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Figure 1.1: Big data market and growth from 2011 until 2026, from reports by Statista
in [2].

1.1 FPGA technology

Heterogeneous systems are platforms that are constituted by different types of process-
ing hardware. Such systems are constituted by CPUs and additional heterogeneous
devices, such as Graphic Processor Units (GPUs), Application-specific integrated cir-
cuits (ASICs) and Field Programmable Gate Arrays (FPGAs). Heterogeneous comput-
ing systems are considered to be a power efficient solution for performance increase of
computing systems in the near future. Each one of the above devices contain unique
characteristics and benefits, which will be discussed in Section 1.1.4.

This work focuses on FPGAs and how those devices can be used for acceleration
and it contributes to the field of reconfigurable computing. Reconfigurable comput-
ing covers methods and techniques to implement computing systems with FPGAs.
This covers architecture models, applications and algorithms, as well as programming
and implementation tools. This thesis will contribute in the programmability of those
devices, by allowing a more flexible programming experience to not only FPGA pro-
grammers, but also application domain experts.
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Figure 1.2: Comparison between energy efficiency, processing capabilities data growth
and storage requirements in data centers. Figure depicts that the demand for processing
is increasing slower than the data traffic and storage capacity. Figure originates from
[3] and [4].

1.1.1 Basics of an FPGA

FPGA devices were first developed by Altera back in 1983. Those devices are pro-
grammed through Boolean logic that is implemented by look-up tables (LUTs). LUTs
implement boolean functions as a truth table and are mapped into memories, where
the address input are the function inputs of a truth-table and the memory entries are the
truth-table values. The memory itself is implemented by multiplexers that are mapped,
based on k select inputs, where k is the number of input of a LUT. The logic inputs of
the multiplexer are mapped into a memory (usually SRAM), where the Boolean logic
of the LUT is stored, in the form of a truth-table. The SRAM in a device can store up
to 2k values. The LUT output can be connected to a flip-flop to store the state of a syn-
chronous circuit. A LUT can implement every logic function that needs k bits. Xilinx
uses 2 types of LUTs called SLICE(L), which is used for logic, and SLICE M, which
can be also used for memory. Multiple LUTs, D-type flip-flops and full adders con-
stitute a Configurable Logic Block (CLB for Xilinx) or Adaptive Logic module (ALM
for Intel), which is considered as a fundamental building block on the reconfigurable
devices. An example of a LUT is depicted in Figure 1.3.
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Figure 1.3: Design of a LUT, following the truth table depicted on the left side of the
figure. The green boxes correspond to the SRAM cells, where the truth table values
are saved. The example is showing the output result of Y if the select bits are 0101.

In addition to LUTs, FPGAs contain Digital Signal Processing units (DSPs). DSPs
are usually used to compute multiplications, divisions and floating point arithmetic
operations. If implemented with LUTs, those operations will take a large amount of
resources and latency and it is preferable for those operations to be calculated using
DSPs. Lastly, on FPGAs there are several Block Random Access Memory (BRAM)
cells that their size can vary in the range of 6 to 36 Kb of memory. Through the vendor
tools, the user can customize the width and the depth of the BRAMs, using vendor spe-
cific configurations. In order to create larger memory components, multiple BRAMs
can be connected to generate arbitrarily sized components. Different devices have dif-
ferent amount of BRAMs and it is advised to be used to implement large memory
components (e.g. FIFOs, LIFOs or even line buffers in video processing application),
compared to an implementation using LUTs. LUTs are preferred to implement rela-
tively smaller memory components as distributed memories.

The aforementioned contents (i.e. LUTs, DSPs and BRAMs) constitute the design
primitives of an FPGA. Apart from those primitives, FPGAs contain reconfigurable
routing resources in the form of switch matrices. A switch matrix is a programmable
interconnect that contains several connections to neighbor primitives and it is able to
connect different inputs and outputs of CLBs and other primitives to create more com-
plex logical implementations. Switch matrices are only used for connections between
primitives. The FPGA fabric provides wires of different length, in order to imple-
ment local connections inside user defined components of the architecture and global
connections between those components. Furthermore, FPGAs provide dedicated clock
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routing resources to implement clock trees with low clock skew. The last resources that
exist on an FPGA are the I/O cells that exist on the banks surrounding the FPGA chip.
Those cells are used to map the inputs and outputs of the FPGA to the outside world
or the existing peripherals implemented on-board. A simple example of an FPGA is
illustrated in Figure 1.4.

CLB DSPCLB BRAM CLB

SM SM SMSM

CLB DSPCLB BRAM CLB

SM SM SMSM

CLB DSPCLB BRAM CLB

SM SM SMSM

CLB DSPCLB BRAM CLB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB IOB IOB IOB

IOB IOB IOB IOB

Figure 1.4: An FPGA architecture containing BRAMs, DSPs, LUTs, Switch matrices
(SM) and IO blocks.

1.1.2 RTL programming

Until recently, FPGA designers were programming FPGAs through Register Transi-
tion Level (RTL) languages, such as VHDL, Verilog, or System Verilog. The code
in those languages is compiled through the FPGA vendor’s implementation tools to
generate the final design, which is mapped in the FPGA resources. Designers can also
define constrains as their desired options for the implementation process, e.g. location
constrains and I/O constrains. Constrains can also be defined for the existing clocks to
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define the routing and the span. Through the compilation and implementation process,
there are several stages that are described briefly below:

• Synthesis: The process of translating RTL code to logic. This process extracts
logic design from an RTL behavior and outputs the implementation into elemen-
tary Boolean logic functions and primitives (e.g. memories).

• Map process: The process of mapping/fitting the logic generated by the synthesis
tool to the available resources of the target device.

• Place and Route: The process of placing the resources and connecting them in
the target device. The routing also includes the clocks of the design. After this
process, a timing analysis takes place to verify that the design meets the timing
requirements and to avoid setup and hold timing errors. In addition, power anal-
ysis can be performed as well, if power needs to be considered for the specific
application. Place and Route is typically the most time consuming process of a
physical implementation.

• Programming file generation: The process of generating the final programmable
file of the implemented design. This file contains all the information of every
LUT, BRAM, DSP, and switch matrix for the generated design.

The programming file is used to program an FPGA device with an implemented
application. An FPGA can be programmed with different programming files to im-
plement completely different applications. Hence, FPGAs present significant benefits
compared to CPUs and other heterogeneous solutions, which will be described in more
detail in Section 1.1.4.

1.1.3 Stream processing

During the programming of an application in RTL languages, the programming model
needs to focus both on the application running on the FPGA, as well as the data move-
ment towards the application and the device itself. Usually in FPGAs, designers tend
to use processing pipelines of multiple smaller functions to enhance on-chip perfor-
mance. An example is shown in Figure 1.5 where 3 functions are computed for the
input stream and results in an output stream. This practice does not require global
control, which is usually slow in complex systems. The input of those pipelines are
multiple input streams to keep the processing pipeline full and multiple output streams
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that return the result of the process. This programming model is called stream process-
ing and it is the most preferred model for FPGAs applications [11] [12].

X REGStream 
Interface

>> REG

43

+ ACC
Stream 

Interface

1 2 3

Figure 1.5: Simple pipeline example depicting 3 functions (multiplication, shift and
addition) and their intermediate pipeline registers. The pipeline has an input and output
streaming interface.

A stream contains an arbitrary flow of data in a specific data type, which eases the
implementation of functions that exist on an FPGA design, as it allows designers to
define application specific types in a bit format. Stream processing on FPGAs also
allows for parallelization, because multiple streams of data can be used to send data
to multiple implemented processing pipelines. Thus, the designer can implement a
different pipeline for each set of input and output streams. This depends on the re-
sources that a processing pipeline occupies in the device and the available streams on
the implementation.

1.1.4 FPGAs vs other Heterogeneous solutions

FPGAs are used in a wide range of applications for solving compute intense problems
and the total market size of those devices is expected to reach 10 billion by 2020 [13].
The use of the FPGA technology is stimulated by the fact, that FPGAs offer significant
speedup and energy efficiency [14]. Additionally, when taking advantage of fine and
coarse-grained parallelism, designers can customize hardware for algorithms [15] and
their data movement [16] [17]. Moreover, power consumption is a growing concern
regarding the power budgets and it is a major factor when it comes to large computing
systems e.g. data centers. For such cases, FPGAs have demonstrated significant power
consumption benefits. As an example, FPGAs were used as accelerators in the Baidu
Search Engine [18] and its throughput was increased by 2x for FPGA vs GPU, while it
increased performance by more than 10x over a 32-cored CPU system. The benefits in
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Figure 1.6: Baidu’s search engine accelerated with a Kintex-7 FPGA vs Intel Xeon
CPU vs NVIDIA K10 GPU. The figure was found on [5].

power and performance are depicted in Figure 1.6. Moreover, these improvements be-
come ever more significant, if we think about the throughput–to–energy efficiency ra-
tio, which exceeds 20x. More specifically, the power consumption of FPGA was more
than 4x lower than the CPU and more than 10x lower than the GPU. Such achievements
resulted in industry adopting FPGA acceleration widely and, as a consequence, all ma-
jor cloud service providers have corresponding offerings (e.g. Amazon F1 instances
[19], Alibaba cloud services [20] and Microsoft Azure [21]). In the next subsections,
we are going to present the major advantages and disadvantages of other heterogeneous
solutions and CPUs compared to FPGAs.

1.1.4.1 CPUs and GPUs vs FPGAs

FPGAs have several advantages over CPUs and GPUs. Implementations on FPGAs
have shown an order of magnitude lower latencies compared GPUs [22] and CPUs [20]
[18]. Moreover, FPGAs are almost completely programmable, in terms of logic and
internal connections, compared to GPU/CPU architecture and data movement cannot
be configured for different applications. As mentioned before, FPGAs present higher
processing power to energy efficiency ratio compared to GPUs [23].

On the other hand, GPUs are more easily programmable that FPGAs. Hardware
Design Languages (HDLs), such as VHDL and Verilog, are considered as more com-
plex languages compared to high level languages, such as C, C++, etc. In addition to
that, FPGAs are commonly more expensive (10K+ USD) compared to the high-end
GPUs that cost around 7-8K USD.
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In addition, FPGAs are fully programmable (i.e. internal functionality, interface,
data movement) compared to the instruction-based architecture of a CPU, which is
predefined as CPUs are instruction-based general purpose ASIC (not configurable af-
ter production). CPUs use different instructions to execute different functions. The
programmability of an FPGA allows for on chip parallelization that can significantly
boost performance, compared to a CPU. Similarly to GPUs, CPUs have significantly
higher power consumption than FPGAs.

1.1.4.2 ASICs vs FPGAs

ASICs are considered a strong competitor in computing systems in several applica-
tions. Its major advantage compared to FPGAs is their performance because ASICs
have full control over the chip (they do not pay a latency penalty for switch matrices
and configuration memory), as it is produced entirely from scratch for a specific appli-
cation, and the achievable clock frequency is generally higher. On top of that, ASICs
can be more power efficient compared to an FPGA.

However, FPGAs are reconfigurable circuits and that means that they are pro-
grammable. Thus, by using an FPGA someone can implement any computable appli-
cation by taking advantage of its reconfigurability. Moreover, FPGAs have been proven
useful for applications that need to be updated frequently (e.g. radar signal processing
[24] or networking [25]), as ASICs would require re-designing of the chip from the
scratch to implement an update. Additionally, ASIC’s time-to-market and price is in
most cases higher than an FPGA. This becomes clearer if we consider debugging and
validation of the implemented function, which on an FPGA can occur even physically,
using vendor specific post programming logic analyzer tools e.g. Chipscope. However,
after the production of an ASIC, fixing design errors is almost impossible.

1.1.4.3 Summary

A summary of the aforementioned benefits is listed below:

• FPGAs are adaptable, as they can implement and compute any proven com-
putable application. Note that, different algorithmic solutions for a problem may
work better in other heterogeneous devices. For example there are multiple so-
lutions for sorting multiple inputs, however different sort algorithms perform
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better on CPUs, GPUs and FPGAs. However, FPGAs allow in particular to allo-
cate resources (e.g., on-chip memory) as needed and the data movement can be
orchestrated with the data processing.

• FPGAs can have orders of magnitude performance and high throughput to power
ratio benefits, when the resources are used for fine and coarse grained paralleliza-
tion (also shown in Figure 1.6).

• An FPGA application can have reasonably fast time-to-market, as the only ne-
cessity is the reconfigurable system and the necessary application.

1.1.5 Limiting factors

From the comparison amongst existing computing systems, the limiting factors of FP-
GAs can be summarized to programmability and accessibility to software program-
mers, implementation time and device cost. In addition to this, due to the high com-
plexity of the existing applications, designers usually implement mutually exclusive
applications on the same implementation on the FPGA chip. Thus, it would be benefi-
cial if mutually exclusive applications could be implemented differently or as different
sub-applications. The above becomes more important, if we take in consideration the
price of those chips and the performance gains, should parts of the device be able to be
reconfigured partially, such that only the currently needed functions are configured to
the FPGA.

Thus, this PhD topic focuses on providing solutions for device programmability,
implementation time and accessibility to software programmers. This will be done by
introducing not currently introduced programming techniques to application experts,
with respect to the FPGA technology. In order to solve the fact that FPGAs are hard
to be programmed through HDLs, High-Level Synthesis (HLS) tools are introduced.
These tools are used to program FPGAs, using high level languages, such as C, C++,
Java instead of any other Hardware Description Language (HDL), like VHDL or Ver-
ilog. Thus, HLS tools make FPGAs more user-friendly to application-domain experts.
HLS tools can even increase the productivity of FPGA experts as well, as it is much
easier to use a back-end compiler that generates the surrounding system of the appli-
cation while the programmer focuses only on the application itself. A more detailed
analysis of those tools is given in Section 1.1.6.

Moreover, the problem of implementing mutually exclusive functions in the same
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application can be solved by partial reconfiguration. Partial reconfiguration is the pro-
cess of changing a portion of a reconfigurable design after this design is implemented.
This allows for implementing a static design and loading the mutually exclusive appli-
cations arbitrarily on the FPGA, as needed at run time. This can significantly boost par-
allelization, as more resources of a function are dedicated to the function itself and not
shared amongst different functions. Partial reconfiguration can benefit implementation
time as well, as it is generally easier to implement multiple smaller sub-architectures,
rather than one complex implementation that combines everything. An analysis of
partial reconfiguration is given in Section 1.1.7.

1.1.6 High-Level Synthesis tools

HLS tools allow FPGA users to behaviorally design the implemented application through
a high-level language (e.g. C, C++, Java, MATLAB, etc). The high-level description
is then translated to RTL languages to follow the FPGA vendor’s toolflow. The trans-
lation usually occurs via an HLS compiler. The compiler generates the described ap-
plications, as well as an interconnect protocol to connect the application to the host.
Each one of the HLS tools and compilers follow a tool specific interconnect protocol
to generate the connections between distinct parts of the implementation.

HLS tools have shown tremendous improvements after the first implementation
back in 2002 by Synopsys in [26]. The current quality of the generated RTL code has
been improved dramatically and it is very close to handcrafted RTL code, or better
in some cases [27]. In addition, latest HLS compilers support lexical processing, al-
gorithm optimization control analysis, resource allocation, scheduling, and input and
output processing.

An overview of the most widely used HLS tools and compilers is listed in Table 2.1
and a discussion of those tools is given in Section 2.1. The primary benefits of HLS
tools are listed below:

• Designing at a high level of abstraction as a) the designer focuses mostly on the
core functionality and not the implementation details, b) the I/O infrastructure is
generated much easier than in RTL and c) the code is generalized and it can be
used with different FPGAs (no FPGA specific primitives).

• Verifying the design at a high level of abstraction, which is in general easier to
be performed in high-level descriptions.
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• Benefiting from high-level specification language and their existing software de-
velopment tools (e.g. Eclipse, Visual Studio, etc.) and inherit advanced language
features, such as polymorphism and classes.

1.1.7 Partial reconfiguration

The idea behind partial reconfiguration is that multiple accelerators share a portion of
the device at run-time. The shared physical location in the FPGA is called Reconfig-

urable region. The reconfigurable region is implemented in the static part of a partially
reconfigurable design. A design can have multiple reconfigurable regions in the static
part that allow for hosting different accelerator modules. Those modules that can be
loaded in the reconfigurable region are called reconfigurable modules. A design can
have multiple reconfigurable modules and, in most vendor PR flows, each reconfig-
urable module belongs to a specific region. To define a reconfigurable module, the
user needs to define its connections to the static system. These connections are called
static connections or static interface. The aggregate of the design containing the re-
configurable region and the modules are called dynamic reconfigurable system.

An example of a reconfigurable system is given in Figure 1.7. On the left, a static
reconfigurable system is implemented, having 3 mutually exclusive accelerators (Pro-
cess A to Process C). This design has a shared input towards the implemented processes
and the output is managed through a process signal that controls the output multiplexer
(MUX). The output forwards the results of only one of the processes at a time. On the
other hand, on the right-top subfigure, the designer can decide to load different appli-
cations on the dynamic system to compute different results. As we can see, each one
of the applications is significantly larger (the size of a process corresponds to the oc-
cupied resources), because in a dynamic design, a designer has a larger amount of free
resources that can be used to exploit a larger level of parallelization on the application.
Another case, that shows the benefits of partial reconfiguration is the right-bottom sub-
figure. A designer can select a smaller device to implement the dynamic application.
Such an approach can be taken into consideration in the case that the designer aims for
low power consumption. Smaller devices in general consume less power compared to
larger devices and thus, it may be considered in some cases to prioritize power over
performance. In another case, a designer may not have a larger device available that
contains more resources and, thus, solve the resources issue using a physically smaller
device.
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Figure 1.7: Diagram depicting a simple partially reconfigurable example. On the left,
the figure contains an FPGA device containing three mutually exclusive applications.
The right-top subfigure illustrates the same design using partial reconfiguration. The
accelerators in the right subfigure are more aggressively parallelized due to the re-
sources available for not implementing all of the processes in the same design. The
colors of the accelerators are the same for the processes on the subfigures. The right-
bottom subfigure is very similar to the right subfigure. In this example, the designer
used a smaller device to implement the application again using partial reconfiguration.

The latter case unveils another benefit of partial reconfiguration and that is time-
multiplexing of accelerators. Time-multiplexing with partial reconfiguration can play
a significant role in the design of a complex application that can not fit on a single
chip. Such an application is depicted in Figure 1.8. The difference between Figure 1.8
to Figure 1.7 is the reusability of the result between the process A and B.

A designer can create a dynamic system and change between different accelerators,
as shown in the figure. For that, the output is connected with the input of the recon-
figurable region to output the final result. In addition, the designer should orchestrate
the accelerator swap at run-time, as depicted in the timing diagram in Figure 1.8. This
diagram also contains some configuration latency to illustrate the context switching
overhead for changing an accelerator. This is the most significant drawback of partial
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Figure 1.8: Time-multiplexing between different applications. On the left figure, the
applications are dynamic and the designer can change between them. The output of the
device can be used as an input of the second application. A time diagram depicting the
changes of accelerators in the dynamic system is depicted in the top of the figure. In
the timing diagram there is latency between each load, which corresponds to the time
that is required to load a partial bitfile to the FPGA.

reconfiguration, but it can be hidden by the performance increase that is available by
having more resources per application.

The latency exists due to the configuration of a dynamic accelerator. A dynamic ac-
celerator is being configured through a configuration port, for example Xilinx devices
offer the Internal Configuration Access Port (ICAP) or Processor Configuration Ac-
cess Port (PCAP). The configuration port is an instantiated primitive on the FPGA that
allows partial reconfiguration. A user that implements a dynamic system must include
an input towards such a port. After the physical implementation phase, a programming
file (e.g. bitfile for Xilinx) is generated. In a dynamic system, the dynamic accelerators
are resulting into different partial bitfiles. A partial bitfile contains all the information
of the FPGA resources and the routing of a dynamic accelerator placed in a specific
location on the chip. Thus, the data size of a bitfile is smaller than a full bitfile. In case
of an accelerator switch, the partial bitfile has to be streamed to the configuration port.
During this phase, at least the reconfigurable region and its I/O controllers will remain
idle. In some systems, a designer may decide to freeze (stopping non-configuration
clock) the entire device, except the ICAP input during the reconfiguration phase. This
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method is called passive, while freezing only the region and its I/O is called active
partial reconfiguration.

As an alternative solution provided by partial reconfiguration in Figure 1.8, some-
one could propose extending to 2 devices or use a single device and switch between 2
full configuration bitstreams. The first alternative requires a significantly higher power,
financial budget and, in several applications (e.g. space exploration), higher size bud-
get. Depending on the application those budgets can be proven significant. In addition,
for this example an interconnect between the devices is required. The maximum speed
FPGA bandwidth can reach up to tens of Gbps, when taking advantage of the full I/O
bandwidth. Thus, moving data through such a connection in an implemented algorithm
can easily act as the bottleneck of the application, especially if the functional split (i.e.
split of the full application between devices) requires high bandwidth.

The solution using partial reconfiguration, in this example, can be as fast as the
speed of the ICAP input, that can reach up to 2 GB/s [28] [29] to transfer bitfiles,
where their size reaches hundreds of MB. Thus, reconfiguration can occur in the realm
of ones of milliseconds, based on the implementation speed (in MHz) and the size of
the partial bitfile (assuming an inversion phase to empty the region as well). Although,
partial reconfiguration has a latency overhead (in ms), the overall implementation will
be faster, given a latency trade-off compared to a constant off-chip speed interconnect
through the whole processing time. Some cases that the interconnect solution would
be faster are either if the process executes relatively fast, or if the accelerator switch
occurs very often (both cases depend on the application). Thus, the implementation
depicted in Figure 1.8 could prove to be more efficient in most of the cases compared
to the implementation with two FPGAs.

The second alternative would require to reprogram the device after a process fin-
ishes. The reconfiguration of the whole device will be much slower than reconfiguring
just one part, but it will be much easier to implement two separate applications than
use partial reconfiguration and adapt a system to its principles. However, the latency
between the changes is much greater than just loading a full configuration file. This is
because the results of the first application should be saved externally (e.g. DDR mem-
ory) before the configuration occurs. The data of complex applications may be tens or
hundreds of GB. The connection of the FPGA to a computer usually is a PCIe connec-
tion. The maximum speed of PCIe 4.0 is 8 GB/s (32GB/s using all lines), which would
require seconds to write the data to the main memory and re-write it back on the FPGA
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memory. This can prove to be the bottleneck for most applications and especially for
applications that require minimizing the existing latency [30] [31] [32].

A dynamic approach on FPGAs can not be used in every case. Partial reconfig-
uration provides solutions mostly to large designs that can not fit a device, but that
can be split into smaller accelerators to make an implementation possible. In addi-
tion, mutually exclusive applications can benefit significantly from PR, as they can be
implemented separately as partial modules. Apart from space benefits, PR can offer
energy efficiency from moving to a smaller device or significant performance benefits
from maximizing the parallelization of accelerators by dedicating to it all the resources
of a region.

1.2 Motivation

Implementing a dynamic design is considered as a low-level problem for FPGA ex-
perts. It requires strict floorplanning of an FPGA device for both implementing a
reconfigurable region and offer as many resources as possible to the accelerators. The
accelerators should be implemented based on the size and location of the reconfig-
urable region, as well as the run-time system that needs to be timed correctly to pro-
gram the device with the respective accelerator. Moreover, in current dynamic systems,
an accelerator is practically hardwired to a single reconfigurable region. This means
that, in order to to perform any change, either on an accelerator or on the static system,
all the accelerators and the static system need to be compiled from the scratch. Given
the time consuming implementations on FPGAs, this is not ideal if most of the parts
remain the same or the change does not occur on the connecting interface between the
static system and the accelerators.

For HLS tools, there is currently very basic support on some of the HLS tools
for application domain experts to apply PR techniques on their design. Application
domain experts are using FPGAs to write increasingly complex applications via avail-
able platforms, such as Amazon F1 [19], and tools, such as Maxeler [33] provided by
vendors. Those platforms and tools do not provide sufficient support for their users to
apply PR techniques.
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1.2.1 Research hypothesis

This research project investigates the following research question: “How can a dy-
namic hardware approach be modeled automatically, implemented and executed by a
runtime system on an HLS approach”?

This research includes the introduction of partial reconfiguration in a system and
a tool to allow its users to be able to describe a dynamic application. Thus, this work
extends the functionality of a state-of-the-art tool (i.e. Maxeler) in a way that an appli-
cation domain expert can use the same high-level language to describe the functionality
and the dynamic behavior of an application. It is important to include an additional sub-
set of the existing language of the tool, but also keep the existing functionality intact.
In addition, the extended functionality should be supported by the tool and compiled
into the corresponding functionality.

Therefore, this work includes the automatic generation of RTL code that follows
a PR approach. Such an approach should include a generalized interface protocol
that it is the same for both the static system and the accelerators. Additionally, the
data movement should be taken in consideration on the RTL side towards the active
dynamic accelerator. An important detail, when transiting from a static system to a
dynamic, is the generation of a configuration port instance (i.e. the ICAP). The final
version of the static system should include an input that drives the configuration port,
while disabling the reconfigurable region and its I/O. The here presented approach in-
cludes constraining and automatic placement of components in reconfigurable regions.
This is not included in any other PR flow and it is of great importance as the introduced
flow is going to be used by non-FPGA experts. This placement methodology also takes
in consideration multi-module placement in the same reconfigurable region to utilize
its occupied resources wherever possible.

Lastly, the functionality should include a back-end toolflow to implement the dy-
namic design. This toolflow needs to include all the stages of the physical implemen-
tation, as described in Section 1.1.1. The modules and the reconfigurable region of the
static part should hide the implementation details that have to be followed for partial
reconfiguration. For example, for using the resources of the modules, we should gen-
erate constraints to place them accordingly. In addition, all the subparts of the dynamic
application should be generated independently, in order to generate autonomous parts
such that each change on a single subpart of a dynamic design functionality (i.e. a
dynamic accelerator or static system) will only require to recompile the subpart itself.
To achieve all the above, we need to adapt existing or create new tools that automate
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the placement and create the necessery files to constrain the implementation and create
independent designs.

1.3 Publications

The paragraph below present the papers produced during this PhD. The author of this
thesis produced two papers as the main author (Section 1.3.1) and two papers as a
co-author (Section 1.3.2).

1.3.1 Primary author publications

End-to-end Dynamic Stream Processing on Maxeler HLS Platforms
Charalampos Kritikakis, Dirk Koch

Application-specific Systems, Architectures and Processors (ASAP) 2019

Description
In this paper, a generic approach for implementing and using partial reconfiguration
through an HLS design flow for Maxeler platforms is proposed. The developed flow
extracted HLS generated HDL code from the Maxeler compilation process in order
to implement a static FPGA infrastructure as well as run-time reconfigurable stream
processing modules.

As a distinct feature, our infrastructure can accommodate multiple partial mod-
ules in a pipeline daisy-chained manner, which aligns directly to Maxeler’s dataflow
programming paradigm. This allows the decomposition of complicated problems into
basic building blocks that can be easily stitched together. The basic building blocks are
entirely developed using Maxeler’s MaxJ language. The benefits of the proposed flow
were demonstrated by a case study of a dynamically reconfigurable video processing
pipeline delivering 6.4GB/s throughput.

Enabling Dynamic System Integration on Maxeler HLS Platforms
Charalampos Kritikakis, Dirk Koch

Journal of Signal Processing Systems 2020 (Under review)

Description
This is an invited journal of the paper submitted in ASAP 2019. This work includes an
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extended version of the Maxeler flow to introduce dynamic FPGA designs. On top of
the paper presented in ASAP 2019, this work includes a Maxeler language extension
to allow designers to describe a dynamic system based on its contents, which are the
static part (reconfigurable region and static accelerators and ICAP instance) and dy-
namic part (dynamic accelerators). In addition, several adaptions were included to the
previously presented implementation sections of the extended paper, to create a full
flow.

1.3.2 Co-author publications

Scalable Filtering Modules for Database Acceleration on FPGAs
Kristiyan Manev, Anuj Vaishnav, Charalampos Kritikakis, Dirk Koch

The University of Manchester, UK

International Symposium on Highly Efficient Accelerators and Reconfigurable Tech-

nologies (HEART) 2019

Abstract
Database sizes are growing faster than the processing power in the post-Moore era due
to the advent of big data applications, which make hardware acceleration mandatory.
However, currently, database acceleration using FPGAs has mainly been static and
with limited accelerator functionality, reducing the potential performance gains from
customization on FPGAs. In this paper, we propose a dynamic stream processing ar-
chitecture for SQL query execution on FPGAs. It achieves this by building pipelines
based on scalable database accelerator primitives and partial reconfiguration. Further,
we introduce novel optimization techniques to design a scalable filtering module for
database restriction and Boolean evaluation. It features multiple PEs that operate in
parallel and implements DNF solver to implement Boolean expression evaluation. Our
evaluation shows that not only the system can support the acceleration of filtering in
all TPC-H queries but provide up to 17.7GB/s throughput and scales linearly with dat-
apath size.
Contribution
The main contribution related to this thesis includes the automatic physical implemen-
tation of static infrastructure and the database accelerator modules on a Maxeler Max3
system.

HLS Enabled Partially Reconfigurable Module Implementation
Nicolae Bogdan Grigore,Charalampos Kritikakis, Dirk Koch
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The University of Manchester, UK

International Conference on Architecture of Computing Systems (ARCS) 2018

Abstract
Making full use of the capabilities of the FPGA as an accelerator is difficult for non
hardware experts, especially if partial reconfiguration is to be employed. One of the
issues that arises is to physically implement modules into bounding boxes of mini-
mum size for improving fragmentation cost and reconfiguration time. In this paper,
we present a method which automates the modules designing step, fulfilling module
resource requirements and architectural FPGA constraints. We present a case study
that shows how our automatic module implementation flow can be used to generate
run-time reconfigurable bitstreams that are suited for stitching together processing
pipelines directly from a Maxeler MaxJ HLS specification. This takes into consid-
eration design alternatives, fragmentation, and routing failure mitigation strategies.
Contribution
The contribution related to this thesis is to indicate the requirements based on different
families (in this project, the Virtex 6), the mitigation strategies to resolve possible im-
plementation failures on tightly constrained implementations, and provide a proof of
concept via the Maxeler generated modules. In Chapter 5, it is explained how this tool
benefits the here proposed toolflow.

1.3.3 Contributions

Our approach to enable dynamic partial reconfiguration directly through the Maxeler
platforms will benefit both application domain experts and FPGA experts, as an out-of-
the-box solution for the existing tools. The benefits of our approach are listed below:

• A Maxeler language extension and its corresponding automatic front-end pre-
processing to enable dynamic Maxeler implementations to be described by the
designer directly from the Maxeler Java.

• An automatic mid-end code generator to modify the outcome of the Maxeler
Compiler and extract PR-ready RTL code for automatically implementing dy-
namic accelerators and the static system.

• A tool that allows for defining the bounding boxes for dynamic accelerators au-
tomatically and that searches for possible placement positions for those partial
modules.
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• A back-end toolflow for run-time reconfigurable systems that enables application
domain experts to implement FPGA partial configuration bitstreams from HLS
code that is written in Maxeler’s Java dialect.

• Enabling design choices through software, as well as portability, module repli-
cation and module stitching on Maxeler systems.

• An implementation and evaluation of a dynamic image processing system run-
ning on a Max3 platform and an implementation of scalable filtering modules
for database acceleration on the Maxeler platforms.

1.4 Thesis contents

The remainder of this thesis is organized as follow:

• Chapter 2 provides a description of the related work in the field of partial recon-
figuration, HLS tools and projects combining both partial reconfiguration and
HLS tools.

• Chapter 3 describes the front-end adjustments to the Maxeler tool to introduce
partial reconfiguration from a high-level perspective. This includes a language
extension and a parser.

• Chapter 4 analyzes the mid-end processing that occurs to introduce the necessary
changes to the output RTL code from the HLS tool.

• Chapter 5 provides an analysis of the low-level aspect of the generated architec-
ture and our automated approach to hide the low-level details from the designer.

• Chapter 6 presents two test cases for the here developed partial reconfigurable
HLS toolflow and describes the benefits of this approach.

• Chapter 7 summarizes the thesis contributions and discuss about the here pre-
sented toolflow.



Chapter 2

Related work

This PhD thesis focuses on the introduction of partial reconfiguration on HLS tools and
more specifically, the Maxeler toolflow. This work contributes on the design time and
adaptability of the reconfigurable fabric, while enabling modular accelerators that are
independent from the static system. In order to proceed to the implementation phases,
we analyzed the existing topics of research that focus on improving the devices, in
terms of the tools and the programmability. Those areas of research, amongst other
specifications, address problems by providing new HLS frameworks and partial recon-
figuration techniques and tools. There are cases that various projects or vendor tools
attempt to provide a more complex solution for introducing partial reconfiguration on
HLS platforms and HLS High Performance Computing (HPC) systems.

This section surveys the existing HLS tools in Section 2.1, both academic and
commercial. Then, the related topics on partial reconfiguration tools is presented in
Section 2.2. The projects combining those specifications are presented in Section 2.3
and, finally, projects that are enabling partial reconfiguration on a Maxeler platform
are analyzed in Section 2.4.

2.1 HLS tools

High-level synthesis tools are an important part of this PhD thesis, as we research ways
to allow programmers to use partial reconfiguration through those tools. Thus, this sec-
tion focuses on existing academic (Section 2.1.1) and commercial (Section 2.1.2) com-
pilers. Lastly, this section presents the main reasons for our decision to use Maxeler as
the HLS tool of this work. A brief comparison table is given in 2.1.

41
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2.1.1 Academic tools

DWARV [34] is an academic HLS compiler based on the CoSy commercial compiler
infrastructure [35], while it uses the Molen [36] polymorphism paradigm. Due to the
development of the compiler through CoSy, DWARV inherits the tool’s extensibil-
ity of the compiler for further optimizations. The generation of VHDL from C occurs
through a Control Data Flow Graph (CDFG). The second version of the DWARV com-
piler has been presented in [34] and it has shown up to 4.41x speed-up compared to
the LegUp compiler [37].

BAMBU [38] is a modular framework for high-level synthesis, from Politecnico di
Milano in 2012. This compiler covers most of the C core functionality, such as func-
tion calls, pointer arithmetic, dynamic memory addresses and a wide-range of float-
ing point arithmetic (using the library for FloPoCo [39]). In addition, BAMBU can
generate multiple Pareto-optimal implementations to trade-off latency and resource re-
quirements. The compiler supports different devices and implements a novel memory
architecture to cope with the complex constructors existing in C. This compiler was
compared with the LegUp compiler in [38] and presented on average 23.5% faster ac-
celerators. In addition, the accelerators produced by BAMBU required less resources,
due to the aggressive algorithms used by the compiler.

The KiWi [40] is an HLS compiler that converts C# to Verilog for FPGA copro-
cessors. This compiler is inspired from parallel constructs, e.g. events, monitors and
threads, which exist in C# and which are closer to hardware concepts. The KiWi com-
piler work also addresses problems, such as multi-FPGA designs, specific organization
of the shared memory and assembly of the debug infrastructure.

HerculeS [41] [42] HLS was designed to remove the human effort by implemen-
tation tools that provide significant design assist to software-oriented developers. The
benefits of the approach in [42] are addressing 1) the internal functionality of the hard-
ware compiler, 2) the manipulation of Static Single Assignment (SSA) code, 3) the
automatic IP integration and 4) backend C interface code generation. The work also
presents significant computation time reduction as well as area and speed benefits.

2.1.2 Commercial tools

LegUp [37] [52] was an originally open-source HLS tool developed at the University
of Toronto in 2011 and it was commercialized in 2017 through LegUpComputing. The
tool covers tasks, such as allocation, scheduling and binding. LegUp is written in
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Table 2.1: Most widely used commercial and academic HLS tools.

Compiler Owner Input Output Year
Bluespec [43] BlueSpec Inc. BSV SystemVerilog 2007
Catapult [44] Mentor C, C++,

SystemC
VHDL, Ver-
ilog

2004

DWARV [45] TU. Delft C VHDL 2012
Intel HLS [46] Intel C, C++ Verilog 2017
Vivado HLS [47] Xilinx C, C++,

SystemC
VHDL, Ver-
ilog

2013

LegUp HLS [48] LegUp Comput-
ing

C, C++ Verilog 2011

MaxCompiler [33] Maxeler Maxeler
Java

VHDL 2010

Synphony C [49] Synopsys C, C++ VHDL, Ver-
ilog, SystemC

2010

KiWi C [50] University of
Cambridge

C# Verilog 2008

HerculeS [41] Ajax Compilers C, NAC VHDL 2012
BAMBU [51] Polit. di Milano C VHDL, Ver-

ilog
2012

modular C++ to allow experimentation with newly developed HLS algorithms. The
tool operates in two ways, 1) it can synthesize C code to hardware descriptions, or 2) it
synthesizes C programs to hybrid systems that contain a MIPS softcore processor and
the accelerators compiled from the initial C code. The programming model of LegUp
also supports Pthread and OpenMP in order to parallelize multiple functions by using
a pragma. In addition, the compiler also supports automatic bitwidth minimization,
HLS debug, multi-cycling and loop-pipelining. LegUp targets specifically multiple
Intel (former Altera) FPGA families, but was also used with Xilinx FPGAs.

The Bluespec compiler [53] [54] is a tool that uses Bluespec System Verilog (BSV)
as its design language. BSV is considered as a high-level HDL language based on Ver-
ilog. BSV includes behavioral modeling of complex systems by using formal specifi-
cation concepts and abstraction mechanisms to describe and organize the implementa-
tion of complex systems. The tool combines a specification in HDL with a verification
language. This language is different from the other HLS languages, as it is tailored to
FPGA experts and includes low-level details in its functionality. However, it has been
introduced to software-developers as well but it can be used only through the Bluespec
Compiler (BSC) tool [55].

Catapult-C [44] is an HLS tool that initially was designed for describing ASICs by
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Calypto Design Systems and later on acquired by Mentor in 2004. Currently, the tool
covers ASIC, FPGA and even SoC designs. Due to this, the tool offers flexibility to
its users for device specific optimization design choices. Example of choices include
settings for clock frequency, mapping and place and route parameters and streaming
interfaces and RAM settings. In addition to this, the tool provides the users with multi-
ple and flexible data types, including arbitrary length integers and floating-point arith-
metic.

Synphony C [49] is a high-level synthesis tool which was originally designed for
hardware DSP programming. Originally, it was developed by PICO and it was ac-
quired by Synopsys in 2010. The tool supports memory and streaming interfaces and
contains internal performance optimization methods, such as loop-unrolling and loop-
pipelining. As for most Synopsys tools, Synphony C can interact with other tools in
the Synopsys product family, such as Synplify, an FPGA synthesis tool and the Design
Compiler for ASIC synthesis.

Intel (which acquired Altera Inc. in 2015), introduced Altera SDK [56], which
includes a compiler OpenCL (i.e., C language variant) code to FPGA designs. Initially,
OpenCL code was widely used for heavy parallelization on GPUs. Intel synthesizes
OpenCL to a deeply pipelined FPGA implementation that connects to x86 based host
processors. In 2017, Intel HLS [46] became the HLS tool used for all Intel FPGA
devices, after Altera became a subsidiary of Intel in 2015. The HLS tool offers fast
and easy design verification through a C++ model, as well as algorithmic development
of a design and automatic integration. The tool provides an implementation report that
includes suggestions for behavioral information, including loop information, pipeline
status, initiation interval, component visualization and information about local memory
systems. After the implementation step, a time and area analysis is provided to the user,
as well as a throughput analysis for users to optimize their design.

Vivado HLS [47] is the HLS tool used for the devices of the FPGA vendor Xil-
inx, which is one of the major FPGA vendors, alongside Intel. Vivado HLS is a tool
that originates from AutoPilot HLS [57], which became the core of the Xilinx HLS
tool. The tool is aimed at synthesizing C, C++ or System C functions into IP Cores
into different HDLs (VHDL, Verilog). Xilinx provides its users with built-in libraries
for several application domains. Additionally, Xilinx provides a port of most of the
Open Source Computer Vision (OpenCV) framework to aid designers. Furthermore,
the tool can make use of the extensive library of Xilinx IP cores, which are available
through the Vivado synthesis tool ( e.g. to support floating-point arithmetic). As in
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other HLS tools, Vivado HLS provides the user with several options to optimize the
design in terms of resource usage and performance, such as performance metrics, array
and function optimization and loop optimization. Xilinx also introduced SDAccel [58]
as its OpenCL approach. This tool allows software developers with basic experience
about reconfigurable systems, to develop applications on OpenCL, C and C++ by de-
scribing the desirable hardware architecture. Additionally, SDAccel provides the full
driven stack to integrate FPGA accelerators in x86 servers through a PCIe connection.

As mentioned in Section 1.1.6, the Maxeler system and compiler is used during
the course of this PhD. Maxeler is the only fully dataflow-based system that provides
solutions to multiple problems on FPGAs. Being a dataflow platform is of benefit to
partial reconfiguration, as the resulting RTL code natively complies with PR princi-
ples. To give some examples of these principles, the users define the interface of the
building components of the architecture and also define the architecture of those com-
ponents. This makes it possible to define the interface and the partial modules that will
constitute the dynamic architecture. However, this is debatable in a control flow sys-
tems. Maxeler exploits parallelism in a spatial domain, where multiple streams of the
dataflow are processed on the implemented functionality to compute a specific task. In
addition, Maxeler has an extensive library of dataflow accelerators from its commu-
nity. Thus, a greater community would benefit from an existing solution, which covers
partial reconfiguration through an HLS approach.

2.1.3 Summary

Furthermore, Maxeler is the only Java based HLS tool, which makes it even more
accessible to software developers. Most of the existing HLS tools are programmed
through C, which nowadays is considered a high-level language closer to hardware de-
signers than software developers. The here presented academic and commercial HLS
tools have in common that they do not support partial reconfiguration well. The HLS
tools of the major FPGA vendors provide means to change individual accelerators on
an FPGA, but still require substantial manual work to orchestrate the configuration
and the computation. Furthermore, the major FPGA vendors only support exchanging
large monolithic accelerator modules well. This PhD thesis will address both the HLS
description of a run-time reconfigurable system and the implementation of very flex-
ible reconfigurable systems in a way that it is usable by application domain experts.
Currently, there are two projects focusing on partial reconfiguration on the Maxeler
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platform, as it will be shown in Section 2.4, while the functionality of the tool is going
to be presented in Section 3.1.

2.2 Partial reconfiguration tools

Another topic that this PhD integrates, besides HLS tools, is partial reconfiguration.
From 1995, after the first application using partial reconfiguration, there has been enor-
mous improvement in the approaches taken for designing dynamic implementations.
This does not only include commercial toolflows, but also academic tools that have
introduced unique approaches to resolve specific issues of the vendor tools, such as
relocatability of accelerators and re-implementation of the whole design, given any
change on the dynamic accelerator or the static part of the system. This section covers
the commercial toolflows in Section 2.2.1 and the academic tools in Section 2.2.2.

2.2.1 Commercial toolflows

The development of partially reconfigurable architectures on FPGA was introduced in
1995, when Xilinx was the first to patent an FPGA that could store multiple configura-
tions at the same time [59]. A famous processing FPGA architecture to support partial
reconfiguration was the XC6200 series , however the concept of partial reconfigura-
tion became more popular with the availability of Virtex-II on the market [60]. Partial
reconfiguration is supported and used on all of the major FPGA vendors (i.e. Xilinx
[61] and Intel[62]).

Xilinx initially introduced PlanAhead [63] as its tool for partial reconfiguration.
This tool offers an RTL based solution to the users to describe the desired distinct
parts of a partially reconfigurable design, i.e. the dynamic accelerators and the static
part (including the reconfigurable regions that will host reconfigurable accelerators).
However, from Virtex-7 devices onwards, Xilinx introduced the Vivado toolflow. This
toolflow includes PlanAhead in its toolflow, and can be used by a user either in either
HLS or RTL code. The same occurs on SDAccel (through an OpenCL programming
flow). The approaches of those tools, however, do not take full advantage of partial
reconfiguration [64], as well as not covering automation of low-level details (e.g. con-
straints, clock routing), when introducing a dynamic toolflow on an HLS tool. This
includes location constraints and blocking mechanisms generated for the routing. Dur-
ing the implementation using the Xilinx toolflow, the dynamic accelerators and the
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static system design have an implementation dependency. This feature, although it
provides more slack on the application when physically placed on the region, has the
drawback that it requires re-implementation in the case of any change in either the
static part or the dynamic accelerators. In addition to this, relocation and reusability
of implemented accelerators across different systems is not possible for accelerators
generated through this flow.

Altera announced the support for partial reconfiguration in Altera Quartus-II [65].
Altera also included partial reconfiguration on the newest version of Quartus Prime.
Currently, Altera has been acquired by Intel. Intel introduced module variations of the
generated accelerators that are named personas, while the programming versions of
the device are called configuration revisions. The tool initially creates a base revision
of the implementation and then, it creates multiple revisions from the existing dynamic
accelerators. The placement phase partitions and locks resources for the static system
and the accelerators and this step is followed by the full implementation of those sub-
parts. Quartus creates an initialization revision, which is the only revision that a device
can be initialized with, and then a user can load multiple other revisions, that work
as partial configuration files. Currently, Intel also provides a PR simulator in their
toolflow that allows users to simulate the behavior of their dynamic design. In addi-
tion, as in SDAccel, Intel allows partial reconfiguration through its FPGA SDK tool for
OpenCL specific acceleration [66]. FPGA SDK provides an abstract integration of the
existing accelerators, however the granularity of the implemented system is restricted
to a monolithic node (e.g. individual accelerator modules can not be chained together).

The PR flow from Altera/Intel has some additional restrictions. For instance, a
reconfigurable region can not be extended to the full length of the device and cer-
tain built-in memory elements (LUT-RAM) can not contain initialization values, when
implemented inside a reconfigurable region. Another restriction is that during the con-
figuration of the device, a logic ”1” should be written in all memory locations of the
device, otherwise a configuration error can occur. Finally, as in the Xilinx PR toolflow,
static routing can be a part of the reconfigurable regions and that forces the tool for
recompilation of the whole design, for every change in either the dynamic accelerators
or the static system.

2.2.2 Academic tools

OpenPR [67] is an open-source PR tool that uses bitstream manipulation and a database
of logic and wiring. Bitstream manipulation is enabled by an open-source tool for
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FPGA development which is called Torc [68]. The user of this tool has to provide an
XML file that describes specific parts of the reconfigurable design (which includes the
dynamic accelerators and the static part). Then, the PlanAhead tool is used to floorplan
the design, by generating constraints for the subparts of the system. After the gener-
ation of the netlists (mapped or placed and routed descriptions of a design) for each
subpart, the tool follows a different path for implementing the partial bitfiles and to
generate the static system. For the clock routing, OpenPR extracts the clock tree infor-
mation (i.e. clock span across the design) from the static design and inserts the clock
routing unchanged into the reconfigurable modules. In addition, the RTL implemen-
tation constraints generated are blocking entirely the region from static connections to
be routed in those predefined locations. This allows the users of OpenPR to create in-
dependent designs and support for changes in either part (i.e. static part or accelerator)
may not necessarily need re-implementation of the whole design. In addition to this,
OpenPR in [67] was compared with the Xilinx PR toolflow using a Xilinx Virtex-V
device, where it demonstrated a significant speed-up in the compilation time.

The OSSS+ R framework [69] allows the algorithmic description of applications
in C and C++, while taking advantage of object-oriented programming for partial re-
configuration. As a distinct feature, OSSS+ foresees the concept of polymorphism
to be used with partial reconfiguration. This allows it, for example, to use different
reconfigurable accelerator modules depending on the datatype to be processed by the
accelerator. Through this framework, a designer can define dynamic accelerators based
on the accelerator usage of the whole application. The tool uses Fossy synthesis [70]
which is generating the corresponding VHDL code. The generated RTL code is imple-
mented using the vendor tools. However, a user of this tool needs to create wrappers
for each module, as well as manually floorplan the reconfigurable regions.

PaRAT [71] targets to bridge the gap between partial reconfiguration and HLS
tools. This is performed by extracting the architecture and the control information
directly from the Vivado HLS code. Then, the tool creates a model of the dynamic
system, using a partial reconfiguration modeling language (PRML) [72]. A PRML
model is a directed acyclic graph, where PRML nodes and edges are the graph’s nodes
and edges, respectively. The nodes represent accelerator modules and the edges denote
dependencies and flow data. An execution path is a directed cycle between any pair
of memory nodes. The information extracted can then be used by the Vivado toolflow
to implement a dynamic system. However, PaRAT uses the Xilinx tools and thus the
generated dynamic system’s accelerators are not independent.
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CoPR toolflow [73] focuses on raising the abstraction level for designing dynami-
cally reconfigurable systems. To achieve this abstraction level, CoPR automates usu-
ally manual operations required for partial reconfiguration and hides the low-level
specifications from the designer. This is done through an XML description of the
configurations and by introducing software code responsible for changing configura-
tions at runtime. The tool requires a system configuration, as well as its corresponding
library of modules. The tool synthesizes those modules and generates the necessary
reconfigurable regions and constraints. CoPR then uses the Xilinx tools to generate the
design. This toolflow does not support the latest Vivado tool suite.

R. Oomen presented in [74] a tool that automates the generation of partially re-
configurable designs for the Xilinx Vivado toolchain. The tool utilizes the already
existing a bus macros to create the communications between the static system and the
reconfigurable modules. For this, it incorporates the connections made of a two-input
AND gate for each interface signal wire, which can be used to decouple the module
from the static system. Then, the most complex partial module is implemented in all
the reconfigurable regions, using multiple interfaces for each reconfigurable regions.
This means that the implementation foresees the module using the most resources and
the most interface wires. One of those interfaces is chosen as the main interface to
be replicated amongst all the regions, using placement and routing constraints. This
work, however, does not address the isolation between the static system and the recon-
figurable regions.

Impress [75] was introduced in 2018 to cover the gap between tools that did not
adapt, after the transition of Xilinx from ISE to Vivado toolchain. This tool is based on
the TCL language and it specifically targets and uses the Vivado toolflow to generate
the IPs that constitute a dynamic design. The partial bitfiles are relocatable amongst the
existing reconfigurable regions. This is achieved by isolating the reconfigurable region
and the module implementations and define a footprint for the implemented modules.
Footprint is the number of consecutive resource columns that a module occupies (see
Section 5.5.)

The project in [76] introduces, amongst other contributions, a TCL-based library
that allows partial reconfiguration using the Vivado toolflow. EFCAD in [77] focuses
on introducing a toolflow that supports Verilog to bitfile on-chip compilation. The on-
chip compilation is performed by the ARM processors on an UltraScale+ device, while
partial reconfiguration is also enabled for the compilation, demonstrating some early
results.
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Table 2.2: Summary of the existing tools specializing on partial reconfiguration. Some
of the contents are taken by the work in [1].

Tool High-
level

Partitioning Floorplanning Physical
implementa-
tion

Relocation Run-time
mitigation

Xilinx
PlanA-
head

NA NA Partially Supported NA NA

Xilinx Vi-
vado

NA NA Partially Supported Partially NA

Xilinx
SDAccel

Yes NA NA Supported NA Supported

Intel
Quartus

NA NA Partially Supported NA NA

Intel
OpenCL

Yes NA NA Supported NA Supported

OpenPR NA NA NA Partially Supported NA
OSSS+R Yes Supported NA NA NA Partially
PaRAT Yes Partially NA NA NA NA
COPR Partially Supported Partially NA NA Partially
Impress Partially Partially NA NA Supported NA
GoAhead NA Partially Supported Partially Supported NA

GoAHead [78] was also introduced as a dedicated tool for partial reconfiguration
for Xilinx FPGA families. GoAhead handles low level details for pre and post imple-
mentation design and can be used for generating placement and routing constraints.
Its commands include functions for setting constraints, defining regions for partial re-
configuration, defining locations of partial modules or even modifying, extracting and
merging design, in the form of netlists. In addition to this, a series of commands can
extract routing and placement information of a design.

In addition to the tools introduced so far, there exist other PR tools and models that
have either not being fully completed but they presented some different approaches on
the PR topic. In [79], the Caronte methodology is used to define and allocate resources
and tasks to specific reconfigurable regions. The GePaRD flow was introduced in [80]
to enhance the existing Xilinx PR flow by using a high-level description as an input
for generating a simulation and a physically-aware architecture. The works in [81]
and [82] purpose a system containing a data plane, that implements the data process-
ing, and the control plane, that manages the functionality directly from software. The
control plane after implementation reconfigures the data plane controlled by software
written by a designer. Furthermore, the work in [83] presented ASAP, a graphical user
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interface tool that offers a design methodology for dynamic applications, which in-
cludes application analysis, partitioning, mapping and scheduling. The authors of [83]
showed some initial results about multiple generated accelerators, however there was
no other work extending or providing more results about this tool. In [84], the authors
purpose an approach that implements the accelerator with its necessary communication
interfaces. The interfaces were predefined at design-time for the reconfigurable system
and the accelerators to allow those regions to host any of the reconfigurable modules.
Finally, in [85], it has been proposed to use Unified Modeling Language (UML) for
high-level description of a dynamic system.

2.2.3 Summary

This section presented the existing work in academic and industry toolflows. In order
to extend the functionality of an HLS tool to support partial reconfiguration, we need
to use external tools during the physical implementation phase. As referred in Sec-
tion 2.2.2, there exist academic tools that offer significant implementation benefits as
compared to the current commercial toolflows (i.e. relocatability of partially recon-
figurable modules and generalization of the dynamic accelerators and the static part).
This work will present a toolflow starting directly from an HLS model, handling and
hiding all hdl modifications and floorplanning required in a dynamic project. The flow
will also allow flexibility on the accelerators side for relocation and replication after
the project is complete, without the requirement of re-implementing the design. Also,
low-level mitigation strategies are included to solve possible physical implementation
failures of components.

As our vendor for this PhD thesis, we use a Xilinx device, as most of the academic
tools are focusing on the Xilinx toolflow. Hence, it was decided to use three academic
tools in this project, alongside the Xilinx tools. Those tools are GoAhead [78], Bound-
ing Box Generator [6] and BitMan [86]. GoAhead is the core tool of our toolflow,
that is used for the generation of PR specific constraints and physical implementation
of reconfigurable modules. The main reasons we decided to use this tool amongst the
existing is that it:

• Provides a built-in GUI interface that allows for FPGA experts and software
programmers to have a visual representation of the chip and the resources used
by the static system or a reconfigurable module.
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• Can be automated though its GoAhead specific scripting files (goa scripts) to
generate constraints and modules.

• Able to constrain the clock and all other routing in a module or a static system
and set an interface for the implementation.

• Can be controlled through external parameters to generate multiple accelerator
designs and reconfigurable regions automatically.

Furthermore, Bounding Box Generator was introduced during this PhD. This tool
allows constraining accelerators into strict bounding boxes, while also detects possi-
ble placement positions for the generated accelerators at design time. In this project,
Bounding Box Generator is used to extend the capabilities of GoAhead by generating
automatically constraints for any given accelerator in a reconfigurable region. Lastly,
BitMan was used to enable both design and run-time relocation of modules and mod-
ule replication, as needed. More details about the functionality of the tools and how
they are used in the design approach of this thesis are provided in Section 5.5.

2.3 HLS and partial reconfiguration projects

The previous section introduced existing tools that allow for implementing partially
reconfigurable systems. This section focuses on project HLS frameworks or extensions
that are designed specifically to support partial reconfiguration.

In [87], the framework PCIeHLS was presented to provide the necessary infras-
tructure for partial reconfiguration using OpenCL. The infrastructure consists of PCIe,
DDR memory, an ICAP for partial reconfiguration and clock managing blocks. This
framework allows time-multiplexed use of the reconfigurable regions, as well as region
combination, to provide more parallelization of the executed application and module
relocation. Furthermore, the system supports module relocation to simplify module
management. Experiments showed a physical implementation and reduced implemen-
tation time.

The work in [88] introduced the concept of resource elastic visualization on FP-
GAs. This work allows resizing of applications in multiple regions to enhance per-
formance using partial reconfiguration. The resizing occurs, on a possible request
by another application and resource are re-allocated to serve all the requested appli-
cations simultaneously. The accelerators are programmed through OpenCL and the
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time-multiplexed applications are called tasks. Each task gets allocated a time slot
and resources, based on the current utilization. The results in this work demonstrated
25-36% performance increase, better utilization of the reconfigurable region and lower
wait time for the accelerators.

The EXTRA platform [89] allows programmers to use C or C++ languages to im-
plement reconfigurable systems a hardware-software co-design framework, with paral-
lel memory access and transparent virtualization of the application. The virtualization
is achieved via an internal tool, called RACOS. RACOS [90] is an OS-like implemen-
tation that allows scheduling of reconfigurable hardware and accelerators transparently
from the user. In addition, the CAOS [91] framework was used for HPC systems to
provide the interfaces and architectural templates for the reconfigurable systems. Ad-
ditionally, PolyMem [92] was developed as a high-bandwidth memory implementation
by loading critical data for the application in the distributed memory blocks. Lastly, the
DAER [93] framework was used for efficient reconfigurable application mapping on
the FPGA fabric. The platform was evaluated using an image application. In its second
version, EXTRA [94] allows for creating fundamental building blocks for dynamically
reconfigurable HPC system implementations, while supporting the newest devices and
additional tools. The second version did not introduce any additional implementation
or result on the EXTRA framework.

A Run-Time Reconfigurable Manager (RTSM) tool was introduced in FASTER
[95]. This project covers low-level tasks by managing placement, scheduling and par-
tial reconfiguration. The tool also focuses on low-level tasks, such as fragmentation
configuration caching, prefetching and configuration bitstream compression and de-
compression, while managing the implementations’s power footprint. This work was
experimented using a Maxeler Max3 platform (not through using the Maxeler soft-
ware) and resulted in resource utilization benefits with some performance benefits.

The RTSM tool in the FASTER project was extended by [96] and [97]. Those
projects enable designers to describe, implement and verify dynamically reconfig-
urable applications on FPGAs. It supports coarse-grained parallelism, by enabling
the swapping of reconfigurable modules which is controlled at design time, and also
fine-grain reconfiguration, that allows for changing small parts of the FPGA at run-
time. A project is initially described in XML and contains a description of the de-
sired partially reconfigurable architecture. Then, the XML description is analyzed and
implemented through a toolchain of the FPGA vendor, which provides different im-
plementation options for the existing static and dynamic accelerators. This tool-chain
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includes micro-reconfiguration, which was firstly implemented within the FASTER
project. The previously presented RTSM [95] was used in this toolflow, as well as
verification methods for streaming designs, run-time reconfigurable designs and HW-
SW co-design systems. This work also presented three different case studies, built
from the FASTER framework. This work uses vendor tools for implementing partially
reconfigurable modules and thus, module replication and relocation is not supported.

The work in [98] presents another RTSM implementation for scheduling dynamic
application on dynamically reconfigurable systems, which is integrated in the FASTER
project. This work offers portability of the RTSM for scheduling SW and HW imple-
mentation, support for loops, forks, joins and branches in complex graphs and support
for multiple types of scheduling. The project was evaluated via three case studies to
evaluate its scheduling performance.

Finally, the ECOSCALE project [99] presents an OpenCL based run-time system
for exascale systems. This project extends Xilinx OpenCL framework by introducing a
scalable approach that extends into multiple compute nodes, i.e. workers. The workers
are connected as a tree-implementation. The ECOSCALE project uses a Partitioned
Global Address Space (PGAS) memory model which allows an accelerator module to
access any memory across the entire machine.

2.4 Partial reconfiguration on Maxeler systems

As mentioned previously in this Chapter, Maxeler has a wide range of applications
[100]. Some of those applications can benefit by the introduction of partial reconfigu-
ration on the Maxeler tools, in order to allow application domain experts to implement
such applications. For this, there are a few projects that focused on enabling such
features on those platforms, by introducing the benefits from applications, introducing
reconfigurable interconnects or extending the existing Maxeler flow itself.

The first work applying partial reconfiguration on a Maxeler platform, was the
MSc project of J.J. Jensen [101]. In that work, the author presents a library of database
accelerators that can be stitched together at run-time. The goal of this project was
to show that some queries can be accelerated in hardware by stitching together basic
building blocks at run-time. The building blocks would be chosen depending on the
query that is currently executed. The accelerators used in that project were generated
through the CustomHDL interface from Maxeler, while the surrounding static system
was generated by the MaxCompiler.
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The case study, presented in [101], contained accelerators to compute four opera-
tions. The operators compute an AND, OR, ”>” and ”=” on string values, and reported
a throughput of 6.25 GB/s (due to the Maxeler clock frequency at 100 MHz). All the
generated accelerators could be run at 300 MHz. The project was not fully imple-
mented on an FPGA, however the author proves that accelerating queries in FPGAs
dynamically can offer significant speedup and that putting together smaller building
blocks can create a datapath with significant results.

In [102], the authors present a different approach for reconfigurability in the Max-
eler platforms. In this framework, a user can program multiple kernels in Maxeler
Java, which is compiled to a programmable file for the FPGA. In such an application,
there must be multiple accelerators to be connected by a novel Reconfigurable Inter-
connection Element. This interconnect is connected with all the existing accelerators
in order to be programmed to create different pipelines of already implemented ker-
nels during run-time. This work is based on the Xilinx partial reconfiguration flow that
does not allow direct communication between reconfigurable modules. With the help
of the interconnect element, programmable connections can be set between a chain of
modules. However, such an approach require the implementation of even the idle ac-
celerators (not partially used but not reconfigured), which makes the approach wasteful
with respect to the amount of resources.

R. Cattaneo [103] also implemented a system for dynamic reconfiguration on Max-
eler. This work considers a video streaming application like the one considered in
its case study. The application includes four filters, which are Noise cancellation,
Greyscale, Edge detection, and Threshold filter. The achievable throughput is 64.8
MB/s on a single stream and [103] also by using multiple regions and multiple stream
operators with 4 input streams and 8 regions, where the aggregated throughput was
176.4 MB/s. As in [103], a PR toolflow was presented for the Maxeler platforms.
However, the compilation and implementation process was not introduced. This is es-
sential, as partial reconfiguration remains still a low-level description challenge even
for FPGA experts. Thus, a brief description on the approach taken for implementing
the static system and the accelerators is considered necessary. However, for this PhD
thesis, we analyzed and we will present the necessities of such an approach that allows
the implementation of a run-time reconfigurable system, incorporating all low-level as-
pects, in order to propose a way that those aspects can be hid and used by application
domain experts.

However, the most important difference to this PhD thesis is that the authors in
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[103] have not considered placing multiple modules in a single region. The work in
[103] suggests chaining modules at compile time, but that would be prohibitively slow
for run-time adaptive systems such as database acceleration where the exact chain of
the modules is only known at run-time. In addition, [103] does not consider automatic
placement for accelerators, which is essential when introducing a low-level implemen-
tation for non-FPGA experts. Lastly, the authors mention that they are using the Xilinx
PR flow for their implementation. Thus, each kernel is therefore hardwired in a region
and cannot be replicated or relocated. This makes sharing for more throughput much
more difficult and every modification would require full system re-compilation and
implementation.



Chapter 3

From static to dynamic HLS
specifications

Application-domain experts are required to provide an HLS description, in order to
use an HLS toolflow for implementing a dynamically reconfigurable system. To intro-
duce this description in the Maxeler programming model, this project needs to include
a language extension. The first step in making an HLS language extension, which
supports partial reconfiguration is to set a well-defined HLS approach, while taking in
consideration the already existing HLS language. For example, an application expert
that has experience with an HLS framework and a high-level language should feel con-
fident using the extension which supports partial reconfiguration, without the need of
readapting. The main goal of this PhD project is to use a language extension to hide the
complexity which arises from partial reconfiguration. Such complex low-level func-
tions are clock and interface routing for and within the region, location constraints or
detecting relocation positions that an application expert would avoid interacting with
when using a dynamic FPGA heterogeneous system. This language extension has to
cover a number of design choices, as well as to keep the initial programming model
intact.

This section focuses on describing the initial programming method used in Maxeler
platforms and analyzes the philosophy behind the here proposed language extensions.
By introducing an extended version of the language, a pre-parser is necessary to pro-
cess the extensions for designing a partially reconfigurable system. Additionally, we
discuss the design choices enabled by the middle and back-end sides of this toolflow
for dynamically reconfigurable system generation, as being analyzed in more detail in
Chapter 4 and Chapter 5.

57
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3.1 Maxeler dataflow platforms

Maxeler Workstations are heterogeneous computing platforms that are using both a
CPU and FPGAs to perform computations. Maxeler’s FPGA devices are named Dataflow
Engines (DFEs) in the Maxeler programming model. Those devices are programmed
by a Java dialect, called MaxJ. The software can connect from and to the implemen-
tation running on the FPGA device through PCIe or DDR memory channels, or even
both, and the connections are handled by the MaxCompiler itself through I/O specific
drivers.

Figure 3.1: Maxeler programming model from a user point of view. The Maxeler
design flow is depicted in more details in Figure 3.3.

In the Maxeler programming model [104], which is shown in Figure 3.1, a de-
signer has to focus on three basic coding parts. First, the CPU interface code which is
written in C code and manages the data I/O of the system. Second, the main kernel-

s/accelerators, which contain the actual acceleration functionality to be implemented
on the FPGA and third the manager, that focuses on the connection between mem-
ory and/or PCIe with the reconfigurable system, as well as the internal connections
between the instantiated kernels. The manager and the kernels are written in MaxJ.
Figure 3.2 depicts two managers, containing three and four kernels as block diagrams.
In the Maxeler programing model, the user can define an arbitrary number of kernels
that can be connected internally and externally amongst them. In the first example, the
user defines a simple pipeline of kernels to perform a computation, while in the second
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example the user has multiple inputs and outputs, from and to the software, and the
kernels have different interfaces among them.

The manager orchestrates the connections between the software and the hardware
and within the hardware application itself for each Maxeler project. Each Maxeler
project contains exactly one active manager file which contains the full implementa-
tion of the desired application. The generated files before and after the RTL generated
version of the manager file are handled by the MaxCompiler. The manager file also de-
fines and generates the software interface commands. Each manager can have multiple
software interface commands, which are enabled for more complicated problems, such
as enabling specific parts of an implementation, and enabling or disabling the inputs
and outputs of a system. Moreover, a user can define these interfaces in the manager for
more control over the whole application. The available Maxeler software interfaces to
the DFE are called Basic static, Advanced static and Advanced dynamic. Basic Static
allows a single function call to run the DFE using simple actions defined for the partic-
ular Maxeler programing file (Maxfile). Advanced Static allows control of loading the
DFEs, setting multiple complex actions, and optimization of CPU and DFE collabora-
tion. Advanced Dynamic allows for full scope of dataflow optimizations, fine-grained
control of allocation and de-allocation of all dataflow resources. The here presented
extension should allow for each interface type to function transparently.

After debugging and simulating the MaxJ code, Maxeler compiles the kernels and
the manager of the system and the corresponding VHDL code is being generated.
After the VHDL code generation, the tool follows the FPGA vendor toolchain for
synthesis, mapping, routing and finally generating the bitfile. In this thesis, the ISE
tools suite from the FPGA vendor Xilinx is being used. At this point, the Maxeler flow
performs an additional step, which is to create a monolithic binary file that contains
the full static configuration of the system. The file is called Maxfile by Maxeler and
it is the final product of the Maxeler compilation toolflow. The Maxfile contains the
software interface commands that were instantiated in the manager. Those commands
handle the connections between the CPU and the FPGA. In order to run the system,
Maxeler executes the functions provided in the generated Maxfile via the C interface
code. Through this interface code, a user can define the input of each stream and
manage the corresponding output of the FPGAs. Figure 3.3 shows an overview of the
whole design and the implementation flow.

Maxeler offers a Custom HDL interface in order to allow the integration of opti-
mized RTL code to be used within Maxeler’s framework. The only difference to the
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Figure 3.2: Instantiation of kernels in manager files. A manager can contain multiple
kernels, while the user defines the exact connections among them. In the figure, we
instantiated a simple pipeline in the top manager. Additionally multiple streams can be
used from and to the CPU or DDR memory. In the bottom example, multiple streams
are used for the inputs and the outputs that can be set by a designer and use DDR
memory, CPU, or even both.

original HLS enabled flow is that a designer provides links to directories with VHDL
modules or netlists, while the kernel file acts as a wrapper for the connections to the
Manager. The final result is still a Maxfile, although the MaxCompiler treats the HDL
hierarchy as a top module and only focuses on the dataflow before and after the external
HDL code.

3.2 Language extension

The main difference of a static and a dynamically operated FPGA system is that a
static system contains one or more static configurations of the device, while the dy-
namic counterpart contains a static system with multiple components that can be se-
lectively loaded in the device to perform different computations (including combina-
tions of those components for more permutations). In a similar, but static approach
of multiple full configurations, the number configurations should match all foreseen
permutations at design time (i.e. possibly tens of configurations). The dynamic system
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Figure 3.3: High level view of Maxeler static MaxJ to Maxfile flow from the design
phase, programming in MaxJ to compilation and implementation. A designer pro-
grams the kernels and manager in the MaxJ dialect and after running simulation tests
successfully, the Maxeler tool generates the VHDL code through the MaxCompiler.
The generated RTL code is implemented using the ISE toolchain until the final gener-
ation of the bitfile and the corresponding MaxFile.

is constituted by a static part and its dynamic accelerators. Having all accelerators in a
list of loadable components, there can be numerus combinations for multiple accelera-
tors. However, neither traditional HLS description languages nor Maxeler’s MaxJ have
built-in constructs that allow expressing the reconfigurability of a dynamic system.

A static implementation on an FPGA needs to be resetted and reloaded in order to
switch between functions. However, should we consider mutually exclusive applica-
tions implemented in an FPGA, the design should be able to load different accelerators
as they are needed, without the need of resetting the device. In such cases, partial
reconfiguration would be a viable solution compared to a static design with multi-
ple bitstreams or a design containing all mutually exclusive functions. However, this
switching should occur relatively seldom, in order to minimize the configuration over-
head.

In order to offer the benefits of partial reconfiguration, we need to support building
and operating run-time reconfigurable applications, Hence, the system needs:

• A methodology to specify partially reconfigurable modules that use a predefined
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interface to communicate between the static part and predefined connections be-
tween different modules for internal module communication. These physical
hardware interfaces have to match communication primitives used in software
(Section 3.2.2).

• High-level language constructs to orchestrate the configuration at run-time (Sec-
tion 3.3).

• Allowing an arbitrary number of modules and connections to be instantiated as
reconfigurable modules and providing design freedom (multiple connections and
static accelerators) on the static part (Section 3.4).

• Drivers in the run-time system that carry out the actual configuration of the
FPGA with kernels as well as managing input and output data (Section 3.2.2).

• A surrounding system on the FPGA that allows placing of different modules at
run-time and providing interfaces that incorporate partially reconfigurable accel-
erators/kernels (Section 3.3.2).

This section explains the adaptions made on the Maxeler specifications, before
MaxCompiler compiles the MaxJ code to RTL. It also analyzes the current limitations
and how they have been mitigated, in order to ease the design of a dynamic process
from a user’s point of view.

3.2.1 Existing limitations

The first goal while designing a language extension is to allow all previously existing
functions to be available in the extended version of the tool without any changes. With
this, we allow using all types of existing connections available from MaxJ from the
software to the FPGAs and vice versa. Furthermore, an extension should allow simu-
lation and the tool’s debug/error messages have to function with the extended dynamic
applications, as used by Maxeler. With this, we maintain the high-level user experience
as know from Maxeler systems.

For implementing a module library of reconfigurable accelerator modules, the Max-
eler compiler cannot extract RTL generated code of kernels that is not going to be used
in an application (i.e. code that is not instantiated in the manager file). In other words,
there is no mechanism available to the user to force the tool to generate the dynamic
components (i.e. dynamic kernels) unless we instantiate them in a Maxeler project.
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However, instantiating them is not an option as the tool will generate additional con-
nections for those kernels that can not be removed by an after-processing mechanism.

Another issue is that the MaxCompiler strictly compiles only one manager file (see
Section 3.1). This makes sense for a fully static FPGA systems. However, for run-time
reconfigurable systems that introduce not only kernels as partial modules, but also
multi-kernel blocks, a user will need a new HLS description mechanism. An example
of a multi-kernel block is depicted in Figure 3.5, however a more analytical description
of those blocks is going to be given in the next section. Therefore, we need to introduce
multiple manager-like functions that allow the instantiation of an arbitrary number of
kernels and arbitrary connections amongst those kernels. Thus, there is a necessity for
supporting arbitrary connections within each set of kernels (e.g. multi-kernel group
that acts as a partial module entity).

Lastly, we have to provide a way to allow the creation and the definition of dynamic
connections in the Maxeler manager. This is not trivial, if we consider different run
interfaces that are available in the C interface code. In the original Maxeler approach,
a user could set different interfaces to be orchestrated from software, as mentioned
in the previous section. In a Maxeler design, a user can operate multiple streams.
However, some streams and some parts of the design may be independent from the
rest of the system, while not being mutually exclusive. An example of this is shown in
Figure 3.4, in which the implementation can have an ICAP module and static kernel 1

that are independent from the reconfigurable pipeline. A user can choose to load data
only to the ICAP module, without triggering the other three streams or just perform
a computation on the static kernel 2. Note that this problem is different than partial
reconfiguration, as the three depicted streams in the figure are not mutually exclusive
to each other. Due to the dynamics available through run-time reconfiguration, a user
needs to be able to declare static and dynamic connections in the description of the
dynamic system. To achieve this kind of description, additional functions need to be
included wherever it is necessary in MaxJ.

3.2.2 Extension in practice

To mitigate the aforementioned limitations it was decided to introduce the concept of
PRGroups. A PRGroup is a manager-like Java function that can contain from one to
an arbitrary number of kernels. In addition, a PRGroup is described as part of a Java
function, that can contain the same capabilities as a manager constructor in the original
Maxeler model. In Maxeler, a constructor is used to instantiate kernels and connections
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Figure 3.4: Block diagram describing a PRManager. The PRManager is split into
two parts: the static instances and the dynamic instances. A PRManager can contain
an arbitrary number of connections and an arbitrary number of static kernels, with
a Reconfigurable Region module and an ICAP module. The static instances of the
PRManager can also contain full static connections like static kernel 1, where its input
and output does not relate with the dynamic system. Finally, a single stream needs to
be instantiated to the ICAP module for reconfiguration. In addition, the PRManager
can contain multiple PRGroups, as the dynamic instances. The only requirements that
the PRGroups share the same reconfigurable region and provide the same physical
interface. The interface needs to match all PRGroups and the Reconfigurable region
instantiation.

for a manager. Thus, a PRGroup will follow a similar approach to directly comply with
the Maxeler programming model. A PRGroup can have arbitrary internal connections
between the instantiated kernels. Those internal connections will be set by a Maxeler
user. The PRGroups allow a user to define building blocks containing any number of
kernels and also switching of accelerator modules/ kernels in a dynamic application.

PRGroups are instantiated in the PRManager, which can contain an arbitrary num-
ber of PRGroups as well as connections to and from the static part of the design.
Alongside the PRGroups, the PRManager contains the static kernels that constitute the
static part of the dynamic implementation. A PRManager example case is depicted in
Figure 3.4.

The static instances and the PRGroups constitute a dynamic design. The PRMan-
ager contains a description of the dynamic design, as shown in Figure 3.4. The static
system is composed of the peripheral modules (e.g., for DDR memory or PCIe), static



3.2. LANGUAGE EXTENSION 65

Kernel_0

Kernel_1

Kernel_2

Kernel_2

Kernel_3 Kernel_4

Kernel_5

Kernel_6

PRGroup_0 PRGroup_1 PRGroup_N

Figure 3.5: Example block diagrams of PRGroups. All depicted PRGroups have the
same interface 3 inputs and 2 outputs. A PRGroup can form a single pipeline like
PRGroup 0 or a more complicated group like PRGroup 1. A kernel that is instantiated
in a PRGroup can be also instantiated in another group as shown in PRGroup 0 and
PRGroup 1 for kernel 2. Finally, PRGroup N is a single kernel in this group and it is
used to depict that in order to define a single kernelled partial module, it needs to be
defined as a group.

accelerators, an Internal Configuration Access Port (ICAP) to reconfigure the device
and the reconfigurable region that will host the partial modules.

Currently, in the original Maxeler programming approach, a user needs to set the
connections from the CPU to the FPGA and vice versa. This is done in the manager
file, where a user can set the I/O of the implementation to the C interface code, us-
ing a Maxeler specific Java function called setStream. However, in a dynamic system,
the static part and the dynamic accelerators may have different communication inter-
faces. Those communication interfaces correspond to the streams connected to the
static part of the system. The dynamic streams will specify the connections of both
the reconfigurable region and the dynamically reconfigurable accelerators. Therefore,
the PRManager has to be able to define and distinguish between static and dynamic
connections. This was be done by introducing a different type of interface function,
which is setDynamicStream (as an extension of the setStream function in the original
Maxeler approach) to define the interface of the region that will host the partial mod-
ules, as well as the partial modules themselves. An example is shown in Figure 3.4,
where the reconfigurable region and the PRGroups have the same interface. This I/O
interface is set by the setDynamicStream function, while with setStream, a user can
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define the interfaces of the static system. This includes all the inputs and outputs from
and to PCIe and DDR memory. In Figure 3.4, the output streams of the reconfigurable
region need to be instantiated both by setDynamicStream and setStream.

The PRManager must contain at least 2 static instances: the reconfigurable region

and the ICAP core. The reconfigurable region is given through our Maxeler extension
library and it is implemented as an empty module with a connection from the input
to the output. The reason for this is that we need a way to force the tool to generate
the necessary physical connections for the region. Furthermore, the ICAP core is nec-
essary to load the partial module configuration bitstream into the FPGA. In the here
presented system, there may exist accelerator kernels that will not be swapped at run-
time, as illustrated in Figure 3.4. Those accelerators are called static kernels and they
will be part of the static system. Static kernels are useful for parallel processing and
pre or post-processing for the partial modules. Static kernels are kernels that are not
specified as a PRGroups in the PRManager. Note that a system may provide multiple
reconfigurable regions. To achieve this, a user needs to instantiate multiple instances
of the reconfigurable region provided by our extension.

An example of a PRManager is shown in Figure 3.4 and examples of different
PRGroups of this example are depicted in Figure 3.5. The PRManager is initially split
in static instances and dynamic instances. In Figure 3.4 as parts of the static instances,
a user can instantiate any kernel entirely, as done in the original Maxeler approach. The
two red boxed kernels in Figure 3.4 are instantiated static kernels that will be parts of
the static system. As shown, static kernel 1 is also completely independent from the re-
configurable pipeline and acts as a parallel concurrent processing unit. Additionally, a
user needs to define the connections to and from the reconfigurable region that will also
define and constrain the connections in the PRGroups. Those connections correspond
to the dynamic connections, which are established by the setDynamicStream function,
while the streams from and to the PCIe or memory interface are called static connec-
tions are set by the setStream function. Furthermore, an ICAP module is instantiated
in the figure and it is connected with a dedicated stream to forward the configuration
data of the partial modules to the device for reconfiguration.

In the dynamic instances part of the PRManager in Figure 3.4, a user can define
any number of PRGroups. The PRGroups are independent amongst each other and
they follow the same interface specifications as the reconfigurable region. An exam-
ple of three PRGroups is illustrated in Figure 3.5. In the static Maxeler approach, the
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kernels and the connections of a manager are described by a Java constructor. Subse-
quently, a PRGroup in our approach can contain anything that an original manager Java
constructor can contain. This way, we guarantee that a PRGroup can include different
connections and one or more instantiated kernels.

A PRGroup must contain at least one kernel, as shown for PRGroup N. This was
the model when introducing the dynamic approach where a single kernel was assumed
as a PRGroup to be reconfigurable. In addition, a PRGroup can contain a pipeline
of kernels like PRGroup 0 in Figure 3.5. In that example, we can see that the ker-
nels can have different interfaces between them, as shown in PRGroup 0 between ker-
nel 0 to kernel 1 and between kernel 1 and kernel 2. Moreover, a user can instantiate
the same kernels in more than one PRGroup, as done for kernel 2 in PRGroup0 and
PRGroup 1. Last but not least, a domain expert can create more complex PRGroups,
like PRGroup 1, using kernels with different interfaces and streams to create more
complex and resource-intensive PRGroups.

3.3 Dynamic Maxeler model

After the programming of the PRManager, the PRGroups and the existing accelera-
tors, a user can run an external flow that processes the extended version of MaxJ. This
will be based on a preprocessor that will be introduced in the following subsection.
The preprocessor works as a text processing engine in which the functions described
in the previous section (e.g. PRGroup, setDynamicStream) will be used as predefined
keywords that relate to different functions. The functions will readapt the given MaxJ
code accordingly and orchestrate the extended MaxJ described application into mul-
tiple dynamic components. The included Java functions have no functionality in the
original Maxeler flow, but when preprocessed they will control the generation of the
system components used by the dynamically reconfigurable system. The preproces-
sor is important to solve the problem of not being able to force the tool to generate
subcomponents in the original Maxeler approach which are essential for a dynamic
application. In addition, this section describes how the preprocessor is implemented
into the front-end flow, which includes both the preprocessor, the language extension,
as well as the existing Maxeler toolflow.
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3.3.1 MaxJ preprocessor

The here proposed language extension readapts the idea behind the Maxeler manager
and introduces a PRManager that contains the extended functionality of a dynamic
design. A PRManager allows multiple managers to generate different kernels and
connections. To achieve that, we start from a main project and automatically split
it into multiple smaller projects (for static and all the PRGroups).

This is performed by a preprocessor that starts by detecting the PRGroups of the
specified project, as shown in Figure 3.6. For each one of the PRGroups, the tool cre-
ates a Maxeler project directory. Those Maxeler projects are only used by the tool to
generate the RTL files of the corresponding kernels. The projects will use the connec-
tions defined in the manager interface with the extended function setDynamicStream
(see Section 3.2.2), in order to describe the interface of all the PRGroups. The set-
Stream functions will set the connections with the static system.

PRGroup_0 PRGroup_1 PRGroup_N

PROJECT_NAME PR Manager

. . . . .Static

MaxCompiler MaxCompiler MaxCompiler MaxCompiler

. . . . .

. . . . .

MaxJ 
preprocessor

PROJECT NAME static PROJECT NAME Group_N

RTL PROJECT Group_N

PROJECT NAME Group_0 PROJECT NAME Group_1

RTL PROJECT static RTL PROJECT Group_0 RTL PROJECT Group_1

Group_N top 
levelGroup_1 top 

levelGroup_0 top 
level

Figure 3.6: Front-end implementation in a flow diagram. The input is the initial project
with a prefix name of PROJECT NAME and the preprocessor will generate the corre-
sponding projects (project directory outputs are depicted as 3d boxes). After the project
generation, the MaxCompiler will process the code and generate an RTL project ver-
sion of each project generated by the MaxJ preprocessor. Last, the preprocessor will
generate the final RTL top level entities of each existing group (left side of the Figure).
The outputs of the front-end processing are several top level VHDL files for each group
and several RTL projects generated by the MaxCompiler.

In addition, the static part of the PRManager will be used to generate a static
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project, which will be the project which will later control the dynamic system. This
ensures that the programmer’s code remains unchanged. The preprocessor concept al-
lows for specifying the static system and all the kernels in one project that can then be
automatically compiled without touching the original Maxeler compiler or the FPGA
vendor tools.

3.3.2 Front-end description

After the project generation, the preprocessor runs the MaxCompiler for all the projects
until the end of the RTL generation step in the Maxeler toolflow, as shown in Fig-
ure 3.6. During the RTL generation of the MaxCompiler there may be errors in the
design. The error detection remains intact as in the original Maxeler flow. The reason
for this is that the sub-projects of a dynamic project, that are generated by the prepro-
cessor, are in practice multiple static projects. The main difference is that in our flow
all the generated sub-projects are connected in our flow and they will output possible
error messages in one log file in the initial project directory in case of an error. At
the same time, the static project will act as the root project as the user can manage the
inputs and outputs of the application from the static system and the loading of modules
through ICAP. The output of the MaxCompiler will be several RTL projects from the
sub-projects, generated by the preprocessor (see Figure 3.6).

The last step performed by the preprocessor is to generate the internal connections
for the PRGroups in a VHDL top level file. This subprocess is illustrated in the left
side of Figure 3.6. The preprocessor will read the manager files in MaxJ. Then, it
will create a list of the connections of the kernels and it will generate connections
between the RTL generated kernels in VHDL. This will create the final PRGroup top
level entities in VHDL code. All code transformations that are performed though our
toolflow happen on the RTL code that is generated by the MaxCompiler and the entire
process does not require any user interaction. A user of this flow will only interact
through an HLS specification of the system (MaxJ).

Figure 3.6 summarizes the front-end preprocessing flow. The tool starts by process-
ing the corresponding manager and it generates dummy PRGroup projects containing
all the necessary files and their corresponding managers as well as a static Maxeler
project. The initial project, which contains the PRManager, is being kept at the same
main workspace for possible future modifications. In Figure 3.6, the static project does
not require an external top level description and it will only be processed in the next
stages of this toolflow. The next stages will be described in the following Chapter 4
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and Chapter 5 and the static part will generate the corresponding static bitstream of the
dynamic project depicted in Figure 3.6.

3.4 Design choices

Through the here proposed language extension, a user can generate not only partial
modules, but groups of kernels that constitute a partial module (see Figure 3.5). How-
ever, there may be kernels constituting PRGroups that can perform computations in
any permutation order. Thus, if an application contains N kernels in different groups,
generating every permutation will result in N! groups of kernels to be implemented.
This solution is not scalable and will in some cases be too time consuming for the
FPGA implementation.

Therefore, it should be foreseen, to generate an individual chaining of modules
that requires only N implementations, if the configuration bitstreams of those kernels
are relocatable. This section describes the implementation of individual kernels from
PRGroups. The generation of each individual kernel is called software design choices,
while the relocation of the generated accelerator bitstreams will be described in Sec-
tion 5.2.

It was decided to provide the users with more flexibility in terms of kernel combi-
nations. The approach which was followed in this work is to allow the generation of
all the kernels instantiated in PRGroups as individual partial modules for future usage
(assuming relocatable bitstreams). The above occurs on top of the PRGroup genera-
tion. The implemented partial modules can be chained directly by the run-time system.
Those kernels will be called unique kernels. The here proposed approach foresees to
have only one physical implementation of a kernel (e.g. given multiple instances of the
same kernel in the same or in different PRGroups) and by using module relocation, a
kernel can be executed at different locations on the FPGA.

With this, the total maximum amount of partial modules is given by the following
function where the variable PM corresponds to the number of partial modules, U is
the number of unique kernels to be implemented and G the number of PRGroups,
including the single kernel groups.

PM = G+U

The ability to reuse a physical implementation at different locations will not only
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improve CAD tool time but allows a system to compose stream processing pipelines
(from daisy-chained relocatable kernel bitstreams), provided that they are available at
runtime. Through this flow, the generated partial modules, both kernel groups and
unique kernels, will act as individual load-and-run modules. However in hardware, we
can allow additional design choices in terms of placement, that will be transparent for
the designer. This will be introduced in Chapter 5.

3.5 Summary

This section described how we extended the functionality of the Maxeler tool for gen-
erating dynamically reconfigurable projects, while preserving the Maxeler user ex-
perience. To extend this functionality, we needed to detect the limiting factors for
generating dynamic systems in the current Maxeler toolflow and introduce a language
extension to provide solutions. For parsing the extended version of MaxJ, a preproces-
sor parses the MaxJ code to generate different Maxeler projects and the MaxCompiler
is used to generate the corresponding VHDL code for each one of those generated
projects. The next chapter will focus on the mid-level processing of the generated
VHDL code.



Chapter 4

RTL-level Specifications

A domain expert that uses an HLS tool that allows partial reconfiguration should only
describe the desired dynamic system through a highilevel approach. However, to allow
this level of abstraction from an HLS approach, this thesis proposes a mid-level process
to modify the generated code that will constitute the dynamic system accordingly, in
the background. This chapter focuses on the adaption of the Maxeler-generated RTL
code that is done in the background, in order to create code that can be used by the
vendor tool for physical implementation.

The first section describes the post MaxCompiler flow. Then, we analyze the mod-
ifications necessary to adapt the generated code to our dynamic approach. The modifi-
cations include both the static system, the PRGroups and the individual kernels.

4.1 Internal Maxeler architecture

When the Maxeler HLS compiler generates RTL code, it provides clear hierarchies
with well-defined communication interfaces. We use this observation by our automated
compilation flow that splits the generated project into a static part and accelerators. A
general project can be split in two parts: the Maxeler surrounding system and the
manager, which contains the corresponding code generated by the MaxJ manager file.
The manager contains all the kernels that are instantiated in the MaxJ code. Each one
of the kernels belongs to a sub-hierarchy of the manager that also includes the internal
connections between the kernels. The connections that are declared in the manager
file as external connections are generated as part of the Maxeler surrounding system.
Our flow extracts the hierarchy that belongs to the static system (which will contain all

72
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MaxJ Kernel

Maxeler 
surrounding 

system

Stream I_1

Stream I_N

Stream O_1
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.

DDR 
Memory PCIe
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Figure 4.1: High level view of Maxeler generated system, before modifications. The
example contains the Maxeler surrounding system and a MaxJ kernel.

the I/Os of the system) and the hierarchies that belong to the manager, including the
kernels.

Figure 4.1 depicts a generated example system. Its architecture consists of the
Maxeler surrounding system, which contains memory controllers, the controls of the
data I/O and the main interface that transfers data from CPU to FPGA and vice versa
though PCIe or an existing DDR memory interface. The example depicted in Fig-
ure 4.1 contains a manager hierarchy, which is the RTL product of the MaxCompiler
for a specific project. This RTL manager can contain one or more kernels that are con-
nected to the Maxeler surrounding system via internal streams for input and output. In
relation with the language extension, presented in Chapter 3, the manager of static part
will contain all the static kernels, including the partial region and the ICAP module.
For the PRGroups, the manager will contain the RTL description of its corresponding
kernels, as generated by the MaxCompiler.

In Section 3.3.1, we described how we split the PRManager into distinct parts
using the MaxJ language. After the preprocessor finishes its internal process for each
one of the generated parts (i.e. static part and PRGroups), a mid-level code generator
takes action. This code generator modifies and generates RTL code depending on the
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Figure 4.2: High-level view of the static part of a dynamic design. The reconfigurable
region acts as a dummy kernel to define the connections to the dynamic system and it
will be replaced by a project-specific reconfigurable region with location constraints
and in-region connections. The custom HDL entity contains the ICAP and its control.

contents of the initial dynamic project. The code generator will modify the static part,
the PRGroups and the kernels differently. The next sections will describe the changes
on the static part, the accelerators and the PRGroups.

4.2 Static system

The static part is the core of a dynamic design. As MaxCompiler outputs the static
design through the static MaxJ project, the manager is clearly encapsulated in VHDL
entities. The generated manager will contain all the static kernels, the reconfigurable
region and the ICAP module. However, reconfigurable region needs to be adapted at
the RTL level before progressing to the implementation phase. The processor applies
location constraints for the reconfigurable region and instantiates a new RTL descrip-
tion for this region. The reconfigurable region, as described in Section 3.2.2 is initially
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generated empty. The above is necessary due to the low-level design of the reconfig-
urable region that requires strict location constraints and specific netlist files that cannot
directly be instantiated in the MaxJ programming model. Additionally, we should take
into consideration the size of the region that will host the partial modules. In order to
calculate and instantiate the physical instance of the region, we need a way to calculate
the resources needed by the partial modules.

Figure 4.2 shows a generated static system. Its architecture consists of the Maxeler
surrounding system that forwards the data from CPU to FPGA and vice versa though
PCIe or DDR memory interfaces. For simplicity, the example depicted in Figure 4.2
contains only one partial region and a custom HDL instance in the manager. The ex-
ample could have had more kernels instantiated statically in the manager, as described
in Chapter 3.

Partial reconfiguration is performed through the Maxeler memory controller to-
wards the ICAP, which is included in Maxeler’s surrounding system and which sends
partial configuration bitstreams to the ICAP ports of the FPGA. The ICAP is instanti-
ated inside a Custom HDL wrapper that forwards input data from the Maxeler interface
to the ICAP. Within the Custom HDL wrapper we use a control to handle the I/O of
the ICAP stream. Note, that the Custom HDL ICAP component should be already in-
cluded from the design phase. This control is responsible for little-Endian bitshifting,
which is necessary for the ICAP component. The control module follows the Maxeler
stream protocol, as it is instantiated in the MaxJ version of the project.

The reconfigurable region acts a placeholder module to define the interface with the
dynamic accelerators. As described in the previous chapter, the reconfigurable region
file is an empty loopback MaxJ file and it is used to generate the surrounding connec-
tions. The wrapper will later be used to host the reconfigurable region itself, as part of
the static implementation. The MaxJ version of the reconfigurable region is automati-
cally replaced with a project-specific reconfigurable region which is performed by the
code generator. The reason that we can not define the region itself within the MaxJ
code is due to the high-level of abstraction from the Maxeler framework. Thus, low-
level constraints, for example location constraints for the reconfigurable region needs
or specific netlist files that describe the implementation of the reconfigurable region,
cannot be instantiated directly in MaxJ code.

The reconfigurable region is implemented as a loopback device. By loopback de-
vice, we mean that the inputs of the reconfigurable region are routed across the fabric
(i.e. the instantiated location of the reconfigurable region) that it occupies, then this
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input performs a U-turn and follows a backward path towards the Maxeler surrounding
system. As a default in this PhD thesis, the region interface is predefined at a 512-bit
wide datapath, plus some extra handshaking signals. However, a user can originally
define the desirable bit-width of the system, with a maximum of 512 bits for input data
and 512-bits for output data. A datapath of up to 512-bit was selected as this allows
for saturating a DDR memory channel. In case that a user does not need all the band-
width, our tool will automatically ground the remaining signals. In the case of wider
datapath (multiple of 512), the region would have to be wider in term of FPGA clock
regions or the congestion would be significantly higher that would affect the timing of
the implementation.

Our code generator instantiates the region in the MaxJ generated RTL design. The
instantiation occurs by coping the necessary files in the project directory and by setting
location primitives for the region itself in the User Constraint File (ucf). Section 5.1
describes how the partial region is designed and created in more detail. Each stream
towards the reconfigurable region contains an I/O control, as shown in Figure 4.4. This
I/O control is shared amongst all the kernels that will be placed in the region for the
specific stream (as in Figure 4.4), instead of using an I/O control between each kernel
(as shown in Figure 4.3).

4.3 Kernels and Internal Communication

In general, the reconfiguration of modules can save resources on mutually exclusive
applications, improve the implementation time and enhance parallelism. However,
MaxCompiler does not output RTL code for the accelerators that can be implemented
as reconfigurable modules. Thus, after the MaxCompiler outputs the RTL code, an
additional preprocessing mechanism is needed for the generated kernels.

The reconfigurable accelerators need to communicate both with the rest of the
reconfigurable accelerators as well as the static part. Hence, a predefined interface
should be set both on the input and the output side of each implementation. In ad-
dition, the interface in the input and the output of each accelerator should match, to
allow interchangeable placement in the reconfigurable region. However, this task has
to incorporate the existing interface from Maxeler, while taking into consideration the
Maxeler communication protocol between kernels. In order to produce dynamic ac-
celerators from the current statically generated RTL code produced by Maxeler, our
process needs to support:
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• A generic interface for the accelerators allowing the predefined Maxeler hand-
shaking protocols on both the input and the output to communicate with the static
part.

• Matching interfaces on the input and the output for multi-placement of acceler-
ators. (e.g., for daisy-chaining of accelerators)

• Automatically creating a top level VHDL entity that connects the predefined
PRGroups by the users, as specified by a user through the MaxJ description.

• Allow design alternatives of accelerators that belong to PRGroups to be imple-
mented as individual blocks.

The kernel communication from Maxeler is implemented based on a handshaking
protocol, as shown by the depicted connections in Figure 4.3. The interface protocol
of the modules on each input stream contain an data, empty, an almost empty and a

read bit, while the output uses a data, stall and a valid bit. In order to guarantee inde-
pendency and relocatabillity amongst modules, we need to define and create a generic
interface that will be followed by all kernels. To understand the basic communica-
tion principals of the Maxeler streaming protocol, we observed how Maxeler handles
the chaining of the implemented accelerators. We found that Maxeler uses a FIFO
semantic component (chaining component) to connect kernels using the same hand-
shaking and flow control mechanisms as used for the communication with the Maxeler
interface. Thus, it was decided to follow the same approach in order to directly com-
ply with the Maxeler communication protocol. Figure 4.3 shows the chaining of two
MaxJ generated kernels using a chaining component, which is generated by the Max-
eler compiler. This component contains a small FIFO and an I/O control block.

By separating the chaining component into two parts, we can integrate the FIFO
in the kernel and keep the I/O control as part of the static system. An overview of the
proposed architecture for the module is shown in Figure 4.4. As we can see, the hand-
shaking interface of the inputs and the outputs is exactly the same. This is essential
because we consider that basic blocks with the same interface can now be placed arbi-
trarily within the reconfigurable region to create a pipeline to form more complicated
accelerators. Figure 4.4 also depicts an example with two individual Maxeler kernels
that can be concatenated together in one shared reconfigurable region.

The control block of the initial chaining component from Maxeler is used in the
static part to handle the I/O of the reconfigurable region. The proposed design offers
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Figure 4.3: Initial module chaining in Maxeler using a chaining component. The chain-
ing component is part of each connection in the Maxeler generated RTL description.
As it is a fundamental component in the generated RTL code by Maxeler, its interface
is used to set a template for our RTL-level connections.

Figure 4.4: Modified kernels after the chaining module split. Kernels contain an inte-
grated FIFO that existed in the initial chaining module while its I/O control is placed
in the static system. The yellow border defines a PRGroup or a unique kernel.

lower resource utilization, as the original Maxeler approach used a chaining component
at each input of all the implemented kernels that were included in the initial manager
file. We observed that only the FIFO is required for each kernel and not the whole
chaining component. Thus, our design replicates just the FIFO inside the modules, as
we need only one control block for each input of the reconfigurable region and share
the control block amongst multiple kernels. Note that using only one dedicated control
block for the design, there is a slightly less resource utilization in the design without
impacting the functionality.

After this step, the tool outputs all the existing kernels as individual accelerators,
with the same handshaking interface on the input and the output. Initially, each input
of a Maxeler generated kernel had FIFO state signals empty, almost empty and read

as its handshaking protocol. After our modifications for each kernel, the handshaking
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Figure 4.5: PR code generator flow diagram. The tool starts by extracting the gen-
erated code from Maxeler and creates a project directory for each one of the existing
Maxeler projects (including dummies). The tool automatically detects the kernels in
each groups and performs the necessary changes before grouping them back into the fi-
nal RTL version of the group. In the static system, the tool adds an I/O control on each
input and the corresponding reconfigurable region. Each unique kernel of the groups is
stored in a directory (bottom right corner) to be used as external partial modules, that
act as building blocks for future use.

signals of those inputs will work with valid and stall, as it is on the output side of the
each Maxeler accelerator. Those accelerators can now be used as individual partial
modules and will be generated by our flow automatically, if the user desires to have
them as partial modules, even if they belong to PRGroup.

The last step is to connect the kernels to form a PRGroup with the new interfaces
between them. This is done through the MaxJ language by reading the PRGroups de-
scription in the initial manager file. The subprocess starts by recording the kernels,
their inputs and their connection from the MaxJ preprocessor. The values are recorded
in lists (in Python) containing all kernels with a unique ID, each signal connection
(ID connection ID) and the interfaces of each accelerator in a PRGroup. Then, the
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mid-level processing tool parses the connections and generates the corresponding sig-
nals that are necessary in VHDL. Each recorded connection signal starts from one in-
put and can send data to multiple other components. We use this principal to write the
PRGroup’s VHDL top-level with its interface entity and its functionality, containing
all the components and connections for each kernel, including the connection signal
declaration that is necessary in VHDL language. The top-level entity has again the
same interface protocol, consisting of data, valid and stall signals for both input and
output.

Figure 4.5 illustrates the mid level processing that occurs, following the same ex-
ample, depicted in Figure 3.5 and Figure 3.6. In those figures, the PRGroups contain
the same number of kernels. After the RTL code extraction from the dummy Maxeler
projects, the PR code generator identifies and extracts the whole hierarchy of the ex-
isting kernels. The rest of the PRGroup project is not necessary after this step. The
tool also applies the modifications to all the detected kernels and creates a partial mod-
ule version of the kernel (i.e. PM Kernels in the figure). After the modifications, the
unique kernels and their hierarchies are saved in a dedicated project directory (called
Unique kernel directory in this implementation) of the project for making extra design
alternatives available to the user. Additionally, the tool generates the PRGroup partial
modules in their corresponding RTL version, by generating the top-level HDL code
from the detected connections of the front-end processing (i.e. the MaxJ preproces-
sor).

The mid-level process ends by outputing the resources needed for each entity, ei-
ther for a PRGroup or a unique kernel. We use those resource requirements to calculate
the minimum resources needed for the reconfigurable region. Note that the resources
of the largest PRGroup alone may not define the minimum resources needed for the
reconfigurable region. For example, a PRGroup that needs most of the LUTs is the
largest and, there may be, for example, a PRGroup that needs more DSPs than the
largest PRGroup in terms of LUTs. Thus, the minimum requirements of a reconfig-
urable region are the maximum number of resources in LUTs, DSPs and BRAMs in
all the existing kernels and PRGroups. For the PRGroups and kernels, the resources
of each entity will be used in the back-end processing to calculate certain location
primitives and constraints.

The primitive-wise counting of resources defines the smallest reconfigurable region
that suits all PRGroups. For allowing future extensions, the designer may choose a
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larger reconfigurable region, while recompilation and reimplementation of the whole
project it is not required, in case of lack of space.

4.4 From MaxJ towards implementation

As, we mentioned in Section 3.1, in order to generate a static design with the original
Maxeler flow, the Maxeler tool needs a manager file and the instantiated kernels. The
above entities are written in MaxJ, as Figure 4.6 depicts. The implementation starts
by running the MaxCompiler, that converts MaxJ to the corresponding RTL code. As
Figure 4.6 illustrates, the generated RTL code follows the ISE toolchain until the bitfile
generation, that will later be a part of the final Maxfile.

The here proposed toolflow is shown in Figure 4.7 compared to the existing static
approach by Maxeler in Figure 4.6. In this figure, each level of processing (front,
mid, back-end) is drawn in a blue cycle, while their corresponding output is marked
by a dashed-line box. This figure presents a detailed overview of the here proposed
implementation, by depicting the inputs and outputs of each processing stage. This
section summarizes Chapter 3 and Chapter 4 before focusing on physical implementa-
tion practices and details in Chapter 5.

In this flow, the HDL generation toll is written in Python that automatically gener-
ates the dynamic design. As in the static approach, the user also programs the manager
and the kernel files in MaxJ. The tool starts by generating individual projects based
on the PRManager, which is an extended version of the Maxeler manager file. This is
done by the front-end process and its internal process is described in greater detail in
Chapter 3. MaxCompiler is used in each one of the generated projects to output the
RTL code of every project. The RTL code including the IP cores given as netlists and
constraint files, are extracted and they are used to proceed to the next level of process-
ing, which is the mid-level. The mid-level processing is responsible for the modifying
the RTL code and to include the additional template files that generates, as described
in this chapter. As mentioned in the previous chapter, the output of the process are
implementation-ready entities of partial modules and the static system.

As a final step, our toolflow implements each one of the entities in parallel to
generate the final bitstreams. This is done by the back-end processing, which uses
academic tools and Xilinx tools to implement the existing RTL code. The reason
that we use external academic tools is to achieve box constrained implementations
of partial modules, which will allow more flexibility on the dynamic system, while
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Figure 4.6: High level view of Maxeler static MaxJ to MaxFile flow, similarly depicted
in Figure 3.3. This figure is used to depict an overview of the static implementation
which will later be compared with an implementation supporting partial reconfigura-
tion.

preserving clear interfaces for the communication between the static system and the
partial modules. The back-end process will output and generate the static bitstream
and the partial bitstreams, as depicted in Figure 4.7. The static bitstream is a full
bitstream, which is used to describe the full implementation of the static system. As
it is done in the original static approach by the Maxeler toolflow, the full bitstream
will be used to generate the final Maxfile of the project. The partial bitstreams will be
stored in a directory that will later constitute the partial bitstream library of the project.
The partial bitstream library will contain all the partial bitfiles for all the PRGroups
and unique kernels. As a conclusion, the original Maxeler approach has only one
output bitstream, while our approach has one full bitstream and a library of partial
ones. Chapter 5 will describe the back-end processing works in depth and analyzes
how we transit from the RTL code that is generated by the mid-level processing to the
final bitstreams.
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Chapter 5

Low-level aspects

This chapter covers the low-level engineering aspects of a partially reconfigurable de-
sign, that is usually done by an FPGA expert. In order to introduce a flow usable by
application domain experts, automatic tools have to be used on the background with
extra scripts to modify the code running on the tools accordingly. This chapter focuses
mostly on the implementation after generating the necessary RTL files and projects
(which is described in Chapter 4). For the implementation phase, the here presented
flow uses academic and the Xilinx vendor tools (i.e. ISE).

This chapter describes the toolflow for creating dynamically reconfigurable sys-
tems to implement the modified components (see Chapter 4) to build a partially recon-
figurable system. This chapter provides an analysis on the implementation flow and
the background tools that we use to create our dynamic system. In addition, we ex-
plain the low-level details of our approach and the benefits that rise from the back-end
processing to the application domain expert.

5.1 Static system

This section focuses on the implementation of the core static system architecture of
the dynamic design. We start the introduction by describing the architecture of the
reconfigurable region and how it fits to the final static part of our design. After this,
the background process which generates the static system will be presented.

84
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5.1.1 Reconfigurable region

The first step to create a reconfigurable region is to decide the position that it should be
placed on the FPGA fabric. In order to take this decision for multiple Maxeler projects,
we observed how Maxeler maps and implements designs in its original flow. From this,
it was noticed that Maxeler is almost entirely not using the top and bottom corners of
the device. This occurs because in the device we use all the communication specific
primitives (e.g. for DDR3 and PCIe) are located in the center of the chip. Thus, we
decided to place the reconfigurable regions on the corners of the device. The designer
can generalize this approach by determining, how many regions are required based on
the utilization of the static and the dynamic component. Those locations are important
also for our approach of partial reconfiguration, as they can be isolated from the static
accelerators and the I/O infrastructure. The here presented approach, focuses on accel-
erators that function independently amongst them. The reconfigurable regions that will
only be placed in the top corners of the device will share the same interface protocol
for allowing relocation amongst regions. The above characteristic can fully utilize the
existing partial modules, considering that none of the accelerators is implemented as a
design specific block (in terms of location or specific reconfigurable region), but rather
as a load-and-run FPGA function. By load-and-run, we mean that a component will be
loaded, executed until the process terminates by any interface and resource matching
project. At any point as we will describe later in this Chapter, the designer can decide
to switch between applications.

The partial region represents the physical implementation of the dummy reconfig-
urable region that is instantiated by a user as described in Section 3.3.1. The wrapper
will be replaced by the physically implemented region, as shown in Figure 4.2. To
generate the region or regions for a project, we used the GoAhead tool. The tool will
be analyzed in more detail in Section 5.5

The whole process is automated for domain experts. In order to create reconfig-
urable region for given resource constraints, we automated the region generation in
GoAhead via tool specific scripts. In Chapter 4, we mentioned that we calculate the
minimum resources needed based on the existing PRGroups. In the case that we need
more resources than available on the FPGA, the maximum number of resources (as
mentioned in Section 4.3) is used to define the script implementing the reconfigurable
region. This script will generate location specific primitives to be instantiated in the
RTL implementation, as well as the region RTL description.

To constrain the data routing, we are using routing blockers. Routing blockers
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function as preoccupied routing resources that constrain the interface into a predefined
fashion. In other words, in a specified region GoAhead can set and name the amount of
wires that will be used and connect those wires from a point A to a point B in the chip.
This guarantees relocation with the region and regions. Then, we can generate blockers
on the remaining wires, to guarantee that the routing of the static system does not
cross any reconfigurable region. The blockers also guarantee a specific wiring template
within the region across the full width of the chip. Additionally, macros constrain
the interface of the static wires of a predefined reconfigurable region. The interface
of those wires will be the final interface of the region itself. Furthermore, the clock
signals are constrained such that all the designs (i.e. partial region and accelerators)
use the same routed clock routing resources. To force the Xilinx tools to generate the
desired clock connections, GoAhead generates a clock blocker, or multiple in case of
multiple clock signals. The clock blocker will occupy a predefined clock spine and
block the rest of the clock spines.

To achieve high clock rates of the static implementation, internal pipeline stages are
instantiated within the region. The pipeline stages will also constrain the wires that are
required by the predefined routing path for the reconfigurable region. Those wires will
be marked as used on the GoAhead tool for generating the routing and clock blockers.
Those pipeline stages are the only used primitives within the region. The rest of the
region left is entirely empty and the pipeline stages can be overwritten, in the case that
we need the resources for hosting an accelerator. Finally, the region is implemented as
a loopback device. By loopback device, we mean that each one of the wires routes to
the pipeline stages is routed in a regular pattern all the way across the side length of the
region. Then, the wires perform a U-turn and route all the way back, while routing to
backward pipeline stages as well. Similarly to the routing blockers, the clock blockers
guarantee that in every subpart of the design (i.e. static part or accelerator) the same
clock signals will be used for all the clocks. By constraining clock and internal routing,
it is clear that relocation after the generation of the subparts will be based entirely on
the resource available on any region.

An example of a reconfigurable region is depicted in Figure 5.1. In the figure,
we have drawn wires (yellow wires) on the top and in the bottom that route from
the static system located on the left beside the reconfigurable region all the way to
the end of the chip (right border) and return in the same fashion back to the static
system infrastructure. Each of the pipeline stages is marked by a red box and they
are distributed equally on the width of the reconfigurable region. Note that each box
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Figure 5.1: Fully placed and routed reconfigurable region, as shown by the FPGA
editor tool. The region interface constitutes of 512-bits for the input and 512-bits for
the output, plus 16-bits of input and 16-bits of output for implementing handshaking
signals for the communication of the region and the rest of the system. The signal path
is regularly routed across the span of the reconfigurable region. Additionally, pipeline
stages are instantiated in the region to improve timing and constrain the routing within
the region (red boxed components in figure). Those pipeline stages are double, which
means that the pipelining occurs both on the front and backwards path.

corresponds to 2 pipeline stages, one for the forward path and one for the backward.
However the pipeline stages can be overwritten while loading a reconfigurable module
in the reconfigurable region. The interface of the region is 512-bits for the input and
512 bits for the output. In addition, the region offers some handshaking signals that
control the flow of data through the reconfigurable region.

5.1.2 Static implementation

After generating the reconfigurable region that is instantiated in the static system, we
can run the combined toolflow of GoAhead and Xilinx commands to create the final
bitfile of the static system. Figure 5.2 illustrates a very high-level view of the static part
physical implementation flow. After all the placement constraints and blocker files are
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Figure 5.2: Low-level implementation of the static system. The toolflow starts from
the static RTL part that was generated by the mid-level processing. GoAhead generates
a VHDL version of the reconfigurable region and its corresponding area constraints.
Additionally, routing blockers are used to constrain routing in a predefined fashion
to match the routing of the generated accelerators. The Xilinx vendor tools are used
to map and place and route the final design and ultimately generate the configuration
bitfile.

generated, the ISE flow is used to generate a full bitfile of the static part of the dynamic
system. A fully placed and routed region is depicted in Figure 5.3.

As shown in Figure 5.2, the flow remains the same with the Xilinx flow until af-
ter the mapping phase. The region and the location constraints are pre-instantiated
through the mid-level processing. After mapping of the design, design-specific rout-
ing blockers and clock blockers are added. This is done by the tool GoAhead that is
controlled through its scripting interface. Note that for Virtex 6 FPGAs, as available
on the used Max3 system, we use the XDL language to perform netlist modifications.
After adding the blockers, the first step is to route the clock signals one by one, in the
case the system provides multiple clock signals to the module hosted in the reconfig-
urable region. This is performed through scripting commands for the Xilinx FPGA
Editor tool. After routing all the signals, the toolflow continues with running the Place
and Route command. When we have the final design, we can delete the blockers and
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we can then generate the full static bitstream. We keep the routed netlist for future
placement options that are presented in the next sections.

Figure 5.3: Empty reconfigurable region implementation (red boxed part). The inter-
face contains 512-bits of input and 512-bits of output, plus some extra handshaking
signals. The picture depicts the top-right part of the chip. We can also observe the
predefined routing which is regularly structured within the reconfigurable region The
rest of the system that surrounds it is freely implemented by Xilinx vendor tools.

Figure 5.3 shows a simple routed static system with a reconfigurable region placed
in the top-right corner of the device. Most of the surrounding system is placed and
routed without any extra constraints in the back-end flow. It is placed in the center of
the chip, as this provides direct access to the I/O pins used for PCIe and DDR memory,
as well as communicating with the region/regions that will be placed in the corners.
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Figure 5.4: Low-level implementation of MaxJ generated accelerators. The toolflow
starts by using the modified RTL accelerators that the mid-level produces. The Bound-
ing Box Generator (see Section 5.5) is used to bound the modules into rectangular
boxes and to calculate possible placement positions for those boxes. This occurs by
the given resources for each accelerator or PRGroup. GoAhead is used to generate
the constraints for a predefined bounding box. Alongside the placement constraints,
GoAhead generates the routing and clock blockers of the accelerators. After placing
and routing the design, its netlist can be saved in a library containing all the netlists of
the accelerators of a project.

5.2 Partial module implementation

In Chapter 4, we have introduced the RTL modifications that are necessary for the
implementation of partially reconfigurable modules, occurring on the back-end pro-
cess. The output of the mid-level process are multiple projects containing PRGroups
providing an RTL description of one accelerator or one PRGroup each and their corre-
sponding resource requirements. Those projects can be directly implemented without
any further modifications.

Figure 5.4 illustrates the automatic flow of the module generation. Starting from
the modified generated RTL code of the kernel and the pre-calculated resources for
each one of the kernels, Bounding Box Generator (see Section 5.5) calculates the ex-
act module bounding boxes given utilization (i.e. the number of LUTs, DSPs, and
BRAMs used). Note that the Bounding Box Generator tool that searches 1) for multi-
ple bounding boxes for each one of the kernels and 2) for multiple placement positions
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for each one of the calculated bounding boxes. Then, the tool decides the most suitable
bounding box based on internal heuristics (such as the minimum fragmentation or the
maximum number of placement/routing). After defining a kernel’s bounding box, the
toolflow automatically generates placement constraints and blockers around a prede-
fined position, using the GoAhead tool. The generated blockers ensure that the module
routing does not violate the bounding box borders.

One of our main challenges solved in this flow is to route through and backward
of our module, precisely as we did in our reconfigurable region. This would allow
in some cases configuring a kernel into the reconfigurable region without interfering
with other modules that are executed in that reconfigurable region. This can occur to
enable more design options for a user, without any requirement of reimplementing the
design. In order to ensure this routing, we place a vertical series of registers before
and after the module, that we call connection macros and act as the interface of our
partial module. The connection macros have the same interface with the pipeline stages
used in the static implementation (as previously described in Section 5.1). In order to
implement the interface routing of the module, we leave ”holes” in the blockers to
allow routing both paths through the module. The aforementioned holes match the
wires between the connection macros that are placed before and after the module. It
should be mentioned that the clock signals are accordingly constrained to ensure that
the clock routing will match exactly the routing used in the reconfigurable region. This
is done by the GoAhead flow that ensures the routing through the same clock nets for
both the kernel and the reconfigurable region.

Having the generated constraints in place, we can now run the Xilinx toolchain to
fully map and place and route the module. The implementation here is very similar
to the implementation of the static system. We start the implementation by using the
Xilinx toolflow until after the mapping process. Then, we can add the routing and clock
blockers, route the clocks before routing the rest of the design in the FPGA Editor
tool and finally running Place and Route to fully route the design. After deleting the
blockers, we need to perform an additional step compared to the static implementation.
This additional step corresponds to the extraction of the routed netlist in a GoAhead
netlist file. This extraction occurs only in the predefined bounding box and we do not
include the connection macros before and after the module. Additionally, we can also
generate a full bitstream from each module. The netlist and the bitstream of the module
are saved and they going to be used in the final phase of the back-end process.

Figure 5.5 shows a fully placed and routed kernel in the FPGA Editor tool. This
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Figure 5.5: Fully placed and routed PRGroup depicting the connection macros and
the interface connections. The connection macros substitute surrounding static system
based on the routing within the reconfigurable region. The zoomed figure shows that
the routing is constrained to strictly stay inside the module bounding box (in this case
the top border). However, within the modules, there is no constraint for the routing
itself Furthermore, the interface wires on the left and the right side of the module
physically placed design are implemented in such fashion that allows direct streaming
to other modules or back to the static surrounding system.

fully implemented kernel can be extracted by GoAhead and for generating a full bit-
stream of the implementation.
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5.3 Bitstream generation

The aforementioned process results in several implementations of fully physically im-
plemented accelerators (includes PRGroups and unique kernels). Those accelerators
can be placed at different positions within the reconfigurable region that are initially
calculated. Thus, we can place and route module netlists individually and indepen-
dently from the static system (based on a predefined interface in terms of kernel I/O
wires). The result of the process is a final static configuration bitstream and we can
generate partial bitstreams using either bitstream manipulation with the BitMan tool
[86] (see Section 5.5) or by using the differential bitstream methodology available by
Xilinx [105]. The following subsections are describing both methodologies that cover
the same function from two different angles, while each one of them can offer distinct
features. Both techniques allow module relocation and replication (also proposed in
[106]).

5.3.1 Bitstream extraction at netlist level

Having the placement positions of each kernel and the netlists of the static system and
the kernels, we can place each kernel into the static system. As depicted in Figure 5.6,
for each one of the kernels, we need to place its netlist (including place and route infor-
mation) to the target position of our static system, with the help of the GoAhead tool.
In order for the tool to process the Xilinx generated code, we need to make modifica-
tions to the XDL files. We use GoAhead to modify the Xilinx Design Language (XDL)
file by instantiating the module in the position returned in the previous step. After the
modifications we can revert the output XDL code to the NCD file (Xilinx netlist file
description). The functions to convert between the file types are included in the Xilinx
toolflow.

To generate the partial bitstream for the module, we first generate the static bit-
stream and the bitstream that contains the static system and the placed accelerator
module in the reconfigurable region, generated by the placed netlist. During the differ-
ential bitstream generation process the two full bitstreams are compared between them,
using the differential bitstream command from the Xilinx toolchain. The differences
are saved in a bitfile, which corresponds to the partial bitfile of the specific module.
This function is repeated for all the modules to generate multiple partial bitstreams.

A visual representation of this process is shown in Figure 5.7 that depicts three
reconfigurable modules (marked with red boxes), placed in the reconfigurable region
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Figure 5.6: Extracting partial bitstreams using the netlist level approach. Here, the
main tool is GoAHead that stitches netlists that were extracted, as described in Section
5.2. GoHAhead can place those netlists in the reconfigurable region. The tool works
in the background in a ”copy and paste” fashion in order to apply the changes to the
static netlist. Having the new netlist with the placed module, we can extract a partial
bitstream by using the Xilinx differential bitstream generation.

during the placement phase of our toolflow. The placed kernels are generated from
different processes, but they can still be used in a stitched pipeline fashion to create
a more complicated accelerator. The main advantage of the netlist approach is that
static timing analysis using Xilinx vendor tool can only be achieved by the netlist level
approach in the case of replication and relocation. With this feature, we can guaran-
tee that any system created through bitstream manipulation at run-time will actually
meet timing (including both setup and hold times). Thus, the timing analysis of this
approach can provide the user the necessary timing check in case it is required.

5.3.2 Bit-level bitstream extraction

The bit-level approach is useful for online stitching of partial modules. In the here
developed flow, the BitMan tool extracts the bitfile data in a specific physical location
A that corresponds to the bounding box in the initial accelerator bitstream. This bit-
stream is then cut out and written to a physical location B of the second bitstream. The
extracted bitstream can be saved as an individual partial bitstream that can be loaded in
the second bitfile and program the device. Similarly, we can cut out a revert bitstream
from a full bitstream. This bitstream corresponds to a piece of the reconfigurable re-
gion before placing any accelerators. This is implemented with BitMan in an initially
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Figure 5.7: Stitching of reconfigurable modules in a reconfigurable region in a
pipelined fashion. The kernels placed in the reconfigurable region are marked with
red boxes. Those kernels have been copied in a GoAhead netlist format to the previ-
ously routed static system. The kernels correspond to independent building blocks to
be combined for solving more complex problems.

empty region to extract the region as a partial bitfile. This bitfile can be loaded in or-
der to clear out the region at any point during the processing or between two different
processes to set back the design.

The process is depicted in Figure 5.8. The files needed for this process are two full
bitstreams of the placed kernel and the static system. This uses the positions returned
by the Bounding Box Generator (see Section 5.2) to place the module full bitstream in
its placed position to one of the available in the region of the static full bitstream. The
result of the process is a full bitstream and multiple partial bitstreams that constitute a
library of partial modules in the initial project directory in the Maxeler user workspace.
The bitstream manipulation on BitMan allows for rapid stitching of modules at runtime
without running any of the tools of the vendor Xilinx. That is the main benefit of the
bit-level compared to the netlist level approach and that it allows online relocation.
Moreover, this process is substantially faster than generating bitstreams from netlist
level. More details will be given in Section 5.5 and Chapter 6.
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Figure 5.8: An approach for generating partial bitfiles from full module bitstreams.
The tool extracts the module specific information given by its module bounding box
from the full bitstream of the module and overwrites the placement location in the full
bitstream. The tool that handles the above process is called BitMan and it is presented
in Section 5.5.

As a summary to the proposed approaches, bit-level bitstream relocation will pro-
vide the desired result in the realm of milliseconds, while the netlist approach will
guarantee timing in critical relocations and replications. Time critical relocations (e.g.
in high clock rate designs) should occur with the netlist level approach and the bit-
level approach would be preferred for functional testing and lower complexity designs.
However, both choices can be used in any scenario. The initial bitfile generation occurs
with the netlist approach to detect possible timing violations.

5.4 Back-end overview

Our flow can automatically generate multiple physical implementations of the same
module to incorporate the heterogeneous resource layout of logic, memory and arith-
metic block columns (CLBs, BRAMs and DSPs). This allows for a tighter placing of
modules. When all bitfiles and placement positions are generated, we load the kernels
in the requested order into the reconfigurable region. This occurs through the C inter-
face code of Maxeler and by sending the partial configuration bitstreams to the ICAP
stream. The C code is used to read the bitfiles store them in memory and program
the device when needed. The programming sequence for the applications should be
orchestrated by the user. This is done by enabling the ICAP stream to write the de-
vice until a dedicated function is done. At any point, the reconfigurable region can be
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Figure 5.9: Two programming phases of a reconfigurable region. Initially the empty
reconfigurable region (see Figure 5.3) is programmed with 2 kernels, before resetting
the region back to its empty state with a reverting bitstream and loading another indi-
vidual module. The reverting occurs between the transition from one configuration to
the other (not obvious in the figures), with the resetting bitstream.

set back to the initial empty state by loading the reverting bitstream and load another
function. An example is depicted in the subfigures of Figure 5.9, where initially the
user loads two individual modules, sets back the static system to the original empty
region design and then configures a new module. In another case, the user is also able
to replicate or relocate existing modules. For that purpose, we save the initially calcu-
lated placement positions (in the design phase) in order to incorporate the placement
of implementation alternatives. This is automated by BitMan that adds automatically
corresponding metadata to the original Xilinx configuration bitstream.

One of the main contributions of the here proposed flow as compared to full static
implementations, is that the flow can be parallelized. Figure 5.10 depicts an overview
of the back-end process, parallelized amongst the individual entities of the Maxeler
project. This is an important characteristic because the mapping and the routing tools
need significantly more time with rising complexity. Thus, splitting the design into
distinct parts (partial modules and static part) can save substantially CAD tool time
when executed in parallel. Moreover, with our flow, every modification of the static
system or a kernel will be done independently, without the need of recompiling and
re-implementing (including place and route) the whole system. This occurs due to the
fact that each part of the dynamic architecture is mapped and placed and routed using
the same interface macros, but they are done independently from the other components
or static system. In addition, each one of the generated kernels can be used in different
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Figure 5.10: An alternative approach for generating a system that uses partial recon-
figuration. Splitting and implementing multiple smaller designs, results in faster bitfile
generation (for static system and partial modules).

projects, as long as the module fits the region and matches the interface. All the above
properties target to improve design productivity, by shortening the design time.

A flow diagram of the back-end process is shown in Figure 5.11. This figure is
a concatenation of the subprocesses that constitute the back-end process. In the left
hand side of the figure and right sides of the figure, static and module processing are
depicted, respectively. On the bottom, a summed up version of the bitfile and partial
bitstream generation is depicted. Having introduced the implementation flow, we will
now take a closer look into the tools that had been used in the background to hide the
low-level FPGA-specific details.

5.5 Customized Tools

The FPGA vendor Xilinx provides tools that allow for implementing run-time reconfig-
urable systems. However, the vendor flow implements partially reconfigurable mod-
ules as an increment to a static system. This means that a module can only work
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Figure 5.11: Toolflow diagram depicting the steps that are performed after we extract
the RTL code from the Maxeler Compiler to enable moving from a static implementa-
tion flow to a dynamic implementation flow. The left half of the figure illustrates the
steps occurring while implementing the static part, while the right half focuses on the
partial module generation. External tools are marked in blue, while Xilinx tools are
marked with grey.
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in its particular static system and that any change to the static system requires a re-
implementation of the corresponding modules. In order to provide systems with more
flexibility, where modules can be implemented independently to the static system and
where modules can be relocated and used across multiple different static systems, we
are using a chain of academic tools on top of the vendor Xilinx tools.

5.5.1 GoAhead

GoAhead is a tool that is used to create all the components for the system’s reconfig-
urable design. GoAhead provides floorplanning capabilities, communication infras-
tructure, and constraints generation that are required for the physical implementation.
As referred in the previous sections, GoAhead is used for constraining the partial re-
gion as well as for the defining bounding boxes of the modules. It also generates
routing and clock blockers that the user can define by constraining routing paths, as
well as the RTL description of the reconfigurable region for a design. The tool can be
controlled and automated by inputting external parameters from previous processes or
tools, such as the Bounding Box Generator.

GoAhead can be controlled by either a GUI or through scripting. In this work,
the scripting interface was used in order to generate module bounding boxes or re-
configurable regions, including all VHDL code templates and physical constraints (for
controlling the place and route step to comply with the partial reconfiguration rules).
The GUI can be used as a visual representation of the design and also allows debug-
ging mechanisms and an illustration of the current selections in the device. The tool
can also load and visually represent Xilinx netlists as they are implemented on the
chip. An example of the GUI is depicted in Figure 5.12 and the same interface can be
used for debugging, floorplanning purposes, and module placement (at netlist level).
Furthermore, GoAhead was used in this project to modify netlists by cutting out parts
of it or combine/replicate more netlists to create a new design.

Finally, GoAhead supports all recent Xilinx FPGAs, including Virtex 6 (as used in
this project), all Virtex 7 series FPGAs (through an XDL API) as well as the new Ultra-
Scale devices (though a TCL API). Thus, GoAhead can be used in a flow for different
devices using the approaches (i.e. placement and routing constraint generation, clock
blockers) used within this PhD for independent reconfigurable module generation that
support relocation and replication. Some projects that use the GoAhead tool with the
Virtex 7, the UltraScale and the UltraScale+ devices can be found in [107], [108], [7]
and [109].
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Figure 5.12: GoAhead GUI displaying device primitives and an example of a resource
footprint. The resource footprint is a string of symbols, depending on the resource that
it occupies. The resources are depicted with a yellow box on the top half of the figure,
while an example resource footprint is depicted in the bottom, containing a slice-L, a
slice-M, slice-L, a slice-M, slice-L and a BRAM.

5.5.2 Bounding Box Generator

The tool Bounding Box Generator supports the implementation of partial modules
by defining rectangular boxes for accelerators, as well as finding possible placement
positions for those accelerators. The algorithm of Bounding Box Generator generates
bounding boxes for entities, based on an FPGA resource string model of the available
resources in the reconfigurable region. This model denotes the device specific primitive
allocation to slices, and module primitive requirements.

During the bounding box generation phase, the tool adds more and more resource
columns to the module string specification from the FPGA representation until all
primitive requirements have been met. With this, the tool ensures to only implement
modules for feasible module bounding boxes and that it identifies all possible minimal
design alternatives. The tool also takes into consideration multiple clock regions. The
generated bounding boxes can span anywhere between one clock region and the entire
height of the device (or reconfigurable region). This adds even further flexibility to
the placement phase, providing modules with more possible placement positions, for
allowing a much tighter overall packing.
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Figure 5.13: Example of a reconfigurable region, spanning 3 clock regions, and some
module requirements. The region is modeled with the shown alphabet, and a module
is presented as a set of primitive requirements.

5.5.2.1 Implementation

To explain the operation of the bounding box computation, let us assume that we assign
a task to the tool to find placement positions for the example module, with resources as
depicted in Figure 5.13, inside the shown reconfigurable region. First, the tool needs
to know the number of primitives provided in each column. These values are device
specific and must be input into the bounding box generator. In the example region, we
have the following number of resources for each column:

• SliceL : 40*8 LUTs

• SliceM : 40*8 LUTs

• BRAM : 20 RAM primitives (10 36 Kbit or 20 18 Kbit)

• DSP : 20 DSP primitives

Note that the number reflects the occupied resources in the demonstrated system
implemented on Virtex-6. The algorithm (illustrated in Figure 5.14) starts scanning
from the first available resource in the reconfigurable region. It checks if this resource
contains primitives needed by the module. If so, it adds the slice to the module string
and updates the module requirements to reflect that the primitive in the added slice has
already been take into consideration. This step is repeated until all primitive require-
ments have been met, and the resulting module string represents a design alternative.

In order to give the user as much choice as possible and to allow for fine grained
and flexible module placement, Bounding Box Generator looks for all bounding boxes
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spanning from one to as many clock regions as the reconfigurable area has available.
This will occur without any input from the user. As such the steps above are repeated
using incrementally more clock regions (i.e. increasing the height of the modules).
Considering our example, the algorithm looks at the bounding boxes starting with
the first resource slice. The tool identifies 3 placement positions as can be seen in
Figure 5.15. However, in this project the number of clock regions is defined by the
height of the reconfigurable region.

The bounding box generator exploits the fact that the smallest module (i.e. the
module variant with the shortest resource string) that fulfills the resource requirements
will result in the lowest internal fragmentation. As such, only the smallest design
alternatives are considered at the end of this computation. This allows for the reduction
of the run-time search space, whilst still providing high placement flexibility. For
example, the tool will consider only two of the three module design alternatives for the
first position in the reconfigurable region provided:

• (LMBDMB) * 1 row

• (LMB) * 2 rows

• (LMB) * 3 rows (discarded as the two row variant has lower internal fragmenta-
tion)

All module bounding boxes generated will be continuous and rectangular. This
means that unnecessary resources cannot be skipped. In the example, we can see that
the 1 row module generated contains a DSP resource slice even though DSPs were
not necessary for the correct run of the module. Similarly the 3 row implementation
uses more resources than the 2 row one, even though it only needs just as many. This
means that there is a need for a step after the bounding box generation to determine
which bounding boxes should be used for physical implementation. Note that during
the experiments of this PhD, we used a parallelized 512-bits interface. Thus, each
module was constrained to use the full height of the region.

In order to further reduce the search space and still provide the user with flexibil-
ity, the algorithm employs a heuristic. Once the total number of design alternatives
is computed, the tool sorts the resulting list of bounding boxes in such a way that the
alternatives with the most possible placement positions are at the start. Typically, a
relatively small number of alternatives is sufficient to allow placement with little ex-
ternal fragmentation (i.e. unused resources between placed modules). This heuristic
increases the chance that run-time placement results in better resource utilization.
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Figure 5.14: Algorithm applied to each module specification. Transition 1 detects
the number of regions. Note that the algorithm supports different number of clock
region height, however in our case, the module height is defined by the reconfigurable
region (height of 2 clock regions). Transition 2 happens at every step until all resource
requirements for the module are met. Transition 3 occurs once the bounding boxes
starting at the current start position were found. Transition 4 allows for mitigation
strategies to be employed if routing fails. This is the major contribution of this PhD
thesis in [6], alongside a case study for the tool.

One problem that can occur when creating bounding boxes is that, if they are de-
fined aggressively small, there might not be enough resources left over for routing.
Because the resulted bounding boxes are rectangles and because the tool uses resource
columns as our placement atoms, the bounding box will likely leave some resources
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Figure 5.15: Bounding boxes for the defined module in the reconfigurable region,
starting only at the first resource slice. Same with the example in Figure 5.13, the tool
has detected 3 possible placement positions. Those positions for the module can be
applied by the used as design alternatives, should they are needed.

unused. Estimating how to route a particular module can be difficult [14]. However, as
the excess in resources can improve, the chance that routing will succeed and timing
will be met are insignificantly low.

As an extra precaution, the tool contains a method by which the module string
can be updated to contain more resource columns as needed. Since routing requires
the switch matrix only within a column, extra resources (which is referred by slack
variable) can be seen as a wild card (meaning any resource type can be used to ensure
routing). This can be added before a placement method is applied by the tool. Finally,
if timing still is not met, the algorithm also allow for a “fail” message to be fed back to
the generator in order to further increase the number of resources assigned for a module
(i.e. one resource column will in most cases solve the routing congestion problem, at
the expense of larger modules).

Furthermore, the toolflow implements mitigation strategies that apply physical con-
straints that will be tried out to improve routability and performance (i.e. the clock
frequency achieved). This includes not using the primitives in the corners of module
bounding boxes, in order to obtain a better ratio of routing resources to primitives only
at places of high possible congestion. This strategy mitigates the same bounding box
constraints and the effect is more obvious in the corners. However, all those mitigation
strategies are applied automatically as needed without any human intervention, in case
of failure to route.
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Figure 5.16: Mitigation Strategy 2: Leaving the top and bottom of a partial module
unmapped and just use the switch matrices. The right subfigure shows that in the top
row of the module, only the switch matrices are used but not the primitives.

5.5.2.2 Mitigation Strategies

As an additional function, our physical implementation flow is able to handle failures
during mapping, placing or routing. For example, if a module does not get mapped,
we will extend the bounding box left or right by an additional column. In the case
of a routing failure, the tool relaxes the routing inside the bounding box, using three
different strategies, that are tried out in the following consecutive order.

• Strategy 1: The tool can block the placement in the corners of the bounding box,
because the design tends to be heavily congested in the corners. Consequently,
by leaving primitives unused but by taking advantage of their routing resources
(switch matrices), we provide locally a higher ratio of routing resources to prim-
itives (e.g., LUTs, DSPs, or BRAMs).

• Strategy 2: Leaving the top and bottom rows unmapped, as shown in Figure 5.16.
Figure 5.16 left shows the fully routed module, while on the right side of Fig-
ure 5.16, the unmapped CLBs on the top row are depicted, inside the gray box.

• Strategy 3: The last, most effective but also expensive strategy, only uses the
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Figure 5.17: Mitigation Strategy 3: Unused primitives and used switch matrices frame
around the module, to relax routing if necessary. The primitives on the sides of those
kernels are completely unused and some routing is occupied to relax the internal
wiring.

frame around the module in which only the routing resources will be used. Fig-
ure 5.17 depicts this situation. In this case, the mapping will be done entirely in
the inner side of the frame, while we will use only the routing resources of the
frame. In the left side of Figure 5.17, the full partial module is presented, while
on the right, details of the implemented partial module are shown.

Implementing modules in bounding boxes includes more constraints on the physi-
cal implementation. However, in some cases, routing is not possible for a module with
the given constraints. To circumvent this issue, BBG allows hiding the low-level de-
tails from the user, while offering mitigation strategies to solve routing issues. In our
toolflow, this tool automatically enables a flow usable by application domain experts
even for difficult implementation problems.

As a summary, Bounding Box Generator addresses the challenge of automatically
defining placement positions in a predefined region, without the need of interaction
by the user. The tool works directly with the GoAhead tool to generate the required
constraints. This interaction allows the here presented mitigation strategies to be per-
formed transparently to a user (i.e. a Maxeler application expert). This and this case
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study on generated accelerators on a Maxeler platform is the author’s contribution to
the the Bounding Box Generator tool.

5.5.3 BitMan

The tool BitMan is a component used in the back-end processing. This tool can modify
different designs directly at the bitstream level. BitMan supports functions that include
module placement, replication, and relocation. The tool also offers an API to place,
relocate, and replicate modules directly when running applications on a Max3 system.
BitMan supports Virtex-6, all 7-Series, and Ultrascale FPGAs from the vendor Xilinx.

In this PhD project, the tool is used only in the final step of our toolflow in the
bit-level approach. The tool can be used, as shown Figure 5.8, to extract the partial bit-
stream of a fully placed module. In addition to the offline use, the tool can relocate and
replicate modules at run-time if necessary. As described previously, the tool can use
the placement positions returned by BBG to relocate modules. The module positions
match the resource footprint such that the footprint of the reconfigurable module and
the footprint inside the reconfigurable region are the same at the placement position.
Should a different box is needed by the tool, then BitMan cannot relocate the module,
and it is mandatory to run the back-end process again, with a different bounding the
box as generated by BBG. However, the benefit now is that the user will need to start
from the Xilinx mapping phase until the partial bitfile generation, and not run the fully
toolflow from the beginning. it is important to highlight that this is commonly all per-
formed at system design time to build an accelerator library. When using the system
for acceleration, BitMan is only needed to stitch modules together to form pipelines.



Chapter 6

Results

The previous chapters presented an implementation flow from HLS to the resulting
static and partial bitfiles. This chapter presents an evaluation of the toolflow and its
benefits compared to a full static approach. Those benefits correspond to design time
and resource usage benefits of the presented dynamic toolflow in Maxeler. Those ben-
efits come on top of the already existing flexibility and abstraction that are enabled by
our implementation flow, due to the enabled design choices offered by this approach.

The chapter starts by discussing the experimental setup used in this thesis. In ad-
dition, this chapter presents two case studies. The first case study corresponds to a
dynamic image/video processing application, generated through the Maxeler MaxJ
programming model. The second case study showcases a stream processing archi-
tecture for SQL query execution on FPGAs. The latter application was implemented
through our toolflow, using RTL level accelerators.

6.1 Experimental setup

For the experiments, a Max3 Workstation was used which provides a large Xilinx
Virtex-6 XC6VSX475T FPGA, which is connected to the host computer via PCIe.
The FPGA is surrounded by 24 GB (upgradable to 48 GB) of DDR-3 memory and the
host CPU is an Intel(R) Core(TM) i7-2600S clocked at 2.80 GHz. The most recent
system from Maxeler is Max5, which uses a Xilinx UltraScale+ device. The Max5
platforms can also support the newest Xilinx Alveo boards [110]. As the Maxeler’s
toolflow has not changed significantly to the newest Max5 platform and all the exter-
nal tools that we use have been tested to work with all the Xilinx devices, it should
be possible to migrate the here presented results to Max5 with the availability of the
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corresponding hardware platform. Of course, this would require modifications on the
way that GoAhead interprets the Vivado toolchain compared to the ISE.

The here proposed automatic flow starts with generating the RTL code from the
Maxeler compiler and modifying it as described in Chapter 4. As we cannot interfere
with the Maxeler Compiler during the translation from MaxJ to RTL, we decided to
to introduce the MaxJ language extension to split the dynamic application in distinct
parts. Additionally, the flow modifies the generated RTL code after the code is gen-
erated by the Maxeler compiler. Those two processing phases require insignificant
amount of time to occur, as the required time is in the realm of milliseconds while the
vendor CAD tools take several minutes (depending on the size of the application) to
generate the RTL code.

6.2 Image processing application

A video/image stream processing application was implemented and presented in [111],
where various video stream processing modules can be arbitrarily chained to form
more complex acceleration pipelines. This application is a classic example of mutu-
ally exclusive sub-functions that can also be used in several combinations, in order to
present the benefits of our flow. A video of the flow and the system in action is avail-
able on [112]. The video illustrates different example cases and various filter chaining
examples of multiple independent accelerators. The video also presents the results
after each reconfiguration, starting from an empty reconfigurable region or loopback
routing and changing to different configuration scenarios.

The implemented module library consists of 8 image processing functions. Those
are Brightness correction, Sobel edge detection, RGB-to-Greyscale, Skin Color De-
tection, Gaussian blur, a Mean, a Minimum and a Maximum value filter. In addition,
we have implemented 3 PRGroups, containing a Mean with an RGB filter, Brightness
filter with a Skin detection filter, and a Min and Max filter. All of those functions
are generated entirely by the Maxeler compiler from MaxJ code. Figure 6.1 and Fig-
ure 6.2 depict FPGA-editor screenshots showing implemented unique kernels and im-
plemented PRGroups. It can be seen, as in Figure 5.5, that the interfaces on both sides
of each module use the same equivalent wires, as previously depicted in Figure 5.5,
which is the key property for module chaining.
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Figure 6.1: Fully implemented PRGroups, as shown in Xilinx’s FPGA editor tool. The
illustrated PRGroups are (l.t.r.) Mean with an RGB filter, Brightness filter with a Skin
detection filter, and a Min and Max filter.

6.2.1 Resource Utilization

The resource usage of the generated PRGroups and unique kernels is shown in Ta-
ble 6.1. The overhead that occurred due to the modifications, which are described in
Section 4.1 is included in those numbers. The additional implementation cost of each
accelerator, compared to the initial version generated by the MaxCompiler, is about
441 LUTs (used for FIFOs which are implemented using distributed memory) for each
kernel, as a 512-bit wide and 32 positions deep FIFO is added. Those FIFOs are gen-
erated by the Xilinx ISE Memory Generator tool. Note that in Table 6.1, the modules
do not contain DSP primitives. However, the here proposed flow fully supports accel-
erators containing DSP blocks.

The static system consists of 9375 LUTs, 22 BRAMs and has one input and one
output of 512 bits to the image operator’s I/O and one input for the ICAP configura-
tion port. In the implemented example, the reconfigurable region offers 28800 CLBs,
128 BRAMs, and 112 DSPs and it is placed in the top right corner of the chip. This
placement was chosen because in the static implementation the connections are placed
in the center of the device next to the PCIe interface.

As a reference, we implemented a non-reconfigurable full static (FS) design that
provides all the aforementioned kernels in parallel. In this system, the input could
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Figure 6.2: Fully implemented kernels, as shown in Xilinx’s FPGA editor tool. The
illustrated kernels are (l.t.r.) Brightness correction, RGB to GreyScale, Skin Color
Detection, Gaussian Blur, Sobel ED filter, and Mean Filter.

be streamed through all possible kernels and back to the host machine, if needed.
However, the static system with the largest accelerator (Sobel ED) will require a total of
35857 LUTs. Compared to the example using a full static implementation in Table 6.1,
the dynamic system requires only a maximum of 38% of its resources.

As mentioned before for a general case, an alternative approach to this example
FS for video processing, a user could implement multiple different projects and re-
program the device with the project that contains only the filters needed which, firstly
takes time and secondly, in case of switching accelerators in most real-world stream-
ing applications (e.g. a video processing platform), the operation of the system would
be interrupted for a significant amount of time (i.e. at least tens of seconds required
to reprogram the device). Additionally, there are cases where a user may need to run
a combination of kernels in a pipelined fashion. However, as the number of possible
kernel choices grows, it is not feasible to create a design for every combination of ker-
nels that can be combined. Moreover, some filters could be mutually exclusive to each
other (e.g. Mean filter versus Gaussian filter), which implies that hosting them both in
a static solution would result in an underutilized FGPA implementation.

Additionally, our framework offers the freedom to load any kernel or any number
of the available kernels, as long as they fit into the reconfigurable region, and allows
loading and resetting ((2 full clock regions of XC6VSX475T)) at a maximum of 10
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Table 6.1: Resource utilization of generated PRGroups and unique kernels. The added
FIFOs introduced in Section 3 are included in those number.

Kernel LUTs BRAMs DSPs
Brightness correction 4444 1 0
RGB to Grayscale 6814 1 0
Sobel ED filter 26482 17 0
Gaussian blur filter 12659 17 0
Mean filter 12678 16 0
Skin Color Detection 9821 14 0
Minimum 4582 1 0
Maximum 4556 1 0
Mean + RGB 19292 17 0
Brightness + Skin 14358 15 0
Min + Max 9138 2 0
Example full static
(FS)

92405 112 0

ms for each subsequent modification. This is possible while keeping memory active
during reconfiguration and idling only the reconfigurable region during the process.
The reconfigurable region used in our case study provides 10% of the FPGA resources
and much more resources can be allocated for the reconfigurable region, if needed.
Please note that a user can decide to only make parts of the run-time reconfigurable
system, while leaving other accelerator kernels static (e.g., if those kernels are being
used constantly for preprocessing).

6.2.2 Compilation and Configuration Time

The Maxeler Compiler translates MaxJ to VHDL and works relatively fast. For ex-
ample, the tool provides the RTL code description for all the example cases, including
the full static implementation (FS) mentioned in the previous subsection in 10 to 20
minutes. After that step, the FPGA vendor tools carry out the entire physical imple-
mentation until the final configuration bitstream. The results on the compilation time
of our approach are shown in Table 6.2. The time metrics include the time needed
for RTL generation from Maxeler, BBG, GoAhead and the whole toolflow from RTL
synthesis to bitfile generation. Thus, the tools have to implement 11 individual (unique
kernels plus PRGroups) and significantly smaller designs and another one for the static
part. All 6 distinct parts (i.e. static system and 5 PRGroups of which 3 PRGroups con-
tain 2 kernels each and 2 PRGroups contain 1 kernel each) together contain about the
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same logic, as compared with the FS design, if they are combined. On the contrary,
the FS design needs 74 minutes from the RTL generation to the final MaxFile, or more
than 25% additional time in CAD tools for this experiment. However, the larger the
full static design, the larger the CAD time that is going to be saved. Please note that
the compilation time for the partial modules and the static system includes a maximum
cost of 10 seconds, needed for the VHDL code processing and project generation.

The reconfiguration time of all our modules is listed in Table 6.2. As listed, each
kernel takes from 3 to 6 ms for configuration by the ICAP instance in the device. After
the programming is done, we can execute the function loaded by sending the image
data from the DDR memory or PCIe. This execution step remains the same as in
the static Maxeler approach. Each reconfigurable region can be resetted individually
by generating a resetting bitstream for each region and loading the file through the
interface C-code of the Maxeler project. This will ultimately send partial configuration
bitstream to the ICAP configuration port of the FPGA.

Finally, module relocation at run-time is done by the BitMan tool. BitMan can
generate relocated partial and full bitstreams arbitrarily just by providing the full bit-
stream of the static system, the partial bitstream that we want to relocate and the new
placement position. Using BitMan only requires running a single command contain-
ing the aforementioned files and physical locations. The relocation positions will be
provided by the BBG tool, during the implementation phase. For the stitching of the
aforementioned kernels, BitMan needs a maximum of 10 seconds to generate the final
relocated bitstream for each possible kernel. In many practical systems, this process
could be carried out once and stored for future configuration processes. The benefit of
fast relocation and replication can provide an out-of-the-box solution to improve flex-
ibility and productivity, by providing a more dynamic aspect and on-the-spot changes
or extensions to a design.

The current system is clocked at 100 MHz, which is the default clock frequency
set by Maxeler. With this, the dynamic implementations provide a peak performance
of 6.4 GB/s. The clock frequency was not pushed higher for this experiment in order
to directly compare with the existing work in [103] in terms of throughput. This per-
formance can be achieved by all pixel operators implemented for our example case.
Similarly, the static system without any accelerator provides the same throughput. The
system does include a minor penalty in latency for the single kernel designs, as the re-
configurable region itself includes a pipeline latency of a maximum of 5 clock cycles.
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Table 6.2: Time needed for reconfigurable module generation, the static part of our
reconfigurable module and the full static design. Compilation time does not include
the RTL generation time as it generates the same VHDL code. The FS design includes
only the Maxeler compilation time, as it is full static. The total modification and im-
plementation time for a dynamic project is the maximum compilation time (i.e. 74
minutes).

Kernel Compilation
Time
(min)

Reconfig.
Time
(msec)

Brightness correction 25 3
RGB to Greyscale 27 5
Mean filter 30 6
Gaussian blur filter 26 5
Sobel ED filter 43 5
Skin Color Detection 32 5
Minimum 27 3
Maximum 26 3
Mean + RGB 39 4
Brightness + Skin 38 4
Min + Max 31 4
Static Part 56 NA
Resetting bitstream 1 10
Example full static (FS) 74 NA

For even higher throughput, multiple reconfigurable regions may be used in parallel (if
permitted by the application and the existing inputs to the dynamic system).

6.3 Additional flexibility

The unique functionality of our flow in Maxeler platforms, this section proves the
addition of flexibility of PR in the Maxeler Max3 platforms, in terms of accelerator
configurations, testing and design choices. As discussed in Chapter 3, the new addi-
tions on the software side of the implementation allows designers to create multiple
static kernels but also dynamic PRGroups and unique kernels (through our front and
mid-level approach). This means that in the image processing example, there exist 8
accelerators and 3 PRGroups in Table 6.2. Every possible extension of this design can
occur through parallelizing or relocating the generated accelerators or even combining
kernels not in PRGroups.
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Existing kernel combinations could provide testing of unforeseen functions, with-
out going through the implementations phases which are considered time consuming.
This benefit also applies to kernels and PRGroups that are used in different project and
can be introduced as additional functions to project that match the requirements of re-
gion size and interface. Skipping implementation phases for accelerator testing could
prove vital for application domain experts, who are certainly not used to extensive
implementation times when using applications on CPUs or GPUs.

In addition, allowing instantiation of reconfigurable regions directly from the HLS
side is important, as the designer can define the number of regions based on the cor-
responding project. Those regions can be used by the same streams as an extended
pipeline or, depending on the size of the project, even by different stream for different
parallel computations. Thus, a designer can provide a description of reconfigurable
and static pipelines in the same project based on the project requirements. All this is
done as described in Chapter 3. The region input width can be configured automat-
ically by our PR code generator introduced in Chapter 4, based on the architecture
described in the Maxeler PRManager. This can be proved by the similar regions used
for our different application case studies in Section 6.2 and Section 6.4.

6.4 Scalable Filtering Modules for Database Accelera-
tion

This test case implements a dynamic stream processing architecture for SQL query ex-
ecution on FGPAs. This is achieved by building pipelines based on scalable database
accelerator primitives and partial reconfiguration. The modules used for this case study
are provided from project [7] as RTL code. This project took three modules to auto-
matically implement a library of reconfigurable and stitchable accelerator kernels. In
addition, a surrounding static Maxeler system was developed to provide an infrastruc-
ture with PCIe and extend DDR memory.

To achieve this, we synthesized and implemented the design targeting the exist-
ing Maxeler Max3 containing a Virtex-6 FPGA, using the here presented flow from
Maxeler’s Custom HDL wrapper. This design is a scalable filtering module for SQL
query acceleration and its functionality is described in Section 6.4.1. This section also
focuses on the architecture and the design decisions taken during implementation. In
order to assess the system aggressively we implemented a case study for restriction
module for query Q19 from TPC-H benchmark [113], which is the query with the
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Figure 6.3: Architecture of the provided module for N 32-bit data elements and K DNF
clauses from [7].

most complex restriction and Boolean evaluation in the benchmark. In Section 6.4.2,
this test case provides a proof that the here presented flow can support not only HLS
generated code, but also the existing Maxeler extension that supports CustomHDL.
The very same accelerators were implemented in UltraScale+ devices in [7] as well,
however that test case is out of the scope of this PhD thesis, as it could not be tested in
the Max3 run-time system implementation (Max3 uses a Virtex 6 device).

6.4.1 Filtering module implementation

A stream processing module that applies restriction would need to compare or match
the data elements to a set of pre-initialized reference values. Arithmetic compare re-
quires the support of six main operations: c ∈ {<,≤,=, 6=,≥,>}. Previous works put
forward modules that each has a single hardwired operation to execute. Although this
suits well a low throughput system as proposed in [114], it would not be practical for
high throughput, as we aim for larger datapath sizes and provide optional computa-
tion on every 32-bit data element in a record. Therefore the provided filter modules
included two hardwired compares (see Figure 6.3(b)) and use their results to evaluate
a pre-initialized selection of compare operations.

Furthermore for the implementation of the case study, we propose the use of dis-
tributed memory (DRAM) to hold the reference values as well as the operations to be
performed for each data element in each functional ID position (see Figure 6.3(a)).
Additionally, the modules can implement multiple compare operations for every data
element by replicating the compare elements in Figure 6.3(d).
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The compare operations produce a true or false response, but in the cases of com-
plex WHERE expressions using multiple compares, we have to evaluate multiple true/-
false responses through a boolean expression. Different methods for boolean evalua-
tion in restriction operations have been proposed, such as using look-up-tables [115],
hardwired boolean operator trees with programmable nodes [116], or providing ded-
icated modules for the boolean operators [114]. These approaches are not designed
to deal with many input literals (which are common for complex boolean expres-
sions) and/or literals that are evaluated over multiple clock cycles (as needed for larger
records). For example, using big LUTs for evaluation is limited as it requires 2N bits
to store the look-up table and a method for splitting the problem into multiple smaller
LUTs has not been discussed in [115]. A boolean programmable tree of operations
limits the flexibility of the enabled queries to be accelerated, as it is unable to pro-
cess boolean results that are generated in different clock cycles (from data in different
chunks of a record) [116].

To extend support for larger data types than 64 bits, the corresponding data types
were split into multiple 64-bit data types before the generation of DNF clauses and
incorporating the relation of the sub-types into the logical expression. For example,
128-bit compare X <Y can be implemented by using the 64-bit higher(H) and lower(L)
parts of the values similar to the support of 64-bit values. Strings can be of very large
sizes, but most operations would be comparing for an exact match, thus utilizing a ==

operator, which implements a logical AND of the compared subparts. Consequently
AND boolean operations result in a single DNF clause, and hence does not increase
the complexity of the DNF logical evaluation.

As a solution to this problem, the filter modules use a design that adopts DNF [117].
DNF comprises of clauses that are aggregated with an OR operation where each clause
consists of AND-ed positive or negative propositional variables that result from the
undertaken compare and match operations.

A variable in a clause has three possible programmable states for each of the
clauses: positive variable, negative variable, not existing in this clause. Thus, this
requires parameter storage of at least two bits per functional ID to encode the pro-
grammability of the variable in a clause and then logic to evaluate the result from a
compare PE. We propose the use of a single LUT-M as a look-up table with inputs the
function identifier (5 bits) and the resulting bit from the compare PE, and producing a
1-bit result that states whether the particular variable satisfies the particular clause as
shown in Figure 6.3(c). These variables are then evaluated using static AND and OR
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(a) (b) (c)

Figure 6.4: Fully implemented filter modules targeting a Xilinx Virtex-6 device with
capacity of 8 a, 16 b, or 32 c DNF clauses (see Table 6.3).

trees as shown on Figure 6.3(c-d). When the variable does not exist in the particular
DNF clause, it is initialized to produce a boolean result of 1 for both result states from
the compare. With these optimizations, we shrink the logic utilization of the DNF
structure by requiring only 1 LUTM per variable and an optimized hardwired boolean
reduction.

In addition to the image processing pipeline case study in Section 6.2, this filter
case study requires module replication (e.g. for complex Where clauses) and an imple-
mentation of the filter modules. This, for example, allows setting the exact compare
function from the C interface (see Section 3.1) of the application in the Maxeler I/O
infrastructure. Thus, the filter accelerators are instantiated in a Maxeler and followed
the same flow for physical implementation, similarly to the one described in Chapter 5.
This project is used to verify that the flow presented in this PhD thesis functions with
Custom HDL accelerators, as well as with MaxJ generated kernels (or PRGroups).
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6.4.2 Implementation Results

We implemented a generic version of the proposed filter module including parameters,
compare PEs per data element (J), and the number of DNF clauses (K). The module
applies restriction and boolean evaluation by modifying the stream state bits. In this
implementation, a 4-bit value can indicate reserved commands (e.g., for module ini-
tialization with reference values). Since DNF implements in a OR reduction, only one
clause is required to evaluate a record. By providing modules for a different number
of clauses, partial reconfiguration can be used to configure the cheapest solution on
the FPGA. Moreover, more complex problems evaluating even more clauses can be
implemented by daisy-chaining of multiple smaller modules.

The case study on the Maxeler PR system operates on a 512-bit datapath, as in
the test case presented in Section 6.2. We reserved a 32-bit word to propagate stream
and chunk enumeration, leaving the effective datapath to 480 bits. We synthesized,
placed and routed three versions of the module as shown in Table 6.3 and Figure 6.4.
Three configurations have been evaluated. As shown in and Table 6.3, the three con-
figurations implement 1, 2 and 4 compare PEs per data element and respectively 8
in Figure 6.4(a), 16 in Figure 6.4(b) and 32 Figure 6.4(c) DNF compare clauses ca-
pacity. Thus in Table 6.3 we report in brackets how many of the columns are logic
resources. This case study uses Maxeler’s default frequency. Thus the targeted fre-
quency is 100MHz, however the tools report higher frequencies achieved.

The utilization for the PEs in the proposed design is deterministic. The highest rel-
ative utilization is for distributed memory, which is used to hold the initializing data for
the compares and the DNF variables boolean evaluation. For a module implementing
N 32-bit data elements, J compare PEs per data element and handling K DNF clauses,
the LUT-M utilization can be calculated as:

LUT M = In f raOverhead +N +N× J× (16+2+K)

where the infrastructure overhead is a constant that depends on the implementation
and target device. We observe that the module utilization scales linearly with datapath

width.

For the implementation, the frequency for the Max3 FPGA to 100 MHz and the
result after place and route was up to 245 MHz. This leads to an effective throughput of
between 12.5 and 14.7 GB/s. This throughput is sufficient to utilize the fastest available
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Virtex6

Datapath width 15x32 = 480bits

CMP PEs 1(15) 2(30) 4(60)

DNF Clauses 8 16 32

Bitstream (Fig. 6.4) (a) (b) (c)

LUT-Ms 1236 1896 3936

LUTs 3624 5051 8320

Flip-flops 2793 3020 3474

Resource Columns 4(3) 5(4) 9(7)

Freq Target, MHz 100 100 100

Freq Report, MHz 245 205 210

Throughput, GB/s 14.7 12.3 12.5

Table 6.3: Utilization and throughput of the evaluated module configurations. Note
resource columns in brackets represent only logic columns.

simple channel DDR memory speed. Targeting higher throughput, the proposed design
can be implemented on a wider datapath and additional pipeline stages can be inserted.

The more clauses executed per module the better the speedup over a software only
solution. All six implemented variants (see Table 6.3) can be placed alone to execute
the restriction and boolean evaluation operations in all queries from the TPC-H for
benchmark except Q19 [113]. Q19 is the most complex in terms of compare operations
and boolean evaluation. It implements 28 different compare operations, including a
text field that is compared to 12 reference values. A single operation per module
approach requires 28 modules to implement the compare operations of this query and
27 2:1 boolean modules for evaluating the Boolean expression.

The Boolean expression of Q19 requires to compute to 24 DNF clauses. Our mod-
ules are flexible and can be placed in a daisy-chained fashion to solve larger DNF
problems. A single module can implement 1, 2 or 4 compares for a particular field
and evaluate 8, 16 or 32 clauses from a DNF. To implement a large DNF expression,
we can place multiple modules in the PR region. Each module implements a certain
amount of clauses (8/16/32) from the total clauses needed. Thus, DNF-clause-wise, we
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can implement Q19 by placing at least one 32-clause module or two 16-clause mod-
ules etc. Since Q19 requires 12 compares for one field, we can replicate the module
in the PR region or replicate the field in the stream, or any combination of both. For
example, in the Maxeler case study we use the module from Figure 6.4(c) and replicate
the challenging field three times.

Our system can perform the restrictions in all the TPC-H benchmark, including
query 19. We use the implementation with 32 DNF clauses (Table 6.3(c) and Fig-
ure 6.4(c)) and run the restriction and boolean evaluation from TPC-H Q19. For
this, TPC-H database was generated with a scale factor of 1, which results in a 1
GB database. Also, the field P CONTAINER was replicated in order to accommodate
for its large amount of compares with different reference values. The experimental
run was performed from DDR memory through the FPGA PR region and results were
streamed back in DDR memory. The runtime reconfiguration for the module took from
5 to 10 ms. The initialization of the module with the compare and clause parameters
took less than 1 microsecond. All restriction and boolean evaluations from the query
are executed by a single module with 480-bit effective datapath running with the de-
fault frequency of the Maxeler system, which is 100 MHz, resulting in a throughput of
6 GB/s through the PR region. The DDR-FPGA-DDR run of the restriction takes 121
milliseconds to execute, which corresponds to filtering at a rate of 50 million records
per second.
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Conclusions

Following the rise of HLS tools, this PhD offers support for partial reconfiguration
that exists on the Maxeler platforms, we proposed a dynamic Maxeler implementation
toolflow, covering distinct features that comply with an HLS paradigm. This toolflow
is fully automated and without any user intervention, it compiles an extended version
of the MaxJ code in a dynamic design. The RTL code is modified directly from the
generated from the MaxCompiler, before implementation. During the physical im-
plementation phase, the here presented toolflow hides all low-level details and allows
design choices for application domain experts, in order to generate an independent
static system and independent dynamically reconfigurable accelerators.

This toolflow demonstrated implementation time benefits that reached 25% of the
time to bitfile compared to a static implementation. In addition, a minimum of 62% of
the resources can be saved as shown in Section 6.2, compared to a static implementa-
tion of all the accelerators in a single design. Reconfiguration occurs in the realm of
ones of ms (in more extensive modules, it can reach tens), while the clock frequency
is not impacted and there is a maximum latency of 5 clock cycles. The here presented
project as also compared with all the existing works enabling partial reconfiguration
on the Maxeler platforms. A total of four publications were resulted from this PhD
project.

This chapter presents the contributions of this thesis in Section 7.1. Finally, Sec-
tion 7.2 presents possible extensions for this work.
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7.1 Discussion and Contributions

This PhD thesis proposed a complete framework around the Maxeler HLS compilation
flow that extends the current full static to a dynamic dataflow approach. This extended
compiler functionality enables partial reconfiguration for Maxeler developers, who can
describe the dynamic system directly in a high-level language (i.e. MaxJ). After the
programing of the application, the FPGA implementation can be implemented from the
HLS application all the way to the configuration bitstreams without any intervention
from the application-domain expert.

The work proposes a top-down approach, starting from a language extension that
models the dynamic aspects of a system. The automatic compilation processes the
Maxeler’s generated code and automatically performs the changes needed to imple-
ment a reconfigurable system. The modified RTL code is initially split in accelerators
and the static system that correspond to the subparts of the dynamic design. Those
subparts will be physically implemented in parallel to generate a full bitfile for a static
system and partial bitfiles for the accelerators. The entire physical implementation is
automated and the flow incorporates mitigation strategies in the case physical imple-
mentation fails.

The default clock speed of a Maxeler system is 100 MHz, without any optimiza-
tions through the HLS language. On the other hand, latency is only impacted by a
maximum of 5 clock cycles, due to the internal pipelining within the reconfigurable
region. All implemented accelerators met the default clock frequency of 100 MHz, as
defined by Maxeler, at a 512-bit wide datapath. This allowed dynamic stream process-
ing at 6.4 GB/sec with only a respectable increase in latency of 5 clock cycles due to
the internal pipeline stages in the region. However, the pipeline stages can be over-
written and thus, the core functionality may not be impacted by latency, should one
or more accelerators are loaded in the device (or an accelerator that fully utilizes the
region).

The reconfiguration time when using partial reconfiguration is significantly lower
than the time to reprogram the device with a different full bitstream. The time for
reconfiguration, including internal latency of the Maxeler system during initialization,
can occur in less than 10 ms for the full reconfigurable region configuration. The
largest implemented accelerators took 5 ms to be reconfigured in the static system.
Moreover in our case study, the static application occupies significantly higher re-
sources compared to the dynamic design, that requires only 38% (or save 62% of the
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utilization) of the static design’s logic, without losing any of the existing functionality
(i.e. the accelerators that can be loaded in the static system).

The toolflow covers general PR challenges, such as placement of a module and
creation of a partial region. Module bounding and the search for possible positions
occurs through Bounding Box Generator, which is introduced in the context of this
work. In addition, other academic tools were used by our toolflow, such as GoAhead, to
automate the generation of placement constraints and RTL files for the reconfigurable
region, and BitMan to relocate and replicate accelerators in the form of partial modules
within a reconfigurable region. Those tools enables flexibility of the design by allowing
design choices from software (see Section 3.4) and by allowing multiple placement
positions for each of the possible bounding boxes for reconfigurable accelerators. In
addition, changes in a subpart of the design will affect only the subpart itself (either
the static part or the modified accelerator).

Furthermore, compared to the Xilinx vendor PR tools, the proposed flow allows
for multiple kernels/functions to be placed in the same reconfigurable region. This
complies with the stream processing paradigm, in which a user can create a processing
pipeline of smaller accelerators to implement a more complex application. This con-
cept is usable by users with a software background, as it essentially reassembles the
concept of pipeline into hardware. The proposed flow guarantees independency not
only within the same project, but also across multiple projects, given that we enable
reusability of the generated modules through a common physical interface. Matching
this interface and fitting the reconfigurable region is the only requirement of an ac-
celerator to be used in a different project or in a different reconfigurable region in the
same project. This matching, however, comes automatically when using the streaming
protocol by Maxeler. The independence that allows implementing the kernels and the
surrounding static system is in particular useful for debugging as small changes can be
accommodated in a fraction of the time.

The here presented flow can be used with other applications that can benefit from
our dynamic HLS approach. Every application that contains run-time mutually exclu-
sive applications can potentially be implemented and optimized using our approach.
If partial reconfiguration is used, mutually exclusive applications can take full advan-
tage of the resources available in a reconfigurable region. In addition, applications that
cannot fit in one device can also benefit from partial reconfiguration. For example,
instead of cascading an application across different FPGAs using Maxeler’s MaxRing
protocol, our approach enables a time-multiplexing of a single FPGA. In this scenario,
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an application that needs to be split into different FPGA partitions could be executed
on one physical FPGA using our dynamic approach for time multiplexing (e.g. by us-
ing external RAM to buffer data between partitions). In an I/O bound application, this
could be even faster as the memory throughput is about an order of magnitude higher
than what is available for PCIe or MaxRing. In summary, this PhD project empowers
application domain experts familiar with the Maxeler framework for the very first time
to benefit from a partially reconfigurable approach. This permits exploiting the dy-
namic programmability of FPGAs to improve performance, user experience and cost,
depending on the application implemented.

7.2 Future work

This PhD project demonstrated that building a partially reconfigurable system could
be performed by domain experts using only MaxJ and C code. The here proposed
flow implemented on a Xilinx Virtex 6 device (as used in Maxeler Max3 systems).
The most recent compiler release from Maxeler is Max5 based on Xilinx UltraScale+
devices. Thus, due to the lack of the latest workstation and FPGA, implementation and
experiments had not been performed in this thesis.

Maxeler’s toolflow has not changed significantly from Max3 until the latest Max5
platform. Thus, given that all the external tools used in this PhD project (GoAhead,
BBG and BitMan) have been tested to work with UltraScale+ devices, porting the
here presented approach should be straightforward. However, this would require new
floorplanning of the static FPGA design and of the reconfigurable region. This process
is needed once for the new Max5 platform and it is the only time an FPGA expert is
needed.

Finally, changes of the automation mechanisms (front and possibly mid-end pro-
cessing) will be required for a new version of the Maxeler system. However the exist-
ing automation of generating dynamic projects from Maxeler, which is created in the
time of this work, could be slightly modified on the new platform to create a similar
flow. The remainder of our approach, presented in this thesis, could be inherited by
the dynamic flow for a Max5 platform. This is planned as future work, assuming the
availability of Max5 hardware. It can also be considered to generalize this flow from
MaxJ to general HLS languages to support the FPGA cloud computing community.
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[31] M. Dvořák and J. Kořenek. Low latency book handling in fpga for high fre-
quency trading. In 17th International Symposium on Design and Diagnostics of

Electronic Circuits Systems, 2014.

[32] C. Brugger, C. de Schryver, and N. Wehn. Hyper: A runtime reconfigurable
architecture for monte carlo option pricing in the heston model. In 2014 24th In-

ternational Conference on Field Programmable Logic and Applications (FPL),
2014.

[33] MaxCompiler. https://www.maxeler.com/products/software/

maxcompiler/.



130 BIBLIOGRAPHY

[34] R. Nane et.al. Dwarv 2.0: A cosy-based c-to-vhdl hardware compiler. In
22nd International Conference on Field Programmable Logic and Applications

(FPL), 2012.

[35] Cosy for compiler development. https://www.hpcwire.com/2001/03/02/

ip-flex-selects-aces-cosy-for-c-compiler-development/.

[36] Muhammad Rashid. A high level design based on performance estimation
methodology for reconfigurable architectures. 07 2008.

[37] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-
moona, Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. Legup:
High-level synthesis for fpga-based processor/accelerator systems. In Proceed-

ings of the 19th ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, FPGA ’11, 2011.

[38] C. Pilato and F. Ferrandi. Bambu: A modular framework for the high level syn-
thesis of memory-intensive applications. In 2013 23rd International Conference

on Field programmable Logic and Applications, 2013.

[39] Xin Fang and Miriam Leeser. Open-source variable-precision floating-point
library for major commercial fpgas. ACM Trans. Reconfigurable Technol. Syst.

[40] D. J. Greaves. Kiwi scientific acceleration at large: Incremental compilation
and multi-fpga hls demo. In 2017 27th International Conference on Field Pro-

grammable Logic and Applications (FPL), 2017.

[41] N. Kavvadias and K. Masselos. The hercules high-level synthesis environment.
In 2013 23rd International Conference on Field programmable Logic and Ap-

plications, 2013.

[42] Nikolaos Kavvadias and Kostas Masselos. Hardware design space exploration
using hercules hls. In Proceedings of the 17th Panhellenic Conference on Infor-

matics, PCI ’13, 2013.

[43] BlueSpec. https://bluespec.com/.

[44] Catapult. https://www.mentor.com/hls-lp/

catapult-high-level-synthesis/.



BIBLIOGRAPHY 131

[45] R. Nane, V. M. Sima, C. P. Quoc, F. Goncalves, and K. Bertels. High-level syn-
thesis in the delft workbench hardware/software co-design tool-chain. In 2014

12th IEEE International Conference on Embedded and Ubiquitous Computing,
2014.

[46] IntelHLS. https://www.intel.co.uk/content/www/uk/en/software/

programmable/quartus-prime/hls-compiler.html.

[47] Vivado HLS. https://www.xilinx.com/products/design-tools/

vivado/integration/esl-design.html.

[48] LegUpComputing. https://www.legupcomputing.com/main/product.

[49] SynphonyC. https://news.synopsys.com/index.php?s=20295&item=

123162.

[50] KiWiC. https://www.cl.cam.ac.uk/˜djg11/kiwi/.

[51] BAMBU. https://panda.dei.polimi.it/?page_id=31.

[52] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-
moona, Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. Legup:
An open-source high-level synthesis tool for fpga-based processor/accelerator
systems. ACM Trans. Embed. Comput. Syst., 2013.

[53] R. Nikhil. Bluespec system verilog: efficient, correct rtl from high level specifi-
cations. In Second ACM and IEEE International Conference on Formal Methods

and Models for Co-Design, MEMOCODE, 2004.

[54] R. Nikhil. Bluespec: A General-Purpose Approach to High-Level Synthesis

Based on Parallel Atomic Transactions. 2008.

[55] BSC tool. https://www.cl.cam.ac.uk/˜djg11/wwwhpr/

toy-bluespec-compiler.html.

[56] Intel SDK. https://www.intel.co.uk/content/www/uk/en/software/

programmable/sdk-for-opencl/overview.html.

[57] Zhiru et.al. Zhang. ”AutoPilot: A Platform-Based ESL Synthesis System. 2008.

[58] SDAccel tool. https://www.xilinx.com/products/design-tools/

software-zone/sdaccel.html.



132 BIBLIOGRAPHY

[59] RT Ong et.al. Programmable logic device which stores more than one configu-
ration and means for switching configurations. US Patent, 1995.

[60] Xilinx (Firm). The Programmable Logic Data Book. Xilinx, Incorporated, 1999.

[61] Xilinx - Partial Reconfiguration. "https://www.xilinx.com/video/

hardware/partial-reconfiguration-in-vivado.html.

[62] Intel - Partial Reconfiguration. https://www.intel.com/content/

www/us/en/programmable/products/design-software/fpga-design/

quartus-prime/features/partial-reconfiguration.html.

[63] PlanAhead tool. https://www.xilinx.com/products/design-tools/

planahead.html.

[64] C. Beckhoff et al. Automatic floorplanning and interface synthesis of island
style reconfigurable systems with GoAhead. In ARCS, pages 303–316. Springer,
2013.

[65] Increasing Design Functionality with Partial and Dynamic Re-
configuration in 28nm, 2010. https://www.google.com/url?

sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&

ved=2ahUKEwjI7c3i6sTmAhUD3aQKHWzjCGEQFjAAegQIAhACurl=

https%3A%2F%2Fwww.intel.com%2Fcontent%2Fdam%2Fwww%

2Fprogrammable%2Fus%2Fen%2Fpdfs%2Fliterature%2Fwp%

2Fwp-01137-stxv-dynamic-partial-reconfig.pdf&usg=

AOvVaw0c34hEcX5tw85kkPbWWvLM.

[66] Intel® FPGA SDK for OpenCL™. https://www.intel.com/content/

dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/

ug-aocl-altera-a10pciedk-platform.pdf.

[67] Sohanghpurwala A. A. et al. OpenPR: An open-source partial-reconfiguration
toolkit for Xilinx FPGAs. In (IPDPSW), 2011.

[68] Neil Steiner, Aaron Wood, Hamid Shojaei, Jacob Couch, Peter Athanas, and
Matthew French. Torc: Towards an open-source tool flow. In Proceedings of

the 19th ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, FPGA ’11.



BIBLIOGRAPHY 133

[69] Andreas Schallenberg, Wolfgang Nebel, Andreas Herrholz, Philipp A. Hart-
mann, and Frank Oppenheimer. Osss+r: A framework for application level
modelling and synthesis of reconfigurable systems. In Proceedings of the Con-

ference on Design, Automation and Test in Europe, DATE ’09, 2009.

[70] Fossy tool. http://fossy.offis.de.

[71] R. Kumar and A. Gordon-Ross. An automated high-level design framework for
partially reconfigurable fpgas. In 2015 IEEE International Parallel and Dis-

tributed Processing Symposium Workshop, 2015.

[72] R. Kumar and A. Gordon-Ross. Prml: A modeling language for rapid design
exploration of partially reconfigurable fpgas. In 2013 IEEE 21st Annual In-

ternational Symposium on Field-Programmable Custom Computing Machines,
2013.

[73] K. Vipin and S. A. Fahmy. Automated partial reconfiguration design for adap-
tive systems with copr for zynq. In 2014 IEEE 22nd Annual International Sym-

posium on Field-Programmable Custom Computing Machines, 2014.

[74] R. Oomen, T. Nguyen, A. Kumar, and H. Corporaal. An automated technique
to generate relocatable partial bitstreams for xilinx fpgas. In 2015 25th Interna-

tional Conference on Field Programmable Logic and Applications (FPL), 2015.

[75] R. Zamacola, A. G. Martı́nez, J. Mora, A. Otero, and E. d. L. Torre. Impress:
Automated tool for the implementation of highly flexible partial reconfigurable
systems with xilinx vivado. In 2018 International Conference on ReConFig-

urable Computing and FPGAs (ReConFig), 2018.

[76] K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch. Zucl: A zynq ultrascale+
framework for opencl hls applications. In FSP Workshop 2018; Fifth Interna-

tional Workshop on FPGAs for Software Programmers, 2018.

[77] K. D. Pham, M. Vesper, D. Koch, and E. Hung. Efcad — an embedded fpga cad
tool flow for enabling on-chip self-compilation. In 2019 IEEE 27th Annual In-

ternational Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2019.



134 BIBLIOGRAPHY

[78] C. Beckhoff, A. Wold, A. Fritzell, D. Koch, and J. Torresen. Building partial
systems with goahead. In 2013 23rd International Conference on Field pro-

grammable Logic and Applications, 2013.

[79] A. Donato, F. Ferrandi, M. Redaelli, M. D. Santambrogio, and D. Sciuto.
Caronte: a complete methodology for the implementation of partially dynam-
ically self-reconfiguring systems on fpga platforms. In 13th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM’05),
2005.

[80] M. Boden, T. Fiebig, M. Reiband, P. Reichel, and S. Rülke. Gepard - a high-level
generation flow for partially reconfigurable designs. In 2008 IEEE Computer

Society Annual Symposium on VLSI, 2008.

[81] J. Lotze, S. A. Fahmy, J. Noguera, B. Ozgul, L. Doyle, and R. Esser. Devel-
opment framework for implementing fpga-based cognitive network nodes. In
GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, 2009.

[82] S. A. Fahmy, J. Lotze, J. Noguera, L. Doyle, and R. Esser. Generic software
framework for adaptive applications on fpgas. In 2009 17th IEEE Symposium

on Field Programmable Custom Computing Machines, 2009.

[83] R. Cattaneo, Xinyu Niu, C. Pilato, T. Becker, W. Luk, and M. D. Santam-
brogio. A framework for effective exploitation of partial reconfiguration in
dataflow computing. In 2013 8th International Workshop on Reconfigurable

and Communication-Centric Systems-on-Chip (ReCoSoC), 2013.

[84] Byron Navas, Ingo Sander, and Johnny Öberg. The recoblock soc platform: A
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[89] Cătălin Bogdan Ciobanu, Giulio Stramondo, Ana Lucia Varbanescu, Andreas
Brokalakis, Antonis Nikitakis, Lorenzo Di Tucci, Marco Rabozzi, Luca Stor-
naiuolo, Marco Santambrogio, Grigorios Chrysos, Charalampos Vatsolakis,
Charitopoulos Georgios, and Dionisios Pnevmatikatos. Extra: An open platform
for reconfigurable architectures. In Proceedings of the 18th International Con-

ference on Embedded Computer Systems: Architectures, Modeling, and Simu-

lation, SAMOS, 2018.

[90] C. Vatsolakis and D. Pnevmatikatos. Racos: Transparent access and virtual-
ization of reconfigurable hardware accelerators. In 2017 International Confer-

ence on Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS), 2017.

[91] M. Rabozzi, R. Brondolin, G. Natale, E. Del Sozzo, M. Huebner, A. Brokalakis,
C. Ciobanu, D. Stroobandt, and M. D. Santambrogio. A cad open platform for
high performance reconfigurable systems in the extra project. In 2017 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), 2017.

[92] C. B. Ciobanu, G. Stramondo, C. de Laat, and A. L. Varbanescu. Max-polymem:
High-bandwidth polymorphic parallel memories for dfes. In 2018 IEEE Inter-

national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2018.

[93] George Charitopoulos, Charalampos Vatsolakis, Grigorios Chrysos, and Dion-
isios N. Pnevmatikatos. A decoupled access-execute architecture for reconfig-
urable accelerators. In Proceedings of the 15th ACM International Conference

on Computing Frontiers, CF ’18, 2018.

[94] C. B. Ciobanu, A. L. Varbanescu, D. Pnevmatikatos, G. Charitopoulos, X. Niu,
W. Luk, M. D. Santambrogio, D. Sciuto, M. A. Kadi, M. Huebner, T. Becker,
G. Gaydadjiev, A. Brokalakis, A. Nikitakis, A. J. W. Thom, E. Vansteenkiste,



136 BIBLIOGRAPHY

and D. Stroobandt. Extra: Towards an efficient open platform for reconfigurable
high performance computing. In 2015 IEEE 18th International Conference on

Computational Science and Engineering, 2015.

[95] Cătălin Bogdan Ciobanu, Dionisios N. Pnevmatikatos, Kyprianos D. Papadim-
itriou, and Georgi N. Gaydadjiev. Faster run-time reconfiguration management.
In Proceedings of the 27th International ACM Conference on International Con-

ference on Supercomputing, ICS, 2013.

[96] Faster: Facilitating analysis and synthesis technologies for effective reconfigu-
ration. Microprocessors and Microsystems, 39(4):321 – 338, 2015.

[97] F. Spada, A. Scolari, G. C. Durelli, R. Cattaneo, M. D. Santambrogio, D. Sci-
uto, D. N. Pnevmatikatos, G. N. Gaydadjiev, O. Pell, A. Brokalakis, W. Luk,
D. Stroobandt, and D. Pau. Fpga-based design using the faster toolchain: The
case of stm spear development board. In 2014 IEEE International Symposium

on Parallel and Distributed Processing with Applications, 2014.

[98] George Charitopoulos, Iosif Koidis, Kyprianos Papadimitriou, and Dionisios
Pnevmatikatos. Run-time management of systems with partially reconfigurable
fpgas. Integration, 57:34 – 44, 2017.

[99] I. Mavroidis et al. Ecoscale: Reconfigurable computing and runtime system for
future exascale systems. In 2016 Design, Automation Test in Europe Conference

Exhibition (DATE), 2016.

[100] Maxeler app gallery. http://appgallery.maxeler.com/.

[101] J. J. Jensen. Reconfigurable fpga accelerator for databases. Master’s thesis,
University of Oslo, 2012.

[102] G. Durelli, A. A. Nacci, R. Cattaneo, C. Pilato, D. Sciuto, and M. D. Santam-
brogio. A flexible interconnection structure for reconfigurable fpga dataflow
applications. In 2013 IEEE International Symposium on Parallel Distributed

Processing, Workshops and Phd Forum, 2013.

[103] R. Cattaneo et al. Runtime adaptation on dataflow HPC platforms. In 2013

NASA/ESA AHS 2013, Torino, Italy, 2013, 2013.

[104] Maxeler Technologies. Multiscale dataflow programing. 2014.



BIBLIOGRAPHY 137

[105] C. Beckhoff, D. Koch, and J. Torresen. Portable module relocation and bitstream
compression for xilinx fpgas. In 2014 24th International Conference on Field

Programmable Logic and Applications (FPL), 2014.

[106] T. Becker, W. Luk, and P. Y. K. Cheung. Enhancing relocatability of partial
bitstreams for run-time reconfiguration. In 15th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM 2007), 2007.

[107] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. Heterogeneous resource-
elastic scheduling for cpu+fpga architectures. HEART 2019.

[108] K. D. Pham, M. Vesper, D. Koch, and E. Hung. Efcad — an embedded fpga cad
tool flow for enabling on-chip self-compilation. In 2019 IEEE 27th Annual In-

ternational Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2019.

[109] K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch. Zucl: A zynq ultrascale+
framework for opencl hls applications. In FSP Workshop 2018; Fifth Interna-

tional Workshop on FPGAs for Software Programmers, 2018.

[110] Maxeler Real Time Risk. https://www.xilinx.com/products/

acceleration-solutions/1-ykfnpg.html.

[111] C. Kritikakis and D. Koch. End-to-end dynamic stream processing on maxeler
hls platforms. In 2019 IEEE 30th International Conference on Application-

specific Systems, Architectures and Processors (ASAP), 2019.

[112] Example video. https://www.dropbox.com/s/gb855u93yk5pw7b/

Submission%2031%20ASAP%202019.mkv?dl=0.

[113] Meikel Poess et al. New TPC Benchmarks for Decision Support and Web Com-
merce. ACM Sigmod Record, 2000.

[114] Daniel Ziener et al. FPGA-based Dynamically Reconfigurable SQL Query Pro-
cessing. TRETS, 2016.

[115] Louis Woods et al. Ibex: an Intelligent Storage Engine with Support for Ad-
vanced SQL Offloading. Proceedings of the VLDB Endowment, 2014.

[116] Bharat Sukhwani et al. Database Analytics Acceleration Using FPGAs. In 21st

PACT, 2012.



138 BIBLIOGRAPHY

[117] Willard V Quine. The Problem of Simplifying Truth Functions. The American

mathematical monthly, 1952.


