
123

José Cordeiro
Marten van Sinderen (Eds.)

8th International Joint Conference, ICSOFT 2013
Reykjavik, Iceland, July 29–31, 2013
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 457

Communications
in Computer and Information Science 457

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Cosenza, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Dominik Ślęzak
University of Warsaw and Infobright, Warsaw, Poland

Takashi Washio
Osaka University, Osaka, Japan

Xiaokang Yang
Shanghai Jiao Tong University, Shangai, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

José Cordeiro • Marten van Sinderen (Eds.)

Software Technologies
8th International Joint Conference,
ICSOFT 2013
Reykjavik, Iceland, July 29–31, 2013
Revised Selected Papers

123

Editors
José Cordeiro
Polytechnic Institute of Setúbal
Setúbal
Portugal

Marten van Sinderen
Centre for Telematics and Information

Technology
University of Twente
Enschede
The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
ISBN 978-3-662-44919-6 ISBN 978-3-662-44920-2 (eBook)
DOI 10.1007/978-3-662-44920-2

Library of Congress Control Number: 2014950815

Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publishers location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The present book includes extended and revised versions of a set of selected papers
from the 8th International Joint Conference on Software Technologies (ICSOFT 2013),
which was co-organized by the Reykjavik University (RU) and sponsored by the
Institute for Systems and Technologies of Information, Control and Communication
(INSTICC).

The purpose of ICSOFT – since 2013 designated as the International Joint Con-
ference on Software Technologies – is to bring together researchers, engineers, and
practitioners working in areas that are related to software engineering and applications.
ICSOFT is composed of two co-located conferences, namely ICSOFT-PT, which
specializes in new software paradigm trends, and ICSOFT-EA, which specializes in
mainstream software engineering and applications.

ICSOFT 2013 received 121 paper submissions from 42 countries. To evaluate each
submission, a double-blind paper evaluation method was used: each paper was
reviewed by at least two internationally known experts from the ICSOFT Program
Committee. In total 75 papers are published in these proceedings and presented at the
conference. Of these, 9 papers were selected to be published as full papers and 66
papers were selected as short papers. The full paper acceptance ratio was 7 %, and the
short paper acceptance ratio was 55 %.

The quality of the papers herewith presented stems directly from the dedicated effort
of the Steering and Scientific Committees and the INSTICC team responsible for
handling all secretariat and logistics’ details. We are further indebted to the conference
keynote speakers, who presented their valuable insights and visions regarding areas of
interest to the conference. Finally, we like to thank all authors and attendants for their
contribution to the conference and the scientific community.

We hope that you will find these papers interesting and consider them a helpful
reference in the future when addressing any of the research areas mentioned above.

December 2013 José Cordeiro
Marten van Sinderen

Organization

Conference Chair

José Cordeiro Polytechnic Institute of Setúbal/INSTICC,
Portugal

Program Co-chairs

ICSOFT-EA

David Marca University of Phoenix, USA

ICSOFT-PT

Marten van Sinderen University of Twente, The Netherlands

Organizing Committee

Marina Carvalho INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Ana Guerreiro INSTICC, Portugal
André Lista INSTICC, Portugal
Filipe Mariano INSTICC, Portugal
Andreia Moita INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Cláudia Pinto INSTICC, Portugal
Cátia Pires INSTICC, Portugal
Susana Ribeiro INSTICC, Portugal
Rui Rodrigues INSTICC, Portugal
Sara Santiago INSTICC, Portugal
André Santos INSTICC, Portugal
Fábio Santos INSTICC, Portugal
Mara Silva INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

ICSOFT-EAProgramCommittee

Hamideh Afsarmanesh, The Netherlands
Waleed Alsabhan, UAE
Kenneth Anderson, USA
Toshiaki Aoki, Japan
Gabriela Noemí Aranda, Argentina
Farhad Arbab, The Netherlands
Cyrille Artho, Japan
Bernhard Bauer, Germany
Jorge Bernardino, Portugal
Marko Boškovic, Austria
Mark van den Brand, The Netherlands
Lisa Brownsword, USA
Manfred Broy, Germany
Dumitru Burdescu, Romania
Antoni Lluís Mesquida Calafat, Spain
Gerardo Canfora, Italy
Krzysztof Cetnarowicz, Poland
Kung Chen, Taiwan
Marta Cimitile, Italy
Peter Clarke, USA
Rem Collier, Ireland
Sergiu Dascalu, USA
Steven Demurjian, USA
Juan C. Dueñas, Spain
Philippe Dugerdil, Switzerland
Fikret Ercal, USA
Maria Jose Escalona, Spain
João Faria, Portugal
Dror Feitelson, Israel
Rita Francese, Italy
Nikolaos Georgantas, France
Paola Giannini, Italy
J. Paul Gibson, France
Athula Ginige, Australia
Slimane Hammoudi, France
Markus Helfert, Ireland
Brian Henderson-Sellers, Australia
Jose Luis Arciniegas Herrera, Colombia
Jose R. Hilera, Spain
Jang-eui Hong, Korea
Milan Ignjatovic, Switzerland
Ivan Ivanov, USA
Sanpawat Kantabutra, Thailand

Dimitris Karagiannis, Austria
Foutse Khomh, Canada
Roger (Buzz) King, USA
Mieczyslaw Kokar, USA
Dimitri Konstantas, Switzerland
Martin Kropp, Switzerland
Konstantin Läufer, USA
Hua Liu, USA
Ricardo J. Machado, Portugal
Leszek Maciaszek, Poland/Australia
Ahmad Kamran Malik, Pakistan
David Marca, USA
Eda Marchetti, Italy
Katsuhisa Maruyama, Japan
Stephen Mellor, UK
Marian Cristian Mihaescu, Romania
Dimitris Mitrakos, Greece
Valérie Monfort, Tunisia
Mattia Monga, Italy
José Arturo Mora-Soto, Spain
Paolo Nesi, Italy
Jianwei Niu, USA
Rory O’Connor, Ireland
Pasi Ojala, Finland
Flavio Oquendo, France
Marcos Palacios, Spain
Vincenzo Pallotta, Switzerland
Patrizio Pelliccione, Italy
Massimiliano Di Penta, Italy
Andreas Polze, Germany
Yu Qi, USA
Anders Ravn, Denmark
Werner Retschitzegger, Austria
Claudio de la Riva, Spain
Colette Rolland, France
Gustavo Rossi, Argentina
Krzysztof Sacha, Poland
Francesca Saglietti, Germany
Sreedevi Sampath, USA
Maria-Isabel Sanchez-Segura, Spain
Luis Fernandez Sanz, Spain
Beijun Shen, China
Istvan Siket, Hungary

VIII Organization

Harvey Siy, USA
Yeong-tae Song, USA
Cosmin Stoica Spahiu, Romania
Davide Tosi, Italy
László Vidács, Hungary
Sergiy Vilkomir, USA
Gianluigi Viscusi, Italy

ChristianeGresse vonWangenheim, Brazil
Martijn Warnier, The Netherlands
Dietmar Wikarski, Germany
Jongwook Woo, USA
Hong Zhu, UK
Elena Zucca, Italy

ICSOFT-EAAuxiliaryReviewers

Alberto De La Rosa Algarin, USA
Ana Almeida, Portugal
Dragan Bosnacki, The Netherlands
Kassidy Clark, The Netherlands
Joost Gabriels, The Netherlands
José García-Fanjul, Spain
Thibaut Le Gully, Denmark

Joseph Kaylor, USA
Fuensanta Medina-Dominguez, Spain
Deolinda Rasteiro, Portugal
Pedro Ribeiro, Portugal
Yaira Rivera, USA
Serguei Roubtsov, The Netherlands
Alexander Serebrenik, The Netherlands

ICSOFT-PTProgramCommittee

Markus Aleksy, Germany
Kenneth Anderson, USA
Farhad Arbab, The Netherlands
Cyrille Artho, Japan
Colin Atkinson, Germany
Fevzi Belli, Germany
Jorge Bernardino, Portugal
Marko Boškovic, Austria
Mark van den Brand, The Netherlands
Dumitru Burdescu, Romania
Fergal Mc Caffery, Ireland
Olivier Camp, Vietnam
Gerardo Canfora, Italy
Mauro Caporuscio, Italy
Krzysztof Cetnarowicz, Poland
Kung Chen, Taiwan
Marta Cimitile, Italy
Peter Clarke, USA
Sergiu Dascalu, USA
Steven Demurjian, USA

Juan C. Dueñas, Spain
Jürgen Ebert, Germany
Fikret Ercal, USA
Maria Jose Escalona, Spain
João Faria, Portugal
Cléver Ricardo Guareis de Farias, Brazil
Jose M. Garrido, USA
Paola Giannini, Italy
J. Paul Gibson, France
Athula Ginige, Australia
Cesar Gonzalez-Perez, Spain
Gregor Grambow, Germany
Slimane Hammoudi, France
Christian Heinlein, Germany
Markus Helfert, Ireland
Brian Henderson-Sellers, Australia
Jose Luis Arciniegas Herrera, Colombia
Jose R. Hilera, Spain
Jang-eui Hong, Korea
Milan Ignjatovic, Switzerland

Organization IX

Invited Speakers

François E. Cellier ETH Zürich, Switzerland
Alexander Smirnov SPIIRAS, Russian Academy of Sciences, Russia
Armin Größlinger University of Passau, Germany
Claes Wohlin Blekinge Institute of Technology, Sweden

Ivan Ivanov, USA
Edson A. Oliveira Junior, Brazil
Sanpawat Kantabutra, Thailand
Bill Karakostas, UK
Mieczyslaw Kokar, USA
Martin Kropp, Switzerland
Konstantin Läufer, USA
Bernardi Mario Luca, Italy
Ricardo J. Machado, Portugal
Leszek Maciaszek, Poland/Australia
Ahmad Kamran Malik, Pakistan
David Marca, USA
Eda Marchetti, Italy
Tommaso Mazza, Italy
Stephen Mellor, UK
Marian Cristian Mihaescu, Romania
Dimitris Mitrakos, Greece
Valérie Monfort, Tunisia
Mattia Monga, Italy
José Arturo Mora-Soto, Spain
Paolo Nesi, Italy
Jianwei Niu, USA
Rory O’Connor, Ireland
Pasi Ojala, Finland

Marcos Palacios, Spain
Patrizio Pelliccione, Italy
Massimiliano Di Penta, Italy
Andreas Polze, Germany
Anders Ravn, Denmark
Werner Retschitzegger, Austria
Claudio de la Riva, Spain
Colette Rolland, France
Gustavo Rossi, Argentina
Gunter Saake, Germany
Krzysztof Sacha, Poland
Francesca Saglietti, Germany
Harvey Siy, USA
Yeong-tae Song, USA
Cosmin Stoica Spahiu, Romania
Davide Tosi, Italy
Gianluigi Viscusi, Italy
ChristianeGresse vonWangenheim, Brazil
Martijn Warnier, The Netherlands
Jongwook Woo, USA
Haiping Xu, USA
Jinhui Yao, Australia
Hong Zhu, UK
Elena Zucca, Italy

ICSOFT-PT Auxiliary
Reviewers

Dragan Bosnacki, The Netherlands
Alexandre Braganca, Portugal
Joost Gabriels, The Netherlands
Thibaut Le Gully, Denmark

Rishi Kanth, USA
Ramtin Khosravi, Iran
Michel Oey, The Netherlands
Alexander Serebrenik, The Netherlands

X Organization

Contents

Software Engineering and Applications

Strategies for Scheduling Risk Mitigation in Software Project Management. . . . 3
Peng Zhou and Hareton K.N. Leung

Real-Time Reconfigurable Scheduling of Sporadic Tasks 24
Hamza Gharsellaoui and Samir Ben Ahmed

Applying a Knowledge Management Technique to Improve Risk Assessment
and Effort Estimation of Healthcare Software Projects 40

Emilia Mendes

A Scenario Analysis Method with User Emotion and Its Context 57
Takako Nakatani and Keita Sato

Assuring Dependability of Software Reuse: An Industrial Standard 72
Fevzi Belli

Simultaneously Improving Quality and Time-to-Market in Agile Development . . . 84
Pryscilla Marcilli Dóra, Ana Cristina Oliveira, and J. Antão B. Moura

State of the Art of Dynamic Software Updating in Java 99
Allan Raundahl Gregersen, Michael Rasmussen,
and Bo Nørregaard Jørgensen

Compiling Functional to Scripting Languages . 114
Paola Giannini and Albert Shaqiri

Language Design and Implementation via the Combination of Embedding
and Parsing . 131

Gergely Dévai, Dániel Leskó, and Máté Tejfel

Enabling Informed Decision Making Through Mobile Technologies:
A Challenge for Software Engineering . 148

Xavier Franch, Anna Perini, and Norbert Seyff

Early Verification and Validation According to ISO 26262 by Combining
Fault Injection and Mutation Testing . 164

Rakesh Rana, Miroslaw Staron, Christian Berger, Jörgen Hansson,
Martin Nilsson, and Fredrik Törner

http://dx.doi.org/10.1007/978-3-662-44920-2_1
http://dx.doi.org/10.1007/978-3-662-44920-2_2
http://dx.doi.org/10.1007/978-3-662-44920-2_3
http://dx.doi.org/10.1007/978-3-662-44920-2_3
http://dx.doi.org/10.1007/978-3-662-44920-2_4
http://dx.doi.org/10.1007/978-3-662-44920-2_5
http://dx.doi.org/10.1007/978-3-662-44920-2_6
http://dx.doi.org/10.1007/978-3-662-44920-2_7
http://dx.doi.org/10.1007/978-3-662-44920-2_8
http://dx.doi.org/10.1007/978-3-662-44920-2_9
http://dx.doi.org/10.1007/978-3-662-44920-2_9
http://dx.doi.org/10.1007/978-3-662-44920-2_10
http://dx.doi.org/10.1007/978-3-662-44920-2_10
http://dx.doi.org/10.1007/978-3-662-44920-2_11
http://dx.doi.org/10.1007/978-3-662-44920-2_11

Platform-Independence in Model-Driven Development of Graphical
User Interfaces for Multiple Devices . 180

David Raneburger, Gerrit Meixner, and Marco Brambilla

Software Paradigm Trends

Controllability for Nondeterministic Discrete-Event Systems with Data 199
J. Markovski

A Computer-Aided Process from Problems to Laws in Requirements
Engineering . 215

Stephan Faßbender and Maritta Heisel

An Ambient ASM Model of Client-to-Client Interaction via Cloud Computing
and an Anonymously Accessible Docking Service. 235

Károly Bósa

Modeling a Flexible Replication Framework for Space-Based Computing . . . 256
Stefan Craß, Jürgen Hirsch, Eva Kühn, and Vesna Sesum-Cavic

Realizable, Connector-Driven Software Architectures for Practising Engineers. . . 273
Mert Ozkaya and Christos Kloukinas

Improving Recommender Systems with Simplification Logic to Manage
Implications with Grades . 290

J.L. Leiva, M. Enciso, C. Rossi, P. Cordero, Á. Mora, and A. Guevara

Task Oriented Context Models for Social Life Networks 306
Maneesh Mathai and Athula Ginige

Author Index . 323

XII Contents

http://dx.doi.org/10.1007/978-3-662-44920-2_12
http://dx.doi.org/10.1007/978-3-662-44920-2_12
http://dx.doi.org/10.1007/978-3-662-44920-2_13
http://dx.doi.org/10.1007/978-3-662-44920-2_14
http://dx.doi.org/10.1007/978-3-662-44920-2_14
http://dx.doi.org/10.1007/978-3-662-44920-2_15
http://dx.doi.org/10.1007/978-3-662-44920-2_15
http://dx.doi.org/10.1007/978-3-662-44920-2_16
http://dx.doi.org/10.1007/978-3-662-44920-2_17
http://dx.doi.org/10.1007/978-3-662-44920-2_18
http://dx.doi.org/10.1007/978-3-662-44920-2_18
http://dx.doi.org/10.1007/978-3-662-44920-2_19

Software Engineering and Applications

Strategies for Scheduling Risk Mitigation
in Software Project Management

Peng Zhou1 and Hareton K.N. Leung2(&)

1 School of Computer, Dongguan University of Technology, Dongguan, China
2 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
hareton.leung@polyu.edu.hk

Abstract. The adoption of risk management practices can help to increase the
success rate of software project. As an essential process of risk management,
risk mitigation aims to reduce or eliminate risks. To make the best use of
resources, a scheduling strategy for risk mitigation is needed to determine the
risks to be mitigated and when to mitigate them. Both PMI risk management
framework and IEEE standard for software project risk management point out
that time elements should be considered in risk mitigation. However, the tra-
ditionally used strategy for scheduling risk mitigation does not consider time
elements. In this paper, we formally define scheduling strategy for risk miti-
gation, identify new scheduling strategies with due consideration of time ele-
ments, and compare their performance by applying stochastic simulation.

Keywords: Scheduling strategy � Risk mitigation � Time element � Risk
management � Software project management

1 Introduction

Taking careful measures to manage the risks involved in projects is a key contributor to
the success of these projects [9]. The positive correlation between effective risk
management and project success was emphasized in [5, 13, 17]. The adoption of risk
management practices can help to increase the success rate of project and then enhance
the competitiveness of organizations.

Risk mitigation is essential for risk management because it aims to reduce or
eliminate risks. To make the best use of resources, a scheduling strategy for risk
mitigation is needed to determine the risks to be mitigated and when to mitigate them.
The generally used strategy for scheduling risk mitigation is “risk value first strategy”.
That is, risks are prioritized for response action based on their risk values. For example,
we can first use Risk Exposure (RE) [2] to compute the risk value. RE = P × I, where P
is the probability of risk occurrence and I is the impact of the risk if it occurs. Then
risks are scheduled for mitigation according to their risk values so that risks with higher
risk values will be treated earlier. However this strategy does not consider time ele-
ments of risk. Managing time elements of risk is necessary for an effective risk man-
agement. Both Project Management Institute (PMI) risk management framework [14]

© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 3–23, 2014.
DOI: 10.1007/978-3-662-44920-2_1

and the IEEE standard for software project risk management [7] point out that time
elements should be considered in risk mitigation.

A simple example shown in Fig. 1 illustrates the necessity of considering time
elements in risk mitigation. In Fig. 1, Ri(Pi, Ii) represents risk Ri with probability Pi and
impact Ii. In this example, we suppose that: (1) There are three risks which would occur
during design, coding and testing phase of a hypothetical software development project
respectively. (2) We can only treat one risk at a time and it takes the same amount of
time to mitigate each risk. (3) The mitigation of each risk eliminates the risk at the end
of the mitigation.

PLAN 1 applies the risk value first strategy to schedule the risk mitigation. Since R3

has the highest risk value and R2 has the lowest risk value, R3 is treated first and R2 is
treated at last. Then, R3 will never occur (risk mitigation eliminates R3 before it would
occur) while R1 and R2 would occur during the time period of their risk mitigation.
PLAN 2 considers the emergency of risk that is ignored by PLAN 1. All risks will
be eliminated before they would occur according to PLAN 2. Thus, it is better than
PLAN 1.

Although the PMI framework and the IEEE standard point out the necessity of
managing time elements in risk mitigation, there is a lack of principles and guidelines
on how to schedule risk mitigation with due consideration of time elements.

This paper aims to formally define scheduling strategy for risk mitigation, identify
new scheduling, and focus on following research questions:

1. Is the traditionally used strategy, risk value first strategy, a good choice for
scheduling risk mitigation?

2. Is there a best scheduling strategy for most projects?
3. Is there a worst scheduling strategy for most projects?

According to [19], stochastic simulation is a better choice than other methods to
compare the performance of different scheduling strategies. A stochastic simulation
model (SMRMP) [21] with due consideration of time elements of risk will be used in
our study to obtain meaningful results.

The paper is organized as follows. We briefly review the risk management process
and the stochastic simulation model in Sect. 2. In Sect. 3, we formally define sched-
uling strategy for risk mitigation and identify new scheduling strategies. Section 4

Fig. 1. An example showing the necessity of managing time elements.

4 P. Zhou and H.K.N. Leung

presents the methodology of our paper. We compare the performance of identified
strategies and answer the research questions in Sect. 5. At last, we conclude our study
and outline the future work in Sect. 6.

2 Literature Review

2.1 Project Risk

Risk is a potential event that would impact the project. It has two basic attributes, risk
probability (P) and risk impact (I). Accordingly, risk is a function of P and I [6]. We use
Risk Value (RV) to represent the measurement of risk. So

RV ¼ f P; Ið Þ ð1Þ

For a given project, the project risk set and its risks are defined as follows.

Definition 1. Given a project Z, it includes a set of identified n risks at time t, RS(Z,
t) = {R1, R2, … Rn}.

The size of RS(Z, t), |RS(Z, t)| may change as time elapses since new risks may be
identified and added into RS(Z, t) and expired risks will be eliminated from RS(Z, t).

Definition 2. For any Ri ∈ RS (Z, t), and 1 ≤ i≤|RS (Z, t)|, Ri(Pi, Ii) represents risk Ri

with probability Pi and impact Ii.

2.2 Risk Management Process

Risk management aims to identify risks and take actions to reduce or eliminate their
probability and/or impact so that the project is kept from being damaged by risks. There
are many paradigms, models and standards to guide the risk management practice, such
as risk management paradigm developed by Software Engineering Institute [18], PMI
framework [14], IEEE Std 1540 [7], AS NZS 4360 [1] and ISO 31000 [8]. Although
these models and standards address the risk management processes in different man-
ners, they can be mapped to each other to a large extent. Generally, these paradigms,
models and standards follow the cyclic process shown in Fig. 2.

Fig. 2. Cyclic process of risk management.

Strategies for Scheduling Risk Mitigation 5

Risk Management Planning defines how to conduct risk management practices
throughout the project. It is important to provide adequate resources and time and
establish both internal and external context of risk management.

Risk identification aims to identify risks that would affect the project objectives and
document their characteristics. Current risk identification methods include examining
the major areas of the project, collecting information from personnel, learning from
past and applying analytical tools [10, 14, 16]. Among these proposed approaches, the
taxonomy developed by [4] is more popular than others.

The risk analysis aims to understand the identified risks and provide data to assist in
managing them. Generally, risk analysis includes: (1) estimate the probability, impact,
and the expected timing of the risk [7]; (2) analyze risks and prioritize them. Recently,
risk analysis is expanded with the consideration of risk dependency [11].

There are four different options that can be used to treat a risk. They are avoid,
transfer, mitigate and accept [1, 14]. Risk response planning aims to identifying pos-
sible options to reduce or eliminate risks, assessing these options and making a plan to
implement risk mitigation activities. To make the best use of resources, a scheduling
strategy is used to determine the risks to be mitigated and when to mitigate them. The
generally used strategy for scheduling risk mitigation is “risk value first strategy”.

Risk monitoring and control aims to tracking the change of all identified risks and
identifying new risks, monitoring residual risks, and evaluating risk response effec-
tiveness and performance of risk management [14].

2.3 Time Elements in Risk Management

In risk management, time elements exist at both the project level and risk level. Time
elements of risk management (project-level) are different times that directly associate
with the process of risk management. Time elements of risk (risk-level) are different
times that directly associate with the risk from its first identification to its expiration.

All well accepted risk management paradigms, frameworks and standards clearly
define the lifecycle of risk management. In practice, for each project, we can clearly
define the time duration for all five risk management processes and the time for
periodical risk review. However, there is no explicit model for many time elements of
individual risk.

“IEEE Standard for Software Life Cycle Processes - Risk Management” [7] points
out that practitioners should estimate the expected timing of the risk and document it.
Then, practitioners need to schedule the treatment of each risk accordingly. PMI risk
management model [14] also points out that the risk mitigation should be scheduled
with due consideration of the expected occurrence time of the risk. However, both the
PMI framework and the IEEE standard lack principles and guidelines on how to
schedule risk mitigation with due consideration of many key times of risk. Conse-
quently, these time elements are rarely used in practice. This may lead to improper risk
mitigation activities and an ineffective risk management.

Very few studies have explicitly modeled the time elements of risk. Leung pro-
posed variants of risk, presented a model of risk lifecycle, and gave the relationship
between the risk variants by explicit consideration of the occurrence time of risk [12].

6 P. Zhou and H.K.N. Leung

Zhou and Leung identified two key time periods of individual risk for an effective
risk management [20]. These two time periods are time period of risk occurrence and
risk mitigation. The time period of occurrence is the duration that a risk would occur.
The time period of mitigation is the duration for executing planned mitigation activity
of a risk.

Zhou and Leung also proposed a stochastic simulation model of risk management
process with due consideration of time elements of risks [21]. This simulation model
can be used for many risk management issues, such as understanding of risk man-
agement process, predicting risk management outcome, and making informed risk
management decision. This model will be presented in next section.

2.4 A Stochastic Simulation Model

Figure 3 shows the “Simulation Model of Risk Management Process” (SMRMP)
proposed in [21].

Based on a two levels approach, the inputs and outputs of the model have been
identified [21]. The first level is the risk level which focuses on a single risk. The
second level is the project level which considers all risks of the whole project. Some
natural relationships between the parameters are identified. Algorithms are also
developed to compute output of the simulation from the input parameters. Besides that,
the model has four assumptions. This model was evaluated to be valid [21] by applying
the paradigm proposed by Sargent [15].

Tables 1 and 2 summarize the input parameters and outputs of SMRMP
respectively.

Conceptual Model

Model Parameters

Yes

Risk Identification

Risk Analysis

Risk Response
Planning

Monitoring and
Control

Risk Management
Planning

Start

Complete?

End of Input

No

strm; etrm;
npr; stpr m; etpr m

stri; etri; nrri
tid i

pi
+; i i

+; teo i; tlo i

tms i ; tmc i
pi

-; i i
-

nrpr m

Parameter
Relationships

Assumptions

1. Risk occurrence
2. Risk mitigation

1. Time slicing
2. Null effect of

non-mitigation
factors

3. Non-negative
effect of
mitigation

4. Linear effect of
mitigation

Outputs

occ i; toc i; imp i;
nocc ; oimp ;

Simulation
Algorithms

Process

Fig. 3. Conceptual model for risk management process.

Strategies for Scheduling Risk Mitigation 7

The model assumptions are listed as follows.

1. Time slicing. For a given project Z, the time period of its risk management is
equally divided into L time intervals with a set of L + 1 time points,
TP Zð Þ ¼ 0; 1; 2; . . .Lf g. All management activities start at one of these time points
and take integral multiple of intervals.

2. Null effect of non-mitigation factors. The factors not related to risk mitigation,
3. such as change of external and internal risk management environments, will not

change the probability and impact of a risk.
4. Non-negative effect of mitigation. Risk mitigation will not increase the probability

and impact of a risk. It is reasonable since risk mitigation should not increase the
risk and is often effective in reducing the risk.

5. Linear effect of mitigation. The probability and impact of a risk will linearly
decrease during its mitigation period from pi

+ to pi
− and from ii

+ to ii
− respectively.

Model users should go through the whole process of risk management to determine
the values of model parameters based on the parameter relationships and model
assumptions. After inputting all model parameters, users can run the simulation for
each risk, and get outputs which can help to predict the expected impact on projects.

Table 1. Parameters of SMRMP [21].

No Notation Value Level Description

1 strm 0*1 Project-level Start time of risk management
2 etrm L*1 Project-level End time of risk management
3 stri >0 Project-level Start time of the risk identification
4 etri > stri > 0 Project-level End time of the risk identification
5 nrri ≥0 Project-level Number of risks identified in risk

identification
6 npr >0 Project-level Number of periodical reviews
7 stprm >0 Project-level Start time of the mth periodical review
8 etprm >stprm Project-level End time of the mth periodical review
9 nrprm ≥0 Project-level Number of risks identified in the mth

periodical review
10 tidi >0 Risk-level The time that Ri is identified
11 teoi >0 Risk-level Earliest time of occurrence of Ri

12 tloi >teoi > 0 Risk-level Latest time of occurrence of Ri

13 pi
+ ∈ (0, 1) Risk-level Probability of Ri when it is first identified

14 ii
+ ∈ (0, 1] Risk-level Impact of Ri when it is first identified

15 tmsi ≥ tidi > 0 Risk-level Mitigation start time of Ri

16 tmci ∈ (tmsi,
tloi]

Risk-level Mitigation close time of Ri

17 pi
− ∈ [0, 1) Risk-level Expected probability of Ri after the

mitigation
18 ii

− ∈ [0,1] Risk-level Expected impact of Ri after the mitigation

*1 suppose the risk management starts at time 0 and ends at time L

8 P. Zhou and H.K.N. Leung

Since the probability and impact of a risk may change with time, EOR and EAI are
introduced to measure the expected occurrence rate and expected impact during (teoi,
tloi] [21]. Since a risk cannot be repeated in real-life projects, IIR is introduced to
facilitate the computation of EOR and EAI [21].

Definition 3. Independent and Identical Risks (IIR): If R1 and R2 are independent risks
and have the exactly same values in all risk-level parameters, then they are independent
and identical risks (IIR).

Definition 4. Suppose there are N IIRs, if M risks occurred among all N risks when N
is sufficiently large, then EOR = M/N.

Definition 5. Expected Actual Impact (EAI): Suppose there are N IIRs, if M risks
occurred among all N risks when N is sufficiently large, then EAI ¼ P

M impi
�
N,

where
P

M impi the total impact of M occurred risks.

3 Scheduling Strategy for Risk Mitigation

3.1 Definition of Scheduling Strategy

To facilitate the definition of scheduling strategy for risk mitigation, we first define the
set of risks need to be treated at time t and the resource assigned for risk mitigation.

Definition 6. Given a risk set TRS(Z, t) and TRS(Z, t) ⊆ RS(Z, t), ∀Rj ∈ TRS(Z, t), Rj is
a risk which does not have a mitigation plan and waiting for treatment, and ∀Rk ∈ RS
(Z, t)- TRS(Z, t), Rk is a risk which is acceptable and need not to be treated or has been
scheduled for mitigation.

We abstract the human resource for risk mitigation as a set of processors which have
different capabilities to mitigate risk.

Definition 7. For a given project Z, a set of k processors at time t, ProS(Z, t) = {pro-
cessori | 0 < i ≤ k}, are available for risk mitigation. ∀processori∈ ProS(Z,t), CAP
(processori) = ci, where CAP(processori) is the capability of processori for risk
treatment and ci is a real number greater than 0.

The capability of a processor can be considered as 1 if it represents the capability of a
team member that has normal capability for risk mitigation. Then the capabilities of all
processors can be estimated according to capabilities of different team members.

Table 2. Outputs of SMRMP [21].

No Notation Value Level Description

1 occi Yes/No Risk-level Represent whether Ri occurs or not
2 toci ∈ (teoi, tloi] Risk-level Occurrence time of Ri if it occurs
3 impi >0 Risk-level Impact of Ri if it occurs at toci
4 nocc ≥0 Project-level Number of all occurred risks
5 oimp ≥0 Project-level Overall impact of all risks

Strategies for Scheduling Risk Mitigation 9

For Ri assigned to processorj (0 < j ≤ k),

tmci � tmsi ¼ Efforti
�
cj ð2Þ

where Efforti is the estimated effort for the treatment of Ri.
Note that the processor is assumed to process one risk at a time. However, it is

possible that a team member may treat two (or more) different risks at the same time in
practice. In this case, this team member can be abstracted as two (or more) processors
with capability equal to the capability of the team member. From this point of view, we
can consider each processor can process one risk at a time.

For convenient sake, in this study, we assume all processors in ProS(Z, t) have the
same capability equal to 1, and each processor processes one risk at a time. Then the
effort of mitigating a risk can be estimated according to the capability of the processor
and the time needed to mitigate the risk. Note that the time unit should be consistent
with the time unit adopted in the simulation model.

The mitigation scheduling of a project Z aims to allocate a set of m risks (|TRS(Z,
t)| = m) to a set of k processors (|ProS(Z, t)| = k), to minimize the expected impact on
Z. Suppose there is only one processor (k = 1), then there are m! different sequences to
allocate risks to this single processor. We can choose the schedule with the minimal
expected impact among all m! different sequences. However, this approach is unrea-
sonable in practice because the time for finding the best option from m! options is non-
polynomial. The situation become more complicated when there are more processors
(k > 1). Thus there is a need to develop scheduling strategies to determine the order for
treating the risks in TRS(Z, t).

Based on TRS(Z, t) and ProS(Z, t), we define scheduling strategy for risk mitigation
as follows.

Definition 8. Scheduling strategy for risk mitigation is an algorithm that takes TRS(Z,
t) and ProS(Z, t) as input and generates a scheduled risk mitigation plan as its output.
For each Ri ∈ TRS(Z, t), it decides whether Ri is to be mitigated, and then chooses
processorj ∈ ProS(Z, t) to mitigate Ri during a selected time period.

Since risk mitigation aims to prevent the project from impacted by the risks, the per-
formance of a scheduling strategy S can be measured by the expected impact of all risks
in TRS(Z, t), EAI(S| TRS(Z,t)), after S has been applied to TRS(Z, t). EAI(S| TRS(Z,t))
is defined as

Definition 9. Let EAI(S| TRS(Z,t)) be the expected impact of all risks in TRS(Z, t) after
a scheduling strategy S has been applied to TRS(Z, t).

EAI SjTRS Z; tð Þð Þ ¼
X

R2TRS Z;tð Þ
EAI Rið Þ ð3Þ

where EAI(Ri) is EAI of Ri. EAI(S|TRS(Z,t)) ranges in (0, |TRS(Z, t)|) because EAI
ranges in (0, 1).

10 P. Zhou and H.K.N. Leung

A higher value of EAI(S| TRS(Z,t)) means a higher expected impact on the project
and indicates a lower performance of S. Thus we define the performance of a sched-
uling strategy as follows.

Definition 10. Let Perf(S) represents the performance of a scheduling strategy
S applied to the risk set TRS(Z, t). For two scheduling strategies Si and Sj,

Perf(Si) > Perf(Sj) when EAI(Si|TRS(Z,t)) < EAI(Sj|TRS(Z,t));
Perf(Si) = Perf(Sj) when EAI(Si|TRS(Z,t)) = EAI(Sj|TRS(Z,t));
Perf(Si) < Perf(Sj) when EAI(Si|TRS(Z,t)) > EAI(Sj|TRS(Z,t)).

3.2 New Scheduling Strategies

Traditionally, risk value first strategy (V strategy) is used in practice. However, it does
not consider the time elements of risk. Besides the V strategy, we propose several new
strategies.

1. Emergency first strategy (E strategy). Emergency first strategy first orders all risks
according to their Teo, then risks with an earlier Teo will be treated earlier. For
example, suppose teoi = 30 and teoj = 50 are earliest occurrence time of Ri and Rj

respectively, then Ri will be mitigated first. The principle behind this strategy is that
we should mitigate the risk before it would occur. The best case of applying this
strategy is all risks are mitigated before they would occur. No risk will occur if all
mitigations are successful in eliminating the risks. The example shown in Fig. 1 is a
good example of applying this strategy.

2. Lowest effort first strategy (L strategy). Lowest effort first strategy first orders all
risks according to the efforts needed for mitigating the risk, then risks requiring a
lower effort will be treated earlier. For example, suppose 40 Man-hour and 80 Man-
hour are needed effort to mitigate Ri and Rj respectively, then Ri will be mitigated
first. The principle behind this strategy is that we can mitigate more risks within the
same time period because mitigating a risk with lower effort will use less time.
Consequently, we may prevent more risks from occurring and this leads to a low
overall impact of the project.

3. Combined strategies. We consider applying combination of V, E and L strategies at
the same time by constructing some combined strategies. For example, we can
combine the risk value first strategy and emergency first strategy together. The
resulting strategy first prioritizes all risks based on their risk value and Teo

respectively, producing two risk lists. For risk Ri, a score is calculated by combining
its priority values from these two risk lists. Using the calculated scores, all risks can
be finally prioritized and then scheduled so that a risk with a higher priority will be
treated earlier.

As there are three basic strategies, V strategy, E strategy and L strategy, we can create
four combined strategies, VE strategy (combined V with E), VL strategy (combined V
with L), EL strategy (combined E with L) and VEL strategy (combined all three basic
strategies). We assign weights, w1, w2 and w3, to the priority according to the three
basic strategies. In this study, we apply equal weights to these three strategies as there

Strategies for Scheduling Risk Mitigation 11

are no prior studies showing that one basic strategy is better than another. The com-
bined strategy is equivalent to VE Strategy when w1 = w2 and w3 = 0, VL Strategy
when w1 = w3 and w2 = 0, EL Strategy when w2 = w3 and w1 = 0 and VEL Strategy
when w1 = w2 = w3. We can create more combined strategies by using unequal weights
in the future.

Table 3 shows examples of applying different strategies to schedule risk mitigation.
The number shown under basic strategies is the priority that the risk is scheduled
(a lower value indicates a higher priority). For example, R1 is scheduled first, and then
followed by R2, R3 and R4 when applying V strategy. The score value under combined
strategies is calculated by adding the priority of corresponding basic strategies. For
example, for VE strategy, the score of the 5th column is the result of adding the priority
in V strategy (the 2nd column) and that in E strategy (the 3rd column). Then all risks are
prioritized based on their scores. Note that if two or more risks have the same score,
then they can be prioritized in any order. Since we have to choose one order to mitigate
the risks, in our study, the risk with a smaller index will get a higher priority when
several risks have the same score. For example, R2 and R3 have the same score of 4
under VL strategy. Then R2 is assigned a higher priority than R3 and will be mitigated
earlier than R3.

We next formally define above scheduling strategies. Suppose TRS(Z,t) = {R1, R2,
… Rn}. Let Rank(Ri| RL) be the rank of Ri in the prioritized risk list (RL) of n risks, with
rank of 1 indicating the first risk of RL and rank of n indicating the last risk of RL. That
is a lower rank value indicates a higher priority.

Recall that RVi, teoi and Efforti (1 ≤ i ≤ N) represent the risk value, earliest time of
occurrence and estimated mitigation effort of Ri respectively. Algorithms 1, 2 and 3
shows three different ways to prioritize TRS(Z, t).

Algorithm 1 produces a risk list such that a risk with a higher risk value will have a
higher priority.

Table 3. Examples of mitigation strategies.

Risk Basic strategy Combined strategy
V E L VE VL EL VEL
Pri Pri Pri Sco Pri Sco Pri Sco Pri Sco Pri

R1 1 2 4 3 1 5 3 6 3 7 2
R2 2 3 2 5 3 4 1 5 2 7 3
R3 3 1 1 4 2 4 2 2 1 5 1
R4 4 4 3 8 4 7 4 7 4 11 4

12 P. Zhou and H.K.N. Leung

As mentioned earlier, two risks with the same score will be prioritized according to
their risk indexes. Thus, in Algorithm 1, Ri has a higher priority than Rj when RVi = RVj

and 1 ≤ i < j ≤ N. Similarly, in Algorithms 2, 3, and 9, if two risks have the same Teo,
estimated mitigation effort, and computed score respectively, then they will be prior-
itized according to their risk indexes too.

Algorithm 2 produces a risk list such that a risk with an earlier Teo will have a
higher priority.

Algorithm 3 produces a risk list such that a risk with a smaller mitigation effort will
have a higher priority.

V strategy is defined as Algorithm 4.

Allocation(RL, ProS(Z, t)) is shown as Algorithm 5, which allocates the prioritized
risks to the processors in ProS(Z, t) such that the risk with a higher priority will be
allocated first.

Strategies for Scheduling Risk Mitigation 13

Note that a processor is not able to process risk Ri if it cannot complete the
mitigation of Ri before its latest time of occurrence. For example, suppose a processor
completes its currently assigned work at t = 50. If tloi = 40, then the processor is not
able to process Ri since the mitigation after the latest time of occurrence does not make
sense. Another example is that suppose tloi = 60 and the time length for mitigating Ri is
20. In this case, if the mitigation is started at t = 50, the processor cannot complete the
mitigation before tloi (actually it completes the mitigation at t = 50 + 20 = 70).

There may exist more than one processor that can process risk Ri at the same time.
Then, we should select the first processor that completes its work because the risk in RL
should be treated as early as possible. For example, assume some risks have been
assigned to processor1 and processor2, processor1 will complete its currently assigned
works at t = 20 and processor2 will complete its currently assigned works at t = 40.
Suppose teoi, tloi and Efforti are 40, 60 and 10 respectively. Then, both processor1 and
processor2 can process Ri because they can complete the mitigation of Ri (at t = 30 and
t = 50 respectively) before tloi = 60. In this case, we should select processor1 to
mitigate Ri because it completes its currently assigned work earlier (at t = 20) and
consequently the mitigation of Ri can be started earlier if it is assigned to processor1.

Also, there may not exist any processors that can process risk Ri if they are all busy.
In this case, Ri is removed from RL directly.

E strategy and L strategy are defined as Algorithms 6 and 7 respectively.

Algorithm 8 defines VE strategy.

14 P. Zhou and H.K.N. Leung

CombinedRL(RL1, RL2,…, RLl) is shown as Algorithm 9, which produces a risk list
such that the risk with a lower score (which is computed by its rank from input risk
lists, RL1, RL2,…, RLl) will have a higher priority.

VL, EL and VEL strategies can be implemented similarly to Algorithm 8.

4 Methodology

4.1 Simulation and SMRMP

To compare the performance of different scheduling strategies on a specific project, we
apply stochastic simulation to obtain meaningful results.

The reasons for applying stochastic simulation in our study are: (1) We can obtain
enough data for analysis at the project level. There is no public data available for use.
Since current risk management practices do not consider many time elements of risk,
we cannot get the relevant data from past projects. (2) We can do comparison study
easily. Even if we have enough time and resource to collect data from real projects, it
would be hard to do comparison study. To compare two different approaches, we
should apply them in the same context. However, we cannot apply two incompatible
risk management practices in the same project as each real project is a one-time process
that cannot be repeated. Also, it is difficult to find two similar projects with similar risk
sets and are managed by risk management teams with similar experience. So, it is
difficult to perform comparison study and analyze the performance of different risk
management practices using real projects. However, we can easily run any number of
simulations on the same project, and compare the results of applying different risk
management practices. (3) We can get more meaningful results. Since projects are not
repeatable and risks involve uncertainties, we cannot draw a conclusion that one
practice is better than another based on a small number of cases. For example, the result
of performing Practice-A is better than Practice-B when we apply them to two similar
projects. However, it does not mean that Practice-A is better than Practice-B since we
may be “lucky” (risks did not occur even if they have a high chance to occur) when we
perform Practice-A, while we are “unlucky” (risks occurred even if they have a low
chance to occur) when we perform Practice-B. We cannot eliminate this uncertainty
factor when we cannot repeat a project many times. On the contrary, we can run many
different simulations of the same project and use the average result for the comparison
of different practices, giving a more meaningful result.

Strategies for Scheduling Risk Mitigation 15

Given above advantages of simulation, we use a stochastic simulation model to
analyze the influences of introduced time elements on risk management practices. In
particular, we use SMRMP in our study to compare the performance of applying
different scheduling strategies.

4.2 Measurement of Strategy Performance

Let imp(R) denotes the impact of a given risk R in one simulation.
PN

i¼1 impðRÞi=N is
the average impact of R in N simulations, where imp(R)i is the impact of R in the ith

simulation (1 < i ≤ N). According to [21], if N is sufficiently large, thenPN
i¼1 impðRÞi=N follows a normal distribution with mean EAI(R). That isPN
i¼1 impðRÞi=N can be used to approximate EAI(R) when N is sufficiently large. Let

imp(S|TRS(Z,t)) denotes the total impact of all risks of TRS(Z,t) in one simulation with
strategy S. Then,

PN
i¼1 impðSjTRSðZ; tÞÞi=N can be used to approximate EAI(S|TRS(Z,

t)) when N is sufficiently large. imp(S|TRS(Z,t))i is the total impact of all risks of TRS(Z,
t) in the ith simulation (1 < i ≤ N). For example, after applying V strategy to TRS(Z,t)
and running simulation for 1000 times, the average imp(V|TRS(Z,t)) from these sim-
ulations can be used to measure the performance of V strategy.

Definition 11. Let average overall impact, AVEOI(S) denotes the average imp(S| TRS
(Z,t)) of running a large number (N) of simulations on TRS(Z,t) with strategy S. AVEOI
(S) is computed as

AVEOIðSÞ ¼
XN

i�1

imp SjTRS Z; tð Þð Þi
�
N ð4Þ

If all risks of project Z need to be scheduled for mitigation, then imp(S| TRS(Z,t)) can be
replaced by oimp of SMRMP because oimp is the total impact of the project.

Since AVEOI(S) is an approximation of EAI(S| TRS(Z,t)), it can be used to measure
the performance of S. That is a lower AVEOI(S) indicates S has a higher performance
and a higher AVEOI(S) indicates S has a lower performance.

We are also interested in the difference in performance of two strategies when they
are applied to the same project.

Definition 12. Suppose Si and Sj are two scheduling strategies that are applied to
project Z, with AVEOI(Si) ≥ AVEOI(Sj). PIP (Percentage of Improved Performance) is
defined as

PIP Si; Sj
� � ¼ AVEOI Sið Þð Þ � AVEOI Sj

� �� ��
AVEOI Sið Þð Þ ð5Þ

PIP(Si,Sj) measures the relative improvement of impact of Sj over that of Si. PIP(Si,Sj)
ranges in [0, 1]. PIP(Si,Sj) equals 0 when AVEOI(Si) = AVEOI(Sj), indicating that Si
and Sj have the same performance. It equals 1 when AVEOI(Sj) = 0. The higher the
value of PIP(Si,Sj), the larger the improvement of Sj over Si.

16 P. Zhou and H.K.N. Leung

4.3 Cases for Simulation

In this section, we identify the cases used for comparing performance of different
scheduling strategies. Risk mitigation can be viewed as using a set of processors to
mitigate a given set of risks. The processor takes risks as input and mitigates them. So,
the risk set is the input to the risk mitigation. For output, we are most interested in the
effectiveness of risk mitigation. Next, we identify different cases from these two aspects
of input and output of risk mitigation.

The input to risk mitigation is a set of risks TRS(Z, t). The external context of these
risks is a project Z of a certain project type (Cadle and Yeates, 2008) [3], size and
application domain. The basic internal attributes of risk are probability and impact.
First, we explore the external context and internal attributes of risk to identify key
parameters for simulation.

After identifying the response option of mitigating a risk, the next issue is to
determine when and which processor should work on mitigating the risk. Thus, the
scheduling problem can be formulated as how to order the mitigation of a set of risks
given a set of processors. Consequently, the type of project, (i.e. software development
project, system enhancement project and so on), and the domain of the project (i.e.
banking, medical, telecommunication and so on) are not important in the context of our
study.

A large project having a large number of risks and a large mitigation team is similar
to a small project having a small number of risks and a small mitigation team when
scheduling risk mitigation. For example, suppose a large project has 100 risks and 100
processors, and another project have 20 risks and 20 processors. In both cases, each
risk can be allocated to a unique processor and all risks can be treated at the same time.
Therefore, compared with the ratio of the number of risks to the number of processors,
the project size is less important for scheduling risk mitigation because it may indicate
the number of risks only and cannot represent the size of mitigation team.

Definition 13. RRP (Ratio of Risks to Processors) is defined as

RRP ¼ TRS Z; tð Þj j= ProS Z; tð Þj j ð6Þ

where TRS(Z, t) and ProS(Z, t) are the set of risks waiting for mitigation and the set of
processors respectively.

RRP is more meaningful than the number of risks for scheduling risk mitigation
because it integrates both the number of risks and number of processors. RRP is a better
parameter for the simulation when compared to the number of risks.

It is meaningful that we use different RRP values obtained from different contexts
to represent different cases. We obtain RRP values from different combinations of
project sizes and mitigation team (processor) sizes. We assume the number of risks is
related to the project size so that larger projects will have more risks. In this study, we
consider two categories of project size, large project and small project, and consider
three categories of team size, large team, medium team and small team. We will
consider more categories of project size and team size in future study. Note that we will
not consider following two combinations: (1) small project and a large mitigation team,
leading to a very small RRP and (2) large project and a small mitigation team, leading

Strategies for Scheduling Risk Mitigation 17

to a very large RRP, because effective risk mitigation is hard to be achieved in this case.
Thus we consider four most common cases: 1. small project (with a small number of
risks) and a small mitigation team, 2. small project and a medium mitigation team, 3.
large project (with a large number of risks) and a medium mitigation team and 4. large
project and a large mitigation team. We choose following values for RRP for the
simulations.

1. |TRS(Z, t)| = 20, |ProS(Z, t)| = 2, with RRP = 10
2. |TRS(Z, t)| = 20, |ProS(Z, t)| = 4 with RRP = 5
3. |TRS(Z, t)| = 60, |ProS(Z, t)| = 4, with RRP = 15
4. |TRS(Z, t)| = 60, |ProS(Z, t)| = 15, with RRP = 4

Larger projects usually require a longer development lifecycle. So, projects of
different sizes would have different time periods of risk management. However, the
time unit used in SMRMP is a relative time scale. Hence, different time periods can be
normalized into 100 time units. Consequently, we can consider that strm = 0 and
etrm = 100.

For the internal attributes of risk, we consider the distribution (DoP) of the prob-
ability and the distribution (DoI) of impact of risks. To be meaningful, we consider four
different distributions which represent majority of risks having large RV, medium RV,
small RV and randomly distributed RV respectively. (1) Both P and I follow the
distribution shown in Fig. 4-I. It implies that most risks have medium P and I. (2) Both
P and I follow the distribution shown in Fig. 4-II. It implies that most risks have high
P and I. (3) Both P and I follow the distribution shown in Fig. 4-III. It implies that most
risks have low P and I. (4) Both P and I follow the distribution shown in Fig. 4-IV.

Note that the distribution of probability and the distribution of impact need not be
the same. In our study, the probability and impact of a risk are independent even if they
follow the same distribution. In future study, we will consider more cases with different
distributions of probability and distributions of impact. The other attributes of risk,
such as the time period of occurrence and efforts to mitigate a risk are randomly
generated (details will be provided in Sect. 4.4).

To model the effectiveness of risk mitigation, we consider two cases: (1) Full
reduction. Each processor can eliminate the assigned risks. (2) Random reduction. Each
processor randomly reduces the probability and impact of assigned risks. That is each
processor reduces the probability and impact of Ri from pi

+ and ii
+ to pi

− = r1 × pi
+ and

ii
− = r2 × ii

+ respectively, where r1 and r2 are random numbers in [0, 1].

Fig. 4. Different distributions of P and I.

18 P. Zhou and H.K.N. Leung

Note that we will not consider the case of Zero reduction that a processor does not
reduce the probability and impact of assigned risks because this case is same as no
mitigation. Naturally all scheduling strategies give the same performance for this case.

In summary, with due consideration of different inputs (external context and
internal attributes of TRS(Z, t)), and outputs (effectiveness of mitigation) of processor,
we obtain totally 4 × 4 × 2 = 32 different cases.

4.4 Parameters of SMRMP

To simulate different cases, we first identify the values of parameters of SMRMP.
Based on settings discussed in last section, we select values or probability distributions
for the parameters of SMRMP (see Table 1). For each case, we set the parameters of
SMRMP as follows.

• Parameters of SMRMP at project-level. (1) strm = 0 and etrm = 100. (2) we
consider that all risks are identified in the first risk identification and no new risks
are identified in periodical reviews. The reason is in comparing performance of
different scheduling strategies, it is not important to consider the effect of the
periodical reviews, since we can apply scheduling strategies to the risk set TRS(Z, t)
at any time. At the beginning of the project, we can select a scheduling strategy
based on risks identified in risk identification to generate a schedule for risk miti-
gation. Then we can repeat the strategy selection at the end of each periodical
review if new risks have been identified. Consequently, we just assume all risks are
identified at the beginning of risk management. For convenient sake, we set the start
time of risk identification to 0 (stri = 0) and the end time of risk identification to 1
(etri = 1) respectively.

• Parameters of SMRMP at risk-level. (1) tidi of any risk Ri is 1 since etri = 1. (2) pi
+

and ii
+ of risk Ri are generated according to the distribution of the case. (3) pi

− and ii
−

of risk Ri are generated according to mitigation effectiveness of the case. (4) the
time period of occurrence of all risks is randomly generated within the lifecycle of
risk management, because risks can occur at any phase of the project. Suppose we
identify risk Ri before it would occur, then [teoi, tloi] should be in the range [1, 100]
since tidi = 1 and etrm = 100. (5) the effort of mitigating a risk is randomly
generated within the available time for its mitigation. Since the effort for mitigating
a randomly generated risk is unpredictable, we consider that a randomly generated
mitigation effort is a good choice. According to the effort, the scheduling strategy is
applied to determine whether Ri can be mitigated by a specific processor and the
time to mitigate it. Thus, the time period of risk mitigation will be determined
according to the selected scheduling strategy.

5 Performance of Scheduling Strategies

5.1 Results of Simulation

We generate 1000 projects for each case and apply all 7 scheduling strategies to each
project. Therefore there are 7000 combinations of projects and scheduling strategies for

Strategies for Scheduling Risk Mitigation 19

each case. We run 1000 simulations for each combination to compare the performance
of different scheduling strategies.

We run simulations on all 32 cases. Table 4 summarizes the chance of different
strategies to be the best/worst strategy among 32 cases. For example, the chance for V
strategy to be the best strategy in 32 different cases ranges in [0.1 %, 66 %]. V strategy
has 21 % chance to be the best strategy on average (that is, it is the best strategy for
21 % of all 32000 sample projects).

Table 5 shows average AVEOI of 7 identified strategies from all 32 cases. From
Table 5, we find that Perf(VL) > Perf(VEL) > Perf(V) > Perf(VE) > Perf(L) > Perf
(EL) > Perf(E) for all sample projects.

Table 6 shows the average PIP between the best strategy and the worst strategy and
other 7 identified strategies. From Table 6, we find that: On average, always applying
the best strategy can improve the performance by 10 % over the traditional V strategy,
by 31 % over the worst strategy, and by at least 8 % over other strategies.

5.2 Answers to the Research Questions

Next we answer the research questions listed at the beginning of the paper.

1. Is the traditionally used strategy, risk value first strategy (V), a good choice for
scheduling risk mitigation?

Table 4. Summary of strategies to be the best/worst.

(%) V E L VE VL EL VEL

Chance to be
the best

Range 0.1–66 0–5 0–17 0.3–36 4–65 0–13 2–34
Ave 21 0.8 4 14 32 4 24

Cases to be the best 8 0 0 3 18 0 3
Chance to be
the worst

Range 0–17 45–99 0–45 0–14 0–16 0–4 0–43
Ave 5 68 15 4 1 6 0.8

Cases to be the worst 0 32 0 0 0 0 0

Table 5. Average AVEOI of all cases.

V E L VE VL EL VEL

AVEOI 5.8815 7.0276 6.1485 5.9916 5.5475 6.1607 5.6132

Table 6. Average AVEOI of all cases.

B-W B-V B-E B-L B-VE B-VL B-EL B-VEL

0.31 0.10 0.28 0.19 0.13 0.08 0.19 0.09

20 P. Zhou and H.K.N. Leung

From the Table 4, we find that V strategy is the best strategy for only 21 % of all
32000 sample projects, and has a lower chance to be the best strategy than VL and VEL
strategy. It also has a higher chance to be the worst strategy than three other strategies
(VE, VL and VEL). From Table 6, we find that the best strategy can improve the
performance by 10 % over V strategy on average. That is, applying the best strategy for
each project will improve the performance of always applying the V strategy by 10 %.
Moreover, V strategy has a lower performance than VL and VEL strategy on average.
Thus, V strategy is not a good choice for scheduling risk mitigation.

2. Is there a best scheduling strategy for most projects?

From simulation results, we find that none of the 7 strategies can be a “dominate
strategy” for projects of a certain case. The dominate strategy of a case is the strategy
that is the best strategy for most projects (i.e. more than 70 % projects) of the case.
From Table 4, we find that VL strategy has the highest chance to be the best strategy
for all sample projects and in 18 cases out of 32 cases. It is the best strategy for 32 %
projects of all 32000 sample projects. It has only 1 % chance to be the worst strategy.
This performance is similar to that of VEL strategy (0.8 %) and is lower than that of the
other 5 strategies. However, VL strategy is the best strategy for less than half of
projects (only 32 % projects) from all cases. In summary, there is no strategy that can
be the best strategy for most projects of all cases or for most projects of a certain case.

3. Is there a worst scheduling strategy for most projects?

From Table 4, we find that E strategy has the highest chance to be the worst
strategy in all 32 cases. It has at least 45 % chance and 68 % chance on average to be
the worst strategy for all cases. Moreover, it has a lower performance than all other
strategies. So, it is the least preferred strategy for scheduling risk mitigation. However,
it can be the best strategy for some projects. Among 32000 sample projects, it is the
best strategy for 0.8 % projects.

6 Conclusion

In this paper, we formally define the scheduling strategy for risk mitigation, identify
some new scheduling strategies with due consideration of key time elements of risk,
and compare their performance by applying a stochastic simulation model.

From the simulation results, we find that, for all tested cases: (1) The traditionally
strategy, V strategy, is not a good choice for scheduling risk mitigation. The best
strategy can improve the performance of V strategy by 10 % on average. That means
we should not always use V strategy. (2) There is no strategy that can be the best
strategy for most projects or for most projects of a certain case. This indicates we
should not always apply the same strategy to all projects or to the projects of a certain
case. (3) For scheduling risk mitigation, E Strategy is the least preferred strategy among
7 identified strategies. According to above findings, we do not recommend the user to
always apply the same strategy to all projects. We suggest the user find the best strategy
for each project by running simulation.

Strategies for Scheduling Risk Mitigation 21

Our study has some limitations: (1) The “Null effect of non-mitigation factors”
assumption and “Linear effect of mitigation” assumption are a bit strong for real
projects. (2) Compared to the variety of real-life projects, we only run simulation for 32
different cases covering a total of 32000 projects.

In the future, we shall: (1) Expand our study by running more simulation with due
consideration of effects of non-mitigation factors and some non-linear risk reduction
models. (2) Identify new mitigation scheduling strategies. We will try to identify better
strategies. (3) Apply the proposed methods to real-life projects including some large-
scale applications to confirm their value.

Acknowledgements. This research is partly supported by Hong Kong Polytechnic University
grant G-YK27.

References

1. AS/NZS 2004. AS/NZS 4360: Risk Management. Standards Australia International Ltd
2. Boehm, B.W.: Software Risk Management. IEEE Computer Society Press, New York

(1989)
3. Cadle, J., Yeates, D.: Project Management for Information Systems. Harlow, Prentice Hall

(2008)
4. Carr, M.J., Konda, S.L., Monarch, I., Ulrich, C., Walker, C.F.: Taxonomy-Based Risk

Identification. Software Engineering Institute, Pittsburgh (1993)
5. Heemstra, F.J., Kusters, R.J.: Dealing with risk: a practical approach. J. Inf. Technol. 11,

333–346 (1996)
6. Holton, G.A.: Defining risk. Financ. Anal. J. 60, 12–25 (2004)
7. IEEE 2001. IEEE Std 1540-2001: IEEE Standard for Software Life Cycle Processes—Risk

Management. IEEE SA, New York
8. ISO 2009. ISO 31000: Risk Management - Principle and Guidelines. International Standard

Organization, Switzerland
9. Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C.: A framework for identifying software

project risks. Commun. ACM 41(11), 76–83 (1998)
10. Kwan, T.W.: A Risk Management Methodology with Risk Dependencies. Doctor of

Philosophy, The Hong Kong Polytechnic University (2009)
11. Kwan, T.W., Leung, H.K.N.: A risk management methodology for project risk

dependencies. IEEE Trans. Softw. Eng. 37, 635–648 (2011)
12. Leung, H.K.N.: Variants of risk and opportunity. In: 17th Asia Pacific Software Engineering

Conference, Sydney, Australia (2010)
13. Lister, T.: Risk management is project management for adults. IEEE Softw. 14(3), 20 (1997)
14. PMI 2008. A Guide to the Project Management Body of Knowledge. Project management

Institute, Newtown, PA
15. Sargent, R.G.: Verification and validation of simulation models. In: Proceedings of the 2010

Winter Simulation Conference (2010)
16. Sei 2006. CMMI® for Development Version 1.2. Software Engineering Institute, Pittsburgh,

PA
17. Sherer, S.A.: Managing risk beyond the control of is managers: the role of business

management. In: Proceedings of 37th Hawaii International Conference on System Sciences,
Hawaii (2004)

22 P. Zhou and H.K.N. Leung

18. Williams, R.C., Pandelios, G.J., Behrens, S.G.: Software Risk Evaluation (SRE) Method
Description (version 2.0). Software Engineering Institute, Pittsburgh, PA (1999)

19. Zhou, P.: Managing Time Elements of Risk. Doctor of Philosophy, The Hong Kong
Polytechnic University (2012)

20. Zhou, P., Leung, H.K.N.: Improving risk management with modeling time element. In: 15th
IASTED International Conference on Software Engineering and Applications, Dallas, USA
(2011)

21. Zhou, P., Leung, H.K.N.: A stochastic simulation model for risk management process. In:
19th Asia-Pacific Software Engineering Conference (APSEC 2012), Hong Kong (2012)

Strategies for Scheduling Risk Mitigation 23

Real-Time Reconfigurable Scheduling
of Sporadic Tasks

Hamza Gharsellaoui1,2(B) and Samir Ben Ahmed3

1 Higher School of Technology and Computer Science,
University of Carthage, Carthage, Tunisia

2 Al-Jouf College of Technology, Technical and Vocational Training Corporation,
Al-Jouf, Kingdom of Saudi Arabia
gharsellaoui.hamza@gmail.com

3 Faculty of Mathematical, Physical and Natural Sciences of Tunis, FST,
University of Tunis El Manar, Tunis, Tunisia

Samir.benahmed@fst.rnu.tn

Abstract. This book chapter deals with the problem of scheduling mul-
tiprocessor real-time tasks by an optimal EDF-based scheduling algo-
rithm. Two forms of automatic reconfigurations which are assumed to
be applied at run-time: Addition-Removal of tasks or just modifications
of their temporal parameters: WCET and/or deadlines. Nevertheless,
when such a scenario is applied to save the system at the occurrence of
hardware-software faults, or to improve its performance, some real-time
properties can be violated at run-time. We define an Intelligent Agent
that automatically checks the system’s feasibility after any reconfigura-
tion scenario was applied on a multiprocessor embedded system. Indeed,
if the system is unfeasible, then the Intelligent Agent dynamically pro-
vides precious technical solutions for users to send sporadic tasks to idle
times, by modifying the deadlines of tasks, the worst case execution times
(WCETs), the activation time, by tolerating some non critical tasks, by
sending some tasks from their current processors to be scheduled in other
processors, or in the worst case by removing some soft tasks according to
predefined heuristic. We implement the agent to support these services.

Keywords: Real-time reconfigurable sporadic tasks · Intelligent agent ·
Multiprocessor systems automatic reconfigurations · EDF-based
scheduling algorithm

1 Introduction

Nowadays, the new generations of embedded control systems are addressing new
criteria such as flexibility and agility [1]. For these reasons, there is a need to
develop tools, methodologies in embedded software engineering and dynamic
reconfigurable embedded control systems as an independent discipline. Each
system is a subset of tasks. Each task is characterized by its worst case execution
times (WCETs) Cp,ψh

i , an offset (release time) ap,ψh

i , a period T p,ψh

i and a dead-
line Dp,ψh

i for each reconfiguration scenario ψh, (h ∈ 1..M, we assume that we
c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 24–39, 2014.
DOI: 10.1007/978-3-662-44920-2 2

Real-Time Reconfigurable Scheduling of Sporadic Tasks 25

have M reconfiguration scenarios) and on each processor p, (p∈ 1..K, we assume
that we have K identical processors numbered from 1 to K), and n real-time
tasks numbered from 1 to n that composed a feasible subset of tasks entitled
ξold. The general goal of this work is to be reassured that any reconfiguration sce-
nario ψh changing the implementation of the embedded system does not violate
real-time constraints: i.e. the system is feasible and meets real-time constraints
even if we change its implementation and to correctly allow the minimization
of the response time of this system after any reconfiguration scenario [1]. To
obtain this optimization (minimization of response time), we propose an intelli-
gent agent-based architecture in which a software agent is deployed to dynami-
cally adapt the system to its environment by applying reconfiguration scenarios.
A reconfiguration scenario ψh means the addition, removal or update of tasks in
order to save the whole system on the occurrence of hardware/software faults, or
also to improve its performance when random disturbances happen at run-time.
Sporadic task is described by minimum interarrival time P p,ψh

i which is assumed
to be equal to its relative deadline Dp,ψh

i , and a worst-case execution time
(WCET) Cp,ψh

i for each reconfiguration scenario ψh and on each processor p.
A random disturbance is defined in the current work as any random internal
or external event allowing the addition of tasks that we assume sporadic or
removal of sporadic/periodic tasks to adapt the system’s behavior. Indeed, a
hard real-time system typically has a mixture of off-line and on-line workloads
and assumed to be feasible before any reconfiguration scenario ψh. The off-line
requests support the normal functions of the system while the on-line requests are
sporadic tasks to handle external events such as operator commands and recov-
ery actions which are usually unpredictable. For this reason and in this original
work, we propose a new optimal scheduling algorithm based on the dynamic
priorities scheduling Earliest Deadline First (EDF) algorithm principles on each
processor p and for each dynamic reconfiguration scenario ψh in order to obtain
the feasibility of the system at run-time, meeting real-time constraints and for
the optimization of the response time of this system. Indeed, for independent,
preemptable tasks, on a uni-processor, EDF is optimal in the sense that if any
algorithm can find a schedule where all tasks meet their deadlines, then EDF
can meet the deadlines [2].

According to [3], a hyperperiod is defined as HP = [ζ, 2 ∗ LCM + ζ],
where LCM is the well-known Least Common Multiple of the tasks periods
and ζ is the largest task offset. This algorithm, in our original work assumes
that sporadic tasks span no more than one hyperperiod of the periodic tasks
HP (p,ψh) = [ζ(p,ψh), 2∗LCM+ ζ(p,ψh)], where LCMp,ψh is the well-known Least
Common Multiple of tasks periods and (ζp,ψh) is the largest task offset of all
tasks τp,ψh

k for each reconfiguration scenario ψh on each processor p. The prob-
lem is to find which solution proposed by the agent that reduces the response
time. To obtain these results, the intelligent agent calculates the residual time
Rp,ψh

i before and after each addition scenario and calculates the minimum of
those proposed solutions in order to obtain Respp,ψh

k optimal noted Respp,ψh
opt

k .

26 H. Gharsellaoui and S. Ben Ahmed

Where Respp,ψh
opt

k is the minimum of the response time of the current system
under study calculated by the intelligent agent.

To calculate this previous value Respp,ψh
opt

k , we proposed a new theoretical
concepts Rp,ψh

i , Sp,ψh

i , sp,ψh

i , fp,ψh

i and Lp,ψh

i for the case of real-time sporadic
operating system (OS) tasks. Where Rp,ψh

i is the residual time of task σp,ψh

i ,
Sp,ψh

i denotes the first release time of task σp,ψh

i , sp,ψh

i is the last release time of
task σp,ψh

i , fp,ψh

i denotes the estimated finishing time of task σp,ψh

i , and Lp,ψh

i

denotes the laxity of task σp,ψh

i for each reconfiguration scenario ψh and on each
processor p.

The organization of this work is as follows. Section 2 introduces the related
work of the proposed approach and gives the basic guarantee algorithm. In
Sect. 3, we present the new approach with deadline tolerance for optimal schedul-
ing theory. Section 4 presents the performance study, showing how this work is
a significant extension to the state of the art of EDF scheduling and discusses
experimental results of the proposed approach research. Section 5 summarizes the
main results and presents the conclusion of the proposed approach and describes
the intended future works.

2 Background

We present related works dealing with reconfigurations and real-time scheduling
of embedded systems. Today, real-time embedded systems are found in many
diverse application areas including; automotive electronics, avionics, telecom-
munications, space systems, medical imaging, and consumer electronics. In all
of these areas, there is rapid technological progress. Companies building embed-
ded real-time systems are driven by a profit motive. To succeed, they aim to
meet the needs and desires of their customers by providing systems that are
more capable, more flexible, and more effective than their competition, and by
bringing these systems to market earlier. This desire for technological progress
has resulted in a rapid increase in both software complexity and the processing
demands placed on the underlying hardware [3].

To address demands for increasing processor performance, silicon vendors no
longer concentrate wholly on the miniaturisation needed to increase processor
clock speeds, as this approach has led to problems with both high power con-
sumption and excessive heat dissipation. Instead, there is now an increasing trend
towards using multiprocessor platforms for high-end real-time applications [3].

For these reasons, we will use in our work the case of real-time scheduling on
homogeneous multiprocessor platforms. Before presenting our original contribu-
tion, we will present some definitions below. According to [1], each periodic task
is described by an initial offset ai (activation time), a worst-case execution time
(WCET) Ci, a relative deadline Di and a period Ti.

According to [4], each sporadic task is described by minimum interarrival time
Pi which is assumed to be equal to its relative deadline Di, and a worst-case exe-
cution time (WCET) Ci. Hence, a sporadic task set will be denoted as follows:

Real-Time Reconfigurable Scheduling of Sporadic Tasks 27

Sys2 = {σi(Ci,Di)}, i = 1 to m. Reconfiguration policies in the current paper
are classically distinguished into two strategies: static and dynamic reconfigura-
tions. Static reconfigurations are applied off-line to modify the assumed system
before any system cold start, whereas dynamic reconfigurations are dynamically
applied at run-time, which can be further divided into two cases: manual recon-
figurations applied by users and automatic reconfigurations applied by intelligent
agents [1,5]. This book chapter work focuses on the dynamic reconfigurations
of assumed mixture of off-line and on-line workloads that should meet deadlines
defined according to user requirements. The extension of the proposed algorithm
should be straightforward, when this assumption does not hold and its running
time is O(n + m) [6].

2.1 State of the Art

Nowadays, several interesting studies have been published to develop reconfig-
urable embedded control systems. In [7] Marian et al. propose a static reconfigu-
ration technique for the reuse of tasks that implement a broad range of systems.
The work in [11] proposes a methodology based on the human intervention to
dynamically reconfigure tasks of considered systems. In [10], an ontology-based
agent is proposed by Vyatkin et al. to perform system reconfigurations according
to user requirements and also the environment evolution. Window-constrained
scheduling is proposed in [8], which is based on an algorithm named dynamic
window-constrained scheduling (DWCS). The research work in [9] provides a
window-constrained-based method to determine how much a task can increase
its computation time, without missing its deadline under EDF scheduling. In [9],
a window-constrained execution time can be assumed for reconfigurable tasks in
n among m windows of jobs. In the current paper, a window constrained schedule
is used to separate old and new tasks that assumed sporadic on each processor
p and after each reconfiguration scenario ψh. Old and new tasks are located in
different windows to schedule the system with a minimum response time. In [5],
a window constrained schedule is used to schedule the system with a low power
consumption.

In the following, we only consider periodic and sporadic tasks. Few results
have been proposed to deal with deadline assignment problem. Baruah, Buttazo
and Gorinsky in [1] propose to modify the deadlines of a task set to minimize
the output, seen as secondary criteria of this work. So, we note that the optimal
scheduling algorithm based on the EDF principles and on the dynamic recon-
figuration scenario ψh is that we propose in the current original work in which
we give solutions computed and presented by the intelligent agent for users to
respond to their requirements.

2.2 Formalization

To illustrate the key point of the proposed dynamically approach, we assume that
there are K identical processors numbered from 1 to K, and n real-time tasks
numbered from 1 to n that composed a feasible subset of tasks entitled ξold and

28 H. Gharsellaoui and S. Ben Ahmed

need to be scheduled. At time t and before the application of the reconfiguration
scenario ψh, each one of the tasks of ξold is feasible, e.g. the execution of each
instance in each processor is finished before the corresponding deadline and the
tasks are not assumed to be arranged in any specific order.

Every processor p assigns a set of periodic tasks TSp = {τp
1 , τp

2 , ..., τp
n}. This

allocation is made with an allowance algorithm at the time of the design, for
example by using one of the well known techniques: first-fit (FF), next-fit (NF),
best-fit (BF), worst-fit (WF). These tasks are independent and can be inter-
rupted at any time. Every task τp

i has an execution time (Worst Case Execution
Time) Cp

i , one period T p
i , a deadline Dp

i which is assumed to be less than or equal
to its period, e.g. Dp

i ≤ T p
i . Every task instance k has to respect its absolute

deadline, namely the kth authority of the task τp
i , named τp

i,k must be completed
before time Dp

i,k = (k−1)T p
i +Dp

i . These tasks are handled by a global scheduler
(GS), which assigns them to processors by using the state informations of the
local schedulers. Moreover, under EDF scheduling, a task will fit on a processor
as long as the total utilization of all tasks assigned to that processor does not
exceed unity (the total utilization factor = 1). Finally, for reasons of simplicity,
we assume that the migration cost of the tasks are equal to zero.

We assume now the arrival at run-time of a second subset ξnew which is
composed of m real-time tasks at time t1 (t1 = t + Δt). We have a system
CurrentSys(t1) composed of n+m tasks. In this case a reconfiguration scenario
ψh is applied. The reconfiguration of the system Sysψh means the modification
of its implementation that will be as follows at time t1:

ξψh = Currentψh

Sys(t1) = ξold ∪ ξψh
new

where ξold is a subset of old tasks which are not affected by the reconfiguration
scenario ψh (e.g. they implement the system before the time t1), and ξψh

new a
subset of new tasks in the system. We assume that an updated task is considered
as a new one at time t1. When the reconfiguration scenario ψh is applied at time
t1, two cases exist:

– If tasks of ξψh = ξold ∪ ξψh
new are feasible, then no reaction should be done by

the agent,
– otherwise, the agent should provide different solutions for users in order to

re-obtain the system’s feasibility.

Running Example

In this section, we demonstrate the performance of our proposed approach for
both periodic synchronous and asynchronous, and sporadic tasks. The simula-
tion runs on our tool RT-Reconfiguration and proved by the real-time simulator
Cheddar [12] with a task set composed of old tasks (ξold) and new tasks (ξp,ψh

new)
on the processor p for each reconfiguration scenario ψh. We illustrate with a
simplified example to ease the understanding of our approach. The task set
considered for this example is given in Table 1 and is composed of 10 tasks.
The sum of utilization of all tasks is given in Table 1 and is equal to 426.1%.

Real-Time Reconfigurable Scheduling of Sporadic Tasks 29

Table 1. Task parameters of running example.

Tasks Ci Di Ti = Pi

τ1 2 9 7

τ2 3 21 20

τ3 2 9 9

τ4 2 13 10

τ5 3 15 9

τ6 14 21 19

τ7 10 24 16

τ8 8 18 18

τ9 13 16 17

τ10 5 11 12

We have 3 identical processors in our system to schedule these tasks. In this
case, we assume that each task’s deadline is less than or equal to its period.
The worst case execution times, deadlines, and the time periods of all tasks are
generated randomly. In this experiment, the system runs for time units equal to
hyper-period of periodic tasks.

In this experiment, our task set example is initially implemented by 5 char-
acterized old tasks (ξold = {τ1; τ2; τ3; τ4; τ5}). These tasks are feasible because
the processor utilization factor U =1.19 ≤ 3. These tasks should meet all required
deadlines defined in user requirements and we have Feasibility(Currentξold

(t)) ≡
True.

Firstly, tasks are partitioned; task τ1 is partioned on first processor, τ2 and τ3
are partitioned on processor 2 while task τ4 and τ5 are partitioned on processor
3. We have three sets of local tasks. As there is only one task on first processor
then task τ1 utilization factor is the same as the first processor 1 utilization
factor (u1,0 = 0.285 ≤ 1) while utilization factors of processor 2 and processor 3
are calculated as follows:

U2,0 =
∑(2)2

i=1

C2
i

T 2
i

= 0.372 < 1,

U3,0 =
∑(2)3

i=1

C3
i

T 3
i

= 0.533 < 1.

We suppose that a first reconfiguration scenario ψ1 (h =1) is applied at
time t1 to add 5 new tasks ξψ1

new = {τ6; τ7; τ8; τ9; τ10}. The new processor
utilization becomes Uψ1 = 4.261 > 3 time units. Therefore the system is unfeasi-
ble. Feasibility(Currentψ1

ξ (t1)) ≡ False. Indeed, if the number of tasks
increases, then the overload of the system increases too. Our optimal earliest
deadline first (OEDF) algorithm is based on the Guarantee Algorithm presented
by Buttazo and Stankovic in [4]. Indeed, OEDF algorithm is an extended and

30 H. Gharsellaoui and S. Ben Ahmed

ameliorate version of Guarantee Algorithm that usually guarantee the system’s
feasibility.

3 New Approach with Deadline Tolerance

In this section we will present some preliminaries concepts and we will describe
our contribution after.

In [4], Buttazo and Stankovic present the Guarantie Algorithm without the
notion of deadline tolerance, and then we will extend the algorithm in our new
proposed approach by including tolerance indicator and task rejection policy.
For this reason, and in order to more explain these notions we will present some
preliminaries.

3.1 Preliminaries

ξ denotes a set of active sporadic tasks σi ordered by increasing deadline in a
linked list, σ1 being the task with the shortest absolute deadline.

ai denotes the arrival time of task σi, i.e., the time at which the task is
activated and becomes ready to execute.

Ci denotes the maximum computation time of task σi, i.e., the worst case
execution time (WCET) needed for the processor to execute task σi,k without
interruption.

ci denotes the dynamic computation time of task σi, i.e., the remaining worst
case execution time needed for the processor, at the current time, to complete
task σi,k without interruption.

di denotes the absolute deadline of task τi, i.e., the time before which the
task should complete its execution, without causing any damage to the system.

Di denotes the relative deadline of task σi, i.e., the time interval between the
arrival time and the absolute deadline. Si denotes the first start time of task σi,
i.e., the time at which task σi gains the processor for the first time. si denotes
the last start time of task σi, i.e., the last time, before the current time, at which
task σi gained the processor.

fi denotes the estimated finishing time of task σi, i.e., the time according to
the current schedule at which task σi should complete its execution and leave
the system.

Li denotes the laxity of task σi, i.e., the maximum time task σi can be delayed
before its execution begins.

Ri denotes the residual time of task σi, i.e., the length of time between
the finishing time of σi and its absolute deadline. Baruah et al. [13] present a
necessary and sufficient feasibility test for synchronous systems with pseudo-
polynomial complexity. The other known method is to use response time analy-
sis, which consists of computing the worst-case response time (WCRT) of all
tasks in a system and ensuring that each task WCRT is less than its rela-
tive deadline. To avoid these problems, and to have a feasible system in this
paper, our proposed tool RT-Reconfiguration can be used. For this reason,
we present the following relationships among the parameters defined above:

Real-Time Reconfigurable Scheduling of Sporadic Tasks 31

di = ai + Di (1)
Li = di − ai − Ci (2)
Ri = di − fi (3)
f1 = t + c1; fi = fi−1 + ci ∀ i > 1 (4)

The basic properties stated by the following lemmas and theorems are used to
derive an efficient O(n +m) algorithm for analyzing the schedulability of the
sporadic task set whenever a new task arrives in the systems.

Lemma 1. Given a set ξ = {σ1, σ2, ..., σn} of active sporadic tasks ordered by
increasing deadline in a linked list, the residual time Ri of each task σi at time
t can be computed by the following recursive formula:

R1 = d1 − t − c1 (5)

Ri = Ri−1 + (di − di−1) − ci. (6)

Proof. By the residual time definition (Eq. 3) we have:

Ri = di − fi.

By the assumption on set ξ, at time t, the task σ1 in execution and cannot be
preempted by other tasks in the set ξ, hence its estimated finishing time is given
by the current time plus its remaining execution time:

f1 = t + c1

and, by Eq. 3, we have:

R1 = d1 − f1 = d1 − t − c1.

For any other task σi, with i > 1, each task σi will start executing as soon as
σi−1 completes, hence we can write:

fi = fi−1 + ci (7)

and, by Eq. 3, we have:

Ri = di − fi = di − fi−1 − ci =
di − (di−1 − Ri−1) − ci = Ri−1 + (di − di−1) − ci

and the lemma follows.

Lemma 2. A task σi is guaranteed to complete within its deadline if and only
if Ri ≥ 0 [4].

32 H. Gharsellaoui and S. Ben Ahmed

Theorem 3. A set ξ = {σi, i = 1 to m} of m active sporadic tasks ordered by
increasing deadline is feasibly schedulable if and only if Ri ≥ 0 for all σi ∈ ξ, [4].

3.2 Feasibility Analysis for Tasks

By considering real-time tasks and as we mentioned before, the schedulability
analysis should be done in the hyperperiod HP (p,ψh) = [ζ(p,ψh), 2∗LCM+ζ(p,ψh)],
where LCMp,ψh is the well-known Least Common Multiple of tasks periods and
(ζp,ψh) is the largest task offset of all tasks τp,ψh

k for each reconfiguration scenario
ψh on each processor p.

Let n+m be the number of tasks respectively in ξold and ξψh
new. By assuming

unfeasible system at time t1, and every processor p will execute its tasks in local
by using EDF, the following formula is satisfied:

∑n+m

i=1

Cψh

i

Tψh

i

> K,where K is the number of identical processors.

Our proposed algorithm provides guarantees to both old and new tasks in each
processor p if and only if,

∑n−j

i=1

Cp,ψh

i

T p,ψh

i

+
∑n+m

i=n−j+1

Cp,ψh

i

T p,ψh

i

≤ 1

where
∑n−j

i=1
C

p,ψh
i

T
p,ψh
i

denotes sum of utilization factor of n old tasks in processor

p for each reconfiguration scenario ψh and,
∑n+m

i=n−j+1
C

p,ψh
i

T
p,ψh
i

denotes sum of uti-

lization factor of new arrival m tasks to the processor p for each reconfiguration
scenario ψh.

We propose, for each reconfiguration scenario ψh, to add the tasks of ξold to
a linked list Lψh

old that we sort on the increasing order of their utilization factor
values.

3.3 Contribution: An Algorithm for Feasibility Testing
with Respect to Sporadic Task Systems

In the current book chapter, we suppose that on each processor p, each system
ξ(p) can be automatically and repeatedly reconfigured at each reconfiguration
scenario ψh. ξ(p) is initially considered as ξ(p,0) and after the hth reconfiguration
ξ(p) turns into ξ(p,ψh), where h ∈ 1..M. We define V P p,ψh

1 and V P p,ψh

2 two virtual
processors to virtually execute old and new sporadic tasks, implementing the
system after the hth reconfiguration scenario for each processor p. In ξ(p,ψh),
all old tasks from ξ(p,ψh−1) are executed by the newly updated V P

(p,ψh)
1 and

the added sporadic tasks are executed by V P
(p,ψh)
2 . The proposed intelligent

agent is trying to minimize the response time Respp,ψh
opt

k of ξ(ψh) after each
reconfiguration scenario ψh and for each processor p.

Real-Time Reconfigurable Scheduling of Sporadic Tasks 33

For example, after the first addition scenario, ξ(p,0) turns into ξ(p,1). ξ(p,1) is
automatically decomposed into V P

(p,1)
1 and V P

(p,1)
2 for old and new tasks with

the processor utilization factors UV P
(p,1)
1 and UV P

(p,1)
2 respectively on each

processor p.
After each addition scenario, the proposed intelligent agent proposes to mod-

ify the virtual processors, to modify the deadlines of old and new tasks, the
WCETs and the activation time of some tasks, to send some tasks from proces-
sor i to another processor j, or to remove some soft tasks as following:

• Solution 1: Moving some arrival tasks to be scheduled in idle times for each
reconfiguration scenario ψh and on each processor p. (idle times are caused
when some tasks complete before its worst case execution time) (S1)

• Solution 2: maximize the dp,ψh

i for each reconfiguration scenario ψh and on
each processor p (S2)

By applying Eq. 3 that notices:
Ri = di − fi, we have:

Rp,ψh

i = dp,ψh

i − t − Cp,ψh

i .

Or, to obtain a feasible system after a reconfiguration scenario ψh , the follow-
ing formula must be enforced:

Rp,ψh

i ≥ 0 on each processor p.

By this result we can write: dp,ψh

inew −t−Cp,ψh

i ≥ 0, where dp,ψh

inew = dp,ψh

i +θp,ψh

i .

So, dp,ψh

i + θp,ψh

i − t − Cp,ψh

i ≥ 0 ⇒

θp,ψh

i ≥ t + Cp,ψh

i − dp,ψh

i .

• Solution 3: minimize the ci for each reconfiguration scenario ψh and on each
processor p (S3)

By applying Eq. 3 that notices:
Ri = di − fi, we have:

Rp,ψh

i = dp,ψh

i − t − Cp,ψh

i .

Or, to obtain a feasible system after a reconfiguration scenario, the following
formula must be enforced:

Rp,ψh

i ≥ 0.

By this result we can write: dp,ψh

i −t−Cp,ψh

inew ≥ 0, where Cp,ψh

inew = Cp,ψh

i +βp,ψh

i .
So, dp,ψh

i − t − Cp,ψh

i − βp,ψh

i ≥ 0 ⇒ dp,ψh

i − t − Cp,ψh

i ≥ βp,ψh

i

⇒ βp,ψh

i ≤ dp,ψh

i − t − Cp,ψh

i

34 H. Gharsellaoui and S. Ben Ahmed

• Solution 4. Enforcing the release time to come back: ap,ψh

i → ap,ψh

inew →
(ap,ψh

inew = ap,ψh

i + Δp,ψht) for each reconfiguration scenario ψh and on each
processor p (S4)

By applying Eq. 1 that notices:
di = ai + Di, we have:

Rp,ψh

i = ap,ψh

i + Dp,ψh

i − t − Cp,ψh

i .

Or, to obtain a feasible system after a reconfiguration scenario, the following
formula must be enforced:

Rp,ψh

i ≥ 0 ⇒ ap,ψh

i + Dp,ψh

i − t − Cp,ψh

i ≥ 0.

By this result we can write:

ap,ψh

inew + Dp,ψh

i − t − Cp,ψh

i ≥ 0, where ap,ψh

inew = ap,ψh

i + Δp,ψht.

So, we obtain: ap,ψh

i + Δp,ψht + Dp,ψh

i − t − Cp,ψh

i ≥ 0.

⇒ Δp,ψht ≥ t + Cp,ψh

i − ap,ψh

i − Dp,ψh

i .

• Solution 5: Tolerate some non critical Tasks m1
p among (n+m)p (according

to the (m, n) firm model), on each processor p for a reasonable cost, and for
each reconfiguration scenario ψh (S5)

ξp = {τp
i (Cp

i ,Dp
i ,mp

i , I
p
i), i = 1 to np}.

mp
i = 1, it tolerates missing deadline,

mp
i = 0, it doesn’t tolerate missing deadline,

Ip
i = H, Hard task,

Ip
i = S, Soft task.

• Solution 6: Migration of some tasks from a processor source i in order to be
scheduled on another processor destination j for each reconfiguration scenario
ψh (S6)

The agent proceeds now as a sixth solution to migrate some tasks of ξp,ψh
new

and ξp
old on the processor p for each reconfiguration scenario ψh. Indeed, the

agent is responsible for allocating the tasks to the K computing processors in
an optimal way (Fig. 1).

Run-time task migration can be defined as the relocation of an executing
task from its current location, the source processor i, to a new location, the
destination processor j (i �= j; i, j = 1..K) that must belong to the inclusion set.
We need by inclusion set in paper, the set of processors in which tasks can
be scheduled after any reconfiguration scenario ψh when a migration request
has done and in this case all the relevant state information of that migra-
tion is transferred to the new processor. Otherwise, it is called exclusion set.

Real-Time Reconfigurable Scheduling of Sporadic Tasks 35

Fig. 1. The task migration sequence.

This allows the OS to e.g., minimize energy savings and response time of the
whole system. It also enables processors management by moving tasks away
from processors with a high amount of workload or which have their utilization
factors >1. The architectural differences between the source processor i and
destination source processor j are masked by capturing and transferring the
logical task state, shown by Fig. 2. In order to relocate a task, the intelligent
agent notifies the task by means of a migration request signal(1). Whenever
that signaled task reaches a migration point (MP), it checks if there is a
pending migration request or the destination processor j belongs to the exclu-
sion group of the current migrated task for each reconfiguration scenario ψh.
In such case of these two reasons, all the relevant state information of that
migration point is transferred to the intelligent agent(2). Consequently, the
intelligent agent will instantiate the same task on a different processor. The
new task instantiation will be initialized using the state information previ-
ously captured by the intelligent agent(3). Finally, the task resumes execution
at the corresponding migration point (MP).

• Solution 7: Removal of some non critical tasks (to be rejected) for each
reconfiguration scenario ψh and on each processor p (S7)

ξp = {τp
i (Cp

i ,Dp
i ,mp

i , I
p
i), i = 1 to np}.

mp,ψh

i = 1, it tolerates missing deadline,
mp,ψh

i = 0, it doesn’t tolerate missing deadline,
Ip,ψh

i = H, Hard task,
mp,ψh

i =S, Soft task.

For every solution the corresponding response time is:
Respp,ψh

k,1 =the response time calculated by the first solution,
Respp,ψh

k,2 =the response time calculated by the second solution,
Respp,ψh

k,3 =the response time calculated by the third solution,
Respp,ψh

k,4 =the response time calculated by the fourth solution,

36 H. Gharsellaoui and S. Ben Ahmed

Respp,ψh

k,5 = the response time calculated by the fifth solution,
Respp,ψh

k,6 = the response time calculated by the sixth solution,
Respp,ψh

k,7 = the response time calculated by the seventh solution.

We define now, Respp,ψh

k optimal noted Respp,ψh
opt

k according to the previ-
ous seven solutions calculated by the intelligent Agent (Solution 1, Solution
2, Solution 3, Solution 4, Solution 5, Solution 6 and Solution 7) by the fol-
lowing expression: Respp,ψh

opt

k = min(Respp,ψh

k,1 , Respp,ψh

k,2 , Respp,ψh

k,3 , Respp,ψh

k,4 ,

Respp,ψh

k,5 , Respp,ψh

k,6 and Respp,ψh

k,7) (the minimum of the seven values). So, the

calculation of Respp,ψh
opt

k allows us to obtain and to calculate the minimiza-
tions of response times values and to get the optimum of these values. In
conclusion, we can deduce that by arrival of ξψh

new tasks at run-time and the
whole system become unfeasible, the following formula is satisfied for each
reconfiguration scenario ψh:

∑(n+m)ψh

i=1

Cψh

i

Tψh

i

> K,where K is the number of identical processors.

Then, after the reconfiguration scenario ψh was applied at run-time to the
whole system by the intelligent agent, our proposed algorithm provides guaran-
tees to both old and new tasks if and only if, we have in each processor p for
each reconfiguration scenario ψh:

∑(n+m)(p,ψh)

i=1

C
(p,ψh)
i

T
(p,ψh)
i

≤ 1, in each processor p for each reconfiguration scenario ψh.

Moreover, we have calculated R
(p,ψh)

opt

k = min(R(p,ψh)
k,1 , R

(p,ψh)
k,2 , R

(p,ψh)
k,3 ,

R
(p,ψh)
k,4 , R

(p,ψh)
k,5 , R

(p,ψh)
k,6 and R

(p,ψh)
k,7); so we obtain also:

∑(n+m)(p,ψh)

i=1

C
(p,ψh)
i

T
(p,ψh)
i

< 1,
in each processor p for each reconfiguration scenario ψh

with 1 ≤ p ≤ K, 1 ≤ h ≤ M.

We can observe that all tasks meet their deadlines after a reconfiguration
scenario ψh was applied at run-time. We can also observe that our proposed
algorithm outperforms other scheduling multiprocessor algorithms and a number
of scheduling events are much lower than appearing in others.

3.4 The General OEDF Scheduling Strategy

When dealing with the deadline tolerance factor mi, each task has to be com-
puted with respect to the deadline tolerance factor mi.

Real-Time Reconfigurable Scheduling of Sporadic Tasks 37

We show the results of our optimal proposed algorithm by means of experi-
mental result’s evaluation.

4 Experimental Results

In order to evaluate our optimal OEDF algorithm, we consider the following
experiments applied to our running example.

38 H. Gharsellaoui and S. Ben Ahmed

Fig. 2. Processor utilization.

4.1 Simulations

To quantify the benefits of the proposed approach (OEDF algorithm) over
the predictive system shutdown (PSS) approach, over the MIN algorithm, the
OPASTS algorithm and over the HPASTS algorithm. We performed a number
of simulations to compare the response time and the utilization processor under
the four strategies. The PSS technique assumes the complete knowledge of the
idle periods while the MIN algorithm assumes the complete knowledge of the
arrivals of sporadic tasks. For more details about both four techniques, you can
see [14]. The OEDF scheduling result is shown in figure (Fig. 2).

4.2 Discussion

We observe that our approach, by the solutions of the OEDF algorithm gives us
the minimum bound for response time and utilization factor. This observation
was proven by the results given by OEDF algorithm which are lower (better) than
these of the solutions given by the predictive system shutdown approach, the
MIN algorithm, the OPASTS algorithm and the HPASTS algorithm. Also, we
observe that, when we have no knowledge of the arrival of sporadic tasks, our
proposed algorithm is optimal and gives better results than others for a big
number of arrival sporadic tasks and in overload conditions, but in a small
number of tasks or light workload, OEDF algorithm is optimal but not strictly
since it gives results close to that of the solutions of MIN, OPASTS and HPASTS
algorithms, but it is efficient and effective.

5 Conclusions

This book chapter deals with reconfigurable homogeneous multiprocessor sys-
tems to be implemented by hybrid systems composed of a mixture of periodic

Real-Time Reconfigurable Scheduling of Sporadic Tasks 39

and sporadic tasks that should meet real-time constraints. In this work, we pro-
pose an optimal scheduling algorithm based on the EDF principles and on the
dynamic reconfiguration for the minimization of the response time of sporadic
and periodic constrained deadline real-time tasks on multiprocessor systems and
proven it correct.

References

1. Gharsellaoui, H., Khalgui, M., BenAhmed, S.: Feasible Automatic Reconfigurations
of Real-Time OS Tasks. IGI-Global Knowledge, London (2012)

2. Dertouzos, M.: Control robotics: the procedural control of physical processes. In:
Proceedings of the IFIP Congress (1974)

3. Balbastre, P., Ballester, R., Brocal V., Ripoll, L.: Task period selection to minimize
hyperperiod, emerging technologies and factory automation. In: 16th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1–4. IEEE Press, Toulouse, France (2011)

4. Buttazzo, G., Stankovic, J.: RED: robust earliest deadline scheduling. In: 3rd Inter-
national Workshop On Responsive Computing Systems, Austin (1993)

5. Wang, X., Khalgui, M., Li, Z.W.: Dynamic low power reconfigurations of real-
time embedded systems. In: 16th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–4. IEEE Press, Toulouse,
France (2011)

6. Tia, T., Liu, J.W.-S., Sun, J., Ha, R.: A linear-time optimal acceptance test for
scheduling of hard real-time tasks, Technical report. Department of Computer
Science, University of illinois at Urbana-Champaign, Urbana-Champaign (1994)

7. Marian, N., Angelov, C., Sierszecki, K.: Design models for reusable and recon-
figurable state machines. In: Yang, L.T., et al. (eds.) Proceedings of Embedded
Ubiquitous Computing (2005)

8. Schwan, K., West, R.: Dynamic window-constrained scheduling for multimedia
applications. In: 6th IEEE International Conference on Multimedia Computing
and Systems (1999)

9. Balbastre, P., Ripoll, I., Crespo, A.: Schedulability analysis of window-constrained
execution time tasks for real-time control. In: 14th IEEE International Conference
on Euromicro Conference Real-Time Systems (ECRTS) (2002)

10. Al-Safi, Y., Vyatkin, V.: An ontology-based reconfiguration agent for intelligent
mechatronic systems. In: Mař́ık, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS
2007. LNCS (LNAI), vol. 4659, pp. 114–126. Springer, Heidelberg (2007)

11. Rooker, M.N., Subder, C., Strasser, T., Zoitl, A., Hummer, O., Ebenhofer, G.:
Zero downtime reconfiguration of distributed automation systems: the CEDAC
approach. In: 3rd IEEE International Conference on Industrial Applications of
Holonic and Multi-Agent Systems, Regensburg (2007)

12. Legrand, J., Singhoff, L.M.F.: Cheddar : a flexible real time scheduling framework.
In: ACM SIGAda Ada Letters, vol. 24, no 4, pp. 1–8. ACM Press, ISSN:1094–3641
(2004)

13. Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.: On-
line scheduling in the presence of overload. In: IEEE Symposium on Foundations
of Computer Science, San Juan, Puerto Rico (1991)

14. Hong, I., Potkonjak, M., Srivastava, B.M.: On-line scheduling of hard real-time
tasks on variable voltage processor. In: 8th International Conference on Computer-
Aided Design, San Jose, California, USA (1998)

Applying a Knowledge Management
Technique to Improve Risk Assessment
and Effort Estimation of Healthcare

Software Projects

Emilia Mendes(&)

Software Engineering Research Laboratory,
Blekinge Institute of Technology, Karlskrona, Sweden

emilia.mendes@bth.se

Abstract. One of the pillars for sound Software Project Management is reliable
effort estimation. Therefore it is important to fully identify what are the fun-
damental factors that affect an effort estimate for a new project and how these
factors are inter-related. This paper describes a case study where a Knowledge
Management technique was employed to build an expert-based effort estimation
model to estimate effort for healthcare software projects. This model was built
with the participation of seven project managers, and was validated using data
from 22 past finished projects. The model led to numerous changes in process
and also in business. The company adapted their existing effort estimation
process to be in line with the model that was created, and the use of a mathe-
matically-based model also led to an increase in the number of projects being
delegated to this company by other company branches worldwide.

Keywords: Software project management � Effort estimation � Decision sup-
port system � Bayesian networks � Uncertainty � Process improvement � Cost
estimation � Web systems

1 Introduction

Effort estimation, the process by which effort is forecasted and used as basis to predict
costs and to allocate resources effectively, is one of the main pillars of sound project
management, given that its accuracy can affect significantly whether projects will be
delivered on time and within budget [4]. However, because it is a complex domain
where corresponding decisions and predictions require reasoning with uncertainty,
there are countless examples of companies that underestimate effort. Jørgensen and
Grimstad [7] reported that such estimation error can be of 30 %–40 % on average, thus
leading to serious project management problems.

There is a large body of knowledge in software effort estimation [8], and Web-
development effort estimation [1]. Most of those studies focused on solving companies’
inaccurate effort predictions via investigating techniques that are used to build formal
effort estimation models, in the hope that such formalization will improve the accuracy
of estimates. They do so by assessing, and often also comparing, the prediction

© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 40–56, 2014.
DOI: 10.1007/978-3-662-44920-2_3

accuracy obtained from applying numerous statistical and artificial intelligence tech-
niques to datasets of completed projects developed by industry, and sometimes also
developed by students.

The variables characterizing such datasets are determined in different ways, such as
via surveys [12], interviews with experts [21], expertise from companies [5], a com-
bination of research findings [10], or even a researcher’s own consulting experience
[20]. In all of these instances, once variables are defined, a data gathering exercise takes
place, obtaining data (ideally) from industrial projects volunteered by companies.
However, in addition to eliciting the important effort predictors (and optionally also
their relationships), such mechanism does not provide the means to also quantify the
uncertainty associated with these relationships and to validate the knowledge obtained.
Why should these be important?

Research on effort estimation models built using a technique that incorporates the
uncertainty inherent in this domain has shown very promising results relating to
improved decision making for project management. This technique is called Bayesian
Networks (BNs), and has also been employed successfully in a wide range of other
domains (e.g. Pollino et al. [17]; Korb and Nicholson [6]). Some of the models
described in those studies were built automatically from existing datasets on software
or Web-development projects (e.g. Nauman and Lali [14]; Mendes and Mosley [9]);
however, some other models in that literature were built using a structured iterative
process in which factors and relationships were identified, quantified and validated (e.g.
Mendes et al. [13]) through a process of knowledge creation (Nonaka and Toyama
[15]), where experts’ tacit knowledge relating to effort estimation was explicitated (thus
leading to models that mirror their mental models), and later internalized (tacit
knowledge is modified due to the use of the models) by those employing these models
for decision making, in order to obtain effort estimates for projects.

The goal of this paper, and hence its contribution, is to detail a case study in which
the process of knowledge creation abovementioned was used to build an effort esti-
mation BN model within a domain that had not been previously investigated in the
software and Web-development literature (Jorgensen and Shepperd [8]; Azhar et al.
[1]) – that of healthcare software project management. This model was built for one of
the branches of a large Japanese healthcare software provider, with the participation of
seven project managers.

Post-mortem interviews with the participating company showed that the under-
standing it gained by being actively engaged in building the models led to both
improved estimates and project management decision making.

The remainder of this paper is structured as follows: Sect. 2 provides an overview of
BNs, followed by the description, in Sect. 3, of the general process used to build and
validate BNs. Section 4 details this process within the context of the model described
herein, followed by a discussion of the results in Sect. 5, and finally conclusions in Sect. 6.

2 Introduction to Bayesian Networks

A Bayesian Network (BN) is a model that supports reasoning with uncertainty due to
the way in which it incorporates existing knowledge of a complex domain [16].

Applying a Knowledge Management Technique to Improve Risk Assessment 41

This knowledge is represented using two parts. The first, the qualitative part, represents
the structure of a BN as depicted by a directed acyclic graph (digraph) (see Fig. 1). The
digraph’s nodes represent the relevant variables (factors) in the domain being modeled,
which can be of different types (e.g. observable or latent, categorical). The digraph’s
arcs represent the causal relationships between variables, where relationships are
quantified probabilistically [16].

The second, the quantitative part, associates a conditional probability table (CPT) to
each node, its probability distribution. A parent node’s CPT describes the relative prob-
ability of each state (value) (Fig. 1, nodes ‘Pages complexity’ and ‘Functionality com-
plexity’); a child node’s CPT describes the relative probability of each state conditional on
every combination of states of its parents (Fig. 1, node ‘Total Effort’). So, for example, the
relative probability of ‘Total Effort’ being ‘Low’ conditional on ‘Pages complexity’ and
‘Functionality complexity’ being both ‘Low’ is 0.7. Each row in a CPT represents a
conditional probability distribution and therefore its values sum up to 1 [16].

Once a BN is specified, evidence (e.g. values) can be entered into any node, and
probabilities for the remaining nodes automatically calculated using Bayes’ rule [16].
Therefore BNs can be used for different types of reasoning, such as predictive, diag-
nostic, and “what-if” analyses to investigate the impact that changes on some nodes
have on others.

Fig. 1. Example of a BN and three CPTs.

42 E. Mendes

3 Adapted Knowledge Engineering of Bayesian
Networks Process

The BN model presented herein was built and validated using the adapted Knowledge
Engineering of Bayesian Networks (KEBN) process [9] (see Fig. 2). In Fig. 2 arrows

"

Structural Development

"
"

Model Validation

Parameter Estimation

Identify
nodes/vars

Identify
values/states

Identify
relationships

Evaluation

Yes

No

Yes

Data?

Further

Elicitation

No

No

Next
Stage

Yes

Accept?

Begin

Domain expert

Model

Walkthrough

Data-driven

Predictive

Accuracy

Accept?

Expert
Elicitation

Automated
Learning

Fig. 2. Adapted KEBNs process [13].

Applying a Knowledge Management Technique to Improve Risk Assessment 43

represent flows through the different processes, depicted by rectangles. The three main
steps within the adapted KEBN process are the Structural Development, Parameter
Estimation, and Model Validation. This process iterates over these steps until a com-
plete BN is built and validated. Each of these three steps is detailed in the next Sub-
sections.

3.1 Structural Development

The Structural Development step represents the qualitative component of a BN, which
results in a graphical structure comprised of, in our case, the factors (nodes, variables)
and causal relationships identified as fundamental for effort estimation of healthcare
software projects. In addition to identifying variables, their types (e.g. query variable,
evidence variable) and causal relationships, this step also comprises the identification
of the states (values) that each variable should take. The BN’s structure is refined
through an iterative process. This structure construction process has been validated in
previous studies [2] and uses the principles of problem solving employed in data
modelling and software development [18]. As will be detailed later, existing literature
in effort estimation, and knowledge from the domain experts were employed to elicit
the Healthcare software effort BN’s structure. Throughout this step the author also
evaluated the BN’s structure to check whether variables and their values have a clear
meaning; all relevant variables have been included; variables are named conveniently;
all states are appropriate (exhaustive and exclusive). The BN structure may also need to
be optimised to reduce the number of probabilities that need to be elicited or learnt for
the network. Whenever this is the case, techniques that change the causal structure (e.g.
divorcing [3]) are employed.

3.2 Parameter Estimation

The Parameter estimation step represents the quantitative component of a BN, where
conditional probabilities corresponding to the quantification of the relationships
between variables [3] are obtained. Such probabilities can be attained via Expert
Elicitation, automatically from data, from existing literature, or using a combination of
these. When probabilities are elicited from scratch, or even if they only need to be
revisited, this step can be very time consuming. In order to minimise the number of
probabilities to be elicited some techniques have been proposed in the literature [2, 19].

3.3 Model Validation

The Model validation step validates the BN that results from the two previous steps,
and determines whether it is necessary to re-visit any of those steps. Two different
validation methods are generally used - Model Walkthrough and Predictive Accuracy.

Model walkthrough represents the use of real case scenarios that are prepared and
used by domain experts to assess if the predictions provided by the BN model cor-
respond to the predictions experts would have chosen based on their own expertise.

44 E. Mendes

Success is measured as the frequency with which the BN’s predicted value for a target
variable (e.g. quality, effort) that has the highest probability corresponds to the experts’
own assessment.

Predictive Accuracy uses past data (e.g. past project data), rather than scenarios, to
obtain predictions. Data (evidence) is entered on the BN model, and success is mea-
sured as the frequency with which the BN’s predicted value for a target variable (e.g.
quality, effort) that has the highest probability corresponds to the actual past data.

4 Process Used to Build the BN Model

Here in we revisit the adapted KEBN process (see Fig. 2), detailing the tasks carried out
for each of the three main steps, within the context of the effort estimation BN model
for healthcare projects that is the focus of this paper. Before starting the elicitation of
the model, the seven project managers participating in the model elicitation & vali-
dation were given an overview of BNs, and examples of “what-if” scenarios using a
made-up BN. This, we believe, facilitated the entire process as the use of an example,
and the brief explanation of each of the steps in the adapted KEBN process, provided a
concrete understanding of what to expect. We also made it clear that the author was
solely a facilitator of the process, and that the Healthcare company’s commitment was
paramount for the success of the process.

The entire process took 324 person hours to be completed, with seven projet
managers participating at 12 3-hour slots, and two other project managers participating
at other 12 3-hour slots.

The company for which the model was created, located in the Pacific Rim region,
represents one of the several branches worldwide that are part of a larger Healthcare
organization, which headquarters in Japan. The company had *100 employees. The
project managers had each worked in Healthcare software development for more than
10 years. In addition, this company developed a wide range of Healthcare software
applications, using different types of technology.

4.1 Detailed Structural Development & Parameter Estimation

In order to identify the fundamental factors that the project managers considered when
preparing a project quote, and also taking into account that most of the projects
managed were Web-development projects, we used, as suggested in [13], the set of
variables from the Tukutuku dataset [12] as a starting point (see Table 1). We first
sketched them out on a white board, each one inside an oval shape, and then explained
what each one meant.

Once the Tukutuku variables had been sketched out and explained, the next step
was to remove all variables that were not relevant for the project managers, followed by
adding to the white board any additional variables (factors) suggested by them. We also
documented descriptions for each of the factors suggested. Next, we identified the
states that each factor would take. All states were discrete. Whenever a factor repre-
sented a measure of effort (e.g. Total effort), we also documented the effort range

Applying a Knowledge Management Technique to Improve Risk Assessment 45

corresponding to each state, to avoid any future ambiguity. For example, ‘very low’
Total effort corresponded to 4+ to 10 person hours, etc. Once all states were identified
and documented, it was time to elicit the cause and effect relationships. As a starting
point to this task we used the same example used in [13] - a simple medical example
from [3] (see Fig. 3).

This example clearly introduces one of the most important points to consider when
identifying cause and effect relationships – timeline of events. If smoking is to be a
cause of lung cancer, it is important that the cause precedes the effect. This may sound

Fig. 3. A simple medical example from [3].

Table 1. The Tukutuku variables [12].

 Variable Name Description

Pr
oj

ec
t D

at
a

TypeProj Type of project (new or enhancement).
nLang Number of different development languages used

DocProc If project followed defined and documented process.
ProImpr If project team involved in a process improvement programme.
Metrics If project team part of a software metrics programme.

DevTeam Size of a project’s development team.
TeamExp Average team experience with the development language(s) employed.

W
eb

 a
pp

lic
at

io
n

TotWP Total number of Web pages (new and reused).
NewWP Total number of new Web pages.
TotImg Total number of images (new and reused).
NewImg Total number of new images created.

Num_Fots Number of features reused without any adaptation.
HFotsA Number of reused high-effort features/functions adapted.
Hnew Number of new high-effort features/functions.

TotHigh Total number of high-effort features/functions
Num_FotsA Number of reused low-effort features adapted.

New Number of new low-effort features/functions.
TotNHigh Total number of low-effort features/functions

46 E. Mendes

obvious with regard to the example used; however, it is our view that the use of this
simple example significantly helped the project managers understand the notion of
cause and effect, and how this related to software effort estimation and the BN being
elicited.

Table 2. Description of all the factors elicited from the Des.

Factor Categories Description, observation

Actual pre-sales effort Low (0+ to 10 person-
hours (prs))

Medium (10+ to 20 prs)
High (20+ prs)

Contract signing (optional),
requirements elicitation (prepared
before preparation of
quote) + quote preparation, user
requirements specification
(optional), programming
specification (aka technical spec,
functional spec)

Number of technologies Small (1 technology)
Medium (2 to 3
technologies)
Large (4 and above)

Examples of internal technologies:
Cobol, Web (ASP, .NET, C#),
Windows, Lotus Notes, Oracle,
SQL

Application testing effort None
Low (0+ to 10 prs)
Medium (10+ to 30 prs)
High (30+ to 150 prs)
Very high (150+ prs)

Testing throughout the project, but
only inside the company

Testing environment
setup

Low (0+ to 1 prs)
Medium (1+ to 4 prs)
High (4+ prs)

Number of person hours to set up the
testing environment

High risk programs effort None
Low (0+ to 5 prs)
Medium (5+ to 10 prs)
High (10+ to 20 prs)
Very high (20+ prs)

Programs used by only a few
customers, and difficult to test;
programs that are historically
difficult to manage or change (e.g.
non-documented features, cobol
legacy)

Estimated third party
effort

None
Low (0+ to 10 prs)
Medium (10+ to 30 prs)
High (30+ to 60 prs)
Very high (60+ prs)

Estimated effort to third party-related
issues (number and risk factor)

Effort adapting items None
Very low (0+ to 10 prs)
Low (10+ to 20 prs)
Medium (20+ to 40 prs)
High (40+ to 80 prs)
Very high (80+ prs)

Number of person hours adapting
items

(Continued)

Applying a Knowledge Management Technique to Improve Risk Assessment 47

Table 2. (Continued)

Factor Categories Description, observation

Effort creating new items None
Low (0+ to 40 prs)
Medium (40+ to 80 prs)
High (80+ to 150 prs)
Very high (150+ to 1000
prs)
Extremely high (1000
+ prs)

Number of person hours creating
new items

Effort to create and
package product

None
Low (0+ to 1 prs)
Medium (1+ to 4 prs)
High (4+ prs)

Effort to create and package a
product (includes paperwork,
burning a CD, printing and
binding the manuals, issuing the
product (send the CD to the
customer, or uploading into a FTP
site)); also includes maintaining
internal source code repository,
and patches

Writing of user
documentation effort

None
Low (0+ to 10 prs)
Medium (10+ to 50 prs)
High (50+ to 200 prs)
Very high (200+ prs)

Estimate of the number of hours
writing the user documentation
(aka product documentation, user
manual)

Estimated testing effort Low (0+ to 10 prs)
Medium (10+ to 30 prs)
High (30+ to 150 prs)
Very high (150+ to 450
prs)
Extremely high (450
+ prs)

Total estimated testing effort from
environment set up and
application testing

Estimated development
effort

None
Very low (0+ to 20 prs)
Low (20+ to 80 prs)
Medium (80+ to 150 prs)
High (150+ to 450 prs)
Very high (450+ to 1000
prs)
Extremely high (1000
+ prs)

Total estimated dev effort from the
items

Total product
development effort

None
Very low (0+ to 20 prs)
Low (20+ to 80 prs)
Medium (80+ to 150 prs)
High (150+ to 450 prs)
Very high (450+ to 2500
prs)
Exceptionally high (2500
+ prs)

(Continued)

48 E. Mendes

Table 2. (Continued)

Factor Categories Description, observation

Customer environment
effort

Low (0+ to 1 prs)
Medium (1+ to 5 prs)
High (5+ prs)

Time zone, system access. These are
tangible points

Customer risk factors
effort (generally
represented as an effort
%)

None
Low (0+ to 5 prs)
Medium (5+ to 10 prs)
High (10+ prs)

Personality, capabilities,
expectations, involvement, track
record, language barrier, language
difficulties, size customer
representation/team

Customer support effort None
Low (0+ to 8 prs)
Medium (8+ to 40 prs)
High (40+ prs)

Pre and post go live support

Customer training effort None
Low (0+ to 8 prs)
Medium (8+ to 40 prs)
High (40+ prs)

Amount of training (includes
preparation)

Estimated customer effort None
Low (0+ to 20 prs)
Medium (20+ to 85 prs)
High (85+ prs)

Estimated effort for customer-related
items (environment, support,
training)

Involved in SPI (software
process improvement)

Yes
No

Part of the project management

Number of adapted high
effort (20+) items off-
the-shelf

None
Small (1 item)
Medium (2 items)
High (3+ items)

Number of hours that represent high
and low effort need to be defined
(excludes testing). One adaptation
can incur several changes. High
effort here means the use of 20
+ person/hours to adapt a single
item

Number of adapted
medium effort (5+ to
20) items off-the-shelf

None
Small (1 item)
Medium (2 to 4 items)
High (5 + items)

Number of hours that represent high
and low effort need to be defined
(excludes testing). One adaptation
can incur several changes.
Medium effort here means the use
of 5 + to 20 person/hours to adapt
a single item

Number of adapted low
effort (1->5) items off-
the-shelf

None
Small (1 to 3 items)
Medium (4 to 6 items)
High (7+ items)

(Excludes testing) One adaptation
can incur several changes. Low
effort here means the use of up to
5 person/hours to adapt a single
item

(Continued)

Applying a Knowledge Management Technique to Improve Risk Assessment 49

Table 2. (Continued)

Factor Categories Description, observation

Number of new high
effort (80+) items

None
Small (1 item)
Medium (2 to 4 items)
High (5+ items)

(Excludes testing) High effort here
means the use of 80 + person/
hours to develop a single item

Number of new low
effort items

None
Small (1 item)
Medium (2 to 4 items)
High (5+ items)

(Excludes testing) Low effort here
means the use of up to 20 person/
hours to develop a single item

Number of new medium
effort items

None
Small (1 item)
Medium (2 to 4 items)
High (5+ items)

(Excludes testing) Medium effort
here means the use of 20+ to 80
person/hours to develop a single
item

Overall effort
configuration items

None
Very low (0+ to 1 prs)
Low (1+ to 5 prs)
Medium (5+ to 15 prs)
High (15+ to 40 prs)
Very high (40+ prs)

Effort to configure an installed
system for use as per customer
requirements

Overall effort installation
items

None
Low (0+ to 5 prs)
Medium (5+ to 15 prs)
High (15+ prs)

Items are interpreted as an area,
program, or module. Items have
hour figures next to them. (either
it’s only development, or pure
training, cd sent to client for them
to install)

Total implementation
effort

None
Very low (0+ to 2 prs)
Low (2+ to 5 prs)
Medium (5+ to 20 prs)
High (20+ to 80 prs)
Very high (80+ prs)

Project management
effort

None
Low (15 % of estimated
effort)
Medium (20 to 30 % of
estimated effort)
High (30+ % of
estimated effort)

Project management overhead,
including status reports;
communication; Implementation
plan (more for large projects)
which includes the tasks to be
done and their estimated
completion dates; risk analysis;
data analysis; planning (project
execution plan)

Size of project team Small (2 to 5 people)
Medium (6 to 8 people)
Large (9+ people)

Only the team internally to the
company

None
Low (0+ to 5 prs)

Requirements elicitation, user
requirements specification,,

(Continued)

50 E. Mendes

Table 2. (Continued)

Factor Categories Description, observation

Estimated analysis &
design effort (post-
sales)

Medium (5+ to 20 prs)
High (20+ to 70 prs)
Very high (70+ prs)

programming specification (aka
technical spec, functional spec)

Specification effort None
Low (0+ to 3 prs)
Medium (3+ to 10 prs)
High (10+ prs)

Set-up plan, Cut-over plan (steps
required to move changes into
production), Customer test
specification

Total analysis and
specification effort

None
Low (0+ to 8 prs)
Medium (8+ to 30 prs)
High (30+ to 80 prs)
Very high (80+ prs)

Team competency impact Very low (0 % of the
team have low
competency)

Low (0 %+ to 25 % of
the team have low
competency)
Medium (25 %+ to 40 %
of the team have low
competency)
High (40 %+ to 70 % of
the team have low
competency)
Very high (70 %+ to
100 % of the team have
low competency)

Definition/to be considered when
rating:

− years of experience with the
domain (e.g. Hematology),
− years of experience with
programming language, technical
skill
− knowledge of the product, (Y/N)
− training (not charged to the
customer),
− technology (development
technology and target technology, e.
g. virtual environment),
− non SNZ team members (Y/N)
− English as a second language (Y/
N)
− Software Development Lifecycle
Role
− proven past performance
− customer/market knowledge (e.g.
when writing specifications)
− personality (e.g. attention to detail,
easily distracted, note: this is often
only known after the project)
− experience in development and
implementation of Beta products

Third party risk effort None
Low (0+ to 5 prs)
Medium (5+ to 10 prs)
High (10+ prs)

Not company’s customers (for
example, emailing third party,
phone calls, finalising specs,
reading their documentation,
communication plan, messages)

Number of third parties None
Small (1 third party)

Number of external systems (sw,
hw) or organisations (people)

(Continued)

Applying a Knowledge Management Technique to Improve Risk Assessment 51

Once the cause and effect relationships were identified the Healthcare software
effort & risk BN’s causal structure was as follows (see Fig. 4). Note that Fig. 4 is not a
BN based directly on Table 1.

At this point the project managers seemed happy with the BN’s causal structure and
the work on eliciting the probabilities was initiated. All probabilities were created from
scratch, and the probabilities elicitation took 72 h (one project manager and the author).
The complete BN, including its probabilities, is shown in Fig. 5. Figure 5 shows the
BN using belief bars rather than labelled factors, so readers can see the probabilities
that were elicited (Table 2).

5 Discussion

In terms of the use of this BN model, it can also be employed for diagnostic reasoning,
and to run numerous “what-if” scenarios. Figure 7 shows an example of a model being
used for diagnostic reasoning, where the evidence was entered for Total Estimated
Effort, and used to assess the highest probabilities for each of the other factors.

Six months after the completion of the BN model, the author participated in a post-
mortem interview with the company’s project managers. The changes that took place as
the result of developing the BN model were as follows:

Table 2. (Continued)

Factor Categories Description, observation

Medium (2 to 3 third
parties)
High (4 or more third
parties)

(third parties company has no
control over)

Estimated effort None
Very Low (0+ to 15 prs)
Low (15+ to 40 prs)
Medium (40+ to 150 prs)
High (150+ to 1000 prs)
Very High (1000+ to
3000 prs)
Exceptionally High
(3000+ prs)

Estimated effort to develop a project,
excluding project management

Total estimated effort None
Very Low (0+ to 15 prs)
Low (15+ to 40 prs)
Medium (40+ to 150 prs)
High (150+ to 1500 prs)
Very High (1500+ to
4000 prs)
Exceptionally High
(4000+ person-hours)

Total estimated effort to develop a
project, including project
management

52 E. Mendes

– The model was explained to the entire software development group and all the
estimations provided by any team member (e.g. developers, managers) had to be
based on the factors that were part of the BN model. This means that the entire team
started to use the factors that have been elicited, as well as the BN model, as basis
for decision making during their effort estimation sessions.

– Initially, project managers estimated effort using both subjective means and also the
BN model. If there were differences between estimates, they would discuss and
reach a consensus on which estimate to use. Later both estimates were compared to
the actual effort once projects were completed. However, in less than 6 months from
using the BN model, managers moved to using the model-based estimates only.

Finally, as a consequence from using this model, this company branch started to
increase the number of requests from other branches for software development projects.
This occurred when one of the project managers presented the model at a meeting with
other company branches, so to detail how their branch was estimating effort for their
healthcare projects.

Overall, such change in approach provided extremely beneficial to the company
(Fig. 6).

We believe that the successful development of this Effort estimation BN model was
greatly influenced by a number of factors, such as:

– The company’s commitment to providing their time and expertise.
– The use of a process where project managers’ participation was fundamental. This

approach was seen as extremely positive by the company as they could implicitly

Fig. 4. BN model’s causal structure.

Applying a Knowledge Management Technique to Improve Risk Assessment 53

understand the value from building a model that was totally geared towards their
needs.

– The project managers’ excellent experience in managing healthcare software
projects.

Project Management Effort
Low
Medium
High
None

5.38
14.7
4.03
75.9

Customer Risk Factors Effort
None
Low
Medium
High

60.0
5.00
5.00
30.0

Involved in Software Process Improvement
Yes
No

50.0
50.0

Total Implementation Effort (O)
None
Very Low
Low
Medium
High
Very High

84.9
 0
 0

14.0
0.43
0.72

Size of Project Team
Small
Medium
Large

25.0
66.0
9.00

Third Party Risk Effort
None
Low
Medium
High

25.0
25.0
25.0
25.0

Number of Third Parties
None
Small
Medium
High

60.0
30.0
10.0

 0

Estimated Third Party Effort (O)
None
Low
Medium
High
Very High

68.5
11.6
7.00
7.00
5.88

Estimated Development Effort
None
Very low
Low
Medium
High
Very high
Extremely high

0.55
 0 +

0.55
1.19
5.53
17.1
75.1

Customer Environment Effort
Low
Medium
High

90.0
5.00
5.00

Number of New High effort (80+) Items
None
Small
Medium
High

5.00
5.00
20.0
70.0

Application Testing Effort
None
Low
Medium
High
Very High

 0
.018
0.25
1.82
97.9

Effort creating New Items (O)
None
Low
Medium
High
Very High
Extremely High

1.08
1.14
1.11
3.77
22.6
70.3

Number of New Low (0+ to 20) effort Items
None
Small
Medium
High

25.0
25.0
25.0
25.0

Number of New Medium (20+ to 80) effort I...
None
Small
Medium
High

86.0
10.0
2.00
2.00

Effort Adapting Items (O)
None
Very Low
Low
Medium
High
Very High

33.6
 0

7.03
4.29
18.3
36.7

Number of Adapted Medium Effort (5+ to 2...
None
Small
Medium
High

70.0
20.0
5.00
5.00

Number of Adapted Low effort (1->5) Items...
None
Small
Medium
High

25.0
25.0
25.0
25.0

Number of Adapted High Effort (20+) Items ...
None
Small
Medium
High

45.0
5.00
5.00
45.0

Estimated Customer Effort (O)
None
Low
Medium
High

72.2
5.83
21.6
0.34

High Risk Programs Effort
None
Low
Medium
High
Very High

 0
 0

5.00
20.0
75.0

Total Estimated Effort
Very Low
Low
Medium
High
Very High
Exceptionally High EG 3000 ...
None

 0
 0

.034
4.03
17.4
2.08
76.4

Team Competency Impact
Very Low 70 to 100
Low
Medium
High
Very High

50.0
20.0
10.0
10.0
10.0

Actual Pre-sales effort
Low
Medium
High

60.0
10.0
30.0

Number of Technologies
Small
Medium
Large

10.0
60.0
30.0

Total Analysis and Specification Effort (O)
None
Low
Medium
High
Very High

1.80
0.32
10.4
29.9
57.6

Specification Effort
None
Low
Medium
High

5.00
5.00
10.0
80.0

Estimated Testing Effort
Low
Medium
High
Very High
Exceptionally High EG 450 phr

.011
0.15
1.69
93.3
4.90

Testing Environment Setup
Low
Medium
High

 0
 0

 100

Customer Support Effort
None
Low
Medium
High

80.0
 0

10.0
10.0

Customer Training Effort
None
Low
Medium
High

95.0
 0

2.00
3.00

Estimated Analysis & Design Effort (post-s...
None
Low
Medium
High
Very High

 0
2.00
10.0
30.0
58.0

Estimated Effort
Very Low
Low
Medium
High
Very High
Exceptionally High EG 3000 ...
None

 0
 0 +

0.14
3.01
45.1
.005
51.7

Total Product Development Effort (O)
Very Low
Low
Medium
High
Very High
Extremely High

0.10
0.27
0.61
5.47
46.2
47.3

Effort to Create and Package Product
None
Low
Medium
High

25.0
25.0
25.0
25.0

Writing of User documentation Effort
None
Low
Medium
High
Very High

10.1
2.49
16.1
48.4
22.9

Overall Effort Installation Items
None
Low
Medium
High

84.0
0.50
8.00
7.50

Overall Effort Configuration Items
None
Very low
Low EG 1 to 5 phrs
Medium
High
Very high

90.0
 0
 0
 0

5.00
5.00

Fig. 5. Effort estimation BN model for healthcare software development.

Project Management Effort

Low

Medium

High
None

 0

 100

 0
 0

Customer Risk Factors Effort

None

Low

Medium
High

61.5

5.56

5.56
27.4

Involved in Software Process Improvement

Yes
No

 100
 0

Total Implementation Effort (O)

None

Very Low

Low
Medium

High

Very High

93.4

 0

 0
6.22

0.19

0.24

Size of Project Team

Small
Medium

Large

9.67
80.0

10.4

Third Party Risk Effort

None

Low
Medium

High

24.4

25.9
25.8

24.0

Number of Third Parties

None

Small

Medium
High

57.8

32.5

9.74
 0

Estimated Third Party Effort (O)

None
Low

Medium

High
Very High

66.0
12.8

8.86

8.62
3.68

Estimated Development Effort

None
Very low

Low

Medium

High
Very high

Extremely high

 0
 0

 0

 0

 100
 0

 0

Customer Environment Effort

Low

Medium

High

 0

 100

 0

Number of New High effort (80+) Items

None

Small

Medium
High

31.1

23.0

34.2
11.7

Application Testing Effort

None
Low

Medium

High
Very High

 0
 0

 0

9.08
90.9

Effort creating New Items (O)

None
Low

Medium

High
Very High

Extremely High

5.27
6.13

8.26

43.9
36.4

 0

Number of New Low (0+ to 20) effort Items

None

Small

Medium
High

29.6

13.2

42.2
15.0

Number of New Medium (20+ to 80) effort I...

None

Small
Medium

High

88.6

9.09
1.35

0.94

Effort Adapting Items (O)

None

Very Low
Low

Medium

High
Very High

37.4

 0
7.88

5.22

20.8
28.7

Number of Adapted Medium Effort (5+ to 2...

None

Small
Medium

High

70.8

19.9
4.86

4.41

Number of Adapted Low effort (1->5) Items...

None

Small
Medium

High

24.9

26.2
24.5

24.4

Number of Adapted High Effort (20+) Items ...

None

Small

Medium

High

49.9

5.82

5.04

39.2

Estimated Customer Effort (O)

None
Low

Medium

High

93.4
0.60

5.95

.090

High Risk Programs Effort

None

Low

Medium
High

Very High

 0

 0

4.96
20.4

74.7

Total Estimated Effort

Very Low

Low
Medium

High

Very High
Exceptionally High EG 3000 ...

None

 0

 0
 0

7.11

84.2
8.66

 0

Team Competency Impact

Very Low 70 to 100

Low
Medium

High

Very High

 0

 0
 100

 0

 0

Actual Pre-sales effort

Low

Medium

High

 0

 0

 100

Number of Technologies

Small
Medium

Large

 0
 100

 0

Total Analysis and Specification Effort (O)

None

Low

Medium
High

Very High

 0

 0

 0
 100

 0

Specification Effort

None
Low

Medium

High

4.50
5.25

9.93

80.3

Estimated Testing Effort

Low

Medium
High

Very High

Exceptionally High EG 450 phr

 0

 0
7.85

88.1

4.02

Testing Environment Setup

Low
Medium

High

 0
 0

 100

Customer Support Effort

None

Low
Medium

High

94.4

 0
2.72

2.84

Customer Training Effort

None

Low

Medium
High

98.6

 0

0.52
0.85

Estimated Analysis & Design Effort (post-s...

None
Low

Medium

High
Very High

 0
 0

 0

98.6
1.36

Estimated Effort

Very Low

Low

Medium
High

Very High

Exceptionally High EG 3000 ...
None

 0

 0

 0
71.1

28.9

 0
 0

Total Product Development Effort (O)

Very Low

Low

Medium
High

Very High

Extremely High

 0

 0

 0
79.0

21.0

 0

Effort to Create and Package Product

None
Low

Medium

High

25.0
25.0

25.0

25.0

Writing of User documentation Effort

None
Low

Medium

High
Very High

5.00
2.00

75.0

18.0
 0

Overall Effort Installation Items

None

Low
Medium

High

92.8

 0
3.85

3.37

Overall Effort Configuration Items

None

Very low
Low EG 1 to 5 phrs

Medium

High
Very high

89.7

 0
 0

 0

4.94
5.35

Fig. 6. Entering evidence in order to predict effort.

54 E. Mendes

6 Conclusions

This paper has presented a case study where a Bayesian Model for effort estimation of
Healthcare projects was built using solely knowledge of seven Domain Experts from a
well-established Healthcare company in the Pacific Rim. This model was developed
using an adaptation of the knowledge engineering for Bayesian Networks process (see
Fig. 2). Each session with the project managers lasted for no longer than 3 h. The final
BN model was calibrated using data on 22 past projects. These projects represented
typical projects developed by the company, and believed by the experts to provide
enough data for model calibration.

Since the model’s adoption, it has been successfully used to provide effort quotes
for the new projects managed by the company.

The entire process used to build and validate the BN model took 324 person hours.
As part of our future work, we plan to compare our model to that from other related

research using BNs within the context of software effort estimation.

Acknowledgements. We would like to thank the project managers who participated in the
elicitation and validation of this model.

References

1. Azhar, D., Mendes, E., Riddle, P.: A systematic review of web resource estimation. In:
Proceedings of Promise’12 (2012)

2. Druzdzel, M.J., van der Gaag, L.C.: Building probabilistic networks: where do the numbers
come from? IEEE Trans. Knowl. Data Eng. 12(4), 481–486 (2000)

Project Management Effort
Low
Medium
High
None

20.9
59.7
19.4

 0

Customer Risk Factors Effort
None
Low
Medium
High

58.9
4.91
4.91
31.3

Yes
No

 100
 0 +

Total Implementation Effort (O)
None
Very Low
Low
Medium
High
Very High

92.9
 0
 0

6.65
0.21
0.24

Size of Project Team
Small
Medium
Large

24.5
66.3
9.16

Third Party Risk Effort
None
Low
Medium
High

24.7
24.8
25.0
25.4

Number of Third Parties
None
Small
Medium
High

59.4
30.3
10.4

 0

Estimated Third Party Effort (O)
None
Low
Medium
High
Very High

67.8
11.5
7.12
7.29
6.33

Estimated Development Effort
None
Very low
Low
Medium
High
Very high
Extremely high

0.13
 0 +

0.22
0.67
4.00
19.9
75.1

Customer Environment Effort
Low
Medium
High

93.8
5.21
1.02

Number of New High effort (80+) Items
None
Small
Medium
High

3.56
4.96
20.9
70.6

Application Testing Effort
None
Low
Medium
High
Very High

 0
.002
.035
0.93
99.0

Effort creating New Items (O)
None
Low
Medium
High
Very High
Extremely High

0.53
0.67
0.75
3.10
24.7
70.2

Number of New Low (0+ to 20) effort Items
None
Small
Medium
High

25.1
24.8
24.8
25.3

Number of New Medium (20+ to 80) effort I...
None
Small
Medium
High

85.7
10.2
2.03
2.04

Effort Adapting Items (O)
None
Very Low
Low
Medium
High
Very High

33.2
 0

6.96
4.26
18.3
37.2

Number of Adapted Medium Effort (5+ to 2...
None
Small
Medium
High

69.9
20.0
5.03
5.05

Number of Adapted Low effort (1->5) Items...
None
Small
Medium

25.0
25.0
25.0

Number of Adapted High Effort (20+) Items ...
None
Small
Medium
High

44.5
4.98
5.03
45.4

Estimated Customer Effort (O)
None
Low
Medium
High

92.9
1.08
5.95
.078

High Risk Programs Effort
None
Low
Medium
High
Very High

 0
 0

4.96
19.9
75.2

Total Estimated Effort
Very Low
Low
Medium
High
Very High
Exceptionally High EG 3000 ...
None

 0
 0
 0
 0

 100
 0
 0

Very Low 70 to 100
Low
Medium
High
Very High

47.7
24.5
10.8
9.45
7.48

Actual Pre-sales effort
Low
Medium
High

61.1
10.1
28.8

Number of Technologies
Small
Medium
Large

10.3
58.5
31.2

Total Analysis and Specification Effort (O)
None
Low
Medium
High
Very High

 0
 0

 0 +
21.2
78.8

Specification Effort
None
Low
Medium
High

4.72
4.88
9.88
80.5

Estimated Testing Effort
Low
Medium
High
Very High
Exceptionally High EG 450 phr

 0 +
.006
0.81
93.2
5.94

Testing Environment Setup
Low
Medium
High

 0
 0

 100

Customer Support Effort
None
Low
Medium
High

94.7
 0

2.57
2.74

Customer Training Effort
None
Low
Medium
High

98.7
 0

0.53
0.81

Estimated Analysis & Design Effort (post-s...
None
Low
Medium
High
Very High

 0
 0

 0 +
20.9
79.1

Estimated Effort
Very Low
Low
Medium
High
Very High
Exceptionally High EG 3000 ...
None

 0
 0
 0

2.17
97.8
.002

 0

Total Product Development Effort (O)
Very Low
Low
Medium
High
Very High
Extremely High

 0
.027
0.24
3.08
57.0
39.7

Effort to Create and Package Product
None
Low

25.0
25.0

Writing of User documentation Effort
None
Low
Medium

11.6
1.98
14.0

Overall Effort Installation Items
None
Low
Medium
High

91.9
0.53
4.05
3.49

Overall Effort Configuration Items
None
Very low
Low EG 1 to 5 phrs
Medium
High
Very high

89.9
 0
 0
 0

4.94
5.19

Involved in Software Process Improvement Team Competency Impact

Fig. 7. Diagnostic reasoning.

Applying a Knowledge Management Technique to Improve Risk Assessment 55

3. Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press, London (1996)
4. Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., Tailor, M.: Making resource decisions

for software projects. In: Proceedings of ICSE’04, pp. 397–406 (2004)
5. Ferrucci, F., Gravino, C., Di Martino, S.: A case study using web objects and COSMIC for

effort estimation of web applications. In: EUROMICRO-SEAA, pp. 441–448 (2008)
6. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. CRC Press, Boca Raton

(2004)
7. Jørgensen, M., Grimstad, S.: Software development effort estimation: demystifying and

improving expert estimation (Chap. 26). In: Tveito, A., Bruaset, A.M., Lysne, O. (eds.)
Simula Research Laboratory - by Thinking Constantly About it, pp. 381–404. Springer,
Heidelberg (2010). ISBN 978-3642011559

8. Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation
studies. IEEE Trans. Softw. Eng. 33(1), 33–53 (2007)

9. Mendes, E., Mosley, N.: Bayesian network models for web effort prediction: a comparative
study. Trans. Softw. Eng. 34(6), 723–737 (2008)

10. Mendes, E., Mosley, N., Counsell, S.: Web metrics - metrics for estimating effort to design
and author Web applications. IEEE MultiMed. 8(1), 50–57 (2001)

11. Mendes, E., Mosley, N., Counsell, S.: The need for web engineering: an introduction. In:
Mendes, E., Mosley, N. (eds.) web engineering, pp. 1–26. Springer, Heidelberg (2005).
ISBN 3-540-281 96-7

12. Mendes, E., Mosley, N., Counsell, S.: Investigating web size metrics for early web cost
estimation. J. Syst. Softw. 77(2), 157–172 (2005)

13. Mendes, E., Polino, C., Mosley, N.: Building an expert-based web effort estimation model
using Bayesian networks. In: 13th International Conference on Evaluation and Assessment
in Software Engineering (2009)

14. Nauman, A.B., Lali, M.I.: Productivity inference with dynamic Bayesian models in software
development projects. Int. J. Comput. Electron. 1(2), 50–57 (2012)

15. Nonaka, I., Toyama, R.: The knowledge-creating theory revisited: knowledge creation as a
synthesizing process. Knowl. Manag. Res. Pract. 1, 2–10 (2003)

16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo
(1988)

17. Pollino, C., White, A., Hart, B.T.: Development and application of a Bayesian decision
support tool to assist in the management of an endangered species. Ecol. Model. 201, 37–59
(2007)

18. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods.
Data Knowl. Eng. 25, 161–197 (1998)

19. Tang, Z., McCabe, B.: Developing complete conditional probability tables from fractional
data for Bayesian Belief networks. J. Comput. Civ. Eng. 21(4), 265–276 (2007)

20. Reifer, D.J.: Web development: estimating quick-to-market software. IEEE Softw. 17(6),
57–64 (2000)

21. Ruhe, M., Jeffery, R., Wieczorek., I.: Cost estimation for web applications. In: Proceedings
of ICSE 2003, pp. 285–294 (2003)

22. Woodberry, O., Nicholson, A., Korb, K., Pollino, C.: Parameterising Bayesian networks. In:
Proceedings of the Australian Conference on Artificial Intelligence pp. 1101–1107 (2004)

56 E. Mendes

A Scenario Analysis Method
with User Emotion and Its Context

Takako Nakatani1(B) and Keita Sato2

1 Graduate School of Business Sciences, University of Tsukuba,
3-29-1, Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan

nakatani.takako.gf@u.tsukuba.ac.jp
2 DENSO CORPORATION, 1-1, Shouwacho, Kariya-shi, Aichi 448-8661, Japan

Abstract. Safe driving is mandatory for an Advanced Driver Assistance
System (ADAS). The adequacy and safety of an ADAS has to be evalu-
ated not only by developers, but also by drivers. Evaluations by drivers
can be monitored by their positive and negative emotions, since for exam-
ple, if they find a hazardous situation, they have a negative emotion,
“surprised” or “close call.” An ADAS is considered “good”, if it does not
cause driver emotions such as these, and hence, is viewed as adequate
and safety. In order to analyze the safety requirements of drivers for the
ADAS, we propose a multi-layered scenario analysis (MuLSA). MuLSA
is a kind of scenario analysis method consisting of a driver’s journey,
his/her emotions, the mechanism of services, as well as the context of
the services. This paper shows the results of the observation of emotions
through a simulation, and we discuss the effectiveness of analyzing the
requirements of services with regard to the user’s emotion.

Keywords: Requirements engineering · User’s emotion · Scenario
analysis · Advanced driver assistance system

1 Introduction

In this paper, we introduce a method to analyze requirements on the adequacy
and safety of an Advanced Driver Assistance System (ADAS) based on evalua-
tion of drivers. According to the SQuaRE (Software product Quality Require-
ments and Evaluation) [1], customer satisfaction is evaluated as, “the satisfaction
in the usability of services.” The emotion of users should be taken into account
to introduce services into the competitive market. In general, when drivers con-
front a hazardous situation, they have a negative emotion, “surprised” or “close
call.” Thus, the emotions of drivers tell us whether the service is comfortable or
dangerous for them. In order to analyze the satisfaction of the services of the
ADAS, we extend a scenario analysis method that includes driver emotions and
the related context.

When we analyze the requirements of a new system that extends an existing
system, we first extract problems from the existing system. The Cruise Control

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 57–71, 2014.
DOI: 10.1007/978-3-662-44920-2 4

58 T. Nakatani and K. Sato

system (CC) of a car is one of the driver assistance systems (DAS), and is
regarded as an existing system for the ADAS. CC only regulates the speed of a
car, and furthermore, its structure is relatively simple. The requirements of CC
can be analyzed with two layers: one is a service provider layer, while the other
is a service receiver layer. The functions of CC are defined in the service provider
layer. They are, “start” and “termination” of the service, and “maintenance of
the speed.” On the other hand, a driver is allocated within the layer of a service
receiver. The driver initiates the services of CC and monitors the state and/or
situation of his/her car. If we can observe the ups and downs of emotions of a
driver when utilizing the CC, we can evaluate the customer satisfaction of the
CC and find any problems within the CC.

The structure of the latest DAS is more complex than that of CC. The
advanced cruise control system (ACC) regulates not only the speed of the car,
but also the distance from the precedent car. The structure of the service of
ACC consists of the precedent car, as well as the driver and the ACC. The lane
departure warning system is another example of DAS. It helps the car navigate
the traffic lane. In this case, the structure of the service analysis has to take into
account the traffic lane. Some of these systems stop their services in heavy rain,
since they cannot monitor the precedent car or the traffic lane under such bad
weather conditions. Thus, the weather must also to be a consideration within
the service structure.

The ADAS provides more complex services than the current DASs. It will be
expected to monitor peripheral cars, load conditions, traffic lights, traffic signs,
etc. and, make decisions in order to ensure the safety of the driver’s journey.
The purpose of this paper is to develop a scenario analysis method for the DAS
in order to define problems and prioritize requirements of the ADAS. We refer
to the method as multi-layered scenario analysis (MuLSA).

This paper is constructed as follows. In the next section, we introduce the
related work. In Sect. 3, we describe the basic concept of MuLSA and an overview
of MuLSA with its analysis structure and process. MuLSA is evaluated by apply-
ing it to a case. We describe the case and the results of the application in Sect. 4.
In Sect. 5, we evaluate the result of the case based on the threats. In the final
section, we discuss the strengths and weaknesses of MuLSA and conclude this
paper.

2 Related Work

2.1 Emotion Analysis

Plutchik [2] introduces the three-dimensional circumplex model. In the model,
every emotion composes a combination of the following eight basic ones: vig-
ilance, rage, loathing, grief, amazement, terror, admiration, and ecstasy. We
selected and categorized these emotions into positive and negative emotions.
For example, ecstasy and admiration can be categorized into positive emotions.
Thus, vigilance, rage, loathing, grief, amazement, as well as terror are catego-
rized into negative emotions. The positive/negative emotions are reflections of

A Scenario Analysis Method with User Emotion and Its Context 59

the high/low quality of the service for the customer. For example, if the ADAS
provides safe driving, the driver is satisfied with the services of the ADAS, and
will accept the system. If the driver is fearful of the system, we regard the quality
of the service as low, and needs to be improved.

There are several means to measure emotions [3]. Some researchers use ques-
tionnaires to assess emotions [4]. We developed a tool by which the emotions
of a subject driver are recorded quantitatively from the inputs of keys that are
assigned to the positive and negative emotions.

2.2 Scenario Analysis

J.M. Carroll [5] describes the strengths scenarios. Scenarios can explicitly envi-
sion and document typical and significant user activities. It also provides us
reasoning with regard to the situation of use before we develop the system. Use
case [6] and user story [7] are categorized into scenario analysis methods. Persona
analysis is used to analyze a specific user’s activities [8]. Even though a scenario
reports a user’s activities well, we need to analyze more than these reported
activities. The problem with a simple scenario, such as a use case, is that it
is constructed in a single-layered structure. In order to evaluate the quality of
ADAS, we need a more complex analysis space.

In the service analysis, there are methods to analyzing the quality of services
according to customer satisfaction. The concept of those methods is that, “the
customer is satisfied with good service.” For example, if the customer is unsatis-
fied with the service, it should be improved. A customer journey map (CJM) [9]
is used to evaluate the customers’ emotion while mapping them to their services.
It is also a kind of scenario analysis method. Risdon [10] proposes a CJM to the
analysis of the service of the Rail Europe. We can see a lot of examples of CJM
on the Internet. CJM helps service marketing or business marketing improve
their services or products. A scenario described in the CJM has a time line and
a concrete story.

Though there is no standard notation for CJMs, most CJMs have a two-
layered structure. In the first layer, services are shown as a user story with touch-
points at which the customer accesses the service. The story can be regarded as a
customer’s journey or their experiences in the forest of the services. In the second
layer, the emotions or impressions of the customer are described according to
the customer’s journey. Richardson [11] shows an example of a journey into
shopping. The scenario commences from a customer’s awareness, to an out-
of-box-experience. During the customer’s activities, a CJM is used to evaluate
motivations, questions and barriers. Our purpose is to analyze the quality and/or
problems of the services provided by the DAS and prioritize the requirements of
the ADAS. The analysis space of the ADAS should contain customer’s activities,
customer’s emotions, environment of usage, as well as services. The method that
we propose includes the structure of CJM and further layers.

A service blueprint (SB) applies a two-layered scenario: a “from stage” and
a “back stage” [12]. A service is provided to a customer via a front stage of the

60 T. Nakatani and K. Sato

service that is constructed in a back stage. In the front stage, direct commu-
nication between a customer and services is shown. In the back stage, there is
indirect interaction between the customer and the underground mechanism that
supports the services. These two stages represent how the services are imple-
mented and serve the customer. However, it does not analyze the emotions of
a customer, but simply designs the services. The method that we propose also
includes the layer of the back stage of SB in order to analyze the mechanism of
problems within the DAS.

Blueprint+ [13] is a multi-layered method that integrates emotional presen-
tations and SB. The first layer is a system layer with a set of actors and a
touch-point for each service. The second layer is a customer layer with the con-
cerns of the customer including his/her emotions. The strength of our method
is that it has a context layer to represent the environment of usage or services.
It helps analysts analyze the context of the bad services.

There are various scenario analysis methods. We integrate and extend these
methods in order to adopt them to the problem analysis of services of DAS and
extract problems of the services.

3 MuLSA: Multi-layered Scenario Analysis

In this section, we describe the basic concept of MuLSA and give an overview of
MuLSA as a method of analyzing customer satisfaction and the quality of the
services of the current system.

3.1 Basic Concept

It becomes possible to drive the car automatically. For example, a driverless
Audi TTS climbed up to the top of Pikes Peak in 2010 [14]. Google has also
developed a google driverless car [15]. Though our focus is not on an automatic
driving system, we do recognize that a car can be driven safely by computer;
however, we do not think such an autonomous system will satisfy its human
driver or passengers.

A car is on the road under various environmental conditions, and other
cars may not behave in expected ways. We have to analyze the environmental
and mechanical circumstances under which the services perform. Events and/or
objects that are monitored by the ADAS are referred to as the environmental
factors. Some of the environmental factors are called “hazards.” When we elicit
and analyze requirements of ADAS, we have to consider the possible hazard and
keep the car and driver out of danger.

Drivers however, are the experts who detect hazards when they drive their
car. When they detect a hazard, they become strained. If they feel they are
free from the hazard, they must become relaxed. When they realize that they
are not being cared for by the ADAS, they become scared and/or irritated. We
can refer to these emotions, i.e. strained, surprised, scared, irritated, etc., as
negative emotions. Furthermore, negative emotions may lead a driver to become

A Scenario Analysis Method with User Emotion and Its Context 61

dissatisfied with the system. Thus, we have to detect hazards by monitoring the
emotions of drivers and define requirements for the future ADAS. We expect to
elicit prioritized requirements by analyzing the emotions of real drivers.

Emotions, such as showing enjoyment, being relaxed, etc., are referred to as
positive emotions. The mission of the ADAS is not only to keep a driver and
fellow passengers safe, but also to give positive feelings to them, especially the
drivers. In order to increase the satisfaction of drivers, we analyze the services
that dissatisfy them, and clarify the reasons that drivers have negative emotions
with regard to the services.

Companies that provide DAS sometimes research drivers’ satisfaction through
questionnaires. Some companies also survey drivers’ satisfaction for each country
the systems are operated in. However, the questionnaire survey is not adequate
in detecting problematic services. In order to detect problematic services, we
need to analyze the process of the service provision and the usage of the ser-
vice. MuLSA has been developed to analyze the process and usage of the service
of DAS.

3.2 Overview of MuLSA

MuLSA integrates CJM and SB through an extension, with environmental fac-
tors as the context of the services. The analysis structure of MuLSA is shown in
Fig. 1. It has three layers.

– Customer layer
In this layer, two kinds of information are presented. One is the customer’s
journey, and the other is the emotional line of the customer. In Fig. 1, this
layer is shown at the top of the figure. The time line of a scenario is passed
from left to right.

– Context layer
The context of the service is shown in the context layer in the middle part
of the figure. Every environmental factor that affects the service contents is
identified and presented in one of the sublayers.

– Service Mechanism layer
This layer is constructed with two sublayers that are a front stage and a back
stage. The front stage is a communication facade between the customer and
the system. The back stage represents major components of the system. This
layer is shown at the bottom part of Fig. 1.

3.3 Measurement of Emotions

Psychologists have proposed methods to measure emotions [16]. For example,
in the case of self-report questionnaires, it is the test subject who reports intu-
itively and/or subjectively their emotions as expressed through the use of various
words, e.g. happiness, surprise, fear, anger, disgust, or sadness. Another way of
measuring emotions with regard to vocabulary usage is by the application of a
response scale, on which a test subject is observed so that their facial expressions

62 T. Nakatani and K. Sato

Customer layer

experiences

emotions

Context layer

E.F.a

Service Mechanism Layer
service_x
(a front stage)

time

positive

negative

E.F.b

E.F.c

service_y
(a back stage)
service_z
(a back stage)

touch point
situation/action
impression/insight

Fig. 1. The structure of MuLSA.

can be recorded. Our purpose in measuring emotions is to clarify any problem-
atic behaviors with testing systems according to the subjective emotions of test
subjects. Thus, we consider that, intuitive reporting is not only important, but
if possible, we also expect a test subject to report their emotions consciously,
because following the simulation or test, we may ask them what they felt and
what they would require to the ADAS.

A tool to record their emotions is simple. A test subject only inputs keys
according to their emotions. The positive and negative emotions are ranked into
four levels. The highest emotions are assigned to key “a.” Further rankings on
our declining scale are, higher, high and rather positive, which are assigned to
keys “s”,“d”, and “f”, respectively. Similarly, worst, worse, bad, rather negative
are assigned to keys “l”,“k”,“j”, and “h”, respectively. Hence, the test subject
can set their hands on a QWERTY keyboard and type the characters according
to their emotions. The tool is simple enough, and needs little training. Moreover,

A Scenario Analysis Method with User Emotion and Its Context 63

the tool records the timing of the “key ins” and the key itself, and interprets
input keys to the emotional scale described above, from −4 to +4.

3.4 The Requirements Analysis Process

With the three-layered scenario in MuLSA, we can extract the points of the
emotional changes and analyze the state of the DAS and the environment. In
order to develop the ADAS, we have to analyze problems within the existing
DAS. The ADAS has to be able to analyze the circumstances and environment of
the car through the use of numerous sensors. The requirements analysis process
of MuLSA is shown below.

1. Identify subsystems and set them in the back stage.
These subsystems represent the limitations of the current system. The sensors
and controllers of the DAS can be detected. Define the functionalities and
efficiency of those components according to the real components in the current
system. In order to elicit requirements for the future system, we need to
visualize the limitations of the current system.

2. Identify components in the front stage.
A display is the most typical component in the front stage. Further, alarms,
beeps, or announcements can be components as well.

3. Identify hazards as the environmental factors.
In order to assess the quality of the services of the current system, listing
hazards with regard to environmental factors as much as possible is done.
Hazards will be the context of the scenario defined in the next step. Weather,
road condition, peripheral vehicles, pedestrians and/or animals can be the
hazards.

4. Construct a scenario as a customer’s journey.
The scenario is defined to analyze how much a given hazard affects a driver’s
emotions. If we can know how much the environmental factors affect the
drivers’ satisfaction, we can prioritize sensors that can detect and moni-
tor the environmental factors. The best length of the scenario is still under
consideration. The scenario of our first case is less than 30 seconds.

5. Develop simulation.
The scenario is transformed into animation that is developed with PreS-
can [17]. PreScan is a development environment for DAS or intelligent vehicle
systems. Two kinds of animation must be constructed as scenes seen through
the windshield and a rearview mirror. Figure 2 represents the image of a tool
with the movie being developed by PreScan.

6. Simulate the scenario with a test subject and get emotional data in the sce-
nario. After the simulation, we map the emotional data in accordance with
the simulation.

7. Analyze the emotional data and elicit requirements for the ADAS.

ACC is one of the current DASs. ACC safely controls the speed of the car, while
establishing a safe distance from the precedent car. Sensors send signals to the
ACC, which in turn sends other signals to the speed control unit and display.

64 T. Nakatani and K. Sato

ACC ACC

The image in the
rearview mirror

The image seen
from the
windowshield

ACC
status

start stop

Emotion monitor

Fig. 2. The tool image of MuLSA

The ADAS will have more sensors and be able to establish the driving context
with regard to the environmental factors.

4 Case Study

4.1 Overview

This section describes a case study by which we detect problems in the current
ACC as an example of the DAS. We then analyze the problems in order to
evaluate the effectiveness of MuLSA. There are various services with regard to
ACCs. The ACC used in this case study provides the following services.

– The ACC starts when the driver turns on the ACC.
– The ACC is terminated when the driver turns off the ACC.
– The driver can set the speed for the ACC.
– The driver can increase or decrease the speed of the cruise within the permis-

sible range.
– If there are no precedent vehicles or, there is enough distance from the prece-

dent vehicle, the ACC maintains the set speed of the cruising car.
– If there is a precedent vehicle, the ACC keeps the adequate distance from the

precedent vehicle by adjusting the cruising speed. The precedent vehicle is
detected by a radar censor on-board.

– If the windshield wipers are used in strong mode, the ACC is automatically
terminated, meaning that, the radar or laser cannot detect the precedent
vehicle.

– If the precedent car goes out of its lane, the ACC gradually turns the speed
back to the set speed.

A Scenario Analysis Method with User Emotion and Its Context 65

– If the speed of the cruising car becomes slower than a certain speed, the ACC
is automatically terminated.

The display in which the state of the ACC is shown is identified in the front
stage, with the sensors, speed controller and ACC being defined in the “back
stage”. In order to evaluate MuLSA, we made a simulation with PreScan [17].
We took various environmental factors into account within the simulation. They
were, weather condition, a precedent vehicle, and another car that cuts in front
of the cruising car.

4.2 The Scenario

The test scenario is as follows.

1. The driver increases the speed up to the desired speed and turns on the
ACC.

2. The ACC comes into service state and starts to provide its services with the
car cruising at the desired speed.

3. The driver releases the accelerator pedal.
4. A vehicle cuts in front of the car. Then, the sensor detects the vehicle and

alarms the distance to the ACC.
5. The ACC decreases the speed of the car in order to keep an adequate distance

from the precedent vehicle.
6. The driver feels the sudden gravity of reducing speed.

Since the test subject only watched the simulation movie, the change in
gravity was communicated to the test subject from the staff. The event of
the “reduced speed” was caused by the precedent vehicle, which is one of
the environmental factors, and which is dispatched via sensor and the ACC.

7. It starts to snow heavily.
8. The driver turns on the windshield wipers to the strong mode to keep

visibility.
9. The ACC catches the event.

10. The ACC terminates its services to avoid sensor errors and notifies the driver
of the termination via the display.

11. The speed of the car is reduced: the result of which sees the following vehicle
increasing its approach.
The simulation is made on the assumption that the driver can notice the ter-
mination of the ACC from the display. If the test subject does not notice the
situation, the staff informs the test subject of the situation. The simulation
is a movie, so the test subject is not actually operating the car.

12. The driver notices the termination of the ACC.
13. The driver puts their foot on the accelerator pedal and restarts the manual

driving.

66 T. Nakatani and K. Sato

(+)Satisfaction

(-)Dissatisfaction

time
(sec)

Emotional
scale

emotions

Fig. 3. The emotions monitored via key ins.

4.3 Data Collection

A test subject who is a driver accesses the simulation via a keyboard and display
interface through a personal computer. Her insights were monitored by his/her
utterances during the simulation. The emotions of the test subject were recorded
via the keyboard.

Before the examination, we asked the test subject to practice typing the
keys according to his/her emotions. As a result, we could establish an emo-
tional evaluation of the test subject as shown in Fig. 3. After the examination,
we interviewed with the test subject about the reasons for positive and nega-
tive emotions and utterances. In fact, the recorded utterances were not perfect.
The subject provided us additional words to complement the sentences. After
the interviews, we were able to map the events in scenarios and the changes in
emotions. The results of application of MuLSA are presented in Fig. 4.

4.4 Results and Their Interpretation

In Fig. 4, the emotions of the test subject and their journey are shown in the
customer layer. Their insights, recorded from their utterances, are shown in bal-
loons. There were two kinds of environmental factors: other vehicles and weather.
These factors are shown in the context layer.

MuLSA consists of three layers. Within MuLSA’s layered structure, we can
see the test subject’s touch-points through the ACC, as well as when and how
strong the test subject (driver) had positive or negative emotions toward the
system (ACC). The negative/positive emotions of the test subject imply prob-
lematic and/or ideal behavior of the current ACC. In order to analyze in detail
the emotion in and of each touch-point, we refer to the recorded utterances of the
test subject. The first balloon (A) represents the feeling when the test subject
displayed positive emotions. This is the effect of the service (2).

The purpose of our study is to analyze requirements of the ADAS. Hence,
we focus on the negative emotions in Fig. 4 and refer to the causes of the test
subject’s negative emotions. The causes are the programmed behavior of the
ACC, and the behavior was evaluated according to the context that is presented
in the context of the scenario. If the context of the car is correctly detected

A Scenario Analysis Method with User Emotion and Its Context 67

Start the
serviceDriver’

experience

Other
vehicles

Weather

in service

It snows.

Detect
the

speed
declines

Felt the
sudden
gravity

Alarm
the

distance

Decrease
the speed

Alarm of the
possibility of
sensor errors

ACC

Display

Sensor

Speed
Controller

Start

Visibility
becomes

low.

I got a foot
off an

accelerator
and was
relaxed.

Oops!
I was almost
crashed with
the precedent

car.

Whoa! There was
enough distance

between my car and
the precedent car, but
the car following me
has come too closely.

What happened?

Switch on
the

windshield
wipers.

Gravity
falls, and

the distance
between the

cars has
opened.

Release
 the

accelerat
or pedal

Opened
the

distance

(+)Satisfaction

(-)Dis-
satisfaction

Notice that ACC
has been

terminated.

Started
the

manual
drive.

Emotions

(A) (B)

(C)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11) (12) (13)

Customer
layer

Context
 layer

Service
Mechanism

layer

Front Stage

Back Stage

Back Stage

Service State

Monitor
the

distance

out of service out of service

Display
“ACC

terminated”

Increase
 the

speed

Thank
you,

ACC!

Oh, how
disappointing

!

0:22:20

0:24:07 0:26:03

0:41:11

0:43:13

0:44:19 0:56:040:15:07

time
(sec)

A vehicle
cuts in front

of my car

WeatherWW

Othe

Emotions

herhe

Fig. 4. The analysis with MuLSA

by the sensors of the ACC, the problem exists within the ACC software. If the
context of the car is not correctly detected by the sensors, the addition of new
sensors and expected behavior are required for the future ADAS. The priority
of each sensor can be set in accordance to the level of the negative emotions.

The second balloon (B) represents the emotions of the test subject when
he/she detected the sudden gravity change through the screen. Though he/she
must have been surprised at the change in gravity, he/she thanked the ACC
for avoiding danger, in this case, a car crash. The surprise is a kind of negative
emotion, and it implies the dissatisfaction of the driver and a problem with the
software of the ACC itself. The future ADAS is required to have smoother speed
control, so that the driver does not feel fear or surprise by the sudden gravity
changes.

The problems that we have to solve lay within balloon (C). The test subject did
not realize the decline of speed. This situation can be interpreted to show that the
ACC did not communicate its state securely to the driver. This problem implies
that the problem occurred within the front stage of the ACC. If the test subject
knows that the ACC may be stopped in the inevitability of low visibility, they

68 T. Nakatani and K. Sato

could prepare for the termination and would not react with a negative emotion.
We need to redesign the behavior of the communication in the front stage.

We have been able to elicit two new requirements for the future ADAS. One
is the smooth speed control. If we analyzed the behavior of ACC only from the
technical view, we may not be able to realize the problem of the sudden change
unless the change has a physical impact on the body of the driver. The other is
that of better communication support between the driver and the ADAS. Some
kinds of announcements may annoy drivers. However, important messages, e.g.
start, termination, etc., have to be securely communicated to the driver. This
case also indicates that the technical analysis was not perfect for requirements
analysis. Turning off the switch of the lamp of the “ACC” satisfies the require-
ment of “present the state of the ACC to the driver,” but the simulation told us
that it could not provide the information to the driver securely. When the car
following behind runs into the subject car, the driver noticed the termination of
the ADAS. This situation was not safe. The priority of this improvement of the
notifier within the display must be high.

5 Threats to Validity

In order to validate the results of the case study, we apply three types of
threats [18] to the case study. They are internal and external validity, and
reliability.

5.1 Threats to Internal Validity

Internal validity refers to a risk that the investigated factor is affected by a
third factor [18]. The data was collected from one scenario and one person. The
emotions recorded in the study depend on personal characteristics of the test
subject. If a driver believes in the DAS to avoid car accidents, his/her emotions
may not change frequently. If a driver likes driving manually, all the services
provided by ACC might cause negative emotions. In our study, we recorded
utterances of the subject and interviewed with him/her. The results were shown
in the balloons. According to the interview, he/she accepted the assistance of the
ACC and did not believe the support provided by the ACC. In other words, when
we apply the MuLSA to evaluate the services of the current system, we must
concern ourselves with the affect of the personal characteristics of the subjects.

Another threat exists in the emotion capture system of the tool. The tool
captures the emotions of the subjects via a keyboard. Therefore, we did not care
about the use of recording his/her emotions through the keys input. The subject’s
familiarity with the keyboard affects the results of the study. If a subject could
not operate the keys according to his/her emotions, we could neither capture
his/her emotions properly. However, the subject of our study was familiar with
the QWERTY keyboard, and thus, we could ignore the threat.

A Scenario Analysis Method with User Emotion and Its Context 69

5.2 Threats to External Validity

External validity refers to the degree to which the results of a study can be
generalized across population, time and setting [18]. In a real situation, there
are infinite hazardous scenarios and engineers who are developing the ADAS
who know that the current DAS cannot cope with most of the hazardous situa-
tions. The case study was carried out with only one scenario that included two
hazardous situations: peripheral cars and snow. In order to evaluate the exter-
nal validity of MuLSA for ADAS, more complex, long and frequent hazardous
scenario settings have to be applied to the simulation. For example, long term
simulation may strain the driver. Under such situations, a driver may not be able
to concentrate their power on the driving with, for example, flattered emotions.
The problems of the current DAS were elicited from negative emotions, and, we
could not find problems from unexpressive emotions. However, even though the
studied scenario was short and simple, the results gave us information showing
that the emotions of a driver are a hopeful measurement to realize and gage
problems within the existing system.

5.3 Reliability

Reliability is concerned with, to what extent the data and the analysis are depen-
dent on the specific researchers of the study [18]. The analysis with MuLSA
depends heavily on the emotions and/or insights of customers or users. In order
to avoid the threat of reliability of the case study, we built a tool to capture
emotions through the showing of a movie. Therefore, if and only if a researcher
applies the tool in order to analyze problems in the scenario with DAS, the
emotional data can be obtained properly, and measured.

6 Discussion and Conclusions

We are now developing other scenarios with more vehicles and various road
conditions. The complex scenario may help us extract problems in visualizing
the map of utterances, the scenario, and emotions. Hazardous scenarios can be
collected through a driving recorder and provided by load service companies.
However, MuLSA is not a method only for the ACC or ADAS. As Kimbell [19]
described, one of the strengths of the user stories is that they proposes ideas for
new service components and also entirely new services. MuLSA is also applicable
to most software, when an analyst needs to elicit new requirements based on
the current software. The strength of MuLSA is that it analyzes requirements
through the utilization of its multiple-layered structure in which there are users,
context of the usage, as well as the mechanism of services.

According to the result of the case study, MuLSA could be applied to analyze
the problems of the existing system. The tool was developed as a prototype in
order to evaluate the multi-layered structure of MuLSA for ADASs. In order to
apply MuLSA into the development field of ADASs, we will develop a system
by analyzing problems of the tool by applying MuLSA.

70 T. Nakatani and K. Sato

Researchers have proposed a lot of methods for requirements elicitation, such
as goal oriented analysis methods [20,21] or use case analysis [6] focuses on
initial requirements elicitation for new software. In contrast, MuLSA focuses on
software that is developed as an innovation on the current existing software.
This is one of the typical strength of MuLSA.

MuLSA is a kind of scenario analysis method. The scenario provides a real
story within time. As Carroll mentioned [5], scenario is understandable for every
user and gives a real experience to them. New requirements for innovations on
current software are hard to elicit through interviews. We believe that most
important requirements must be elicited from the users’ real voice or emotions
as a result of their experiences, rather than requirements analysis work on a
table.

An analyst with MuLSA does not expect the users to propose problems or
new requirements, but rather, their emotions and insights in their use of the
current system is key. The effectiveness of MuLSA is to analyze the causes of
the users’ emotions. As a result, we can prioritize new requirements for the
software of the next generation.

Acknowledgements. The authors thank Ms. Mineko Naoe and Mr. Kazuyuki Nat-
sume for developing the tool of emotion monitoring.

References

1. ISO/IEC 25000:2005: Software engineering - Software product Quality Require-
ments and Evaluation (SQuaRE) - Guide to SQuaRE (2005)

2. Plutchik, R.: Emotion - A Psycho-Evolutionary Synthesis. Harpercollins College
Div, New York (1980)

3. Iordache, O.: Methods. In: Iordache, O. (ed.) Polystochastic Models for Complex-
ity, UCS, vol. 4, pp. 17–61. Springer, Heidelberg (2010)

4. Wallbott, H.G., Scherer, K.R.: Assessing emotion by questionnaire. In: Plutchik,
R., Kellerman, H. (eds.) The Measurement of Emotions, vol. 4, pp. 55–82. Acad-
emic Press, San Diego (1989)

5. Carroll, J.M.: Five reasons for scenario-based design. In: The 32nd Hawaii Inter-
national Conference on System Sciences (1999)

6. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Soft-
ware Engineering. Addison-Wesley, Reading (1992)

7. Benyon, D., Macaulay, C.: A scenario-based design method for human-centered
interaction design. In: Alexander, I., Maiden, N. (eds.) Scenarios, Stories, Use
Cases Through the Systems Development Life-Cycle, pp. 211–235. Wiley, Chich-
ester (2004)

8. Aoyama, M.: Persona-and-scenario based requirements engineering for software
embedded in digital consumer products. In: IEEE International Conference on
Requirements Engineering, pp. 85–94. IEEE Computer Society (2005)

9. Stickdorn, M., Schneider, J.: This is Service Design Thinking: Basics, Tools, Cases.
Wiley, New Jersey (2012)

10. Risdon, C.: The anatomy of an experience map, Nov 2011. http://www.
adaptivepath.com/ideas/the-anatomy-of-an-experience-map

http://www.adaptivepath.com/ideas/the-anatomy-of-an-experience-map
http://www.adaptivepath.com/ideas/the-anatomy-of-an-experience-map

A Scenario Analysis Method with User Emotion and Its Context 71

11. Richardson, A.: Using customer journey maps to improve customer experience.
Harvard Business Review, Blog Network (11 Nov. 15.2010). http://blogs.hbr.org/
2010/11/using-customer-journey-maps-to/

12. Shostack, G.L.: Designing services that deliver. Harv. Bus. Rev. 62(1), 133–139
(1984)

13. Polaine, A., Aebersold, R., Bossart, R., Mettler, A.: Blueprint+: Devel-
opint a tool for service design, (2009). http://www.slideshare.net/apolaine/
blueprint-developing-a-tool-for-service-design

14. Kuchinskas, S.: Automatic auto: A car that drives itself, Aug 2010. http://www.
scientificamerican.com/article.cfm?id=self-driving-audi-automobile

15. Markoff, J.: Google cars drive themselves, in traffic, Oct 2010. http://www.nytimes.
com/2010/10/10/science/10google.html?pagewanted=all& r=0

16. Russell, J.A.: Measures of emotion. In: Plutchik, R. (ed.) Emotion - Theory,
Research, and Experience, vol. 4, pp. 83–111. Academic Press, San Diego (1989).
The Measurement of Emotions

17. Advanced Simulation Technologies Ltd.: Prescan, Feb 2013. http://www.
advancedsimtech.com/software/prescan/

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Int. J. Empir. Softw. Eng. 14(2), 131–164 (2009)

19. Kimbell, L.: From novelty to routine: Services in science and technology-based
enterprises, pp. 105–111. In: Design for Services. Gower Publishing (2011)

20. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20, 3–50 (1993)

21. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: The 3rd International Symposium on Requirements Engineering
(RE’97), pp. 226–235. IEEE (1997)

http://blogs.hbr.org/2010/11/using-customer-journey-maps-to/
http://blogs.hbr.org/2010/11/using-customer-journey-maps-to/
http://www.slideshare.net/apolaine/blueprint-developing-a-tool-for-service-design
http://www.slideshare.net/apolaine/blueprint-developing-a-tool-for-service-design
http://www.scientificamerican.com/article.cfm?id=self-driving-audi-automobile
http://www.scientificamerican.com/article.cfm?id=self-driving-audi-automobile
http://www.nytimes.com/2010/10/10/science/10google.html?pagewanted=all&_r=0
http://www.nytimes.com/2010/10/10/science/10google.html?pagewanted=all&_r=0
http://www.advancedsimtech.com/software/prescan/
http://www.advancedsimtech.com/software/prescan/

Assuring Dependability of Software Reuse:
An Industrial Standard

Fevzi Belli1,2(&)

1 Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Paderborn, Germany

belli@upb.de
2 Faculty of Engineering, Department of Computer Engineering,

Izmir Institute of Technology, Izmir, Turkey

Abstract. Whereas a software component may be perfectly suited to one
application, it may prove to cause severe faults in other applications. The pre-
standard IEC/PAS 62814 (Dependability of Software Products Containing
Reusable Components – Guidance for Functionality and Tests), which has
recently been released, addresses the functionality, testing, and dependability of
software components to be reused and products that contain software to be used
in more than one application; that is, reused by the same or by another devel-
opment organization, regardless of whether it belongs to the same or another
legal entity than the one that has developed this software. This paper introduces
into this pre-standard and give hints how to use it. The author, who chaired its
realization that started in 2006, briefly summarizes the difficult process to bring
the industrial partners with controversial interests to a consensus.

Keywords: Software reuse � Dependability � Test � Industrial standardization

1 Introduction

Software reuse is the process of creating software systems from existing software rather
than building software systems from scratch. The vision of software reuse is as old as
software itself – it was introduced already in 1968, in the year as the term “Software
Engineering” was coined during the constitutional NATO conference in Germany [9].

Many efforts to reuse software have succeeded; there is an increasingly over-
whelming number of success stories available in literature. Almost all major companies
and institutions that deal with information & communication technology practice
software reuse and report about their success, e.g., Nippon Electronic Company, GTE
Corporation, Raytheon, DEC, HP, NASA, and many more [6, 7, 10].

Nevertheless, the promises of decreased cost and increased dependability, and thus
decreased risks, are not always realized. The frightening news about recent disasters
definitely caused by careless soft-ware reuse are still being warningly associated with
and attributed to all software reuse. The failure of Therac-25 system, in which a
software component was carried over from a previous version of an X-ray system,
caused the machine to malfunction, resulting in the loss of several lives in a terrible
way; patients were actually burned [4].

© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 72–83, 2014.
DOI: 10.1007/978-3-662-44920-2_5

In the Ariane project, failure of a reused software component caused the loss of a
rocket costing around half a billion dollars [5].

These recent disasters as a consequence of bad reuse on the one side and success
stories as a consequence of good reuse on the other side are the key factors in deciding
whether or not to enhance and sustain continued provision of reuse from a lucrative
business perspective.

To sum up, before reusing a software component, the context and domain it was
built for should be carefully compared with the context and domain it is intended to be
built in, including the hardware and physical and organizational aspects [8]. Figure 1
depicts the elements of the reuse process which is the subject of this paper. It is evident
that reusability is not a single feature of a components but a “bundle” of features (Fig. 2).

Standardization is the most efficient means to bring research, industrial, commer-
cial, and consuming parties with different roles, but participating on the same objects
and ethic objectives, e.g., to protect environment, to save resources, etc. Standardiza-
tion helps with understanding and unifying the quality notion, also for reusing previ-
ously used products. Standardization helps also prevent legal problems that arise
because reuse will be already practiced tentatively and insecurely.

This paper is on standardization of software reuse concerning its quality, test cri-
teria etc., depending on the purpose of the software that will be reused.

The publicly available specification (PAS) IEC/PAS 62814/Ed. 1: Dependability of
Software Products Containing Reusable Components – Guidance for Functionality

Fig. 1. Elements of the reuse process.

Assuring Dependability of Software Reuse: An Industrial Standard 73

and Tests is a pre-standard and addresses the functionality, testing, and dependability of
software components to be reused and products that contain software to be used in
more than one application; that is, reused by the same or by another development
organization, regardless of whether it belongs to the same or another legal entity than
the one that has developed this software. IEC is the acronym of “International Elect-
rotechnical Commission” that is the world’s leading organization that prepares and
publishes International Standards for all electrical, electronic and related technologies.

The present paper gives an introduction into the PAS, which has been released in
December 2012. The author chaired its realization that started in 2006 62814, and will
give hint how to use it.

Next section clarifies terminology and discusses notions used in the practice.
Section 3 introduces one of the most notable aspects of the PAS, that is, Reusability- &
Dependability-Driven Software Development Technique. Recommended methods of
validation, revalidation, and reliability of software reuse are summarizes in Sect. 4.
Section 5 sketches the structure of the PAS, and explains and discusses its scope,
objectives, and usage. Concluding remarks and future work are included in Sect. 6.

2 Notions and Practices of Reuse

Not each “copy and paste” action, which programmers do daily when they construct
their programs, forms a software reuse that PAS 62814 has in mind. Also calling an
internal or external function and even a remote-procedure call is not necessarily a reuse

Fig. 2. Reusability characteristics.

74 F. Belli

this PAS would regulate. All these examples suggest that the context and domain of the
called software does not change. Therefore, there is no need for them to consider this
PAS and, for example, perform pre-store and pre-use activities that are described in
PAS 62814 in detail.

2.1 What Reuse Really Is

Using a service in a service-oriented (SO) landscape or in “Common Object Request
Broker Architecture (CORBA)” is of more interest to this PAS because the context and
domain of the software that delivers a service might change. Indeed, SO and CORBA
are typical reuse constellations concerning constructing, offering, selecting, and vali-
dating services repeatedly. A service has to be registered and “published” before it will
be offered. Infrastructural services are offered to realize a broker, etc. (Fig. 3) [1].

2.2 Where Reuse Will Be Practiced

Examples given above clarify that software reuse is not limited to the source or object
code; it has, moreover, to consider all of the information that is related to the product
generating processes, including also requirements, analysis, design, documents, and
test cases apart from the code. Examples of well-known, widely accepted practices of
software reuse are (Fig. 4) [11]:

• Component-based development (CBD): Building systems by integrating compo-
nents that conform to system’s specification.

• COTS integration: CBD using commercial components.
• Service-oriented systems: Building systems by linking shared services.
• Program generators: Embedding knowledge of a particular type of application to

produce component(s) in that domain.

Fig. 3. Typical reuse by service-oriented architecture.

Assuring Dependability of Software Reuse: An Industrial Standard 75

• Application product lines: Generalization of an application around a common
architecture so that it can be used to produce different applications in different
domains for different customers.

• Object-oriented programming: Implementing applications using “objects” that
consist of data structures, methods (algorithms) and their interactions and computer
programs

• Aspect-oriented software development: Weaving shared components into an
application at different places when the program is compiled, if separation of
concerns is feasible.

2.3 Software Reuse Has Many Faces

There is a great variety of reusing software, from ad hoc, unplanned to systematic.
Following list attempts to structure this variety.

1. Accidental (ad hoc or opportunistic) reuse denotes reuse without strategy, typically
reusing software components not designed for reuse.

2. Systematic (planned) reuse requires developing software components intended for
reuse and/or building new applications from those reusable components, following
a formal plan of product line.

3. Adaptive reuse uses previously developed software that is modified only for por-
tability, e.g., a new application on a different operating system.

4. Black-box reuse uses unmodified software components, incorporating existing
software components into a new application without modification.

Fig. 4. Approaches to the reuse.

76 F. Belli

5. White-box reuse modifies and integrates software (function) blocks into new
applications.

6. Vertical reuse uses components in the same domain.
7. Horizontal reuse uses components in different domains.
8. Internal (in-house) reuse uses components developed within the company, or

government unit.
9. External reuse uses components of another company, or government unit.

2.4 Software Reuse Has also Many Facets

The above discussion has identified practical and relevant kinds of reuse. A general
taxonomy of software reuse is included in Table 1, which uses the following six aspects
for a thorough, exemplary classification [2, 3]. Numbers in parentheses refer to the
numbering used in the listing in Sect. 2.3.

• Reuse assets and entities can be product-oriented and, thus, concrete, such as
components; they can also be ideal, such as concepts, ideas, algorithms, etc.

• Domain scope refers to application area (6 and 7).
• Development scope refers to origin of the component (8 and 9).
• Additional work required prior to reuse is referred to by modification (3, 4, and 5).
• Whether and which kind of work is to be done in performing reuse is a managerial

aspect (1 and 2).
• Reuse approach is compositional if existing components are reused (such as the

UnixTM shell); generative reuse requires application or code generators (such as
Refine and Meta tool).

• Direct reuse approach requires no “glue code” that intermediates between the
reusable component and the receiving system, indirect reuse necessitates an inter-
mediate entity (Fig. 5).

Note that Table 1 shows the summary of the classification. It is possible to add
further issues, for example, the issue of “Information to Reuse.” It means that reused-
based software development can be required for the complete specification of the
reusable component.

Table 1. Summary of reuse classification.

Reuse asset Reuse entity Domain
scope

Development
scope

Modification Management Approach

Ideas, concepts Architectures Vertical Internal Adaptive Accidental Compositional

Artefacts,
components

Requirements Horizontal External Black box Systematic Generative

Procedures,
skills

Designs White box Indirect

Specifications Direct

Source code

Object code

Test cases

Assuring Dependability of Software Reuse: An Industrial Standard 77

3 Software Development Driven by Reusability
and Dependability Aspects

Architecture is the key to software reuse. The architecture of a system commits its
structure to combine the elements it is comprised of and their features, and relations
among those elements.

Typical structures are hierarchical, centralized (star form), or decentralized (net-
work form); relations are defined as consists-of or neighbored. Architectural elements
can be event, state, or service-oriented.

It is important for reuse that the software architecture should allow a precise design
and specification of interfaces and their dependability-critical features so that it enables
evaluation, selection, acquisition, and integration of reusable components into the
receiving system.

While planning substantial reuse of their software components, software engineers
are often overly optimistic concerning how much reusable functionality can be
achieved. Reuse is not a ultimate saver of costs, schedule, or dependability. Even
COTS deployment often satisfies only less than 40 % of the functionality of an
industrial application.

Also important is the addressing of the critical non-functional requirements, that is,
dependability and quality, which certainly result in schedule and cost impacts, and,
caused by poor dependability and reliability, maybe invoke severe safety and security
risks.

Note that if the functional and interface requirements are not fulfilled, glue code and
wrappers are to be planned, specified, designed, implemented, and carefully tested.

Dependability methodologies include application aspects and the organization of
the reuse. Pre-store and pre-use characteristics should be met and the cases build-for
reuse or build-by-reuse should be distinguished.

Another point covers validation and reliability aspects of the software. Also the
assumptions and rules to improve software dependability are described and the hard-
ware/software interaction is taken into account.

“Software-by-reuse” is the use of existing applications or their components to build
new applications.

Fig. 5. Integration of reusable components.

78 F. Belli

It is widely accepted and convenient to consider software reusability from the
following viewpoints.

• Build-for-reuse enables planned production of reusable components.
• Build-by-reuse attempts planned production of systems using reusable components.

Both of these viewpoints focus on characteristics of reusability that are to be checked
before storing the component and before reusing it in a new product.

Figure 7 depicts the coupling and orchestration of build-for and build-by aspects of
reuse.

Following recommendations do not address only internal reuse; they can easily be
adopted also for external reuse.

4 Validation, Revalidation, and Reliability of Software Reuse

Software reuse involves redesign, reimplementation, and re-testing. Redesign arises if
the existing functionality does not fulfil the requirements of the new task because it
requires reworking to realize the new function, and, prior to this, necessitates reverse
engineering to understand its current functionality.

The design change leads to reimplementation. Exhaustive re-testing (as a kind of
regression testing) is necessary to validate the functionality of the reused software in the
new domain to determine whether or not redesign and reimplementation are needed.

Following undesirable events/situations, mostly caused by managerial misjudg-
ment, negatively influence the dependability of software reuse:

• Failing to select the right component, or to favor the wrong selection criteria;
• Failing to justify and adjust the need for and/or extent of the modification of the

selected component to fulfill operational or application requirements;
• Failing to justify and adjust the need for and/or extent of the maintenance of the

selected component during operational stage.

To avoid such events/situations, redesign, re-implementation, and re-testing activities
can be clustered in following groups:

• Redesign

– Architectural design modification: Detection of architectural design part(s) to be
modified, realization of the modification, re-validation of the entire architectural
design;

– Detailed redesign: Detection of design part(s) to be modified, realization of the
modification, re-validation of the entire design;

– Reverse engineering: Detection of the part(s) to be modified, which are not
familiar to developers; understanding, modification, re-validation of the entire
component;

– Re-documentation: Detection of the part(s) to be modified, modification, re-
validation of the entire document;

– Re-implementation requires re-coding, code review, and unit testing (IEC
62628).

Assuring Dependability of Software Reuse: An Industrial Standard 79

• Re-testing activities can be clustered in following groups:

– Test re-planning
– Test procedures to be altered
– Re-integration testing
– Re-release and re-acceptance testing
– Test drivers/simulators to be altered
– Test reports to be rewritten

Fundamental facts influence dependability, especially reliability when using commer-
cially available components, e.g., COTS components for software development.

• Very often no source code is available, thus there is no way to correct a detected
fault.

• This is a great restriction that prohibits application of the most widely used reli-
ability models that require perfect correction of detected faults (“reliability growth
models”; see, for example, AIAA R-013-1992, IEEE 1633-2008).

• If source code is available: Note that COTS software is no longer COTS after its
source code is modified to correct a fault detected because the COTS supplier no
longer maintains the documentation and source code (just as electronics equipment
warranties are no longer valid after a seal is broken).

• Furthermore, the modifications can violate the original software design. From then
on, modified COTS software is to be handled as an accidental reuse.

5 Structure of IEC/PAS 62814 and How to Use It

The international PAS 62814 introduces the concept of assuring reused components
and their usage within new products. It provides information and criteria about the tests
and analysis required for products containing such reused parts. The objective is to
support the engineering requirements for functionality and tests of reusable software
components and composite systems containing such components in evaluating and
assuring reuse dependability (Figs. 6, 7).

Focus is on the dependability of software reuse and, thus, this document comple-
ments IEC 62309:2005-02 (Dependability of products containing reused parts –

requirements for functionality and test), which exclusively considers hardware reuse.
In addition to this previous, hardware-related IEC standard, the present PAS also
crosses further, appropriate software-related standards to be applied in the development
and qualification of software components that are intended to be reused and products
that reuse existing components. In other words, this present standard encompasses the
features of software components for reuse, their integration into the receiving system,
and related tests. Their performance and qualification and the qualification of the
receiving system is subject to existing standards, for example ISO/IEC 25000 and IEC
61508-3. The process framework of ISO/IEC 12207 on systems and software engi-
neering and ISO/IEC 25000 on system aspects of dependability on software engi-
neering apply to this present document.

80 F. Belli

Fig. 6. Recommended framework of reuse.

NORMATIVE PART
1 Scope
2 Normative references
3 Terms and definitions and abbreviations
4 Dependability of software reuse methodol-

ogy– reusability-driven software development
5 Software reuse dependability methodology

applications
6 Software reuse assurance
7 Warranty and documentation

INFORMATIVE PART- ANNEXES
A General remarks on software reuse
B Qualification and integration of reusable

software components
C Testing and integration of reusable software

components – Issues for industrial best prac-
tice

D Example of software pre-use
E Influence of reused software to hardware

components and products

Fig. 7. Structure of IEC/PAS 62814.

Assuring Dependability of Software Reuse: An Industrial Standard 81

The purpose of IEC/PAS 62814 is to ensure through analysis and tests that the
functionality, dependability and eco-friendliness of a new product containing reused
software components is comparable to a product with only new components. This
would justify the manufacturer providing the next customer with a warranty for the
functionality and dependability of a product with reused components. As each set of
hardware/software has a unique relationship and is governed by its operational sce-
nario, the dependability determination has to consider the underlying operational
background. Dependability also influences safety. Therefore, wherever it seems nec-
essary, safety aspects have to be considered the way IEC 60300-1 addresses safety
issues. This PAS can also be applied in producing product-specific standards by
technical committees responsible for an application sector.

This paper could give only a brief introduction to the major aspects of IEC/PAS
62814. Due to lack of space nothing could be said about the informal part that com-
prehensively explains the methods and techniques for systematic reuse and its vali-
dation to assure dependability, and includes numerous examples from the practice and
for the practice.

6 Concluding Remarks, Future Work

The most common form of reuse is using software developed for one-use in a new
application, which is, accidental reuse. One of the major objectives of the present PAS
62814 is to warn the managers that this kind of unplanned reuse can be a potential
minefield because it can cause the inheritance of all the problems of the pre-existing
software in the reaping of only a few of its benefits. Many managers, while planning for
software reuse, forget that both the reused component and composite system are to be
tested in the new domain. Experience reports say that reusable software can cost 60 %
more than one-use software, whereby a good portion of additional costs goes to testing.

This paper gave a brief introduction into IEC/PAS 62814 and which is a pre-
standard, that is, it is not yet a standard. Further work and much energy are necessary to
complete the work and produce a standard.

References

1. Belli, F., Linschulte, M.: Event-driven modeling and testing of real-time web services.
J. Serv. Orient. Comput. Appl. 4(1), 3–15. Springer, Heidelberg (2010)

2. Frakes, W. B., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv. 28(2),
415–435 (1996). http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=
65178775&CFTOKEN=89447410

3. Frakes, W.B., Kang, K.: Software reuse research: status and future. IEEE Trans. Softw. Eng.
31(7), 529–536 (2005). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1492369

4. Leveson, N.: Medical devices: the Therac-25. In: Appendix A in Safeware: System Safety and
Computers, pp. 1–49, Addison-Wesley, Boston (1995). http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=
rep1&type=pdf

82 F. Belli

http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=65178775&CFTOKEN=89447410
http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=65178775&CFTOKEN=89447410
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1492369
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf

5. Lions, J.L.: Ariane 5 Flight 501 Failure (1996). http://www.ima.umn.edu/*arnold/disasters/
ariane5rep.html

6. Mathur, A.P.: Foundations of software Testing. Addison-Wesley Professional, Boston
(2008)

7. Mohagheghi, P., Ict, S., Conradi, R.: An empirical investigation of software reuse benefits in
a large telecom product. ACM Trans. Softw. Eng. Methodol. 17(3), 13:1–13:31 (2008).
http://dl.acm.org/ft_gateway.cfm?id=1363104&type=pdf&CFID=82907429&CFTOKEN=
24134248

8. Mohammad, M., Alagar, V.: A component-based development process for trustworthy
systems. J. Softw. Maint. Evol. Res. Pract. (2010) (Wiley InterScience, Published online),
doi:10.1002/smr.472. http://onlinelibrary.wiley.com/doi/10.1002/smr.472/pdf

9. Naur, P., Randell, B. (eds.): Software Engineering, Report on a Conference Sponsored by
the NATO Science Committee, Garmisch, Germany (1968). http://homepages.cs.ncl.ac.uk/
brian.randell/NATO/nato1968.PDF

10. Orrego, A., Mundy, G.: SRAE: An integrated framework for aiding in the verification and
validation of legacy artifacts in NASA flight control systems. In: Proceedings of the 31st
Annual Intertnational Computer Software and Applications Conference. IEEE Computer.
Press, New York (2007)

11. Sommerville, I.: Software Engineering. Addison Wesley Longman, Boston (2007)

Assuring Dependability of Software Reuse: An Industrial Standard 83

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://dl.acm.org/ft_gateway.cfm?id=1363104&type=pdf&CFID=82907429&CFTOKEN=24134248
http://dl.acm.org/ft_gateway.cfm?id=1363104&type=pdf&CFID=82907429&CFTOKEN=24134248
http://dx.doi.org/10.1002/smr.472
http://onlinelibrary.wiley.com/doi/10.1002/smr.472/pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

Simultaneously Improving Quality
and Time-to-Market in Agile Development

Pryscilla Marcilli Dóra1,2, Ana Cristina Oliveira1,3(&),
and J. Antão B. Moura1

1 Systems and Computing Department,
Federal University of Campina Grande (UFCG), Campina Grande, Brazil
ana.oliveira@ifpb.edu.br, antao@dsc.ufcg.edu.br

2 University Center of João Pessoa (UNIPÊ), João Pessoa, Paraíba, Brazil
pryscilla@copin.ufcg.edu.br

3 Federal Institute of Paraíba (IFPB), Campina Grande, Paraíba, Brazil

Abstract. More recently, “post-agile” techniques seem to favor releasing early
over quality. Pressure for low cost, rapid development and to code for new
features leads to the allocation of resources to software development tasks
preferably rather than to quality control. Such practices may put the responsi-
bilities for development and test on the same team and even facilitate sloppy
testing. Here, we present our experience in organizing an agile team that is
divided into two independent cells, each one playing a different role: (i) software
development, and (ii) testing exclusively. Results obtained by using a grid
computing backup system as a case study point out to higher test efficiency and,
surprisingly, possible shorter time-to-market simultaneously when the agile
team is split into those two cells, and some complementary practices are adopted
as well. These results may contribute to the on-going discussion on the role and
impact of testing in agile development.

Keywords: Software quality � Independent testing � Agile process
improvement

1 Introduction

“The quality of software is closely linked to the process used to develop it, and finding
a process that fits exactly the specificities of the development environment is almost
impossible” [12]. Hence, it may be better to adapt and adopt the process that most
resembles the characteristics of the environment [8]. Some environmental features
increase the complexity of that task, such as when you have a small team [5].

Agile methodologies, such as eXtreme Programming (XP) and Scrum, treat quality
as a responsibility of the entire development team. However, in many situations, teams
spend more time in production (coding) activities rather than activities related to
quality, so the results still show unsatisfactory levels of quality and software discard
remains high [4].

Mechanisms for quality control reduce the agility of a development team. In fact, if
viewed in isolation, software testing activities require time, more physical resources,

© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 84–98, 2014.
DOI: 10.1007/978-3-662-44920-2_6

and properly trained personnel [17]. There is a growing debate in the industry about the
need to stress delivery speed over testing in “post-agile” processes–see for instance
[23]. For cost savings, there is a trend to (continue to) embed testers in product teams
with the consequence of “the role of test and Quality Assurance (QA) management
becoming unclear” [14]. Another trend indicates that testing activities are concentrating
more on checking business alignment (uprooting idea bugs) rather than on code bug
fixes [16] – i.e., post-agile practices seem to suggest end user testing after the product
launch. Trends or practices that favor speed over testing may lead to defective software
being released more often. Albeit in some scenarios–such as in testing by startups or in
prototyping–this may be acceptable and even make sense to business, that is not the
case of scenarios that include system software (e.g. a general purpose mobile operating
system) or critical applications–for the banking or healthcare industries, say–which
have stringent quality requirements.

Our own experience in developing system software, nevertheless, indicates that
agile techniques can be improved with additional or adjusted practices that improve
quality and speed simultaneously. That is surprising, since additional practices would
tend to make the process slower. Here we present a case in such experience in the hope
of contributing to the discussion about agile speed v. testing controversy.

The case study we consider is a backup utility (OurBackup [21]) from Our Grid
project, an open source free-to-join peer-to-peer (P2P) grid that aggregates computa-
tional resources (grid machines) to support the execution of bag-of-tasks parallel
applications on demand. The project was developed at the Distributed Systems Lab-
oratory at the Federal University of Campina Grande (DSL/UFCG) in Brazil. Several
strategies to mitigate the risks of low quality were adopted during the project, including
the definition of a software development process originally named OurProcess (OP),
an adaptation of the XP methodology for the development of distributed systems.
Further (practice) additions to OP–including the adoption of an independent team for
Quality Assurance–led to an agile, mainly quality-centered process named OurQuali-
tyProcess (OQP).

OQP’s main characteristics and practices are briefly reviewed in Sect. 2. Section 3
compares results of OP’s and OQP’s application to the case study. Analysis of the
results and recommendations are made in Sect. 4. Results from related work are
compared to ours in Sect. 5. Conclusions, caveats and further work are presented in
Sect. 6. The contents of the sections that follow are based on a previous work by the
authors [9] but they have been expanded to provide more information on the com-
plementary practices added to OQP´s life cycle, on the adopted principles for the
application of these practices, and on the organization and execution of the experiments
and data collection & analysis in the case study.

2 OQP: Software Quality Control

XP was chosen as a starting point and base for QOP because the team at DSL/UFCG
had familiarity with its concepts and usage.

The main goal of OQP is to maintain agility. But to also focus on producing clear
requirements and automatic [3], reproducible tests, while being still minimally

Simultaneously Improving Quality and Time-to-Market 85

intrusive, additional practices were added to its XP base (or Our Process – OP, as we
called it internally). OQP’s additional practices and techniques focus on the number of
defects identified before a new version is released. The main addition is the insertion of
an external quality assurance (QA) team to focus exclusively on the quality of final
products. (This does not eliminate the responsibility for quality of the development
team which should cooperate with the inserted QA team).

Another adaptation of the base XP process entails validation of requirements, by
analyzing and criticizing each specification sentence. While the development team
writes software requirements and acceptance tests for the obvious cases, the QA team
checks non-functional aspects, such as completeness, correctness and unambiguity.
This practice minimizes problems of requirement writing and interpretation, leading to
an executable documentation in the form of automatic, cohesive and correct tests that
last the software “lifetime”.

Yet another adjustment to OP to yield OQP is to halve the duration of XP’s typical
one-day long tasks. (This is because “software developers” at DSL/UFCG are usually
students who need to take care of other daily duties–e.g., attending classes.)

During the implementation of the system functionalities, the practice of Test-
Driven-Development (TDD) [2, 6] is also widely used by the development team, while
the QA team identifies new test scenarios, sometimes by performing manual testing
prior to automation. The practice of refactoring is also made to encompass both teams’
codes, developers’ as well as the QA team’s.

One may question in which ways OQP differs from TDD. The former is based on
principles of the latter, but it encompasses complementary practices. Additional
practices include contract-driven development [20], execution of different test batteries
(builds), constant revisions and synchronization between teams. With this incremented
and adjusted set of practices, OQP’s usage is carried out according to three basic
principles as explained next.

2.1 OQP Principles

(i) Gradual QA: After the elaboration of basic acceptance tests (by the developers), a
process called “explosion of test cases” begins with the purpose of stressing the
code (when available). Each produced acceptance test leads to one or more tests,
which are developed by the QA team.
Once the defects are fixed (by developers), the QA team runs the battery of
(possibly manual) tests to validate the correction of defects and to identify new test
cases. Testing stops when a set percentage of code coverage is reached. According
to a survey of development practioners and managers that metric should be higher
than 90 % [10].

(ii) Validation of Requirements and Transformation into Verifiable Require-
ments: The (XP) agile philosophy of “doing the simplest thing that could possibly
work” [2] also suits well to software qualification. First, one should validate all the
requirements through executable documentation in the form of automated tests that
are cohesive and correct, which are valid for the entire software lifetime and can be
rerun at a minimum cost.

86 P.M. Dóra et al.

After writing up the basic acceptance tests, the “test explosion phase” starts when
tests are expanded. This phase aims to stress the code, where for each acceptance
test produced by the developers, one or more additional tests, whenever possible,
should be developed by the QA team. This practice identifies defects caused by
programming vices and developers’ errors of logic.
Then, the battery of manual tests is executed and the correction of defects is
validated. It is important to notice that the stopping (terminate) condition for the
test explosion phase is when coverage of at least 80 % is achieved for each feature,
since it is almost impossible to cover 100 % of the code due to untestable classes
and files, e.g. configuration files, code generated by automated tools, or classes
related to graphical interface objects.

(iii) Maintainability of Code Health: Every new piece of code must go through a
battery of automated tests to be integrated into the repository. At integration one
can check the “health” of the code. Different batteries of tests are defined with
different objectives. At first coding, a battery is still simple with only unit tests and
mock tests [18, 19] related to the module under development. The battery of tests
grows according to the evolution of the software being developed. A battery of
integration tests is performed where the mock tests are replaced by integration tests,
and every night the full battery of tests is performed creating a daily status of the
“health” of the code.
Furthermore, the integration of a new developed test should occur as soon as
possible so that all team members have access to the new test and thus increase the
verification of newly developed code.
Note that Development by Contract (DBC) also contributes to code health by
mapping the responsibilities of classes and objects, making the implementation
more robust. Business rules are checked by logical assertions that verify whether
the input and output data are correctly processed.

(iv) Code Review: It is enacted during pair programming or by a person who is not
involved in the actual coding, preferably by the team leader, either of development
or QA. The adoption of this principle reduces errors, misinterpretations, increases
code legibility, reduces breaches of contracts, and improves design.
One may argue that code review and testing should be done by the developer that
implemented that piece of code in order to improve his/her own skills, and thus be
able to change roles in the future. Note that in our software qualification process:
(i) code review may be done by another member of the same team, either devel-
opment or QA, since it is valuable to have another person digging into the code to
check whether it could be improved; and, (ii) tests are not exclusively developed by
the QA team, because the members of the development team are responsible for
implementing initial acceptance tests. We have not evaluated the impact of
changing roles during development, but this might lead to an interesting future
study. On the other hand, we believe the combination of this “code review prin-
ciple” to the other two principles causes all developed code to be examined by at
least two people in its life cycle.

Simultaneously Improving Quality and Time-to-Market 87

2.2 Life Cycle

As in XP, integral development of the software occurs through a succession of coded
and tested releases. The activities performed for a release are identified by the lines
across Fig. 1 and are detailed in Table 1. Each release is divided into four phases:
Requirements elicitation, Development, Alpha and Beta Testing. During these phases,
the activities of the development and QA teams are performed in parallel.

Each of the four phases showed in Fig. 1 represents the state of the development
over releases. Each release is represented by one different color, and the three lines
represent the following activities: (a) coding, (b) testing and qualification, and
(c) defect correction. Each phase has a well-defined goal as presented next.

Requirements Elicitation: All the features of a release are textually described to guide
the development, providing an overview of the development needs. The role of the
development team is, in conjunction with the customer and project coach, to formalize
the requirements, while a member of the qualification team analyzes each requirement,
suggests changes, new descriptions and turns the requirements into executable docu-
mentation, i.e. automated acceptance tests.

There is no milestone delimiting the Requirements Elicitation and the Development
phases. The work of developers is not blocked while the QA team validates the
requirements. The transition from one phase to the other is continuous and progressive,
and it is finalized when all requirements are textually validated, and when the QA team
has completed the set of acceptance tests (both manual and automatic) that map all the
requirements of the release.

Development: This phase is based on the principles of XP. Before the implementation
of any code unit, the development team creates tests (TDD). Therefore, the develop-
ment is the conjunction of the preparation of the unit test and the coding of the unit in
question. As a complement to the development phase, there is still one activity of
analyzing/solving reported issues in tickets or requests - i.e., requests made by release
stakeholders in the form of defect reports, requests for new features, requests for new
tasks, new tests, and so forth.

Fig. 1. OQP release life cycle.

88 P.M. Dóra et al.

Alongside the development of unit tests, the QA team plays the role of the
development of tests within the same scenario, but in different situations. This is called
explosion of test cases as commented briefly earlier. When a new defect is discovered,
it is immediately reported by the qualifier or developer who found it. At this point, the
person that registered the issue is also responsible for the validation analysis of the
solution. She/he can accept the solution, reopen the issue, or even request new features.

Regarding the automated testing activity, the Happy Day acceptance tests (simplest
tests) shall be prepared by the development team. From the Happy Day and according
to the description of features, new test cases are carried out by the qualification team.
The major effort by the qualification team should be towards the execution and
development of automated tests.

Depending on the evolution of development, the QA team occupies itself with
diversifying the test cases. The final stage of development yields the release of the
software which should contain all of the implemented features or which are associated
with at least one unit test implemented by the development team. At that moment, the
development team freezes the implementation and formalizes the delivery of the release
to the qualification team through the creation of a software branch.

Ideally the qualification team must also have developed most if not all of the
automated tests. Otherwise, while the QA team finalizes the development of automated
tests, the development team works on the trunk of the project with focus on correcting
faults and/or elicitation of requirements for the next software release and/or on Happy
Day acceptance tests.

At the end of the automation and explosion of test cases by the qualification team,
the software versions should be synchronized in order to also synchronize the work of
both teams in a consolidated version, the Alpha release for exploratory testing.

Exploratory (Alpha) Tests: The Exploratory Testing phase begins with the execution
of a battery of manual tests (described in the test plan prepared by the development
team) on the frozen version of the release (branch). Manual tests are performed by the
qualification team to validate the cases where:

• Automation is not possible or
• The effort to automate is costlier than the effort to run the test manually.

Since the development environment is a university research lab, the exploration
phase of the code includes a period of time when the students “become bug hunters”.
The best hunters are rewarded and the ranking of the best hunters is posted at the
project’s website. This promotes healthy competition and motivation to have the
system being developed stressed up by “volunteer testers”. Bugs (issues) are registered
and corrected in anticipation of the launch of the Beta release.

The milestone between the Exploratory (Alpha) Testing and the Beta Testing
phases is reached when the qualification team validates the solution of the issues. The
goal is that all reported issues have a solution implemented by the development team.

Often an issue may become a new required functionality, or it may be impossible or
even undesirable to have it corrected right then. Some defects found demand more time
and cost to be corrected and do not justify the actual benefit that they will provide.

Simultaneously Improving Quality and Time-to-Market 89

Therefore, after negotiating with the client, correcting such defects may be postponed,
and a Beta release is launched.

Beta: It is the software release to the community, including project stakeholders,
participants in the development and qualification, customers, members of other project
teams, and guests. Complex situations are tested and (directed and undirected)
exploratory tests are executed.

If any issue is registered while running the Beta release, then new meetings are held
with the client to define what should be built, improved, corrected, removed, or
refactored. The release is finalized and the client´s evaluation may indicate new
packages with changes and/or corrections that need be made.

To validate OQP we applied it to a pilot project and compared the results to OP’s at
DSL/UFCG.

3 Case Study

The proposed Our Quality Process (OQP) was applied to the OurBackup (OB) Home
software [21], a backup system based on social networks. Initially, a set of six macro-
features were defined and implemented under the OP process. These features enable the
user to install the software, log onto the system, build his/her social network (by
addition and/or acceptance of friends), and lastly, to perform and restore backups. Upon
conclusion of the first version (V1), eight new features were added now under OQP,
producing a “quality” version 2.

For the comparative study, three releases developed with OP (OurBackup
Release)–OBRi, i = 1, 2 and 3; and, three releases developed with OQP (OurBackup
Quality Release)–OBQRi, i = 1, 2 and 3–were considered.

Although every effort was directed to the production of automatic tests, some
manual testing was needed. However, if a critical defect was discovered during manual
testing, the manual procedure would be interrupted and a new test would be developed
to detect the defect or to validate the correctness of the corresponding code.

Table 1. OQP activities and phases.

Teams Requirement
elicitation

Development Alpha Beta

Development Write
requirement

Code implementation Correction of
defects

Correction
of defects

Define design Implementation of unit
and integration test

Acceptance
tests

Correction of defects

QA V&V
requirements

Implementation of new
cases of automated
acceptance tests

Manual and
exploratory
testing

Validation
of defect
correctionAcceptance

tests

90 P.M. Dóra et al.

The case study was carried based on six steps defined by the empirical method-
ology of Experimental Software Engineering [24, 25], namely: (i) Definition and
Scope; (ii) Planning and Design; (iii) Preparation; (iv) Execution; (v) Analysis and
Result Presentation; and, (vi) Packaging. The remainder of this section is devoted to
describing each step in more detail.

3.1 Definition and Scope

We define and scope the experiment by means of the following terms:

• Subject: “Quality in Software Development Process”;
• Involved Areas: “Software Engineering, Software Development Process”;
• Problem to be Addressed: “Which development process results in products with

higher quality”;
• Importance of the Problem: “Improve the quality of developed products; increase

the understanding of the products; and, improve the development process itself”;
• The Goal: “Analyze two agile for software development processes, establish

quality scores and, based on these scores, identify the process that yields products
with higher level of quality”;

• The Null and Alternative Hypotheses: “Processes generate products of similar
quality” and “The processes do not generate similar quality products; one process is
better than the other”, respectively.

3.2 Planning and Design

• Process used for Software Development and Quality Control: OurProcess (OP)
and OurQualityProcess (OQP)

• Establishment of the Monitoring Phases: Phase 01 - Automated Testing; Phase
02 - Verify Corrections; Phase 03 - Exploratory Testing; Phase 04 – Alpha Testing

• Instrumentation and Data Collection: to aid the setup of the experiment envi-
ronment and to collect the metrics, some tools were used. The collected metrics are
described below, and the tools are presented in Table 2.

(a) Percentage of Test Classes: the percentage of the classes developed for test
purposes among all the classes developed for the release under analysis;

(b) Percentage of Testing Methods: the percentage of the methods developed for
test purposes among all the methods developed for the release under analysis;

(c) Number of Cases of Manual Tests: number of tests that were manually
executed;

(d) Automatic Testing Coverage: percentage of the features of the release that
are covered by automatic tests, i.e. the percentage of the features that have
their correctness verified by reproducible and automatic tests.

Simultaneously Improving Quality and Time-to-Market 91

3.3 Preparation

Preparations are required before and during the execution of the experiment to:

• Provide appropriate training for team members to implement activities;
• Everyone involved in the work was trained on the new process (OQP) and on how

to perform all activities in the process.
• Study tools, methods, techniques and practices;
• Everyone was made familiar with the tools, methods, techniques and practices in

order to properly plan, instrument and execute the work.

Table 2. Tools used in the experimental process.

Metrics collected Tool Description

Classes of tests and
testing methods

Metrics A plug-in to Eclipse IDE that calculates several
metrics, regarding the current development of a
project, such as: number of methods, total lines of
code, number of classes, number of test classes,
instability, nested block depth, efferent coupling,
and many more. It also performs analysis of
dependency, definition of safe values for the
metrics, the assignment of colors to different safety
metrics values. All metrics may be exported to XML
format

Manual tests Wiki page Since not all tests could be automated, due to high cost
of implementation or to infeasibility caused by the
complexity of the distributed environment, all
manual tests’ procedures were centralized in one
Wiki page with read and write permissions for every
member of the project

Automatic tests’
code coverage

Clover A plugin to Eclipse IDE that measures highly complex
code, coverage lost due to recent changes, and
precise per test coverage to ensure relevance of tests.
It also addresses test optimization for Java by
tracking code changes and test failures

Bugs’ tracking JIRA It captures and organizes the issues into a repository.
JIRA also has the functionality of assigning work to
the members of team, and following up their
activities

Version control Subversion
(SVN)

An open-source version control system

Test code JUnit Framework to write automated unit tests
Test code with
Mock Objects

EasyMock It provides Mock Objects, generating them on the fly,
for interfaces, as well as objects through the class
extension

Code Integration Bamboo This tool performs the building and testing processes,
as well as connecting issues, commits, test results,
and deployment. It was mostly used to perform
continuing code integration

92 P.M. Dóra et al.

• Configure the environments;
• The environments where both development processes were to run was properly

configured with the installation of tools in developers´ and testers’ machines. Server
machines were also configured.

• Set up the case study scenarios;
• Use the same development and test teams.

3.4 Execution, Analysis and Result Presentation

Please consider Table 3. The increase in the amount of classes of tests by itself is not an
indication that there has been an increase in the effort to produce automatic tests.
Therefore, other data we recollected that indicated such an increase: column b in
Table 3 shows the percentage of testing methods relatively to the total of developed
methods.

Column c in Table 3 shows an increase in manual testing as one switches from OP
to OQP to produce OBQR1 and OPQR2. But a consistent decrease from OBQR1 to
OBQR3 and a lower amount of manual testing with OBQR3 relative to OBR3. This
seems to indicate that OQP’s sharper focus on testing tends to reduce manual testing
which is tedious and error prone.

The relative larger number of manual tests for OQP can be attributed to this
process’ permanent availability of testers coupled with the functional code-breaking
idiosyncrasies of OB’s target distributed environment: different operating systems (OS)
or different features across instances of a same OS (such as different versions, Network
Address Translation, firewalls, antivirus software, and so forth). Environments such as
OurBackup’s tend to reduce the realistically possible amount of automatic testing (as a
percentage of the entire code) to the range of 20–40 % [13].

It should be noted however, that the number of tests in a project is not the most
appropriate metric to attest its quality, but it may suggest the amount of effort towards
quality control. In the second column of Table 3 (percentage of testing methods), we
note a gradual raise in the percentage of test classes as the OQP is adopted, achieving
an increase of 50 % over OP’s percentage (22 % over 14.8 %).

Table 3. Initial data comparison.

Version (a) Classes of
tests (%)

(b) Testing
methods (%)

(c) # of
Manual tests

(d) Automatic tests’
code coverage (%)

OB R1 15.8 8.0 0 0
OB R2 14.4 11.0 74 21
OB R3 14.8 10.8 160 18
OBQ R1 13.5 13.4 275 34
OBQ R2 21.0 16.3 229 62
OBQ R3 22.2 17.7 143 91

Simultaneously Improving Quality and Time-to-Market 93

Code coverage was measured in terms of lines, methods and classes covered by
tests and it was collected using the Clover tool [7]. Column d brings these data and it
shows a consistent increase in code coverage as OQP is continually employed to reach
91 % with OBQR3 (meeting the quality baseline of over 90 % as indicated by 60 % of
the respondents in the international survey in [10]). In contrast OP shows a somewhat
haphazard behavior.

One may also note that, differently from OP, OQP meets baseline values for other
metrics in this international survey: percentage of erroneous deadline and programmer-
month effort estimations (within 5 to 15 % as indicated by 48 % of respondents) and
percentage of defects discovered after release delivery (1 to 5 %).

Regarding the lifetime of defects, or how fast the team is in resolving defects, a
significant improvement with OQP was observed (please refer to Table 4). Again,
Table 4 illustrates a gradual improvement in quality as OQP usage continues (by
contrast, OP degrades on the average, while OQP’s min, max, average and median
times to fix defects improve).

3.5 Packaging

Both processes can be downloaded from the Distributed System Lab (LSD) website:

• OurProcess:
http://twiki-public.lsd.ufcg.edu.br/twiki-public/bin/view/LSD/
LSDProcessoDesenvolvimentoAntigo.

• OurQualityProcess:
http://twiki-public.lsd.ufcg.edu.br/twiki-public/bin/view/LSD/
LSDProcessoDesenvolvimento.

4 Evaluation and Lessons

We believe OQP’s superiority over OP in the pilot project of OurBackup is due to:

Independence of Testers in the QA Team: there is a QA boss who is not the
development leader. Testers are well regarded by the leader when they find critical

Table 4. Lifetime of defects.

Software
version

Minimum
(days)

Maximum
(days)

Average
(days)

Median
(days)

OB R1 – – – –

OB R2 3 801 65 19
OB R3 1 328 168 221
OBQ R1 1 102 24 60
OBQ R2 0 29 9 13
OBQ R3 0 7 6 5

94 P.M. Dóra et al.

http://twiki-public.lsd.ufcg.edu.br/twiki-public/bin/view/LSD/
http://twiki-public.lsd.ufcg.edu.br/twiki-public/bin/view/LSD/

defects and vulnerabilities in the software. Testers do not feel guilty when they reveal
defects that they have not inserted themselves in the code.

Promoting Testing Competencies: testers should be trained to improve their skills in
detecting failures and writing tests.

Sharper Focus on Quality: a tester is more productive than a developer that only tests
his code in the remaining time of development. Moreover, an external tester, in general,
is less likely to ignore errors caused by programming vices.

Also and contrary to agile processes that typically allow little emphasis on testing
tasks initially [22], OQP recommends concentration on tests right from the onset of the
project. This may not need to increase budgets by much. Test outsourcing may reduce
the need for costly, in-house testing environments, thus easing the internal competition
for resources between developers and testers. In turn, this should make it easier and
cheaper to have a two-cell organization as advocated here.

5 Validation

We followed an experimental methodology for Software Engineering to evaluate our
proposed development process with focus on the final quality of the software product.
The results obtained by applying the OurQualityProcess approach validated our
objectives to improve the quality of the software, besides reducing the time-to-market.

The experimental evaluation of the processes was done via a direct comparative
analysis of software quality metrics. That type of comparison however, may not
guarantee that the OQB process is always better than the OP. Further, regarding validity
of conclusion, the experimental process may present threats to validity. Such is the case
of the experience that the developers accumulated over time, as they migrated from OP
to OQP. This may have affected OP more negatively than OQP.

However, the metrics collected show a significant improvement in quality when the
OQP was applied.

6 Related Work

The debate on agile speed v. testing seems to have been kindled by the inability of
agile practices of unit and acceptance tests to always meet the need for quality of
delivered products [15]. Here it was indicated that testing and speed need not be
traded off if practices that lead to development and independent testing activities are
added to agile processes. The results presented here may have shed light on this
debate, and may help practitioners’ make informed decisions regarding quality
management of software development projects.

One may contend at this point that the benefits of continuous, independent software
testing activities having been established long ago, are undisputable and for that, need
not be revisited. The on-going debate in the marketplace indicates otherwise: practices
of yesteryears are criticized for being in want of reform to meet new challenges. Also
and despite recent progress, most companies still present very low levels of testing

Simultaneously Improving Quality and Time-to-Market 95

maturity [11]. As stated in this last reference: “It is perhaps a damning indictment of the
industry that after all these years we can consistently design and plan testing, but have
no thought or regard for effectively measuring the success and efficiency of this activity
(which, combined with the costs of rework, forms a significant proportion of project
costs)”. We hope to have offered some insight into measurements of test results.

State-of-the-practice requirements needed to measure (expected) software quality
were elicited in an international survey of expert software development managers [10].
This survey yielded a software quality metrics baseline for the accuracy of project
estimates, the detection of defects before product release, and the test coverage. This
baseline was used for comparing results of the test-driven, adapted agile OQP process
proposed here against those of its foundation XP process.

The authors of the work in [1] have proposed and studied a framework to scale up
unit tests, and, as a result, they achieved test coverage of over 99 % with 36 % of the
code dedicated to testing. In the case study worked out here, OQP achieved a test
coverage of 91 %, with a total test code of 18 %. Although results of both works exceed
the test coverage baseline of [10], OQP ended up having half of the test code per-
centage of total coding effort. One cannot vouch for OQP’s superiority (or the
framework in [1] for that matter), however, given environmental differences underlying
both works. A more detailed scrutiny and comparison of both works could reveal
interesting, complementary aspects that could be explored to support decisions con-
cerning code coverage against test code amount trade-offs, which was not intentionally
made here.

7 Conclusion and Outlook

This paper proposed complementing the basic aspects of Agile development processes
with a few but significant techniques and practices that, taken together, have been
shown effective in improving quality and defect-fixing-delays for the case of a backup
utility in a large scale, open source free-to-join, peer-to-peer (P2P) grid computing
environment.

The case studied compared results for two different versions of the backup utility.
Although this may hinder the significance of conclusions and recommendations, it
offered some evidence that investing in independent testing may indeed pay off not
only in software quality but in development time as well.

Further work is needed to extricate and isolate cause-effect relationships (between
added practices and the observed improvements), to establish the degree of significance
of each cause to results, and to generalize conclusions. The early evidence presented
here supports OQP’s separation of testing from development. This separation may run
against current industry trends but it may as well support agile practioners better,
particularly those with responsibility for critical application development where a
higher degree of compliance between requirements and implemented features is
expected. We also consider that it might be relevant to further study and evaluate the
impact of changing the roles played by the members of the teams during the devel-
opment process.

96 P.M. Dóra et al.

Acknowledgements. The authors thank colleagues and anonymous reviewers whose comments
clarified and enriched the work presented here.

References

1. Artho, C., Biere, A., Honiden, S., Schuppan, V., Eugster, P., Baur, M., Zweimüller, B.,
Farkas, P.: Advanced unit testing – how to scale up a unit test framework. In: AST 2006,
Shanghai, China, May 2006

2. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor,
S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile software development
(2001). http://www.agilemanifesto.org. Accessed 17 Dec 2008

3. Buglione, L., Hauck, J.C., Gresse Von Wangenheim, C., Mccaffery, F.: Hybriding CMMI
and requirement engineering maturity and capability models. In: ICSOFT – 7th International
Conference on Software Paradigm Trends, Italy (2012)

4. Chaos Report (2011). http://blog.standishgroup.com Accessed 18 Jun 2012
5. Crispin, L., Gregory. J.: Agile testing: practical guide for testers and agile teams. Addison-

Wesley Signature Series (2009)
6. Crispin, L., House, T.: Testing extreme programming. XP Series (2002)
7. Clover (2012). http://www.atlassian.com
8. Dinakar, K.: Agile development: overcoming a short-term focus in implementing best

practices. In: Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA), Orlando, FL, pp. 579–588 (2009)

9. Dóra, P., Oliveira, A.C., Moura, J.A.B.: Improving quality in agile development processes.
In: Proceedings of the 8th International Joint Conference on Software Technologies
(ICSOFT-EA), pp. 411–416. July 29th to 31st, Reykjavíck, Iceland (2013). doi:10.5220/
0004559704110416

10. Dóra, P., Oliveira, A.C., Moura, J.A.B.: A baseline for quality management in software
projects. In: Proceedings of Informática 2013 – 15th International Convention and Fair,
March 18th to 22nd, Havana, Cuba, ISBN 978-959-7213-02-4 (2013b)

11. Experimentus: Test Maturity Model Integrated (TMMi) – Survey Results, How Mature are
Companies’ Software Quality Management Processes in Today’s Market? Update 2011,
White paper, www.experimentus.com, 20 pp (2011)

12. Guerra, A., Santana, M.: Quality of software process or quality of software product?. In:
International Conference on Software Quality, Canada (2002)

13. Harrison, J.A.: Cited in A debate on the merits of mobile software test automation. James A.
Denman, Published 23 May 2013 (2013). http://searchsoftwarequality.techtarget.com/news

14. Heuser, M.: Exploring the shifting roles in test and QA management. http://
searchsoftwarequality.techtarget.com. Accessed 12 Oct 2012

15. Hislop, W., Lutz, J., Naveda F., McCracken, M., Mead, R., Williams, L.A.: Integrating
Agile Practices into Software Engineering Courses. In: 15th Conference on Software
Engineering Education and Training (CSEET) (2002)

16. Lent, J.: Software Testing Trends 2012: Business Alignment, Not Bug Fixes. http://
searchsoftwarequality.techtarget.com (2013). Accessed 28 Jan 2013

17. Lycett, M., Macredie, R.D., Patel, C., Paul, R.J.: Migrating agile methods to standardized
development practice. Computer 36(6), 79, 85 (2003)

18. Mackinnon, T., Freeman, S., Craig, P.: Endo-Testing: Unit Testing with Mock Objects. XP
eXamined by Addison-Wesley, Reading (2000)

Simultaneously Improving Quality and Time-to-Market 97

http://www.agilemanifesto.org
http://blog.standishgroup.com
http://www.atlassian.com
http://dx.doi.org/10.5220/0004559704110416
http://dx.doi.org/10.5220/0004559704110416
http://www.experimentus.com
http://searchsoftwarequality.techtarget.com/news
http://searchsoftwarequality.techtarget.com
http://searchsoftwarequality.techtarget.com
http://searchsoftwarequality.techtarget.com
http://searchsoftwarequality.techtarget.com

19. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Upper Saddle
River (1997)

20. Mitchell, R., McKim, J., Meyer, B.: Design By Contract, by example. Addison-Wesley
Publishing Company, Redwood City (2001)

21. Oliveira, M., (2007). OurBackup: Uma Solução P2P de Backup Baseada em Redes Sociais.
Master’s Thesis, COPIN - UFCG, Campina Grande, PB, Brasil (In Portuguese)

22. Reichert, A.: How to focus an agile scrum team on quality and testing. http://
searchsoftwarequality.techtarget.com, first published in August 2012

23. Savoia, Al., (2011). Test is Dead. In: 6th Annual Google Test Automation Conference
(GTAC). Uploaded on Oct 27, 2011

24. Travassos, G., Guroc, D. and Amaral, E.: Introdução à Engenharia de Software
Experimental (Introduction to Experimental Software Engineering), Technical Report ES-
590/02-Abr. Graduate Program in Systems Engineering and Computing, COPPE/UFRJ, Rio
de Janeiro (2002) (In Portuguese)

25. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Kluwer Academic Publishers, Norwell, MA, USA
(2000). ISBN 0-7923-8682-5

98 P.M. Dóra et al.

http://searchsoftwarequality.techtarget.com
http://searchsoftwarequality.techtarget.com

State of the Art of Dynamic Software
Updating in Java

Allan Raundahl Gregersen1, Michael Rasmussen1,
and Bo Nørregaard Jørgensen2(&)

1 ZeroTurnaround, Tartu, Estonia
{allan.gregersen,michael.rasmussen}

@zeroturnaround.com
2 The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,

Odense, Denmark
bnj@mmmi.sdu.dk

Abstract. The dynamic software updating system JRebel from Zeroturnaround
has proven to be an efficient mean to improve developer productivity, as it allows
developers to change the code of their applications while developing and testing
them. Hence, developers no longer have to go through the tedious cycle of
serializing application state, halting execution, redeploy the binary, restarting,
and de-serializing state before they can test the effect of a code change. However,
the current version of JRebel has its limits, as it does not support all kinds of code
changes. In this paper, we compare the three most comprehensive dynamic
updating systems developed for Java to date. Together, these systems provide
comprehensive support for changing class definitions of live objects, including
adding, removing and moving fields, methods, classes and interfaces anywhere in
the inheritance hierarchy. We then investigate the effects of dynamic updating by
performing a dynamic updating experiment on five consecutive revisions of the
classical arcade game Breakout using the dynamic updating system Gosh! (Prior
to the acquisition by zeroturnaround.com known as Javeleon.). Based on the
result of this experiment we show that dynamic updating of class definitions for
live objects may under some circumstances result in different run-time behavior
than would be observed after a cold restart of the upgraded application. Finally,
we conclude by discussing the implication of integrating the dynamic updating
model of Gosh! with JRebel. The successful integration of these two systems will
set a new standard for dynamic software updating in Java.

1 Introduction

Software is subject to continuous change, not only as part of its development cycles, but
also over time to stay useful to its users [1]. In most standard deployment environments
this implies that use of the next software version typically requires halting the currently
running version before deploying and starting the new version. Using a dynamic soft-
ware-updating system (DSU) this is no longer necessary, as the DSU system will
dynamically replace the running version with the new version. Depending on how
advanced the DSU system is this may happen more or less transparent to end-users. We
say that a DSU system is end-user transparent if it does not require any intervention of

© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 99–113, 2014.
DOI: 10.1007/978-3-662-44920-2_7

end-users during an update, and similarly we say it is developer transparent if it does not
require developers to take specific precautions. Hence, the two forms of transparency is
a key quality for any DSU system, since it strongly influences the degree to which it will
be successful. The success of DSU systems is especially important as software systems
tend to become more complex in terms of internal run-time state and interactions with
external systems. This trend is for instance present in mission-critical systems such as
surveillance and control of air traffic, ground transportation, oil and gas production,
industrial process, power generation, and smart-grids. These application domains are all
subject to safety, environmental and economical regulations and restrictions, which
make system downtime due to maintenance tasks like software updates not only
inconvenient but also very expensive.

Where past research has contributed significantly toward making DSU practical for
systems written in C or C++, upgrading of server functionality [2–4], deploying security
patches [5], and operating systems upgrades [6–11], there used to be a gap when it comes
to systems written in managed languages, such as Java, Ruby, and C#. In the past DSU for
managed languages was limited to HotSpot JVM [12] for Java. For some .NET languages
[13] a similar limited support of on-the-fly updating of method bodies applies. However,
this support is too restricting for all but the simplest updates. Limiting changes to method
bodies would render the DSU system useless for updating most of the revision improve-
ments reported for the Jetty webserver [14] in [15]. Academic approaches [16–19] offer
more flexibility, but remain still to be proven on realistic development scenarios. Fur-
thermore, these approaches employ designs for method and object indirection, which
impose substantial space and time overheads on steady-state execution. The lack of
approaches supporting managed languages had the potential to become a severe problem
as an increasing number of enterprise systems and embedded systems are written in those
languages. Fortunately, the research on DSU for managed languages has caught up and
includes nowmultiple promising approaches. State-of-the-art approaches for Java includes;
JRebel [20], an application-level system which is currently the de facto commercial tool for
class reloading in Java; Dynamic Code Evolution VM [21], a VM-enhancement of the Java
HotSwapTM VM [22]; JVolve [23], a VM approach based on the Jikes Research VM, and
Gosh! [24], an application-level system.

In this paper, we first provide an overview of code changes supported by DSU systems
targeting Java; we then give an introduction to the design and implementation of Gosh!,
including some of the major challenges involved in creating a practical dynamic updating
system, that supports the modern Java ecosystem with tons of different application servers
and frameworks. This is followed by the latest development in the performance bench-
marking of Gosh!. Then, we demonstrate the capabilities of Gosh! by applying it to a series
of consecutive revisions of an in-house implementation of the classical arcade game
Breakout. In Sect. 6, we report on the latest developments coming from the merger of the
Gosh! dynamic updating model, formerly known as Javeleon, and the commercial tool
JRebel, where the combined strengths will heavily advance the state-of-the-art in practical
dynamic updating in Java. Finally, we discuss the result of this experiment and its
implication for future research direction within dynamic software updating.

This paper is a revised and extended version that supersedes our paper from IC-
SOFT 2013, [24]. In this paper we have incorporated many new insights primarily from
experience gained through the efforts of merging the Gosh! with JRebel’s large set

100 A.R. Gregersen et al.

plug-ins for handling changes to frameworks. In particular, in Sect. 3, a lot more details
are found, not only for the model behind Gosh!, but also some of the practical
implications that Gosh! has, that renders it not suitable for supporting modern devel-
opment in Java. The reasoning behind this extension in Sect. 3 was to set the stage for
why class reloading is not enough in itself, thus also why framework support is a
prerequisite for supporting the Java ecosystem. Section 6, which is entirely new,
contains many new insights in order to better understand some of the implications that
a certain style of updating poses on the implementation requirements.

2 Comparison of Dynamic Software Updating Systems

A comparison of the code changes supported by DSU systems that are currently public
available is given in Table 1. As the table shows, Gosh! is at the moment the DSU
system with the most comprehensive support for redefinition of Java classes. The Issues
symbol in Table 1 indicates that there are circumstances where the code change is not
fully supported by the DSU system.

Table 1. DSU system comparison.

Code change
G

os
h!

JR
eb

el

D
CE

VM

Changes to method bodies

Adding/removing fields

Adding/removing methods

Adding/removing constructors

Adding/removing classesi

Replace superclass

Adding/removing implemented interfaces
Automatic new instance field initialization

(developer-defined default value)ii
Automatic new static field initialization

(developer-defined default value)iii, iv
Move field to super class (preserving the state)iv

Move field to sub class (preserving the state)iv

Changing static field valueiii

Changing primitive static final field valuev

Adding/removing enum valuesvi

 Supported Not supported Issues

i. Only Gosh! and JRebel provide integration with custom class-loaders for adding new classes that is not present on the class path.
ii. Gosh! supports automatic field initialization without re-executing the constructor/static initializer. However, automatic initialization

does currently not support branching (try/catch, ternary operator etc.)
iii. JRebel’s support for changing static field values is based on re-executing the entire static initializer,which may lead to serious side-

effects caused by repeated execution of code which should only execute once. Moreover, it will only happen if and only if a new static
field besides the changed one is added to the class. Gosh! has built-in support for changing static final constants.

iv. Gosh! is currently the only DSU system cable of correctly transferring values of fields which have been moved up or down in the inher-
itance hierarchy. DCEVM copies field values to super/sub-classes even in situations where the field is also retained in the former class
version.

v. Only Gosh! fully supports changing primitive static final field values, as both JRebel and DCEVM gives wrong results for constant
values accessed through reflection after updating.

vi. JRebel claims support. However, simple tests show that e.g. removing and adding enum values is not handled correctly in switch state-
ments.

State of the Art of Dynamic Software Updating in Java 101

3 The Dynamic Updating System Gosh!

The core idea of the Gosh! updating model is to allow multiple versions of the same
objects to co-exist in a running system. This is achieved by creating new class loaders
for each new version, thus setting up distinct type namespaces. Since this approach
imposes a version barrier [26] of incompatibility between differently versioned classes
and objects, the updating model must maintain a versioned view of the involved objects
and classes. Gosh! utilizes a novel concept of Dynamic Correspondence Proxification, a
combination of the two mechanisms In-Place Proxification and Correspondence Map-
ping which transform live objects and classes of former versions into proxies that
delegate to the most recent versions. In-Place Proxification enforces shared identity and
state across the version barrier, while Correspondence Mapping handles type conversion
for crossing the version barrier. Details on the Dynamic Correspondence Mapping used
in Gosh! can be found in prior work [25]. While at first, such a versioned view controlled
by proxies sounds expensive in terms of steady-state execution overhead, what makes
the dynamic updating model of Gosh! fast is the novel usage of proxies that lifts the
execution from updated methods into a new type namespace. Within this new type
namespace the execution happens just as fast as before any updating took place (after the
state has been lazily transferred from the former version to the current executing ver-
sion). While delegating method execution to distinct typed classes (the updated classes)
using some kind of reflective approach, as Gosh! does, will be inherently slow, not many
such delegations ever take place when applying the In-Place Proxification model behind
Gosh!. The reason is that when an entry method in an updated class is executed, it will
by itself figure out (by injected bytecode in the beginning of the method) that it was
updated, and therefore this method will delegate to the newly defined class in a com-
pletely new type namespace of the system. Once the execution continues within the
parallel universe every single method that is executed in that universe will already be the
updated one. Hence, the execution overhead will remain constant no matter how many
subsequent dynamic updates are applied to the underlying application.

Clearly, making sure that methods delegates to a new type namespace for which
updated code can execute is nowhere near enough to make practical updating of classes
and objects in Java possible. There are numerous built-in language features and even
certain assumptions within external frameworks that require additional handling to not
confuse the runtime system (JVM). One area of particular interest is the reflection API,
which is troubled by the fact that multiple versions of the “same” entity, that is a class or
an object, can co-exist within the runtime. Imagine one example where before a dynamic
updating operation, a reference to a reflective method object is stored e.g. in an instance
field. Now, after applying a dynamic update to the class holding the method object
reference, leaving the reflection API unhandled will yield IllegalArgumentException
when trying to invoke that method through reflection using any object with a type
defined in the new parallel universe. Therefore, all of the refection API must be made
aware of the dynamic updating model behind Gosh! which is a substantial amount of
bytecode patching. Moreover, any code that relies on cached class metadata, which is
the case in any modern dependency injection framework will have outdated metadata
that corresponds to the particular class version in use, when the class metadata scanner

102 A.R. Gregersen et al.

ran within the framework (in many cases during startup or deployment). Hence, when
adding new properties to existing bean classes those new properties will not be injected
as expected and therefore hard to track null-pointer-exceptions will often happen, which
defeats the purpose of dynamically updating the application in the first place. In order to
ensure reliable execution within the modern Java ecosystem a dynamic updating system
for Java must provide a way to integrate with commonly used frameworks. What is truly
challenging in this regard is the number of available frameworks in the wild. In this area
there is only one current approach that has proper support for framework-related
changes and that is JRebel. With JRebel’s tailored plug-ins for numerous frameworks,
integration with class loaders of almost all application servers and the ability to provide
support for all major JVM vendors and versions, there are really no dynamic update
approach within the academic world that could compete with JRebel when it comes to
real world practical usage. With JRebel having shown the potential to support the Java
ecosystem, and a couple of research dynamic updating systems having shown that it is
possible to support changes to the type hierarchy of classes, including Gosh!, the ideal
scenario would be to merge the two worlds together. This scenario is now one step
closer to realization, since Zeroturnaround in early 2013 acquired rights to use the Gosh!
dynamic updating model as well as hired the main research personal behind Gosh!.
Section 6 will give a summary of current status of this merger.

An outline of the main components of the Gosh! dynamic updating system will be
given below, whereas additional details on the architecture are provided in [27].

The architecture of Gosh!, shown in Fig. 1, features the following components:

• The bootstrap-class-transformer and sub-process-spawner components are responsible
for statically transforming the JVM bootstrap-classes and to automatically spawn a new
JVM process with the set of modified bootstrap-classes. This setup is necessary to make
Gosh! transparent to the end-user, as the class instrumentation mechanism introduced
in JDK 5.0 does not support instrumentation of bootstrap-classes on class loading.

Fig. 1. Architectural overview of Gosh!

State of the Art of Dynamic Software Updating in Java 103

• The class-loading plug-in component is used to integrate Gosh! with the class
loading and resource management of different application frameworks. At present,
Gosh! only provides an integration component for the NetBeans Platform, besides
standard Java SE support. In general, the responsibility of these components is to
deal with all the issues that cannot be handled simply by updating Java class files,
i.e. reflecting changes made to application resources and configuration files.

• The bytecode-transformer component is responsible of instrumenting classes as
they are loaded into the JVM. We distinguish between system classes that are made
dynamic update-aware and application classes that are made dynamic update-
enabled. Update-aware classes impose less run-time overhead than update-enabled
classes. We make this distinction, because we consider it less likely that system
classes are dynamically updated, as this would most likely include a dynamic
update of the JVM. However, although system classes are not considered subject to
dynamic updating they must be instrumented to accommodate changes to their
possible subclasses.

• The run-time component implements the underlying dynamic updating model,
which uses the In-Place-Proxification technique in combination with Correspon-
dence Mapping to delegate requests to the most recent versions of updated classes.
This component also ensures correct identity and equality preservation, handling of
hashCode, thread synchronization, array-access handling for differently versioned
objects etc. The core execution component is also responsible of transferring state
from former versions to the new version. State is transferred using a thread-safe,
non-blocking, lazy-state copying mechanism, which only transfers state when it is
requested from within the new version. This ensures that the application stays
responsive during dynamic updating as all state does not have to be transferred at
once. In case all state had to be transferred at once, the end-user would experience a
transition bump, where the application turns temporally inaccessible.

4 Benchmarking Gosh! and JRebel

We have used SPECjvm2008 to measure the steady-state performance overhead intro-
duced by Gosh! and JRebel 4.5.2. We chose to compare Gosh! with JRebel and not
DCEVM, as Gosh! and JRebel are both application-level approaches whereas DCEVM is
based on a modified Java HotSpotTM VM. As shown by Fig. 2, Gosh! and JRebel are
comparable in performance, both approaches also show similar bottlenecks. The tests were
performed so both Gosh! and JRebel identified the benchmark classes as update-enabled.

Since the SPECjvm2008 test only allowed us to measure the steady-state perfor-
mance overhead before updating we also designed a number of micro benchmarks to
measure the run-time overhead imposed by newly inserted code after updating. The
result of our recursive Fibonacci number benchmarks is shown in Fig. 3. The dynamic
update simply renames the recursive method, thus simulating the insertion of a new
method. The benchmark results show that Gosh! is faster than JRebel both before and
after an update. Furthermore, the results also show that the runtime overhead remains

104 A.R. Gregersen et al.

constant for Gosh! after updating whereas it increases drastically for JRebel. Hence,
Gosh! demonstrates that it scales for supporting continues updating.

5 Experience

To evaluate practical application of Gosh!, we made four updates using five revisions of
an in-house-developed version of the classical arcade game Breakout. The first version
of the game contains 14 classes and 1.012 lines of code, which developed into 36 classes
and 2.405 lines of code in the final version. The five revisions of the game contain many
non-trivial code changes. A total of 120 code changes were found by manual inspection.
Each code change has been classified according to the classification developed in [15].
Table 2 summarizes the code changes found for successive revisions. The ID numbering
of the code changes is not consecutive, as we have only listed the code changes that took
place between successive revisions. A blank field in the table indicates that no occur-
rences of the code change were found. The last column in the table summarizes the
frequency of each code change for all revisions. We included this column to show how
often a particular code change occurs during development of the game.

The experiment showed that the Breakout game could be successfully updated from
one revision to the next, however, under some circumstances the applied updating
sequence resulted in a run-time behavior that was quite different from that of a cold
restart of the game. Updates that resulted in different behavior did so, because they
introduced code changes that caused run-time phenomena. A classification of run-time
phenomena in dynamic software updating was first introduced in [28]. The code
changes listed in Table 3 were herein identified as the cause of these phenomena. It is
important to note that these code changes may cause run-time phenomena, but that it
is not always the case. Whether run-time phenomena do occur is very dependent on the
application’s design and the time of updating.

Fig. 2. Gosh! vs. JRebel 4.5.2 [operations/min.].

State of the Art of Dynamic Software Updating in Java 105

5.1 Phantom Objects

Phantom Objects are live objects whose classes have been removed by a dynamic
update. Whilst phantom objects will continue to exist in the system, their existence in
the updated application will be void. Hence, if such objects are part of the existing
application state, the updated application may try to reference them indirectly through,
for instance, an array or a collection. Although removing classes is typically dis-
couraged, there are situations where classes are either in-lined or renamed due to
refactoring. For the DSU systems discussed in this paper, in-lining and class renaming
corresponds to class-removed and class-added operations. Likewise, the use of dayfly

Fig. 3. Recursive Fibonacci Benchmark [operations/min.].

Table 2. Code change analysis of Breakout.

ID Code change description R1-R2 R2-R3 R3-R4 R4-R5 %

6 Class added 2 9 3 3 14
30 Constructor implementation

changed in class
1 1 2

33 Instance method added to class 3 11 2 8 20
34 Instance method removed from class 2 2
35 Instance method renamed in class 4 3
37 Instance method return type

changed in class
4 3

38 Instance method implementation
changed in class

12 11 3 10 30

44 Static method implementation
changed in class

4 3

68 Instance field added to class 2 2 3
84 Interface added 1 1
120 Resource addeda 8 1 4 8 18
121 Resource removeda 1 1

106 A.R. Gregersen et al.

classes [29] is another example of class removals. Dayfly classes are classes that are
typically created for evaluating a new idea and then removed shortly thereafter.

5.2 Absent State

Absent State refers to the situation where objects created in a former version lack state
defined by the updated versions of their classes. Such state would typically have been
created during a cold restart by an extra argument in a modified constructor.

5.3 Lost State

Lost State happens when an updated class makes binary incompatible changes to the
type of a member field. E.g. change the field ‘name’ of type String to type Name. Given
that it is not possible for the automatic state-transfer mechanism of Gosh! to auto-
matically deduct how a changed type relates to a previously declared type, the run-time
effect of changing the field type is that the field value for all existing objects of that
class is lost and the new value is set to the default value.

5.4 Oblivious Update

Oblivious Update refers to the situation where some or all features introduced in the
new revision are missing after updating. That is, the run-time behavior of the updated
application is different from that of a cold restart. Changing constructors to initialize
new state fields is often the cause for oblivious updates, as constructor changes will not
have any effect on already created objects.

Table 3. Runtime Phenomena.

ID Code change description Possible run-time
phenomenon

7 Class removed Phantom objects
8 Class renamed Phantom objects/Lost

State
16 Modifier abstract added to class Phantom objects
6 Class added Absent state
22 Super class of class changed Absent state
68/71 Instance/static field added to class Absent state
21 Modifier static removed from inner class Absent state
70/73 Instance/static field type changed in class Lost state
65 Static initialization impl. changed in class Oblivious update
30 Constructor impl. changed in class Oblivious update
114 Static field value changed Broken assumption
38/44 Instance/static method impl. changed (e.g.,

conditional statement, method split/merged)
Broken assumption/
Transient inconsistency

State of the Art of Dynamic Software Updating in Java 107

5.5 Broken Assumption

Broken Assumption may surface when constraints governing the interrelationship
between program state and program logic change between successive revisions. If, for
instance, the value of a member field, e.g. a counter, depends on some other member
field, e.g. a constant, then changing either the value of the constant or the logic of the
code maintaining this interdependency may break objects when moved to the new
class. Exception-based program termination is often the result.

5.6 Transient Inconsistency

Transient Inconsistency refers to the situation where an updated application is tem-
porally brought into a run-time state that the new version of the application would
never enter after a cold restart. If the updated application does not enter a valid run-time
state in the new version after a finite period of time, it is said to be captured in an
erroneous state. Erroneous state can be caused by a Broken Assumption that does not
produce any run-time exceptions.

5.7 Observations Based on Phenomena

An interesting example of the Phantom Object and Lost State phenomena can be
observed if we perform a dynamic roll-back by dynamically updating revision 4 back
to revision 3 in the middle of a level. The resulting run-time effect of dynamic update is
shown in Fig. 4. Here we see that the special bricks introduced in revision 4 disappear
after the roll-back to revision 3. This happens because revision 4 uses subclasses of the
abstract parent class (Brick.class) to model special feature bricks, such as concrete
bricks and bonus bricks that drop bonuses when hit. This roll-back corresponds to a
class-removed code change, as the subclasses do not exist in revision 3. Hence, the roll-
back resulted in a run-time behavior that is different from that of a cold restart, where
the brick wall would have appeared solid consisting of only blue bricks. However, this

Fig. 4. Disappearing objects after class removals.

108 A.R. Gregersen et al.

effect is a Transient Inconsistency as the brick wall is drawn correctly when continuing
to the next game level.

We observed during our experiments with dynamically updating of the Breakout game
that the result of a dynamic update is highly dependent on application design. The roll-
back goes through despite the occurrence of run-time phenomena, because of a loosely
coupled design that uses a lookup service for storing the brick wall. An alternative design
storing the brick wall in an array of type Brick[][] would result in program termination due
to a null pointer exception, because the state-migration mechanism in Gosh! cannot map
objects of subclasses for special feature bricks in revision 4 to any objects in revision 3, as
the subclasses do not exist here. Hence, the state-migration mechanism will instead insert
null references in place of the original special brick objects in the array. It is these null-
references that cause program termination due to a null pointer exception when traversing
the array. More examples on the run-time phenomena and their causes are given in [28].

6 Merging Gosh! Dynamic Updating Model with JRebel

As said in Sect. 3, Zeroturnaround acquired what was formerly known as Javeleon, in
order to fill out the missing gap in JRebel’s current updating model, where changes to
the inheritance hierarchy are not supported. This section will explain some of the new
challenges that arise when merging those very different dynamic updating models. This
section reports what have shown to be the most challenging tasks in the process of
fitting the Gosh! model to the existing JRebel plug-ins. This is done by first listing the
top 3 challenges followed by more detailed explanations in separate subsections.

The top 3 challenges (in non-prioritized order) have been:

1. Bootstrapping the JVM.
2. Context-specific runtime updates.
3. Determining which classes are updateable in general.

6.1 Bootstrapping the JVM

The updating model in Gosh! requires that even classes that are never updated are
transformed to accommodate changes to subclasses. This accounts for all classes in the
system, and therefore also the classes that are loaded in the very early phase of the JVM
startup, called the bootstrap classes. Gosh! has previously solved this by using a so-
called Java agent which can hook into class loading events before they are defined into
the JVM. The main difficulty with the bootstrap classes is that these classes are already
defined within the JVM and therefore they can only be changed in accordance to the
built-in HotSwap mechanism. Hence only method body modifications are possible,
which does not provide the change flexibility required by Gosh!. In Gosh! this was
solved by taking a novel approach that allowed to transform the bootstrap classes
without re-defining them into the existing JVM, then saving the transformed bootstrap
classes at a well-defined location (e.g. user home dir or temp folder). Having the
transformed bootstrap classes at hand, a new Java process was spawned using a special
JVM option to prepend the transformed bootstrap classes, thereby allowing the new

State of the Art of Dynamic Software Updating in Java 109

process to be bootstrapped with already transformed classes. Unfortunately, this had
the effect (due to technicalities that are omitted here) that debugging was not possible in
this special first run (any subsequent run would simply use the prepend bootstrap
classes option). Furthermore, since the set of bootstrap classes are very different across
JVM vendors and even changes from one Java update to another, hard to track JVM
crashes and weird exception could happen when developers updated the JDK version in
use. In order to fix those issues, the only way was to tell developers to delete the
bootstrap classes, allowing for the special run to re-generate the bootstrap classes with
the changed JDK version in use. In practice, such a solution does not work very well.

The first step towards a more user transparent solution was to hide the bootstrap
generation behind IDE plug-ins. The idea was simple, just coding up functionality that
could hook into the launch process provided by the IDE. At that time, the bootstrap
classes could be generated even before starting up the application for the first time.
More importantly, a check for a valid set of bootstrap classes could be made, and if
found invalid, regeneration of the bootstrap classes would happen without user inter-
vention. Already this was a big step forward. However, there were still problems,
because some developers do not run their applications or startup application servers
from within an IDE, rather they sometimes use special startup scripts which circum-
vents the hook in the IDE launch process.

Having not found the silver bullet, prototyping a native agent that could intercept
the JVM process even before any classes are loaded began. The benefits of such an
approach are obvious, since the code that checks for a valid set of bootstrap classes can
be executed before loading any classes. The price to pay is the necessity for having to
compile the C code for different platforms and OS, which is due to higher maintenance.

6.2 Context-Specific Runtime Updates

When dealing with modern frameworks in the Java ecosystem, lots of configuration
changes, rescanning for changed framework-specific entities (e.g. XML or properties
files) need to be applied in accordance to what actually changed within particular Java
source files. Sometimes, the internal functionality of the frameworks requires specific
operations to be executed within a certain context. Therefore, if the dynamic updating
system operates by picking up class file changes, then applying updates in a special update
thread, it may not be possible to perform the needed changes inside the frameworks,
because it may hold thread local state. The Gosh! updating model does exactly that, which
quickly showed to be a concern in many existing JRebel framework integrations. In some
cases the problems could be resolved by postponing parts of the reconfiguration until the
application thread itself was run. In other cases new integrations were needed, which
added to the effort of bytecode patching the frameworks to match capabilities of Gosh!.

6.3 Determining Which Classes are Updateable in General

Both JRebel and Gosh! dynamic updating systems are based upon patching bytecode at
load-time to allow for changes to the patched classes at runtime. In order to minimize
the patching overhead (e.g. to reduce startup overhead, runtime overhead etc.) as much

110 A.R. Gregersen et al.

as possible, it is extremely important to be able to determine upfront which classes
should be made updateable. As said before, in Gosh! all classes including system
classes must be patched to allow for updates in updateable subclasses. This is not the
case for JRebel, which only needs to patch the updateable part of the application.
However, even in Gosh! the set of transformations needed to make a system class
behave correctly is much smaller than what is required for updateable classes.
Therefore, the goal is still to make as few classes updateable as possible without having
to ask users to specify exactly which ones (for better ease of use). A naive approach
that is partly taken by JRebel, is to make all classes that can be found from a path that is
not inside a jar file updateable. This simple approach actually works quite well in many
situations. However, there are some cases where users have jar files that they would
also like to update at runtime. For that reason JRebel provides the ability to pickup
user-specific directories and jar files from special XML-files called rebel.xml. For the
Gosh! updating model things are a bit more complicated, because even if some classes
will definitely not change at runtime (inside static jar files) some of these classes may
actually have updateable types in their public interface (API). This becomes trouble-
some after applying updates to the updateable types within the API, once client code
later calls into those interface methods with updated objects for which their classes by
nature of the Gosh! model are distinct types from what is linked into the JVM. This will
lead to some very hard to track no such method errors at runtime.

Therefore, special care must be taken in order to determine whether or not there are
conflicting types within the public API of what appears to be pure “static” classes. If
such occurrences are found, the conflicting classes can simply be made updateable,
ensuring that they will be lifted to the parallel universe also.

7 Conclusion

In this paper, we have provided an overview of the current state-of-the-art of the DSU
systems targeting Java, by comparing the set of code changes they support. The
comparison shows that Gosh! is currently the most comprehensive publicly available
DSU system available. Furthermore, we have benchmarked Gosh! against the only
commercially available DSU system JRebel and shown that Gosh! delivers comparable
run-time performance before updating and considerable better performance after
updating. Whereas JRebel’s updating model introduces a significant overhead for
handling changed code, Gosh!’s updating model scales and continues to perform with
the same constant run-time overhead. Hence, Gosh! shows the capability to provide
support for dynamic updating of long-lived applications, like application- and web-
servers. To evaluate Gosh!, we made four updates using five revisions of an in-house
developed version of the classical arcade game Breakout. The experiment showed that
it was possible to incrementally update the consecutive revisions of the Breakout game.
However, what the experiment also showed was that dynamic updating may result in
so-called run-time phenomena. I.e., situations where the run-time behavior of the
updated application diverges from the behavior expected after a cold restart. Hence, to
increase predictability of DSU systems there is a need for creating dynamic impact
analysis tools that can determine whether code changes differentiating successive

State of the Art of Dynamic Software Updating in Java 111

revisions may potentially lead to manifestation of run-time phenomena or not. Dynamic
analysis is necessary as both the run-time state and the time of updating have signif-
icant impact on the result of an update, hence static impact analysis alone cannot
determine whether a dynamic update will be successful, it can only identify potential
risks of run-time phenomena. The advent of dynamic analysis tools will, among other
things, determine the future success and feasibility of dynamic updating for mission
critical software systems. Finally, we described the main challenges of integrating the
Gosh! dynamic updating model, formerly known as Javeleon, with JRebel, after Ze-
roturnaround acquired it in spring 2013.

References

1. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) EWSPT
1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

2. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating for C. In:
Proceedings of PLDI 2006

3. Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.C.: POLUS: A POwerful live updating system.
In: Proceedings of ICSE 2007

4. Makris, K., Bazzi, R.: Multi-threaded dynamic software updates using stack reconstruction.
In: Proceedings of USENIX Annual Technical Conference 2009

5. Altekar, G., Bagrak, I., Burstein, P., Schultz, A.: OPUS: Online patches and updates for
security. In: Proceedings of USENIX Security 2005

6. Soules, C., Appavoo, J., Hui, K., Da Silva, D., Ganger, G., Krieger, O., Stumm, M.,
Wisniewski, R., Auslander, M., Ostrowski, M., Rosenburg, B., Xenidis, J.: System support
for online reconfiguration. In: Proceedings of USENIX Annual Technical Conference 2003

7. Baumann, A., Appavoo, J., Da Silva, D., Kerr, J., Krieger, O., Wisniewski, R.W.: Providing
dynamic update in an operating system. In: Proceedings of USENIX Annual Technical
Conference 2005

8. Baumann, A., Appavoo, J., Wisniewski, R.W., Da Silva, D., Krieger, O., Heiser, G.:
Reboots are for hardware: challenges and solutions to updating an operating system on the
fly. In: Proceedings of USENIX Annual Technical Conference 2007

9. Makris, K., Ryu, K.D.: Dynamic and adaptive updates of non-quiescent subsystems in
commodity operating system kernels. In: Proceedings of EuroSys 2007

10. Chen, H., Chen, R., Zhang, F., Zang, B., Yew, P.C.: Live updating operating systems using
virtualization. In: Proceedings of VEE 2006

11. Arnold, J., Kaashoek, F.: Ksplice: Automatic rebootless kernel updates. In: Proceedings of
EuroSys 2009

12. Sun Microsystems. Java Platform Debugger Architecture, 2004. This supports class
replacement. See http://java.sun.com/javase/6/docs/technotes/guides/jpda/

13. Microsoft Corporation. Edit and continue (2008). http://msdn2.microsoft.com/en-s/library/
bcew296c.aspx

14. Mort Bay Consulting web site, vol. 2002, (2002). http://jetty.mortbay.org/jetty/index.html
15. Gustavson, J.: A Classification of Unanticipated Runtime Software Changes in Java. In Proc,

ICSM (2003)
16. Ritzau, T., Andersson, J.: Dynamic deployment of Java applications. In Proc, Java for

Embedded Systems Workshop (2000)

112 A.R. Gregersen et al.

http://java.sun.com/javase/6/docs/technotes/guides/jpda/
http://msdn2.microsoft.com/en-s/library/bcew296c.aspx
http://msdn2.microsoft.com/en-s/library/bcew296c.aspx
http://jetty.mortbay.org/jetty/index.html

17. Malabarba, S., Fabrikant, A., Gragg, J., Barr, E., Barnes, J.: Runtime support for type-safe
dynamic java classes. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 337–361.
Springer, Heidelberg (2000)

18. Orso, A., Rao, A., Harrold, M.J.: A technique for dynamic updating of Java software. In:
Proceedings of ICSM 2002

19. Bierman, G., Parkinson, M., Boyland, J.: UpgradeJ: incremental typechecking for class
upgrades. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 235–259. Springer,
Heidelberg (2008)

20. Kabanov, J.: JRebel tool demo. In: Proceedings of Bytecode 2010 (2010)
21. Würthinger, T., Wimmer, C., Stadler, L.: Dynamic code evolution for Java. In: Proceedings

of PPPJ 2010
22. Dmitriev, M.: Safe evolution of large and long-lived java applications. Ph.D. Thesis,

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland
(2001)

23. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-centric
approach. SIGPLAN 44(6), 1–12 (2009)

24. Gregersen, A.R., Rasmussen, M., Jørgensen, B.N.: Dynamic software updating with Gosh! -
current status and the road ahead. In: Proceedings of ICSOFT 2013 (2013)

25. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of Java applications—balancing change
flexibility vs programming transparency. J. Softw. Maint. Evol. Res. Pract. 21, 81–112
(2009)

26. Sato, Y., Chiba, S.: Loosely-separated “Sister” namespaces in Java. In: Black, A.P. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 49–70. Springer, Heidelberg (2005)

27. Gregersen, A.R., Hadaytullah, K.K., Jørgensen, B.N.: an integrated platform for dynamic
software updating and its application in self-* systems. In: Proceedings of SCET 2012

28. Gregersen, A.R., Jørgensen, B.N.: Run-time phenomena in dynamic software updating:
causes and effects. In: Proceedings of IWPSE-EVOL 2011

29. Lanza, M., Ducasse, S., Gall, H., Pinzger, M.: CodeCrawler: an information visualization
tool for program comprehension. In: Proceedings of ICSE 2005

State of the Art of Dynamic Software Updating in Java 113

Compiling Functional to Scripting Languages

Paola Giannini and Albert Shaqiri(B)

Computer Science Institute, DiSIT, Università del Piemonte Orientale,
Alessandria, Italy

albert.shaqiri@yahoo.com

http://www.di.unipmn.it

Abstract. In this paper we consider the problem of translating a core
typed functional language, F#(including mutable variables), into script-
ing languages such as JavaScript or Python. We abstract the most sig-
nificant characteristics of such scripting languages in an intermediate
language (IL for short), which is an imperative language, with constructs
for handling safely pieces of code containing free variables. We define an
operational semantics for IL and highlight the proof of correctness of the
translation.

Keywords: Scripting languages · Functional languages · Intermediate
language · Translation

1 Introduction

Programming in JavaScript (or any other dynamically typed language) opti-
mizes the programming time, but can cause problems when big applications
are created. The absence of type checking, may cause unexpected application
behaviour followed by onerous debugging, and introduce serious difficulties in
the maintenance of medium to large applications. For this reason dynamically
typed languages are used mostly for prototyping and quick scripting.

To deal with these problems we propose to use dynamically typed languages
as “assembly languages” to which we translate the source code from F# which is
statically typed. In this way, we take advantage of the F# type checker and type
inference system, as well as other F# constructs and paradigms such as pattern
matching, classes, discriminated unions, namespaces, etc., and we may use the
safe imperative features introduced via F# mutable variables. There are also the
advantages of using an IDE such as Microsoft Visual Studio (code organization,
debugging tools, IntelliSense, etc.).

To provide translation to different target languages we introduce an inter-
mediate language, IL for short. This is useful, for instance, for translating to
Python that does not have complete support for functions as first class concept,
or for translating to JavaScript, using or not libraries such as jQuery.

This work has been partially supported by Progetto MIUR PRIN CINA Prot.
2010LHT4KM.

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 114–130, 2014.
DOI: 10.1007/978-3-662-44920-2 8

Compiling Functional to Scripting Languages 115

Our aim is to prove the correctness of the compilers produced. To do that we
formalize IL, and the translation from the source language to IL. The language
IL is imperative, and has some of the characteristics of the scripting languages
that makes them flexible, but difficult to check, such as blocks in which definition
and use of variables may be interleaved, and in which use of a variable may
precede its definition. (IL is partly inspired by IntegerPython, see [1].) Therefore,
the proof of correctness of the translation from the source language F# to IL
already covers most of the gap from F# to the target scripting languages. In IL
we also have some construct that may be used to manipulate safely fragments
of open code.

The paper is organized as follows. In Sect. 2, we introduce the challenges of
the translation from F# to Python and JavaScript via some examples, that led
us to introduce our intermediate language. We also outline the translation from
IL to both JavaScript and Python. In Sect. 3 we define the fragment of F# used
as source language, and in Sect. 4 we formalize IL. The formal translation from
F# to IL is defined in Sect. 5, where it is also outlined the proof of preservation
of the dynamic semantics of F#. In Sect. 6 we compare our work with the work
of others, and finally in Sect. 7 we summarize our work, discussing briefly the
implementation issues and highlighting our plans for future work.

2 Translation by Examples: Design Choices

In the fragment of F# we consider as source of our translation we have the typical
functional language constructs: function definition, integers, booleans, addition
and the conditional expression, and an imperative fragment including mutable
variables, assignment, and sequences of expressions. On the left-hand-side of
an assignment there must be a variable that was introduced with the mutable

modifier.

Sequences of Expressions. Many F# constructs can be directly mapped to
JavaScript (or Python), but when this is not the case we obtain a semantically
equivalent behaviour by using the primitives offered by the target language. E.g.,
in F# a sequence of expressions is itself an expression, while in JavaScript and
Python it is a statement. Suppose our application often requires to sum the
elements of a list and immediately after it needs to search for an element in that
same list. Instead of doing two runs, we could write a function that in a single run
does both. On the left-hand side of Fig. 1 we have one possible implementation.
The variable res holds the result of the sum of the elements of the list, and it
is used to illustrate some theoretical problems that arise during the translation
process.

As we can see, on the right-hand-side of “let res=” we have a sequence of
expressions: the definition of the mutable variable sum followed by a for loop
that at the same time calculates the sum and searches for an element, etc. This
sequence is, in F#, an expression. If we directly map this code into JavaScript
we obtain the syntactically incorrect code on the right-hand side of Fig. 1.

116 P. Giannini and A. Shaqiri

Fig. 1. F# program containing sequence of expressions and the corresponding naive
translation into JavaScript.

Fig. 2. Correct JavaScript and Python translations.

This program is syntactically wrong, since on the right-hand-side of an
assignment we must have an expression, while a sequence of expressions is, in
JavaScript, a statement. To transform a sequence of statements in an expression,
in JavaScript, we wrap the sequence into a function, and to execute it we call
the function, i.e., we use a JavaScript closure and application. In this way, the
code on the left-hand-side of Fig. 2 is the correct translation of our F# function.

Unfortunately, the same cannot be done in Python as its support for closures
is partial. So we have to define a temporary function, say temp2, in the global
scope, and to execute it we have to call temp2 in the place where the original
sequence of expressions should be. However, the variables found, lst, and x will
be out of the scope of their definitions, and this would make the translation
wrong. To obtain a behavior semantically equivalent, we have to pass to temp2

the variables lst and x by value, and found by reference, since it may be modified
in the body of temp2. Note that, this problem is not present in JavaScript where

Compiling Functional to Scripting Languages 117

the closure is defined and called in the scope of found, lst, and x. Another
problem in Python is related to lambdas, whose body must be an expression (not
a sequence). So we define the function temp1 whose body contains the statements
that should be placed where an expression is expected. On the right-hand-side
of Fig. 2 we can see the translation of the F# code into Python.

The class ByRef is used to wrap the mutable variable found to obtain a para-
meter called by reference. The Python code generator inserts the needed wrap-
ping and unwrapping before and after the call of temp2, and in the body of
temp1.

The problem we illustrated above occurs whenever in the target language we
get a statement where an expression is expected. Since target languages handle
the situation differently, we abstract from this specific problem, and consider
the more general problem of moving “open code” from its context, replacing it
with an expression having the same behavior. Taking inspiration from work on
dynamic binding, see [2] and recent work by the authors, see [3], we define a
pair of boxing/unboxing contructs, that we call: code, and exc. The construct
code wraps “open code” (in this case a sequence of expressions) providing the
information on the environment needed for its execution, that is the mutable
and immutable variables occurring in it. This construct defines a value, similar
to a function closure. The construct exc is used to execute the code contained
in code. To do this it must provide values for the immutable variables (in our
example l, and u), and bindings for the mutable variables (in our example w) to
variables in the current environment.

With these constructs, the F# code on the left-hand-side of Fig. 1 would be
translated into the IL code in Fig. 3.

All the let constructs are translated to variable definitions. The sequence of
statements on the right-hand-side of “let res=” is packed into a code expres-
sion. Its first component is the translation of the sequence of expressions, the
second w->EV says that in the execution environment there should be a rebind-
ing of the global name EV to a variable. Such variable may (in this case will) be
modified by the execution of the code through assignment to the local variable w.

Fig. 3. Translation of F# sequence of expressions in the intermediate language.

118 P. Giannini and A. Shaqiri

The third and fourth components provide a value for l, and u. Such variables
are not modified by the execution of the code. We choose to use global names to
unbind/rebind mutable variables, w in our example, so that the local variables
can be consistently renamed without affecting the semantics of the construct as
formal parameters of functions. Instead names such as EV are global to the whole
program.

To obtain the result that we would have by evaluating the sequence of
statements in the current environment, to the variable res it is assigned the
exc expression applied to y, which is bound to code(· · ·). The name EV is bound
to the (mutable) variable found and the variables l and u to the values of the
variables lst and x, respectively. Regarding the different treatment of mutable
and immutable variables, notice that, even though our intermediate language is
imperative, we know, since we are translating F# code that some variables are
immutable, so we have to provide just the initial value.

The constructs code and exc have a different translation into the target
languages JavaScript and Python, in particular for JavaScript we can take advan-
tage from the fact that the closure wrapping the code can be inlined in the posi-
tion where we have exc, so we can substitute both the mutable and immutable
variables, instead the translation to Python treats the two kind of variables
differently.

Dynamic Type Checking. JavaScript, and many dynamically typed lan-
guages, lack a rigorous type system. On the contrary, in F# if we write a function
that adds two integers, like the one on the left-hand side of Fig. 4, we get the
type in the right-hand side of Fig. 4, because, even though we do not specify type
information, the interpreter infers the type shown after the function definition.
Therefore, there is no way of calling add with arguments that are not of type
integer. However, if our translation in the intermediate code would produce a
function whose body was simply x+y, which in turn could be translated in the
corresponding expression in both JavaScript and Python, the target JavaScript
function could be called, e.g., add("foo")(1) and obtain the string "foo1" which
is not what we wanted. In Python the situation would be better, in the sense
that we cannot call add on a string and an integer, however, due to overloading
we can call it on two floating points obtaining a floating point. This problem
arises for top-level functions, that is functions which are not local to the F# code,
because these functions may be called with actual parameters which are not the
translation of F# expressions. To prevent this, the translation in the intermediate
language, which follows, insert dynamic checks on parameters of functions (see
Fig. 5). These checks are translated into dynamic type checking in JavaScript
and Python. In JavaScript we use the function checkInt (that we defined) that
returns its argument if it is an integer, and fails, raising an exception, if the
parameter is not an integer.

Compiling Functional to Scripting Languages 119

Fig. 4. F# type inference.

Fig. 5. Type checking code injection.

3 Core F#

In the syntax for the core F# language, presented below, we did not include the
for construct, tuples and lists, which are, anyway, part of the source language
of our implementation, see [4], instead we included constructs, such as let, let
mutable, and let rec that are used in the practice of programming and that raise
challenges in the translation to dynamic languages. We also did not introduce
imperative features through reference types, but through mutable variables, since
this is closer to the imperative style of programming. We present a typed version
of F#, and in the types we omit type variables, as they do not add complexity
to the translation. The following is the grammar for F# expressions:

In the previous grammar, the square brackets “[. . .]” delimit an optional part of
the syntax, we use x , y , z for variable names, and the overbar sequence nota-
tion is used according to [5]. For instance: “x:T=v” stands for “x1:T1=v1 · · · xn:
Tn=vn”. The empty sequence is denoted by “∅”. For an F# expressions e the
free variables of e, FV (e) are defined in the standard way. An expression e is
closed if FV (e) = ∅. The let rec construct introduces mutually recursive vari-
ables. Variable names, in this constructs are meant to be bound to functions.
The let construct (followed by an optional mutable modifier) binds the variable
x to the value resulting from the evaluation of the expression on the right-hand-
side of = in the evaluation of the body of the construct. As usual the notation
let f x=e1 in e2 is a short hand for let f =fun x :T->e1 in e2 where T is the
type of e1. Similarly for let rec. In the (concrete syntax) of the examples, as in
F#, “,” and in are substituted by a return without indentation. When the let

construct is followed by mutable the variable introduced is mutable. Only muta-
ble variables may be used on the left-hand-side of an assignment. This restriction
is enforced by the type system of the language. The type system enforces also
the restriction that the body of a function cannot contain free mutable variables,
even though it may contain bound mutable variables.

120 P. Giannini and A. Shaqiri

Fig. 6. Typing rules of core F#.

A type environment Γ is defined by: Γ ::= x :T , Γ | x :T !, Γ | ∅ that is Γ
associates variables with types, possibly followed by !. If the type is followed by
! this means that the variable was introduced with the mutable modifier. Let
† denote either ! or the empty string, and let dom(Γ) = {x | x :T † ∈ Γ}. We
assume that for any variable x , in Γ there is at most an associated type. With
Γ � e : T we mean that the expression e is well-typed and has type T in the
environment Γ . The rules are standard and can be found in Fig. 6.

Our core F# language has imperative features, so for the definition of the
operational semantics we use a store. The runtime configurations are pairs
“expression, store”, e | ρ, where a store ρ is a mapping between locations and
values: l1 �→ v1, . . . ln �→ vn. In Fig. 7 we define: runtime expressions, which are
expressions including locations (generated by the evaluation of mutable vari-
ables definitions); evaluation contexts defining, in conjunction with rule (Ctx-F),
the reduction strategy of the language, which is call-by-value, with evaluation
left-to-right, and rules for the evaluation relation, −→.
In the rules, with e[x := e ′] we denote the result of substituting x with e ′ in e
with renaming if needed. Moreover, ρ[x �→ v] is defined by: ρ[x �→ v](x) = v ,
and ρ[x �→ v](y) = ρ(y), when x �= y . Note that if the let introduces a mutable

variable, rule (LetMut-F), a new location l is generated, added to the store with
the initial value v , and the variable x is substituted with l . Therefore, during
evaluation, expressions may contain locations. Indeed, since variables on the
left-hand-side of assignments where always introduced by let mutable, when an
assignment is evaluated, rule (Assign-F), we have a configuration: l<-v | ρ which is

Compiling Functional to Scripting Languages 121

Fig. 7. Operational semantics of core F#.

evaluated by changing the value of the location l to be v . The evaluation of let

rec, rule (Let-F), produces the body e in which each variable xi is substituted
with a let rec expression with body vi, so that if xi is evaluated all the variables
x will be substituted with their definitions v .

The typing rules in Fig. 6 are for the (source) expression language, so they
do not include a rule for locations. To type run-time expressions we need a store
environment Σ assigning types to locations. The type judgement should therefore
be: Γ | Σ � e : T and the typing rule for locations Γ | Σ � l : Σ(l) (TyLocF). All
the other rules are obtained by putting Γ | Σ on the left-hand-side of � in the
typing rules of Fig. 6. Let Loc(e) be the set of locations occurring in e. In the
following we define well-typed stores, and well-formed configurations.

Definition 1. 1. A store ρ is well-typed with respect to a store environment
Σ, written Σ � ρ, if dom(ρ) = dom(Σ), and for all l ∈ ρ, we have that
∅ | Σ � ρ(l) : Σ(l).

2. The configuration e | ρ is well-formed w.r.t. Σ, written Σ � e | ρ, if Σ � ρ,
FV (e) = ∅, and Loc(e) ⊆ dom(ρ).

Note that since values are closed, in the definition of well-typed stores, the values
associated to locations must be well-typed from the empty type environment.
Types are preserved by reduction, and progress holds, as the following two the-
orems state.

Theorem 1 (Preservation). Let Γ | Σ � e : T, and ρ be such that Σ � e | ρ.
If e | ρ −→ e ′ | ρ′, then Γ | Σ′ � e ′ : T, for some Σ′ ⊇ Σ such that Σ′ � e ′ | ρ′.

122 P. Giannini and A. Shaqiri

Theorem 2 (Progress). Let ∅ | Σ � e : T, then either e is a value or for any
store ρ such that Σ � ρ there are, e ′, and ρ′ such that e | ρ −→ e ′ | ρ′.

4 Intermediate Language

The intermediate language, IL, is an imperative language with three syntactic cat-
egories: expressions, statements and blocks. We introduce the construct that wraps
code that need to be moved from its definition environment, and the one that exe-
cutes such code in the runtime environment. The syntax of IL is given below:

There are three syntactic categories: blocks, statements, and expressions. We
introduce the distinction between expressions and statements as many target
languages do. This facilitates the translation process and prevents some errors
while building the intermediate abstract syntax tree, see [6] for a similar choice.
Blocks are sequences of statements or expressions ended by an expression. In our
translation we flatten the nested structure of let constructs so we need blocks
in which definitions and expressions/statements may be intermixed. Moreover,
since we do not have a specific let rec construct use of a variable may precede
its definition, e.g., when defining mutually recursive (or simply recursive) func-
tions. Statements may be either assignments or variable definitions. Our compiler
handles many more statements, but these are enough to show the ideas behind
the design of IL. Our intermediate language is inspired (especially for the block
structure) to IntegerPython, see [1]. Variables are statically scoped, in the sense
that, if there is a definition of the variable x in a block, all the free occurrences
of x in the block refer to this definition. However, we can have occurrences of x
preceding its definition. E.g.,

def f=fun y->x;def x=5;f 2

correctly returns 5, whereas the following code would produce a run-time error:

def x=7;if (x>3) then {def f=fun y->{x};f 2;def x=5; 3} else {4}

since when f is called the variable x , defined in the inner block, has not yet been
assigned a value. Instead, if x was not defined in the inner block, like in the
following

def x7;if (x>3) then {def f=fun y->{x};f 2} else {4}

the block would return 7, since x is bound in the enclosing block. This is also the
behaviour in JavaScript and Python. We have checks on primitive types (int
and bool) and on functions (fun) which are generated during the translation of
top-level function definitions, as we will see in the next section. The construct

Compiling Functional to Scripting Languages 123

Fig. 8. Runtime expressions, evaluation contexts and operational semantics rule
for IL.

code is used to move a block, bl , outside its definition context. To produce
a closed term, the mutable variables free in bl , y , are unbound by associating
them to global names Y not subject to renaming. The variables x, instead, are
immutable variables free in bl , i.e., they are not modified by the execution of
bl . The metavariables, X , Y , Z are used to denote names. Values are integers,
booleans, closed functions (as for F#), and closed code.

The operational semantics of IL, see Fig. 8, is given, by defining a reduction
relation for blocks. So our configurations will be pairs: “block, store”. In order
to specify the order of reduction we define evaluation contexts for blocks, S,
containing evaluation contexts for expressions, E . As for F# we have to add to the
syntax of expressions locations, l , as they are generated during the evaluation of
blocks. Moreover, we add two constructs wrapping blocks: {bl} and eval(bl). The
first will be used to do the initial allocation of variables needed to reproduce the
previously described semantics, and the second to execute a block in a position
where an expression would be required. Note that these expressions are not in
IL but are just introduced to describe its semantics.

As for F#, the evaluation contexts of Fig. 8 specify a call-by-value, left-to-right
reduction strategy.

124 P. Giannini and A. Shaqiri

The first rule, (Alloc), is used before the evaluation of a block to allocate
the variables defined in a block. The function def mapping a block to the set of
variables defined in it is defined by: def (e) = ∅, def (e; bl) = def (x<-e; bl) = def (bl),
and def (def x=e; bl) = {x} ∪ def (bl). The initial value of the locations is set to
undefined, ?, so if an access to a variable is done before the evaluation of an
assignment or a definition for this variable undErr is returned. Note that, this
will never happen for IL programs which are translation of F# programs. After
this initial allocation a block will not contain free variables (but locations).
Rules (Assign) and (Def) continue the execution of the expressions/statements
in a block in a store in which the value of location l is v . So, after this, the
value of l is not undefined. Rule (Exp) throws away the value of an expression
and continues the execution of the block. The rules for +, and if are trivial.
Rule (App) allocates a location in the memory, assigning the value of the actual
parameter to it, then the location is substituted for the formal parameter in the
body of the function. Note that, being in an imperative language, the formal
parameter could be modified in the body of the function, however, this change
would not be visible in the calling environment, since the location is new. After
this allocation the execution continues with the evaluation of the body {bl}, i.e.,
applying rule (Alloc). The rules (TypeYes), and (TypeNo) check whether a value is of
the right primitive type. The function typeof from values to types is defined by:
typeof (tr) = typeof (fls) = bool, typeof (n) = int, typeof (fun x->{bl}) = fun, and
undefined for the other values. The evaluation of the exc construct, rule (Code),
expects the first argument to be a code, such that the names of its unbindings
are a subset of the one of the rebindings provided by exc. If this is the case, it
substitutes the values for the immutable variables x, instead, for the unbound
variables y it substitutes the associated locations (via the correspondence of
the names in Y and Z). So through assignment to the (local) variables in y

the execution environment may be modified. The resulting block is wrapped
in the eval construct. Rule (Eval) returns its value. (Evaluation inside eval is
done by the (Ctx) rule.) Finally, access to a location may return undErr if the
location has not been initialized with an assignment of or a definition statement.
Rule (Ctx) evaluates the first sub-expression selected by the evaluation context.
In case the evaluation produces and error rule (CtxError) returns the error at the
top level. Note that, given a block bl if there is S and e such that bl = S[e], then
S is unique. So evaluation is deterministic.

In order to introduce the notion of well-formed configuration, we have to
define the free variables of a block, FV (bl). We first define the free variables of
an expression, FV (e), by:

– FV (x) = {x}, FV (n) = FV (tr) = FV (fls) = ∅,
– FV (e1+e2) = FV (e1 e2) = FV (e1) ∪ FV (e2),
– FV (fun x->{bl}) = FV (bl) − {x},
– FV (if e then {bl1} else {bl2}) = FV (bl1) ∪ FV (bl2) ∪ FV (e),
– FV (check(Tg , e)) = FV (e), FV (code({bl}, y �→ Y , x))) = FV (bl) − {x, y}, and
– FV (exc(e,Y �→ y , e)) = FV (e) ∪ {y} ∪⋃0≤i≤n FV (ei).

Compiling Functional to Scripting Languages 125

Since we may have forward definitions, to define the free variable of a block we
first define the variables of a block, Var(bl), by

– Var(x<-e; bl) = FV (e) ∪ Var(bl) ∪ {x},
– Var(def x=e; bl) = FV (e; bl) = FV (e) ∪ Var(bl), and
– Var(e) = FV (e).

Then FV (bl) = Var(bl) − def (bl).

Definition 2. The IL configuration bl | ρ is well-formed, if

– FV (bl) = ∅, Loc(bl) ⊆ dom(ρ),
– for all l ∈ dom(ρ), we have that FV (ρ(l)) = ∅, and Loc(ρ(l)) ⊆ dom(ρ).

The operational semantics of Fig. 8 preserves well-formed configurations, as the
following proposition states.

Proposition 1. Let bl | ρ be well-formed, if bl | ρ −→ bl ′ | ρ′, then bl ′ | ρ′ is
well-formed.

An IL program is a closed block, bl . The initial configuration for a program is
{bl} | []. Since an initial configuration is well formed, all the configurations that
we obtain during a computation are well formed.

5 Translation of Core F# to IL

In our translation we flatten the let constructs transforming them into defini-
tions of the corresponding variables followed by the translation of the expression
in their body. Therefore, we have to take into account the fact that in an IL
block we may have forward binding. E.g., if the translation of the F# program
that follows on the left is the IL code on the right: the translation is incorrect,
since in the IL code the occurrence of y in the body of f is bound to the defi-
nition of y that follows. Therefore the F# expression evaluates to 3 whereas its
translation in IL evaluates to 5. In the translation we use renaming to resolve
this problem.

We define two translations of F# expressions. The first to IL expressions,
[[·]]I,M

ex , and the second to IL blocks, [[·]]I,M
bl . The translations are parametrized by

the sets of the immutable variables, I, and mutable variables, M , of the context
of the F# expression that is translated. The translations produce, in addition to
an IL expression/block also a sequence of top level variable definition of variables
bound to code expressions. The metavariable δ denotes a declaration of a variable
“def x=e” and δ a sequence of declarations separated by “;” (semicolon).

126 P. Giannini and A. Shaqiri

Formal Definition of the Translation. Before giving some (the most sig-
nificant) clauses of the formal translation, we introduce the definition of the
wrapping needed to extrude a block from its definition environment and how
the construct exc rebinds it in the run-time environment.

Definition 3. Given an IL block, and the disjoint sets of variables I = {x:T}
and M = {y :T ′}, let blockToExp(bl , I, M) be (exc(z ,Y �→ y , x), δ) where: δ is
def z=code(bl , y �→ Y , x), z is a new variable, and Y are new names.

Let blockToExp(bl , I, M) = (e, δ), the evaluation of the block in which the defini-
tion δ is followed by the expression, e, produces the same result as the evaluation
of the original block, {bl}.

To give the translation of both sequences of expressions and of the let con-
structs, we introduce the formal definition of the top level variable definition
of F# expressions, then we define the renaming needed to avoid the capture of
forward definitions described at the beginning of this section.

Definition 4. 1. Let e be an F# expression, the function def#(e) returning the
set of variables defined at the top level of e is defined as follows:
– def #(let [mutable] x=e1 in e2) = {x} ∪ def #(e2),
– def #(let rec x:T=v in e) = {x} ∪ def #(e),
– def #(e1, e2) = def #(e1) ∪ def #(e2), and
– def #(e) = ∅ for all other expressions e.

2. Let e be an F# expression, and x a set of variables, rn(e, x), renames the top
level definitions of the variables x in e as follows:
– if e is let [mutable] x=e1 in e2, then rn(e, x) is

let [mutable] x=e1 in rn(e2, x) if x �∈ x

let [mutable] z=e1 in rn(e2{x �→ z}, x) if x ∈ x and z is new
– if e is let rec y :T=v in e, then rn(e, x) is

let rec y :T=v in rn(e, x) if y ∩ x = ∅
let rec z :T=(v{y �→ z}) in rn(e{y �→ z}, x) if y ∩ x = ∅ and z are new

– if e is e1, e2 then rn(e, x) is rn(e1, x), rn(e2, x)

– rn(e, x) is e for all other expressions e.

In the following we present the translations for function definitions, sequence
of expressions, and the let construct, which exemplify the technique used. The
translation of F# integer or boolean values to IL is the identity function.

The translations of F# function definitions to IL blocks or expressions:

[[fun x :T->e]]I,Mbl [[fun x :T->e]]I,Mex

are both equal to: (fun x->{bl}, δ) where [[e]]
I∪{x :T},M
bl = (bl , δ). So the translation

of a function produces a function whose body is the translation of the body (to
a block) of the original function. In the translation of the body of the function
the typed variable x is added to the set of free immutable variables I.

In case of top-level definitions, that is functions that could be called with
actual parameters which are not the translation of F# expressions we have to
add the check on the input values, so the translation is as follows:

(fun x->{def y=check(T ′, x); bl [x := y]}, δ)

Compiling Functional to Scripting Languages 127

where T = T ′ if T is equal to int or bool, and T ′ = fun if T is equal to T1 → T2.
We can see that the formal parameter is replaced with a new variable resulting
from the dynamic type checking of the original parameter. See the discussion
about dynamic type checking in Sect. 2.

The translations of an F# sequence of expressions to a IL block is: [[e1, e2]]I,Mbl =

(bl1; bl2, δ; δ
′
)where: [[e1]]I,Mbl = (bl1, δ), [[rn(e2, z)]]I,Mbl = (bl2, δ

′
) and z = def #(e2)∩

FV (e1). The translation of the sequence is the sequence of blocks which are the
translations of the two expressions to blocks. However, before translating the sec-
ond expression, e2, we rename all the variables defined in it that are free in e1, since
in e1 these variables are bound to their definitions in the enclosing environment.
In this way we preserve the semantics of the source language F#.

The translations of an F# sequence of expressions to an IL expression is:
[[e1, e2]]

I,M
ex = (e, δ; δ) where: [[e1, e2]]I,Mbl = (bl , δ) and blockToExp(bl , I, M) = (e, δ).

That is we first translate the sequence to a block, and then return an exc expres-
sion, and the definition of a new variable bound to an code expression, see Defin-
ition 3. Note that the sets of mutable and immutable variable of the environment
are needed to generate the correct matching for the expressions exc and code.

The translation of the let construct to an IL block is:

[[let x=e1 in e2]]
I,M
bl = (def x=e ′

1; bl , δ; δ
′
)

where [[e1]]
I,M
ex = (e ′

1, δ) and [[rn(e2, z)]]
I∪{x:T},M
bl = (bl , δ

′
) with z = def #(e2) ∩

FV (e1), and I, M � e1 : T . That is, we translate e1 into an IL expression and the
body of the let e2 into a block. For the translation of e2 the variable x is added
to the immutable variables of the context. Before translating e2 we rename all
the variables defined in e2 that are free in e1 (as for the translation of sequences
of expressions). Note that, this translation produces a block, the definition of
x followed by a block. Moreover, the translation of the expression on the right-
hand-side of the definition of x , that is e1, must be an IL expression, which is a
sequence of expressions, must be translated to an IL expression.

The translation of the let construct to an IL expression, is: [[let x=e1 in e2]]
I,M
ex =

(e, δ; δ) where [[let x=e1 in e2]]
I,M
bl = (bl , δ), and blockToExp(bl , I, M) = (e, δ).

That is, as for sequences, we first translate the let construct to a block, and then
return an exc expression.

The translation of let mutable differs only in the fact that in translation of
e2, the variable x , being mutable, is added to M .

Properties of the Translation. The translation preserves the dynamic seman-
tics of the F# expressions, that is if we have an F# program, that is a closed
expression e, and [[e]]∅,∅

bl = (bl , δ). Then e | [] −→� v | ρ (where v is and int
or bool value) if and only if {δ; bl} | [] −→� v | ρ′ for some ρ′. From this result
and the fact that F# programs do not get stuck, we can also derive that: the IL
translation of an F# program does not evaluate to an error or gets stuck.

First of all observe that the translation of an F# value is an IL value. In
fact, the translation of an F# function produces and IL function. In addition,
some definitions of associations between variables and code expressions may be
generated.

128 P. Giannini and A. Shaqiri

To prove the result we need to analyse the behaviour of expressions/blocks
which are intermediate results of the translation of a whole program. Such expres-
sions contain free mutable and immutable variables. Let e be an F# expression.
Let I = x:T , M = y :T

′
, and Σ be such that I,M | Σ � e : T for some T . To

execute e in a store ρ such that Σ � ρ we close the expression substituting values
for the free immutable variables, x, and locations for the mutable variables, y .
Let v be such that ∅ | Σ � v : T , Σ′ = l

′
:T

′
, and ρ′ = l

′ �→ v ′ be such that
dom(Σ′) ∩ dom(Σ) = ∅, and Σ[Σ′] � ρ′. We consider the F# reduction applied
to e0 | ρ0, where e0 = (e[x := v])[y := l

′
] and ρ0 = ρ[ρ′], which is a well formed

configuration w.r.t. Σ[Σ′]. We show that, if we consider the IL configuration,
{bl} | ρ′

0 in which bl is the translation of e0, and ρ′
0 associates locations with the

translation of the value associated in ρ0, we get that if e0 | ρ0 −→ e1 | ρ1, then
{bl} | ρ′

0 −→� {bl ′} | ρ′
1 where bl ′ is the translation of e1 and for all l ∈ dom(ρ1),

ρ′
1(l) is the translation of ρ1(l).

6 Comparisons with Other Work

Similar projects exist and are based on similar translation techniques, although,
as far as we know, we are the first to introduce an intermediate language allowing
to translate to many target languages. Pit, see [7], and FunScript, see [8], are open
source F# to JavaScript compilers. They support only translation to JavaScript.
FunScript ha support for integration with JavaScript code. Websharper, see [9],
is a professional web and mobile development framework. As of version 2.4 an
open source license is available. It is a very rich framework offering extensions for
ExtJs, jQuery, Google Maps, WebGL and many more. Again it supports only
JavaScript. F# Web Tools is an open source tool whose main objective is not
the translation to JavaScript, instead, it is trying to solve the difficulties of web
programming: “the heterogeneous nature of execution, the discontinuity between
client and server parts of execution and the lack of type-checked execution on
the client side”, see [10]. It does so by using meta-programming and monadic
syntax. One of it features is translation to JavaScript. Finally, a translation
between Ocaml byte code and JavaScript is provided by Ocsigen, and described
in [11].

On the theoretical side, a framework integrating statically and dynamically
typed (functional) languages is presented in [12]. Support for dynamic languages
is provided with ad hoc constructs in Scala, see [13]. A construct similar to code,
is studied in recent work by one of the authors, see [3], where it is shown how
to use it to realize dynamic binding and meta-programming, an issue we are
planning to address. The only work to our knowledge that proves the correctness
of a translation between a statically typed functional language, with imperative
features to a scripting language (namely JavaScript) is [14].

7 Conclusions and Future Work

In this paper we introduced IL an intermediate language for the translation of a
significant fragment of F# to scripting languages such as Python and JavaScript.

Compiling Functional to Scripting Languages 129

The translation is shown to preserve the dynamic semantics of the original lan-
guage. A preliminary version of this paper was presented at ICSOFT 2013,
see [15]. We have a prototype implementation of the compiler that can be found
at the project site [4]. The compiler is implemented in F# and is based on two
metaprogramming features offered by the .net platform: quotations and reflec-
tion. Our future work will be on the practical side to use the intermediate
language to integrate F# code and JavaScript or Python native code. (Some
of the features of IL, such as dynamic type checking, were originally intro-
duced for this purpose.) The current implementation also supports features such
as namespacing, classes, pattern matching, discriminated unions, etc., some of
which have poor or no support at all in JavaScript or Python. On the theoretical
side, we are planning to complete the proofs of correctness of the translations.
We need to formalize our target languages Python and JavaScript, and then
prove the correctness of the translation from IL to them. (We anticipate that
these proofs will be easier than the one from F# to IL.) Moreover, we want to for-
malize the integration of native code, and more in general meta-programming on
the line of recent work by the authors, see [3]. We are also considering extending
the type system for the intermediate language with polymorphic types, which
is, as shown in [16], non trivial.

References

1. Ranson, J.F., Hamilton, H.J., Fong, P.W.L.: A semantics of python in isabelle/hol.
Technical Report CS-2008-04, CS Department, University of Regina, Saskatchewan
(2008)

2. Nanevski, A.: From dynamic binding to state via modal possibility. In: PPDP’03,
pp. 207–218. ACM (2003)

3. Ancona, D., Giannini, P., Zucca, E.: Reconciling positional and nominal binding.
In: ITRS 2012. EPTCS (2013)

4. Giannini, P., Shaqiri, A.: Blue storm project (2013). https://www.assembla.com/
spaces/bluestorm

5. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

6. Appel, A.W.: Modern Compiler Implementation in ML. Cambridge University
Press, New York (1998)

7. Fahad, M.S.: Pit - F Sharp to JS compiler, May 2012. http://pitfw.org/
8. Bray, Z.: Funscript, February 2013. http://tomasp.net/files/funscript/tutorial.

html
9. Intellifactory: Websharper 2010 platform, May 2012. http://websharper.com/

10. Petř́ıček, T., Syme, D.: AFAX: Rich client/server web applications in F#, May
2012. http://www.scribd.com/doc/54421045/Web-Apps-in-F-Sharp

11. Vouillon, J., Balat, V.: From bytecode to javascript: the js of ocaml compiler (2011).
http://www.pps.univ-paris-diderot.fr/balat/publi.php

12. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
ACM Trans. Program. Lang. Syst. 31(3), 144 (2009)

13. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-virtualized. In: Kiselyov, O.,
Thompson, S. (eds.) Proceedings of PEPM 2012, Philadelphia, Pennsylvania, USA,
pp. 117–120. ACM (2012)

https://www.assembla.com/spaces/bluestorm
https://www.assembla.com/spaces/bluestorm
http://pitfw.org/
http://tomasp.net/files/funscript/tutorial.html
http://tomasp.net/files/funscript/tutorial.html
http://websharper.com/
http://www.scribd.com/doc/54421045/Web-Apps-in-F-Sharp
http://www.pps.univ-paris-diderot.fr/balat/publi.php

130 P. Giannini and A. Shaqiri

14. Fournet, C., Swamy, N., Chen, J., Dagand, P.É., Strub, P.Y., Livshits, B.: Fully
abstract compilation to javascript. In: POPL, pp. 371–384. ACM (2013)

15. Giannini, P., Shaqiri, A.: An intermediate language for compilation to scripting lan-
guages. In: ICSOFT-EA 2013 - Proceedings International Conference on Software
Engineering and Applications, pp. 92–103. SCITEPRESS Digital Library (2013)

16. Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all. In: Proceedings of
POPL 2011, Austin, TX, USA, pp. 201–214. ACM (2011)

Language Design and Implementation
via the Combination of Embedding and Parsing

Gergely Dévai(B), Dániel Leskó, and Máté Tejfel

Faculty of Informatics, Eötvös Loránd University,
Pázmány P. stny. 1/C, Budapest, Hungary

deva@elte.hu

Abstract. Language embedding is a method to implement a new
language within the framework of an existing programming language.
This method is known to speed up the development process compared to
standalone languages using classical compiler technology. On the other
hand, embedded languages may not be that convenient for the end-users
as standalone ones with own concrete syntax. This paper describes a
method that uses the flexibility of language embedding in the experimen-
tal phase of the language design process, then, once the language features
are mature enough, adds concrete syntax and turns the language to a
standalone one. Lessons learnt from a project, run in industry-university
cooperation and using the presented method, are discussed. Based on
these results, a cost model is established that can be used to estimate
the potential benefits of this method in case of future language design
projects.

Keywords: Domain specific languages · Embedding · Parsing · Con-
crete syntax

1 Introduction

1.1 Motivation

In special hardware or software domains the general purpose programming lan-
guages may not be expressive or efficient enough. This is why domain specific
languages (DSLs) are getting more and more important. However, using clas-
sical compiler technology makes the development of new DSLs hard. The new
language usually changes quickly and the amount of the language constructs
increases rapidly in the early period of the project. Continuous adaptation of
the parser, the type checker and the back-end of the compiler is not an easy job:
It is time consuming and error prone.

Language embedding is a technique that facilitates this development process.
In this case a general purpose language is chosen, which is called the host lan-
guage, and its parser and type checker are reused for the purposes of the DSL. In
fact, an embedded language is a special kind of library written in the host lan-
guage. The DSL programs in this setup are programs in the host language that
c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 131–147, 2014.
DOI: 10.1007/978-3-662-44920-2 9

132 G. Dévai et al.

extensively use this library. The library is implemented in such a way that its
users have the impression that they are using a DSL, even if they are producing
a valid host language program.

In this paper we use the so called deep embedding technique. Implementation
of a deeply embedded language consists of

– data types to represent the AST,
– front-end: a set of functions and helper data types which provide an interface

to build ASTs,
– back-end: interpreter or compiler that inputs the AST and executes the DSL

program or generates target code.

Not all general purpose programming languages are equally suitable to be
host languages. Flexible and minimalistic syntax, higher order functions, mon-
ads, expressive type system are useful features in this respect. For this reason
Haskell and Scala are widely used as host languages. On the other hand, these
are not mainstream languages. As our experience from a previous project [1,8]
shows, using a host language being unfamiliar to the majority of the program-
mers makes it harder to make the embedded DSL accepted in an industrial
environment. In addition to this, error reporting and debugging are hard to
solve in an embedded language.

For these reasons we have decided to create a standalone DSL as the final
product of our current project. However, we did not want to go without the flex-
ibility provided by embedding in the language design phase. This paper presents
the experiment to combine the advantages of these two approaches.

1.2 Project Background

This paper is based on a university research project initiated by Ericsson. The
goal of the project is to develop a novel domain specific language that is special-
ized in the IP routing domain as well as the special hardware used by Ericsson
for IP routing purposes.

This paper does not introduce the DSL created by this project for two rea-
sons. First, the language, being the result of an industry-university cooperation,
is not publicly available at the moment. Second, the results presented in this
paper concern the language development methodology used by the project. This
methodology is general, and the concrete language it was applied to is irrelevant.

1.3 Main Messages

The most important lessons learnt from the experiment are the following. It was
more effective to use an embedded version of the domain specific language for
language experiments than defining concrete syntax first, because embedding
provided us with flexibility so that we were able to concentrate on language
design issues instead of technical problems. The way we used the host language
features in early case studies was a good source of ideas for the standalone lan-
guage design. Furthermore, it was possible to reuse the majority of the embedded

Language Design and Implementation 133

language implementation in the final product, keeping the overhead of creating
two front-ends low.

The paper is organized as follows. Section 2 introduces the architecture of
the compiler. Then in Sect. 3 we analyze the implementation activities using
statistics from the version control system used. Section 4 presents related work,
then Sect. 5 presents the main messages of the paper and a cost model to estimate
benefits of the approach for future projects.

2 Compiler Architecture

The architecture of the software is depicted in Fig. 1. There are two main dataflows
as possible compilation processes: embedded compilation (dashed) and standalone
compilation (dotted).

The input of the embedded program compilation is a Haskell program loaded
in the Haskell interpreter. What makes a Haskell program a DSL program is
that it heavily uses the language front-end that is provided by the embedded
DSL implementation. This front-end is a collection of helper data types and
functions that, on one hand, define how the embedded program looks like (its
“syntax”), and, on the other hand, builds up the internal representation of the
program. The internal representation is in fact the abstract syntax tree (AST)
of the program encoded as a Haskell data structure. The embedded language
front-end module may contain complex functions to bridge the gap between an
easy-to-use embedded language syntax and an internal representation suitable
for optimizations and code generation. However, it is important that this front-
end does not run the DSL program: It only creates its AST.

The same AST is built by the other, standalone compilation path. In this case
the DSL program has it’s own concrete syntax that is parsed. We will refer to the
result of the parsing as concrete syntax tree (CST). This is a direct representation

Fig. 1. Compiler architecture.

134 G. Dévai et al.

of the program text and may be far from the internal representation. For this
reason the transformation from the CST to an AST may not be completely
trivial.

Once the AST is reached, the rest of the compilation process (optimizations
and code generation) is identical in both the embedded and the standalone
version. As we will see in Sect. 3, this part of the compiler is much bigger both
in size and complexity than the small arrow on Fig. 1 might suggest.

The numbers on the figure show the basic steps of the workflow to create a
compiler with this architecture. The first step is to define the data types of the
internal representation. This is the most important part of the language design
since these data types define the basic constructs of the DSL. Our experience has
shown that it is easier to find the right DSL constructs by thinking of them in
terms of the internal representation then experimenting with syntax proposals.

Once the internal representation (or at least a consistent early version of it)
is available, it is possible to create embedded language front-end and code gen-
eration support in parallel. Implementation of the embedded language front-end
is a relatively easy task if someone knows how to use the host language features
for language embedding purposes. Since the final goal is to have a standalone
language, it is not worth creating too fine grained embedded language syntax.
The goal of the front-end is to enable easy-enough case study implementation
to test the DSL functionality.

Contrarily, the back-end implementation is more complicated. If the internal
representation is changed during DSL design, the cost of back-end adaptation
may be high. Fortunately it is possible to break this transformation up into
several transformation steps and start with the ones that are independent of the
DSL’s internal representation. In our case this part of the development started
with the module that pretty prints assembly programs.

When the case studies implemented in the embedded language show that the
DSL is mature enough, it is time to plan its concrete syntax. Earlier experiments
with different front-end solutions provide valuable input to this design phase.
When the structure of the concrete syntax is fixed, the data types representing
the CST can be implemented. The final two steps, parser implementation and
the transformation of the CST to AST can be done in parallel.

3 Detailed Analysis

According to the architecture in Sect. 2 we have split the source code of the
compiler as follows:

– Representation: The underlying data structures, basically the building data
types of the AST.

– Back-end: Transforms the AST to target code. Mostly optimization and code
generation.

– Embedded front-end: Functions of the embedded Haskell front-end which con-
structs the AST.

– Standalone front-end: Lexer and parser to build up the CST and the trans-
formation from CST to AST.

Language Design and Implementation 135

Back-end
58%

Embedded front-
end
12%

Representation
6%

Standalone
front-end

24%

Fig. 2. Code size comparison by components.

The following figures are based on a dataset extracted from our version con-
trol repository1. The dataset contains information from 2012 late February to
the end of the year.

Figure 2 compares the code sizes (based on the LOC, lines of code metric)
of the previously described four components. The overall size of the project was
around 13 000 LOC2 when we summarized the results of the first year.

No big surprise there, the back-end is without a doubt the most heavyweight
component of our language. The second place goes to the standalone front-end,
partly due to the size of lexing and parsing codes3. The size of the embedded
front-end is about the half of the standalone’s. The representation is the smallest
component by the means of code size, which means that we successfully kept it
simple.

Figure 3 shows the exact same dataset as Fig. 2 but it helps comparing the
two front-ends with the reused common components (back-end, representation).

The pie chart shows that by developing an embedded language first, we could
postpone the development of almost one fourth of the complete project, while
the so-called extra code (not released, kept internally) was only 12 %. Note that
these figures are based on the code size at the end of the project. The actual
amount of work will be discussed later in Sect. 5.4.

Figure 4 presents how intense was the development pace of the four compo-
nents. The dataset is based on the log of the version control system. Originally
it contained approximately 1000 commits which were related to at least one of
the four major components. Then we split the commits by files, which resulted
almost 3000 file-change. All of these changes were weighted by the number of
inserted lines. So at the end we got 75 000 data-points, that we categorized by
the four components. This way each data-point represents one line insertion.
1 In this project we have been using Subversion.
2 Note that this project was entirely implemented in Haskell, which allows much more

concise code than the mainstream imperative, object oriented languages.
3 We have been using the Parsec parser combinator library [10] of Haskell. Using

context free grammars instead would have resulted in similar code size.

136 G. Dévai et al.

Common
64%

Embedded only
12%

Standalone only
24%

Fig. 3. Code size comparison for embedded / standalone.

0.00

0.25

0.50

0.75

1.00

2012/03 2012/04 2012/05 2012/06 2012/07 2012/08 2012/09 2012/10 2012/11 2012/12 2013/01
Time

D
en

si
ty

Components Back−end Embedded front−end Representation Standalone front−end

Fig. 4. Development timeline.

It may seem strange that we spent the first month of development with the
back-end, without having any representation in place. This is because we first
created a representation and pretty printer for the targeted assembly language.

The work with the representation started at late March and this was the
most frequently changed component over the next two-three months. It was
hard to find a proper, easy-to-use and sustainable representation, but after the
first version was ready in early April, it was possible to start the development
of the embedded front-end and the back-end.

The back-end and code generation parts were mostly developed during the
summer, while the embedded front-end was slightly reworked in August and
September, because the first version was hard to use.

By October we almost finalized the core language constructs, so it was time
to start to design the standalone front-end and concrete, textual syntax. This
component was the most actively developed one till the end of the year. Early
November we had a slight architecture modification which explains the small
spike in the representation and back-end related parts. Approaching the year
end we were preparing the project for its first release: Every component was
actively checked, documented and cleaned.

Language Design and Implementation 137

4 Related Work

Thomas Cleenewerck states that “developing DSLs is hard and costly, therefore
their development is only feasible for mature enough domains” [5]. Our experi-
ence shows that if proper language architecture and design methodology is in
place, the development of a new (not mature) DSL is feasible in 12 months. The
key factors for the success are to start low cost language feature experiments as
soon as possible, then fix the core language constructs based on the results and
finally expand the implementation to a full-fledged language and compiler.

Frag is a DSL development toolkit [15], which is itself a DSL embedded
into Java. The main goal of this toolkit is to support deferring architectural
decisions (like embedded vs. external, semantics, relation to host language) in
DSL software design. This lets the language designers to make real architectural
decisions instead of ones motivated by technological constraints or presumptions.
In our case there were no reason to postpone architectural decisions: It was
decided early in the project to have an external DSL with a standalone compiler
(see Sect. 1). What we needed instead was to postpone their realization and keep
the language implementation small and simple in the first few months to achieve
fast and painless experiment/development cycles.

Another approach to decrease the cost of DSL design is published by Bierhoff,
Liongosari and Swaminathan [2]. They advocate incremental DSL development,
meaning that an initial DSL is constructed first based on a few case studies,
which is later incrementally extended with features motivated by further case
studies. This might be fruitful for relatively established domains. In our case
the language design iterations were heavier then simple extensions. We believe
that creating a full fledged first version of the language and then considerably
rewriting it in the next iterations would have wasted more development effort
than the methodology we applied.

At the beginning of our project a set of separate embedded language exper-
iments were started, each of them dedicated to independent language features.
These components were loosely coupled at that time, therefore gluing them to
form the first working version was a relatively simple task to do. This kind of
architecture is very similar to keyword based programming [5], where the com-
plete DSL is formed by loosely coupled and independent language components.
Later on our components became more and more tightly coupled due to the need
of proper error handling and reporting, type and constraint checking.

Languages like Java, Ruby, MetaOCml, Template Haskell, C++, Scala are
used or are tried to be used as implementation languages for developing new
DSLs [6,7,9,11]. These projects either used the embedded-only or the standalone-
only approach and they all reported problems and shortcomings. We claim that
many of these can be eliminated by combining the two approaches.

The Metaborg approach [3,4] (and many similar projects) extend the host
language with DSL fragments using their own syntax. The applications are then
developed using the mixed language and the DSL fragments are usually compiled
to the host language. In our case the host language is only used for metapro-
gramming on top of the DSL, the embedding does not introduce concrete syntax

138 G. Dévai et al.

and, finally, the host language environment is never used to execute the DSL
programs.

David Wile has summarized several lessons learnt about DSL development [14].
His messages are mostly about how to understand the domain and express that
knowledge in a DSL. Our current paper adds complementary messages related to
the language implementation methodology.

Based on Spinellis’s design patterns for DSLs [12], we can categorize our
project. The internally used embedded front-end is a realization of a piggyback
design pattern, where the new DSL uses the capabilities of an existing language.
While the final version of our language, which employs a standalone front-end,
is a source-to-source transformation.

5 Discussion and Conclusions

5.1 Lessons Learnt

This section summarizes the lessons learnt from the detailed analysis presented
in Sect. 3.

Message 1: Do the language experiments using an embedded DSL then define
concrete syntax and reuse the internal representation and back-end! Our project
started in January 2012 and in December the same year we released the first
version of the language and compiler for the industrial partner. Even if this
first version was not a mature one, it was functional: the hash table lookups
of the multicast protocol was successfully implemented in the language as a
direct transliteration from legacy code. Since state of the art study and domain
analysis took the first quarter of the year, we had only 9 months for design and
implementation. We believe that using a less flexible solution in the language
design phase would not have allowed us to achieve the mentioned results.

Message 2: Design the language constructs by creating their internal representa-
tion and think about the syntax later! The temptation to think about the new
language in terms of concrete syntax is high. On the other hand, our experience
is that it is easier to design the concepts in abstract notation. In our case this
abstract notation was the algebraic data types of Haskell: The language con-
cepts were represented by the data types of the abstract syntax tree. When the
concepts and their semantics were clear there was still large room for syntax
related discussions4, however, then it was possible to concentrate on the true
task of syntax (to have an easy to use and expressive notation) without mixing
semantics related issues in the discussion. This is analogous to model driven
development: It is easier to build the software architecture as a model and think
about the details of efficient implementation later.
4 “Wadler’s Law: The emotional intensity of debate on a language feature increases as
one moves down the following scale: Semantics, Syntax, Lexical syntax, Comments.”
(Philiph Wadler in the Haskell mailing list, February 1992, see [13].)

Language Design and Implementation 139

Message 3: Use the flexibility of embedding to be able to concentrate on
language design issues instead of technical problems! Analysis of the compiler
components in Sect. 3 shows that the embedded front-end of the language is
lightweight compared to the front-end for the standalone language. This means
that embedding is better suited for the ever-changing nature of the language
in the design phase. It supports the evolution of the language features by fast
development cycles and quick feedback on the ideas.

Message 4: No need for a full-fledged embedded language! Creating a good qual-
ity embedded language is far from trivial. Using different services of the host
language (like monads and do notation, operator precedence definition, overload-
ing via type classes in case of Haskell) to customize the appearance of embedded
language programs can easily be more complex then writing a context free gram-
mar. Furthermore, advocates of embedded languages emphasize that part of the
semantic analysis of the embedded language can be solved by the host language
compiler. An example in case of Haskell is that the internal representation of
the DSL can be typed so that mistyped DSL programs are automatically ruled
out by the Haskell compiler. These are complex techniques, while this paper has
stated so far that embedding is lightweight and flexible — is this a contradiction?
The goal of the embedded language in our project was to facilitate the language
design process: It was never published for the end-users. There was no need for
a mature, nicely polished embedded language front-end. The only requirement
was to have an easy-to-use front-end for experimentation — and this is easy to
achieve. Similarly, there was no need to make the Haskell compiler type check
the DSL programs: the standalone language implementation cannot reuse such
a solution. Instead of this, type checking was implemented as a usual semantic
analyzer function working on the internal representation. As a result of all this,
the embedded front-end in our project in fact remained a light-weight component
that was easy to adapt during the evolution of the language.

Message 5: Carefully examine the case studies implemented in the embedded
language to identify the host language features that are useful for the DSL! These
should be reimplemented in the standalone language. An important feature of
embedding is that the host language can be used to generate and to generalize
DSL programs. This is due to the meta language nature of the host language
on top of the embedded one. Our case studies implemented in the embedded
language contain template DSL program fragments (Haskell functions returning
DSL programs) and the instances of these templates (the functions called with
a given set of parameters). The parameter kinds (expressions, left values, types)
used in the case studies gave us ideas how to design the template features of the
standalone DSL. Another example is the scoping rules of variables. Sometimes
the scoping rules provided by Haskell were suitable for the DSL but not always.
Both cases provided us with valuable information for the design of the standalone
DSL’s scoping rules.

Message 6: Plan enough time for the concrete syntax support, which may be
harder to implement than expected! This is the direct consequence of the

140 G. Dévai et al.

previous item. The language features borrowed from the host language (e.g.
meta programming, scoping rules) have to be redesigned and reimplemented in
the standalone language front-end. Technically this means that the concrete syn-
tax tree is more feature rich than the internal representation. For this reason the
correct implementation of the transformation from the CST to the AST takes
time. Another issue is the development of a symbol table, which should store
exact source positions in order to support good quality error messages, trace-
ability, debugging and profiling. The symbol table is also useful for detecting
the violations of scoping rules. This infrastructure is usually not (completely)
present in an embedded language. To tell the truth, our embedded language
implementation was not well prepared for the addition of this infrastructure.
The lesson we have learnt here is that the embedded language implementation
should be created keeping in mind that it will be turned to a standalone one
later.

5.2 Plans and Reality

Our original project plan had the following check points:

– By the end of March: State of the art study and language feature ideas.
– By the end of June: Ideas are evaluated by separate embedded language exper-

iments in Haskell.
– By the end of August: The language with concrete syntax is defined.
– By the end of November: Prototype compiler is ready.
– December was planned as buffer period.

While executing it, there were three important diverges from this plan that we
recommend for consideration.

First, the individual experiments to evaluate different language feature ideas
were quickly converging to a joint embedded language. Project members work-
ing on different tasks started to add the feature they were experimenting with
modularly to the existing code base instead of creating separate case studies.

Second, the definition of the language was delayed by three months. This
happened partly because it was decided to finish the spontaneously emerged
embedded language including the back-end, and partly because a major revision
and extension to the language became necessary to make it usable in practice.
As a result, the language concepts were more or less fixed (and implemented in
the embedded language) by September. Then started the design of the concrete
syntax which was fixed in October. At first glance this seems to be an unmanage-
able delay. However, as we have pointed out in this paper, it was then possible
to reuse a considerable part of the embedded language implementation for the
standalone compiler.

Third, we were hoping that, after defining the concrete syntax, it will be
enough to write the parser which will trivially fit into the existing compiler as
an alternative to the embedded language front-end. The parser implementation
was, in fact, straightforward. On the other hand, it became clear that it cannot

Language Design and Implementation 141

directly produce the internal representation of the embedded language. Recall
what Sect. 5.1 tells about the template features and scoping rules to understand
why did the transformation from the parsing result to the internal representa-
tion take more time than expected. Therefore the buffer time in the plan was
completely consumed to make the whole infrastructure work.

In brief, we used much more time than planned to design the language, but
the compiler architecture of Sect. 2 yet made it possible to finish the project
on time.

5.3 Cost Model

The messages in Sect. 5.1 suggest that the presented method pays off if the
flexibility of an embedded language provides more benefit in the language design
phase than the additional cost of creating an embedded language front-end. This
happens if the language experiments modify the code base intensively and the
size of the embedded front-end is small enough compared to the size of the
standalone front-end.

This section digs deeper into the analysis of this trade-off by setting up a
cost model to predict the effort needed to create a new language by the following
two methods:

– Standard Method. A standalone language is implemented from the beginning
of the project, the parser is maintained in each iteration of the language design.

– Combined Method. The one described in this paper. That is, an embedded
language is created for experimentation and the standalone language front-
end is added when the language is fixed.

The first observation we have to make is that choosing the standard or the
combined method does not influence the effort needed for the back-end imple-
mentation. This is because the back-end inputs the internal representation of
the program, and the complexity to turn it to target code is not affected by the
way this internal representation was built up: either embedding or parsing. As a
consequence, the cost model has to deal only with the representation, embedded
front-end and standalone front-end.

The effort needed to develop these components depends on their final size
and their variability. We will use variability to measure the difficulty of reach-
ing the final version of a given component: If the solution is straightforward,
then the final version will likely be created by gradually adding new function-
ality to the code base. On the other hand, a development process that involves
many experiments and dead-ends will have considerable amount of deletion and
modification of existing code.

If we stick to the insert and delete operations widely used in software version
control, we can treat modifications as the deletion of the old and insertion of the
new versions. If #ins and #del denotes the number of insertions and deletions
done to a component5, then the following equations can be given for size and
variability :
5 The unit of measure can be anything from files to characters. Our statistics use lines.

142 G. Dévai et al.

size = #ins− #del

variability =
#del

#ins

Zero variability means no deletions at all, while variability converging to 1 means
that the amount of code added and later deleted overwhelms the size of the final
product.

We argue that the effort needed to create a component is well characterized
by the number of insertions during the development process, that is #ins. From
the two equations above, we get the following one:

effort =
size

1 − variability

The effort is given by the size in case of projects with zero variability, while the
effort converges to infinity, if variability gets close to 1.

Experiments in the language design phase introduce new language concepts,
remove less successful ones or alter them. These changes alter the internal rep-
resentation in the first place, but the front-end module (either embedded or
standalone) has to be adapted to be able to build the code base and evaluate the
experiment. How heavily does a representation change affect a front-end module?
The amount might vary depending on the exact case, however, we argue that it
will be proportional to the change in the representation: a small change in the
representation induces a small change in the front-end and adding a completely
new set of language concepts require an entirely new front-end module.

Let variabilityexp denote the variability experienced during the experimental
phase. Later, when the language features and their semantics are fixed, one can
expect considerably lower variability, since that part of the development process
is well-specified. Ideally, the variability in that phase would be zero. However,
even well specified and straightforward projects show a slight code variability due
to refactoring steps and bugfixes. We will denote this value by variabilitynorm.

We are now prepared to calculate the effort needed for the whole project in
case of standalone and combined strategies. (The component names rep, sf and
ef will denote the representation, the standalone front-end and the embedded
front-end respectively.)

effortstandard =
sizerep + sizesf

1 − variabilityexp

effortcombined =
sizerep + sizeef

1 − variabilityexp
+

sizesf
1 − variabilitynorm

The equation for the standalone case is the direct consequence of the equation
for effort above. In the combined case, the variability of experimentation only
affects the representation and the embedded front-end. The standalone front-
end is free from the effects of the language experiments, since its development
only starts when the language is fixed. For this reason the normal variability is
applicable for that component.

Language Design and Implementation 143

The combined development method is beneficial if

effortcombined < effortstandard,

which is equivalent to the following condition:

sizeef
1 − variabilityexp

+
sizesf

1 − variabilitynorm
<

sizesf
1 − variabilityexp

The first observation is, that the size of the representation component dis-
appeared from the condition as the result of simplification, so the actual size of
the language to be designed is irrelevant when choosing between the two design
strategies.

Further transforming the condition results in the following form:

sizeef
sizesf

<
variabilityexp − variabilitynorm

1 − variabilitynorm

Note that, if variabilitynorm is close to its ideal zero value, then the right
hand size is close to variabilityexp. This suggests the following rule of thumb:
The combined method can be beneficial if the ratio of the sizes of the embedded
front-end and the standalone front-end is smaller than the variability during the
experiments.

How to estimate this ratio and the two variabilities when starting a new
language development project? The ratio of the front-end sizes depends on the
host language to be used for the embedding and also on the tools, libraries
to be used for lexing and parsing. It seems to be a good idea to implement
both the embedded and standalone version of a toy language using the selected
implementation language and toolset to estimate the required size ratio.

The value of variabilitynorm mainly depends on the developer team and its
ways of working. Measuring the variability in an earlier, relatively well-specified
project done by the same team gives a good basis to estimate this value.

Estimation of the variability during the experimental phase is more difficult,
but it is still possible if one considers how stable is the concept of the language to
be created. If the specification is clear and the solution is straightforward, one can
expect that variabilityexp will be close to variabilitynorm. On the other hand,
a lot of room for experimenting with different language features will certainly
lead to much higher variability. Rephrasing the question might help: Will we
delete half of the code that we create during the experiments in order to get
to the version that is more or less fixed? If the answer is yes, one can expect
variabilityexp around 0.5.

Once there is an estimation for the three parameters, the condition discussed
above can be used to make a decision how the language should be developed.

5.4 Was It Worth It?

As discussed in Sect. 5.1, our impression was that using the combined develop-
ment method was actually beneficial for the project we have been working on.
Does the cost model introduced above confirm this?

144 G. Dévai et al.

Analysing the statistics of the SVN repository used, we got that the final
size of the embedded front-end was 1592 lines, while the standalone front-end
consists of 3092 lines. The size ratio is therefore 0.515.

Regarding variability, 0.765 was measured for the representation and 0.725
for the embedded front-end. This confirms the assumption of the model that
the variability of the representation is close to that of the front-end used in the
experimental phase. The weighted variability of these two components is 0.738.
In contrast, the variability of the standalone front-end was only 0.260.

The condition suggested by the cost model is therefore

1592
3092

<
0.738 − 0.260

1 − 0.260
,

which boils down to 0.515 < 0.646. That is, also the cost model suggests that
combining embedding and parsing was actually worth it in our case.

We have seen the ratio of each component in terms of the final code size
earlier, on Fig. 2. Figure 5, in contrast, shows their relation in terms of the effort
needed to develop them. Note that the standalone front-end shrank to less then
its half, while the other three components grew equally. This is the consequence of
the low variability of the standalone front-end, due to its postponed development.

One can argue that the benefit of the combined development strategy is
negligible compared to the maintenance cost of the back-end: Every change in
the representation induces a change in the back-end, which is by far the most
heavyweight component.

On the other hand, a change in the representation only affects a limited
segment of the back-end. To measure this impact precisely, we analysed the
commits of our version control system. If a change to a back-end file was made
in such a commit which also changed a representation file, then we consider
this back-end change a result of the change in the representation, otherwise it is
independent.

Back-end
64%

Embedded
front-end

16%

Representation
9%

Standalone
front-end

11%

Fig. 5. Implementation effort by components.

Language Design and Implementation 145

Back-end
(independent of

repr.)
38%

Back-end
(depends on

repr.)
26%

Embedded
front-end

16%

Representation
9%

Standalone
front-end

11%

Fig. 6. Implementation effort by components (back-end partitioned).

The results show that only 40 % of the back-end changes are directly related
to a change in the representation, the other 60 % is low level code generation and
optimization related change. This is demonstrated by Fig. 6 where the back-end
component (precisely its effort) is divided to a representation dependent and to
a non-dependent part.

5.5 Future

At the moment it is unclear what will happen to this compiler architecture in
the future when more language features will be added.

In 2013 only minor new features have been implemented, not requiring inten-
sive language experiments. These low variability implementation tasks are cheaper
to be done directly in the standalone version of the language.

However, conclusions of this paper suggest that if we will need to develop
more complex new features in the future we shall continue with the successful
strategy and experiment with new language features by modifying, extending
the embedded language and, once the extensions are proved to be useful and are
stable enough, add them to the standalone language.

On the other hand, this comes at a cost: The consistency of the embedded and
standalone language front-ends have to be maintained. Whenever slight changes
are done in the internal representation, the embedded language front-end has
to be adapted. Many trivial new features added only to the standalone front-
end, like the ones we have developed in 2013, make the two front-ends diverge.
We still do not know if the adaptation costs overwhelm the advantage that the
embedded language offers for the language design.

Furthermore, since the standalone syntax is more convenient than the embed-
ded language front-end, it might not be appealing to experiment with new lan-
guage concepts in the embedded language. It also takes more effort to keep in
mind two different variants of the same language.

146 G. Dévai et al.

Even if it turns out that it is not worth maintaining the embedded language
front-end and it gets removed from the compiler one day, its important positive
role in the design of the first language version is indisputable.

6 Summary

This paper evaluates a language development methodology that starts the design
and implementation with an embedded language, then defines concrete syntax
and implements support for it. The main advantage of the method is the flex-
ibility provided by the embedded language combined by the advantages of a
standalone language. We have demonstrated that most of the embedded lan-
guage implementation can be reused for the standalone compiler. A cost model
has been presented that tells if our method is rewarding in case of future projects.

Acknowledgements. We would like to thank the support of Ericsson Hungary and
the grant EITKIC 12-1-2012-0001 that is supported by the Hungarian Government,
managed by the National Development Agency, and financed by the Research and
Technology Innovation Fund.

References

1. Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Persson, A.,
Sheeran, M., Svenningsson, J., Vajda, A., et al.: Feldspar: a domain specific
language for digital signal processing algorithms. In: Proceedings of the 8th
ACM/IEEE International Conference on Formal Methods and Models for Code-
sign. IEEE (2010)

2. Bierhoff, K., Liongosari, E.S., Swaminathan, K.S.: Incremental development of a
domain-specific language that supports multiple application styles. In: OOPSLA
6th Workshop on Domain Specific Modeling, pp. 67–78 (2006)

3. Bravenboer, M., de Groot, R., Visser, E.: MetaBorg in action: examples of domain-
specific language embedding and assimilation using Stratego/XT. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 297–311. Springer,
Heidelberg (2006)

4. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language
embedding and assimilation without restrictions. SIGPLAN Not. 39(10), 365–383
(2004). http://doi.acm.org/10.1145/1035292.1029007

5. Cleenewerck, T.: Component-based DSL development. In: Pfenning, F., Macko, M.
(eds.) GPCE 2003. LNCS, vol. 2830, pp. 245–264. Springer, Heidelberg (2003)

6. Cunningham, H.C.: A little language for surveys: constructing an internal DSL in
Ruby. In: Proceedings of the 46th Annual Southeast Regional Conference on XX.
ACM-SE 46, pp. 282–287. ACM, New York (2008). http://doi.acm.org/10.1145/
1593105.1593181

7. Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: DSL implementation in
MetaOCaml, Template Haskell, and C++. In: Lengauer, C., Batory, D., Blum,
A., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp.
51–72. Springer, Heidelberg (2004)

http://doi.acm.org/10.1145/1035292.1029007
http://doi.acm.org/10.1145/1593105.1593181
http://doi.acm.org/10.1145/1593105.1593181

Language Design and Implementation 147

8. Dévai, G., Tejfel, M., Gera, Z., Páli, G., Nagy, G., Horváth, Z., Axelsson, E.,
Sheeran, M., Vajda, A., Lyckeg̊ard, B., Persson, A.: Efficient code generation from
the high-level domain-specific language Feldspar for DSPs. In: ODES-8: 8th Work-
shop on Optimizations for DSP and Embedded Systems (2010)

9. Freeman, S., Pryce, N.: Evolving an embedded domain-specific language in Java.
In: Companion to the 21st ACM SIGPLAN Conference. OOPSLA’06, pp. 855–
865, Portland, Oregon, USA (2006). http://www.mockobjects.com/files/evolving
an edsl.ooplsa2006.pdf

10. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the
real world. Electron. Notes Theoret. Comput. Sci. 41(1) (2001). Technical Report
UU-CS-2001-35

11. Sloane, A.M.: Experiences with domain-specific language embedding in Scala. In:
Lawall, J., Réveillére, L. (eds.) International Workshop on Domain-Specific Pro-
gram Development (DSDP), Nashville, Tennessee, USA. vol. 7 (2008)

12. Spinellis, D.: Notable design patterns for domain-specific languages. J. Syst. Softw.
56(1), 91–99 (2001). http://dx.doi.org/10.1016/S0164-1212(00)00089-3

13. Wadler, P.: Wadler’s “Law” on language design. Haskell mailing list (1992). http://
code.haskell.org/∼dons/haskell-1990-2000/msg00737.html

14. Wile, D.: Lessons learned from real DSL experiments. Sci. Comput. Program.
51(3), 265–290 (2004). http://dx.doi.org/10.1016/j.scico.2003.12.006

15. Zdun, U.: A DSL toolkit for deferring architectural decisions in DSL-based software
design. Inf. Softw. Technol. 52(7), 733–748 (2010). http://eprints.cs.univie.ac.at/
2288/

http://www.mockobjects.com/files/evolving_an_edsl.ooplsa2006.pdf
http://www.mockobjects.com/files/evolving_an_edsl.ooplsa2006.pdf
http://dx.doi.org/10.1016/S0164-1212(00)00089-3
http://code.haskell.org/~dons/haskell-1990-2000/msg00737.html
http://code.haskell.org/~dons/haskell-1990-2000/msg00737.html
http://dx.doi.org/10.1016/j.scico.2003.12.006
http://eprints.cs.univie.ac.at/2288/
http://eprints.cs.univie.ac.at/2288/

Enabling Informed Decision Making Through
Mobile Technologies: A Challenge

for Software Engineering

Xavier Franch1(&), Anna Perini2, and Norbert Seyff3

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
franch@essi.upc.edu

2 Fondazione Bruno Kessler (FBK), Trento, Italy
perini@fbk.eu

3 University of Zurich (UZH), Zurich, Switzerland
seyff@ifi.uzh.ch

Abstract. The potential of mobile technologies is not fully exploited by current
software services. One of the most influencing reasons for this problem is the
lack of novel software engineering methods and tools that can master the
complexity of mobile environments. Looking at a person in a smart environ-
ment, where mobile technologies and sensors are installed to support daily
activities, it is observed that informed decision-making with the help of mobile
technologies is beyond what users can expect from current software services. In
this paper we present a motivating scenario to highlight the limitations of current
decision support approaches. Based on this discussion we identify significant
software engineering challenges, which currently hinder the realization of
advanced decision support. In our research we have developed an initial version
of a comprehensive framework that allows overcoming the challenges identified.
It furthermore highlights which software engineering research lines may help to
realize this vision.

Keywords: Software engineering � Software services � Apps � Mobile plat-
forms � Service-oriented computing � Personal cloud � Decision-making �
Thoughtful living

1 Introduction

The number and variety of software services (e.g., web services, mobile apps) dra-
matically increases every year. Service providers continuously emerge and the portfolio
they offer grows steadily. Mobile technologies provide access to these services and are
therefore becoming ubiquitous in our society. This leads to a magnitude of growth that
was hardly conceivable in the recent past (e.g., the number of mobile phone sub-
scriptions reached 5.000 million in 2010). Furthermore, it opens a lot of unforeseen
opportunities for citizens worldwide and has improved citizenship’s quality of life [31].

We are particularly interested in supporting informed decision-making with novel
mobile applications and services. We envision that such services can further improve
individual citizen’s quality of life and will also lead to more thoughtful use of resources

© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 148–163, 2014.
DOI: 10.1007/978-3-662-44920-2_10

and therefore thoughtful living of citizens. However, this vision currently goes beyond
state of the art software engineering techniques and approaches.

In order to realize our vision we have identified promising work in areas such as
context-awareness, personalization and evolution of services. In this paper, we present
a proposal to improve existing work in these areas to boost the impact of current
software service technologies at the individual and the society level. For awareness, we
propose to include knowledge about the individual and about the environment in the
heart of mobile technologies. For personalization, we propose (semi-)automatic
orchestration and enactment of software services according to a user’s past behaviour.
For evolution, we propose that it is driven by needs of individual citizens rather than
developer assumptions.

We foresee that achieving these goals in the near future is plausible due to the
significant and continuous advances in mobile technologies. However, in our opinion
software engineering methods and tools are lacking behind the fast advances in mobile
technologies. We have identified several challenges within the above-mentioned areas.
Among them the fact that services nowadays lack a semantic layer and push their users
to learn new rules which are imposed by their providers. This lack of standardization
can demotivate potential platform users and contradicts with the interest of service
providers to increase the usage rate of their services.

In this paper we also present our vision of a semantic service engineering frame-
work, which could allow users to interact seamlessly with mobile technologies. Such
an easy-to-use approach would encourage all different kinds of potential users to adopt
the framework. Automatic service enactment would allow exploiting techniques from
other fields, such as machine learning.

The rest of the paper is organized as follows (see Fig. 1). Section 2 presents a
scenario highlighting today’s decision-making approaches and Sect. 3 discusses issues
with regard to the presented scenario. Section 4 highlights how decision-making
support could look like in the future. In Sect. 5 we discuss software engineering
challenges in order to achieve our vision. Section 6 provides a first solution idea by
depicting the emerging ecosystem behind our vision and outlining a semantic platform
supporting informed decision-making. Section 7 discusses the lines of research where
advancement is needed to realize our vision. In Sect. 8 we highlight related work and
Sect. 9 concludes the paper.

2 Motivating Scenario

Katie is the head of the paediatrics surgery unit at the Feeling Better International
Hospital in Barcelona. Every day, her unit works with more than 100 patients. This
work includes standard treatments that require only 30 min of their time, but also

Fig. 1. Organization of the paper.

Enabling Informed Decision Making Through Mobile Technologies 149

complex surgery lasting for several hours and involving several doctors. Her unit
includes 30 doctors, 40 nurses and 10 administrative staff members. Most of the
doctors are also academic staff of the Medical School at the Barcelona University. This
means that on top of their medical duties, they have teaching responsibilities and need
to take care of research projects (which might involve travelling).

Therefore, it is normal that members of her team are active from early morning to
late at night. Although a daily schedule is available, it has to be reorganized in many
cases as unexpected events are occurring (e.g., an operation takes longer). Observing
the everyday work of her team, Katie has learnt that when this happens doctors feel
distracted and even might think about possible appointments they have to cancel or
reschedule while performing surgery. Furthermore, working late causes that doctors are
tired and stressed. This is also worsened by the fact that most staff members live
outside the city and have to travel for more than an hours on the average. Therefore,
Katie has set up a new policy. In case a doctor finishes work later than 8 pm, the
hospital offers free accommodation for the night including the transportation to and
from the selected hotel. Furthermore, the hospital offers the doctors to manage their
agenda and to inform family and friends about re-scheduling and delays.

Although Katie was confident on the success of the initiative, she observed prob-
lems. Managing the transportation and accommodation issue was not trivial because a
doctor has to finish the on-going task before he can be asked about his preferences,
therefore: (1) secretarial support staff complained about staying longer to take care of
this service, (2) the doctor had to wait for the service, (3) different approaches to make
a booking caused further delays, (4) spontaneous booking of a room or transportation
was problematic, and (5) some doctors rejected to use the provided agenda manage-
ment services, as they did not want to provide open access to their personal calendar.
Katie concluded that a different solution was needed.

3 Analysis of the Current Scenario

The scenario above presents some issues that make the current support for doctors
unsatisfactory:

Individuality. Every doctor is an individual with very different preferences, abilities,
resources, etc. A one-fits-all solution might not be applicable. Katie is aware of this
and, thus, she would like to offer services negotiated on an individual basis.

Privacy. Doctors are reluctant to make their private agenda public at the level required
by the novel services offered. They do not want hospital staff to know about their
private appointments and only share this information with the other parties involved
and (possibly) their family. Therefore, Katie cannot have all the information needed to
make the best possible decisions.

Service Heterogeneity. Different hotels use different booking strategies which com-
plicates the booking. Secretaries first have to identify the suitable booking procedure
and often have to perform time consuming activities while booking (e.g., re-entering
personal information of a doctor).

150 X. Franch et al.

Lack of Information. The information on which hotels and transportation options are
still available for that day is not upfront available to the secretarial staff. They often
have to fill in request forms to later find out that no more room is available.

Agility. As a consequence, the envisioned processes are not as agile and flexible as
Katie would like them to be. Furthermore, the current solution often results in loosing
time and requires additional resources, which negatively affects the hospital.

It is worth to mention that other scenarios could eventually reveal similar problems.
For instance, doctors use to work in teams that may be preconfigured (e.g., same
speciality) or dynamic (e.g., for a particular surgery). Sharing documents and infor-
mation through hospital-centric applications may seem useful at a first sight, but may
raise similar problems (e.g., privacy of confidential patient data records).

These limitations make Katie wonder about the possibility of alternative scenarios
that are able to better exploit current mobile technologies.

4 Envisaged Scenario

Katie consults the software engineering research team from the local university to find
out how mobile technologies could support her in finding a solution. The researchers
highlight that one possibility to achieve her goal could be to shift the focus from a
central, hospital-based perspective, to a distributed, person-based point of view where
doctors themselves are the ones who have full responsibility. Provided services would
then fit with their own individual needs (also regarding privacy). Together with the
researchers, Katie discusses a scenario where personal mobile devices suggest actions
to doctors, or even execute them on their behalf. This approach avoids the assignment
of new tasks to the hospital administrative staff, and simultaneously simplifies doctors’
daily life. Austin, who is one of the most prestigious surgeons in the Feeling Better
International Hospital, is the key person within this scenario. He is young, ambitious
and loves his job, so he often accepts a certain overload in his daily work. On a
particular day, he was expecting to finish at 7.30 pm but an unexpected problem with
medical supplies has postponed the start of the last operation of the day (Norman’s
cardio-surgery) from 5 pm to 8 pm. Katie offered him to delay the operation until
tomorrow, but the next day Austin is flying to Brussels for a project meeting early in
the morning, so he decided to go ahead.

Luckily, he recently bought a smartphone with access to a novel platform sup-
porting informed decision-making. This smartphone offers a lot of capabilities whilst
being quite simple to use. It reacts to changes in the agenda and reschedules
appointments accordingly. The following activities happen:

– Katie reschedules Norman’s cardio-surgery in the hospital information system to
start at 8 pm. This change is propagated to Austin’s personal agenda.

– Two events are still scheduled in Austin agenda for after the operation. The first one
is “buying a present for his mother’s birthday next week”. The platform just real-
locates this task to another possible day before the birthday.

– The second event is different, a romantic dinner with his friend Angie at 9.30 pm.
Since the operation is expected to last 2.5 h, the platform knows that it has to cancel

Enabling Informed Decision Making Through Mobile Technologies 151

this appointment (differently from above, the event cannot be rescheduled without
interacting with the interested parties). The platform sends Angie a nice apology
message, specially designed by Austin in advance.

– The platform also detects the early morning flight to Brussels (leaving at 6 am).
Considering Austin’s travelling record track, the platform decides to book Austin a
room in a hotel near the airport. Since the platform knows that, unless otherwise
stated, Austin always drives his own car to the hospital, no taxi is needed.

– Finally, the platform sends Austin an e-mail with the summary of actions. This also
includes a booking reference for the hotel and the parking space at the airport.

Once Austin leaves the operating room, he checks his smartphone and reads those
messages. He feels reassured that his new device works correctly. He remembers, that
after he started to use the novel platform he needed some time to get familiar with the
system and also the idea that the platform has access to all his personal data. With
the current level of configuration and the history available, he is more than happy with
the way it behaves.

Not only Austin is impressed by the mobile platform, also Katie can see that this
new approach allows overcoming the issues identified in Sect. 3:

– No other person (e.g., secretary) is needed to take care of individual user prefer-
ences. The user-centric system is able to tailor itself to the individual needs of a
person. The mobile platform knows a user’s preferences and analyses the decisions
taken by a user. This allows the platform to make suggestions and to handle
situations intelligently, which makes it the ideal companion.

– Advanced privacy mechanisms give Austin full control about privacy relevant data
and letting him actively decide which information is shared and with whom. Fur-
thermore, the device automatically identifies certain levels of trust based on Aus-
tin’s past sharing activities, which it follows when sharing information on Austin’s
behalf.

– Different services and technical details, this all is transparent for Austin as a user.
The new platform takes care of identifying relevant services and presents infor-
mation in an easy to understand and personalized way.

– This also means that there is no lack of information any longer. As everything is
automated, the mobile platform can highlight the availability of rooms and trans-
portation options in real time.

– This finally leads to the envisioned agile process and gives doctors the needed
freedom, so that they can focus on work. No additional resources are needed and a
certain improvement can be obtained.

5 Software Engineering Challenges

In the following we highlight key challenges towards strengthening user-centrality and
enabling a user-driven evolution of software applications. Overcoming these challenges
would allow implementing the scenario described in Sect. 4. The relationship between
these challenges and the open issues mentioned in Sect. 3 is visualized in Fig. 2.

152 X. Franch et al.

5.1 Strengthening User Centrality

Modern mobile devices, such as smartphones, are equipped with numerous sensors.
However, approaches that allow determining a user’s context are still limited. Fur-
thermore, services still require the end-user to make a tedious personalization job. The
support given by providers to adapt services to the needs of an individual user is quite
limited and just includes some basic characteristics (e.g., language selection). These
issues limit current services to react based on the given environment and particular user
profiles and needs. In our scenario the hotel booking action is an example. Selecting a
hotel that fits best may depend on the place of the first morning commitment. As Austin
needs to be ready for his 8 am class on a Tuesday, the system will book a room near the
university. Current software engineering approaches and tools do not sufficiently
support such considerations and the following challenges have been identified:

Privacy Preservation. Success of an IT product heavily relies on respecting privacy.
Sensible data must be kept inside the individual’s boundary. For example, Austin
prefers to keep his friendship with Angie confidential. The communication of infor-
mation needs to be balanced. While some kind of aggregated, anonymous data sent to
the service providers may help them to analyse service usage and improve their
products in the future, private data needs to stay under user control.

History. Individuals tend to apply patterns of behaviour. These patterns may be tacit
and usually will emerge after some time. For instance, being young and energetic,

Fig. 2. Issues and associated challenges.

Enabling Informed Decision Making Through Mobile Technologies 153

Austin does not mind sleeping in hotels paid by the hospital, whilst other doctors
(e.g. with children) will prefer to sleep at home and take a taxi to the airport early in
morning. Their decisions along time will reflect their preferences. This means that
decisions need to be monitored and analysed in order to support decision-making in the
future.

Personalization. A selected service furthermore needs to be tailor to individual cus-
tomer preferences. This for example includes how the service presents its functional-
ities to the user (the look and feel of the service), but personalization also needs to
consider the data that the user is willing to provide as input for the service.

Service Selection. Several services might be available to support a selected task. The
service providing the best value needs to be selected. This does not only mean to select
the service providing the best performance, but also to consider the costs of a service.

Awareness. Decision-making may be improved by increasing the awareness about the
environment. For instance, the platform could be informed about the current location of
Austin’s car. This could improve decision-making so that the need of calling a taxi for
bringing him to the airport is automatically identified.

Adaptation. The increasing availability of information paves the road for better deci-
sion-making. The best decision today may not be the best tomorrow. For instance, a
hotel, which now has good ratings, might be a bad choice next year. Furthermore,
sudden adaptation is required as unexpected events might occur (e.g., bad weather
forecast in Brussels) may require an unexpected reaction (e.g., Austin going back to his
house for taking his coat). This means that services need to adapt constantly to a
changing environment.

Interaction. As part of the individualization aspect, some citizens may rely more than
others on technology. Whilst Austin seems to be fully confident in the mobile platform,
other doctors who have similar smartphones may choose the “Always Require Con-
firmation” option. Therefore, we need to be aware of and respect different ways of
interacting with a possible solution.

5.2 Enabling User-Driven Evolution

Literature highlights that software must be adapted and enhanced continuously to
remain satisfactory [5]. User needs and expectations change over time and services
should provide the desired new features. Furthermore, they need to improve in quality.
Currently, methods and approaches to identify changing user needs are limited and do
not allow to continuously involve end-users in service evolution.

Emerging Services. The dramatic increment of available apps and services requires
improved mechanisms to identify interesting functionalities that emerge from providers
of any kind. For instance, Austin should be offered new services on transportation. In
case Austin is interested to try these services should be automatically integrated into the
workflow required. Filtering, recommendations and crowdsourcing become corner-
stones of this idea. Individuals may play a part in this scene by publishing (i.e., sharing)
their own services thus actively contributing to the service marketplace population.

154 X. Franch et al.

Incremental End-user Driven Evolution. Functionality provided by a service platform
may grow by increments, as an average user needs some time to master a new service.
Then new needs may be identified. For instance, Austin may at some time investigate
how to use the invoice generation facilities by hotels in order to store a copy of such an
invoice in his Dropbox account for his own purposes or post this need to developers if
not yet provided.

In the next section we propose a high-level architecture that aims to overcome these
challenges.

6 A Platform for Semantic Service Engineering

The envisioned scenario can be generalized in terms of an emerging ecosystem. Citizen
using smart devices are the key component. We envision that the mobile device can
make suggestion to the user based on analysing existing information. Information can
be gathered via the smart environment (environmental data) or services and apps.
Communication with other systems and users can furthermore include relevant infor-
mation. Results of the analysis of the gathered information might also be communi-
cated to other systems and users. A particular example is the communication of
feedback to developers in order to ensure continuous service evolution. Figure 3
depicts this ecosystem. Given their current predominance in society, smart mobile
devices (smartphones, tablets, etc.) provide all necessary functionalities to help people,
e.g. citizens of a smart city, organizing their daily activities and accessing a variety of
services through apps. We envision that over time, the appropriate apps are discovered
and installed according to the citizen’s profile. This profile resides in the citizen’s
personal cloud that contains all sensible information that needs to be private. Being in
the cloud, this information is shared by all mobile devices used by the citizen, thus
preventing problems in synchronization of data and profiles. The profile goes beyond
the typical concept that is applied for using applications today, we envision a social
profile that emerges from past actions and feedback given by the citizen to suggestions
that the mobile devices provide over time, which can be analysed by developers and

Fig. 3. The emerging ecosystem.

Enabling Informed Decision Making Through Mobile Technologies 155

motivate them to evolve the service or app it refers to. The mobile device is tightly
connected to the environment, especially to the smart city that surrounds the citizen,
and any possible sensor that the citizen may use (e.g., smart clothes for medical
monitoring). With all this information and also interoperating with more classical
information systems that are of interest for the citizen (e.g., at work), the mobile device
may take decisions on the go and inform other individuals about the consequences of
these decisions.

Focusing on the logical architectures of the software platform that can enable the
described ecosystem, and allow addressing the previously discussed challenges, we can
first recognize that the choice of whether to put a decision-making component on-board
of the mobile device or in the personal cloud or distributed on both, brings to a family
of possible architectures. Figure 4 shows one of these possible architectures, adopting
distributed decision-making (i.e., the decision-making component is embedded in the
mobile device). Its three main logical components are presented next.

Table 1 at the end of the section shows how the different mentioned platform
elements are involved in the software engineering challenges identified in Sect. 5).

6.1 The Personal Cloud

Within the personal cloud component we identify four main resources, each controlled
by a specific manager (not shown in the figure):

– Agenda. Keeps track of the citizen’s daily activities. This agenda needs to be seen as
multidimensional, in which the usual time arrangement is just one possible

Fig. 4. High-level architecture of a platform for enabling informed decision-making.

156 X. Franch et al.

viewpoint; others like location, people met, etc., should be easily retrieved in order
to facilitate later management.

– Context. Represents the context of the user, continuously updated. Under this
context, we may identify the following dimensions: time, location, environment
(e.g., low battery), type of activity (e.g., work, leisure, family), user skills (novice,
experienced; may be application-dependant), etc.

– Event History. Stores the activities of the citizen in the past. In the general case,
activities, even if represented in the form of a list (time-ordered), encode complex
workflows that represent processes followed by the user.

– Avatar. Creates a representation of the citizen that is used for decision-making. This
can be done exploiting decision-making algorithms executing in the personal cloud,
which, for instance, dynamically rank alternatives (e.g. services, or products) along
the user’s preferences.

6.2 The Mobile Device

The mobile device includes the following elements:

– GUI Manager. Intelligent interface of the mobile device with the user, supporting
agile composition and personalization.

– Decision-maker. This is the real core of the platform. It continuously decides about
the next actions to make.

– Environmental Monitor and Interoperability Manager. Communicate with the
outside world (smart cities, body sensors, information systems, etc.) and also get the
relevant environmental information from the mobile device (battery level, etc.).

– Service Manager. Discovers and, when appropriate, installs services in the mobile
device. This installation includes an initial automatic personalization.

– Service Space. Set of services installed on the device, including those modified or
defined by the user. Some of them may be used to inform other users affected by
decision-making, some others to provide explicit or implicit (i.e., logs of service/
app usage) feedback to service and app developers.

Table 1. Relating the solution space with the problem space.

SOLUTION SPACE
Personal Cloud Mobile device

Se
m

an
tic

 b
us

A
ge

nd
a

C
on

te
xt

Ev
en

t
hi

st
or

y

Av
at

ar

G
U

I
m

an
ag

er

D
ec

is
io

n
m

ak
er

En

vi
ro

n.

m
on

ito
r

Se
rv

ic
e

m
an

ag
er

Se

rv
ic

e
sp

ac
e

PR
O

B
LE

M
 S

PA
C

E

Privacy preservation + + + + +
History + + + +
Personalization + + + + + +
Service selection + + + + + +
Awareness + + + + +
Adaptation + + + + +
Interaction + +
Emerging services + + + + + + +
Incremental evolution + + + +

Enabling Informed Decision Making Through Mobile Technologies 157

6.3 The Semantic Bus

The semantic bus component is a classical interoperability bus for event-driven com-
munication, with the particularity that events have a high semantic content. It imple-
ments a publisher-observer pattern.

7 The Way Ahead

The realization and adoption of the envisaged platform, and the need to enable
seamless evolution of services and applications in the emerging ecosystem, ask for
advances in software engineering research, which may also take advantages of results
and techniques from different research fields. In this section we enumerate emerging
synergies and promising research lines as a preliminary step towards setting up a
research agenda.

Semantic Interoperability. In order to allow interoperability among all the platform
components and the external services, ontologies are needed to represent the infor-
mation that flows around according to some agreed conceptual reference framework
[28]. General ontologies for time, localization, etc., from organizations like W3C,
could be adopted to serve as lingua-franca for the platform. Data produced and con-
sumed by services should be compliant to these ontologies in order to allow inter-
connection through the platform.

Knowledge Representation and Reasoning Techniques. In order to build an accurate
and trustable knowledge base and infer the behaviour that better matches users’
expectations, AI techniques for knowledge representation and automated reasoning are
promising. Recommender systems [2] may provide (even automatically execute) rec-
ommendations on which services to apply; some applications in the marketing context,
e.g. (de Bruin et al., 2008), have explored this particular aspect. Case-based reasoning
[1] may be useful to improve the knowledge and reasoning capabilities of individual
users case by case. More recently, the use of ontology in combination with statistical
models is proposed to provide models of human behaviours in a given context [8].

Service Solutions. A great deal of existing proposals in the service-oriented computing
field clearly transfers into our envisaged platform. Approaches for service discovery
[23], service composition [24] (in particular using AI techniques [4]) and service
adaptation [9] are of application to satisfy some of the envisaged challenges.

Social Collaboration. The active participation of a large number of people to perform
particular tasks or solve problems, as emerging in the so called social computing [30],
is of great interest for our work, and has been pointed out as an opportunity to exploit in
different software engineering processes, from requirements engineering to software
testing. Lim and Finkelstein [17] have investigated first approaches towards large-scale
requirements elicitation using social networks. These approaches complement classical
market-driven requirements elicitation methods [14]. The potential of social collabo-
ration (via social network platform), to tackle the issue of “unknown unknown”

158 X. Franch et al.

requirements is pointed out also in [27]. Crowdsourcing for addressing the Oracle
problem in software testing has been also recently investigated [21]. Furthermore,
Onnela and Reed-Tsochase [20] provide first insights on social influence within social
networks.

Participatory Sensing. Gathering contextual information in order to allow services to
adapt to a particular user context is a key aim of our work. Research on participatory
sensing [7] focuses on communities that use sensors as provided by mobile devices to
retrieve information about the environment.

Change Management. Different sources of change need to be identified, classified and
analysed. Research on self-adaptive software services focus on defining solutions
to managing dynamic changes in the environment, mainly by adopting a monitor-
eval-adapt control loop [9]. Most of the proposed approaches focus on design-time
methods, while more recent work aim at equipping service-based systems with
mechanisms for managing changes of user requirements and preferences at run-time,
e.g. [22]. In this light, also traditional software evolution approaches require
rethinking. Service providers need to be aware not just of new needs coming from the
potential customers but also new opportunities coming from other services and
applications. To this end, very agile change management processes need to be
designed. The concept of “fluidity of design” [13] should be accommodated somehow
in these processes. One crucial question here is timing: when is the right moment to
update the service, for which selected requirements?

Personal and Social Values. Beyond pure technological knowledge, personal and
social factors need to be considered in this kind of solutions. Long ago Goguen [10]
already recognized this link in requirements engineering. The key value of require-
ments in this context was also recently highlighted by Milne and Maiden [19] who
demonstrated that requirements are socially constructed in a political context. This
means that decision-making needs to consider all type of factors surrounding indi-
viduals. Towards this objective, studies in the area of social science, which are based
on empirical survey techniques conducted on large user population can contribute with
statistically relevant data about the relationship between lifestyle traits, social influence,
people’s attitudes towards mobile innovations and the adoption of various types of
mobile services [6]. Indeed, our vision includes the idea that people should benefit
individually from the proposed solution, in harmony with the goals of a sustainable
society, such thoughtful use of resources and energy.

Feedback/Communication Channels. Continuous feedback on services is needed in
order to ensure long-term user satisfaction. Approaches which allow end-user to give
feedback on current context-aware services [25] and which allow them to document
their ideas on services in situ [26] build a basis to satisfy some of the depicted issues.

Process Mining. The fact that the proposed platform includes an activity history in the
form of list makes process mining [29] an interesting research field. In other words, the
activity history may be considered as a personal process log in which existing tech-
niques may be assessed and applied if adequate.

Enabling Informed Decision Making Through Mobile Technologies 159

Table 2 sketches an overview on the relationships we can see so far between these
research lines and the challenges, and solution elements above discussed.

8 Related Work

In this paper we have proposed a novel approach to close the gap among regular
citizens and software services available in mobile technologies. We aim at simplifying
the interaction of multiple internet services by means of a dedicated platform that is
able to make decisions autonomously and also to learn from past decisions from the
user. Our vision relies on several existing works both in the form of scientific con-
tributions and existing technologies that we survey below.

The IFTTT Project (https://ifttt.com/) supports user-designed service composition.
For example, a user can create a rule that is triggered when he uploads an image to
Instagram that saves this image in his Dropbox account. Such rules (called recipes), can
be shared among users or created in a personalised basis. A similar approach is fol-
lowed by the SATIN project (http://www.satinproject.eu/mission). Although the sys-
tem is not designed to learn from the user behavior, it opens the path to communication
between applications. Such a technology could be integrated into the GUI manager
with the purpose of supporting the user to configure his personalized workflows.

Similarly, the on{X} project (https://www.onx.ms/#!landingPage) lets the user
control and extend the capabilities of his Android smartphone using a JavaScript API.
on{X} provides an API that allows the device to detect several user events, as for
example the speed of movement or the arrival to the office. Applications can use this
API to react to these events. This type of technology can be integrated in the envi-
ronment monitor e.g. to update doctors’ context when they park the car at the hospital.

Also several applied research projects tackle related issues. The PERSIST project
(http://www.ict-persist.eu/) envisions a Personal Smart Space (PSS) that is associated
with the personal devices carried by the user and which follows him, providing unin-
terrupted context-aware pervasiveness. This concept of PSS could be the basis of the
avatar component in our platform. The SOCITIES project (http://www.ict-societies.eu/)

Table 2. Research lines vs. solution elements they can contribute for.

S O L U T I O N S P A C E
Personal Cloud Mobile device Semantic bus

R
 E

 S
 E

 A
 R

 C
 H

L

I N
 E

 S
 Semantic interoperability + +

Knowledge represen-
tation and reasoning + +

Service solutions + +
Social collaboration + +
Participatory sensing +
Change management +
Personal and social
values +

Feedback/Communi-
cation channels + +

Process mining + +

160 X. Franch et al.

https://ifttt.com/
http://www.satinproject.eu/mission
https://www.onx.ms/#!landingPage
http://www.ict-persist.eu/
http://www.ict-societies.eu/

aims at improving on-line community services, creating new ways of communicating,
working and socialising. In their own words, “the vision of SOCITIES is to develop a
complete integrated Community Smart Space, which extends pervasive systems beyond
the individual to dynamic communities of users”.

MUSIC (http://ist-music.berlios.de/site) developed an open framework for the
development and deployment of context aware and self-adaptive mobile applications
targeted for ubiquitous and service oriented environments. The framework offers a
distributed context sensing and management system and supports self-adapting dis-
tributed mobile services collaborating in dynamically adapting ensembles. With the
help of MUSIC, a developer can implement and deploy a custom context sensor
specific to a given device (e.g. a sensor for handling compass data). Still, the frame-
work requires significant effort and a case-by-case study to integrate new services into
the user environment.

Some platforms start to be also available in mobile infrastructure. BLOCCO [12] is
a service linking system available in Android platform that enables the building of new
application mash-ups by linking other existing Android applications. This was deliv-
ered in the form of an Android application. The main goal of the project was to enable
users to combine functionalities provided by different applications and to implement
automatic execution of applications according to user configuration. In addition, var-
ious events happening in one application could be detected and they could be used to
trigger execution of other services, using parameter passing and processing techniques.
Similar to IFTTT, BLOCCO focused on constant rules for end-user configuration and
enabled end-users to build new applications according to their specific needs, in a user-
centred fashion.

Finally, some academic works have already explored similar features or func-
tionalities. An event-driven approach for business process modeling [3] was introduced
to enhance agility by means of learning rules between events and actions. Similarly, the
integration of adaptive process management and case handling was used to create a
more flexible and user-friendly approach to process management [11]. Another note-
worthy work [18] studies end-user service composition from the perspective of users.
With this goal, the authors review users’ perceptions, intuitions and requirements
regarding bridging different services. Finally, Semantic Web Pipes [16] is a mechanism
that supports fast implementation of semantic data mash-ups while preserving
abstraction, encapsulation, component-orientation, code re-usability and
maintainability.

9 Conclusions

In this paper we have identified challenges for software engineering based on an
envisioned example focusing on decision-making support of the future. Furthermore
we have presented a first solution idea of a platform which could provide the envi-
sioned decision support. However, in order to achieve this vision several advances
regarding software engineering methods and tools are required. We discuss an initial
research agenda where we have reflected on the different research lines that may
contribute to the realization of our vision.

Enabling Informed Decision Making Through Mobile Technologies 161

http://ist-music.berlios.de/site

Whilst certainly there is a long path to achieve the scenario presented in Sect. 4, we
have tried to show that a lot of work is already there and can be used as the baseline for
building such a platform. Still, many fundamental questions need to be addressed. For
instance, recent findings dispute the idea that people are rational decision-makers [15].
This opens an interesting debate: is it cost-effective to try to embody all possible
preferences and attitudes of citizens in a computational form? Answers to this kind of
fundamental questions allow us envisaging new emerging interdisciplinary research
lines.

Acknowledgements. This work has been supported by the Spanish project TIN2010-19130-
C02-01.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6),
734–749 (2005)

3. Alexopoulou, N., Nikolaidou, M., Chamodrakas, Y., Martakos, D.: Enabling on-the-fly
business process composition through an event-based approach. In: HICSS 2008 –

Proceedings of 41st Hawaii International Conference on System Sciences. IEEE Press
(2008)

4. Beauche, S., Poizat, P.: Automated service composition with adaptive planning. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 530–537. Springer, Heidelberg (2008)

5. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap. In: ICSE
2000 – Proceedings of Conference on The Future of Software Engineering. ACM Press 2000

6. Bouwman, H., López-Nicolás, C., Molina-Castillo, F.J., van Hattum, P.: Consumer
lifestyles: alternative adoption patterns for advanced mobile services. IJMC 10(2), 169–189
(2012)

7. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.:
Participatory sensing. In: WSW 2006 – Proceedings of Workshop on World-Sensor-Web:
Mobile Device Centric Sensor Networks and Applications (2006)

8. Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R.: Osmonto - an ontology of
openstreetmap tags. In: State of the map Europe (SOTM-EU) (2011)

9. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly
dynamic, self-adaptive service-based applications. Autom. Softw. Eng. 15, 313–341 (2008)

10. Goguen, J.: Requirements engineering as the reconciliation of social and technical issues. In:
Goguen, J., Jirotka, M. (eds.) Requirements Engineering: Social and Technical Issues.
Academic Press Professional, San Diego (1994)

11. Gunther, C., Reichert, M., van der Aalst, W.: Supporting flexible processes with adaptive
workflow and case handling. In: WETICE 2008 – Proceedings of Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises. IEEE Press (2008)

12. Hagino, H., Fujii, K., Murakami, J., Hara, M.: The BLOCCO service linking system,
enabling combination of services through user configuration. NTT DOCOMO Tech. J. 12
(4), 30–37 (2011)

162 X. Franch et al.

13. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W.: The brave new
world of design requirements. Inf. Syst. J. 36, 992–1008 (2011)

14. Karlsson, L., Dahlstedt, A.G., Regnell, B., och Dag, J.N., Persson, A.: Requirements
engineering challenges in market-driven software development - an interview study with
practitioners. Inf. Syst. Technol. 49(6), 588–604 (2007)

15. Lehrer, J.: How we Decide. Houghton Mifflin Harcourt, Boston (2009)
16. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid

prototyping of semantic mash-ups through semantic web pipes. In: WWW 2009 –

Proceedings of International World Wide Web Conference 2009. ACM Press (2009)
17. Lim, S.L., Finkelstein, A.: StakeRare: using social networks and collaborative filtering for

large-scale requirements elicitation. IEEE Trans. Softw. Eng. 38(3), 707–735 (2012)
18. Mehandjiev, N., Namoune, A., Wajid, U., Macaulay, L., Sutcliffe, A.: End user service

composition. In: WWW 2009 – Proceedings of International World Wide Web Conference
2009. ACM Press (2009)

19. Milne, A., Maiden, N.: Power and politics in requirements engineering: a proposed research
agenda. In: RE 2011 – Proceedings of the 19th IEEE International Requirements
Engineering Conference (2011)

20. Onnela, J.-P., Reed-Tsochase, F.: Spontaneous emergence of social influence in online
systems. Proc. Nat. Acad. Sci. U.S.A. 107(43), 18375–18380 (2010)

21. Pastore, F., Mariani, L., Gordon F.: Crowdoracles: can the crowd solve the oracle problem.
In: International Conference on Software Testing, Verification and Validation (ICST) (2013)

22. Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications.
In: Proceedings of the 18th IEEE International Requirements Engineering Conference,
pp. 108–111 (2010)

23. Ran, S.: A model for web services discovery with QoS. ACM SIGecom Exch. 4(1), 1–10
(2003)

24. Rao, J., Su, X.: A Survey of automated web service composition methods. In: Cardoso, J.,
Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg
(2005)

25. Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., Aguirre, L.:
Feedback in context: supporting the evolution of IT-ecosystems. In: Ali Babar, M.,
Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 191–205. Springer,
Heidelberg (2010)

26. Seyff, N., Graf, F., Maiden, N.A.M.: Using mobile RE tools to give end-users their own
voice. In: RE 2010 – Proceedings of the 19th International Requirements Engineering
Conference (2010)

27. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In: RE
2013 – Proceedings of the 21th International IEEE Requirements Engineering Conference
(2013)

28. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. Knowl.
Eng. Rev. 11(2), 93–136 (1996). Cambridge University Press

29. van der Aalst, M.P.: Process Mining - Discovery, Conformance and Enhancement of
Business Processes, pp. I–XVI, 1–352. Springer, Berlin (2011). (ISBN 978-3-642-19344-6)

30. Wang, F.-Y., Carley, K.M., Zeng, D., Mao, W.: Social computing: from social informatics
to social intelligence. IEEE Intell. Syst. 22(2), 79–83 (2007)

31. West, D.: How mobile devices are transforming healthcare. Issues Technol. Innov. 18, 1–14
(2012)

Enabling Informed Decision Making Through Mobile Technologies 163

Early Verification and Validation According
to ISO 26262 by Combining Fault Injection

and Mutation Testing

Rakesh Rana1(B), Miroslaw Staron1, Christian Berger1, Jörgen Hansson1,
Martin Nilsson2, and Fredrik Törner2

1 Computer Science and Engineering, Chalmers/University of Gothenburg,
Gothenburg, Sweden
rakesh.rana@gu.se

2 Volvo Car Corporation, Göteborg, Sweden

Abstract. Today software is core part of modern automobiles. The
amount, complexity and importance of software components within Elec-
trical/Electronics (E/E) systems of modern cars is only increasing with
time. Several automotive functions carrying software provide or interact
with safety critical systems such as systems steering and braking and
thus assuring functional safety for such systems is of high importance.
Requirements for the safety assurance are specified partially by such
functional safety standards as ISO 26262. The standard provides the
framework and guidelines for the development of hardware and software
for components deemed to be safety critical. In this chapter we argue
that traditional approaches for safety assurance such as fault injection
and mutation testing can be adapted and applied to functional models to
enable early verification and validation according to the requirements of
ISO 26262. We show how to use fault injection in combination with muta-
tion based testing to identify defects early in the development process -
both theoretically and on a case of self-driving miniature vehicles. The
argument is grounded upon the current best practices within the indus-
try, a study of ISO 26262 standard, and academic and industrial case
studies using fault injection and mutation based testing applied to the
functional model level. In this paper we also provide the initial validation
of this approach using software of a self-driving miniature vehicle.

Keywords: Fault injection · Mutation testing · ISO 26262 · Simulink ·
Model based development · Automotive domain · Safety critical software

1 Introduction

Nowadays, a typical premium car has up to 70 ECUs, which are connected by
several system buses to realize over 2,000 functions [1]. As around 90 % of all
innovations today are driven by electronics and software the complexity of cars
embedded software is expected to grow. The growth is fuelled by cars beginning
c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 164–179, 2014.
DOI: 10.1007/978-3-662-44920-2 11

Early Verification and Validation According to ISO 26262 165

to act more proactively and more assistive to its drivers, which requires software
to interact with hardware more efficiently and making more decisions automati-
cally (e.g. collision avoidance by braking, brake-by-wire or similar functions). In
total with about 100 million lines of code (SLOC), premium segment vehicles
carry more software code than in modern fighter jets and airliners [2]. Soft-
ware for custom functionality in modern cars is usually developed by multiple
suppliers although it is designed by a single OEM (Original Equipment Man-
ufacturer) like Volvo Cars. The distributed development and use of standards
like AUTOSAR aims to facilitate reuse of software and hardware components
between different vehicle platforms, OEMs and suppliers [3]. However, testing of
such systems is more complex and today testing of software generally accounts
for almost 50 % of overall development costs [4].

ISO-26262 in automotive domain poses stringent requirements for develop-
ment of safety critical applications and in particular on the testing processes for
this software. These requirements are intended to increase the safety of modern
cars, although they also increase the cost of modern cars with complex software
functions influencing safety or car passengers.

The position for which we argue in this paper is that efficient verification
and validation of safety functions requires combining Model Based Development
(MBD) with fault injection into models with mutation testing. This position is
based on the studies of the ISO 26262 standard (mainly Chap. 6 that describes
requirements on software development but also Chap. 4, which poses require-
ments on product development [5]). It is also based on previous case studies of
the impact of late defects on the software development practices in the automo-
tive section [6].

The requirements from the ISO 26262 standard on using fault injection tech-
niques is challenging since it relates to the development of complete functions
rather than components of sub-components of software. The current situation in
the automotive sector is that fault injection is used, but it is used at the level of
one electronic component (ECU) or one software system, rarely at the function
level [7,8].

The current state of art testing is not enough for detecting safety defects
early in the automotive software development process since fault injection is
done late in the development (when ECUs are being developed), which usually
makes the detection of specification-related defects difficult and costly [6]. This
detection should be done in the model level when the ECUs functionality is
still under design and thus, it is relatively cheap to redesign. The evidence from
literature on successful use of fault injection shows that the technique indeed
is efficient in finding dependability problems of hardware and software systems
when applied to computer systems [9]. To be able to increase the effectiveness of
the fault injection strategies and identify whether the faults should be injected
at the model, software or ECU level - mutation testing should be applied to
verify the adequacy of test cases. And finally we need to assess how to combine
these approaches and apply them at the model level that will enhance our ability
to detect safety related defects right at the design stage.

166 R. Rana et al.

In this paper we provide a roadmap, which shows how to introduce fault
injection and mutation testing to modelling of automotive software in order to
avoid costly defects and increase the safety of modern and future cars. This
paper is the extended version of our previous work [10] where we presented the
theoretical approach. In this paper we include a validation of this framework on
a set of software components of self-driving miniature vehicles. The system used
for initial validation is developed using a code-centric approach which makes
the framework more generic as the initial evaluation in [10] was conducted on
model-based development.

The remaining of the paper is structured as follows: In the next Sect. 2 we
provide an overview of software development in automotive domain and associ-
ated concepts. This is followed by brief discussion on related work in Sect. 3 and
our position is presented and discussed in Sect. 4. Section 5 presents the initial
validation case for the framework and Sect. 6 provides conclusions.

2 Background

In this section we take a brief overview on the current state of automotive soft-
ware development process and environment, how safety is important in safety
critical applications and overview of theoretical background on fault injection
techniques and mutation testing.

2.1 Automotive Software Development and ISO 26262

Various software functions/applications developed within the automotive indus-
try today are classed as safety critical for example Volvo’s City Safety consists
of components that are safety critical (Fig. 1).

Broy [1] gives examples of functions/areas within automotive domain of
recent development which includes crash prevention, crash safety, advanced
energy management, adaptable man-machine interface, advanced driver assis-
tance, programmable car, car networking etc., much of these fall within the
safety critical functionality and demands high quality and reliability. Also a
number of on-going projects are directed towards the goal of self-driving cars.

Software development in automotive sector in general follows the ‘V’ process,
where OEMs take the responsibility of requirement specification, system design,
and integration/acceptance test. This is followed by the suppliers, where the
actual code that runs on ECUs is developed. Although the code is tested at the
supplier level (mainly unit testing), the OEMs are responsible for the final inte-
gration, system and acceptance testing to ensure that the given implementation
of a software (SW) meets its intended functional and safety goals/demands.

In this model of software/product development (see Fig. 2) testing is usually
concentrated in the late stages of development, which also implies that most of
the defects are discovered late in the development process. In a recent study
using real defect data from an automotive software project from the industry
showed that late detection of defects is still a relevant problem and challenge yet

Early Verification and Validation According to ISO 26262 167

Fig. 1. Volvo Cars city safety function, image provided by Volvo Car Corporation.

to overcome [6]. The defect inflow profile presented in this study is presented in
Fig. 3 for reference, which exhibits a clear peak in number of open defects in the
late stages of function development/testing.

Testing the software is an important tool of ensuring correct functionality
and reliability of systems but it is also a very resource intensive activity account-
ing for up to 50 % of total software development costs [11] and even more for
safety/mission critical software systems. Thus having a good testing strategy
is critical for any industry with high software development costs. It has also
been shown that most of the defects detected during testing do not depend on
actual implementation of code, about 50 % of defects detected during testing in

Fig. 2. The V-model in the automotive industry with distinction between the OEM
and supplier contributions.

168 R. Rana et al.

Fig. 3. Defect inflow profile for automotive software project, as given in [6].

the study by Megen and Meyerhoff [12] were found during the test preparation,
an activity independent of the executable code. And since automotive sector
has already widely adopted MBD for the software development of embedded
systems, a high potential exists for using the behavioural modes developed at
the early stages of software development for performing some of the effort spent
on V&V (Verification & Validation). Early V&V by helping to detect defects
early will potentially save significant amount of cost for the projects.

2.2 ISO 26262

ISO/IEC 26262 is a standard describing safety requirements. It is applied to
safety-related systems that include one or more electrical and/or electronic (E/E)
systems. The overview of safety case and argumentation is represented in Fig. 4.

Written specifically for automotive domain, the ISO-26262 standard is
adapted for the V-model of product development corresponding to the current
practice in the industry. The guidelines are laid out for system design, hardware
and software design and development and integration of components to realize
the full product. ISO-26262 includes specifications for MBD and provides rec-
ommendations for using fault injection techniques for hardware integration and
testing, software unit testing, software integration testing, hardware-software

Early Verification and Validation According to ISO 26262 169

Item
• The item representing a system or a function is defined.

PHA
• A Preliminary Hazard Analysis & Risk Assessment is done to

assign an appropriate ASIL level.

SG
• Safety Goals are derived from the Hazard Analysis and they

inherit the assigned ASIL level.

FSR
• Functional Safety Requirements are drawn such that the set

Safety Goals are met.

TSR
• The Technical Safety Requirements are formulated describing

how to implement FSR.

Doc
• Further development includes implementation, integration and

documentation of safety cases.

Fig. 4. Overview of ISO-26262 safety case & argumentation process.

integration testing, system integration testing and vehicle integration testing.
Although the functional safety standard specifies clearly the recommendations
for using fault injection during various stages of testing but does not recommend
anything with respect to using mutation testing. This also reflects the current
standard practice within the automotive industry where mutation testing is not
widely adopted yet.

2.3 Fault Injection

Fault injection techniques are widely used for experimental dependability eval-
uation. Although these techniques have been used more widely for assessing
the hardware/ prototypes, the techniques are now about to be applied at behav-
ioural models of software systems [13], thus enabling early verification of intended
functionality as well as enhancing communication between different stakehold-
ers. Fault injection techniques applied at models level offer distinct advantages
especially in an industry using MBD, but use of these techniques at model level
in automotive industry is currently at its infancy. Figure 5 shows a mind map of
classification of fault injection techniques based on how the technique is imple-
mented; some of the tools which are developed based on given approach are also
listed for reference. For a good overview of fault injection techniques readers are
referred to [9,14].

170 R. Rana et al.

Fig. 5. Common classification of fault injection techniques and implementation tools,
description available in [9,14].

Early Verification and Validation According to ISO 26262 171

2.4 Mutation Testing

Mutation testing is technique for assessing the adequacy of given test suite/set of
test cases. Mutation testing includes injection of systematic, repeatable seeding
of faults in large number thus generating number of copies of original software
artefacts with artificial fault infestation (called a mutant). And on the basis of
what percentage of these mutations are detected by the given test cases/suite
gives a metrics (called “mutation adequacy score” [15]) which can be used for
measuring the effectiveness of given test suite. Faults for mutation testing app-
roach can be either hand written or auto-generated variants of original code.
The effectiveness of this approach in mimicking the real faults has also been
established [16] i.e. mutants do reflect characteristics of real faults. Mutation
theory is based on two fundamental hypotheses namely Competent Programmer
Hypothesis (CPH) and the Coupling Effect, both introduced by DeMillo et al.
[17]. CPH at its core reflects the assumption that programmers are competent
in their job and thus would develop programme close to correct version while
coupling effect hypothesis according to Offutt is “Complex mutants are coupled
to simple mutants in such a way that a test data set that detects all simple faults
in a program will detect a high percentage of the complex defects” [18].

3 Related Work

A number of European Union sponsored projects have within the area of embed-
ded software development and safety critical systems have looked at and devel-
oped techniques to effectively use fault injection for safe and reliable software
development. The examples include the ESACS [19] (Enhanced Safety Assess-
ment for Complex Systems), the ISAAC [20] (Improvement of Safety Activi-
ties on Aeronautical Complex systems). These projects have used the SCADE
(Safety-Critical Application Development Environment) modelling environment
to simulate hardware failure scenarios to identify fault combinations that lead
to safety case violations.

A model-implemented fault injection plug-in to SCADE called FISCADE
is introduced in [21] which utilizes approach similar to mutation based testing
and replaces the original model operators by equivalent fault injection nodes.
The derived models are then used to inject the fault during execution and log
the results which are analysed later. Dependability evaluation of automotive
functions using model based software implemented fault injection techniques
have also been studied in [22].

A generic tool capable of injecting various types of faults on the behavioural
or functional Simulink models is also developed and introduced [13]. The tool
called MODIFI (or MODel-Implemented Fault Injection tool) can be sued to
inject single or multiple point faults on behavioural models, which can be used to
study the effectiveness/properties of fault tolerant system and identify the faults
leading to failure by studying the fault propagation properties of the models.

Another work [23] with its root in the European CESAR (Cost-efficient meth-
ods and processes for safety relevant embedded systems) project provides a good

172 R. Rana et al.

Fig. 6. MBD based representation of a general system with inputs, outputs and
dependencies.

theoretical overview of how fault and mutation based test coverage can be used
for automated test case generation for Simulink models. We provide a practi-
cal framework on how fault injection combined with mutation testing within
an MDB environment can be used in the industry. And how will this practice
enhance the verification and validation of software under development, its func-
tional validation that would generates statistics for the effective argumentation
of ISO 26262 compliance.

4 Framework for Early Verification and Validation
According to ISO 26262

We contend that fault injection can be effectively used at the model level to verify
and validate the attainment or violation of safety goals. By applying mutation
testing approach at the model level enough statistical evidence will be provided
for the coverage needed for argumentation of fulfilment of safety goals as per the
ISO26262 safety standard requirements.

A major challenge in successful argumentation of ISO-26262 compliance is
to provide statistical evidence that Safety Goals (SGs) would not be violated
during operation and doing this within reasonable testing efforts.

If we are able to differentiate early between defects that will or not cause the
violation of SGs, the amount of testing required will be manageable. With MBD
the testing for functionality under these defect conditions could be modelled
using fault injection techniques, while the possibility of implementation bugs
in the actual code can be checked using the mutation testing approach. The
framework on how this could be achieved in practice is as follows:

As illustrated in Fig. 6, a given system/function generally has following com-
mon features (in context of model based development): firstly it will have x inputs
(i1,2,...x); it would have dependencies to other y components/functions (d1,2,...y);

Early Verification and Validation According to ISO 26262 173

it will have z outputs (o1,2,...z); and it will have a number of sub-units/modules
within it that implements the intended functionality, let us assume that this
part contains n basic blocks in the modelling environment corresponding to n
statements for a hand written code. To verify and validate the correct function-
ality and ISO 26262 compliance of this generic function using fault and mutation
testing approach we can follow the steps as:

– Assign or define the Functional Safety Requirements (FSRs) and Technical
Safety Requirements (TSRs) for the z outputs of the given system/function
in accordance to ISO 26262.

– Use fault injection technique to inject common occurring defects and other
theoretically possible fault conditions at the x inputs.

– By studying the fault propagation of different injected faults at inputs and
their effect on outputs, the individual faults and combinations of it that violate
the FSRs for given system can be noted.

– Steps (b) & (c) should also be done to test and validate the given sys-
tem/function dependencies on other functions/components.

– Mutation approach is then used to inject faults (or cause mutations) to the n
basic blocks of given functional model and assess the detection effectiveness
of test suite/cases for possible implementation bugs.

– The mutants which are not killed by given set of test cases/suits are examined
for their effect on given functions FSRs, if the given mutation violates the
SGs/FSRs then a suitable test case will be created to detect/kill such mutants
i.e. detect such bugs in actual code.

Thus by following the above mentioned steps we not only ensure that the
given function works as intended, does not violate the SGs and FSR/TSRs under
faulty inputs and/or due to dependencies on other functions, but we can also
identify possible implementation defects using the mutation approach and ensure
that we have test cases ready to catch such faults that can potentially violate
the SGs/TSRs even before the code is implemented/generated.

Further to make this framework/approach more effective in industrial prac-
tice we identify some best practices that will have positive impact on detect-
ing defects early in the development process and thus have effective V&V of
ISO26262.

– Model evolution corresponding to different levels of software/product devel-
opment.

– Specification and testing for SGs, FSRs and TSRs on the behavioural models.
– Identification of different types of defects/types of faults and at what stage

they could be modelled/injected at models to ensure that models are build
robust right from the start instead of adding fault tolerance in later stages of
development.

5 Case Study: Validation

In this section we present the validation of proposed framework on a set of
components for self-driving miniature vehicles. The software for the miniature

174 R. Rana et al.

Fig. 7. Self-driving miniature vehicle [25].

Box 1: gap size = 6.92m

Box 1: measured gap size = 7.017m
(under fault mode)

Fig. 8. Test track for the experiment with parking gap from our simulation
environment.

vehicles is build using similar methods and tools as professional software in the
automotive industry, although on a smaller scale. In the validation we use the
self-parking function of a self-driving miniature vehicle [24]. The architecture of
the software is described in detail in [25] and one of our miniature vehicles using
the self-driving vehicle software and a scenario for a sideways parking realized
in our simulation environment are illustrated in Figs. 7 and 8. The miniature
vehicles are in the scale 1:10 compared to the normal cars.

Early Verification and Validation According to ISO 26262 175

For understanding the initial validation of this framework it is sufficient to
note that the functionality we are dealing with is self-parking for on a sideways
parking strip. The self-parking algorithm expects a gap size of at least 7 m to
park in one turn without using an additional correction trajectory. This scenario
is presented in Fig. 8.

We applied the framework for early verification and validation following the
steps given in Sect. 4 as follows:

– Assign FSR/TSR: An example of obvious functional safety requirement (FSR)
for self-parking functionality is parking without hitting any other object. The
corresponding technical safety requirement (TSR) can thus be parking only
when gap size exceeds 7 m (minimum gap size requirement).

– Using fault injection to simulate common fault scenario: A fault scenario is cre-
ated by injecting a fault in the returned value for the travelled path by adding
an error value of maximum 3.4 % for the relatively travelled path increment.
Thus, the size for measured gaps (due to faulty sensor input) increases for
example by 9.7 cm to 7.01678 m.

– Identify fault scenarios leading to FSR/TSR violations: Since in the exper-
iment with fault injection, the parking algorithm depends on the travelled
path; thus the algorithm parks the car in the lower gap which leads to a
safety case violation because the cars collides with the obstacle at the rear
side.

– Repeat steps (b) & (c) for all inputs: For this experiment, we focused on the
fault injection for a single signal.

– Cause mutations: Single point mutations are caused by changing the logical
operators in the self-parking function code, the standard test protocol to test
the expected functionality was then applied to evaluate the generated mutants.

– Examine mutants & create new test cases: The mutants and the results
whether they were successfully detected are provided in Table 1. In this sim-
ple case itself with only 24 mutations, to our surprise two mutations produced
unexpected results and violated the assigned FSR. While previously the test
protocol has been deemed being sufficient for this function, the experiment
clearly demonstrated the need for adding further test cases to reliably spot
these failures and to detect possible faults leading to FSR violations.

5.1 Lessons Learned

The initial validation experiment presented in this section for the proposed
framework is the first step towards a complete validation of this framework in
an industrial setting. Although the framework is focused on using fault injection
and mutation testing at functional model level in model-based development to
shift some of the verification and validation efforts to early stages of develop-
ment, the example here demonstrated its applicability of given framework in a
code-centric development environment as well.

The experiments using the software of a miniature vehicle provided a proof-
of-concept for the framework and provide a frame of reference with respect to

176 R. Rana et al.

Table 1. Mutation testing output, case with and without fault mode scenario.

its possible effectiveness. While in full scale safety evaluations following the ISO
26262, a given function depending on its functionality may be subjected to tens
of safety goals and even larger number of corresponding FSR/TSRs, we only
evaluated one such scenario. Still with only a single fault scenario - we were able

Early Verification and Validation According to ISO 26262 177

to identify faults leading to safety case violation. Also the mutation approach
applied to this exemplary scenario by using 24 mutations, 2 out of these 24
mutants produced unexpected results and exposed the deficiency of the current
test protocol, which was considered as adequate for the given functionality.

Therefore while these are encouraging results pointing towards applicability
and effectiveness of the proposed framework, we also learned that we need further
validation on industrial scale projects to increase the external validity of these
results. Further for this framework to be successful in any organization much
of the steps of described framework will have to be automated and supported
by appropriate tools. As explained in Sects. 2 and 3, a number of tools for fault
injection and mutation testing based approaches are available for code-centric
development making this framework practical for implementation on large scale
with high automation. But corresponding tools to support fault injection and
mutation based testing at functional model level in model-based development
are not widely available and the few tools currently available are in their early
stages of development where reliability of such tools will be an issue at least for
some time in near future.

6 Conclusions

In this paper we have examined the growing importance of software in auto-
motive domain. The development of software in automotive and other similar
industries has widely adopted the paradigm of model based development and by
the nature of application much of the functionality developed and implemented
in these sectors is safety critical. Safety critical software/application development
requires observation of stringent quality assessment and adherence to functional
safety standards such as ISO 26262 in automotive and DO-173 in aerospace
industry.

Development of behavioural models in MBD offers significant opportunity
to do functional testing early in the development process. Fault injection and
mutation testing approach in combination can be used to effectively verify and
validate the functional properties of a software system/function. The approach
will also provide the required statistics for the argumentation of safety standards
compliance. In this paper the need for such validation and a framework on how
this could be achieved in practice is discussed. More research and tools are needed
to bring this approach into wider industrial adoption.

Initial validation of our proposed framework provided a proof-of-concept and
produced encouraging results indicating its usefulness and effectiveness in prac-
tice. It is also noted that the framework will become much more effective and
easy to use for model-based development as tools related to fault injection and
mutation testing at model level matures over time. In the meantime, valida-
tion on industrial scale functions will provide further evidence to evaluate the
applicability and effectiveness of the proposed framework in practice.

By detecting defects early and being able to do much of verification and
validation of intended functionality, robustness and compliance to safety stan-
dards on the models the quality and reliability of software in automotive domain

178 R. Rana et al.

will be significantly enhanced. More effective approaches and tools support will
also reduce the V&V costs and lead to shorter development times. High quality,
reliable and dependable software in automobiles brings innovative functionality
sooner, keeps product costs lower and most importantly ensures that automo-
biles are safer than ever before.

Acknowledgements. The work has been funded by Vinnova and Volvo Cars jointly
under the FFI programme (VISEE, Project No: DIARIENR: 2011-04438).

References

1. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the
28th International Conference on Software Engineering, pp. 33–42 (2006)

2. Charette, R.N.: This car runs on code. IEEE Spectr. 46(3), 3 (2009)
3. Fennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fürst, S., Schnelle, K.P., Grote,

W., Maldener, N., Weber, T., Wohlgemuth, F., et al.: Achievements and exploita-
tion of the autosar development partnership. In: Convergence 2006, October 2006

4. Boehm, B., Basili, V.: Defect reduction top 10 list. Computer 34, 135–137 (2001)
5. ISO, C.: 26262, road vehicles-functional safety (2011)
6. Melleg̊ard, N., Staron, M., Törner, F.: A light-weight defect classification scheme

for embedded automotive software and its initial evaluation. In: 2012 IEEE 23rd
International Symposium on Software Reliability Engineering (ISSRE), pp. 261–
270. IEEE (2012)

7. Hillenbrand, M., Heinz, M., Adler, N., Müller-Glaser, K.D., Matheis,
J., Reichmann, C.: ISO/DIS 26262 in the context of electric and electronic archi-
tecture modeling. In: Giese, H. (ed.) ISARCS 2010. LNCS, vol. 6150, pp. 179–192.
Springer, Heidelberg (2010)

8. Schätz, B.: Certification of embedded software – impact of ISO DIS 26262 in the
automotive domain. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS,
vol. 6415, p. 3. Springer, Heidelberg (2010)

9. Hsueh, M., Tsai, T., Iyer, R.: Fault injection techniques and tools. Computer 30(4),
75–82 (1997)

10. Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., Törner, F.: Increas-
ing efficiency of iso 26262 verification and validation by combining fault injection
and mutation testing with model based development. In: 8th International Joint
Conference on Software Technologies-ICSOFT-EA, Reykjav́ık, Iceland, July 2013

11. Jones, E.L.: Integrating testing into the curriculumarsenic in small doses. In: ACM
SIGCSE Bulletin, vol. 33, pp. 337–341

12. Megen, R., Meyerhoff, D.: Costs and benefits of early defect detection: experiences
from developing client server and host applications. Software Qual. J. 4(4), 247–256
(1995)

13. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: a MODel-
implemented fault injection tool. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS,
vol. 6351, pp. 210–222. Springer, Heidelberg (2010)

14. Ziade, H., Ayoubi, R., Velazco, R., et al.: A survey on fault injection techniques.
Int. Arab J. Inf. Technol. 1(2), 171–186 (2004)

15. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

Early Verification and Validation According to ISO 26262 179

16. Andrews, J., Briand, L., Labiche, Y.: Is mutation an appropriate tool for testing
experiments? [software testing]. In: Proceedings of the 27th International Confer-
ence on Software Engineering, ICSE 2005, pp. 402–411 (2005)

17. DeMillo, R., Lipton, R., Sayward, F.: Hints on test data selection: help for the
practicing programmer. Computer 11(4), 34–41 (1978)

18. Offutt, A.: Investigations of the software testing coupling effect. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 1(1), 5–20 (1992)

19. ESAC: Enhanced safety assessment for complex systems. FP5-GROWTH contract
no. G4RDCT-2000-00361

20. ISAAC: Improvement of safety activities on aeronautical complex systems. FP6-
AEROSPACE project reference 501848 (2007)

21. Vinter, J., Bromander, L., Raistrick, P., Edler, H.: Fiscade - a fault injection tool for
scade models. In: 2007 3rd Institution of Engineering and Technology Conference
on Automotive Electronics, pp. 1–9 (2007)

22. Plummer, A.: Model-in-the-loop testing. Proc. Inst. Mech. Eng. Part I: J. Syst.
Control Eng. 220(3), 183–199 (2006)

23. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rümmer, P.,
Weissenbacher, G.: Mutation-based test case generation for simulink models. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010)

24. Berger, C., Chaudron, M., Heldal, R., Landsiedel, O., Schiller, E.M.: Model-based,
composable simulation for the development of autonomous miniature vehicles. In:
Mod4Sim’13: 3rd International Workshop on Model-driven Approaches for Simula-
tion Engineering at SCS/IEEE Symposium on Theory of Modeling and Simulation
in Conjunction with SpringSim 2013 (2013)

25. Berger, C., Hansson, J., et al.: Cots-architecture with a real-time os for a self-
driving miniature vehicle. In: Proceedings of Workshop ASCoMS (Architecting
Safety in Collaborative Mobile Systems) of the 32nd International Conference on
Computer Safety, Reliability and Security (2013)

Platform-Independence in Model-Driven
Development of Graphical User Interfaces

for Multiple Devices

David Raneburger1(B), Gerrit Meixner2, and Marco Brambilla3

1 Institute of Computer Technology, Vienna University of Technology,
Gusshausstrasse 27-29, 1040 Vienna, Austria

david.raneburger@tuwien.ac.at
2 Faculty of Computer Science, Heilbronn University,

Max-Planck-Str. 39, 74081 Heilbronn, Germany
gerrit.meixner@hs-heilbronn.de

3 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy

marco.brambilla@polimi.it

Abstract. We would like to encourage you to list your keywords within
Model-driven development of Graphical User Interfaces (GUIs) for multi-
ple devices involves the transformation of the same platform-independent
model to several platform-dependent GUI models. A clear definition of
which characteristics comprise a platform is important, because the plat-
form definition determines which characteristics must not be consid-
ered in platform-independent models. In this chapter we compare the
notion of platform and the corresponding implications in two concep-
tual approaches that support multi-device GUI generation – the Model
Driven Architecture (MDA) proposed by OMG and the Cameleon Ref-
erence Framework (CRF), a framework that has been developed to clas-
sify model-based user interface generation approaches. We discuss the
relation between MDA and CRF in the context of multi-device GUI
generation and illustrate their correspondence through classifying state-
of-the-art GUI generation approaches. This classification also allows us
to illustrate three different mechanisms for achieving multi-device GUI
generation in practice.

Keywords: Multi-device · Platform · Model-driven development ·
Model-based development · User interface · Model Driven Architecture ·
Cameleon Reference Framework

1 Introduction

Model-driven software development uses automated transformations to trans-
form high-level models, which specify all platform-independent aspects of the

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 180–195, 2014.
DOI: 10.1007/978-3-662-44920-2 12

Platform-Independence in Model-Driven Development 181

software to build, to different platform-specific models. A clear platform defini-
tion is a prerequisite to distinguish between platform-independent and platform-
specific models. In the context of Graphical User Interface (GUI) generation for
multiple devices, such a platform is a computing device (e.g., desktop PC or
smartphone), which displays the GUI of an application. The corresponding plat-
form model needs to consider hardware (e.g., available screen space) and software
(e.g., graphical toolkit) characteristics to allow for multi-device GUI generation.

The Object Management Group (OMG) has defined its own comprehensive
proposal for applying model-driven practices to systems development. This goes
under the name of MDA (Model Driven Architecture). The definition of plat-
form provided by MDA [1] has understandably a very wide scope, as it has
been designed to support model-based application development for a wide range
of different application domains. It does not require the explicit consideration
of hardware characteristics. An MDA compliant platform model may consider
hardware and software characteristics, or software characteristics only.

MDA compliant UI generation approaches typically support multi-modal user
interface (UI) development. Such multi-modal UIs typically combine different
modalities (e.g., graphical, speech, or gesture UIs) to allow for a more natural
and more robust interaction. GUIs are special in comparison to serial modalities
like speech or gesture, as they allow for parallel information exchange. GUIs shall
fit the screen of a certain device to achieve a good level of usability. If hardware
characteristics like screen size are not considered in the platform model they
have either to be considered by the transformations, or during the creation of the
high-level model that specifies the flow of information (e.g., which information
is exchanged in parallel).

Models that implicitly consider hardware features of the target platform are
still platform-independent models according to the MDA definition, as they do
not consider software features of the target device, but they do not support multi-
device UI development. For supporting multi-device UI generation, platform-
independence must include independence of a certain software and independence
of a certain hardware. A device can thus be modeled through a platform def-
inition that considers software and hardware characteristics. Such a platform
definition is provided by the Cameleon Reference Framework (CRF) [2] that
supports the classification of UI generation approaches and their models in the
context of Model-based User Interface Development (MBUID). The CRF plat-
form definition and model classification scheme is compliant to the MDA and
can be seen as specialization in the context of UI development.

This chapter recaptures the MDA and CRF platform definitions, relates them
and shows that both definitions support the consideration of hardware charac-
teristics in addition to software characteristics in the platform model, based on
[3]. Relying on such a platform definition, we illustrate the relation between
MDA and CRF in the context of multi-device GUI development, through clas-
sifying state-of-the-art UI generation approaches. This classification also allows
us to illustrate three different mechanisms for achieving multi-device GUI gen-
eration, which we illustrate each through presenting a corresponding state-of-
the-art GUI generation approach in detail. In particular we present the recently

182 D. Raneburger et al.

adopted Object Management Group (OMG) standard IFML1 (Interaction Flow
Modeling Language) [4], the Model-based Useware-Engineering (MBUE) [5] app-
roach that contributes to a currently ongoing W3C standardization effort2, and a
Communication-Model-based transformation approach that supports automated
GUI optimization for different devices [6] in more detail.

2 Conceptual Approaches – MDA and CRF

This section presents the platform definitions and the model classification
schemes of the MDA and the CRF, together with the context in which they
have been developed.

2.1 Model Driven Architecture

The Object Management Group’s (OMG) MDA [1] distinguishes three different
types of models that reside on different levels of abstraction. These levels are
(from abstract to concrete): the Computation Independent Model (CIM), the
Platform Independent Model (PIM) and the Platform Specific Model (PSM).

The Computation Independent Model is a high-level view of the problem,
which describes some basic abstractions without considering how problems will
be actually solved in terms of systems. It describes the usage scenarios in which
the system will be used, specifying exactly what the system is expected to do.
These models are sometimes referred to as domain, business, or requirement
models in the context of MDA. The Platform Independent Model describes the
system to be built, without specifying details of the implementation platform
that will be used. It will be suited for a particular architectural style, but can
be mapped onto different platforms. Requirements specified through a certain
platform model must not be considered in a PIM.

The Platform Specific Model specifies how a system is implemented upon, or
uses a particular platform. This model needs to specify all details necessary to
derive the Implementation of the system.

MDA applies Model Transformations to transform PIMs to PSMs. Such
transformations need to provide the additional information required to produce
the PSM from the PIM. Sometimes, no transformation between CIM and PIM
is possible, as CIMs may not be specified in a formal way, or could describe
completely manual behaviors, not implemented on any platforms.

Platform is a fundamental concept in MDA, as its promises of resilience to
technology obsolescence, rapid portability, increased productivity, shorter time-
to-market, consistency and reliability of produced artifacts [7] are based on the
abstraction from a certain platform.

According to MDA, a “platform is a set of subsystems and technologies that
provide a coherent set of functionality through interfaces and specified usage pat-
terns, which any application supported by that platform can use without concern
1 http://www.omg.org/spec/IFML/, http://www.ifml.org
2 http://www.w3.org/wiki/Model-Based User Interfaces

http://www.omg.org/spec/IFML/
http://www.ifml.org
http://www.w3.org/wiki/Model-Based_User_Interfaces

Platform-Independence in Model-Driven Development 183

for the details of how the functionality provided by the platform is implemented
[1].” Such a platform is represented through a platform model.

This platform definition does not distinguish hardware and software of a
system explicitly. MDA compliant platform models may consider hardware char-
acteristics in addition to software characteristics, but they do not have to. The
GUI-specific aspects of system design are captured by the IFML (Interaction
Flow Modeling Language) standard [4], which covers user interaction specifica-
tion and binding to the business logic and persistence layers.

2.2 Cameleon Reference Framework

Model-based UI Development (MBUID) has a long research history [8] and
it uses models to specify all aspects that are involved in the development of
user interfaces. MBUID approaches typically refine high-level interaction mod-
els over different levels of abstraction to source code that represents the UI. The
Cameleon Reference Framework (CRF) supports the classification of UIs that
support multiple targets, or multiple contexts of use [2]. Classifying transfor-
mation methods and tools for UI generation according to the CRF, facilitates
understanding and comparing them. The CRF introduces four levels of abstrac-
tion, which are (from abstract to concrete): Tasks & Concepts, Abstract User
Interface (AUI), Concrete User Interface (CUI) and Final User Interface (FUI).

The Tasks & Concepts level contains task models, specifying the tasks of the
user with the system to be built, and models of the domain of activity.

The Abstract User Interface level typically contains a presentation and a
dialog model that render the domain concepts into canonical expressions that
are independent from any concrete interactors available on a certain platform.

The Concrete User Interface level contains models in which the canonical
expressions have been replaced through concrete interactors that specify the look
and feel of the user interface, but are still independent from a certain toolkit.

The Final User Interface represents the UI source code that can be compiled
and run.

Model-driven UI generation typically applies model-to-model transforma-
tions between the upper three levels of abstraction and model-to-code trans-
formations for concrete to final UI transformations.

The notion of platform is here tailored to UI development and defined as part
of the context of use, together with the user and the environment3. The platform
consists of “a set of hardware (e.g., processor, screen, and mouse) and software
resources (e.g., operating system, technological space) that function together to
form a working computational unit whose state can be observed and/or modified
by a human user. Single resources (processor, peripheral devices etc.) are unable,
individually, to provide this functionality. A platform may be either elementary
or form a cluster of platforms.”

The CRF platform definition explicitly distinguishes hardware and software
of a computational unit. The consideration of both, hardware and software
3 see also http://www.w3.org/wiki/Model-Based User Interfaces

http://www.w3.org/wiki/Model-Based_User_Interfaces

184 D. Raneburger et al.

characteristics, is important in the context of UI development as it allows to
achieve a good level of usability through tailoring a UI to a certain device.

2.3 Relating MDA and CRF for Multi-device GUI Development

A platform definition that shall support multi-device UI development needs to
consider software and hardware characteristics of a device. Encapsulating this
information in the platform model supports the creation of platform-independent
high-level models, adding the platform-specific information only during their
transformation to PSMs.

An MDA platform specifies a coherent set of functionalities through interfaces
and usage patterns. Examples are operating systems, programming languages,
databases, middleware solutions or user interfaces [7]. However, the MDA plat-
form definition is very generic and does not inhibit its interpretation as depend-
ing on software alone or on software and hardware together (e.g., a smartphone
with a certain operating system and physical characteristics like memory or
screen size).

It is recommendable to refine the MDA platform definition for a certain appli-
cation domain to facilitate its applicability and avoid misunderstandings. The
CRF platform definition can be seen as such a refined definition for the MBUID
domain. A CRF platform consists of hardware (physical) properties (e.g., screen
size and resolution, supported interaction modalities) and software properties,
meaning toolkits that implement a certain modality (e.g., Java Swing or HTML).
Such a platform definition that contains software and hardware characteristics
supports multi-device UI development and allows to establish a clear one-to-one
correspondence between MDA models and CRF levels [9]. Table 1 illustrates this
correspondence.

Table 1. Correspondence between MDA and CRF levels.

High-level task models, typically used to specify the tasks of the user with a
system, together with models that specify the concepts of a certain application
domain (i.e., domain models) are CIMs. Such models reside on the Tasks & Con-
cepts level and can be used as a starting point for multi-device UI development,
if they do not consider any platform characteristics.

A PIM that is derived from a CIM is still platform-independent. AUI models
derived from platform-independent models that reside on the Tasks & Concepts
level correspond to PIMs.

Platform-Independence in Model-Driven Development 185

Platform specific information is added during the transformation of an AUI
model to a certain CUI model, which means that PSMs reside on CUI level.

Finally the PSM is transformed to the source code that implements the
UI. Thus, the implementation (or Implementation Specific Model (ISM)) corre-
sponds to the FUI.

So, what does this assignment imply for models on Tasks & Concepts level
and implicitly also for AUI models derived from them? Models on these lev-
els must not restrict the rendering possibilities that are supported through the
platform model.

The implication for the domain model is that it needs to define all concepts
of the application domain, regardless whether they are used by a certain model
(that may already be device-dependent) or not.

The implication for the high-level interaction model is that it must not con-
strain the amount of exchanged information (e.g., based on the available screen
space). This means that all information that can be exchanged at a certain point
in time needs to be modeled as concurrently available.

The same implication as for the high-level interaction model is valid for the
abstract user interface model. An AUI model still needs to specify all canonical
expressions that render the information specified as concurrently available in the
high-level interaction model, as part of the same presentation (i.e., presentation
or dialog model unit).

In terms of GUI development this means that both, the high-level task models
and AUI models, assume a “potentially infinite” screen. Specifying information
as concurrently available on Tasks & Concepts and on AUI level allows for split-
ting it to different (smaller) screens according to platform constraints on CUI
level. Tailoring the UI to fit a limited screen on CUI level allows for top-down
multi-device UI generation (i.e., starting from the Tasks & Concepts or AUI
level). Doing it the other way round (i.e., combining information bottom up
from the CUI level) is hard to achieve in an automated way, as it requires the
analysis of dependencies between the exchanged information to detect which
information can be exchanged in parallel on a device with a larger screen.

The remainder of this chapter illustrates how state-of-the-art UI genera-
tion approaches support multi-device UI generation and discusses whether the
meta-models of the corresponding models can be assigned according to the one-
to-one correspondence scheme presented in Table 1. Based on this discussion
we illustrates three mechanisms of how multi-device GUI generation is typi-
cally achieved, which we illustrate each with a corresponding GUI generation
approach.

3 Multi-device GUI Generation in Practice

The presentation of model-driven UI development approaches that support
multi-platform development typically focuses on the involved models and does
not provide a clear definition of the platform model used [10]. We classified

186 D. Raneburger et al.

the models of six state-of-the-art UI generation approaches that support multi-
platform development, considering how this is achieved by the transformation
method, to test the correspondence scheme introduced in Table 1. Table 2 shows
our classification of the interaction/UI models of each approach to MDA levels
using the CRF platform definition and assuming that the designer will model
all information that can be exchanged at a certain point in time as concurrently
available when she creates an instance of a certain CIM or PIM model.

Table 2. Classification of UI generation approach models.

IFML TERESA MARIA MBUE UsiXML UCP

CIM BPMN CTT CTT useML Task Communication

Model Model

PIM IFML (and WebML) CTT MARIA DISL AUI UI Behavior

Model

PSM Presentation + CTT/AUI/CUI MARIA UIML CUI Screen

SW Model Model

ISM FUI FUI FUI FUI FUI FUI

IFML shows a one-to-one correspondence between meta-models and MDA
levels and has been adopted as OMG standard in March 2013. MARIA [11],
MBUE [5] and UsiXML4 also show a one-to-one correspondence and strongly
contribute to an ongoing W3C standardization effort for task and AUI models.
In addition to these two UI generation standards, we included TERESA [12] and
the Unified Communication Platform (UCP) [13] approach in our comparison.
UCP was selected because its support for multi-device GUI generation differs
from how this is achieved by IFML or the task-based approaches and TERESA
was added, because it allows us to illustrate that instances of the same meta-
model can be assigned to more than one MDA level.

All approaches except for TERESA show a one-to-one correspondence,
because they use a platform definition that considers software and hardware
characteristics. TERESA, in contrast, defines a platform as “a class of sys-
tems that share the same characteristics in terms of interaction resources (e.g.,
the graphical desktop, PDAs, mobile phones, vocal systems). Their range varies
from small devices such as interactive watches to very large flat displays [12]”.
The corresponding transformation method requires the manual refinement of the
platform-independent CTT model to different platform-dependent System Task
Models (e.g., a desktop, a cellphone or a voice System Task model, still specified
in CTT), which are subsequently refined to an AUI, a CUI and finally the FUI
for the corresponding platform.

The System Task Models that are derived from the platform-independent
task model are platform dependent, but are still assigned to the Tasks & Con-
cepts level of the CRF. This means that TERESA does not allow the designer to
4 http://www.usixml.org

http://www.usixml.org

Platform-Independence in Model-Driven Development 187

specify all information that can be exchanged at a certain point in time as con-
currently available and is therefore not compliant to the correspondence scheme
defined in Table 1. Its models are assigned to the MDA models as specified in
Table 2, because its transformation approach requires the System Task Models
already to take platform specific information into account. This allows for a
more straight forward transformation approach, but reduces the re-usability of
involved models to the topmost CTT models.

The remainder of this section presents IFML, MBUE and UCP in detail and
illustrate three different mechanisms for achieving multi-device GUI generation.
We use a short flight-selection scenario where the user selects a departure, a
destination airport and enters a travel date in a first step, and is provided with
a list of flights that match the entered data in a second step, to illustrate each
approach and its mechanism to tailor the resulting GUI for a specific device.

3.1 Interaction Flow Modeling Language (IFML)

The Interaction Flow Modeling Language5 (IFML) [4] supports the creation of
visual models of user interactions and front-end behavior in software systems,
independently of a certain execution platform and has been adopted as a stan-
dard by the OMG6 in March 2013. IFML is a PIM-level language in MDA
parlance, and it perfectly fits into the AUI level of the CRF. The Business
Process Model and Notation (BPMN) language may be used in the context of
IFML to provide CIM models. The Web Extension of IFML, called WebML7 [14]
extends the general purpose IFML concepts with some more precise UI charac-
teristics, considering the peculiarity of the user interaction on the Web, while
still keeping a platform-independent vision (both in terms of independence from
software and hardware features). WebML also includes a presentation model
that covers the PSM level, by describing the graphical style and positioning of
elements in the screen, depending on various device properties such as screen
size, allowed user events, and so on. The WebRatio tool-suite automatically gen-
erates industrial-strength running applications [15] from WebML/IFML models,
exploiting the presentation model at the PSM level. The IFML standardization
document includes a set of guidelines for the mapping of IFML models to PSMs,
namely software platform models, such as Java, .Net WPF, and HTML.

IFML supports multi-device UI generation through the definition of rules
at the PIM level for self-adaptation of user interfaces depending on the device,
screen size, or location. It also allows to incorporate platform-specific aspects in
the transformation towards the PSM level. IFML therefore satisfies the corre-
spondence scheme shown in Table 2. Additionally, IFML includes some support
of platform-specific definition through the concepts of ViewPoint and Context,
which can comprise context dimensions (such as screen size, or user position).
Therefore, IFML can be used in two ways regarding platform adaptation: as a
5 http://www.ifml.org/
6 http://www.omg.org/spec/IFML/
7 http://www.webml.org

http://www.ifml.org/
http://www.omg.org/spec/IFML/
http://www.webml.org

188 D. Raneburger et al.

Fig. 1. PIM-level IFML model for the running case of flight selection.

PIM including some model adaptation rules based on the device; or as a pure
PIM, with delegation of adaptation to transformation rules or even run-time
rules that check the state of the context (i.e., platform). To demonstrate how
IFML actually works, Fig. 1 shows the IFML model for the running example
adopted in this chapter: a the Search Flights Window contains a Form called
Search Criteria, including two SelectionFields that let users choose departure
and arrival airports and a SimpleField for selecting the date. The submission of
the form (conditioned by the ActivationExpression that checks that the three
fields must not be null) triggers the business logics Search Flights, which in turn
returns a list of flights, shown in the Search Results ViewContainer. This model
is defined at the PIM level, and thus it can be rendered on any platform. This
can be obtained either by designing different model transformations that gen-
erate the UIs for the different platforms, or by adding adaptation rules in the
graphical style that adapt at run-time to the device consuming the UI (e.g., this
can be obtained through HTML5 responsive templates).

3.2 Model Based Useware-Engineering (MBUE)

The Useware-Engineering (UE) process is a human-centered development process
according to ISO 9241-210. The UE process is divided into 4 main phases
accompanied by a supporting evaluation phase. To support the developers of
user interfaces at development time, the Useware-Engineering process has been
enhanced with a model-based user interface development methodology [16]. Mod-
els, process phases and levels of the CRF are interrelated in the architecture of
MBUE [5].

The MBUE architecture has been derived and refined on the basis of
the (meta-)architecture of the CRF [5]. Therefore, the levels of the MBUE
correspond to the levels of the CRF as shown in Table 2. The use model (described

Platform-Independence in Model-Driven Development 189

with the Useware Markup Language (useML) 2.0) adheres to the CIM level.
Accordingly, the use model abstracts platform independent tasks into use objects
(UO) that make up a hierarchically ordered structure. Furthermore, the leaf tasks
of a use model are described with a set of elementary use objects (eUO) rep-
resenting atomic interactive tasks: inform, trigger, select, enter and change. In
Version 2.0, useML was extended by five temporal operators to support temporal
relationships as well as it provides the possibility to define multiple executions
or (pre-/post-) conditions that can be attached to tasks of the model. useML
is supported by Udit - an interactive editor and simulator for use models [17],
which is able to transform use models into AUI models (corresponding to the
PIM level of the MDA). The AUI model is specified with the Dialog and Interface
Specification Language (DISL), a modeling language for platform- and modality-
independent UIs for mobile devices which has originally been developed at the
University of Paderborn. DISL focuses on scalability, reactivity, easy usability
for developers, and low demands on processing power and memory consumption.
An important precondition to the systematic development of UI is the strict sep-
aration of structure, presentation and behavior of a UI. DISL supports only 8
generic (meaning platform and modality-independent) widgets, but allows the
extension for future generic widgets. The CUI model is described with the User
Interface Markup Language (UIML). UIML has been developed as a specifica-
tion for a meta-language that can provide a canonical XML representation of any
UI and has been standardized in version 4.0 by the OASIS. The UI description
is implementation-language-independent since it uses a generic vocabulary to
specify the interaction objects and is thus implementation independent. UIML
specifies the presentation of the UI together with its behavior and corresponds to
the PSM level in MDA. These interaction objects can be translated into interac-
tion objects by using the peers-element, which is an addition to the vocabulary
to map the concrete interaction objects to their representation in the target lan-
guage. There are peers for several languages, including Java Swing, XHTML and
the .NET components.

Fig. 2. Screenshots of the authoring tools: in the left part Udit shows the task model for
the flight scenario and in the right part the DISL authoring tool shows three dialogues.

190 D. Raneburger et al.

The MBUE approach relies on the CRF platform definition and its trans-
formation approach ensures that the models can be assigned according to the
correspondence scheme defined in Table 1. It is noteworthy that MBUE applies
task annotations in its useML task model that assign tasks to a certain con-
text of use (i.e., platform and/or user and/or environment). This way MBUE
supports the automated tailoring of the UIs to a certain context of use. Such
annotations are similar to the Web-service annotations used in MARIA. Similar
to the platform-independent AUI model in MARIA, there is only one platform-
independent (annotated) task (i.e., useML) model in MBUE which can be used
for multi-device UI generation.

To demonstrate (parts of) the MBUE development environment Fig. 2 illus-
trates on the left the flight scenario task model (described with useML 2.0
in the Udit tool) and on the right our currently developed authoring tool for
the AUI model (specified with DISL). In Future we expect to extend our tool-
chain with more tools concerning the authoring of UIML and adding different
transformations.

3.3 Unified Communication Platform (UCP)

The Unified Communication Platform8 (UCP) supports the automated genera-
tion of GUIs that are optimized for different devices (e.g., smartphone or tablet
PC) [13]. This approach relies on Discourse-based Communication Models [18]
to model the high-level interaction between a user and the system platform-
independently. Communication Models are CIMs and can be transformed auto-
matically to a UI Behavior model that resides on AUI level [19] and is still
platform-independent, and to a Screen Model that is tailored for a certain device
and thus already platform-dependent. The Screen Model corresponds to the CUI
level of the CRF and is finally transformed to HTML code that represents the
FUI/ISM.

Table 2 shows that a one-to-one correspondence can be established for UCP.
A platform in UCP is defined through software (e.g., supported GUI toolkits)
and hardware characteristics (e.g., screen size) of a certain device. In particular,
UCP uses a so-called “Application-tailored Device Specification” [20] to specify
how the application to built uses a specific device, for example in terms of screen
space or pointing granularity (e.g., finger or pen operated). The properties of an
application-tailored device specification are shown in Table 3.

The properties resolution, dpi, scrollWidth and scrollHeight determine
the available screen space and define the boundaries into which the framework
tries to fit the GUI. The properties pointingGranularity and toolkits can
be used to filter the transformation rules upfront, for example, to discard rules
that created widgets that are not supported by the target toolkit. The property
defaultCSS references a Cascading Style Sheet (CSS) where styles for custom
transformation rules can be defined.
8 http://ucp.ict.tuwien.ac.at

http://ucp.ict.tuwien.ac.at

Platform-Independence in Model-Driven Development 191

Table 3. Application tailored device specification properties.

name Defines the name of a certain device

resolution Specifies the x and y resolution of the device’s display

dpi Specifies the dots per inch of the device’s display

defaultCSS Specifies the default CSS to be used for the device (e.g., to
specify the minimum size of a button)

pointingGranularity Specifies whether the application is going to be operated
using the fingers (i.e., Pointing Granularity COARSE)
or a mouse (Pointing Granularity FINE)

toolkits Specifies which graphical toolkits are supported by the
device (e.g., Java Swing or HTML)

scrollWidth Specifies the maximum horizontal scroll width in multiples
of the screen width (i.e., 1 means no scrolling)

scrollHeight Specifies the maximum vertical scroll height in multiples of
the screen width (i.e., 1 means no scrolling)

Fig. 3. FlightSelection Communication Model.

Figure 3 shows the Communication Model [21] excerpt for the first step of
our simple flight selection scenario. This model specifies the interaction between
the User and the System, which are depicted as interacting agents in the upper
left corner. Communication Models use so-called Adjacency Pairs (depicted as
diamonds in Fig. 3) to model typical turn-takings like Question-Answer, through
relating an opening Communicative Act (depicted as rounded rectangles in
Fig. 3) with 0 to 2 closing Communicative Acts. The Communicative Acts are
assigned to one of the interacting agents through their fill color (yellow/light
for the System and green/dark for the User). The ClosedQuestion-Answer

192 D. Raneburger et al.

Fig. 4. FlightSelection Domain-of-Discourse Model.

Fig. 5. Flight Selection GUIs generated with UCP.

Adjacency Pairs model the selection of the departure (CQ1-A1) and the
destination (CQ2-A2) airport. The OpenQuestion-Answer Adjacency Pair
(OQ3-A3) models the question for the travel date. The OrderedJoint relations
structure the interaction hierarchically and specify that all information is con-
currently available.

Figure 4 depicts the Domain-of-Discourse (DoD) model for our flight selection
scenario. The DoD model specifies the concepts that the interacting parties can
“talk” about. These concepts are referenced through the propositional content
of the Communicative Acts (for details please refer to [21]). The propositional
content of CQ1, for example, is specified as a list of Airport concepts specified
in the DoD model.

Figure 5 shows GUIs generated with UCP for our running example, one for
a desktop device and one for a iPodTouch device. Figure 5(a) shows the desktop
screen, where all widgets required for the interaction fit the screen. The iPod-
Touch screen space was too small to fit all widgets, so the optimization algorithm
split the selection of the departure and the destination airports into separate
tabbed panels. We omitted the second step of our running example, because the
list of flights was rendered equally as radio-button list on both devices.

UCP uses an automated GUI optimization algorithm to tailor the resulting
GUI for a given device according to the objectives (maximum use of available
space, minimum amount of navigation clicks and minimum scrolling) and the

Platform-Independence in Model-Driven Development 193

device constraints specified trough the corresponding application tailored device
specification [6]. Rendering a GUI for a new device simply requires the designer
to provide the corresponding application tailored device specification.

4 Discussion

The classification of the MBUID approaches presented above reveals that no sim-
ple one-to-one correspondence between MDA and CRF, as presented in Table 1,
can be established in general. A one-to-one correspondence requires a platform
model that considers and encapsulates software and hardware characteristics,
which must not be considered in CIMs or PIMs. All approaches whose classifi-
cation shows a one-to-one correspondence support multi-device UI generation,
which can be used as a criteria to detect such approaches.

Our classification of UI generation approaches showed that device specific
transformation/adaptation rules, model annotations and automated optimiza-
tion are established mechanisms to achieve multi-device GUI generation. All
approaches presented above are applied at design-time, but run-time GUI
generation typically applies similar mechanisms. SUPPLE for example applies
automated GUI optimization at run-time [22] through adaptations of a given
device-dependent GUI model (i.e., a PSM) according to the needs of motor-
impaired users. Run-time UI generation typically requires explicit presentation
models [23,24] and does not derive the GUI from a PIM.

We conjecture that a clear definition of the notion platform is also important
in other application domains of model-based software development to support
multi-device development. The encapsulation of platform characteristics in the
corresponding platform model, together with the use of annotations as used in
MBUID to avoid dependencies between a high-level model and a certain plat-
form, is a generally applicable way to separate platform specific information from
the model itself. Alternatively the platform-tailoring can be automated accord-
ing to given optimization objectives, as shown for GUI optimization in [6]. This
saves the time and effort required for creating annotations manually, but may
not produce the exact result expected by the designer. So, there is a trade-off
between better predictability of the resulting GUIs through the manual specifi-
cation of transformation/adaptation rules or annotations and less effort through
automated optimization with a lower predictability.

5 Conclusions

Platform-independence for a model requires that this information has to be
encapsulated in the corresponding platform model and must not be considered
in the CIM and PIM model. A platform in the context of multi-device GUI gener-
ation must specify software and hardware characteristics. We showed that both
the MDA and the CRF platform definition support multi-device UI develop-
ment, but that no general one-to-one correspondence between the meta-models
involved in a certain MBUID approach classified as MDA models, and the CRF

194 D. Raneburger et al.

levels can be established. The reason is that the use of a certain meta-model
instance strongly depends on the transformation approach. For example, task
models are platform-independent if they use annotations to specify which task
is available on a certain device, or platform-dependent if they consider hard-
ware characteristics like screen-size when specifying which information is concur-
rently available. However, a one-to-one correspondence indicates that a certain
approach supports multi-device UI generation. Our classification of state-of-the-
art UI generation approaches revealed specific transformation/adaptation rules,
annotations and automated device optimization as three major mechanisms
for achieving multi-device GUI generation with a trade-off between manual effort
and predictability of the resulting GUI.

References

1. Miller, E.J., Mukerjij, J.: MDA guide version 1.0.1. Technical report, Object Man-
agement Group (OMG) (2003)

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J.: A unifying reference framework for multi-target user interfaces.
Interact. Comput. 15(3), 289–308 (2003)

3. Raneburger, D., Meixner, G., Brambilla, M.: Platform-independence in model-
based multi-device UI development. In: Proceedings of the 8th International Joint
Conference on Software Technologies (ICSOFT’13), SciTePress, July 2013

4. Brambilla, M., Bongio, A., Butti, S., Fraternali, P., Kling, W., Molteni, E.,
Seidewitz, E.: Interaction Flow Modeling Language (IFML). Standardization spec-
ification ptc/2013-03-08, Object Management Group (OMG), March 2013. http://
www.omg.org/spec/IFML/

5. Meixner, G., Seissler, M., Breiner, K.: Model-driven useware engineering. In:
Hussmann, H., Meixner, G., Zuehlke, D. (eds.) MDD of Advanced User Interfaces.
SCI, vol. 340, pp. 1–26. Springer, Heidelberg (2011)

6. Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., Falb, J.: Optimized GUI
generation for small screens. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.)
MDD of Advanced User Interfaces. SCI, vol. 340, pp. 107–122. Springer, Heidelberg
(2011)

7. Truyen, F.: The Fast Guide to Model Driven Architecture - The basics of Model
Driven Architecture, January 2006

8. Meixner, G., Paternò, F., Vanderdonckt, J.: Past, present, and future of model-
based user interface development. i-com 10(3), 2–10 (2011)

9. Vanderdonckt, J.: A MDA-compliant environment for developing user interfaces of
information systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

10. Van den Bergh, J., Meixner, G., Sauer, S.: MDDAUI 2010 workshop report. In:
Proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010) (2010)

11. Paternò, F., Santoro, C., Spano, L.D.: Maria: a universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput. Hum. Interact. 16, 19:1–19:30 (2009)

12. Mori, G., Paternò, F., Santoro, C.: Design and development of multidevice user
interfaces through multiple logical descriptions. IEEE Trans. Softw. Eng. 30(8),
507–520 (2004)

http://www.omg.org/spec/IFML/
http://www.omg.org/spec/IFML/

Platform-Independence in Model-Driven Development 195

13. Popp, R., Raneburger, D., Kaindl, H.: Tool support for automated multi-device
GUI generation from discourse-based communication models. In: Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive computing systems,
EICS ’13. ACM, New York (2013)

14. Ceri, S., Brambilla, M., Fraternali, P.: The history of WebML lessons learned
from 10 years of model-driven development of web applications. In: Borgida, A.T.,
Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos Festschrift. LNCS, vol.
5600, pp. 273–292. Springer, Heidelberg (2009)

15. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web
applications design and development with WebML and WebRatio 5.0. In: Paige,
R., Meyer, B. (eds.) TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 392–411. Springer,
Berlin Heidelberg (2008)

16. Meixner, G.: Model-based useware engineering. In: W3C Workshop on Future Stan-
dards for Model-Based User Interfaces, Rome, Italy (2010)

17. Meixner, G., Seissler, M., Nahler, M.: Udit a graphical editor for task models. In:
Proceedings of the 4th International Workshop on Model-Driven Development of
Advanced User Interfaces (MDDAUI), Sanibel Island, USA (2009)

18. Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., Arnautovic, E.: A dis-
course model for interaction design based on theories of human communication.
In: Extended Abstracts on Human Factors in Computing Systems (CHI ’06), pp.
754–759. ACM Press, New York (2006)

19. Popp, R., Falb, J., Arnautovic, E., Kaindl, H., Kavaldjian, S., Ertl, D., Horacek, H.,
Bogdan, C.: Automatic generation of the behavior of a user interface from a high-
level discourse model. In: Proceedings of the 42nd Annual Hawaii International
Conference on System Sciences (HICSS-42), Piscataway, NJ, USA. IEEE Computer
Society Press (2009)

20. Kavaldjian, S., Raneburger, D., Falb, J., Kaindl, H., Ertl, D.: Semi-automatic user
interface generation considering pointing granularity. In: Proceedings of the 2009
IEEE International Conference on Systems, Man and Cybernetics (SMC 2009),
San Antonio, TX, USA, October 2009

21. Popp, R., Raneburger, D.: A high-level agent interaction protocol based on a com-
munication ontology. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol.
85, pp. 233–245. Springer, Heidelberg (2011)

22. Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically generating personalized
user interfaces with supple. Artif. Intell. 174(12–13), 910–950 (2010)

23. Pastor, O., España, S., Panach, J.I., Aquino, N.: Model-driven development. Infor-
matik Spektrum 31(5), 394–407 (2008)

24. Roscher, D., Lehmann, G., Schwartze, V., Blumendorf, M., Albayrak, S.: Dynamic
distribution and layouting of model-based user interfaces in smart environments.
In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) MDD of Advanced User Inter-
faces. SCI, vol. 340, pp. 171–197. Springer, Heidelberg (2011)

Software Paradigm Trends

Controllability for Nondeterministic
Discrete-Event Systems with Data

J. Markovski(B)

Eindhoven University of Technology,
Den Dolech 2, 5612MH Eindhoven, The Netherlands

j.markovski@tue.nl

Abstract. Supervisory control ensures safe coordination of the discrete-
event behavior of the components of a given system. Models of super-
visory control software are automatically synthesized based on formal
models of the unsupervised system and the coordination requirements.
To provide for a greater modeling convenience and to better the expres-
sivity of the model-based systems and software engineering framework,
several extensions of supervisory control theory with variables have been
proposed. Supervisory control theory studies automated synthesis of
supervisory controllers, where the central notion of controllability charac-
terizes the notion of a model of a supervisory controller. One of the most
prominent extensions of the theory with data is implemented by means
of extended finite automata with variables. We revisit the notion of con-
trollability for these models and we show that the relations that capture
existing notions of controllability for finite automata with variables do
not have desirable algebraic properties, i.e., they are not a preorders.
We propose an alternative notion of controllability based on a behav-
ioral relation termed partial bisimulation. We show that the proposed
extension of partial bisimulation for finite automata with variables sub-
sumes existing notions and we discuss its role in a proposed model-based
engineering framework.

Keywords: Supervisory control theory · Controllability · Finite automata
with variables · Partial bisimulation

1 Introduction

Development of quality control software is becoming an increasingly difficult
task due to high complexity of high-tech systems, promoting the former as an
important bottleneck in the design and production process as already noted
in [11]. Traditional techniques are not able to satisfactorily cope with the chal-
lenge due to the frequent design changes in the control requirements, which gave
rise to supervisory control theory of discrete-event systems postulated in [4,18].

The work presented in this paper is supported by the Dutch NWO project ProThOS,
no. 600.065.120.11.

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 199–214, 2014.
DOI: 10.1007/978-3-662-44920-2 13

200 J. Markovski

Fig. 1. Supervisory control architecture.

Supervisory control theory studies automatic synthesis of models of supervisory
control software that provide for safe and nonblocking behavior of the controlled
system by coordinating high-level discrete-event behavior of the concurrent sys-
tem components.

Supervisory controllers rely on discrete-event observations made regarding
the discrete-event system behavior by using sensory information, as depicted in
Fig. 1. Based upon the observed signals, these controllers decide which activities
are allowed to be carried out safely and do not lead to potentially dangerous or
otherwise undesired situations, and send back control signals to the hardware
actuators. Under the assumption that the supervisory controller can react suf-
ficiently fast on machine input, one can model this supervisory control feedback
loop as a pair of synchronizing processes in line with [4,18]. The model of the
uncontrolled system is typically referred to as plant and it is restricted by the
model of the supervisory controller, which referred to as supervisor. The coupling
of the supervisor and the plant, results in the supervised plant, which models the
supervisory control loop, i.e., it specifies the behavior of the controlled system.

Traditionally, the activities of the machine are modeled as discrete events,
whereas the supervisor is a process that synchronizes with the plant. The super-
visor can enable or disable available events in the plant by synchronizing or
not synchronizing with them, respectively. The events are split into controllable
and uncontrollable events, the former typically modeling interaction with actu-
ators, whereas the latter model observation of sensory information. Therefore,
the supervisor is allowed to disable controllable events, e.g., if the boiler pres-
sure is above the safe threshold, then the heater should be switched off, but it is
not allowed to disable any available uncontrollable events, e.g., by ignoring the
pressure sensor of the boiler, one reaches a potentially dangerous situation.

Additionally, the supervised plant must also satisfy a given set of control
requirements, which model the safe or allowed behavior of the machine. Further-
more, it is typically required that the supervised plant is nonblocking, meaning

Controllability for Nondeterministic Discrete-Event Systems with Data 201

Fig. 2. Supervisory control feedback loop with data-based observations.

that it comprises no deadlock and no livelock behavior. To this end, every state is
required to be able to reach a so-called marked or final state, following the nota-
tion of [4,18], which denotes the situation that the plant is considered to have
successfully completed its execution. The conditions that define the existence
of such a supervisor are referred to as (nonblocking) controllability conditions.
In the setting of this paper we will not consider in detail the process of model-
ing and ensuring that the (nonblocking) control requirements hold for the given
plant and, instead we refer the reader to the model-based engineering framework
of [15,20].

Depending on the observational power of the supervisor, we deal with event-
based supervision, studied in [18], state-based supervision as studied in [12,15],
or data-based supervision along the lines of [14,16], respectively. The first app-
roach relies on building a history of observed events to deduce the state of the
system as suggested in [4], whereas the second and the third approaches employ
observers and guards that directly convey the state of the system to the super-
visor in the vein of [12,14], as depicted in Fig. 2. With respect to the control
architecture of Fig. 1, the second and the third approach suggest that the inter-
face between the layers of resource and supervisory control is unified, e.g., by
employing shared variables or publisher/subscriber services, which is typical for
implementations in the artificial intelligence domain. The event-based approach
suggests direct observation of activities of the system, which are typically trig-
gered by the system to be supervised, relying on some input/output interface.
The extensions of supervisory control theory with variables and data aim at a
two-fold improvement: more concise specification due to parametrization of the
systems, as suggested in [5,16] and greater expressiveness and modeling conve-
nience, as shown in [8,21]. The extensions range over the most prominent models
of discrete-event systems like finite-state machines developed in [5], labeled tran-
sition systems, considered in [14], and automata extensions, provided in [8,21].

With the development of new models, the original notion of controllability
for deterministic discrete-event systems of [4,18] is subsequently extended to
the corresponding settings with variables and data parameters. We note that
the controllability is originally defined as a language-based property and, thus,
meant for deterministic discrete-event systems. Extensions of controllability for
parameterized languages are proposed in [5,8]. For nondeterministic discrete-
event systems, there are several proposed notions, relying on commonly observed

202 J. Markovski

traces in [7,23], failure semantics in [17], or (bi)simulation semantics in [2]. For
nondeterministic extended finite automata with variables, introduced in [21], the
proposed notion of so-called state controllability of [16] relies on an extension of
the work of [7]. Both works of [17] and [2] rely on preorder behavioral relations
to formulate the notion of controllability, the former relying on failure-trace
semantics, whereas the latter is (bi)simulation-based. Even though, it has been
argued that refinements based on these two types of semantics have similar
properties, cf. [6], (bi)simulation-based refinements are finer notions that are
supported by more efficient algorithms, like [13].

To capture the notion of controllability, we rely on a behavioral preorder
termed partial bisimulation, first introduced in the co-algebraic characterization
of [19] and, subsequently, lifted to a process theory in [2]. In essence, we employ
this preorder to state a relation between the supervised plant and the original
plant allowing controllable events to be simulated, while requiring that uncon-
trollable event are bisimulated. This ensures that the supervisor does not disable
uncontrollable events, while preserving the branching structure of the plant. We
will show that this notion subsumes the notion of state controllability for finite
automata with variables. Moreover, we will show that state controllability is not
a preorder and that some plants are considered as uncontrollable, even though
there exist suitable supervisory controllers. Finally, by employing the proposed
notion of controllability, we will show that it is possible to eliminate spurious
plant nondeterminism, i.e., nondeterminism can be eliminated without sacrific-
ing supervised plant behavior.

2 Finite Automata with Variables

In order to directly relate our notion of controllability with previous work, we
model nondeterministic discrete-event systems by means of finite automata with
variables. For a full treatment of supervisory control theory in a process-theoretic
setting, we refer to [2,3,14] for event-, state-, and data-based supervision, respec-
tively. In general, we allow arbitrary variable domains, even though variables
with finite domains can be eliminated in order to employ more efficient synthesis
procedures, as suggested in [21]. We suppose that the variables are given by the
set V, where given a variable X ∈ V, its domain is denoted by D(X). (Standard
arithmetical) expressions over a set of variables V ⊂ V are denoted by F(V) and
they are evaluated with respect to eδ : F(V) → D(V), where δ : V → D(V) holds
the variable assignments. We note that for the sake of clarity of presentation,
we do not take into consideration the expressions that do not evaluate within
the variable domain and extensions to inconsistent processes can be handled by
a straightforward extension of the approach of [3]. By B(V) we denote Boolean
expression over the set of variables V ⊂ V where the atomic propositions are
given by some set of predefined predicates, the logical constants false F and true
T, and the set of standard logical operators. The obtained Boolean expressions
are evaluated with respect to a given valuation vδ : B(V) → {F,T}, where again
δ : V → D(V).

Controllability for Nondeterministic Discrete-Event Systems with Data 203

s
a→ s , vδ(γ(s, a, s)) = T,

δ (X) =
eδ(α((s, a, s), X)), if ((s, a, s), X) ∈ D(α)
δ(X), otherwise

(s, δ)
a−→ (s , δ)

Fig. 3. Operational semantics of finite automata with variables.

Definition 1. A finite automaton with variables G is given by the tuple
G = (S,A, V, �−→, [4]γ, α, (s0, δ0)), where

– S is a finite set of states;
– A is a finite set of event labels;
– V ⊂ V is a finite set of variables;
– �−→ ⊂ S × A × S is a labeled transition relation;
– γ : �−→ → B(V) are transition guards;
– α : (�−→ × V) ⇀ F(V) is a partial updating function; and
– (s0, δ0) is the initial state s0 ∈ S and initial data assignment δ0 : V → D(V).

If the set of variables of a finite automaton with variables G, as given by
Definition 1, is empty, then G is a standard automaton with labeled transitions.
For the transition relations, we will employ infix notation and write s

a�−→ s′ for
(s, a, s′) ∈ �−→.

The dynamics of the finite automaton with variables G is given by the transi-
tion relation −→ ⊆ S×(V → D(V))×A×S×(V → D(V)), which is determined
by the actual evaluation of the guards with respect to the value assignments. In
order to keep track of the updated variable values, we employ the data assign-
ment function δ : V → D(V). Now, the semantics of G is given by −→, where
initially the automaton is in state s0 with environment δ0, denoted by (s0, δ0).
The dynamics of (s, δ) is captured by the operational rule depicted in Fig. 3, fol-
lowing the notation of structural operational semantics of [1], where the premise
must hold, so that the bottom transition can be taken.

The rule states that a transition is possible if such labeled transition is defined
in the automaton, the guard of that transition evaluates to true, whereas the
variables are updated according to the partial updating function. It is not dif-
ficult to observe that the transition relation −→ induces a labeled transition
system with state space S × D(V), set of labels A, and initial state (s0, δ0).

Definition 2. Given an automaton with variables G = (S,A, V, �−→, γ, α,
(s0, δ0)), we define the induced labeled transition system by T(G) = (S × D(V),
A,−→, (s0, δ0)), where:

– S × D(V) is a set of states;
– A is the set of events taken over from G;
– −→ ⊆ S × (V → D(V)) × A × S × (V → D(V)) is the instantiated labeled

transition relation as given by the operational rule of Fig. 3; and

204 J. Markovski

– (s0, δ0) is the initial state of the labeled transition system induced by the initial
state of G and its initial variable valuation.

If the set of variables is empty, i.e., V = ∅, then �−→ and −→ coincide,
provided that the (then trivial) transition guards are set to be true, and G
reduces to a standard automaton.

In order to define the language generated by automaton G, we extend the
transition relation −→ to a multistep transition relation −→∗. By A∗ we define
the set of strings made from the labels in A that label the transitions of −→∗,
where ε denotes the empty string and st denotes the concatenation of the strings
s and t for s, t ∈ A∗. Now, the multistep transition relation is given by the
operation rules (1):

(s, δ) ε−→∗ (s, δ)
(s, δ) t−→∗ (s′′, δ′′), (s′′, δ′′) a−→ (s′, δ)′, t ∈ A∗, a ∈ A

(s, δ) ta−→∗ (s′, δ′)
.

(1)

By (s, δ) t−→∗ we denote that there exists (s′, δ′) such that (s, δ) t−→∗ (s′, δ′).
Now, the language generated by the automaton G is given by L(G), where
L(G) = {t ∈ A∗ | (s0, δ0)

t−→∗ }.
In order to couple the plant and the supervisor, we define a synchronous

composition of two automata that synchronizes on transitions with the same
labels and interleaves on the other transitions. We note that, in general, the
synchronous composition cannot be defined due to conflicts induced by the par-
tial assignment functions α. A simple counterexample is the situation where two
automata need to synchronize on transitions with the same label that update
the same variable to two different values, as noted in [21]. Again, for the sake of
clarity, we do not consider conflicting situations, which are easily detectable as
none of the conditions for the partial updating functions in Definition 3 apply.

Definition 3. Let G1 = (S1, A1, V1, �−→1, γ1, α1, (s01, δ0)) and G2 = (S2, A2, V2,
�−→2, γ2, α2, (s02, δ0)). The synchronous composition of G1 and G2 is given by
G1 ‖ G2 = (S1 × S2, A1 ∪ A2, V1 ∪ V2, �−→, γ, α, ((s01, s02), δ0)), where �−→, γ,
and α are defined in Fig. 4, where ∧ denotes logical conjunction.

Definition 3 is given directly in terms of automata with variables, unlike
the work of [21], where it is given in terms of the underlying labeled transition
system. Now, given two finite automata with variables G1 and G2, we can derive
the underlying transition systems T(G1) and T(G2). It is not difficult to show
that T(G1 ‖ G2) coincides with T(G1) ‖ T(G2), where the synchronization on
the relation −→ is defined as for �−→.

Proposition 1. Let Gi = (Si, Ai, Vi, �−→i, γi, αi, (s0i, δ0)) for i ∈ {1, 2} be such
that G1 ‖ G2 is well-defined. Let (Si × δi, Ai,−→i, (s0i, δ0)) be the underlying
labeled transition systems, where −→i is induced by the operational rule of Fig. 3
and δi : Vi → D(Vi), for i ∈ {1, 2}. Let T(G1) ‖ T(G2) = ((S1 × δ1) × (S2 × δ2),

Controllability for Nondeterministic Discrete-Event Systems with Data 205

(s1, s2)
a

⎧
⎪⎨

⎪⎩

(s1, s2), if s1
a

1 s1, a ∈ A1 \ A2

(s1, s2), if s2
a

2 s2, a ∈ A2 \ A1

(s1, s2), if s1
a

1 s1, s2
a

2 s2, a ∈ A1 ∩ A2

γ((s1, s2), a, (s1, s2)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ1(s1, a, s1), if s1
a

1 s1, a ∈ A1 \ A2

γ2(s2, a, s2), if s2
a

2 s2, a ∈ A2 \ A1

γ1(s1, a, s1) ∧ γ2(s2, a, s2) , if s1
a

1 s1, s2
a

2 s2,
a ∈ A1 ∩ A2

α(((s1, s2), a, (s1, s2)),X) =
⎧
⎪⎪⎨

⎪⎪⎩

α1((s1, a, s1), X), if ((s1, a, s1), X) ∈ D(α1), ((s2, a, s2), X) D(α2)
α2((s2, a, s2), X), if ((s2, a, s2), X) ∈ D(α2), ((s1, a, s1), X) D(α1)

α1((s1, a, s1), X), if ((s1, a, s1), X) ∈ D(α1), ((s2, a, s2), X) D(α2),
α1((s1, a, s1), X) = α2((s2, a, s2), X)

Fig. 4. Definition of �−→, γ, and of Definition 3.

((s1, δ1), (s2, δ2))
a−→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((s1, δ1), (s2, δ2)), if (s1, δ1)
a−→1 (s1, δ1), a ∈ A1 \ A2

((s1, δ1), (s2, δ2)), if (s2, δ2)
a−→2 (s2, δ2), a ∈ A2 \ A1

((s1, δ1), (s2, δ2)), if (s1, δ1)
a−→1 (s1, δ1),

(s2, δ2)
a−→2 (s2, δ2), a ∈ A1 ∩ A2

.

Fig. 5. Definition of −→ of Proposition 1.

A1 ∪A2,−→, ((s01, δ0), (s02, δ0))), where −→ is defined as in Fig. 5. Then, T(G1 ‖
G2) is isomorphic to T(G1) ‖ T(G2).

The proof of Proposition 1 is meticulous, but straightforward, by showing
that the constructions given in Definition 3 form an isomorphic transition system
as the one defined in the proposition. It is worthwhile noting that the definition
of −→ in Proposition 1 does not impose an additional condition for the situation
when ((s1, δ1), (s2, δ2))

a−→ ((s′
1, δ

′
1), (s

′
2, δ

′
2)) that δ′

1 and δ′
2 should coincide on

the common updated variables. This is directly implied by the construction of
α in Definition 3.

A direct corollary of Definition 3 and Proposition 1 is that the language of
the synchronization is an intersection of the languages of the components of the
composition, i.e., L(G1 ‖ G2) = L(G1) ∩ L(G2). This enables a connection with
the original supervisory control theory of finite automata of [4,18].

206 J. Markovski

3 Controllability

Given an automaton with a set of labels A, we split the labels to set of control-
lable C and uncontrollable U labels such that C ∩ U = ∅ and C ∪ U = A. To
model the plant we can take an unrestricted finite automaton with variables

P = (SP , AP , VP , �−→P , γP , αP , (s0P , δ0)), (2)

as the uncontrolled system is allowed to have every possible type of behavior.
We note that the plant is typically obtained as a (well-defined) parallel composi-
tion of multiple concurrent components, which ultimately results in the process
modeled by P .

The supervisor, however, is required to be a deterministic process, as it has
to send unambiguous feedback to the plant and it is not allowed to alter the
state of the plant, i.e., it must not comprise variable assignments, as suggested
in [14]. The supervisor can rely either on synchronization of events that keeps
the history of the plant as in the original setting of [4,18] or on data observation
from the plant to make supervision decisions in the vein of [14,16]. In both cases,
we can assume that the supervisor is given as an deterministic automaton

S = (SS , AS , VS , �−→S , γS , ∅, (s0S , δ0)), (3)

where C ⊆ AS ⊆ AP , VS ⊆ VP , and the labeled transition function �−→S is such
that if s

a�−→S s′ and s
a�−→S s′′, then s′ = s′′ for every s, s′, s′′ ∈ SS and a ∈ AS .

We note that the supervisor can choose not to synchronize on some uncon-
trollable event from the plant, but its alphabet must comprise all controllable
events as the supervisor must supply the control signals. Furthermore, the super-
visor has no need of additional variables, as it does not update any variables, i.e.,
αS = ∅. Consequently, there is never a conflict in the synchronization between
the plant and the supervisor, and the composition P ‖ S is well-defined. If
the supervisor does not rely on data-based observations, but employs synchro-
nization of events to keep track of the state of the plant, then additionally
γS(s, a, s′) = T for all (s, a, s′) ∈ �−→.

The composition P ‖ S models the supervised plant, i.e., the behavior of the
controlled system as given by the supervisory feedback loop of Fig. 2. We note
that the transition system

T(P ‖ S) = (SP × SS × δP , AP ,−→, (s0P , s0S , δ0)), (4)

where δP : VP → D(VP) and −→ is defined by the operational rule of Fig. 3.
To state that the supervisor has no control over the uncontrollable events,

the language-based controllability of the original setting of [4,18] is stated as:

L(P ‖ S)U ∩ L(P) ⊆ L(P ‖ S), (5)

where L(P ‖ S)U denotes the concatenation of the language of the supervised
plant and the set of uncontrollable labels. Intuitively, the controllability rela-
tion (5) demands that all uncontrollable events available in reachable states of

Controllability for Nondeterministic Discrete-Event Systems with Data 207

the original plant by traces enabled by the supervisor, must also be available
in the supervised plant. This ensures that the supervisor does not disable any
uncontrollable events when forming the supervised plant.

This definition has been subsequently extended to so-called state controllabil-
ity in [7,16,21,23] for nondeterministic discrete-events systems (with variables).
Given an automaton G = (S,A, V, �−→, γ, α, (s0, δ0)) with a transition relation
−→, let E(s, δ) denote the set of enabled transitions of the state (s, δ) for s ∈ S

and δ : V → D(V), i.e., E(s, δ) = {a ∈ A | (s, δ) a−→ }.

Definition 4. Let P and S be finite automata with variables, representing the
plant and the supervisor. A state (sP , (sP , sS), δP) of the transition system T(P ‖
(P ‖ S)) is defined as controllable, if it holds that

AS ∩ U ∩ E(sP , δP) ⊆ E((sP , sS), δP).

A plant P is state controllable with respect to S if and only if all reachable states
of T(P ‖ (P ‖ S)) are state controllable.

Intuitively, the parallel composition between of the plant and the supervised
plant helps identify all states in the original and the supervised plant that can
be reached by the same trace. According to Definition 4, controllable states
ensure that all uncontrollable events that are synchronized between the plant and
the supervisor, given by AS ∩U , that are also enabled in the reached plant state
(sP , δP) by following the same trace, must be enabled in the reached supervised
plant state ((sP , sS), δP). Note that both states must have the same variable
assignment function δP as the supervisor has an empty updating function, so it
does not influence the updating of the variables.

We note that the definition relies on the underlying transition system, employ-
ing it to identify the necessary control actions. It is not difficult to show that
state controllability implies language controllability, as given in (5), for deter-
ministic automata, see [21]. The key observation is that P ‖ P coincides with P
for deterministic systems, implying that P ‖ S can act as a supervisor and lead
to the same supervised behavior as S.

Here, we take a closer look at the state controllability condition for non-
deterministic plants. Condition (4) essentially requires that all states that are
reachable by the same trace, must also enable the same uncontrollable events.
This proves to be too strict in some situations. Consider the automata depicted
in Fig. 6, where state names are given inside the circles, all guards are set to be
true, there are no variables, the event labeled by c is controllable, whereas the
events labeled by u1 and u2 are uncontrollable. Suppose that a plant is given
by automaton P and a supervisor by automaton S. As the supervisor does not
disable any events, we can assume that the control requirements do not restrict
the behavior of the plant, i.e., the supervised plant depicted by automaton P ‖ S
coincides with the plant. In such reflexive situations, it is always possible to find
a supervisor that simply allows all events of the plant, trivially “controlling” the
plant.

208 J. Markovski

Fig. 6. A nondeterministic plant P , a deterministic supervisor S, and the resulting
state uncontrollable nondeterministic supervised plant P ‖ S.

Now, putting in parallel plant P and supervised plant P ‖ S, leads to automa-
ton P ‖ (P ‖ S) as depicted in Fig. 6. This parallel composition reveals that
states p2 of P and (p3, s2) of P ‖ S are reachable by the same trace. However,
state (p2, ∅) of the transition system T(P) enables the uncontrollable transition
labeled by u1, whereas state ((p3, s2), ∅) of transition system T(P ‖ S) enables
only the uncontrollable transition labeled by u2. This directly implies that plant
P is state uncontrollable with respect to P ‖ S, i.e., it is not state control-
lable with respect to itself. Thus, state controllability is not a preorder relation,
as plants that have states that enable different sets of uncontrollable events in
states that can be reached by the same trace are deemed uncontrollable, despite
the existence of a trivial supervisor that enables all transitions.

4 Partial Bisimulation

We propose to employ the behavioral relation termed partial bisimulation to
defined controllability for finite automata with variables. Partial bisimulation
was first introduced in [19] to capture language controllability in a coalgebraic
setting. It was lifted in [2] to a process theory for supervisory control of nonde-
terministic discrete-event systems. Here, we provide an interpretation for finite
automata with variables and discuss its relationship with state controllability.

Partial bisimulation is parameterized by a so-called bisimulation action set B.
The relation requires that the labeled transitions of the first transition system
are simulated by the second transition system, whereas only the labels of the sec-
ond transition system that are in the bisimulation action set B are bisimulated
back by the first one. The intuition behind this definition is that the bisimula-
tion action set plays the role of the uncontrollable actions that must always be
enabled both in the original and the supervised plant, whereas it is sufficient to
only simulate controllable events, as these can be restricted by the supervisor.

Definition 5. Let Ti = (Si, Ai,−→i, s0i) for i ∈ {1, 2} be two transition sys-
tems. A relation R ⊆ S1 × S2 is said to be a partial bisimulation with respect to
a bisimulation action set B ⊆ A2, if for all (s1, s2) ∈ R, it holds that:

Controllability for Nondeterministic Discrete-Event Systems with Data 209

1. if s1
a−→ s′

1 for a ∈ A1 and s′
1 ∈ S1, then there exist a ∈ A2 and s′

2 ∈ S2 such
that s2

a−→ s′
2 and (s′

1, s
′
2) ∈ R;

2. if s2
b−→ s′

2 for b ∈ B and s′
2 ∈ S2, then there exist b ∈ A1 and s′

1 ∈ S1 such
that s1

a−→ s′
1 and (s′

1, s
′
2) ∈ R;

If R is a partial bisimulation relation such that (s01, s02) ∈ R, then T1 is partially
bisimilar to T2 with respect to B and we write T1≤BT2. If T2≤BT1 holds as well,
we write T1=BT2.

We note that due to condition 1. of Definition 5, it must hold that A1 ⊆ A2,
whereas due to condition 2. it holds that B ⊆ A1 as well. It is not difficult to
show that partial bisimilarity is a preorder relation [2]. In addition, following the
guidelines of [19], it can be shown that ≤B is a partial bisimulation relation with
respect to B. Thus, we obtain standard results for the partial bisimulation pre-
order and equivalence, similarly as for the simulation preorder and equivalence
of [9]. Moreover, the partial bisimulation preorder is shown a precongruence for
the most prominent processes operations following the guidelines of [2]. Finally,
we note that T1=A1∪A2T2 amounts to bisimulation, whereas T1≤∅T2 reduces
to simulation preorder and T1=∅T2 reduces to simulation equivalence, as noted
in [2].

Now, suppose that as before, the plant is given by finite automaton with vari-
ables P , whereas the supervisor is given by S, and the supervised plant is given
by P ‖ S. Then, the supervisor may restrict some controllable events from the
plant, whereas all available uncontrollable events in the reachable states should
be enabled. This can be expressed by requesting that the transition system of the
supervised plant is partially bisimulated by the transition system of the original
plant with respect to the uncontrollable events, i.e.,

T(P ‖ S)≤UT(P). (6)

It is immediate that T(P)≤UT(P), when P ‖ S coincides with P as in the
example of Fig. 6. It is also not difficult to show that for deterministic processes,
relation (6) reduces to language controllability of (5), see [2,19]. Next, we show
that controllability as defined in (6) by means of partial bisimulation is a coarser
notion than state controllability of Definition 4.

Theorem 1. Let P and S be finite automata with variables representing the
plant and the supervisor. If P is state controllable with respect to S according to
Definition 4, then relation (6) holds.

Proof. Let us assume that P = (SP , AP , VP , �−→P , γP , αP , (s0P , δ0)) and S =
(SS , AS , VS , �−→S , γS , ∅, (s0S , δ0)). We define the relation

R = {(((p, s), δP), (p, δP)) |
∃t ∈ A∗

P : (p0, (p0, s0), δ0)
t−→∗ (p, (p, s), δP)}.

We show that R is a partial bisimulation relation between T(P ‖ S) and T(P) with
respect to the uncontrollable labels U ⊆ AP . Suppose that (((p, s), δP), (p, δP)

210 J. Markovski

∈ R for some states ((p, s), δP) ∈ SP × SS × (VP → D(VP)) and (p, δP) ∈ SP ×
(VP → D(VP)).

Let ((p, s), δP) a−→ ((p′, s′), δ′
P) for some a ∈ AP . Then, according to Defini-

tion 3 and the operational rule of Fig. 3, either a ∈ AP \AS or a ∈ AS . In the for-
mer case, we have that s = s′, so (p, δP) a−→ (p′, δ′

P) and (((p′, s), δ′
P), (p′, δ′

P)) ∈
R. In the latter case, we have that ((p, s), δP) a−→ ((p′, s′), δ′

P) for some s′ ∈ SS .
However, since the updating function of the supervisor S is empty and the
action a ∈ AS is synchronizing, we have that again (p, δP) a−→ (p′, δ′

P) with
(((p′, s′), δ′

P), (p′, δ′
P)) ∈ R.

Now, suppose that (p, δP) u−→ (p′, δ′
P) for some u ∈ U . Again, either u ∈

U \ AS or u ∈ U . If u �∈ AS , then u is not a synchronizing label, implying that
((p, s), δP) u−→((p′, s), δ′

P) with (((p′, s), δ′
P), (p′, δ′

P)) ∈ R. If u is a synchronizing
label, then by the condition for controllable states of Definition 4, we have u ∈
E((sP , sS), δP), i.e., ((p, s), δP) u−→ ((p′, s′), δ′

P) for some ((p′, s′), δ′
P) ∈ SP ×

SS × (VP → D(VP)) and (((p′, s′), δ′
P), (p′, δ′

P)) ∈ R, which completes the proof.

We have shown that every state controllable plant is also controllable with
respect to condition (6). That the inclusion is strict follows immediately from
the counterexample of Fig. 6.

Condition (6) additionally implies that the same supervised behavior given
by P ‖ S is preserved for every plant P ′ such that P ′=UP , i.e., we have that P ′ ‖
S=UP ‖ S, which is the basis of the algorithms developed in [13]. This enables
us to detect spurious nondeterministic behavior for which state controllability
cannot be applied in general. We given an example from the literature of such
nondeterministic behavior.

In Fig. 7, plant Porig represents a model of a faulty automated scanner that
makes a shopping list of items to be purchased by the user. The scanner is faulty
as sometimes it does not give an option to cancel a scanned item, e.g., when the

1Porig =

2

3 4

5

start

scan scan

pu
t

resetreset

cancelput

next

pay

1Pdet =

2

4≤3

5

start

scan

reset

cancelput

next

pay

Fig. 7. Checkout scanner of [23] - A plant with spurious nondeterminism.

Controllability for Nondeterministic Discrete-Event Systems with Data 211

user wants to return the product or just wants to check the price, and in that
case the scanner needs to be reset. As suggested in [23] the set of uncontrollable
events is given by U = {pay} as payment cannot be avoided, even though we
also suggest to treat the event put as uncontrollable.

The interpretation is that if there is no cancelation of some scanned product,
after a possible timeout, it should automatically be placed on the shopping list.
It is easily observed that state 4 is partially bisimulated by state 3 and, thus,
state 3 can be safely removed without any loss in behavior (the only situation
where state 3 could not be removed arises if the event cancel is uncontrollable,
which here is not the case). The resulting deterministic plant Pdet reveals that
Porig actually contains no real nondeterministic behavior with respect to con-
trollability. In the original setting of [23] that employs state controllability for
nondeterministic discrete-event systems, this observation was not possible and
the plant Porig is treated as nondeterministic.

5 Synthesis-Centric Model-Based Engineering

We employ the framework depicted in Fig. 8 in order to structure the process of
supervisory control software synthesis [15,20]. We start with informal specifica-
tions of the controlled system, i.e., the desired product, given as documents that
are written by domain engineers. Based on these documents, an architectural
design of the controlled system is made by the domain and software engineers
together. This design defines the appropriate modeling level of abstraction and
it specifies the control architecture. Based on the architectural design, a deci-
sion is made to which extent the control is managed by the software, and which
part is implemented in hardware. The resulting (informal) documents specify
the requirements of the supervised system. In the following, we omit the roles of
the engineers as they are clear from the context.

Most system models, i.e., plants, contain mixed discrete-event and continuous
or hybrid behavior. As discussed above, supervisor synthesis requires a discrete-
event abstraction, which inevitably leads to nondeterministic behavior. This is
where our approach to nondeterministic discrete-event systems discussed in this
paper comes into place. The hybrid model is often made for validation purposes,
e.g., for discrete-event simulation [4,18]. In the design of the plant, decisions are
made on the level of abstraction that is used, and what is significant discrete-
event behavior. In parallel, a formal specification of the control requirements is
made, which together with the plant serve as input to the synthesis tool. The
synthesis tool automatically synthesizes a supervisor. Our preliminary investi-
gation in synthesis algorithms for the notion of controllability proposed in this
paper is given in [10].

To validate the obtained supervisors, software-in-the-loop simulation can be
employed, coupled with the discrete-event or the hybrid model of the system.
One also has the option of early integration, by employing hardware-in-the-loop
simulation, which is used to validate the supervisor against a prototype of the
plant. If the validation is not satisfactory, the control requirements and/or the

212 J. Markovski

Fig. 8. Model-based systems engineering framework for supervisory controller synthe-
sis.

system model need to be revised. Finally, the control software code is generated
automatically based on the validated models.

We note that the proposed framework directly affects the software devel-
opment process. It switches the focus of the software engineers from interpret-
ing requirements, coding, and testing to analyzing requirements, modeling, and
validating system behavior. Admittedly, use of formal methods requires a sub-
stantial initial effort during the development and design phases. However, early
model validation and employment of unambiguous formal specifications decrease
the number of testing and integration errors. In this way, the overall product-
development time and costs are mitigated, while increasing product quality [22].

6 Concluding Remarks

We defined a notion of controllability for finite automata with variables based
on the behavioral preorder termed partial bisimulation. We showed that the
proposed notion of controllability subsumes the prominent previous notion of
state controllability, which was specifically tailored for nondeterministic finite
automata with variables. Moreover, we showed that state controllability is not a
preorder and that there exist state-uncontrollable plants for which it is possible
to synthesize viable supervisory controllers. This situation was remedied by the
new definition, which does not exclude the investigated cases. Furthermore, we
showed that the proposed setting enables detection of spurious nondeterministic
behavior, i.e., it is possible to eliminate nondeterministic behavior that does not
contribute to the behavior of the supervised system. Finally, we outlined the use
of the proposed theory in a synthesis-centric model-based systems and software
engineering framework.

Controllability for Nondeterministic Discrete-Event Systems with Data 213

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press, Cambridge (2010)

2. Baeten, J.C.M., van Beek, D.A., Luttik, B., Markovski, J., Rooda, J.E.: A process-
theoretic approach to supervisory control theory. In: Proceedings of ACC 2011, pp.
4496–4501. IEEE (2011)

3. Baeten, J., van Beek, D., van Hulst, A., Markovski, J.: A process algebra for
supervisory coordination. In: Proceedings of PACO 2011. EPTCS, vol. 60, pp.
36–55. Open Publishing Association (2011)

4. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer
Academic Publishers, Dordrecht (2004)

5. Chen, Y.L., Lin, F.: Modeling of discrete event systems using finite state machines
with parameters. In: Proceedings of CCA 2000, pp. 941–946 (2000)

6. Eshuis, R., Fokkinga, M.M.: Comparing refinements for failure and bisimulation
semantics. Fund. Inform. 52(4), 297–321 (2002)

7. Fabian, M., Lennartson, B.: On non-deterministic supervisory control. In: Proceed-
ings of the 35th IEEE Decision and Control, vol. 2, pp. 2213–2218 (1996)

8. Gaudin, B., Deussen, P.: Supervisory control on concurrent discrete event systems
with variables. In: Proceedings of ACC 2007, pp. 4274–4279 (2007)

9. van Glabbeek, R.J.: The linear time-branching time spectrum I. In: Bergstra, J.A.,
et al. (eds.) Handbook of Process Algebra, Chap. 1, pp. 3–99. Elsevier, Amsterdam
(2001)

10. Kirilov, A., Martinovikj, D., Mishevski, K., Petkovska, M., Trajcheska, Z.,
Markovski, J.: A supervisor synthesis tool for finite nondeterministic automata
with data. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp.
101–112. Springer, Heidelberg (2014)

11. Leveson, N.: The challenge of building process-control software. IEEE Softw. 7(6),
55–62 (1990)

12. Ma, C., Wonham, W.M.: Nonblocking Supervisory Contr. LNCIS, vol. 317, pp.
1–9. Springer, Heidelberg (2005)

13. Markovski, J.: Coarsest controllability-preserving plant minimization. In: Proceed-
ings of WODES 2012, pp. 251–258. IFAC (2012)

14. Markovski, J.: Communicating processes with data for supervisory coordination.
In: Proceedings of FOCLASA 2012. EPTCS, vol. 91, pp. 97–111. Open Publishing
Association (2012)

15. Markovski, J., van Beek, D.A., Theunissen, R.J.M., Jacobs, K.G.M., Rooda, J.E.:
A state-based framework for supervisory control synthesis and verification. In:
Proceedings of CDC 2010, pp. 3481–3486. IEEE (2010)

16. Miremadi, S., Akesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proceedings of WODES
2008, pp. 193–199. IEEE (2008)

17. Overkamp, A.: Supervisory control using failure semantics and partial specifica-
tions. IEEE Trans. Autom. Control 42(4), 498–510 (1997)

18. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

19. Rutten, J.J.M.M.: Coalgebra, concurrency, and control. In: Proceedings of WODES
2000, pp. 31–38. Kluwer Academic Publishers, Dordrecht (2000)

214 J. Markovski

20. Schiffelers, R.R.H., Theunissen, R.J.M., van Beek, D.A., Rooda, J.E.: Model-based
engineering of supervisory controllers using CIF. Electron. Commun. EASST 21,
1–10 (2009)

21. Skoldstam, M., Akesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: Proceedings of CDC 2007, pp. 3387–3392. IEEE
(2007)

22. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4), 1–36 (2009)

23. Zhou, C., Kumar, R., Jiang, S.: Control of nondeterministic discrete-event systems
for bisimulation equivalence. IEEE Trans. Autom. Control 51(5), 754–765 (2006)

A Computer-Aided Process from Problems
to Laws in Requirements Engineering

Stephan Faßbender(B) and Maritta Heisel

Paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{Stephan.Fassbender,Maritta.Heisel}@paluno.uni-due.de

Abstract. In today’s world many products and services are highly
dependent on software and information systems. With the growing impor-
tance of IT systems, legislators worldwide decided to regulate and enforce
laws for IT systems. With respect to this situation, the impact of compli-
ance on the development of IT systems becomes more and more severe.
Hence, software engineers have a need for techniques to deal with com-
pliance. But identifying relevant compliance regulations for IT systems
is a challenging task. We proposed patterns and a structured method to
tackle these problems [1]. A crucial step is the transformation of require-
ments into a structure, which allows for the identification of laws. The
transformation step was described in general in [2]. This work describes
a method to structure the requirements, elicit the needed domain knowl-
edge and transform requirements into law identification pattern instances.
The manual execution of this method was reported by us to be time con-
suming and tedious. Hence, in this work we identify the points for
(semi-)automation, and we outline a first implementation for the automa-
tion. We present our results using a voting system as an example, which
was obtained from the ModIWa DFG (Juristisch-informatische Model-
lierung von Internetwahlen (II). A Deutsche Forschungsgemeinschaft
project: http://cms.uni-kassel.de/unicms/index.php?id=38536) project
and the common criteria profile for voting systems.

Keywords: Compliance · Law · Voting system · Requirements
engineering · Model transformation

1 Introduction

In today’s world many products and services are highly dependent on software
and information systems. With the growing importance of IT systems over the
past decades, legislators worldwide decided to regulate and enforce laws regard-
ing IT systems. The permanently evolving technology inevitably leads to ever

Part of this work is funded by the German Research Foundation (DFG) under
grant number HE3322/4-2 and the EU project Network of Excellence on Engineer-
ing Secure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4
Trustworthy ICT, Grant No. 256980).

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 215–234, 2014.
DOI: 10.1007/978-3-662-44920-2 14

http://cms.uni-kassel.de/unicms/index.php?id=38536

216 S. Faßbender and M. Heisel

increasing legal requirements and regulations with severe penalties for
non-conformance. Many emerging information-driven businesses deploy infor-
mation services without adequately considering illegal misuse. But compliance
is critical for such systems as they are governed by regulations and law, especially
given that non-compliance can result in both financial and criminal penalties.

One emblematic example is the case of the information broker “ChoicePoint”
for which an identity theft of more than 163.000 consumers was reported. An
assessment of the company’s products indicated that these were developed with-
out proper security controls as mandated by the Fair Credit Reporting Act.
Since ChoicePoint failed to comply with these regulations, it was fined $10 mil-
lion in civil damages and $5 million for consumer redress. Further, the settlement
requires ChoicePoint to implement new procedures to ensure that it provides con-
sumer reports only to legitimate businesses for lawful purposes, to establish and
maintain a comprehensive information security program, and to allow audits by
an independent third-party security professional every other year until 2026 [3].
Violations similar to this example are considered to be due to the subjective
interpretation of regulations by companies in the context of their information
systems’ landscape. Ultimately, the law is valid for all software products, regard-
less of size, revenues or scale of the producer.

The identification and analysis of relevant laws is considered to be difficult
because it is a cross-disciplinary task in laws as well as in software and systems
engineering [4]. Otto and Antón [5] conclude in their survey about research on
laws in requirements engineering that there is a need for techniques to identify
relevant laws based on requirements, analyze them, and to derive requirements
from them.

Pattern-based approaches capture the knowledge of domain experts. In this
way, the knowledge is made explicit and can be re-used for recurring problems.
Hence, we proposed a pattern-based approach for identifying and analyzing laws
in one of our earlier works [1]. These patterns already allow the identification of
relevant laws.

However, the identification of a relevant law alone is not sufficient for software
engineers. They require a structured method that uses this approach to derive soft-
ware requirements and further implementable software specifications. In [6] we
present such a structured method. One crucial step within this method is the trans-
formation of functional requirements into law identification pattern instances,
which allows the matching with law pattern instances. How to do the transforma-
tion manually is described in another work of ours [2]. But the method execution is
reported by us to be time consuming and tedious. Hence, in this paper we present
an improved method with tool-support.

In the following, we present a guided and tool-supported transformation of
requirements into law identification pattern instances, using a voting system as
an example. We make use of the problem-based requirements engineering app-
roach proposed by Jackson [7] to structure the requirements in terms of problem
diagrams in the first place. We decided to use problem frames because they have
a kind of semi-formal structure and can be modeled. Furthermore, they already

A Computer-Aided Process from Problems 217

embody descriptions of common problems. Thus, they are suitable as an input
for a transformation as they have a predictable structure, and transformation
rules can be set up on the basis of the generic problems. Then we show how
to turn these problem diagrams into law identification patterns using our tool.
We provide detailed transformation rules for different requirement patterns, as
described by Côté et al. [8], to obtain the corresponding law identification pat-
tern instances. All these information needed for matching, and transformation
is provided by means of transformation cards (see Sect. 5). In this way, the
identification of laws gains precision and is less error-prone, for example due to
forgetting important domain knowledge.

In Sect. 2 we introduce the problem frame terminology and notation, and the
pattern for law identification. Next, we briefly introduce the voting system case
in Sect. 3. For our case study, we structure the problem, ending up with a set of
problem diagrams in Sect. 4. In Sect. 5 we present a structured method, which
guides requirements engineers through the process of transforming the problem
into relevant law identification pattern instances. Section 6 outlines the result of a
validation. Section 7 discusses the related work, and Sect. 8 concludes the paper.

2 Background

We use the problem frames [7] approach to structure functional requirements
and corresponding domain knowledge. And we make use of the problem frames
to facilitate the transformation to the law identification pattern.

Problem Frames. Jackson [7] introduced the concept of problem frames, which is
concerned with describing, analyzing, and structuring of software development
problems. A problem frame represents a class of software development problems.
It is described by a frame diagram, which consists of domains, interfaces between
them, and a requirement. Domains describe entities in the environment. Jack-
son distinguishes the domain types biddable domains that are usually people,
causal domains that comply with some physical laws, and lexical domains
that are data representations. To describe the problem context, a connection
domain between two other domains may be necessary. Connection domains
establish a connection between other domains by means of technical devices.
Examples are video cameras, sensors, or networks. Finally, we introduced dis-
play domains [8] which serve to display information to some biddable domain.

Interfaces connect domains, and they contain shared phenomena. Shared phe-
nomena may be events, operation calls, messages, and the like. They are observ-
able by at least two domains, but controlled by only one domain, as indicated by
the name of that domain and “!”. For example, shared phenomenon displayBal-
lot in Fig. 1 is observable by the domains ShowBallotClient and Voter, but
controlled only by the domain Voter. We describe problem frames using UML
class diagrams, extended by stereotypes, as proposed by Hatebur and Heisel [9].

The objective is to construct a machine (i.e., software) that controls the
behavior of the environment (in which it is integrated) in accordance with the
requirements. When we state a requirement, we want to change something in

218 S. Faßbender and M. Heisel

Fig. 1. Problem diagram for R2A.

the environment. Therefore, each requirement constrains at least one domain.
A requirement may also refer to several domains in the environment of the
machine.

The problem frames approach distinguishes therefore between the require-
ments (R), the domain knowledge (D), and the specification (S). The require-
ments describe the desired system after the machine is built. The domain
knowledge represents the relevant parts of the problem world. The specifications
describe the behavior of the software in order to meet the requirements.

Beside the requirements, the domain knowledge about the environment of the
machine to be built is crucial for understanding the problem and specifying the
machine behavior later on. Unlike Jackson, we distinguish between assumptions,
facts, and definitions and designations. Assumptions describe conditions fulfilled
by the environment that are needed, so that the requirements can be fulfilled by
the machine. However, these may be violated in certain situations. Facts describe
fixed properties of the environment irrespective of how the machine is built.
Definitions and designations specify a set of special terms used for formulating
requirements, assumptions and facts.

Problem-oriented requirements analysis starts with representing the envi-
ronment using a context diagram. Such a diagram describes where the problem
is located by stating the relevant domains and their interfaces, including the
machine to be built. Problem-oriented requirements analysis proceeds with a
decomposition of the overall problem into sub-problems, which are represented
by problem diagrams. The problem diagrams should be instances of problem
frames, thereby representing simple development problems. In contrast to con-
text diagrams, problem diagrams contain the requirements belonging to the sub-
problem. An example of a problem diagram can be found in Fig. 1.

Figure 1 shows a problem diagram in UML notation. The biddable domain
(UML class with stereotype �biddableDomain�) Voter controls the display bal-
lot command (Name of the UML association with the stereotype �connection�
between the classes Voter and ShowBallotClient), which is observed by the
machine domain ShowBallotClient (UML class with stereotype �machine�).

A Computer-Aided Process from Problems 219

EU
Legislator

Individual
Mentioned In
BDSG Sec. 2

Process

Vote

Defined in
BDSG Sec. 3

Process

Accomplish
Avoid /

Classified As

Classified As Classified As

Related To

Personal Data
Defined in

BDSG Sec. 3

Core Structure

Passive Stakeholder
AssetActivity

Subject Classifier

Person Classifier

Germany
Legislator Activity Classifier

Classified As

ActivityRequirement

Aktive Stakeholder
Voter

’Show’

Requirement
’R1, R2(B C),3,4(A B C D),5’

ClassificationContext

Influence Entitled To

Domain
General Public

’Show the Ballot’

Candidate

getBallot BallotForm

Fig. 2. One law identification pattern instance for R2A.

The ShowBallotClient controls the phenomenon getBallot, which is
obtained from the lexical domain BallotBuffer(UML class with stereotype
�lexicalDomain�). Additionally, the ShowBallotClient shows the ballot
using the BallotDisplay. The requirement R2A (for a textual description see
Sect. 4) constrains the BallotDisplay and refers to the Voters, and the Bal-
lotBuffer.

Patterns for Requirement-based Law Identification. Commonly, laws are not ade-
quately considered during requirements engineering [5]. Therefore, they are not
covered in the subsequent system development phases. One fundamental reason
for this is that the involved engineers are typically not cross-disciplinary experts
in law and software and systems engineering. To bridge this gap, we developed law
patterns and a general process for law identification which relies on these patterns.

We investigated how judges and lawyers are supposed to analyze a law, based
upon legal literature research. These insights lead to a basic structure of laws and
the contained sections. One result of our investigations is a common structure of
laws. Based on this structure of laws, we defined a law pattern. The law pattern
itself is discussed in detail in [1].

Identifying relevant laws based on functional requirements is challenging.
Functional requirements are often too imprecise for a sufficient law analysis, they
contain important information only implicitly, and use a different wording than
in laws. Therefore, we developed a law identification pattern, which structures
requirements in a way that important terms of a requirement can be mapped to
the legal wording and then matched with law pattern instances (Fig. 2 shows an
instance).

The light-gray words in italics indicate the general elements of the law iden-
tification pattern, while the black words represent the current instantiation.

220 S. Faßbender and M. Heisel

First of all, a Requirement dictates a certain behavior of the machine and it
can be Related To other Requirements. A behavior can be a certain Activity or
an entire Process. The machine resides in one or more jurisdictions represented
by their Legislators. And the problem the machine has to solve is a problem of
one or more Domains. The fundamental parts of the requirements are described
in the Core Structure. An Activity involves an Active stakeholder and in some
cases an Asset. Additionally, an Activity Influences a Passive Stakeholder in
a direct way or indirectly through an Asset, to which the Passive Stakeholder
is entitled to. The terms used for Activities, Stakeholders, and Assets can be
Classified in the Classification part, using terms of the legal domain.

The general process for identifying relevant laws consists of five steps [6]. The
first step is to set up a database of all laws which might be of relevance for a
scenario. Therefore, laws have to be analyzed and stored in the structure of the
law pattern. Thus, they are stored as law pattern instances. The second step
uses information from functional requirements and their context to instantiate
the core structure and the context of the according law identification pattern.
Third, the relation between laws and software requirements has to be established
to prepare the identification of relevant laws for the given system. Hence, a map-
ping between the terms and notions of the software requirements to legal terms
and notions is derived. Fourth, the law pattern instances and law identification
pattern instances have to be matched. This results in a set of laws which might
be of relevance for the software. Fifth, the found laws are the basis for further
investigations.

In order to accomplish this process described, law experts and software engi-
neers have to work together for the necessary knowledge transfer. Step one can
be performed by legal experts alone and for step two only software engineers
are needed. But in steps three and four both groups are needed to bridge the
gap between the legal and technical world. The last step can be accomplished
by legal experts alone. In this paper, we focus on the transformation step (step
two) and how to turn requirements, in our case in terms of problem diagrams,
into law identification pattern instances.

3 Case Study: Voting System for Germany

Electronic voting enjoys an ever-increasing interest from governments as they
seek to facilitate and simplify their election procedures. In several countries
like Australia, Brasil, Belgium, Canada, India, UK, and Spain electronic voting
systems are already in use [10]. In Germany there are also some activities on
introducing such a voting system.

By its very nature, the field of electronic voting is an interdisciplinary field in
which legal and computer scientists work together. During the development of
the first voting system used in Germany, this fact was neglected or inadequately
considered. Hence, the federal constitutional court of Germany judged in 2009
that using this system for votings in 2005 was unconstitutional [11].

A general problem description of this voting system and which functionality
it has to provide was derived from [12,13]. The former work was conducted in

A Computer-Aided Process from Problems 221

the context of the ModIWa II project, while the latter work was elaborated in
the context of a Common Criteria (CC) Profile [14] for online voting systems.
These documents are used in Sect. 4 for detailing the requirements and knowledge
about the involved stakeholder and systems, and their relation to each other.

4 Structuring the Problem

As proposed by Jackson [7], we derive requirements and domain knowledge from
the problem description, and decompose the overall problem into sub-problems
using problem diagrams. Note that for presenting our transformation method
we only use functional requirements. Non-functional requirements are left aside.
Nevertheless, the found laws demand further quality requirements, for example
privacy requirements.

Requirements and Domain Knowledge. The CC profile for online voting sys-
tems [14] only deals with the polling phase. The preliminary election prepara-
tion and the tallying are not considered in detail. Hence, the profile only defines
functional requirements for the voter and the election officer who represents the
election authority. In total, the machine to be built is described in terms of 21
requirements by the CC profile. Later on we split some of the requirements for
handling reasons. We only consider one requirement of the voter at this point.
It is sufficient for the rest of the paper. The requirement texts are directly taken
from the CC profile [14]. (Note that the abbreviation TOE stands for target of
evaluation, which is, in terms of the CC, the machine to be built.)

(R2A) show the ballot “[. . .] involves the ballot being displayed to a voter
[. . .]. [. . .]usually in the form of a corresponding on-screen display. [. . .] The
[. . .] ballot is held in the buffer from the point that the casting of the vote
is initiated to the storage of the vote in the ballot box.[. . .]”

Besides the requirements themselves, the knowledge about the environment
of the machine to be built is crucial for understanding the problem and specifying
the machine behavior later on. We only present the assumptions and facts we
derived from CC profile [14] which are of relevance in the following. In total, the
CC profile states 21 assumptions, 14 facts and 35 definitions and designations.

(A3) ballot display “Vote casting [. . .] takes place [. . .] from a vote-casting
device which is able to display the full contents of the ballot and to implement
the responsible election authority’s specifications for the type of display, in
particular the order of voting options.[. . .] The voter acts responsibly in
securing the vote-casting device. It is assumed that each voter that installs or
uses the client-sided TOE does so in such a way that the vote-casting device
can neither observe nor influence the vote casting process. This includes the
assumption that the voter does not manipulate his vote-casting device on
purpose. The vote-casting device is able to properly display the ballot, to
properly transfer the voters input to the election server and to delete the
vote after the polling process.”

222 S. Faßbender and M. Heisel

(A10) observation “The voter ensures that nobody is watching him while he
casts his vote. The responsible election authority accounts for appropriate
advice for the voter regarding how to cast his vote unobserved.”

(F6) ballot “Displayed form (conforming to a ballot paper). This can be blank
or completed. It can also offer the opportunity to deliberately cast an invalid
vote. The completed ballot is held in the buffer from the point that the
casting of the vote is initiated to the storage of the vote in the ballot box.
According to which conditions a vote is valid is dependent on the election
regulation. An example of an invalid vote is when the voter has selected no
or too many voting options.”

For analyzing and structuring requirements we use problem diagrams. Figure 1
shows the problem diagram for the requirement R2A. The diagram was already
described in Sect. 2.

5 Transforming Problem Diagrams to Law Identification
Pattern Instances

So-called transformation cards are the central tool for executing the transfor-
mation in the following. We developed a transformation card for each problem
frame, which helps requirements engineers to fit the problem diagrams into the
according law identification pattern instances. The transformation card contains
information used for matching problem diagrams and frames, and information
how the problem frame, and therefore the matching problem diagram, is related
to the core structure of the law identification pattern. It also contains infor-
mation for collecting potentially missing domain knowledge, which is important
for transforming problem diagrams into core structures, and the transforma-
tion rules themselves. As a result, the transformation card supports and guides
requirements engineers when preparing the requirements for the matching with
relevant laws. In this way, the identification of laws gains precision and is less
error-prone, for example due to forgetting important domain knowledge. Beside
improving the precision and reducing the chance of an error, transformation
cards are the basis for the semi-automatic tool-support. The description of the
tool-support will be also given in the following paragraphs highlighted with a
different font.

For the tool-support, all information given by the transformation cards is modeled
using the UML and a specific transformation card profile. The model containing all
transformation cards is then the input for the tool. The tool itself is realized with
the Eclipse Epsilon framework1. The result is an Eclipse plugin which integrates into
the UML4PF tool2.

The process for using the transformation cards, and therefore the tool, is
shown in Fig. 3. It starts with the identification of applicable transformation
1 http://www.eclipse.org/epsilon/
2 http://www.uml4pf.org

http://www.eclipse.org/epsilon/
http://www.uml4pf.org

A Computer-Aided Process from Problems 223

Transformation
Cards

Identified

Questionaire
Part

Transformation
Part

Transformation
Cards

Knowledge
(Answers)

Domain
Knowledge
(Model)

Domain

Identification
Part

Problem
Diagram

Identification
Pattern

Law

Identification
Pattern(Core)

Law

Instances

Modeling
Part

Identification of
applicable

Transformation Cards

Domain
Knowledge
Collection

Transformation
Domain

Knowledge
Modelingpr

oc
es

s
in

pu
t

ex
te

rn
al

ou
tp

ut
in

pu
t /

Fig. 3. The transformation process.

cards for the problem diagrams. The problem diagrams are a necessary exter-
nal input like the identification part of the transformation cards. The problem
diagrams have to be modeled beforehand. Then the questionnaire part of the
identified transformation cards is used for a domain knowledge collection. Next,
the answers and the modeling part of the identified transformation card serve
as input for domain knowledge modeling. The modeling part contains detailed
rules how to model legal domain knowledge. Finally, the transformation is exe-
cuted using information contained problem diagrams and the according domain
knowledge models. The used transformation rules are obtained from transforma-
tion part of the identified transformation cards. The transformation results in
law identification pattern (core) instances.

Identification of Applicable Transformation Cards. Table 1 shows the part of a
transformation card, which can help to identify the matching problem frame.
In the problem frame part, the structure of the problem frames by means of
contained domains, phenomena, their sequence, and refers to and constrains
relations to the requirement are described. A matching problem diagram must

Table 1. Query transformation card: identification part.

224 S. Faßbender and M. Heisel

have the same characteristics as described in this part of the transformation
card.

The problem diagrams have sometimes to be modified for matching. For
example, big and complex problem diagrams have to be partitioned, or domains
have to be merged for fitting the problem diagram at hand to a problem frame.
For reasons of space we skip the full discussion. The interested reader is referred
to Hatebur and Heisel [9].

For selecting the applicable transformation cards, the tool provides a selection
of transformation cards which might be applicable to the problem. For this task we
use the Epsilon comparison language. For each transformation card it calculates a
fitting indicator for a given problem diagram. In case that all domains and necessary
interfaces are found in a problem diagram, and the correct domains are referred
and constrained. Hence, the fitting indicator is 1. The indicator is decreased for
each missing domain, additional domain or differing interface. The selection of an
applicable transformation card itself has to be done by the user. It cannot be done
automatically because the sequence of phenomena, for example, cannot be checked
automatically. But for the selection, the user has only to analyze the transformation
cards with a high indicator and not all transformation cards.

For our example (Fig. 1), we now check if a transformation card is applica-
ble or not. First, the tool calculates the fitting indicator. The Voter is a bid-
dable domain and the BallotBuffer is a lexical domain. R2A refers to both.
This matches the Referred domain type(s) of the identification part of the query
transformation card. This is also true for the Constrained domain type(s) which
has to be a display domain. The constrained domain BallotDisplay in our prob-
lem diagram is a display domain. As all phenomena necessary for the sequence
of phenomena are also given in the problem diagram (e.g. QM!E3 matches
SBC!{showBallot}), the fitting indicator is 1.

Last, we have to check whether the implicitly described sequence of phenom-
ena of the problem frame, matches the phenomena of the problem diagram or not.
The sequence of V!{login}; VISM!{getIdentifictaion}; VICM!{showLoginResult}
matches the regular expression as given by the Sequence of Phenomena in the
transformation card. As a result, the transformation card for the problem frame
Query has to be applied.

Domain Knowledge Collection. After the successful matching, the transforma-
tion card contains further guidance for preparing the transformation. It contains
several core structure variants, which describe the possible core structure instan-
tiations of the law identification pattern for the problem frame at hand.

The core structure variants not only relate problem frame and core structure,
but also consider typical domain knowledge for a problem frame. To ensure that
this domain knowledge is collected properly, there is a questionnaire for each
core structure variant. The questionnaire is structured into the parts “Neces-
sary Information”, which describes for which information we are looking for,
“Details”, which states which domain is the target of the question, the “Ques-
tion” itself, and “Result”, which describes how to model the collected domain

A Computer-Aided Process from Problems 225

Table 2. Query transformation card: questionnaire and transformation part.

knowledge. While answering these questions, necessary domain knowledge which
might be missing is collected.

The tool uses the Epsilon generation language and pdflatex to prepare an adjusted
questionnaire for each core structure variant. Table 3 shows such a generated ques-
tionnaire. The shown questionnaire only contains questions regarding core structure
variant 2 and before the first iteration. Indeed, the tool does not generate one question-
naire for each problem diagram and related core structure variants separately. Instead,
it generates one coherent questionnaire for a complete set of problem diagrams and
related transformation cards. This way, repetition of questions can be avoided. Several
iterations are possible as an answer can lead to new questions. For example, discover-
ing a new sub-art of the ballot buffer leads to new questions regarding this new part.
Thus, the tool indicates the need of an additional iteration and provides a new ques-
tionnaire. The new questionnaire only contains the newly occurred questions. In this
way, the generated questionnaires guide through the domain knowledge elicitation.

Table 2 shows one core structure variant. There are three more variants,
which we have to skip due to reasons of space. The first information, which
might be missing, is about the structure of the DataBase. Normally, in problem
diagrams a lexical domain represents information, which can be regarded as part

226 S. Faßbender and M. Heisel

Table 3. Catalog of questions for core structure variant 2.

Necessary Details Question

Information

Structure BallotBuffer BallotBuffer Which information is contained in
the BallotBuffer and which
structure does it have?

BallotBuffer Stakeholder - Who are the stakeholders owning
the BallotBuffer?

BallotBuffer Information
Stakeholder

- Who are the stakeholders entitled
to information contained in the
BallotBuffer?

ShowBallotClient
Stakeholder

- Who is responsible and in control
of the ShowBallotClient?

of the overall database. But for law identification we need to know the specific
piece(s) of information which is/are relevant for the problem at hand. In case the
database can be partitioned further, we have to add a separate lexical domain
for each found piece of information. For the BallotBuffer we already collected
the information by means of the fact F6. Hence, we know that ballot form for
displaying the ballot is part of the buffer. Additionally, the information about
the data the voter has already entered is stored in the buffer. Thus, we add the
ballot form and entered data as part of the ballot buffer. The ballot buffer is
related to one DataBase Stakeholder. Thus is the Voter, who owns the voting
device and therefore the buffer. The ballot buffer is related to two DataBase
Information Stakeholders to which the next question refers. The first one is
the Voter because entered data represents the decisions of the voter. The second
ones are the party candidates because the ballot form contains their names and
relations to the parties. After answering the questionnaire, all necessary domain
knowledge is available in terms of natural language answers.

Domain Knowledge Modeling. The natural language answers given in the previ-
ous step have to be made available in the model for the next steps. Therefore,
we use domain knowledge diagrams [15] and a UML profile for legal domain
knowledge modeling.

The modeling of domain knowledge is completely tool-supported. Using the
Epsilon wizard language, the answers to the questions can be added within guided
wizards. The domain knowledge diagrams according to the answers themselves are
then automatically set up. Only the graphical representation has to be generated
manually if needed.

Transformation. With the newly obtained domain knowledge at hand, we can
transform the problem diagram into law identification pattern core structure
instances. How often a core structure has to be instantiated is described in
the instantiation rule (see Table 2) of each core structure variant part of the

A Computer-Aided Process from Problems 227

transformation card. Hence, it is possible that one problem diagram is trans-
formed into several law identification pattern instances.

For R2A (Fig. 1) and Core Structure Variant 2 (Table 2) we have to instan-
tiate the core structure for each combination of Database (part), Machine
Stakeholder, DataBase Stakeholder and DataBase Information
Stakeholder. The Activity is the same for all core structures of variant 2. This
results in a core structure for Voter, getBallot, BallotBuffer, and Voter, a core
structure for Voter, getBallot, BallotForm, and Candidate, and a core struc-
ture for Voter, getBallot, EnteredData, and Voter. The second core structure
is shown in Fig. 2. The Active Stakeholder is instantiated as Voter, the Pas-
sive Stakeholder as Candidate, the Asset as BallotForm, and the Activity is
instantiated as getBallot.

The transformation from problem diagrams to core structures can be performed
fully automatically by the tool. For this task we use the Epsilon transformation
language and a UML profile for representing law identification patterns in UML. Note
that the core structures are added to the same UML model where also the problem
diagrams reside. In this way, we have one model storing all information allowing
information tracing and coherence checks. In a second step, the UML representation
is transformed into a law pattern specific form, which allows the matching with laws.

After adding the context information to the pattern and discussing the map-
pings of terms with a legal expert, we obtain a law identification pattern instance
as shown in Fig. 2. For the process of adding the classification and context, and
finally the matching to laws, we refer the interested reader to [1,6].

6 Validation

For the validation of our proposed method we analyzed the voting system in a
case of action research in [2]. There were two hypotheses to be tested, namely
“H1: The transformation cards are sufficient to be integrated into the overall
identification process as described by [6]” and “H2: Using the transformation
cards leads to an identification of all relevant laws”. For this paper, we made a
re-run for the voting system using our tool-supported improved method.

The re-run should ensure that the integration of the tools does not nega-
tively influence the results reported in our previous paper [2]. Additionally, the
hypotheses “H3: Using tool-support improves the execution of the transformation
as described in [2]” was tested.

To decide the first and the third hypotheses, we tested the usage of trans-
formation cards by integrating the transformation process in the overall process
as described in [6]. To be able to discuss the sufficiency of the transformation
cards and tool support, we tracked the generation of core structures in terms of
number and effort. These results were compared to the previous results, which
were obtained facilitating purely manual work, as reported in [2].

To decide the second hypothesis, we already conducted a literature research
about the voting system and the relevant German laws for this matter in [2]. The
main source was the judgment of 2009 by the Federal Constitutional Court of

228 S. Faßbender and M. Heisel

Germany [11], followed by discussions with several domain and/or legal experts.
These insights lead to expectations whether a requirement will match with a
particular law or not. These expectations were documented in terms of a table
listing the expectations for each law and requirement. This table was compared
to the matching based on the generated law identification pattern. The result
is of a quantitative nature in terms of false positives and false negatives, and
evidence by the number of matches.

For the validation, we excluded some laws even though they were identified
as relevant based on the literature research and discussions. We selected the
highly relevant laws as discussed by the Federal Constitutional Court. These laws
are necessary to find the weaknesses of our method in terms of false negatives.
A false negative would be a missing match with a law for a certain requirement.
To identify false positives, we also added laws which are somehow related to
voting systems, but not relevant. Hence, here we expected to find matches which
are not of real relevance. For the validation, we selected the four following laws:

– The BDSG as highly relevant law concerning personal data.
– The BWahlG (Bundeswahlgesetz), which is the law for federal state elections

in Germany and also highly relevant.
– The SigG (Signatur Gesetz), a law which regulates the use of digital signatures.

This particular law was selected not due to its relevance, but it is related in
terms of the technological background. Therefore, it is interesting whether
such a law, which is only related in the used wording, will match or not.

– The PassG (Pass Gesetz), which regulates the use of passports in Germany.
This law is clearly irrelevant, nevertheless the passport is a possible authenti-
cation means during elections.

From our observations, the transformation cards integrated well in the
overall law identification process. After the core structures were generated, no
further modifications were required for instantiating the full law identification
patterns. The preparations of the core structures were more structured and
detailed and therefore less error-prone compared to the hands on instantiation
we used previously.

A major downside is the sheer number of generated core structures. And
there is a high share of duplicates. But as the core structures are generated
automatically, the additional effort spent is zero at this point. And the tool is
able to remove the duplicates. From our experience, none of the non-duplicated
core structures can be removed as they are all necessary for a detailed detection
of relevant laws. Sometimes only the minor differences between core structures
revealed the most important parts of a requirement for the relevance of a law.
These differences then help to understand how to address the law. Furthermore,
we could not identify common characteristics for filtering out the core structures
which match all relevant laws. The laws are too different to do so. Hence, the
big number of core structures is necessary and even helpful.

Speaking of the effort, there are several things to consider (see overview
Table 4). The matching of problem diagrams with problem frames is straight-
forward and takes almost no time. The modeling of the problem diagrams by

A Computer-Aided Process from Problems 229

Table 4. Effort spent for conducting the method.

an experienced user took about 5 person hours (0.5 h for one requirement).
This seems reasonable if the law identification gives sufficient results afterward.
Answering the questionnaire and modeling the resulting information takes some
more time. But this process of answering and modeling speeds up significantly
with a growing number of already analyzed requirements. Mostly, the questions
consider the domains directly. And as the number of domains is limited, so is
the information needed about them. Thus, most information is already known
and modeled for later requirements. It took about 8.5 person hours for this step
including discussions (about 1 h for one requirement). This seems to be a signif-
icant amount of work, but the information collected is crucial for the success of
the application of the transformation card. Hence, we spent some more time for
this discussions and searching for the necessary information (e.g. in the protec-
tion profile [14]). Setting up the core structures is an easy task, and automated it
takes no time. In total, executing the proposed method took 13.5 person hours.

This effort seems to be significantly high. But there are two things to consider:
First, modeling problem diagrams enables one to use several other methods
available for analyzing problem diagrams. For example, they can be analyzed for
privacy [16] or standard-related issues [17]. Second, the effort for the elicitation of
law-relevant information has to be invested even if someone uses another method
to find relevant laws. Thus, the effort related to the use of transformation cards
is limited to the modeling of problem diagrams and modeling of the collected
information. And this pays off as it enables the automated generation and guided
analysis. Hence, the overall effort to be spent seems to be reasonable, as long as
the results of the identification process are precise enough.

Result H1: From our experience, the transformation card method using tool-
support is still sufficient to integrate in the overall identification process as
described by [6].

For assessing the precision and recall of the law identification using transfor-
mation cards, we set up Table 5. Symbols should be read the following way:

– A normal cross indicates an expected and observed match.
– A bold cross indicates an unexpected but correct match.

230 S. Faßbender and M. Heisel

Table 5. Validation results: expected and found matches.

– A canceled cross indicates an expected but not observed match and the missing
cross turned out to be correct.

– An underlined cross indicates an unexpected and irrelevant match.

For the precision the identification turned out to be remarkable. The precision
for the voting system and the four selected laws is at 0.94 (true positive/(true
positive + false positive) = 16/(16 + 1)). Thus, almost every match points out a
relevant law.

For the recall the result is perfect. The recall is at 1 (true positive/(true
positive + false negative) = 16/(16 + 0)). Thus, not a single relevant law is missed.

Having a high recall is more important than a high precision in our case. The
method should find all relevant laws. The impact of a missed law is much more
serious to the development and success of the system-to-be than the extra effort
spent on the legal revision for an irrelevant law. Hence, having recall value near to
1.0 is the main objective of our method. But a precision of 0.94 adds some surplus
value. In terms of precision and recall, it is reasonable to use our method.

Compared to our expectations based on the requirements and legal insights
alone, using the identification method is superior. For the BDSG we neglected
the fact that the information about the candidates and their relation to parties
is personal information which falls under the BDSG. In fact, this issue is not
of high importance as this information is publicly available. But nevertheless,
it makes the BDSG relevant for these requirements. For the BWahlG it turned
out that this law and its sections only deal with the expression of opinion alone.
Thus, those requirements that are not directly related to the voting itself are
not in the focus of this particular law. The only point in favor of our manual
prediction is that we rejected the SigG, while it was matched once by the law
identification process. Integrating the tool into the method did not change any
matching. Hence, the precision and recall of the law identification process is
significantly higher than for our educated prediction.

“Result H2: To sum up, using the transformation cards and the tool leads to
an identification of all relevant laws with a high precision”. And it significantly
improves the situation compared to an unguided method.

We have to consider two different aspects when deciding the third hypoth-
esis. First, did the tool have an impact on the results of the method itself?
Second, did it improve the effort to be spent? For the impact aspect we experi-
enced no significant change. Only in the generated core structures we discovered
three additional core structures. They were generated by the tool but overlooked

A Computer-Aided Process from Problems 231

when doing the generation manually. In our case, this did not change anything
regarding the matching. Thus, using the tool does not add a benefit compared
to conducting the method manually in an accurate way. But we assume that
such a benefit would be visible if the method had been executed by an inexpe-
rienced user or users in a rush. For the effort aspect, Table 4 shows a significant
improvement. We lowered the effort by 1/3. For the manual method execution
we spent 24 person hours, while using the tool we only spend 13.5 h. Result H3:
Hence, the tool improves the execution of the transformation as described in [2].

7 Related Work

Breaux et al. [18,19] present a framework for analyzing the structure of laws
using a natural language pattern. This pattern helps to translate laws into a
more structured restricted natural language and then into a first-order logic.
The idea of using first-order logic in the context of regulations is not a new
one. For example, Bench-Capon et al. [20] made use of first-order logic to model
regulations and related matters. In contrast to our work, the authors of those
methods assume that the relevant laws are already known and thus do not sup-
port identifying legal texts based on functional requirements.

Siena et al. [21] describe the differences between legal concepts and require-
ments. They model the regulations using an ontology, which is quite similar to
the natural language patterns described in the methods mentioned previously.
The ontology is based in the Hohfeld taxonomy [22], which describes the means
and relations between the different means of legal texts in a very generic way.
Thus Hohfeld does not structure a certain law at all, but aims at the differ-
ent meanings of laws. Hence, the resulting process in [21] to align legal con-
cepts to requirements and the given concepts are quite high-level and cannot be
directly applied to a scenario. In a second work Siena et al. [23] try to bridge the
gap between the requirements engineering process and compliance using a goal-
oriented method. In this work they propose to derive goals from regulations and
apply those goals to the actors within a requirements engineering scenario. In
contrast to our method, they do not identify relevant laws and do not intertwine
compliance regulations with already elicited requirements.

Maxwell et al. [24] developed an method to check existing software require-
ments for regulatory compliance, i.e., to discover violations and missing require-
ments. While our approach focuses on the identification of relevant laws, we could
imagine using it to detect violations, too. We consider dependencies between dif-
ferent laws or regulations, which the approach from Maxwell et al. neglects.

Álvarez et al. [25] describe reusable legal requirements in natural language,
based on the Spanish adaption of the EU directive 95/46/CE concerning personal
data protection. We believe that the work by Álvarez et al. complements our
work, i.e., applying our law identification method can proceed using their security
requirements templates.

232 S. Faßbender and M. Heisel

8 Conclusions

In this work, we introduced a structured method for transforming functional
requirements into law identification pattern instances using transformation cards
and tool-support. The transformation makes use of problem diagrams for
structuring the functional requirements, problem frames for transformation
instructions, domain knowledge for considering the context of the system, and
questionnaires for refining the domain knowledge. We illustrated the method
using a case study in the field of online voting. The contributions of this
work are:

– Reuse of results of an existing requirements engineering (here problem frames)
method for law identification.

– Transformation cards with tool-support, which enable software engineers to
• identify the problem class of the requirement at hand
• identify the needed domain knowledge for the transformation
• model the domain knowledge
• execute the transformation

– A structured and guided method for software engineers to transform functional
requirements into law identification pattern instances.

– An improvement of law identification in requirements engineering by augment-
ing a crucial step of the law identification process as described in
Beckers et al [6].

– A semi-automatic tool-support.

For the future we plan to investigate the matter of quality requirements.
Quality requirements themselves are too vague to be directly transformed into
law identification pattern instances. But they contain additional, relevant infor-
mation about the functionality and context of a system. It seems to be promising
to integrate this information to improve the precision of our method.

In general, our law identification process was used in the field of cloud com-
puting, health-care and for this paper in the domain of voting systems. The
transformation cards were only used for the latter. From our experience, our
method is usable regarding the German law for different domains without adap-
tion. We found evidence that this observation is also true for laws from other
countries, as long as the law system of the country is a statue law. For example,
Biagioli et al. [4] describe the very same structure for Italian laws as we use for
German laws. For case law systems, like the one of the US, our method needs to
be adapted. The use of our method on more domains, for other countries with
statue law, and even for case law countries is under research.

References

1. Beckers, K., Faßbender, S., Küster, J.-C., Schmidt, H.: A pattern-based method
for identifying and analyzing laws. In: Regnell, B., Damian, D. (eds.) REFSQ 2011.
LNCS, vol. 7195, pp. 256–262. Springer, Heidelberg (2012)

A Computer-Aided Process from Problems 233

2. Faßbender, S., Heisel, M.: From problems to laws in requirements engineering using
model-transformation. In: ICSOFT 2013 - Proceedings of the 8th International
Conference on Software Paradigm Trends, INSTICC. pp. 447–458. SciTePress
(2013)

3. Federal Trade Commission: Choicepoint settles data security breach charges. Tech-
nical report, Federal Trade Commission (2006). http://www.ftc.gov/opa/2006/01/
choicepoint.shtm

4. Biagioli, C., Mariani, P., Tiscornia, D.: Esplex: A rule and conceptual model for
representing statutes. In: ICAIL, pp. 240–251. ACM (1987)

5. Otto, P.N., Antón, A.I.: Addressing legal requirements in requirements engineer-
ing. In: Proceedings of the International Conference on Requirements Engineering.
IEEE (2007)

6. Beckers, K., Faßbender, S., Schmidt, H.: An integrated method for pattern-based
elicitation of legal requirements applied to a cloud computing example. In: ARES,
pp. 463–472 (2012)

7. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley, Boston (2001)

8. Côté, I., Hatebur, D., Heisel, M., Schmidt, H., Wentzlaff, I.: A systematic account of
problem frames. In: Proceedings of the European Conference on Pattern Languages
of Programs (EuroPLoP), pp. 749–767. Universitätsverlag Konstanz (2008)

9. Hatebur, D., Heisel, M.: Making pattern- and model-based software development
more rigorous. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp.
253–269. Springer, Heidelberg (2010)

10. Kumar, S., Walia, E.: Analysis of electronic voting system in various countries. Int.
J. Comput. Sci. Eng. (IJCSE) 3, 1825–1830 (2011)

11. Federal Constitutional Court of Germany: Verwendung von Wahlcomput-
ern bei der Bundestagswahl 2005 verfassungswidrig (2009). https://www.
bundesverfassungsgericht.de/pressemitteilungen/bvg09-019.html

12. Brehm, R.: Kryptographische verfahren in internetwahlsystemen, Technical report.
Technical University of Darmstadt (2012)

13. Volkamer, M.: Requirements and evaluation procedures to support responsible elec-
tion authorities. In: Volkamer, M. (ed.) Evaluation of Electronic Voting. LNBIP,
vol. 30, pp. 37–57. Springer, Heidelberg (2009)

14. Volkamer, M., Vogt, R.: Common Criteria Protection Profile for Basic set of secu-
rity requirements for Online Voting Products. Bundesamt für Sicherheit in der
Informationstechnik (2008)

15. Alebrahim, A., Hatebur, D., Heisel, M.: A method to derive software architectures
from quality requirements. In: Thu, T.D., Leung, K. (eds.) Proceedings of the
18th Asia-Pacific Software Engineering Conference (APSEC), pp. 322–330. IEEE
Computer Society (2011)

16. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for
computer-aided privacy threat identification. In: Preneel, B., Ikonomou, D. (eds.)
APF 2012. LNCS, vol. 8319, pp. 1–16. Springer, Heidelberg (2014)

17. Beckers, K., Côté, I., Faßbender, S., Heisel, M., Hofbauer, S.: A pattern-based
method for establishing a cloud-specific information security management system.
Requirements Eng. 18(4), 1–53 (2013)

18. Breaux, T.D., Vail, M.W., Antón, A.I.: Towards regulatory compliance: extracting
rights and obligations to align requirements with regulations. In: Proceedings of
the International Conference on Requirements Engineering (RE), pp. 46–55. IEEE
(2006)

http://www.ftc.gov/opa/2006/01/choicepoint.shtm
http://www.ftc.gov/opa/2006/01/choicepoint.shtm
https://www.bundesverfassungsgericht.de/pressemitteilungen/bvg09-019.html
https://www.bundesverfassungsgericht.de/pressemitteilungen/bvg09-019.html

234 S. Faßbender and M. Heisel

19. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security
requirements. IEEE Trans. Softw. Eng. 34, 5–20 (2008)

20. Bench-Capon, T.J.M., Robinson, G.O., Routen, T.W., Sergot, M.J.: Logic pro-
gramming for large scale applications in law: a formalization of supplementary
benefit legislation. In: Proceedings of the International Conference on Artificial
Intelligence and Law. ACM (1987)

21. Siena, A., Perini, A., Susi, A.: From laws to requirements. In: Proceedings of the
International Workshop on Requirements Engineering and Law (RELAW), pp.
6–10. IEEE (2008)

22. Hohfeld, W.N.: Fundamental legal conceptions as applied in judicial reasoning.
Yale Law J. 26, 710–770 (1917)

23. Siena, A., Perini, A., Susi, A., Mylopoulos, J.: A meta-model for modelling law-
compliant requirements. In: Proceedings of the International Workshop on Require-
ments Engineering and Law (RELAW), pp. 45–51. IEEE (2009)

24. Maxwell, J.C., Antón, A.I.: Developing production rule models to aid in acquir-
ing requirements from legal texts. In: Proceedings of the 17th IEEE International
Requirements Engineering Conference, RE, Washington, DC, USA. IEEE Com-
puter Society (2009)

25. Álvarez, J.A.T., Olmos, A., Piattini, M.: Legal requirements reuse: a critical success
factor for requirements quality and personal data protection. In: Proceedings of the
International Conference on Requirements Engineering (RE), pp. 95–103. IEEE
(2002)

An Ambient ASM Model of Client-to-Client
Interaction via Cloud Computing

and an Anonymously Accessible Docking Service

Károly Bósa(B)

Christian Doppler Laboratory for Client-Centric Cloud Computing, JKU, Linz,
Softwarepark 21, 4232 Hagenberg im Mühlkreis, Austria

k.bosa@cdcc.faw.jku.at

Abstract. In our former work we have given a high-level formal model
of a cloud service architecture in terms of a novel formal method app-
roach which combines the advantages of the mathematically well-founded
software engineering method called abstract state machines and of the
calculus of mobile agents called ambient calculus. This paper presents
an extension for this cloud model which enables client-to-client interac-
tion in an almost direct way, so that the involvement of cloud services
is transparent to the users. The discussed solution for transparent use of
services is a kind of switching service, where registered cloud users com-
municate with each other, and the only role the cloud plays is to switch
resources from one client to another. We also show in an example at the
end of this paper how our novel client-to-client interaction mechanism
can be utilized for the development of the anonymously accessible cloud
services.

Keywords: Cloud computing · Ambient abstract state machines ·
Ambient calculus

1 Introduction

In [1] we proposed a new formal method approach which is able to incorpo-
rate the major advantages of the abstract state machines (ASMs) [2] and of
ambient calculus [3]. Namely, one can describe formal models of distributed sys-
tems including mobile components in two abstraction layers such that while the
algorithms of executable components (agents) are specified in terms of ASMs;
their communication topology, locality and mobility described with the terms of
ambient calculus in our method.

In [4] we presented a high-level formal model of a cloud service architecture
in terms of this new method. In this paper, we extended this formal model with
a Client-to-Client Interaction (CTCI) mechanism via a cloud architecture. Our
envisioned cloud feature can be regarded as a special kind of services we call
channels, via which registered cloud users can interact with each other in almost

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 235–255, 2014.
DOI: 10.1007/978-3-662-44920-2 15

236 K. Bósa

I

n

t

e

r

f

c

e

a

a) Scenario I. b) Scenario II.

Client l Client l

I
n
t
e
r
f
a
c
e

Om m+1

2 3 O4 O5O1 O O

2 3 O4 O5O1 O O

2 3 O4 O5O1 O O2 3 O4 O5O1 O O Om m+1

Legend:

Outer Firewall

Cloud

S1 S1 Sj

Infrastructure Services

Cloud (nowadays)

S1

S1

Sj

Outer Firewall

Client−Cloud Interaction Controller

Infrastructure Services
Rn

Ri

R1
R1 Ri Rn

O

O

Ri : Cloud Resource Sj : Service Protected Area Area
 : Firewall Protected : Credential

Service OwnerV

Service OwnerW
Contact Point of

Contact Point of
Service OwnerV

Contact Point of

Contact Point of
Service OwnerW

abstract...

abstract...

abstract...

abstract...

Specific Functions
for UserY

Specific Functions
for Service OwnerW

Specific Functions
for Service OwnerV

Specific Functions
for UserX

Protected Area
of UserX

Protected Area
of UserX

Specific Functions
for UserY

Specific Functions
for Service OwnerW

Specific Functions
for Service OwnerV

Specific Functions
for UserX

Fig. 1. Application of our model according to different scenarios.

direct way and, what is more, they are able to share available cloud resources
among each other as well.

Some use cases, which may claim the need of such CTCI functions, can be
for instance: dissemination of large or frequently updated data whose direct
transmitting meets some limitations; or connecting devices of the same user (in
the later case an additional challenge can be during a particular interpretation
of the modeled CTCI functions, how to wrap and transport local area protocols,
like upnp via the cloud).

The rest of the paper is organized as follows. Section 2 informally summarizes
our formerly presented high-level cloud model. Section 3 gives a short overview
on the related work as well as ambient calculus and ambient ASM. Section 4
introduces the definitions of some non-basic ambient capability actions which
are applied in the latter sections. Section 5 describes the original model extended
with the CTCI functions. Section 6 demonstrates how the CTCI architecture
and the shared cloud resources can be applied for anonym usage of certain cloud
services. Finally, Sect. 7 concludes this paper.

2 Overview on Our Model

Roughly our formal cloud model can be regarded as a pool of resources equipped
with some infrastructure services, see Fig. 1a. Depending whether these abstract
resources represent only physical hardware and virtual resources or entire com-
puting platforms the model can be an abstraction of Infrastructure as a Service
(IaaS) or Platform as a Service (PaaS), respectively. The basic hardware (and
software) infrastructure is owned by the cloud provider, whereas the softwares
running on the resources are owned by some users. We assume that these soft-
wares may be offered as a service and thus used by other users. Accordingly,
we apply a relaxed definition of the term service cloud here, where a user who
owns some applications running on some cloud resources may become a soft-
ware service provider at the same time. Thus, from this aspect the model can
be regarded as an abstraction of a mixture of Software as a Service (SaaS) and
of IaaS (or a mixture of SaaS and PaaS).

An Ambient ASM Model of Client-to-Client Interaction 237

We make a distinction between two kinds of cloud users. The normal users
are registered in the cloud and they subscribe to and use some (software) services
available in the cloud. The service owners are users as well, but they also rent
some cloud resources to deploy some service instances on them.

For representing service instances, we adopt the formal model of Abstract
State Services (AS2s) [5,6]. In an AS2 we have views on some hidden database
layer that are equipped with service operations denoted by unique identifers
o1,. . . , on. These service operations are actually what are exported from a service
to be used by other systems or directly by users. The definition of AS2s also
includes the pure data services (service operations are just database queries)
and the pure functional services (operation without underlying database layer)
as extreme cases.

In our approach the model assumes that each service owner has a dedicated
contact point which resides out of the cloud. It is a special kind of client that can
also act as a server for the cloud itself in some cases. Namely, if a registered cloud
user intends to subscribe to a particular service, she sends a subscription request
to the cloud, which may forward it to such a special kind of client belonging to the
corresponding service owner. This client responses with a special kind of action
scheme called service plot, which algebraically defines and may constrain how the
service can be used by the user1. (E.g.: it determines the permitted combination
of service operations). This special kind of client is abstract in the current model.

The received service plots, which may be composed individually for each sub-
scribing user by service owners, are collected with other cloud functions available
for this particular user in a kind of personal user area by the cloud. Later, when
the subscribed user sends a service request, it is checked whether the requested
service operations are allowed by any service plot. If a requested operation is per-
mitted then it is triggered to perform, otherwise it is blocked as long as a plot
may allow to trigger it in the future. Each triggered operation request is autho-
rized to enter into the user area of the corresponding service owner to whom the
requested service operation belongs. Here a scheduler mechanism assigns to the
request a one-off access to a cloud resource on which an instance of the corre-
sponding service runs. Then the service operation request is forwarded to this
resource, where the request is processed. Finally, the outcome of the performed
operation returns to the area of the initiator user, where the outcome is either
stored or send further to a given client device. In this way, the service owners
have direct influence to the service usage of particular users via the provided
service plots.

Regarding our proposed cloud model one of the major questions can be
whether it is adaptable to the leading cloud solutions (e.g.: Amazon S3, Microsoft
Azure, IBM SmartCloud, etc.). Since due to the applied ambient concept the
relocation of the system components is trivial, we can apply our model accord-
ing to different scenarios. For instance, all our novel functions including the
client-to-client interaction can be shifted to the client side and wrapped into a
1 For an algebraic formalization of plots Kleene algebras with tests (KATs) [7] has

been applied.

238 K. Bósa

Table 1. Definition of ambient calculus.

A. The Mobility and Communication Primitives

P, Q, R::= processes
P | Q parallel composition
n[P] ambient
(ν n)P restriction of name n within P a

0 inactivity (skip process)
!P replication of P
M.P (capability) action M then P
(x).P input action (the input value is

bound to x in P)
a async output action

M1.Mk a path formation on actions

M ::= capabilities
IN n entry capability (to enter n)
OUT n exit capability (to exit n)
OPEN n open capability

(to dissolve n’s boundary)

B. Reduction (Operational Semantics)

P ≡ P , Q ≡ Q , P −−→ Q =⇒ P −−→ Q

P −−→ Q =⇒ P | R −−→ Q | R

P −−→ Q =⇒ n[P] −−→ n[Q]

P −−→ Q =⇒ (ν n)P −−→ (ν n)Q

n[IN m.P | Q] | m[R] −−→ m[n[P | Q] | R]

m[n[OUT m.p | Q] | R] −−→ n[P | Q] | m[R]

OPEN n.P | n[Q] −−→ P | Q

(x).P a P (x/a)

C. Structural Congruence (Operational Semantics)

P ≡ P
P ≡ Q =⇒ Q ≡ P
P ≡ Q, Q ≡ R =⇒ P ≡ R
P ≡ Q =⇒ ¶ | R ≡ Q | R
P ≡ Q =⇒ n[P] ≡ n[Q]
P ≡ Q =⇒!P ≡!Q
P ≡ Q =⇒ (ν n)P ≡ (ν n)Q
P ≡ Q =⇒ M.P ≡ M.Q
P ≡ Q =⇒ (x).P ≡ (x).Q
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
!P ≡ P | !P
(ν n)(ν m)P ≡ (ν m)(ν n)P
(ν n)(P | Q) ≡ P | (ν n)Q if n /∈ fn(P)
(ν n)(m[P]) ≡ m[(ν n)P] if n = m
P | 0 ≡ P
!0 ≡ 0
(ν n)0 ≡ 0

aName Restriction creates a new (unique) name n within a scope P . One must be careful with the term !(ν n)P ,
because it provides a fresh value for each replica, so (ν n)!P �= !(ν n)P .

middleware software which takes place between the end users and cloud in order
to control the interactions of them, see Fig. 1b. The specified communication
topology among the distributed system components remains the same in this
later case.

3 Related Work

It is beyond the scope of this paper to discuss the vast literature of formal
modeling mobile systems and SOAs, but we refer to some surveys on these
fields [8–10].

One of the first examples for representing various kinds of published services
as a pool of resources, like in our model, was in [11].

In [12] a formal high-level specifications of service cloud is given. This work
is similar to ours in some aspects. Namely, it applies the language-independent
AS2s with algebraic plots for representing services. But it principally focuses on
service specification, service discovery, service composition and orchestration of
service-based processes; and it does not apply any formal approach to describe
either static or dynamically changing structures of distributed system compo-
nents.

Another approach similar to ours is Cloud Calculus [13], which also uses
ambient calculus for capturing the dynamic topology of cloud computing sys-
tems. Cloud Calculus is very effective to verify whether global security policies
are preserved after virtual machine migrations, but it is a very specific tool
which is not applicable for giving the formal specification of functionalities of
cloud/distributed systems.

In the rest of this section, we give a short summary on ambient calculus and
ambient ASM, respectively, in order to facilitate the understanding of the latter
sections.

3.1 Ambient Calculus

The ambient calculus was inspired by the π-calculus [14], but it focuses primarily
on the concept of locality and process mobility across well defined boundaries

An Ambient ASM Model of Client-to-Client Interaction 239

instead of channel mobility as π-calculus. The concept of ambient stands in the
center of the calculus, see a summary of the definition of ambient calculus in
Table 1.

The ambient calculus includes only the mobility and communication primi-
tives depicted in Table 1A. The main syntactic categories are processes (including
both ambients and agents) and actions (including both capabilities and commu-
nication primitives). A reduction relation P −−→ Q describes the evolution of
a term P into a new term Q (and P −→∗ Q denotes a reflexive and transitive
reduction relation from P to Q).

An ambient is defined as a bounded place where computation happens. An
ambient is written as n[P], where n is its name, which can be used to control
access (entry, exit, communication, etc.), and a process P is running inside its
body (P may be running even if n is moving). Ambient names may not be unique.
Ambients can be embedded into each other such that they can form a hierarchical
tree structure. An ambient body is interpreted as the parallel composition of its
elements (its local ambients and its local agents) and can be written as follows:

n[P1 | . . . | Pk | m1[. . .] | . . . | ml[. . .]] where Pi �= mi[. . .]

An ambient can be moved. When an ambient moves, everything inside it
moves with it (the boundary around an ambient determines what should move
together with it). An action defined in the calculus can precede a process P .
P cannot start to execute until the preceding actions are performed. Those
actions that are able to control the movements of ambients in the hierarchy or to
dissolve ambient boundaries are restricted by capabilities. By using capabilities
an ambient can allow some processes to perform certain operations without
publishing its true name to them (see the entry, exit and open in Table 1). In
case of the modeling of a real life system, communication of (ambient) names
should be rather rare, since knowing the name of an ambient gives a lot of
control over it. Instead, it should be common to exchange restricted capabilities
to control interactions between ambients (from a capability the ambient name
cannot be retrieved).

3.2 Ambient ASM

In [15] the ambient concept (notion of “nestable” environments where computa-
tion can happen) is introduced into the ASM method. In that article an ASM
machine called MobileAgentsManager is described as well, which gives a
natural formulation for the reduction of three basic capabilities (Entry, Exit
and Open) of ambient calculus in terms of the ambient ASM rules. For this
machine an ambient tree hierarchy is always specified initially in a dynamic
derived function called curAmbProc. The machine MobileAgentsManager

transforms the current value of curAmbProc according to the capability actions
given in curAmbProc. Since one of the main goals of [15] is to reveal the inherent
opportunities of the new ambient concept introduced into ASMs, the presented
definitions for moving ambients are unfortunately incomplete.

240 K. Bósa

Table 2. A Summary of the definitions of some non-basic capabilities.

Names New Reduction Relations (Based on the Definitions) Definitions of the New Capabilities

1) Renaming n[n BE m.P | Q] −−−−→∗ m[P | Q] n BE m.P ≡ (ν s)(s[OUT n | m[OPEN n.OUT s.P]] | IN s.IN m)
2) Seeing n[] | SEE n.P −−−−→∗ n[] | P SEE n.P ≡ (ν r, s)(r[IN n.OUT n.r BE s.P] | OPEN s)
3) Wrapping n[m WRAP n.P] −−−−→∗ m[n[P]] m WRAP n.P ≡

(ν s, r)(s[OUT n.SEE n.s BE m.r[IN n]] | IN s.OPEN r.P)
4) Allowing Code ALLOW key.P | key[Q] −−−−→∗ P | Q ALLOW key.P ≡ OPEN key.P
5) Drawing in m[Q | ALLOW key] | n[n DRAWINkey m.P] n DRAWINkey m.P ≡
(an Ambient) −−−−→∗ n[Q | P] key[OUT n.IN m.IN n] | ALLOW m.P
6) Drawing in m[Q | ALLOW key] | n DRAWINkey m THENRELEASE lock.P ≡
Then Release n[DRAWINkey m THENRELEASE lock.P] key[OUT n.IN m.IN n] | SEE m.lock WRAP n.ALLOW m.P
a Lock −−−−→∗ lock[n[Q | P]]
7) Concurrent SERVERn

key m.P ≡
Server m[Q | ALLOW key] | SERVERn

key m.P (ν next)(next[] |
Process −−−−→∗ SERVERn

key m.P | n
uniq
k

[Q | P] !(ν n)(OPEN next.n[
n DRAWINkey m THENRELEASE next.P]))

In [1] we extended this ASM machine given in [15], such that it fully captures
the calculus of mobile agents and it can interpret the agents’ algorithms (given
in terms of ASM syntax in curAmbProc as well) in the corresponding contexts.
By this one is able to describe formal models of distributed systems including
mobile components in the mentioned two abstraction layers.

Since the definition of ambient ASM is based upon the semantics of ASM
without any changes, each specification given this way can be translated into a
traditional ASM specification.

Ambient ASM is not the only research which aims to build in a concept
of mobile ambients to the ASM method. In [16] some advantages of a simple
ambient concept introduced into ASM are demonstrated. Although this work
was also inspired by ambient calculus, it is by far not refined and versatile
as ambient ASM.

4 Definitions

As Cardelli and Gordon showed in [3] the ambient calculus with the three basic
capabilities (Entry, Exit and Open) is powerful enough to be Turing-complete.
But for facilitating the specification of such a compound formal model as a model
of a cloud infrastructure, we defined some new non-basic capabilities encoded in
terms of the three basic capabilities. Table 2 summarizes the definitions of these
non-basic capabilities.

Below we give an informal description of each non-basic capability in Table 2.
It is beyond the scope of the paper to present detailed explanations and reduc-
tions of their ambient calculus-based definitions, but we refer to our former
works [4,17] for more details.

1. Renaming. This capability is applied to rename an ambient comprising this
capability. Such a capability was already given in [3], but our definition differs
from Cardelli’s definition. In the original definition, the ambient m was not
enclosed into another, name restricted ambient (it is called s in our definition),
so after it has left ambient n, n may enter into another ambient called m (if
more than one m exists as sibling of n).

An Ambient ASM Model of Client-to-Client Interaction 241

2. Seeing. This operation was defined in [3] and it is used to detect the presence
of a given ambient.

3. Wrapping. Its aim is to pack an ambient comprising this capability into
another ambient.

4. Allowing Code. This capability is just a basic Open capability action. It
is applied if an ambient allows/accepts an ambient construct (which may be a
bunch of foreign codes) contained by the body of one of its sub-ambients (which
may was sent from a foreign location). The name of the sub-ambient can be
applied for identifying its content, since its name may be known only by some
trusted parties.

5. Draw in (an Ambient). The aim of this capability is to draw in a par-
ticular ambient (identified by its name) into another ambient (which contains
this capability) and then to dissolve this captured ambient in order to access to
its content. For achieving this, a mechanism (contained by the ambient key) is
applied which can be regarded as an abstraction of a kind of protocol identified
by key. The ambient key enters into one of the available target ambients which
should accept its content in order to be led into the initiator ambient.

6. Draw in then Release a Lock. This capability is very similar to the
previous one, but after m has been captured by n (and before m is dissolved),
n is wrapped by another ambient. The new outer ambient is usually employed
as release for a lock2.

7. Concurrent Server Process. This ambient construct can be regarded as
an abstraction of a multi-threaded server process. It is able to capture and
process several ambients having the same name in parallel. In the definition n is a
replicated ambient whose each replica is going to capture another ambient called
m. Since there is a name restriction quantifier in the scope of the replication sign,
which binds the name n, a new, fresh and unique name (denoted by nuniq

k) is
generated for each replica of n. One of the consequences of this is that nobody
knows from outside the true name of a replica of the ambient n, so each replica
of n is inaccessible from outside for anybody (even for another replica of n, too).

5 The Extended Formal Model

In the formal model discussed in this section, we assume that there are some
standardized public ambient names, which are known by all contributors. We dis-
tinguish the following kinds of public names: addresses (e.g.: cloud, client1, . . . ,
clientn), message types (e.g.: reg(istration), request, subs(cription),
returnV alue, etc.) and parts of some common protocols (e.g.: lock, msg, intf ,
access, out, o1, . . . , os, op). All other ambient names are non-public in the
model which follows:
2 In ambient calculus the capability Open n.P is usually used to encode locks [3].

Such a lock can be released with an ambient like n[Q] whose name corresponds with
the target ambient of the Open capability.

242 K. Bósa

curAmbProc := root[Cloud | Client1 |. . . | Clientn]3

In this paper, we focus on the cloud service side and we leave the client side
abstract.

5.1 User Actions

In the model user actions are encoded as messages. A user can send the following
kinds of messages to the cloud:

MsgFrame ≡ msg[In cloud.Allow intf .content]
where content can be:
RegMsg ≡ reg[Allow CID.〈UIDx〉]

SubsMsg ≡ subs[Allow CID.〈UIDx, SIDi, pymt〉]

RequestMsg ≡ request[In UIDx.Allow CID |
〈oi, clientk, argsi〉 | . . . | 〈oj , clientk, argsj〉]

AddClMsg ≡ addCl[In UIDx | Allow CID.〈clientk, pathl, UID(on clientl)〉]

AddChMsg ≡ addCh[Allow CID.〈UIDx, cname〉]

SubsToChMsg ≡ subsToCh[Allow CID.〈UIDx, cname, uname, clientk, pymt〉]

ShareInfoMsg ≡ share[In CHIDi | Allow CID.〈sndr, rcvr, info〉]

ShareSvcMsg ≡ share[In CHIDi | Allow CID.
〈sndr, rcvr, info, oi, argsP, argsF 〉]

In the definitions above: the ambient msg is the frame of a message; the term
In cloud denotes the address to where the message is sent; the term Allow intf
allows a (server) mechanism on the target side which uses the public protocol
intf to capture the message; and the content can be various kind of message
types. The term Allow CID denotes that the messages are sent to a service of
a particular cloud which identifies itself with the non-public protocol/credential
CID (stands for cloud identifier).

The first three kinds of messages were introduced in the original model. In
a RegistrationMsg the user x provides her identifier UIDx that she is going
to use in the cloud. By a SubscriptionMsg a user subscribes to a cloud service
identified by SIDi; the information represented by pymt proves that the given
user has paid for the service properly.

Again, cloud services provide their functionalities for their environment (users
or other services) via actions called service operations in our model. In a
RequestMsg a user who has subscribed to some services before can request
the cloud to perform some service operations belonging to some of these ser-
vices. Service operation requests are denoted by triples, where oi and oj are the
unique names of these service operations; clientk is the identifer of a target loca-
tion (usually a client device) to where the output of a given operation should

3 The ambient called root is a special ambient which is required for the ASM definition
of ambient calculus, see [1,15].

An Ambient ASM Model of Client-to-Client Interaction 243

be sent by the cloud; and argsi and argsj are the arguments of the correspond-
ing requested service operations. Furthermore, the term In UIDx represents the
address of the target user area within the Cloud.

The rest of the message types is new in the model. With AddClMsg a user
can register a new possible target (client) device or location for the outcomes of
the requests initiated by her. Such a message should contain the chosen identifier
clientk of the new device, the address pathl of the device and the user identifier
UID(on clientl) used on the given target device.

By AddChMsg users can open new channels, by SubsToChMsg users can
subscribe to channels and by ShareInfoMsg and ShareSvcMsg users can share
information as well as service operations with some other users registered in the
same channel. For the detailed description of the arguments lists of these last
four messages, see Sect. 5.3.

5.2 The Cloud Service Architecture

The basic structure of the defined cloud model, which is based on the simplified
Infrastructure as a Service (IaaS) specification given in [1], is the following:

Cloud ≡ (ν fw, q, rescr1,. . . rescrm)cloud[
interface |
fw [rescr1[service1] |. . . | rescrl[service1] | rescrl+1[service2] |. . . | rescrm[

servicen] |
q[!Open msg | BasicCloudfunctions | CTCIfunctions |
UIDx[userIntf] |. . . | UIDy[userIntf] |
UIDowner

v [ownerIntf] |. . . | UIDowner
w [ownerIntf]]]]

where
interface ≡ Server

n
intf msg.In fw.In q.n be msg

In the cloud definition above, the names of the ambients fw, q and
rescr1,. . . rescrm are bound by name restriction. The consequence of this is that
the names of these ambients are known only within the cloud service system, and
therefore the contents of their body are completely hidden and not accessible at
all from outside of the cloud. So each of them can be regarded as an abstraction
of a firewall protection.

The ambient expression represented by interface “pulls in” into the area
protected by the ambients fw and q any ambient construct which is encompassed
by the message frame msg. The purpose of the restricted ambients fw and q
is to prevent any malicious content which may cut loose in the body of q after
a message frame (msg) has been broken (by Open msg) to leave the cloud
together with some sensitive information. For more details we refer to [4].

The restricted ambients resrc1,. . . , resrcm, represent computational
resources of the cloud. Within each cloud resource some service instances can be
deployed. A service may have several deployed instances in a cloud (see instances
of service1 in resrc1,. . . , resrcl above).

Every user area is represented by an ambient whose name corresponds to the
corresponding user identifier UIDi. Furthermore, the user areas extended with

244 K. Bósa

service owner role are denoted by UIDowner
i . The terms denoted by

BasicCloudfunctions are responsible for cloud user registration and service sub-
scription. Finally the terms denoted by CTCIfunctions encode the client-to-
client interaction.

It is beyond the scope of this paper to describe all parts of this model in
details (e.g.: the structure of service instances servicei, functions of a service
owner area ownerIntf , the service plots and the ASM agents in
BasicCloudfunctions). For the specification of these components, we refer to [4].

User Access Layers. A user access layer (or user area) may contain the fol-
lowing mechanisms: accepting user requests and converting them to the format
which is compatible with plots4 (requestPreprocessor), accepting new plots
(!Allow newPlot), accepting outputs of service operations (!Allow return-
V alue) and some service plots.

userIntf ≡
requestPreprocessor | !Allow newPlot | clientRegServer | !Allow returnV alue |
sortingOutput | client1[postingclient1] |. . . | clientk[postingclientk]
PlotSIDi |. . . | PlotSIDj |

where
requestPreprocessor ≡ Server

n
CID request.(o, c, args).o[Allow op.〈c, args〉]

sortingOutput ≡ !(o, client, a).output[In client.Allow CID | 〈o, client, a〉]]

clientRegServer ≡ Server
n
CID addCl.(client, path, UID).(n Be client |

postingclient)

postingclienti ≡ Server
n
CID output.(o, client, a).

Out clienti.forwardToclienti .returnV alue[In UID(on clienti) | 〈o, client, a〉]]

forwardToclienti ≡ n Be outgoingMsg.Out UIDx.leavingCloud.pathi

leavingCloud ≡ Out q.Out fw.Out cloud.outgoingMsg Be msg

This paper extends the user areas with some new functionalities.
clientRegServer is applied to process every AddClMsg sent by the correspond-
ing user. It creates new communication endpoint for target (client) devices. Each
such an endpoint is encoded by an ambient whose name clienti corresponds the
given identifier provided in a message AddClMsg. By these endpoints outputs
of service operations can immediately be directed to registered (client) devices
after they are available. Of course, if no target device or a non-registered one is
given in a RequestMsg, the outcome will be stored in the area of the user.

Every service operation output, which is always delivered within the body
of an ambient called returnV alue, consists of three parts: the name of the per-
formed service operation, the identifier of a target location to where the output
should be sent back and the outcome of the performed service operation itself.

sortingOutput distributes every service operation output among the commu-
nication endpoints in an ambient called output. The mechanism postingclienti

,
4 Service plots can accept requests if they are encompassed by ambients whose names

are correspond with the unique names of the requested operations (oi. . . oj), see the
definition of requestPreprocessor above.

An Ambient ASM Model of Client-to-Client Interaction 245

which resides in each such a communication endpoint, is responsible to wrap each
output of service operations which reaches the corresponding endpoint again into
an ambient returnV alue and to forward it to the specified user UID(on clienti)

on the corresponding device clienti.

5.3 Client-to-Client Interaction

Again, the client-to-client interaction in our model is based on the constructs
called channels. These are represented by ambients with unique names denoted
by CHIDi which contain some mechanisms whose purpose is to share some
information and service operations among some subscribed users, see below:

CTCIfunctions ≡
CHID1[channelIntf] |. . . | CHIDl[channelIntf] |
Server

n
CID addCh.(UID, cname).ChMgr(n, UIDx, cname) |

Server
n
CID subsToCh.(UID,cname,uname,client,pymt).

ChSubsMgr(n, UID, cname, uname, client, pymt)
where
channelIntf ≡ Server

n
CID share.((sndr, rcvr, info).

〈sndr,rcvr,info,undef ,undef ,undef〉 |
(sndr, rcvr, info, o, argsP , argsF).
SharingMgr(n, sndr, rcvr, info, o, argsP , argsF))

Every cloud user can create and own some channels by sending the message
AddChMsg to the cloud, where an instance of the ASM agent ChMgr, which
is equipped with a server mechanism, processes such a request and creates a new
ambient with unique names for the requested channel, see Sect. 5.3.

If a user would like to subscribe to a channel she should send the message
SubsToChMsg to the cloud. The server construct belongs to the ASM agent
ChSubsMgr is responsible for processing these messages, see Sect. 5.3. In the
subscription process the owner of the channel can decide about the rights which
can be assigned to a subscribed user. According to the presented high-level
model, the employed access rights are encoded by the following static nullary
functions: listening is a default basic right, because everybody who joins to a
channel can receive shared contents; sending authorizes a user to send something
to only one user at a time; and broadcasting permits a user to distribute contents
to all member of the channel at once.

Both ShareInfoMsg and ShareSvcMsg are processed by the same server
which belongs to the ASM agent SharingMgr and which is located in the
body of each ambient CHIDi, see Sect. 5.3. In the case of ShareInfoMsg
the server first supplements the arguments list of the message with three addi-
tional undef values, such that it will have the same number of arguments as
ShareSvcMsg has. Then an instance of the ASM agent SharingMgr can
process the ShareInfoMsg similarly to ShareSvcMsg (the first three argu-
ments are the same for both messages).

246 K. Bósa

Table 3. The ASM agents ChMgr and ChSubsMgr.

Establishing a New Channel. ChMgr is a parameterized ASM agent, see
in Table 3, which expects UID of the cloud user who is going to create a new
channel and cname which is the name of this channel as arguments. The addi-
tional argument n is the unique name of an ambient which was provided by the
surrounding server construct and in which the current AddChMsg is processed
by an instance of this agent (such an argument is also applied in the case of the
other ASM agents below).

First the agent checks whether the given UID has already been registered
on the cloud and whether the given name cname has not been used as a name
of an existing channel yet (the unary function ownerOfCh returns the value
undef if there is no assigned owner to this name). If it is the case, the agent
generates a new and unique identifier denoted by CHID for the new channel
with the usage of the function new which provides a unique and completely
fresh element for the given set each time when it is applied. The abstract ASM
macro StoreChannel inserts into an abstract database a new entry with all
the details of the new channel which are the channel identifier, the channel name
and the identifier of the owner.

Then it calls the abstract derived function createChannel, which creates an
ambient called CHID with the terms denoted by channelIntf in its body which
encode the functions of the new channel. By the abstract tree manipulation
operation called NewAmbientConstruct

5 introduced in [1], this generated
ambient construct is placed into the ambient tree hierarchy as sibling of the
agent.

Although a channel is always created as a sibling of the current instance of
ChMgr, but as a first step it leaves the ambient n which was provided by the
5 This is the only way how an ASM agent can make changes in the ambient tree

hierarchy contained by dynamic derived function curAmbProc [1].

An Ambient ASM Model of Client-to-Client Interaction 247

surrounding server construct and in which the message was processed (see the
underlined moving action in CHConstruct above). After that it is prepared to
serve as a channel for client-to-client interaction (it is supposed that the name
cname of every channel is somehow announced among the potential users).

Subscribing to a Channel. ChSubsMgr is a parameterized ASM agent, see
in Table 3, which expects the following as arguments: UID of the user who is
going to subscribe to the channel, cname which is the name of the channel,
uname is the name that the user is going to use within the channel, client which
is the identifier of a registered client device to where the shared content will be
forwarded and pymt which is some payment details if it is required. A user can
register to a channel with different names and various client devices in order to
connect these devices via the cloud.

First the agent checks whether the given UID and cname have already been
registered on the cloud and whether the given uname has not been used as a
name of a member of the channel yet. If it is the case, the agent informs the
owner of the channel about the new subscription by applying the abstract ASM
macro confirmRights, who responses with a set of access rights to the channel
that she composed based on the information given in the subscription.

If the subscription has been accepted by the owner and besides listening
some other rights are granted to the new user, an ambient construct is created
and sent as a message returnV alue to the user by NewAmbientConstruct.
This message contains the capability In CHID by which the new user can send
messages called ShareInfoMsg and ShareSvcMsg into the ambient CHID
which represents the corresponding channel (the owner of a channel also has to
subscribe in order to receive this information and to be able to distribute content
via the channel).

Sharing Information via a Channel. Every server construct in which the
agent SharingMgr is embedded is always located in an ambient which rep-
resents a particular channel and whose name corresponds to the identifier of
the channel. In order to be able to perform its task, it is required that each
instance of SharingMgr knows by some static nullary function called myChId
the name of the ambient in which it is executed.

SharingMgr is a parameterized ASM agent, see in Table 4, which expects
the following arguments: sndr is the registered name of the sender, rcvr is
either the registered name of a receiver or an asterisk “*”, info is either the
content of ShareInfoMsg or the description of a shared service operation in
ShareSvcMsg. The last three arguments are not used in the case of the message
ShareInfoMsg and the value undef is assigned to each of them by the sur-
rounding server construct. In the message ShareSvcMsg o denotes the unique
identifier of the service operation that sndr is going to share, argsP denotes the
arguments of o that rcvr can freely modify if she calls the operation and argsF
denotes those part of the argument list of o, whose value is fixed by sndr.

The agent first generates a new and unique operation identifier for the ser-
vice operation o in the control state InitialState. This new identifier which is

248 K. Bósa

Table 4. The ASM agent SharingMgr.

stored in the nullary location function shOp will be announced to the channel
member(s) specified in rcvr. In the control state SharingState the agent checks
whether the sndr is a registered member of the channel by calling the function
members(cname). Then if the given value of rcvr is equal to “*” the agent
broadcasts the content of the current message to all members of the channel,
see code branch bordered by the first rectangular frame below. Otherwise if the
value of rcvr corresponds to the name of a particular member of the channel, the
agent sends the content of the current message only to her, see the code branch
bordered by the second rectangular frame below.

Apart from the number of users to whom the information is sent the both
code branches mentioned above define the same actions. Accordingly at the end
of the processing of ShareInfoMsg the agent sends to the member(s) specified
in rcvr the message sharedMcontent1 , which contains the sender sndr and the
shared information info.

At the end of the processing of ShareSvcMsg two ambient constructs are cre-
ated by NewAmbientConstruct. The first one is the message sharedMcontent2

and it is sent to the member(s) specified in rcvr. It contains the sender sndr,
the new operation identifier shOp, the list of public arguments argsP and the
informal description of the shared operation denoted by info.

An Ambient ASM Model of Client-to-Client Interaction 249

The second ambient construct is the plot PlotshOp enclosed by the ambient
newPlot and equipped with some additional ambient actions (see the underlined
capabilities in the definition of sharedP lot) which move the entire construct into
the user area of the channel member(s) specified in rcvr, where the plot will be
accepted by the term !Allow newPlot.

The execution of the shared service operation shOp can be requested in
a usual RequestMsg as normal service operations. The PlotshOp is a plot,
which can accept service operation requests for shOp several times. It is special
plot, because instead of triggering the execution of shOp as in the case of a
normal operation a normal plot does, see [4], it converts the original request to
another request for operation o by applying the term triggero. This means that
it substitutes the operation identifier o for shOp, it completes its arguments list
with argsF and it forwards the request for o to the user area of the user sndr
who actually has right to trigger the execution of the operation o.

To the new request the name restricted ambient tmp is attached, whose pur-
pose is similar to the communication endpoints of registered clients. Namely, it is
placed into the user area of sndr temporary and it is responsible for forwarding
the outcome of this particular request from the user area of sndr to the user area
of the user who initiated the request. It is beyond the scope of this chapter to
present a reduction how a particular request for a shared operation is processed
in our model, but we refer to [18] for more details.

6 Anonymous Docking Service

If we apply the scenario proposed in Sect. 2 and depicted on Fig. 1b, according to
which we shift (among others) the client-to-client functionality to client side and
wrap into a middleware, then no traces of the user activities belonging to the
shared services will be left on the cloud, since all the service operations which
are shared via a channel are used on behalf of its initial distributor.

Many scenario can make a profit on this fact, which require some anony-
mously usable cloud services. For instance, one of the possible use cases arises
in a multi-clouds approach which enables many-to-many relationship between
cloud service providers and customers of the middleware, such that the middle-
ware architecture is capable to treat intermediate results exchanged among the
requested cloud services. It may become necessary to store intermediate results
on a third party cloud exploiting infrastructure as a service, and to ensure that
after completion of the temporary use of this docking service no trace of the
customers is left.

In the case study discussed in this section, we introduce a new kind of requests
called pipelined requests, which can be composed from some normal service oper-
ation requests such that the requested services are able to exchange data accord-
ing to a predefined information flow pattern. Below we also extend our formal
model to be able to process this new kind of requests in a distributed way and
to be able to anonymously store the intermediate results exchanged among some
requested services on (probably) a third-party IaaS.

250 K. Bósa

In our approach we assume that the middleware mentioned above (or its
provider) has access to such a third-party storage service, whose operations are
shared with all users of the middleware via some kind of public channel. Since
these users access to the third-party docking service on behalf of the middleware
(provider), their personal data is not given/forwarded to any third-party for any
service subscription.

A complex pipelined request can be regarded as an extension of RequestMsg
defined in Sect. 5.1, see an example below:

RequestMsgpipelined ≡ request[In UIDx.Allow CID | 〈P1〉 | 〈P2〉 |
〈oi, P1, argsi〉 | 〈oj , P2, argsj〉 | 〈ok, client, {arg1, . . . , P1, . . . , P2, . . . , argn}〉]

RequestMsgpipelined also contains the triples which denote the usual service
requests, but it can also contains some singletons which declare the names of
some information flow (or pipe) denoted by P1,. . . , Pn. If such a pipe name
appears as the target location of the output of a requested operation (see the
request triples for oi and oj above), then this output should be stored on a
docking service, instead of sending to the user who initiated the request.

If the name of some pipes appears in the argument list of some operation
requests, then the execution of these requests is blocked as long as all the inputs
provided via the mentioned pipes will be available. Every pipe always describes
a one-to-one or a one-to-many relationships (one operation can provide data to
many) and it is always local to its containing RequestMsg.

6.1 New Assumptions and Changes in the Model

Now, it is assumed that each user of the middleware has access to the following
two shared service operations which were distributed on behalf of the middleware
provider via some public channel after each user registration:

– sharedStore is a shared version of a service operation whose task is to store
some data in a filesystem on a third-party IaaS. It has two arguments, which
are freely modifiable by the users. The first is an identifier (a pipe name) and
the second is the data which are going to be stored.

– sharedReceive is a shared version of another service operation which belongs
to the same third party IaaS as sharedStore. It has only one freely modifiable
argument, the identifier by which some stored data can be retrieved. If no data
is stored with the given identifier, the operation blocks until some data bound
to such an identifier appear on the third-party IaaS.

In order to adapt the model to the new pipelined requests only the ambient
expression represented by requestPreprocessor has to be replaced which was
given as a part of the definition of user areas in Sect. 5.2:

requestPreprocessor ≡ Server
n
CID request.(

!(p).Listenerpipe(p) | !(o, c, args).Listenerreq(o, c, args) | RequestMgr(n))

An Ambient ASM Model of Client-to-Client Interaction 251

Table 5. The ASM agents Listenerpipe and Listenerreq.

The new expression is an ambient server construct that is able to capture
(both normal and pipelined) service operation requests arriving at a user area
and able to prepare them for execution with the help of the three ASM agents
called Listenerpipe, Listenerreq and RequestMgr(n).

Listenerpipe and Listenerreq are very simple parameterized ASM agents,
see in Table 5, whose several instances are available in the server construct
referred by requestPreprocessor. Each replica of Listenerpipe can capture a
singleton containing a pipe name and mediates it to the agent RequestMgr via
the shared dynamic function mailboxpipe

6. Replicas of Listenerreq can capture
request triples, respectively, and also forward them to the agent RequestMgr

via the shared dynamic function mailboxreq.

6.2 Request Preprocessing

RequestMgr is a parameterized ASM agent, see in Table 6, whose only argu-
ment is n which is the unique name of an ambient provided by the surrounding
server construct and in which the content of current RequestMsg is preprocessed
by an instance of this agent.

In the control state InitialState the agent first waits until every singleton
and every triple in n are captured by Listenerpipe and Listenerreq. Then in
the control state PreProcessing all request triples contained by the captured
message will be prepared for execution in parallel.

In the next step, each request triple 〈o, c, args〉 is checked whether its
execution is independent from other requests or in other words none of the pipe
names occurs in args. If it is the case, the agent also checks whether the target
location c does not correspond with any pipe name. If this is true as well, then
the current request is a normal request which is not connected to any pipe,
so it is simply converted into a service plot compatible format as before with
NewAmbientConstruct (see request(n, o, c, args) in Table 6).

In that case if a pipe denoted by Pout is specified as a target location in the
request, the agent generates a new and unique global identifier denoted by PID
for the pipe with the function new. PID substitutes for Pout in the request
6 In our applied ambient ASM-based formal method, ASM agents can communicate

with each other directly via shared functions if and only if they are sibling of each
other [1].

252 K. Bósa

Table 6. The ASM agent RequestMgr.

triple as the target location of the output. When the modified ambient request
is created with NewAmbientConstruct another ambient term denoted by
tmpEndPoint attached to it, whose purpose is similar to the communication
endpoints of the registered clients. Namely, it refers to an ambient called PID,
so the output of the service operation eventually arrives at the body of this
ambient. The aim of the mechanism located in the body of the ambient PID is
to trigger the shared operation sharedStore which will store the output bound
to the global pipe identifier n:Pout on the third-party IaaS (Pout alone cannot be
applied as a unique global identifier of the pipe on a third-party storage, since it
is always given by a user; hence, it should be extended with n as prefix, because
n always refer to a unique name in the case of each captured RequestMsg).

In that case if some of the pipe names occur in args (non-independent
request), the request must be blocked until all the inputs referred by these pipes
are available. First a unique identifier denoted by RID is generated for the
request, which is applied as the name of the ambient, into where the request
is enclosed and at where the required inputs from the third-party IaaS arrive
eventually. Then a request for shared service operation sharedReceive is trig-
gered in parallel for each such a pipe with the argument n:Pin and with the
target location RID (see receiveMsg(RID, Pin) in Table 6). These requests

An Ambient ASM Model of Client-to-Client Interaction 253

3rd−Party Storage

1.

5.
2.

...

Service of Oi

4.
3.

[[]]] []RID Oi PID, { P1, ... Pn }
sharedReceive <RID, {Pn}>] | |PID sharedStore <PID, {P , output}> [out

]sharedReceive <RID, {P1}>

[
[

data bound to P1

data bound to Pn
requesting P1...Pn

output of Oi
execution of Oi

storing output of Oi with the identifier P out

Fig. 2. Execution of pipelined service operation oi.

block until some data bound to the global pipe identifer n:Pin is not available
on the third-party IaaS.

Concurrently with the sending of sharedReceive messages, an ambient con-
struct called blockedRequest is created, which denotes the ambient RID and
some ASM agents in its body. The ambient RID serves as the target location of
the outputs of the triggered sharedReceive requests. This ambient also contains
several replicas of the abstract ASM agent Listeneroutput and one instance of
the ASM agent ReqTrigger. Each Listeneroutput is responsible for capturing
an output triple of an executed sharedReceive and for delivering it to ReqTrig-

ger via a shared dynamic function. ReqTrigger is also an abstract ASM agent
whose task is to add all the expected inputs provided by other services via pipes
to the argument list of the current request and to then trigger this request as it
is specified in the agent ReqTrigger’s argument list. If the target location of a
non-independent request is also a pipe, then the original target location of this
request is replaced with PID and tmpEndPoint is attached to tmpEndPoint
like in the previous case above.

Figure 2 depicts a generalized summary how a request which is part of a
pipelined RequestMsg is processed in the model. According to it, if the request
for the operation oi requires inputs from other services, some sharedReceive
requests are sent to the third-party IaaS on behalf of the middleware and the
request for oi is blocked in an ambient whose name is denoted by RID. After
all the necessary data have arrived at the ambient RID and they have been
added to the argument list, the request for oi is triggered and executed. If the
given target location of the output of oi refers to another pipe, then this output
is delivered into the ambient PID instead of a client. From here the output is
forwarded in a sharedStore request message and stored on the third-party IaaS
on behalf of the middleware as well.

7 Conclusions

In this paper we extended our formerly given cloud model with the high-level
formal definitions of some client-to-client interaction functions, by which not

254 K. Bósa

only information, but cloud service functions can be also shared among the
cloud users. Our approach is general enough to manage situation in which a user
who has access to a shared service operation to share it again with some other
users via a channel (who in turn may share it again, etc.).

Furthermore, if we apply the scenario proposed in Sect. 2 and depicted on
Fig. 1b, according to which we shift (among others) the client-to-client func-
tionality to client side and wrap into a middleware, then no traces of the user
activities belonging to the shared services will be left on the cloud, since all the
service operations which are shared via a channel are used on behalf of its initial
distributor. As it was showed this consideration can facilitate the development
of anonymously accessible cloud services. The consequence of this is that if a
cloud user who has contracts with some service providers completely or par-
tially shares some services via a channel, then she should be aware of the fact
that all generated costs caused by the usage of these shared services will be
allocated to her.

The specification described in Sect. 6 can lead to a solution of some prob-
lems regarding nowadays (web) mashup services, too. A mashup is a composed
application, using elements from different sources. Namely, the examination of
the security requirements for mashups [19] demands among others stronger sep-
aration guarantees between the executable components, but at the same time
also require the possibility of interaction between these separated components.
According to our opinion the formal specification defined above for complex
pipelined requests can also be a good basis for overcoming these two problems
of mashup services.

Acknowledgements. This research has been supported by the Christian Doppler
Society.

References

1. Bósa, K.: Formal modeling of mobile computing systems based on ambient abstract
state machines. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2013. LNCS, vol.
7693, pp. 18–49. Springer, Heidelberg (2013)

2. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Secaucus (2003)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240, 177–213
(2000)

4. Bósa, K.: An ambient ASM model for cloud architectures. Formal Aspects of Com-
puting (2013, submitted)

5. Ma, H., Schewe, K.-D., Thalheim, B., Wang, Q.: Abstract state services. In: Song,
I.-Y., et al. (eds.) ER Workshops 2008. LNCS, vol. 5232, pp. 406–415. Springer,
Heidelberg (2008)

6. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software
services. Serv. Orient. Comput. Appl. 3, 263–283 (2009)

7. Kozen, D.: Kleene algebra with tests. Trans. Program. Lang. Syst. 19, 427–443
(1997)

An Ambient ASM Model of Client-to-Client Interaction 255

8. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: A theory of processes with
localities. Formal Aspects Comput. 6, 165–200 (1994). doi:10.1007/BF01221098

9. Cardelli, L.: Mobility and security. In: Bauer, F.L., Steinbrüggen, R., (eds.) Pro-
ceedings of NATO Advanced Study Institute on Foundations of Secure Computa-
tion. Lecture Notes for Marktoberdorf Summer School 1999 (A Summary of Several
Ambient Calculus Papers), pp. 3–37. IOS Press (1999)

10. Schewe, K.D., Thalheim, B.: Personalisation of web information systems - a term
rewriting approach. Data Knowl. Eng. 62, 101–117 (2007)

11. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media
for Editing, Distributing, and Managing Intellectual Resources. Wiley, New York
(2003)

12. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoper-
ability of service clouds. Serv. Orient. Comput. Appl. 6, 189–205 (2012)

13. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud calculus:
security verification in elastic cloud computing platform. In: Smari, W.W., Fox,
G.C. (eds.) CTS, pp. 447–454. IEEE (2012)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I. and II.
Inf. Comput. 100, 1–77 (1992)

15. Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with
applications. J. CSS (Special Issue in Honor of Amir Pnueli) 78, 939–959 (2012)

16. Valente, M., Bigonha, R., Loureiro, A., Maia, M.: Abstractions for mobile compu-
tation in ASM. In: Graham, P., Maheswaran, M. (eds.) Proceedings of the Inter-
national Conference on Internet Computing, IC 2000, Las Vegas, Nevada, USA,
26–29 June 2000, pp. 165–172. CSREA Press (2000)

17. Bósa, K.: A formal model of a cloud service architecture in terms of ambient
ASM. Technical report, Christian Doppler Laboratory for Client-Centric Cloud
Computing (CDCC), Johannes Kepler University Linz, Austria (2012)

18. Bósa, K.: An ambient ASM model for client-to-client interaction via cloud com-
puting. In: Proceedings of the 8th International Conference on Software and Data
Technologies (ICSOFT), Reykjavik, Iceland, pp. 459–470 (Best Paper Award).
SciTePress (2013)

19. De Ryck, P., Decat, M., Desmet, L., Piessens, F., Joosen, W.: Security of web
mashups: a survey. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010.
LNCS, vol. 7127, pp. 223–238. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/BF01221098

Modeling a Flexible Replication Framework
for Space-Based Computing

Stefan Craß(B), Jürgen Hirsch, Eva Kühn, and Vesna Sesum-Cavic

Institute of Computer Languages,
Vienna University of Technology, Argentinierstr. 8, Vienna, Austria

{sc,jhirsch,eva,vesna}@complang.tuwien.ac.at

Abstract. Large-scale distributed systems often require complex inter-
action among dynamically joining and leaving participants. Compared
to classical approaches coordinated by a central authority, peer-to-peer
systems have been shown to provide a highly scalable and flexible archi-
tecture for such scenarios. Coordination middleware like tuple spaces
can help to unburden developers from coping with the complexity of dis-
tributed coordination by offering simple abstractions for the decoupled
interaction of autonomous peers. However, a fault-tolerant peer-to-peer
system can only be built if replication mechanisms exist to persist data
on several peers at once. To enrich space-based middleware with a flex-
ible replication mechanism, we have designed a generic, plugin-based
replication framework that supports easy adaptation via configurable
replication schemes. The framework may act as a testbed to analyze the
efficiency and reliability of different replication strategies. Its architec-
ture is built via highly composable coordination patterns that internally
interact via space containers. Using the generic framework, this paper
shows how different variants of multi-master replication can be realized
and how they can be adapted for various scenarios.

Keywords: Coordination middleware · Distributed systems · Peer-to-
peer · Replication framework · Tuple space

1 Introduction

The classical client-server paradigm is the usual way of communication between
computers across the Internet, but it implies severe problems as the server is a
single point of failure. If a huge number of clients communicate with the server,
they may overload it and decrease the performance of the entire system. Peer-to-
Peer (P2P) networks solve this problem as each peer works as client and server
at the same time, connects to other peers to request or transmit data and may
dynamically join and leave the network. Beside the advantages of P2P networks
like flexibility and a certain level of self-organization, they face problems of
increased complexity like lacking a central register describing which information
resides on which client or which clients are currently connected to the network.
c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 256–272, 2014.
DOI: 10.1007/978-3-662-44920-2 16

Modeling a Flexible Replication Framework for Space-Based Computing 257

Once a peer leaves the network, its data is not available anymore and the only
solution is to replicate each peer’s data to other peers in the network.

In a distributed environment that enables clients to read and update generic
data, replication is beneficial in two ways [5]: Firstly, it improves the scalabil-
ity of a system as read access can be split among multiple replicas. Secondly,
availability is increased as data is kept redundantly at multiple sites. However,
replication also induces an overhead to synchronize replicas and keep them in
a consistent state. Increasing the number of replicas also increases the manage-
ment effort to ensure consistency. The situation becomes even more complex if
an update operation fails on certain peers. In such a case error handling must
be performed to decide if the overall operation was successful or not. In the
worst case the operation has to be undone on all peers. According to the CAP
theorem [10], a distributed system can, at any time, only provide two out of the
three properties consistency, availability, and partition tolerance in an optimal
way. Thus, if all replicas always have to be in the same, consistent state and lost
messages or replica crashes occur, concurrently evaluated requests on different
replicas either fail or block until the connection is restored.

Space-based middleware [18] provides an architectural style for distributed
processes to collaborate in a decoupled way via a shared data space. This para-
digm is based on the Linda tuple space model [9], which enables participants to
write data tuples into a space and retrieve them using a query mechanism based
on template matching. Tuple spaces can be used to synchronize independent
processes via blocking queries that return their result as soon as a matching
tuple is provided by another process. The XVSM (eXtensible Virtual Shared
Memory) middleware model [8] adheres to this space-based computing style via
space containers that are identified via a URI and support configurable coor-
dination laws for writing and selecting data entries. Processes that access a
container may write, read, or take (i.e. read and delete) entries, which generalize
the tuple concept, using configurable coordination mechanisms like key-based
access, FIFO queues, or template matching. Depending on the used coordina-
tion mechanism, queries for read and take operations include parameters like the
key of a searched entry or the count of entries that shall be returned in FIFO
order. If no matching result exists, the query blocks until it is fulfilled or a given
timeout is reached, which enables decoupled communication.

If many distributed processes interact, a single space may form a performance
bottleneck that hinders scalability. Replicated spaces would enable
scalable P2P-based solutions, but currently only a few space-based middleware
systems provide built-in replication mechanisms. However, even those that sup-
port replication usually assume a fixed mechanism, but there is not one optimal
replication mechanism that serves all applications equally well. The trade-off
between consistency, availability and partition tolerance must be negotiated for
each use case. Thus, a replication mechanism should offer different replication
strategies that can be configured by the user to enable adaption for any use case.

Therefore, we have designed a flexible replication framework for XVSM
based on asynchronous replica management and replication strategies that can

258 S. Craß et al.

be configured via plugins. This paper is a revised version of [7], which describes
a replication framework for the Java version of XVSM. While the original paper
copes with the implementation and evaluation of two concrete replication plu-
gins, this paper focuses on the generic framework approach and the design
methodology for modeling new replication mechanisms. We have improved the
initial framework architecture by decoupling components involved in the repli-
cation process via space containers. Thus, a replication mechanism for space
containers is provided that itself is realized on top of space-based middleware,
which is beneficial for the collaboration of autonomous, possibly mobile agents
as it requires little mutual knowledge [4]. As we have already shown in earlier
work on frameworks for load balancing [17] and load clustering algorithms [16],
this approach allows for plugging and benchmarking different algorithms and
configurable settings in a generic testbed, thus easing the task of finding the
most suitable algorithm for a given scenario. For modeling the components of
the replication mechanism and their interactions, we apply a flexible modeling
technique based on services, space containers and dynamic links between them
as introduced in [15].

A motivating use case can be found in the domain of traffic management
for road or rail networks, were nodes are placed along the track to collect data
from passing vehicles and inform them about relevant events (like congestions).
As nodes may fail, data must be replicated to prevent data loss. For scalability
reasons, a P2P-based approach is more feasible than a centralized architecture.
As conditions are highly dynamic (e.g. number of vehicles and events), there
might not be a single replication algorithm that performs well in every scenario.
Thus a generic framework approach as proposed here appears very reasonable.

The paper is structured as follows: Sect. 2 describes related work for middle-
ware replication. Section 3 presents the component-based design methodology
and how it is used to create an architecture for the generic space-based replica-
tion framework. Section 4 shows different variants of a multi-master replication
mechanism to proof the flexibility of the model. Section 5 evaluates the frame-
work architecture and its plugin design methodology. Section 6 finally provides
a conclusion and outlines future work.

2 Related Work

Replication for databases and data-oriented middleware like tuple spaces may be
achieved via synchronous or asynchronous replica updates. Synchronous repli-
cation as defined by the ROWA (Read-One-Write-All) approach [1] forces any
update operation to wait until the update has been propagated to all replicas.
This scales well in a system that performs many read operations but few updates.
In general, however, asynchronous replication mechanisms that use lazy update
propagation increase the scalability and performance dramatically [13], but this
is achieved at the cost of reduced consistency guarantees and more complex error
handling. Depending on the requirements of a distributed application, strict con-
sistency models based on ACID (Atomicity, Consistency, Isolation, Durability)

Modeling a Flexible Replication Framework for Space-Based Computing 259

[11] or relaxed models like BASE (Basically Available, Soft state, Eventually
consistent) [20] are more suitable for data replication. While ACID transactions
guarantee consistent replica states, BASE uses a more fault-tolerant model that
allows temporarily inconsistent states. In this paper, we present a replication
mechanism that supports both consistency models.

Replication schemes define how operations are performed on specific replicas.
For a space-based approach, master-slave and multi-master replication schemes
are relevant. For master-slave replication, several slave nodes are assigned to
a single master node. Read operations can be performed on any node while
updates are restricted to the master node, which then propagates the changes
to the slaves. If the master node fails, another node may be elected to be the
new master. If many updates occur, the master may still become a bottleneck.
In this case, a multi-master approach is more feasible, where every node may
accept both read and update operations. However, an additional synchroniza-
tion mechanism has to be introduced between the replicated nodes to guarantee
that updates are performed in the same order on each replica. The proposed
replication architecture supports both types depending on the used plugin.

Effective and fault-tolerant replication for space-based middleware can be
achieved by letting distributed spaces collaborate using a P2P approach. Repli-
cation frameworks require a reliable way of coordinating replicas and exchanging
meta data among nodes. One way to establish such a coordination channel is
via distributed hash tables (DHT) [3], which distribute data as key-value pairs
across the P2P network according to a deterministic hash function. The hashed
key serves to retrieve a specific value from the network without knowing its actual
storage location. In Sect. 4.2, we evaluate a DHT-based replication mechanism
for XVSM based on the Hazelcast in-memory data grid [12], which provides
dynamic node discovery, distributed locking and a map abstraction that trans-
parently distributes data among several nodes in a fault-tolerant way. An alter-
native mechanism is based on group communication, where replicas subscribe
to a specific topic, e.g. for a specific container, and are informed when a new
message is published. Such a channel can be established using meta containers
of the space itself, as shown with our native replication approach in Sect. 4.3.

Several related replication mechanisms have been invented for space-based
middleware: GSpace [21] provides a Linda tuple space where every tuple type
can be assigned to a specific replication policy, like replication to a fixed number
of nodes or to dynamically evaluated consumers of a certain tuple type. Using
a cost evaluation function based on the current space usage, the replication
policy may be changed dynamically. DepSpace [2] examines Byzantine fault-
tolerant replication for Linda spaces using a total order multicast protocol that
works correctly if less than a third of the replicas are faulty. Corso [14] uses
a replication mechanism based on a logical P2P tree-based overlay topology
of replicas, where the master copy can be dynamically reassigned to another
node through a primary copy migration protocol, to allow local updates on
a data field. When using the eager propagation mode, updates are pushed to
all replicated locations immediately, whereas for lazy propagation, updates are

260 S. Craß et al.

pulled on-demand when the corresponding data is accessed locally. LIME [19]
provides an asynchronous master-slave replication approach for tuple spaces in
mobile environments. Configurable replication profiles specify in which tuples a
node is interested. If a matching tuple is found among neighboring nodes, it is
automatically replicated to the local space.

Compared to the mentioned space-based solutions, the here proposed XVSM
replication mechanism is able to cope with different coordination laws (label,
key, queue, template matching etc.) and provides a more generic replication
framework that supports the plugging of arbitrary replication mechanisms.

3 Generic Replication Framework

For designing a generic replication framework for XVSM, we rely on an archi-
tectural style termed Peer Model [15], which is based on coordination services
that are encapsulated in components called peers and communicate with each
other in a decoupled way using space containers. The following sections describe
the general Peer Model concepts together with its graphical notation and how
it can be applied to model the replication mechanism.

3.1 Peer Model Design Concepts

The Peer Model is a component-based programming model for developers of
distributed applications that is based on asynchronous communication via space-
based middleware, a staged event-driven architecture and data-driven workflow.
The basic entity of a uniquely named peer is composed of a peer-in-container
(PIC), a peer-out-container (POC), and its internal logic represented by wirings
and services. The containers, which hold the system state, can be realized using
XVSM or a similar middleware. A peer is invoked by writing one or more entries,
which consist of properties represented by key/value pairs, into its PIC. Wirings
describe the flow of entries among containers within peers and between them.
Each wiring requires one or more entries as input, optionally processes them by
calling a service containing the logic, and returns zero or more entries as output.

Figure 1 shows the graphical notation for a simple example with two peers.
Within Peer1, there is a single wiring W1 with two guard links that describe its
input and two action links as output. The circles on these links represent queries
that denote the transported entries. The upper value represents the required
entry type while the number below indicates how many entries of this type are
needed to trigger the link. For this count parameter, either a concrete value, a
minimum or a maximum can be specified. A filled circle means that the wiring
takes the entry from the source container, while an unfilled one corresponds to
a read operation. When all required entries are available, the guard links are
triggered and the wiring becomes active. The service gets the input entries from
the wiring, processes them and returns output entries that trigger the action
links. In the example, the wiring takes one entry of type T1 and reads another
entry of type T2. The service then creates one or more entries of type T3 and

Modeling a Flexible Replication Framework for Space-Based Computing 261

one entry of type T4. The T4 entry is written back to the peer’s PIC, from
where other wirings of Peer1 can access it, e.g. to retrieve state information for
the current interaction. The T3 entries are moved to Peer1’s POC, from where
they are transferred to the PIC of another peer, whose internal behavior is not
detailed here, to trigger the next stage of the computation. This is done by a so-
called move wiring, which has a single input link, no service, and a single output
link that simply moves the input entry to another container. In the graphical
notation this is simplified using a solid arrow. Using count parameter 1 instead
of >=1 means that each entry is moved separately in a possibly concurrent way,
while using a minimum value, all available entries would be moved at once.

Fig. 1. Basic Peer Model notation.

To correlate the entries of a single flow (belonging to the same business
process) across multiple stages and isolate them from unrelated flows that are
executed concurrently, entries are enriched with a flow identifier. Wirings are
only triggered if all of their input entries belong to the same flow. A flow’s
lifecycle either ends when all of its entries are consumed (e.g. because the result
is returned), or after a specified time-to-live (TTL) has expired.

A distributed system is defined by specifying its components as peers, dis-
tributing them across the network and connecting them via inter-peer wirings.
A Peer Model runtime environment, which is bootstrapped on top of XVSM con-
tainers, manages the peers on each host. Wiring execution can be realized via
XVSM transactions, which encapsulate several read, take, and write operations
into atomic actions. When specifying sources and targets of wirings, containers
can be specified either via the unique address of their peer consisting of host URI
and peer name, or via a logical lookup expression that is dynamically resolved by
the runtime. To allow the dynamic selection of targets depending on application
logic, services may also directly specify the destination of their output entries,
which can be seen as a dynamic form of wiring.

3.2 Framework Architecture

We use the Peer Model to design a generic replication mechanism for XVSM con-
tainers where every component is modeled as a peer. As this approach achieves
high decoupling between components and supports the composition of complex

262 S. Craß et al.

coordination patterns from simpler ones, it is ideal for the specification of a
plugin-based framework that supports a wide range of different replication strate-
gies. Figure 2 shows the basic architecture of the XVSM replication framework
by using the Peer Model to describe the major components and their connec-
tions via move wirings. The Replication API is invoked by applications that
want to access replicated XVSM containers through the framework. It trans-
forms API calls into Access Container Request (ACR) entries for write, read,
and take operations, and Create Container Request (CCR) entries for the cre-
ation of new containers. Deletion of containers is omitted here to simplify the
model. These requests are written into the PIC of the configured Replication Plu-
gin peer (short: Plugin), which performs the actual replication according to its
strategy. Container replicas are spread among several distributed XVSM Space
peers (short: Space) that are managed by the Plugin. Each space runtime acts
as a peer that accepts request entries in its PIC and provides the corresponding
Result (RES) entries in its POC.

Fig. 2. Replication framework architecture.

For ACR entries, the Plugin dynamically selects one or more replicas accord-
ing to the operation type and its policy. For each of these replicas, a correspond-
ing ACR entry is created, which is dynamically routed to the respective Space
(as indicated by the dashed lines). As the Plugin’s PIC is specified as answer
container in the ACR, the results are returned to the Plugin as RES entries,
which can include query results (for read and take) or a success message (for
write). If the operation could not be performed, an error message is included in
the entry instead. Finally, the Plugin forwards the operation result to the Repli-
cation API. CCR entries are treated in a similar way by forwarding the requests
to selected Spaces to initialize the replicas of a newly created container. As the
Replication API uses the same request and result types as the Space itself, any
application that directly accesses XVSM containers can be transparently ported
to a replicated space version via the framework.

The Replication Worker peer ensures a configurable Quality of Service (QoS)
for the replication mechanism by periodically checking the status of replicas via

Modeling a Flexible Replication Framework for Space-Based Computing 263

the Plugin. It monitors all replicas via Replica Information Requests (RIR) that
are wired to the Plugin, which responds with Replica Meta Data (RMD) entries
that indicate the status of the replicas. This information is obtained by the
Plugin by sending ACR entries to all replica sites. If the number of valid replicas
drops for any container below the configurable minimum, the Replication Worker
reacts by triggering the creation of new replicas via a Create Replica Request
(CRR). The Plugin reacts to such a request by invoking CCR messages on
Spaces that do not yet contain a replica of the container. The current container
content is finally copied to the new replicas via ACR entries. The activation of
the Replication Worker in regular intervals can be achieved by writing an initial
entry (not shown in Fig. 2) with an attached time-to-start (TTS) property into
its PIC. This entry triggers the wiring responsible for issuing the RIR entries
after the TTS is reached. By writing this entry back into the PIC with an updated
TTS, the wiring can delay its next execution, as an entry is not visible if its TTS
is not yet reached. The advantage of this asynchronous approach is that Plugins
do not need to check the status of replicas during a method invocation, which
is a time-consuming operation. As the Replication Worker and the Plugin are
running on each node of a P2P scenario, the system is able to recover from node
failures as long as at least one replica of a container remains.

The Plugin defines the replication mechanism, the technology for inter-process
communication and the type of replication (synchronous or asynchronous). In the
following section, a Plugin using a distributed hash table and a native one using
XVSM’s own middleware mechanisms are realized, both resting upon a generic
multi-master replication pattern. This framework approach does not impose any
limitation on the replication strategy and thus ensures flexibility.

4 Plugin Design

To replicate an XVSM container, the entries as well as associated meta data
have to be managed by the Plugin. Two types of meta data are considered:
Location meta data is used to find available locations for new replicas and to
locate existing containers. Container meta data consists of information for a
particular container that is used when creating new replicas. Due to their flexible
coordination laws like FIFO queues, key-based access or template matching,
XVSM containers are not just lists of entries. For any container, each supported
coordination mechanism is managed by a so-called coordinator, which stores an
internal container view (e.g. a map) that is updated every time when entries
are written to or taken from the container. This view determines which entries
are selected by read or take queries. The container meta data therefore contains
the registered coordinators, the container size, coordinator meta data (e.g. keys)
and additional replication parameters supported by the Plugin. The meta data
itself has to be replicated because otherwise it is neither possible to find other
replicas, nor to create a new replica as an exact copy of an existing container.

Plugins are defined by specifying a peer that satisfies the interface described
in Sect. 3.2. The behavior is described by defining the internal wirings and their

264 S. Craß et al.

services. The plugin mechanism may consist of a single peer or it may be com-
posed of several sub-plugins that are invoked by the main Plugin peer, which is
transparent for the surrounding framework. Plugins for both master-slave and
multi-master replication can be designed with this approach. As multi-master
replication provides more flexibility and does not limit the number of concurrent
write operations, it is preferred for P2P scenarios. In the following, we present
a generic multi-master replication pattern that utilizes an exchangeable compo-
nent for managing meta data.

4.1 Generic Multi-master Replication Pattern

To model a generic coordination pattern for multi-master replication, coordi-
nation logic can be split into two parts. The main Plugin peer communicates
with the framework and performs the actual replication, while a separate peer is
used to manage replicated meta data. This second peer acts as an exchangeable
component that does not affect the semantics of the general replication mecha-
nism but mainly its QoS guarantees concerning scalability and consistency.

Figure 3 shows the design of a basic multi-master replication approach. Rel-
evant entry properties are specified in square brackets next to the respective
entries. Because of space limitations, only the wirings related to container access
are shown. Wiring W1 processes ACR entries that are written by the frame-
work into the Plugin’s PIC. They include a container reference (cref) as well as
different request parameters like operation type (write, read, or take) and coor-
dination parameters (e.g. keys). The service associated with W1 creates a Replica
Directory Query (RDQ) entry for the accessed container that is sent to the Data
Management Peer via a move wiring. This peer then responds with a Replica
Locations (RL) entry that lists available replica locations for the requested con-
tainer. To store the state of the current replication flow, also an Access Data
(AD) entry that includes the request information is written to the PIC.

Wiring W2 waits for the RL entry from the Data Management Peer and
retrieves the state of the current operation by reading the AD entry. In case
multiple ACR entries are processed concurrently by the Plugin, the correlation
of associated entries is achieved via their flow identifiers, as the wiring automat-
ically reads the AD entry with the same ID as the RL entry, whose IDs both
originate from the initial ACR entry. The output of W2 is a set of multiple ACR
entries that include the container reference and the parameters from the original
request, as well as a special destination property (DEST) that indicates to which
peers these entries should be dynamically wired by the Peer Model runtime.
Thus, for each space URI included in the RL list, an asynchronous request is
issued that distributes the container operation to all active replicas. Within the
targeted Spaces the actual data containers (e.g. named C1 and C2) can be mod-
eled as internal peers with merged PIC and POC. The semantics of the request
handling in the XVSM runtime is, however, out of scope of this paper.

The final wiring W3 is triggered every time one or more RES entries, which
contain the operation result and associated meta data, are returned to the Plu-
gin’s PIC. These entries are taken together with the previously created AD entry.

Modeling a Flexible Replication Framework for Space-Based Computing 265

Fig. 3. Generic multi-master replication pattern (container access).

The service then determines if enough replicas have responded yet. While for a
read operation, a single response is sufficient, a replicated take operation requires
a minimum number of replicas to respond. If the replicated operation was suc-
cessful, a new RES entry with the retrieved result data is written to the POC.
Additionally, one or more Meta Data Update (MDU) entries may be emitted to
the Data Management Peer if the operations require changes to the container
meta data, which depends on the request information from the AD entry and
the meta data included in the received RES entries. If the replicated operation
has failed according to the service logic, this information is also written to the
POC via an RES entry. It may also be possible that the service cannot decide
yet if the operation was successful. In this case, it includes the currently avail-
able results in the AD entry, which is written back into the PIC. Wiring W3 is
triggered again when new RES entries arrive.

This simple replication strategy provides only very basic consistency guar-
antees, but the pattern can be easily extended via new or adapted wirings and
services. It is for example possible to use separate wirings for write, read, and
take requests as they often require different handling. It is usually sufficient to
read data only from a single container, as all replicas eventually contain the same
data. Thus, the initReplicatedAccess service from wiring W2 can be modified
to output only a single ACR entry for read operations. For synchronous write
and take operations, it may be feasible to return only when all registered replicas
were successfully updated. Therefore, wiring W2 must also update the AD entry
instead of only reading it to include the number of issued ACR entries. Then
the evaluateAccessResult service of W3 should only return a result when the
number of received RES entries matches that count. In contrast, asynchronous
behavior can be reached if an RES entry is written to the POC as soon as one

266 S. Craß et al.

space has responded (or already in W1 for write operations). Service semantics
may also be dynamically configurable by writing specific configuration entries
into the PIC, which are then read by wirings and passed to the associated service.

To ensure consistency in the case of concurrent updates on a replicated con-
tainer, some form of locking is required. Global locks on container level prevent
conflicts as updates must be performed on each replica in the same order. Dif-
ferent locking mechanisms can be supported by including their logic in the Data
Management Peer. Integration with the provided Plugin can be achieved via
asynchronous lock and unlock requests to the Data Management Peer that are
triggered by wirings installed before W2 and after W3, respectively.

The presented pattern assumes that any container access operation is deter-
ministic, which means that it is sufficient to replicate the operation request to
all replica locations. XVSM, however, also supports non-deterministic coordi-
nation mechanisms. E.g., if on a container with five entries managed by the
non-deterministic AnyCoordinator the same read operation is repeatedly per-
formed, the results may differ as an arbitrary entry is selected each time. If a
take operation is replicated, using this coordinator may result in replica inconsis-
tencies, because the coordinator may delete a different entry in each replicated
space container. In order to avoid an inconsistent state between the replicas,
we distinguish between strict and loose consistency models, which are applied
according to the used coordinators. For take operations using non-deterministic
coordinators, a strict consistency approach is required, which means that when
performing a take operation, the same entries must be removed from each replica
container. All other operations may follow the loose consistency approach that
simply replicates the request entries as shown before. With strict consistency,
one space is invoked via a ACR entry to perform the initial take operation. The
meta data of the returned RES entry includes a unique ID for each entry that is
removed from the container. These entry IDs can then be used to take the same
entries at the residual replica containers (using a key-based coordinator).

If errors occur during the replication process (e.g. because a Space is not
reachable), the Plugin has to react accordingly after a timeout and restore a
consistent state for all active replicas. Using the Peer Model, such recovery
services can be triggered via the internal timeout mechanisms. If the TTL of
individual entries or an entire flow expires (e.g. because not enough RES entries
have arrived to satisfy the service logic in W3), the corresponding entries are
garbage collected and replaced by an exception entry that includes their data.
These entries can then be wired like regular entries to start a recovery service.

The creation of new containers via CCR entries can be modeled similarly to
container access by using a three-stage approach. At first the Data Management
Peer is queried to return the list of available Spaces where replicas can be placed.
Then, CCR requests are sent to a subset of these locations to initialize the
replicated containers and finally the Data Management Peer is triggered again to
update its replica directory and to initialize the meta data for the new container.

The Plugin also has to interact with the framework’s Replication Worker.
For RIR entries, the replica locations are queried from the Data Management

Modeling a Flexible Replication Framework for Space-Based Computing 267

Peer using RDQ entries. Then, the availability of replicas is checked using simple
read requests and the results are returned to the Replication Worker. Adding new
replicas for existing containers via CRR entries is more complex. After querying
available spaces and current replica locations, the container content needs to
be retrieved. Read requests to an active replica are used to extract the entries,
while queries to the Data Management Peer yield the corresponding container
meta data. Then, the new replicas are initialized on not yet used spaces via
CCR requests and filled with content using ACR requests. Finally, the replica
directory is updated via the Data Management Peer.

Sections 4.2 and 4.3 describe two variants for realizing the Data Management
Peer, thus providing a fully functional replication mechanism.

4.2 Hazelcast Replication

As shown in Fig. 4, the Hazelcast version of the Data Management Peer uses a
proxy peer to integrate the DHT implementation Hazelcast into the replication
framework. Any request (e.g. an RDQ entry) is forwarded to this proxy peer
as a Hazelcast Command (HCC) entry. The proxy peer consumes any of these
entries and internally invokes its Hazelcast instance to manage the replication
meta data. The return value is then wrapped into a Hazelcast Result (HCR) entry
and routed back to the Data Management Peer, whose second wiring transforms
the result into the correct type expected by the Plugin. The Query Data (QD)
entry is necessary to properly correlate requests and responses via their flow
identifiers.

Location and container meta data is stored in distributed maps that are
replicated by Hazelcast to several other cluster members. If a new member of
the Hazelcast cluster starts up, it looks for already existing members in the
network neighborhood. If such a member is found, the new member will connect
to and share the meta data with the cluster. The Data Management Peer uses the
distributed locking mechanism of Hazelcast where a lock can be acquired that
is identified via the corresponding container name. Hazelcast applies a simple
heartbeat approach to discover dead members, which avoids that a container is
locked by a dead process and therefore unavailable for the rest of the cluster.

4.3 Native Replication

The native version of the Data Management Peer (Fig. 5) does not use an addi-
tional framework for the communication between the cluster members, but only
the built-in XVSM functionality. Thus, the already available Spaces that hold
the replicated data are also used to manage the associated meta data via ACR
(and CCR) requests that are targeted at special containers. It is assumed that
for each Data Management Peer there is also a local Space.

On start-up, the peer initializes the list of available replication locations in
the local ReplicationLocationLookupContainer (RLLC) with known neighbors.
For each location, the process reads all entries from the remote Replication-
LookupContainers (RLC) and initializes the replica lists in its local RLC, which

268 S. Craß et al.

Fig. 4. Hazelcast Data Management Peer.

Fig. 5. XVSM Data Management Peer.

contains the mapping of containers to their replica locations. Furthermore, the
peer adds the location of its local space to the RLLC of the remote sites. For
storing the container meta data, a meta container is created for each replicated
container. This meta container itself is then replicated to every replica location
of the associated container.

To implement its own distributed locking mechanism, a special lock container
is created for each replicated container and registered in the corresponding meta
containers via its URI. If an update is performed on a replica, a lock is acquired
on the lock container using XVSM transactions. Because every replica of a spe-
cific container uses the same lock container, concurrent modifications can be
avoided. After the update has been performed, the lock is released. If a node
crashes while holding a lock, transaction timeouts ensure that the container will
eventually be unlocked. If the node holding the lock container crashes, it has to
be recreated at a different site.

Modeling a Flexible Replication Framework for Space-Based Computing 269

5 Evaluation

The presented generic framework provides a flexible way of defining replication
mechanisms for space-based middleware via loosely coupled components that
can be exchanged easily. The plugins themselves may contain nested compo-
nents, which enables the construction of complex replication patterns consist-
ing of simpler building blocks that can be developed independently. The Peer
Model design approach facilitates the high composability of coordination pat-
terns and the flexible integration of new logic into distributed applications like
the XVSM replication framework. Even within individual peers, business logic
can be modified easily as wirings may support different kind of policies imple-
mented by different services. Services themselves are loosely coupled as they only
communicate with each other in an asynchronous way via space containers. The
wiring mechanism also enables the dynamic reconfiguration of connections and
the exchange of peers at run-time.

The bootstrapping of the Peer Model via XVSM containers for PIC and POC
adds additional features to the architecture. The replication mechanism profits
from the persistency features of XVSM, which enables the recovery of replicas
after a crash. Another relevant feature is a security mechanism that allows the
definition of fine-grained access control rules for containers [6]. In the scope of the
replication framework, direct access to spaces may be restricted to prevent any
user from bypassing the Replication Plugin when accessing replicated containers,
which could lead to inconsistent replicas. Additionally, access to PICs and POCs
may be limited so that only trusted users or components are allowed to inject
entries and reconfigure wirings. Another advantage of this architecture is that
the peers can be physically distributed among many hosts without affecting their
implementation. The individual components of the framework may be located on
different hosts, which improves scalability. In this case, only the guard and action
links on the wirings have to be reconfigured to point to different containers, which
are addressed via simple URIs. Even multiple peer instances can compete for the
same type of requests and thus share the load. Finally, the system can be easily
monitored as the current state is accessible via containers.

Compared to direct invocation of components via method calls, the decou-
pled peer-based approach naturally causes an additional performance overhead.
The framework architecture is, however, superior if flexibility is required, e.g.
in testbed scenarios or when different replication mechanisms should be acti-
vated based on dynamic properties like the current load. As there is always a
trade-off between performance and consistency when regarding replication and
different use case scenarios require different QoS guarantees, a fixed replication
mechanism is not the best solution.

In P2P traffic management scenarios, a suitable architecture must provide
traffic information to vehicles in near-time while replicating data among nodes
in a robust way to ensure fault tolerance. Asynchronous multi-master replica-
tion as provided by the presented plugins ensures that no node acts as single

270 S. Craß et al.

point of failure and that replication occurs in the background, thus preventing
delays when interacting with vehicles that are only in range for a short time span.
The generic pattern outlined in this paper is not yet a complete solution for fully
consistent and highly scalable replication, but it shows how complex strategies
can be designed efficiently. Using the framework, researchers may evaluate and
fine-tune further plugins that are adjusted to the specific use case.

The basic framework and the presented plugins were previously implemented
on top of the Java version of XVSM1, without using the advanced decoupling
features provided by the Peer Model runtime. Still, several benchmark results
[7] could be obtained that prove the feasibility of the framework as a testbed.
The comparison of the plugins has shown that the XVSM-based approach for
meta data management scales better than the Hazelcast approach, mainly due
to the additional overhead of invoking a DHT with high consistency guarantees.
We have also noticed that the loose consistency model scales much better than
the strict model, which is expected due to the added constraints. Further tests
with additional, more sophisticated replication algorithms will provide us with
a set of suitable container replication strategies for several P2P scenarios with
different requirements.

6 Conclusions

In this paper, we have presented a flexible and highly customizable replication
framework for space-based middleware that supports different replication strate-
gies via exchangeable plugins. This way, the best replication plugin for the given
use case can be chosen. A peer-based design methodology for plugin development
supports the composition of complex replication patterns from simpler compo-
nents. As a proof-of-concept for the flexibility of the framework, two plugins
were designed that perform multi-master replication on space containers. While
one plugin manages meta data via distributed hash tables, the other one uses
the space-based middleware itself for this task. Both variants share the same
general strategy, which is realized as a separate generic component that can be
easily adapted to specific requirements.

Future work includes the integration of the framework prototype with a
Peer Model runtime implementation, the design and evaluation of additional,
more sophisticated replication mechanisms for practical use case scenarios, and
a detailed investigation of security and privacy concerns for replication.

Acknowledgements. The work is partially funded by the Austrian Federal Ministry
for Transport, Innovation and Technology (bmvit) under the program FFG BRIDGE,
project no. 834162 LOPONODE Middleware.

1 http://www.mozartspaces.org

http://www.mozartspaces.org

Modeling a Flexible Replication Framework for Space-Based Computing 271

References

1. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading (1987)

2. Bessani, A., Alchieri, E., Correia, M., da Silva Fraga, J.: DepSpace: a byzantine
fault-tolerant coordination service. ACM SIGOPS Oper. Syst. Rev. 42, 163–176
(2008)

3. Byers, J., Considine, J., Mitzenmacher, M.: Simple load balancing for distributed
hash tables. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735,
pp. 80–87. Springer, Heidelberg (2003)

4. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: a programmable coordination
architecture for mobile agents. IEEE Internet Comput. 4(4), 26–35 (2000)

5. Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication: the
gaps between theory and practice. In: ACM SIGMOD International Conference on
Management of Data, pp. 739–752. ACM (2008)

6. Craß, S., Dönz, T., Joskowicz, G., Kühn, E., Marek, A.: Securing a space-based
service architecture with coordination-driven access control. J. Wirel. Mob. Netw.
Ubiquit. Comput. Dependable Appl. (JoWUA) 4(1), 76–97 (2013)

7. Craß, S., Hirsch, J., Kühn, E., Sesum-Cavic, V.: An adaptive and flexible replica-
tion mechanism for space-based computing. In: 8th International Joint Conference
on Software Technologies (ICSOFT), pp. 599–606. SciTePress (2013)

8. Craß, S., Kühn, E., Salzer, G.: Algebraic foundation of a data model for an extensi-
ble space-based collaboration protocol. In: 13th International Database Engineer-
ing & Applications Symposium, (IDEAS). pp. 301–306. ACM (2009)

9. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

10. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33, 51–59 (2002)

11. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15, 287–317 (1983)

12. Hazelcast: Hazelcast - in-memory data grid (2012). http://www.hazelcast.com
13. Jiménez-Peris, R., Patiño Mart́ınez, M., Alonso, G., Kemme, B.: Are quorums an

alternative for data replication? ACM Trans. Database Syst. 28, 257–294 (2003)
14. Kühn, E.: Fault-tolerance for communicating multidatabase transactions. In: 27th

Hawaii International Conference on System Sciences (HICSS), vol. 2, pp. 323–332.
IEEE (1994)

15. Kühn, E., Craß, S., Joskowicz, G., Marek, A., Scheller, T.: Peer-based programming
model for coordination patterns. In: De Nicola, R., Julien, C. (eds.) COORDINA-
TION 2013. LNCS, vol. 7890, pp. 121–135. Springer, Heidelberg (2013)

16. Kühn, E., Marek, A., Scheller, T., Sesum-Cavic, V., Vögler, M., Craß, S.:
A space-based generic pattern for self-initiative load clustering agents. In:
Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 230–244. Springer,
Heidelberg (2012)

17. Kühn, E., Sesum-Cavic, V.: A space-based generic pattern for self-initiative load
balancing agents. In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009.
LNCS, vol. 5881, pp. 17–32. Springer, Heidelberg (2009)

18. Mordinyi, R., Kühn, E., Schatten, A.: Space-based architectures as abstraction
layer for distributed business applications. In: 4th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), pp. 47–53. IEEE
(2010)

http://www.hazelcast.com

272 S. Craß et al.

19. Murphy, A.L., Picco, G.P.: Using Lime to support replication for availability in
mobile Ad Hoc networks. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION
2006. LNCS, vol. 4038, pp. 194–211. Springer, Heidelberg (2006)

20. Pritchett, D.: BASE: an acid alternative. Queue 6, 48–55 (2008)
21. Russello, G., Chaudron, M.R.V., van Steen, M.: Dynamically adapting tuple repli-

cation for managing availability in a shared data space. In: Jacquet, J.-M., Picco,
G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 109–124. Springer, Hei-
delberg (2005)

Realizable, Connector-Driven Software
Architectures for Practising Engineers

Mert Ozkaya(B) and Christos Kloukinas

School of Informatics, City University London, London EC1V 0HB, UK
{mert.ozkaya.1,c.kloukinas}@city.ac.uk

Abstract. Despite being a widely-used language for specifying soft-
ware systems, UML remains less than ideal for software architectures.
Architecture description languages (ADLs) were developed to provide
more comprehensive support. However, so far the application of ADLs
in practice has been impeded by at least one of the following problems:
(i) advanced formal notations requiring a steep learning curve, (ii) lack of
support for user-defined, complex connectors, and (iii) potentially unre-
alizable architectural designs.

This paper proposes Xcd, a new ADL that aims at supporting user-
defined, complex connectors to help increase architectural modularity. It
also aims to help increase the degree of reusability, as now components
need not specify interaction protocols, as these can be specified indepen-
dently by connectors (which increases protocol reusability too).

Connector support requires to ensure that architectural designs are
always realizable, as it is currently extremely easy to obtain unrealizable
ones. Xcd eliminates potentially unrealizable constructs in connector
specifications.

Finally, Xcd employs a notation and notions from Design-by-Contract
(DbC) for specifying software architecture behaviour. While DbC pro-
motes a formal and precise way of specifying system behaviours, it is
not as challenging for practising developers as process algebras that are
usually employed by ADLs.

Keywords: Component based software engineering · Software archi-
tecture · Modular specifications · Connector realizability · Separation of
functional and interaction behaviours · Design-by-contract

1 Introduction

A number of specialized architecture description languages (ADLs) have been
proposed for specifying software architectures [20], since the early work on soft-
ware architectures [12,23]. Currently UML has become a de facto design language
for specifying and designing software systems – more practitioners use it than
all other languages (e.g., AADL, ArchiMate, etc.) combined [19], even though it
is less than ideal [16]. This is despite its lack of support for formal architectural
analysis, unlike many ADLs that have formally defined semantics. In our view,
c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 273–289, 2014.
DOI: 10.1007/978-3-662-44920-2 17

274 M. Ozkaya and C. Kloukinas

there are three main problems that ADLs suffer from: (i) formal notations for
behaviour specifications that require a steep learning curve, (ii) lack of support
for complex connectors (i.e., interaction protocols), and (iii) potential for pro-
ducing unrealizable designs. Indeed, to the best of our knowledge, there is no
ADL that is easy to learn, treats connectors as first-class elements and ensures
that architecture specifications are realizable.

While condition (i) has been identified by practitioners as being a serious
impediment to their adoption of current ADLs [19], condition (ii) is not an
issue that they consider as crucial, as does a number of researchers since many
ADLs do not support complex connectors. Nevertheless, we believe that it can
substantially help in developing concise designs, as it increases modularity and
reusability by allowing designers to reuse not only components but interaction
protocols as well, thus facilitating architectural exploration and avoiding reuse-
by-copy. Condition (iii) is in fact something that has not been identified at all so
far to the best of our knowledge but we believe that it is crucial to identify and
resolve, if a connector-centric ADL is to succeed among practitioners. Below we
briefly examine each of these issues.

Formal Notations. Many ADLs (e.g., Wright [1], LEDA [6], SOFA [24], CON-
NECT [15], etc.) adopt formal notations, e.g., process algebras [4], for specifying
the behaviours of architectural elements. They do so in order to enable the
architectural analysis of systems, which is extremely important in uncovering
serious system design errors early on in the lifetime of a project. Indeed, if such
an analysis is not possible, then there is no point in using a specialized lan-
guage for software architectures – even simple drawings suffice. However, ADLs
employ notations that practitioners view (with reason) as having a steep learn-
ing curve [19]. Thus, practitioners end up avoiding them and use instead simpler
languages, even if that means that they lose the ability to properly describe and
analyse their systems – better an informal description of a system that every-
body understands than a formal description of a system that people struggle
understanding.

Limited Support for Complex Connectors. Another problem with many ADLs
(e.g., Darwin [18], Rapide [17], LEDA [6], and AADL [10]) is that they provide
limited or no support for complex connectors, treating them instead as simple
connections. This is unfortunate because connectors represent the interaction
patterns between components, i.e., the interaction protocols that are employed
to achieve the system goals using the system components, such as reliability.
By instead offering support only for components, architects end up with two
alternatives. One is to ignore protocols, which inhibits the analysis of crucial
system properties, such as deadlock-freedom, and also can lead to architectural
mismatch [11], i.e., the inability to compose seemingly compatible components
due to wrong assumptions these make about their interaction. The other is to
incorporate the protocol behaviour inside the components themselves, which
leads to complicated component behaviour that is neither easy to understand nor
to analyse and makes it difficult to reuse components with different protocols,

Realizable, Connector-Driven Software 275

Fig. 1. A nuclear power plant [2].

Fig. 2. Wright’s (unrealizable) connector for Alur’s nuclear power plant.

as well as to find errors in specific protocol instances. Incorporating protocol
behaviour inside components is essentially following a reuse-by-copy approach,
whereby each component has its own copy of the protocol constraints. On the
other hand, support for protocols through first-class connectors promotes a reuse-
by-call approach. There is only one instance of the protocol constraints and these
are simply called wherever they are needed, making it easier to keep them correct
and to replace them with those of another protocol if needed.

Potentially Unrealizable Designs. The third problem of existing ADLs is that
when they do support user-defined, complex connectors, they do so in a way
that can lead to unrealizable designs. All ADLs in this category follow the app-
roach initiated by Wright [1] and require connectors to include a glue element.
In Wright [1], a connector role specifies the “obligations of [a] component par-
ticipating in the interaction” and a glue specifies “how the activities of the [. . .]
roles are coordinated.” – a connector glue is supposed to be more than simple
definition/use relationships. The fact that the glue can introduce inter-role inter-
action constraints is deeply problematic because these constraints cannot always
be implemented in a decentralized manner by the components that assume the
connector roles, as these can only observe their local state [27,28]. In fact, it
has been shown that the general problem of deciding whether a glue is real-
izable is undecidable [2,3,27,28], so there is no general algorithm that can be
implemented to warn architects that the glue they are specifying is not real-
izable by the existing roles. The only easy solution to realize a protocol then

276 M. Ozkaya and C. Kloukinas

Fig. 3. Connectors in circuits.

is to introduce yet another component that will assume the role of the glue,
thus transforming all protocols into centralized ones and potentially invalidating
architectural analyses concerning scalability, performance, reliability, informa-
tion flows, etc.

An example of such an unrealizable protocol is the simplified nuclear power
plant [2], shown in Fig. 1a. The interaction therein involves two client roles (P1

and P2) updating the amounts of the Uranium fuel (UR) and Nitric Acid (NA)
server processes in a nuclear reactor. After the update operations, the amounts of
UR and NA must be equal to avoid nuclear accidents, for which reason we wish
to allow only the sequences shown in Fig. 1a. The interaction of the two clients
with the NA and UR variables, can easily be specified in Wright as in Fig. 2.
Note that this glue specification does two things. First it establishes bindings
between clients and servers (e.g., P1.ur → UR.increment). Then it constraints
interactions by requiring that we only allow UR.increment → NA.increment or
UR.double → NA.double. This specification is however unrealizable [2] because
it is impossible to implement it in a decentralized manner in a way that avoids
behaviours excluded by the glue, e.g., the one depicted in Fig. 1b. The only way
to achieve the desired behaviour is to introduce another role, for a centralized
controller G. Roles P1 and P2 then need to inform G when they wish to interact
with UR and NA and have G perform the interactions with UR and NA in their
place.

2 Our Approach

The ADL we are developing, called Xcd, tries to overcome the problems iden-
tified in the previous section and offer: (i) first-class support for user-defined,
complex connectors; (ii) realizable software architectures by construction; and
(iii) a simple to understand, yet formal, language for specifying behaviour, based
on design-by-contract (DbC).

2.1 Support for Complex Connectors

Xcd grants connectors in software architectures first-class status, allowing
designers to specify both simple interaction mechanisms and complex protocols.
These can then be instantiated as many times as needed, allowing architects to

Realizable, Connector-Driven Software 277

simplify the specifications of their components and easily reuse the specification
of complex protocols.

To illustrate how important this is for both architectural understandability
and also analysis, we will use a simple example from electrical engineering. Let us
consider k concrete electrical resistors, r1, · · · , rk, i.e., our system components.
When using a sequential connector (→), the overall resistance is computed as
R→(N, {Ri}Ni=1) =

∑N
i=1 Ri, where N,Ri are variables (Ri correspond to con-

nector roles), to be assigned eventually some concrete values k, rj . If using a
parallel connector (‖) instead, it is computed as R‖(N, {Ri}Ni=1) = 1/

∑N
i=1 1/Ri.

So the interaction protocol (connector) used is the one that gives us the formula
we need to use to analyse it – if it does not do so, then we are probably using
the wrong connector abstraction. The components (rj) are simply providing
some numerical values to use in the formula, while the system configuration
tells us which specific value (k, rj) we should assign to each variable (N , Ri)
of the connector-derived formula. By simply enumerating the wires/connections
between resistors/components, we miss the forest for the trees. This leads to
architectural designs at a very low level that is not easy to communicate and
develop – as [8] found the case to be with AADL.

Figure 3a shows the number of simple connectors (identified with ellipses)
that are needed in our system. It is easy to see that there are many of them
and it is not so easy to identify the protocol logic, especially as the system
size increases – this is the equivalent of spaghetti code. By making interaction
protocols implicit in designs, analysis also becomes difficult and architectural
errors can go undetected until later development phases. Indeed, we are essen-
tially forced to reverse-engineer the architect’s intent in order to analyse our
system – after all, the architect did not select the specific wire connections by
chance but because they form a specific complex connector. When complex con-
nectors are employed instead as in Fig. 3b then the number of connectors to be
considered is reduced substantially. This makes it much easier to understand the
system and to analyse its overall resistance by taking advantage of the connector
properties as:

R→(r1,||(→(r2,r3),r4)) = r1+R||(→(r2,r3),r4) = r1+
1

1
R→(r2,r3)

+ 1
r4

= r1+
1

1
r2+r3

+ 1
r4

The use of connectors allows us to separate interaction patterns/protocols
from components and renders components independent from these – resistors
do not need to know if they will be connected in series or in parallel. Both
modularity and reuse (for both components and protocols) are increased. Unlike
physical systems, where configuration patterns are enough to specify connectors
as interaction in them is governed by known physical laws, software systems
connectors also need to specify role interaction.

2.2 Realizable Software Architectures

Connectors in our ADL are not specified with glue-like elements. Instead, we con-
sider connectors as a simple composition of roles, which represent the

278 M. Ozkaya and C. Kloukinas

Fig. 4. Meta-model of Xcd.

interaction behaviour of participating components, and built-in sub-connectors
(i.e., links) that allow actions of one role to reach another. Coordination is now
the responsibility of roles alone. If a particular property is desired then it must
be shown that the roles satisfy it. But this is a problem that is decidable for finite
state systems – model-checking. Thus an architect can easily specify a protocol
and be sure that it has the required properties. Designers can also feel reassured
that the architectural protocols are indeed realizable in principle, without the
need to transform them into centralized ones, which might invalidate architec-
tural analyses concerning scalability, performance, reliability, information flows,
etc., as aforementioned.

So in the case of Fig. 1a, the architect should quickly realize that the desired
property is not satisfied by the roles and opt for a centralized protocol instead, by
adding a centralized controller. Thus, surprises are avoided – it becomes clear
early on whether something can be made to work in a decentralized manner
or not, as it is tested by the more experienced architect. The less experienced
designers do not have to waste their time trying to achieve the impossible or
take the easy (and dangerous) way out and turn a decentralized protocol into
a centralized one. We essentially turn the glue from constraints to be imposed,
to a property that needs to be verified, thus turning an undecidable problem
that the less experienced designers have to deal with, into a decidable one for
them (and pushing the responsibility to resolve the issue to the more experienced
architect).

2.3 Design-by-Contract for Architecture Specifications

The Java Modelling Language (JML) [7] seems to be gaining popularity among
developers, as they use it for “test-driven development” and even for static analy-
sis in some instances. Xcd attempts to follow this trend so as to maximize

Realizable, Connector-Driven Software 279

Fig. 5. Shared-data access in the Xcd ADL.

adoption by practitioners. Thus, it departs from the ADLs that adopt process
algebras, and instead follows a Design by Contract (DbC) [21] approach like
JML, specifying behavioural aspects of systems through simple pairs of method
pre-/post-conditions, in a syntax reminiscent of JML. DbC allows for a formal
specification of systems, as it is based on Hoare’s logic [13] and VDM’s [5] rely-
guarantee specification approach. DbC has so far been mainly considered for
programming languages (e.g., Java through JML), which is why contracts have
been restricted to provided services (i.e., class methods).

There are very few ADLs that employ DbC. The work of Schreiner et al. [26]
along with the TrustME ADL [25] are some of the very few examples applying
DbC at the level of software architecture. Schreiner et al.’s work transforms
connectors into components themselves, which we believe loses many of the

280 M. Ozkaya and C. Kloukinas

connector benefits, as these are needed to essentially drive the component inter-
actions. Doing so through wrapper-like components [26] makes it difficult to
control component required ports, i.e., the ones initiating calls. This is because
a wrapper-like explicit connector can delay a call request, while a proper con-
nector can ensure that it never gets triggered at all. TrustME does not provide
support for user-specified, complex connectors at all, as it essentially follows the
approach of Darwin [18], enriching it with contracts.

Our approach attempts to apply DbC in a more comprehensive manner,
covering component methods and events. As we view connectors as first-class
elements, we use DbC to specify their behaviour as well. Xcd further extends
DbC by structuring component port action contracts into separate functional
and interaction parts.

3 DbC-based Specifications with XCD

Figure 4 gives the meta-model of the Xcd language. There are two main elements
for specifying software architectures with Xcd: components (primitive and com-
posite ones), used to specify abstractions of computational units in a system, and
connectors, that specify the complex interaction protocols of components.

We use the shared-data case study [1] to facilitate the presentation of the
Xcd language. In this system, user components retrieve and update some shared
data stored in a memory component. The memory component accepts requests
for data retrieval only if the data has been initialized – otherwise, it rejects the
request and commences a chaotic behaviour.

The Xcd specification of the shared-data access is given in Fig. 5. Two
primitive component types are specified, user in lines 1–13 and memory in lines
15–31. Both the user and the memory comprise data-variables (line 2 and line 16
respectively) representing their states and ports that are the points of interaction
with their environment. There is also a connector type memory2user specified
(lines 1–32 at the right side), which represents the interaction between a memory
and a user. Connector memory2user uses some other connectors (here built-in
ones) to establish the communication links between its role ports (lines 26–31).
Its roles (userRole at line 6 and memoryRole at line 14) constrain the behaviour
of the components that assume them. Finally, we specify a composite component
type sharedData (lines 34–44 at the right side), which includes component and
connector instances and represents their configuration.

Primitive Component Types. Component user has a required port puser r (lines
3–7) through which it makes method calls to its environment (i.e., the mem-
ory) to retrieve the value of some data. Port puser r has a single method get,
whose functional contract ensures post-assignment clause (lines 4–5) assigns
the method’s result to the component data – it has no pre-condition (i.e., a
requires clause). Component user also has an emitter port puser e (lines 8–
12) to emit events. Port puser e declares a single event set, whose functional
contract promises clause assigns its parameter to 7 – the event has no pre-
condition (i.e., a requires clause) or post-assignment (i.e., an ensures clause).

Realizable, Connector-Driven Software 281

It should be noted here that while method and event requires clauses are
conditions, method and event promises and ensures clauses are assignment
sequences, not conditions. A requires clause specifies the functional require-
ments for a method call (or event) to be acceptable, while an ensures clause
states how the state should be modified by the call. Finally, a promises clause
states what values the parameters of a call request will have.

Component memory has an array of provided ports pmem p (lines 18–24). It
uses each of these ports to provide method get to a different user component
instance. Unlike the contracts of component user, the contract of these ports
have an additional @Interaction part (lines 19–20). This states that a pmem p
port will accept a get method-call only if the component data initialized m
is true. Otherwise, the call is rejected and the component starts behaving in a
chaotic manner. If a call is accepted, then the functional contract (lines 21–22)
is considered, which sets the result of the method call to be the value of the
component sh data variable. The array of consumer ports pmem c (lines 25–30)
serves to receive set events. Reception of such an event modifies the component
state.

Complex Connector Types. Connector type memory2user (lines 1–32 at the
right of Fig. 5) specifies the protocol used in the system between the memory
and the users. It serves to ensure that the memory will not behave chaotically.
The connector has two roles, userRole (lines 6–13) and memoryRole (lines 14–
25). Role userRole has a required port-variable pvuser r (lines 7–8), reflect-
ing port puser r of component user, and an emitter port-variable pvuser e
(lines 10–11), reflecting port puser e. These port-variables do not impose any
interaction constraints on the role.

Role memoryRole has a provided port-variable pvmem p (lines 16–19) reflect-
ing port pmem p of component memory. Unlike the port-variables of userRole,
this port-variable introduces extra interaction constraints on the behaviour of
its methods. It requires that calls to method get are considered only when the
role’s initialized data is true, thus delaying them while this condition is not
satisfied.

The role’s consumer port-variable pvmem c (lines 20–24) reflects port pmem c
of component memory. It uses its interaction contract to note that the memory
has been set, through its ensures clause. The combination of the contracts of the
two ports means that the memory cannot start behaving chaotically, as requests
at non-accepting states are delayed until they are safe.

Composite Component Types. The sharedData component type (lines 34–44 at
the right of Fig. 5) includes two instances of the user component and a single
instance of the memory component. The component instances are passed as argu-
ments to the two connector instances, in lines 38–43, to bind them together and
constrain their interactions.

Xcd Notation and Expressiveness. As can be seen by Fig. 5, the notation used
for DbC in the Xcd ADL follows a JML-like syntax, which should prove much
easier for practitioners to understand and use effectively than formal languages

282 M. Ozkaya and C. Kloukinas

such as process algebras. Indeed, we would expect one to be able to use Xcd with
minimal training. At the same time, Xcd introduces connector constructs that
are essentially (decentralized) algorithms (i.e., protocols) – configuration pat-
terns of component variables, on which we have imposed additional interaction
constraints. Apart from π calculus’ ability to send channels as messages, which
Xcd does not support, the Xcd ADL should allow architects to express the sta-
tic architectures that one can express now with ADLs based on process algebras.
However, Xcd does not support dynamic architectures currently.

4 XCD Semantics

Figure 6 shows the general behaviour of a (primitive) component described using
Dijkstra’s guarded command language [9]. Each instance is a concurrent process,
that initializes its data and then enters a loop, executing the actions of its ports
(lines 6–12) or performing a skip action (line 14). The behaviour of port actions
is shown in Fig. 7 for the four different port types.

Provided and required ports (Fig. 7(d) and (b)) employ a pair of channels
(request and response) to realize the method call interaction protocol, while
emitter and consumer ports (Fig. 7(c) and (a)) employ a single channel (stream).
Channels are essentially (finite) buffers of messages and a send action adds
another message into them. A read action retrieves some message from a channel
(in a non-deterministic order). Finally, a readCond action retrieves a message
in a non-deterministic order, with the additional constraint that its parameters
satisfy a predicate, which is passed as the fourth parameter of the action (see
lines 1–2 of Fig. 7(d)).

As can be seen from Fig. 7, all port actions correspond to a single atomic block
of guarded actions, apart from required port method requests that correspond
to two atomic blocks of guarded actions (separated by a single blank line at line
9). Event and method guarded action patterns have been aligned vertically so
as to make it easier to establish their similarities and differences.

An emitter port event (Fig. 7(a)) attempts to assign the event parameters in
a way that satisfies its own and its roles’ interaction constraints. If successful,
it assigns the component and role data and sends the event over the port event
stream channel. If the parameter values do not satisfy the interaction constraints
then it simply passes control back to the component (possibly retrying). The role
interaction constraints RICs(p, e) are the delaying constraints imposed by the
port-variables assumed by the event’s port and associated with this event, as
shown in Fig. 6(b).

A required port method (Fig. 7(b)) is enabled if no method request is cur-
rently active on the port, in which case it assigns the parameters of this method
request and verifies that they satisfy the method’s interaction constraints. If
they do, it notes that the method is currently active on this port and emits the
method request over the channel p.request. A second atomic block is enabled
when there is a response for this method. So, if the functional constract pre-
condition (requires clause) is satisfied, then, it assigns the component data

Realizable, Connector-Driven Software 283

Fig. 6. Semantics of components.

Fig. 7. Semantics of a port p’s actions.

284 M. Ozkaya and C. Kloukinas

according to the ensures clause of the method functional contract (and simi-
larly for its roles).

Consumer events and provided methods are the dual of these, with the dif-
ference that a provided method is a single atomic block instead of two. Another
difference is that, unlike the former actions, these latter port actions can cause
the component to exhibit chaotic behaviour, as seen in lines 9 of Fig. 7(c) and
(d). This occurs when the action’s delaying interaction constraints (in line 2)
imposed by its associated roles are satisfied but the component interaction con-
straints at line 4 are not satisfied.

Race Conditions. Being atomic blocks of actions, emitter/consumer port events
and producer port methods do not suffer from race conditions. Required port
methods on the other hand are by necessity modelled as a pair of states – one
initiating a method call and another receiving the method response. The post-
assignments (ensures clause) at the latter can suffer from two types of race-
conditions. First, an assignment may attempt to use the value of some data
at the pre-state, i.e., when the request was being made. If another port has
modified this value, then we have a write-read kind of race-condition. If an
assignment tries to update the value of some data that has been updated in the
meantime by another port, then we have a write-write kind of race-condition. In
our semantics we employ extra variables (not shown in the presented semantics)
to identify these conflicts and notify architects about them.

4.1 Data Assignments in Contracts

Xcd contracts use assignments to establish values for action parameters and
to update the data after these actions. This is done so as to render the result-
ing formal models more tractable. So Xcd does not accept post-conditions like
“ensures: 0 ≤ x + y + z ≤ 25;”. In order to ensure that variables x, y, z receive
values that meet such a condition we would need to consider all possible com-
binations of their values in the range [0, 25], i.e., consider 263 = 17576 cases.
Instead, Xcd requires that the specification is transformed to a sequence of
assignments, such as “ensures: x ∈ [0, 25]; y ∈ [0, 25 − x]; z ∈ [0, 25 − x − y];”.
Through the use of a generalized form of assignment that also supports ranges
as here, Xcd permits non-deterministic choices but it requires that these choices
are done sequentially and only depend on constants and variables that have been
assigned already. So in this case, there would be at most 26 ∗ 3 = 78 cases to
consider, which is a substantial reduction.

Assignments are treated differently for action parameters (assign params)
and data updates (assign data), e.g., as seen in lines 2 and 12 of Fig. 7(a).
This is because missing parameter assignments are added implicitly by assigning
unconstrained parameters some values from their domain. This is not however
done for missing data updates. It is instead assumed that these data should
not be updated and retain whatever value they have at that point. The other
difference between assigning parameters and data has to do with how the well-
definedness of an assignment sequence is done in each case.

Realizable, Connector-Driven Software 285

Well-Definedness of Assignment Sequences. Let us consider an assignment
sequence vi := ei, where 1 ≤ i ≤ n and vi and ei are a variable and an
expression respectively. For assign params, an assignment expression sequence
as a whole is well-defined iff the left hand side is a parameter and the right hand
side ei of each assignment expression is an expression constructed according to
the following rules:

Expression: 1. a Formula f
2. a range, i.e., [min,max], where min and max are Formulas

and min ≤ max .

Formula: 1. a Formula f (e.g., +,−, /, ∗) of formulas f1, · · · , fn.
2. a Term t

Term: 1. a constant, e.g., some Boolean or integer value.
2. a (known) variable, i.e., one of:

(a) a vj , where j < i
(b) a (pre-state) value of some data dk

As aforementioned, if the set of vi is a strict subset of the set of parameters used
in the respective action, then the other parameters are assigned values in their
domain in a non-deterministic manner.

For assign data, an assignment expression sequence as a whole is well-
defined iff the left hand side is a component or role data variable and the right
hand side ei of each assignment expression is constructed according to the same
rules as previously. In this case though all parameters are variables with known
values, so a term can also be a parameter pm.

Unlike assign params that assigns all parameters some value by choosing
some non-deterministic value from their domain if not constrained otherwise,
assign data does not modify data variables that have not been assigned explic-
itly in the model.

4.2 XCD and Architecture Realizability

All constraints inXcd are local, expressed on local component/role data and para-
meters. Indeed, components do not even synchronize on message emission – asyn-
chronous channels are used to ensure that they are completely decoupled and
independent.

Non-local interaction constraints, like those imposed by the glue in Fig. 2,
cannot be expressed in Xcd. This ensures that Xcd connectors are always
realizable in a way that respects the architecture, i.e., without transforming
decentralized designs to centralized ones. When non-local interaction constraints
are desired, they can be verified as properties of some connector or configuration.

Data themselves are encapsulated either by components or connector roles, so
there are no aliasing problems, and concurrency is controlled through component
ports. Each port is a concurrent unit (a monitor), thus ensuring that actions of
a port are mutually exclusive to each other. As event emission/consumption and

286 M. Ozkaya and C. Kloukinas

Table 1. Verification results.

method servicing (at provided ports) are atomic, architects need only guarantee
(and verify) that method calling (at required ports) will not lead to data race
conditions.

5 Formal Verification Analysis

The semantics of Xcd described in Sect. 4 are used to automatically transform
Xcd architectures into corresponding ProMeLa models, which can be analysed
by the Spin model-checker [14]. Each component instance of an architecture
becomes a ProMeLa process. Instances of primitive component types follow
the patterns described in Figs. 6 and 7. For composite component instances
we produce again ProMeLa processes that initiate the processes of their sub-
components and establish the channels that these should be using. The trans-
formation to ProMeLa models is done through a tool that is available from the
Xcd web page [22], along with other case studies and information about the
Xcd language.

We easily transformed the shared data specification in Sect. 3 into Promela
and analysed the Promela codes using the model checker. The verification results
are given in Table 1. Its verification allowed us to quickly evaluate whether the
system components behave compatibly without deadlocking. Although in some
cases, the memory may go beyond the required amount for a full verification
(indicated with a † in Table 1), designers can still obtain useful information
about their system models and increase their confidence in their correctness.

In the rest of this section, we discuss some of the issues that we identified
through the formal verification.

5.1 Avoiding Chaotic Behaviour Through Connector Protocols

The memory component is specified in Listing 3 with an accepts guard stating
that it will enter chaotic behaviour if it receives a call for method get when

Realizable, Connector-Driven Software 287

Fig. 8. Constraining role user of connector memory2user specified in Fig. 5.

Table 2. Verification results for the constrained user role of Fig. 8.

Model Size State-vector (in Bytes) States Memory (in MB) Time (in sec)

Stored Matched

1 user 148 1744 1374 128 0.00

2 users 236 286735 479528 182 0.95

3 users 336 1998023 5594597 662 5.92

4 users 424 20477758 70199771 7024† 81.10

the data is not yet initialized. This is avoided through the memory2user connec-
tor that constrains memory such that it does not receive requests for method
get before the event set that initializes its data. Indeed, when we remove this
constraint from the memory role of the connector and re-run our verification,
an assertion violation error occurs identifying that the memory component has
entered a chaotic behaviour.

5.2 Reducing the State Space

When the number of user components in the system configuration becomes more
than 2, the state space of the formal model increases and hinders a full verifi-
cation. Therefore, design errors may be left uncaught. The state space can be
reduced by further constraining the possible behaviour of components. To do
so, we introduce further interaction constraints on user components via the user
role of the memory2user connector. When the user role is modified as shown in
Fig. 8, user components cannot make requests for method get before they emit
event set. When we re-run the verification the state space is reduced as shown
in Table 2, enabling us to fully verify a system with three users.

6 Conclusions

The Xcd ADL supports user-defined, complex connectors, that can recursively
use other connectors to model protocols and sub-protocols, in the same way as
components can have sub-components. Complex connectors allow architects to

288 M. Ozkaya and C. Kloukinas

increase the modularity of their specifications, and produce component specifi-
cations that are agnostic to their usage contexts. This increases the re-usability
of component specifications and can help CBSE by permitting the development
of general component specifications. It also helps with the reuse of protocol
specifications as these can be specified independently of specific usage instances.
Finally, it aids architectural exploration, since architects can easily replace pro-
tocols and components without having to rewrite their specifications.

Many ADLs have supported connectors so far, with Wright [1] being the first
one to provide formal support for them. Unfortunately, the connector structure
proposed by Wright, and all those inspired from Wright ever since, permits
the specification of unrealizable architectures. We showed how this can occur
and presented Xcd’s approach for avoiding this issue and guaranteeing that
connectors will always be realizable.

The paper also presented how Xcd uses and extends Design-by-Contract so
as to hopefully make it easier for practitioners to use it for specifying the archi-
tectures of their systems and for communicating these architectures to others.
The transformation of the Xcd language constructs was shown with the use of
patterns of Dijkstra’s guarded commands that can be easily modelled with the
Spin model-checker’s language ProMeLa.

Preliminary verification results showed promise, though the current tool sup-
port needs to be improved. In the future we plan to apply a number of patterns
to reduce the state space of the models produced and explore ways to perform
other optimizations, e.g., to reduce the state size itself.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997)

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Softw. Eng. 29(7), 623–633 (2003)

3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. Theor. Comput. Sci. 331(1), 97–114 (2005)

4. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Else-
vier, Amsterdam (2001)

5. Bjørner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978)

6. Canal, C., Pimentel, E., Troya, J.M., Canal, C., Pimentel, E., Troya, J.M.: Spec-
ification and refinement of dynamic software architectures. In: Donohoe, P. (ed.)
WICSA. IFIP Conference Proceedings, vol. 140, pp. 107–126. Kluwer, Dordrecht
(1999)

7. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

8. Delanote, D., Baelen, S. V., Joosen, W., Berbers, Y.: Using AADL to model a
protocol stack. In: ICECCS, pp. 277–281. IEEE Computer Society (2008)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

Realizable, Connector-Driven Software 289

10. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Lan-
guage (AADL): An Introduction. Technical report, Software Engineering Institute
(2006)

11. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to
build systems out of existing parts. In: ICSE, pp. 179–185 (1995)

12. Garlan, D., Shaw, M.: An introduction to software architecture. In: Ambriola, V.,
Tortora, G. (eds.) Advances in Software Engineering and Knowledge Engineering,
pp. 1–39. World Scientific Publishing Company, Singapore (1993). Also appears as
SCS and SEI technical reports: CMU-CS-94-166, CMU/SEI-94-TR-21, ESC-TR-
94-021

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

14. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Reading (2004)

15. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer connector syn-
thesis: beyond state of the art in middleware interoperability. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg
(2011)

16. Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.R.O.: Document-
ing component and connector views with UML 2.0. Technical report CMU/SEI-
2004-TR-008, Software Engineering Institute (Carnegie Mellon University) (2004)

17. Luckham, D.C.: Rapide: a language and toolset for simulation of distributed sys-
tems by partial orderings of events. Technical report, Stanford University, Stanford,
CA, USA (1996)

18. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT
FSE, pp. 3–14 (1996)

19. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

20. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

21. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
22. Ozkaya, M.: Xcd website (2013). http://www.soi.city.ac.uk/abdz276/xcd.html
23. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-

SOFT Softw. Eng. Notes 17(4), 40–52 (1992)
24. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.

Softw. Eng. 28(11), 1056–1076 (2002)
25. Schmidt, H., Poernomo, I., Reussner, R.: Trust-by-contract: modelling, analysing

and predicting behaviour of software architectures. J. Integr. Des. Process Sci.
5(3), 25–51 (2001)

26. Schreiner, D., Göschka, K.M.: Explicit connectors in component based software
engineering for distributed embedded systems. In: van Leeuwen, J., Italiano, G.F.,
van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS,
vol. 4362, pp. 923–934. Springer, Heidelberg (2007)

27. Tripakis, S.: Undecidable problems of decentralized observation and control. In:
Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL,
USA, vol. 5, pp. 4104–4109. IEEE, December 2001

28. Tripakis, S.: Undecidable problems of decentralized observation and control on
regular languages. Inf. Process. Lett. 90(1), 21–28 (2004)

http://www.soi.city.ac.uk/abdz276/xcd.html

Improving Recommender Systems
with Simplification Logic to Manage

Implications with Grades

J. L. Leiva1, M. Enciso1(B), C. Rossi1, P. Cordero2, Á. Mora2, and A. Guevara1

1 Department of Languages and Computer Science,
University of Málaga, Málaga, Spain
{jlo,enciso,rossi,guevara}@uma.es

2 Department of Applied Mathematics, University of Málaga, Málaga, Spain
{pcordero,amora}@uma.es

Abstract. Recommender systems are considered powerful tools to sug-
gest items to users according to their interests. The main problem in this
process is the big amount of items to be managed. In this work we take
advantage of the user context information to prune the original set of
items stored in the data set. By providing a smaller set of data to be
managed, we will improve the efficiency of the recommender system. We
use fuzzy relations and implications with grades to specify the context
and Simplification Logic to develop a linear pre-filtering process. Finally,
we show the benefits of our approach with an illustrative example on the
tourism sector.

Keywords: Recommender systems · Fuzzy logic · Context · Formal
concept analysis

1 Introduction

In recent years, the use of recommender systems has become popular in many dif-
ferent applications to offer a personalized selection of products. The big amount
of items to be recommended causes that in many cases users feel overwhelmed
because they have to select from a wide range of alternatives. In this work we
focus on tourism recommender systems, that should implement filtering mecha-
nisms to provide a set of points of interest (POIs) which are accurately adjusted
to the real needs of the tourist. This type of system is necessary in tourist desti-
nations [1], because this way, tourists can easily and quickly find products that
best adapt to their preferences among the extensive list of POIs that destination
websites usually offer.

In [2], the authors presented a classification of the types of most commonly
used recommender systems:

– Collaborative: it provides results obtained from the qualifications made by
users. The user will be recommended items that people with similar tastes
and preferences liked in the past.

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 290–305, 2014.
DOI: 10.1007/978-3-662-44920-2 18

Improving Recommender Systems with Simplification Logic 291

– Content-based: it categorizes items and suggests products that have similar
characteristics to those requested by the user or to those that he evaluated
positively in the past [3].

– Demographic: it classifies users by different personal parameters, and recom-
mendations are made taking into account the demographic group to which
the user belongs.

– Knowledge-based: it has information about how an item satisfies a user, and
establishes a relationship between need and recommendation.

– Utility-based: it recommends those items that maximize an utility function.
– Case-based: it uses information about resolving problems (cases) previous to

the resolution of the present case. They can be viewed as a subtype of the
knowledge-based and utility-based recommender systems.

In a detailed description of content-based recommender systems, they can be
classified into two groups:

– With memory: in this case, it is common to have information about user pref-
erences and take into account items previously selected by the user, as well as
how he or she evaluated them. The main problem with recommendation sys-
tems based on content with memory is that they should manage information
on previous recommendations and/or user profiles.

– Without memory: it is not necessary that the user has evaluated items nor
knowledge about user preferences. In these systems, the users must explicitly
specify their current preferences. Therefore, the users must indicate some char-
acteristics that the products should have and that the system will recommend.

In order to be used in tourism systems, a significant problem detected in
previous models is not using context attributes [4]. The context is a multi-
faceted concept that has been studied in different disciplines, including Com-
puter Science (mainly in Artificial Intelligence), Cognitive Science, Linguistics,
Psychology and Organizational Science [5]. In order to improve the quality of
recommendations, the system should not only use the qualifications and charac-
teristics of different POIs, or tourist preferences. Systems need to handle infor-
mation of different nature such as weather, company, schedules, location, time,
etc. [6]. Some authors include the user’s emotional status and expand the defi-
nition to any information that can be characterized and that is relevant to the
interaction between an user and an application [7].

The types of recommender systems (described above) that only consider
items and users are called recommender systems in two dimensions [4].

Therefore, in order to improve the recommendations, we have to take into
account the contextual information available as additional categories of data [2].
In [6] the authors affirm that the recommender system should take into con-
sideration three dimensions (users, items and context). They propose different
paradigms of context-aware recommender systems:

– Contextual pre-filtering (or contextualization of recommendation input): con-
textual information drives data selection or data construction for that specific
context. The selected data will be the input of a 2D recommender system.

292 J.L. Leiva et al.

– Contextual post-filtering (or contextualization of recommendation output):
the ratings are predicted using any traditional 2D recommender system on
the entire data. Afterwards, the resulting set of recommendations is adjusted
(contextualized) for each user using the contextual information.

– Contextual modeling (or contextualization of recommendation functions). In
this recommendation paradigm, contextual information is used directly in the
modeling technique as part of rating estimation.

In our opinion, a recommender system for a consolidated tourist destination
(probably with thousands of POIs) should apply the contextual pre-filtering
paradigm. Thus, the recommender system works with a reduced number of POIs,
decreasing the execution time. Another important advantage of this approach is
that it can be combined with any existing 2D recommendation technique.

The recommender system proposed in this paper uses a content-based con-
textual pre-filtering, based on contextual attributes and desirable characteristics
of the POIs. Therefore, it is not necessary to have information about previous
visits or qualifications of other tourists, i.e., we apply a content-based recom-
mendation without memory.

Some authors [8] propose the use of fuzzy logic as a formal basis for recom-
mender systems. Nevertheless we are looking for a new approach which allows
us to also cover another question proposed in [9]: incorporation of diverse con-
textual information into the recommendation process. In this paper we tackle
this issue by means of the Formal Concept Analysis (FCA).

From the point of view of Philosophy, a concept is a general idea that corre-
sponds to some kind of entity and that may be characterized by some essential
features of the class. When B. Ganter and R. Wille [10,11] conceive a framework
inside the lattice theory to formalize concepts, they probably do not guess the
wide diffusion of their original work.

Nowadays, FCA has become an useful framework both in the theoretical and
in the applied areas. The works related to FCA cover from data analysis, infor-
mation retrieval, knowledge representation, etc. It is considered an outstanding
tool in emergent environments like data mining, semantic web, etc.

The main goal of Formal Concept Analysis (FCA) is to identify in a binary
table the relationships between set of objects and set of attributes. These rela-
tionships establish a Gallois Connection which allows us to identify the concepts
using a formal framework inside the lattice theory. Apart from building the
concept lattice itself, one of the key problems is to extract the set of attribute
implications which hold in the concept lattice. Implications constitute important
information that is extracted in a separate stage from data and constitute a dual
representation of the lattice itself. One of the most important advantages in the
use of implications is that they may be managed using Functional Dependencies
Logics [12].

Another novelty in this work is the integration of the context into the FCA
method by means of set of implications. We propose the generation of a set
of fuzzy implications which corresponds with a given context. Thus, when the
user identifies his/her context (company, weather, etc.), the system enriches the

Improving Recommender Systems with Simplification Logic 293

Fig. 1. Context-based recommender system.

specification by adding a set of new implications which corresponds with this
context. The new information is treated with our fuzzy logic to automatically
reduce the specification by removing redundancy. The reduction in the set of
implications allows a more efficient validation process which prune the original
set of POIs, and therefore the content-based 2D recommender works with a
smaller set of POIs. In Fig. 1 the system architecture of our proposal is depicted.

The paper is organized as follows: in the next section we analyze some related
works. Section 3 introduces the theoretical background of our work and describes
an executable logic to manage fuzzy implications, named FASL. It will be used
in Sect. 4 to introduce a context-aware recommender system with a solid base.
Finally some conclusions and future works are presented.

294 J.L. Leiva et al.

2 Related Works

In [8] fuzzy logic is presented as a proper framework for tourist recommenders,
addressing the problems described in [9]. Particularly, their approach uses fea-
tures of items as background data and users feedback such as ratings of items as
input. That paper provides a solid and well-founded method to incorporate the
subjectiveness, imprecision and vagueness that usually appear in items features
and users feedback. One outstanding result of the paper is that, despite of the
flexible and enriched language to specify user interest and item features, they
develop a method to infer recommendations which shows an improvement in
precision without loss of recall.

Some authors have used FCA methods as an interesting approach in rec-
ommender systems. In [13] the authors propose FCA as an approach to group
items and users into concepts. That work may be considered a collaborative rec-
ommender system and it shows how FCA may be used to find neighbours in a
efficient and accurate way. A similar and recent approach to the same problem
with similar results may be found in [14]. These works shows that FCA may be
successfully used in collaborative recommenders.

In this paper we work in this line and enrich the previous results in some
points. First, we aim to add a more flexible specification by considering fuzzy
relations in FCA. This extension was first introduced in [15]. The problems that
arise are related with the development of new methods to infer the concepts and
manage implications in fuzzy relations. We apply our previous theoretical results
presented in [16] to provide a sound and complete fuzzy logic for functional
dependencies as a framework for the efficient management of implications.

3 Implications with Grades

As we mentioned in the introduction, we propose the specification and man-
agement of the context to enrich content-based recommendation systems. Our
main goal is to design a uniform way to incorporate user interests and context
knowledge in form of constraints that provide a pruning of the items. Thus, the
reduction in the number of items will render a faster execution of content-based
recommenders.

Our approach is focused on the use of implications with grades (or fuzzy
implications), which has been very well stablished in the area of Formal Concept
Analysis [11]. They are formulas of the form

A
x⇒ B, x ∈ [0, 1] (1)

such as

{
0.2/y1, y2

} 0.7⇒ {
0.8/y3

}
. (2)

Formulas of the form (1) have an interpretation given by object-attribute data
with grades in which (2) means: every object that has attribute y1 to degree

Improving Recommender Systems with Simplification Logic 295

at least 0.2 and attribute y2 to degree 1, has (with a truthfulness threshold of
0.7) attribute y3 to degree at least 0.8.

This interpretation extends the attribute implications in binary data saying
that presence of certain attributes implies presence of other attributes. The
incorporation of fuzzy sets in the attributes and a degree in the dependency
itself provide the maximum level of uncertainty specification in the implications.

Nevertheless, as we shall see later, the high expressive power of this fuzzy
implications may be managed in an equivalent and simpler way by assuming the
fuzzy value of the implication inside its right-hand side. Thus, we get a higher
expressive power in the specification and a simpler language for the automated
processing.

The implications may be then transformed into formulas of the form

A ⇒ B (3)

The implications (or rules) used in this paper serve several purposes. From
the point of view of knowledge acquisition, the rules represent important if-
then patterns that can be derived from data and are capable of representing
various if-then dependencies that are present in the data. For instance, [17] shows
that each object-attribute data table representing ordinal (graded) dependencies
between objects and their attributes (features) can be characterized by a base
of rules like (1). Thus, bases of this type of rules are concise representations of
knowledge inferred from data. In order to gain more knowledge from a base, one
has to come up with an efficient inference system. In Sect. 3.2 we summarize the
FASL axiomatic system for implications and an automated method to reason
about dependencies in data involving grades. An automated process is used to
reduce the original set of implication so that an efficiency improvement of the
recommender system is produced.

3.1 FASL Logic

In this paper we will make use of a logic for dependencies in data with grades
named FASL. It was presented in [16] and also an efficient automated reasoning
method based on its axiomatization was provided.

We assume that the set of degrees, such as 0.2 or 0.8 in (2), is partially ordered
and equipped with particular aggregation operations. Such structures are known
from fuzzy logic [18–21], aggregation theory [22], and have been used in various
models for combination of ordinal information [23]. In particular, we denote
the set of degrees by L and assume that it forms an algebraic structure L =
〈L,∧,∨,⊗,→, �,∗ , 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice, 〈L,⊗, 1〉 is
a commutative monoid, and the following conditions are fulfilled:

– ⊗ and → satisfy the following adjointness property:
for all a, b, c ∈ L, a ⊗ b ≤ c if and only if a ≤ b → c;

– � and ∨ satisfy the following adjointness property:
for all a, b, c ∈ L, a � b ≤ c if and only if a ≤ b ∨ c;

296 J.L. Leiva et al.

– ∗ is a unary operation (so-called hedge) satisfying: for all a, b ∈ L,
1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ → b∗, and a∗∗ = a∗.

We recall that the above conditions mean that 〈L,∧,∨,⊗,→, 0, 1〉 forms a com-
plete residuated lattice [19,21] and 〈L,∧,∨, �, 1〉 is a Brouwerian algebra (or
equivalently, its dual 〈L,∨,∧, �, 0〉 is a Heyting algebra, which implies that the
lattice is distributive). ⊗ and → are interpreted as a many-valued conjunction
and implication; � as a many-valued non-implication (used for set difference);
and ∗ as an intensifying hedge such as “very true”, see [24].

The most commonly used set L is the real unit interval L = [0, 1] (or its finite
subchains), in which case ∧ and ∨ are the minimum and the maximum, ⊗ and
→ a left-continuous t-norm and its residuum, respectively, and � is given by

x � y =
{

x if x > y,
0 otherwise. (4)

Two important, boundary cases of hedges are identity and so-called globalization
(i.e. 1∗ = 1 and x∗ = 0 for all 1 �= x ∈ L). We use the usual notions of L-sets,
graded subsethood, and define if-then formulas like (2) and their interpretation
in a general way (cf. early approaches like [25]), see [17] for details.

A fuzzy set in a universal set U is a mapping A : U → [0, 1] and the set
operations are defined pointwise as follows: for A,B : U → [0, 1], for all u ∈ U ,
(A∪B)(u) = A(u)∨B(u), (A∩B)(u) = A(u)∧B(u), (A⊗B)(u) = A(u)⊗B(u),
(A → B)(u) = A(u) → B(u), (A � B)(u) = A(u) � B(u), and A∗(u) = (A(u))∗.
Moreover, ∅ and U are the fuzzy sets in which, for all u ∈ U , ∅(u) = 0 and
U(u) = 1.

The set inclusion can be extended as follows: for A,B : U → [0, 1], the grade
in which A is a subset of B is

S(A,B) =
∧

u∈U

(A(u) → B(u))

Particularly, if S(A,B) = 1 we write A ⊆ B and, in this case, A(u) ≤ B(u)
for all u ∈ U .

We are going to work with finite fuzzy sets, that is, fuzzy sets in which at
most a finite number of elements has non-zero values. In the notation that we are
going to use, zero-valued elements does not appear and grade 1 is omitted. So,
for example, A = {b/0.4, d/0.1, f} denotes that A(b) = 0.4, A(d) = 0.1, A(f) = 1
and A(x) = 0 otherwise.

As we have presented before, we will organize the information of the rec-
ommender system using the fuzzy extension of Formal Concept Analysis (FCA)
introduced in [15] that may be consider the most current trend in this area.

The starting point in fuzzy FCA is the fuzzy relation1 that captures the
degree in which a given attribute holds on an object. Specifically, given a finite
1 In FCA literature, this fuzzy relation is usually called “context” but we omit

this denomination to avoid confusion with the term context used in recommender
systems.

Improving Recommender Systems with Simplification Logic 297

set of objects X and a finite set of attributes Y , fuzzy FCA extracts knowledge
from a fuzzy relation I : X × Y → [0, 1] where I(x, y) = ϑ means that ϑ is the
degree in which the object x has the attribute y. Usually, the fuzzy relation I
is showed in a table in which rows represents objects, columns corresponds to
attributes and in position (x, y) on the table appears the degree I(x, y).

An important information that can be extracted from the fuzzy relation is
given in terms of attribute implications.

They are formulas of the form A ⇒ B where A and B are fuzzy sets of
attributes. The grade in which this attribute implication is satisfied by a fuzzy
relation I is given by

||A ⇒ B||I =
∧

x∈X

(S(A, Ix)∗ → S(B, Ix))

where Ix denotes the fuzzy set in which Ix(y) = I(x, y) for all y ∈ Y . So, for
example, {

b/0.2, d
} ⇒ {

c/0.8

}
(5)

means that every object that has attribute b to degree at least 0.2 and attribute
d to degree 1, has attribute c to degree at least 0.8.

Observe that the left and right hand side of the implications (the A and B
sets) may be empty. If B if the empty set, the implication captures an informa-
tion which always valid and it has not to be considered in the inference process.
Nevertheless, if the A set is empty the implication provides a relevant infor-
mation, particularly in the application we are working with. For instance, the
implication ∅ ⇒ {

c/0.8

}
is interpreted as follows: the c attribute must have a

degree at least 0.8.
As we have previously mentioned, user context specification will be a set of

formulas where a grade is added to the implications. The grade represents a
threshold of truthfulness of the implication. Given a fuzzy relation I, A

ϑ=⇒ B
denotes that the implication A ⇒ B holds to degree at least ϑ.

The following theorem, introduced in [17], leads to an equivalent representa-
tion of implications with grades:

Theorem 1. Let A,B ∈ LY , ϑ ∈ L and I be a fuzzy relation

ϑ ≤ ||A ⇒ B||I if and only if ||A ⇒ ϑ ⊗ B||I = 1

This theorem allows us a reduction in the complexity of the original language,
so that implications with grades will be reduced to equivalent implications where
the grades are translated to the right-hand side of the dependency using the t-
norm. We use ϑ ⊗ B to denote so-called ϑ-multiple of B which is a fuzzy set
such that (ϑ⊗B)(y) = ϑ⊗B(y) for all y ∈ Y . Thus, for instance {y1,

0.8 /y2} 0.9⇒
{0.6/y3} is equivalent to {y1,

0.8 /y2} ⇒ {0.9⊗0.6/y3}.The above result eases the
management of implications.

Now, we introduce FASL axiomatization, which was proven to be complete
in [16]. The axiomatization forms a theoretical base for the automated prover

298 J.L. Leiva et al.

and it provides the following benefit over the Armstrong-like [12] axiomatizations
from [17,26]: the rules can always be applied to all formulas, meaning there is
no restriction on the form of the formulas that appear in the input part of the
inference rules. This property makes the rules suitable for sequential execution
by an automated prover.

3.2 FASL Axiomatic System

In [26], the authors presented an axiomatic system for reasoning with formulas
(1) that is syntactico-semantically complete w.r.t. the two kinds of semantics
described in the previous section. The system consists of three deduction rules,

[Ax] � AB ⇒ A (Axiom)
[Cut] A ⇒ B, BC ⇒ D � AC ⇒ D (Cut)
[Mul] A ⇒ B � c∗⊗A ⇒ c∗⊗B (Multiplication)

where A,B,C,D ∈ LY and c ∈ L. In [Ax] and [Cut], we use the convention of
writing BC instead of B ∪ C, etc., and in [Mul], we use a⊗B to denote so-called
a-multiple of B ∈ LY which is an L-set such that (a⊗B)(y) = a ⊗ B(y) for all
y ∈ Y (i.e., the degrees to which y ∈ Y belongs to B is multiplied by a constant
degree a ∈ L).

If R is an axiomatic system (like that containing the rules [Ax], [Cut], and
[Mul]), a formula A ⇒ B is said to be provable from a theory T by using R,
denoted by T �R A ⇒ B in the usual way.

The results in [26] have shown among other things that R consisting of [Ax],
[Cut], and [Mul] is complete in the following sense:

Theorem 2. Let L and Y be finite. Then for every set T of formulas,
T �R A ⇒ B if and only if T |= A ⇒ B. ��

The rule [Cut] is powerful but it is not directly suitable for automated deduc-
tion. We now present a new syntactico-semantically complete axiomatic system
which overcomes this drawback by replacing [Cut] by a new rule, called rule of
simplification (denoted [Sim]). The new system consists of the following rules:

[Ax] � AB ⇒ A

[Sim] A ⇒ B, C ⇒ D � A(C − B) ⇒ D

[Mul] A ⇒ B � c∗⊗A ⇒ c∗⊗B

where A,B,C,D ∈ LY and c ∈ L. The new system is called FASL (Fuzzy
Attribute Simplification Logic). The main motivation for introducing a new
axiomatic system is to obtain a system that may be used for an efficient system
of automated reasoning with formulas (1). Unlike [Cut], the new simplification
rule [Sim] can be applied to any pair of formulas which makes it more suitable for
automated provers. In [16], we prove completeness of FASL axiomatic system.

Recall that a deduction rule is called derivable in a given axiomatic system
if the output formula of the rule is provable from the input formulas of the rule.
The following assertion shows important derivable rules:

Improving Recommender Systems with Simplification Logic 299

Lemma 1. The following deduction rules are derivable in FASL: Let A,B,C,D
∈ LY . Then,

[Dec] {A ⇒ BC} � A ⇒ B; (Decomposition)
[Com] {A ⇒ B,C ⇒ D} � AC ⇒ BD. (Composition)

Using [Dec] and [Com], we can obtain observations how certain formulas can
be equivalently replaced by other formulas while retaining the semantic entail-
ment. We call theories T1 and T2 equivalent, denoted by T1 ≡ T2, if the set
of derivable formulas from both theories coincide. Using Lemma 1, we get the
following observation.

Theorem 3. Let A,B,C,D ∈ LY . The following equivalences can be obtained
from [Ax] + [Sim].

(DeEq) Decomposition Equivalence: {A ⇒ B} ≡ {A ⇒ B − A};

(UnEq) Union Equivalence: {A ⇒ B,A ⇒ C} ≡ {A ⇒ BC};

(SiEq) Simplification Equivalence: If A ⊆ C then
{A ⇒ B,C ⇒ D} ≡ {A ⇒ B,A(C − B) ⇒ D − B}.

The previous equivalences, read from left to right, enable us to remove redun-
dant information in the formulas. Namely, the sets on the right-hand sides can
be seen as equivalent simplifications of the sets on the left-hand sides (simplified
either in terms of the number of formulas as in case of (UnEq) or in terms of
the number of elements in formulas (as in case of the other equivalences).

In the automated deduction method we will make use of three depurated
generalized equivalence proved with the FASL axiomatic system. We start by
remarking that for any crisp theory T , the fact T � A ⇒ B can equivalently
be expressed by provability using formulas with empty antecedents derived from
A ⇒ B, i.e., formulas of the form ∅ ⇒ C where C ∈ LY .

Theorem 4. If T is a crisp theory, then for any A ⇒ B, we have T � A ⇒ B
iff T ∪ {∅ ⇒ A} � ∅ ⇒ B. ��

We can extend Theorem 4 from crisp theories to arbitrary theories (L-sets
of formulas) (see [16] for technical details). This result allows us to introduce
the following three equivalences which constitute the core of the simplification
procedure described below.

Theorem 5. The following equivalence can be obtained from FASL rules:

(gSiEq) Generalized Simplification Equivalence:
{∅ ⇒ A,U ⇒ V } ≡ {∅ ⇒ A′, U − A′ ⇒ V − A′},

(gSiUnEq) If U − A′ = ∅ then {∅ ⇒ A,U ⇒ V } ≡ {∅ ⇒ A′V };
(gSiAxEq) if V − A′ = ∅ then {∅ ⇒ A,U ⇒ V } ≡ {∅ ⇒ A′},

where A,U, V ∈ LY and A′ = A ∪ (S(U,A)∗⊗V). ��
These three generalized equivalences may be applied to simplify an input set

of formulas: we exhaustively use each implication to simplify (by using gSiEq,
gSiUnEq or gSiAxEq) the others implications in the set with a quadratic cost
(see Example 4).

300 J.L. Leiva et al.

4 Application of FASL to a Context Recommender
System

Up to now, we have presented all the theoretical foundations that we combine
to incorporate the context into a recommender system. Our proposal is based
on fuzzy attribute implications. Fuzzy Logic and fuzzy multivalued FCA have
been shown to be sound formalisms to specify and reasoning with uncertainty.

We propose a unified combination of context-based reasoning inside a content-
based recommendation framework. In our approach, the recommendation model
follows the next steps:

Each object that can be recommended, will be associated and defined by
their characteristics.

a. Definition of a set of implications from contextual attributes: tourism experts
design different rules called context segment, where each of them has associ-
ated a set of fuzzy implications defined on the items characteristics.

b. Identification of the user context: in this phase the system should extract user
information about different contextual attributes. Some of these attributes
may be obtained explicitly, such as the company, and other attributes may
be obtained implicitly, such as the weather. Based on the contextual attributes
that the user presents, the system retrieves different fuzzy implications for
the corresponding context segments.

c. Context simplification: our reasoning methods depurate the set of all associ-
ated implications with grades to get an equivalent and simpler set of
implications.

d. Validation process (Contextual pre-filtering phase): The final set of impli-
cations is used to validate the items to be recommended. for each point of
interest that can be recommended, the system performs a process to deter-
mine if the POI does not meet any of the implications. If a POI is not valid in
an implication, it is removed and cannot participate in the next phase. Thus,
the original set of items is pre-filtered and only a subset of them will be the
input of the recommender system.

Now, we detail how context information is represented by means of fuzzy
implications. POIs are represented by a set of attributes which describes its fea-
tures (it is cheap or expensive, its atmosphere is romantic or cheerful, etc.). Real
world data are often complex and difficult to be labelled with a binary domain
without loss of information. For instance a restaurant may have a very beautiful
garden with some tables where children may enjoy and also an intimate hall with
quiet music for a romantic dinner. We propose to store these items features by
using a fuzzy relation, as Example 1 shows. Thus, each row corresponds with an
object and each column with an attribute.

Example 1. We consider a group of POIs of a tourism destination with some
attributes to describe them (Design, Atmosphere, Price and Facilities). Each
attribute has a set of finite possible values and let us suppose that a destination

Improving Recommender Systems with Simplification Logic 301

Table 1. FCA representation of POIs.

Standard Michelin Burger Tapas Pizzeria Beach

Restaur. Star Bar Fresh Fish

Design Open space 0.3 0.1 0.3 0.3 0.1 0.9

Closed space 0.8 0.8 0.8 0.8 0.9 0.2

Atmosphere Quiet 0.8 0.9 0.3 0.2 0.3 0.3

Lively 0.5 0.2 0.8 0.8 0.8 0.8

Picturesque 0.2 0.1 0.1 0.9 0.7 0.8

Price Inexpensive 0.7 0 0.9 0.9 0.9 0.5

Moderate 0.3 0.1 0.3 0.5 0.5 0.7

Expensive 0.3 0.9 0.1 0.1 0.3 0.8

Facilities Air Cond. 0.3 0.9 0.8 0.5 0.8 0.3

Views 0.3 0.5 0.1 0.1 0.3 0.9

Terrace 0.3 0.1 0.4 0.1 0.5 0.9

expert manages the system by giving a degree to each value in the domain. Thus,
we get a table of objects with grades by flattening the information to obtain a
fuzzy relation (see Table 1).

The context of the system is represented by a set of discrete domains C =
{C1, . . . , Cn}. Each domain is associated with a dimension of the context (for
instance weather, company, time of the day, etc.) and it has a finite set of values:
Ci = {vi

1, . . . , v
i
n}. We define the user context, named state, as a n-tuple of pairs

(value of the domain, degree).

Example 2. Let Weather, Company and Time of the day be three context dimen-
sions with the following domains: Weather = {hot, warn, cloudy, rainy}, Com-
pany = {alone, friends, couple, family, large group} and Time = {morning,
afternoon, evening, night}. A user may specify his context by means of the
state: [(hot, 0.8), (afternoon, 0.8), (family, 0.7)].

We define a context segment to be an specific value of a domain and its asso-
ciated degree. We provide a framework where each context segment is associated
with a set of fuzzy implications. As we presented in Sect. 3, implications may be
labelled with a degree to express the truthfulness of the implication itself. Thus,
the degree of the context segment is inherited by all its implications.

Example 3. The implications associated with each context segment are intro-
duced as follows (observe that the degree of the context is transferred to the
implication):

– Context segment: Hot/0.8. Implications:
Expensive/0.8, ClosedSpace/0.8

0.8⇒ Air Cond./0.8, Views/0.9, Picturesque/0.2

OpenSpace/0.8
0.8⇒ Inexpensive/0.7

302 J.L. Leiva et al.

– Context segment: Afternoon/0.8. Implications:
OpenSpace/0.8

0.8⇒ Terrace/0.6, Inexpensive/0.9

– Context segment: Family/0.7. Implications:
∅ 0.7⇒ Inexpensive/0.6

ClosedSpace/0.8
0.7⇒ Air Cond./0.9

As we introduce in previous Subsect. 3.1 (see page 8), the graded implica-
tion ∅ 0.7⇒ Inexpensive/0.6 in the last context segment indicates that if the user
is accompanied by his family with degree 0.7 then the restaurant need to be
inexpensive with a degree greater than 0.6.

When a system manages a certain amount of information, we have to provide
an automatic way to analyze and extract the important information to reduce
the computation cost. In our approach we propose to use the automatic methods
developed over FASL to depurate the specification of the context and obtain a
canonical set of implications. There is a lot of works related with the search
of basis in FCA. An up to date and complete work is [27] where the authors
identify a set of properties that may be cover by different basis definitions (min-
imal, direct, canonical, etc.). These characteristics may be combined providing
a different notion of basis. The work of Bertet and Monjardet is focussed on
crisp FCA and it is still an open problem the definition of suitable definitions
for fuzzy implications basis for fuzzy FCA.

Nevertheless, as Example 4 shows, it is possible to illustrate the benefits of
using FASL to get an equivalent and simpler set of implications.

Example 4. From the specification of the above example, if we have that the con-
text provided by the user is {Hot/0.8, Afternoon/0.8, Family/0.7} then the set of
implication is built by adding all the above implication in a unified set:

{Expensive/0.8, ClosedSpace/0.8
0.8⇒ Air Cond./0.8, Views/0.9, Picturesque/0.2;

OpenSpace/0.8
0.8⇒ Inexpensive/0.7;

OpenSpace/0.8
0.8⇒ Terrace/0.6, Inexpensive/0.9;

∅ 0.7⇒ Inexpensive/0.6;
ClosedSpace/0.8

0.7⇒ Air Cond./0.9}
Using the equivalences of FASL presented in Theorem 5 we remove redundant

information and we obtain the following equivalent and simpler set of implications:
{expensive/0.8, ClosedSpace/0.8

0.8⇒ Views/0.9 , Picturesque/0.2;

OpenSpace/0.8
0.8⇒ Terrace/0.6; ∅ 0.7⇒ Inexpensive/0.6;

ClosedSpace/0.8
0.7⇒ Air Cond./0.9}

It should be noted that the redundancy removal algorithm has a quadratic
complexity with respect to the number of implications. This number is much
lower than the number of POIs (usually several thousands) in any touristic
destination. Finally, our system make use of the information associated with

Improving Recommender Systems with Simplification Logic 303

the user context, provided by the unified and depurated set of implications, to
stretch the set of POIs to be recommended to the user. For each POI in the FCA
table, we validate the set of implications, removing all the POIS that does not
satisfied them. The complexity of this last step is O(n) where n is the number
of POIs. This way, we have designed a linear contextual pre-filtering process.

Example 5. As in Example 4, if the user context is the afternoon of a hot day,
traveling with his family, our contextual pre-filtering process reduces the list of
restaurants of Table 1 to Burger and Pizzeria, since:

– Michelin star does not satisfy Expensive/0.8, ClosedSpace/0.8
0.8⇒ Views/0.9,

Picturesque/0.2

– Beach Fresh Fish does not satisfy ∅ 0.7⇒ Inexpensive/0.6

– Standard restaurant and Tapas bar do not satisfy ClosedSpace/0.8
0.7⇒ Air

Cond./0.9

This way, the set of POIs to be managed by the content-based recommender
is significatively reduced.

5 Conclusions and Future Works

Content-based recommender systems may be significatively improved by includ-
ing contextual information. To achieve this goal, we use fuzzy logic and for-
mal concept analysis as a solid framework to combine context information and
content-based recommenders. More specifically, we use Simplification Logic to
develop an intelligent and linear pre-filtering process. This process generates a
set of implications which captures the context information and that it is used to
validate the items to be recommended. The method is applied in two steps: in
the first one we translate the context information provided by a user as an state,
i.e. a simplified set of fuzzy implications, and in the second step, the implications
are used to filter the items which fulfills them.

This work may be extended by considering two future works related with
the two steps of the pre-filtering process. First, the implications induced by the
context may be enriched with implications automatically extracted from the
user interests stored in the content. We propose to use formal concept analysis
to extract this information. As a second trend, we propose to substitute the
recommender algorithms by formal concept analysis techniques.

References

1. Lymberopoulos, D., Zhao, P., König, A.C., Berberich, K., Liu, J.: Location-aware
click prediction in mobile local search. In: CIKM, pp. 413–422 (2011)

2. Leiva, J.L., Guevara, A., Rossi, C.: Sistemas de recomendación para realidad
aumentada en un sistema integral de gestión de destinos. Revista de Análisis
Tuŕıstico 14, 69–81 (2012)

304 J.L. Leiva et al.

3. Bezerra, B.L.D., de Carvalho, F.A.T.: A symbolic approach for content-based infor-
mation filtering. Inf. Process. Lett. 92(1), 45–52 (2004)

4. Adomavicius, G., Tuzhilin, A., Berkovsky, S., Luca, E.W.D., Said, A.: Context-
awareness in recommender systems: research workshop and movie recommendation
challenge. In: RecSys, pp. 385–386 (2010)

5. Bazire, M., Brézillon, P.: Understanding context before using it. In: Dey, A.K.,
Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol.
3554, pp. 29–40. Springer, Heidelberg (2005)

6. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp.
217–253. Springer, New York (2011)

7. Dey, A., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications. Hum.-Comput. Inter-
act. 16(2), 97–166 (2001)

8. Zenebe, A., Norcio, A.F.: Representation, similarity measures and aggregation
methods using fuzzy sets for content-based recommender systems. Fuzzy Sets Syst.
160, 76–94 (2009)

9. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender sys-
tems: a survey of the state of the art and possible extensions. IEEE Trans. Knowl.
Data Eng. Arch. 17(6), 734–749 (2005)

10. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

11. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, New York (1999)

12. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

13. du Boucher-Ryan, P., Bridge, D.: Collaborative recommending using formal con-
cept analysis. Knowl.-Based Syst. 19, 309–315 (2006)

14. Li, X., Murata, T.: A knowledge-based recommendation model utilizing formal
concept analysis and association. In: 2nd International Conference on Computer
and Automation Engineering (ICCAE), vol. 4, pp. 221–226 (2010)

15. Belohlavek, R.: Fuzzy Galois connections. Math. Logic Q. 45(4), 497–504 (1999)
16. Belohlavek, R., Cordero, P., Enciso, M., Mora, A., Vychodil, V.: An efficient rea-

soning method for dependencies over similarity and ordinal data. In: Torra, V.,
Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS, vol. 7647, pp.
408–419. Springer, Heidelberg (2012)

17. Bělohlávek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In:
Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 45–60.
Springer, Heidelberg (2006)

18. Goguen, J.A.: The logic of inexact concepts. Synthese 19(3–4), 325–373 (1969)
19. Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computa-

tion, vol. 9. Research Studies Press, Baldock (2000)
20. Gottwald, S.: Mathematical fuzzy logics. Bull. Symbolic Logic 14(2), 210–244

(2008)
21. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-

drecht (1998)
22. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cam-

bridge University Press, Cambridge (2009)
23. Fagin, R.: Combining fuzzy information: an overview. SIGMOD Rec. 31(2), 109–

118 (2002)

Improving Recommender Systems with Simplification Logic 305

24. Hájek, P.: On very true. Fuzzy Sets Syst. 124(3), 329–333 (2001)
25. Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless

join decomposition of fuzzy relational database systems. ACM Trans. Database
Syst. (TODS) 13, 129–166 (1988)

26. Belohlavek, R., Vychodil, V.: Axiomatizations of fuzzy attribute logic. In: IICAI’05,
pp. 2178–2193 (2005)

27. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit impli-
cational basis. Theor. Comput. Sci. 411(22–24), 2155–2166 (2010)

Task Oriented Context Models
for Social Life Networks

Maneesh Mathai(B) and Athula Ginige

School of Computing, Engineering and Mathematics, University of Western Sydney,
Locked Bag 1797, Penrith, NSW 2751, Australia

{m.mathai,a.ginige}@uws.edu.au
http://www.sln4mop.org/

Abstract. Better decisions can be made in the profession of the users
if they can easily access and filter out the relevant information from all
available information sources. The mass availability of the mobile devices
has enabled the users to quickly access timely information from any loca-
tion. We have developed a novel approach to provide timely information
in context by capturing contextual information. We developed a model to
identify the context of the user by identifying the task being performed.
The system through the domain experts, is aware of the information
need and the information source for each task of the user and the rel-
evant information is filtered from the information source, by using the
users context. The context model was designed and tested for the farming
domain, to support the livelihood activities of the farmer, by extending
the concepts of social life networks.

Keywords: Context modelling · Content aggregation · Social life
networks · Mobile based information system

1 Introduction

In Sri Lanka over production of vegetables is a regular problem due to many
farmers growing the same crop without being aware of what others are cultivat-
ing [1,2]. Neither the farmers nor government agencies are able to make necessary
adjustments for lack of timely information on what farmers plan to cultivate, or
have cultivated. Reference [3] have shown that farmers can make an informed
decision on what crop to grow if they have access to a mobile phone based
information system to inquire what others in that region are growing. The infor-
mation system can provide this information only if most farmers use this system
and indicate what crop they plan to grow. Aggregating the information provided
by the farmers the information system can also inform the government agencies
monitoring and managing agriculture sector, fertilizer and pesticide suppliers
and potential buyers what has already been grown for better management of
the overall crop production.

Mobile phone usage in the world has grown rapidly including among people
in developing countries. At present, 90 % of the world population is covered by
c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 306–321, 2014.
DOI: 10.1007/978-3-662-44920-2 19

Task Oriented Context Models 307

a mobile signal, 128 % of the world population has a mobile subscription and
in developing countries the subscription rate is 89 % [4]. Further, smartphone
prices are rapidly decreasing and now are comparable to a cost of a basic mobile
phone few years ago. A smartphone can be considered as a sensor in the hands
of a human capable of capturing user input as text, voice or gestures and other
environmental parameters using build in sensors such as GPS, camera etc. It is
also capable of communicating with the user using range of media types; text,
images, video, and audio. A smartphone is now easily accessible to farmers in
Sri-Lanka.

An International Collaborative research project [5] was started to develop a
Social Life Network (SLN); a mobile based information system to support liveli-
hood activities of people in developing countries. Social Life Networks (SLN) [6]
tries to extend the capabilities of current social networks by combining them
with the technological advances now found in smartphones that include myr-
iad of sensors. In order to get a deeper insight into research challenges and to
investigate possible solutions a specific real world problem was selected. The
first SLN was developed for farmers in Sri-Lanka to address the over production
problem mentioned above. A high-level knowledge framework proposed by [7]
is implemented which enables the farmers to make an informed decision, the
solution is based on Social Life Network concept where farmers using a Mobile
Based Information System (MBIS) will report the extent of their crop cultiva-
tion. This information is then aggregated based on location, time and crop type
to derive current production levels for different crops in real time. The aggre-
gated information is made available to farmers who are about to decide what
crop to grow. The underlying expectation is that this will enable them to make
an informed decision resulting in minimizing the over production situations that
are experienced by farmers at present. In the due course of the project, it was
also identified that farmers need additional static and dynamic information to
make informed decisions [3].

2 Background

2.1 Components for SLN

Social Life Networks (SLN) tries to extend the capabilities of current social net-
works by combining them with the technological advances now found in Smart-
phones that include myriad of sensors. Reference [6] proposed that there are a
few basic components for realizing the vision of social life networks. Data coming
from multiple users and heterogeneous devices needs to be wrapped into a com-
mon format and made accessible to the system. Logically the data needs to be
translated from localized sensor/human input to higher level situational abstrac-
tions. There is also an encompassing issue of user engagement. Both intrinsic
and extrinsic factors matter, but enhanced feedback and user motivation are
key aspects of it. The biggest catalyst for the adoption of the traditional Web
was the presence of search engines which routed users to their desired resources
(static web pages). A situation analysis performs a similar role in the dynamic

308 M. Mathai and A. Ginige

social life networks i.e. routing the users to the appropriate resources based on
situation detected. In this paper we propose that to carry out the situation
analysis, it is vital to identify the context and using the contextual information
will result in a more personalized set of results for the user.

2.2 Context

During the past two decades, researchers have developed techniques that enable
systems to adapt to their users in many different ways [8]. One of the major
research directions for human computer interaction (HCI) and Information
Retrieval (IR) has been exploring the novel forms of interaction that can be
achieved by integrating computer technology with the everyday physical world in
which we live and work. Ubiquitous or pervasive computing represents a powerful
shift in computation, where people live, work and play in a seamless computer-
enabled environment and people are surrounded by computing devices and a
computing infrastructure that supports us in everything we do [9]. Ability to
accurately represent user context is very important to make optimum use of
these smart environments. For this we need to model the context by acquir-
ing the physical data to provide meaningful abstractions with respect to the
application domain and the needs of the users interacting with the application.
A qualified definition of context is given by [10]. In this work the term context is
defined as follows: Context as any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is consid-
ered relevant to the interaction between a user and an application, including the
user and applications themselves.

In this paper, we describe the design of the task oriented context models
that provide context-specific information and knowledge to farmers. It further
discusses the design and implementation of the first version of a mobile appli-
cation for farmers. The remainder of the paper is organized as follows. Section 4
describes the high level architecture. Section 5 presents the first version of the
mobile application. Finally, Sect. 6 concludes the paper.

3 Task Oriented Context Model

Activity is a set of tasks performed by a user. A sequence of activity is performed
within any domain to accomplish a goal. The tasks and activities are driven by
the final goal or objectives of the user and for each of these tasks to be completed
the appropriate information needs to be acquired by the user. To provide relevant
information to a user we need to determine the context of the user. In task
oriented context, the contextual information is used to determine the context of
the user performing a task; the context models that helps to identify the context
of the user has been proposed in this section and the different knowledge which
shapes the context is identified. This sections also contains scenarios from the
farming domain that is used to explain how the task oriented context model uses
the contextual information of the farmer to provide the relevant information.

Task Oriented Context Models 309

3.1 Need for Context Analysis in Farming Domain

Many researchers have identified lack of information as a major reason prevent-
ing farmers from making better decisions [11,12]. Researchers have highlighted
the inefficacy of the existing information dissemination methods such as face
to face communication with agriculture officers, websites and other communica-
tion methods such as use of mass media. Information needed by farmers include
market prices, current production levels, seasonal weather, best cultivars and
seeds, fertilizers and pesticides, information on pest and diseases and their con-
trol methods, harvesting and post harvesting methods, and details relating to
farming machinery and practices.

Information must be relevant and meaningful to farmers, in addition to being
packaged and delivered in a way preferred by them [13] cited in [14]. Context-
specific information could have a greater impact on the adoption of technologies
and increase farm productivity for marginal and small agricultural landholders
[15] cited in [14]. Despite the additional cost and time associated with generating
localized content, this content could be more relevant and useful in meeting
farmers information needs [16] cited in [14]. Reference [14] discuss clearly the
importance of contextualized information and knowledge for the farmers in India.
They further explain how effective this knowledge can improve their productivity
and income since this information is more relevant to their farm enterprises
and better reflects needs of the farmers. They therefore recommend that the
existence of context-specific and relevant information should be considered when
developing approaches for farmers.

The information need of farmers varies mainly depending on the stage of
the farming life cycle [3,11,17]. For example, in the selection phase of farming,
the features of a crop (e.g. color, size, shape, flavor, and hardiness), farm con-
dition, environmental conditions, available resources, and market demand are
key determinants for a decision in this phase. In the post-harvesting stage of
farming, the information required by the farmer includes post harvesting issues
and management, packaging, grading, storing, standardization, transportation,
and value added products [17].

Some of this information is available from government websites, leaflets, and
mass media in several different formats; text, audio, video. Sometimes different
terminologies to express the same concept have been used. This knowledge is
not reaching the farmers due to the use of unstructured and different formats,
lack of appropriate delivery methods and the general nature of the information.
Using a task oriented context model can help in providing these knowledge to
farmers.

3.2 External or Domain Knowledge

External or domain knowledge is the sum total knowledge about the domain,
it is the collective knowledge, and it includes both the tacit and explicit knowl-
edge. Most of the knowledge of a domain is captured in the written form.

310 M. Mathai and A. Ginige

The knowledge about a domain can be organized in many ways. The organi-
zation would be influenced by the higher level of concepts in the domain. For
example, knowledge can be structured using ontology, explicit formal specifica-
tions of the terms in the domain and relations among them [18]. The ontology
can be created by capturing the explicit information from written sources such
as books, journals and research papers and the tacit knowledge can be captured
by interacting with experts in the field. Thus, ontology is a process to organize
the external knowledge, based on the important concepts of the domain. Better
organization of knowledge in domain allows more flexibility in accessing infor-
mation. Information can be obtained at macro level, or as a large list or as small
bit of information depending on the level of organization of the information in
the domain knowledge source.

Identifying Higher Level Concept in Farming Domain. Deeper infor-
mation need analysis revealed that the farmers need two types of information;
dynamic information such as current extent of crop cultivation, market prices
etc. and more stable static information such as crop types, cultivars, suitable
pesticides, fertilizer, previous market prices etc. [3,17]. The dynamic informa-
tion can be obtained in structured manner in the form of web services and
the static information can be expressed using ontology. Reference [19] created a
knowledge repository of agricultural information to respond to user queries tak-
ing into account the context in which the information is needed and because of
the complex nature of the relationships among various concepts, an ontological
approach was selected that supports first order logic to create the knowledge
repository. The agriculture domain knowledge obtained from [17], suggests that
farm environment, types of farmers, farmers preferences and farming stages are
the important factors that needs to be considered for structuring static informa-
tion. This structuring of the knowledge is required for easy filtering of relevant
information, as it helps us to identify the higher level concepts on which the
farming domain is structured.

3.3 Task Knowledge

The structured knowledge does not have any relation to the task being per-
formed, but deals with how the information is partitioned in a domain. The task
knowledge contains all the activities that the user needs to perform to accom-
plish his goals. For each activity a number of tasks need to be accomplished. To
perform a specific task, we take a subset of knowledge from the domain knowl-
edge which matches the information requirement of the task being performed.
The collection of all the activities along with the information requirement of
each task of the activity is known as the task knowledge. Task knowledge can
be captured by looking at the decision made by users, the information required
to make this decision and the tasks that they perform [20].

Identifying Task knowledge in Farming Domain. The activities, task and
decision points in farming domain can be identified by analyzing the decisions
made by the farmers at various stages of farming. By analyzing, the information

Task Oriented Context Models 311

need analysis and information flow model for farmers based on the work of
other researchers working in the farming domain, helps us to identify the task
knowledge for the farming domain.

Information Need Analysis of Farmers. In a study done by interview-
ing farmers in four countries; Bangladesh, India, Sri Lanka and Thailand; [11]
have identified 26 different types of information needs across 6 stages of farm-
ing as shown in Fig. 1. This report sheds light on the information and knowl-
edge needs in low-income smallholder farms and agricultural micro-enterprises in
Bangladesh, India, Sri Lanka and Thailand. The micro-enterprises in the study
included traders, collectors and small retailers that sell agricultural produce.
The report also explores the use of Information and Communication Technolo-
gies (ICTs) and especially mobile phones amongst these micro-enterprises.

Information Flow Model for Farmers. Reference [3] has identified that
farmers in Sri-Lanka need specific information rather than generic information.
For instance, farmers need agricultural information relevant to their situation
such as the location of their farmland, their economic condition, their interest
and belief, need and available equipments etc. [3] carried out a causal analysis to
determine the factors that influence farmers decision making at various stages
of the farming life-cycle and in that process they identified what specific infor-
mation is required in each stage. The causal analysis was carried out through
a series of surveys. In this process, they also looked at the various information
sources currently available for farmers following which [3] determined how the
information needs to flow to the farmers. Reference [3] identified crop choosing,
growing and selling stages as the key phases that create a direct impact on the
farmer revenue. In view of farming domain, revenue is determined by the selling
price of the harvest. There are three main price determinants for a specific crop
yield. Yield quality, supply and demand. These factors create a huge impact
on price fluctuations at the market level, where market is the place where both
buyers (demanders) and sellers (suppliers) come together to cater for each others
needs.

The flow model [3] identified that the yield quality is determined by weather,
pest, diseases, fertilizer, usage of new farming mechanisms and seed quality.
Thus, by knowing these factors beforehand would also help the farmer to main-
tain the quality of the yield. For example, having prior knowledge with regard
to seed quality would help farmers to maintain the expected quality of yield at
the market level. It thus creates a competitive market in deciding the price of
a particular crop. The analysis work done by [3] highlighted many important
issues. The selection of what crop to grow depends on many factors, not only on
the current production levels as it appeared on the surface. Farmers are looking
at range of factors including issues related to growing the crop as well as selling
the crop. They wanted information to support all stages of the farming life-cycle.
To make meaningful use of the information, [3] postulated that the information
should be made available to farmers in context and one of the important aspect
of that is the stage in the farming cycle.

312 M. Mathai and A. Ginige

Fig. 1. Information needs of farmers.

Task Oriented Context Models 313

Thus, it can be seen from the work of [3,11] that the tasks and information
need of the tasks, i.e. the task knowledge is highly influenced by the different
stages of farming. By modeling the task knowledge based on the farming stages
helps us to better organize the flow of information to the farmer.

3.4 Procedural Knowledge

Now, from all the information required by the task knowledge, we require only
a smaller subset of information to fulfill an individual task, and the knowl-
edge required to filter out this information is known as the procedural knowl-
edge. The procedural knowledge is responsible for identifying the source of
information and the higher level concepts used to structure the information in
that information source which is relevant to the current task being performed.
The procedural knowledge includes the query that needs to be generated and the
query parameters which are used to obtain the relevant information from the
information source. The mapping required to convert the query parameters to
match the higher level concepts of the information source also forms the part of
the procedure knowledge.

3.5 Application Domain Knowledge

The application domain knowledge is the specific information that is relevant to
the domain in which the application is being developed. This knowledge is cap-
tured in the form of a software requirements specification, which is a complete
description of the behavior of the application and the interactions the user will
have with the application. The application domain knowledge is independent
of the task knowledge, but the application domain knowledge determines the
attributes and relationships that need to be captured which is used by the pro-
cedural knowledge as query parameters to filter out information from different
information source.

For example, in the farming domain, the application domain is independent
of the farming practice, but relies on the way farming is being carried out. The
location in which the task is being performed is one of the key factors that influ-
ence the filtering of the relevant information from the information source and
the farming domain is a specific domain in which the user can have multiple
locations, in the form of different farms, associated with them and the applica-
tion domain knowledge helps us to capture this specific knowledge that is only
applicable to the farming application.

3.6 Context Models

The physical context attributes are the raw environmental parameters which
are captured in real time using sensors or pre-stored in the system. The physical
context is designed based on the analysis obtained from the application domain
knowledge. Thus, the application domain knowledge specifies the structure and

314 M. Mathai and A. Ginige

attributes of physical context. Each user of the application will have different
physical values according to their settings. The different parameters that need
to be captured is obtained using the generic model of physical context [21].

The task context is the current activity that is being performed by the user.
The task context would be one of the task that has been defined as part of the
task knowledge. Every task would have its own domain based logical interpreta-
tion of the stored physical data. The system needs to map the physical context
to higher level concepts of the domain knowledge to get relevant information
based on task being performed.

The procedural context is generated by combining the task context with the
physical context. The procedural knowledge is used to identify the attributes of
the physical context that needs to be mapped into higher level concepts used
in the domain knowledge. After the mapping, the higher level concepts is used
as the parameters of the query to filter out relevant information from the infor-
mation source. Thus, the different contextual knowledge is used to match the
information organized in the domain context to the users context to filter out
relevant information. An appropriate organization of knowledge in the domain
is required to provide information to users based on task. The Fig. 2 captures
the different context models that are used to retrieve the relevant data from the
information source.

Fig. 2. Context model to retrieve required information.

Fig. 3. Procedural context used to retrieve information from information.

Context Models in Farming Domain. The physical context of the farmer
is identified by making the farmer select his farms through a series of interfaces
where the map of Sri-lanka is used. The different farming stages associated with

Task Oriented Context Models 315

its corresponding tasks is displayed through the user interface. When a farmer
selects one of these stages, a farmers task context is identified. The farm location
as geo-cordinates is captured by the system and can be interpreted in many
possible ways like agro-ecological zones or administrative districts based on the
concepts in the domain (Fig. 3).

If the objective of the task knowledge is to determine the environmental
attributes of the region then the procedural context can map the geo-coordinates
into agro ecological zones otherwise if the objective of the task context is to
obtain the market price of the region, then the procedural context can determine
under which administrative district the given geo-coordinates belong and then
query the appropriate information source to get the relevant data. Thus the task
context is combined with the user’s physical context to create the procedural
context and then the procedural context is used to filter out the relevant subset
of information from the domain knowledge.

Thus, it can be seen that the same physical context attribute can be mapped
into different domain knowledge attribute according to the information require-
ments of each of the task being performed. So, one of the important capabilities
of the context expanding application would be to facilitate this conversion of raw
physical data to match the required higher level concepts in the domain knowl-
edge. Different task context uses the procedural context to have space-time-user
related information and activities represented different ways which would allow
procedural context to identify and querying different information sources static
or dynamic, based on the requirements.

4 Architecture of SLN Application

Social life network (SLN) application is a mobile based information system that
aims to provide relevant information about the task being performed by the user,

Fig. 4. Architecture of SLN application.

316 M. Mathai and A. Ginige

to help the user make better decision in their profession. The key features of an
SLN application is that it needs to have an interaction environment suitable
to the needs of the users, a context based module to provide relevant informa-
tion from different sources, a data manager to manage the static and dynamic
information and a user engagement module to motivate and encourage users to
contribute. The Fig. 4 represents the modules in a SLN application.

Interaction Environment. For the SLN4Farmers application, the interaction
environment was designed by [22], through the investigation of ways to develop a
suitable user interface for a Social Life Network application. They used scenario
based approach of [23] to develop the interface for farmers in Sri Lanka and
created some typical personas and interaction scenarios based on earlier survey
findings [22] and these scenarios were analysed to determine the user interfaces.

Context based Content Aggregation. An appropriate infrastructure for
social life networks should support most of the tasks required to identify the
context. The context based content aggregation module, the main contribution
of this work for SLN, needs to focus on a scalable context management. It has
the task knowledge, which defines the tasks to be performed and the informa-
tion requirement for those tasks. The task context is captured when the appli-
cation is running and it then uses the user’s physical context and the procedural
knowledge to filter out the relevant information. The users physical context is
responsible for keeping the context state updated for each individual user of the
application. The context characterizing properties that change with spatial and
temporal attributes is captured by the users physical context model.

Data Manager. Data manager is responsible for reasoning and concept repre-
sentation. Conceptually the data manager can be grouped into three, ontology
based knowledge repository for static information, real time aggregation module
for dynamically aggregated information and the real time source data available
as web-services from external sources. Reference [17] has shown how ontology
can be used to find a response to queries within a specified context in the domain
of agriculture. This structured view is essential to facilitate knowledge sharing,
knowledge aggregation, information retrieval, and question answering. The real
time source data provides dynamic information such as market price or weather
information from external source while the real time aggregation module is used
to obtain dynamic knowledge about the prevailing conditions by aggregating
micro-information sent by users.

User Engagement. The issue of motivating the users to engage with and con-
tribute to the common resource pool has been identified as one of the most
important issue and frequently cited bottlenecks [24,25] in social (life) networks
[6]. Reference [6] has identified that the factors which can motivate users to con-
tribute to social life networks. In the SLN4Farming application, the farmer is
motivated to engage with the application. Once the farmer has made a decision
on a particular crop, the farmer is given the option of entering his expected
produce into the application. The information gathered from different farmers

Task Oriented Context Models 317

are aggregated by the real time aggregation module to give an indication of cur-
rent production, where a colour coding scheme is used to visually represent the
current production level of the crops. Specific colours (Green, Yellow, Red) were
used to represent different thresholds and when it reaches a specific threshold
farmers were warned of the danger (high-lighted using Red) of selecting the same
crop as it may create an oversupply at the market level. The colors were chosen
based on the work done by [22] on user interface. The farmers providing the
information about the crop being grown meant that the system now understood
which crop was grown by the farmer in his individual farms and thus this infor-
mation helps the system to create a context about the farmer. Now when the
farmer uses the application again, the system would be able to provide additional
information required by the farmer for growing the selected crop. This acts as a
motivation for farmers to provide the production information.

Flow of Information. The task and procedural knowledge is captured and
used to design the Context Based Content Aggregation module. The task knowl-
edge dictates the interface design of the interaction environment. The procedural
knowledge identifies the information source for each task in the task knowledge.
When a task is selected, the information is passed on from the interface environ-
ment to the Context Based Content Aggregation module through a web-service.
The information required for the task is captured from the static or dynamic
information source by the Context Based Content Aggregation module, which
queries the relevant information source. The dynamic source might also include
the output from real time aggregation module depending on the procedural
knowledge. The data from the information source is passed on to the Con-
text Based Content Aggregation module as web-services and this information
is aggregated and then passed on as web-service to the interaction environment.

5 First Version Mobile Prototype

The architecture specified in Sect. 4 was implemented as a mobile application for
Android phone connected to a back-end server through api. The initial version
of the application based on the preliminary studies focused on the crop choos-
ing stage of the farming life cycle. This initial prototype was evaluated with a
sample of farmers to check the usefulness of provided information and usability
of the application in order to support their day to day decision making process.
The prototype included a basic login facility to identify the farmer and Fig. 5(a)
shows the interface which allows the system to capture the context of the user.
The farmers geo-coordinates is identified by associating the farmer with his farm
and then identifying the farm in the Sri-Lanka map. A farmer can have the option
of associating his profile with multiple farms, and information would be made
available according to the selected farm. Figure 5(b) shows the interface where
the 6 main stages of the farming life cycle is included and the capturing of the
task context by identifying the farming stage in which the information is needed.

The prototype targeted mainly the crop choosing stage. Thus, only the
crop planning functionalities were available in the initial version used for the

318 M. Mathai and A. Ginige

(a) Farm Selection (b) Farming Stages (c) Crop Selection

(d) Colour scheme (e) Characteristics (f) Production Quantity

Fig. 5. Screenshots of first version of the mobile prototype (color figure online).

evaluation. Crop planner function directed the user to the next screen, illus-
trated in Fig. 5(c). It included 3 main categories namely vegetables, fruits and
other. These categories were identified based on the preliminary field trials car-
ried out by [3]. Suitable vegetables and varieties were listed based on the region
and the season.

A colour coding scheme was used to visually represent the current produc-
tion level of a crop as shown in Fig. 5(d). Specific colours were used to represent
different thresholds and when it reaches a specific threshold farmers were warned
of the danger (highlighted using Red) of selecting the same crop as it may create
an oversupply at the market level. Once the farmer selects a specific crop variety
it shows the variety specific special characteristics such as yield colour, weight,
length/size etc. Moreover, it also illustrates special statistics (refer Fig. 5(e))
such as current production and last year production to make farmers aware of
the current as well as the last year situation. The system has the ability to

Task Oriented Context Models 319

capture new information from user as illustrated in Fig. 5(f), where the quantity
of production of the farmer is captured. Another special feature included in this
prototype is the comparison facility of two or more crops. In the future versions,
the system will have the ability to capture new information such as crop disease,
pesticide information, information on finance and soon. This new information
can be aggregated and can be used by other users such as farmers, agriculture
experts, micro bankers and suppliers of pesticides. Thus an interconnected net-
work of information and users can be established.

6 Evaluation

The evaluation study activities were designed and done by the SLN research
group members, with the objective of determining the effectiveness of context
models in providing relevant information. The initial prototype along with a set
of questionnaire were used in this evaluation study. The questionnaire included
both multiple choice questions and open ended questions to encourage and cap-
ture wide range of answers based on the participant’s knowledge. The participant
were asked to perform the task of selecting a crop to grow. In order to measure
their performance, the starting and the end time were recorded during each task.
After performing the tasks questionnaire was given to get their feedback on the
initial prototype. The questionnaire was used to assess the issues in relation to
the information provided for the crop choosing stage of the farming life cycle and
to identify new functionalities that are needed. The results of this evaluation has
been published [26].

In total 63 % of the farmers agreed that the initial prototype has covered the
basic information needs at the crop choosing stage. Rest expected more infor-
mation related to crop variety and seeds. They also agreed that this information
is essential knowledge during this stage of farming life cycle which they lack in
current practices.

7 Conclusions

To understand the research challenges and to derive possible solutions to provide
context based information in Social Life Networks, we have taken a concrete
example in the form of an application for farmers that could meet the information
needs within the farmers context. To represent information in context, we have
developed an approach to model context. The context module interacts with a
ontology [17] developed specifically to meet the needs of the farmer to obtain the
static information and the dynamic information is obtained from external sources
through web-services. The new information in the form of production level is
captured by the context module through the mobile interface and aggregated to
derive current production level for different crops in real time. This information
is then made available to farmers who are about to decide what crop to grow
through the mobile interface.

320 M. Mathai and A. Ginige

The solution described in this paper have been tested by creating a mobile
application which has allowed us to prove that the solution is feasible and meets
the information needs of farmers in Sri Lanka. The current application is a spe-
cific instance of the SLN project and we plan to create a generalized architecture
that would be useful in creating many application for SLN.

References

1. Hettiarachchi, S.: Leeks cultivators desperate as price drops to record low. Sunday
Times, Sri Lanka (2011)

2. Hettiarachchi, S.: N’eliya carrot farmers in the dumps: bumper harvest, but prices
low. The Sunday Times Sri Lanka (2012)

3. De Silva, L.N., Goonetillake, J.S., Wikramanayake, G.N.: Towards using ICT to
enhance flow of information to aid farmer sustainability in Sri Lanka. In: Proceed-
ings of the 23rd Australasian Conference on Information Systems 2012, ACIS, pp.
1–10 (2012)

4. International Telecommunication Union: The world in 2013: Ict facts and figures
(2013)

5. Ginige, A., Ginige, T., Richards, D.: Architecture for social life network to empower
people at the middle of the pyramid. In: Kop, C. (ed.) UNISON 2012. LNBIP, vol.
137, pp. 108–119. Springer, Heidelberg (2013)

6. Jain, R., Sing, V., Gao, M.: Social life networks for middle of the pyramid. In: 2011
International Conference on Advances in ICT for Emerging Regions (ICTer), p. 1.
IEEE (2011)

7. Ginige, T., Richards, D.: A model for enhancing empowerment in farmers using
mobile based information system. In: ACIS 2012: Proceedings of the 23rd Aus-
tralasian Conference on Information Systems 2012, ACIS, pp. 1–10 (2012)

8. Seher, I., Ginige, A., Shahrestani, S.: A personalized query expansion approach
using context. In: 3rd IET International Conference on Intelligent Environments,
IE 07, pp. 383–390. IET (2007)

9. Poslad, S.: Ubiquitous Computing: Smart Devices, Environments and Interactions.
Wiley, Chichester (2011)

10. Dey, A.K.: Understanding and using context. Pers. Biquitous Comput. 5, 4–7
(2001)

11. Lokanathan, S., Kapugama, N.: Smallholders and micro-enterprises in agriculture:
information needs and communication patterns. LIRNE asia, Colombo, Sri Lanka,
pp. 1–48 (2012)

12. Punchihewa, D.J., Wimalaratne, P.: Towards an ICT enabled farming community.
E-Governance in Practice, India, pp. 201–207 (2010)

13. Diekmann, F., Loibl, C., Batte, M.T.: The economics of agricultural information:
factors affecting commercial farmers information strategies in ohio. Appl. Econ.
Perspect. Policy 31, 853–872 (2009)

14. Babu, S.C., Glendenning, C.J., Okyere, K.A., Govindarajan, S.K.: Farmers’ infor-
mation needs and search behaviors: case study in Tamil Nadu, India. In: 2012
Conference International Association of Agricultural Economists, Foz do Iguacu,
Brazil, 18–24 August 2012

15. Samaddar, A.: Traditional and posttraditional: a study of agricultural rituals in
relation to technological complexity among rice producers in two zones of west
bengal, india. Cult. Agric. 28, 108–121 (2006)

Task Oriented Context Models 321

16. Cecchini, S., Scott, C.: Can information and communications technology applica-
tions contribute to poverty reduction? lessons from rural india. Inf. Technol. Dev.
10, 73–84 (2003)

17. Walisadeera, A.I., Wikramanayake, G.N., Ginige, A.: An ontological approach to
meet information needs of farmers in Sri Lanka. In: Murgante, B., Misra, S., Carlini,
M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.)
ICCSA 2013, Part I. LNCS, vol. 7971, pp. 228–240. Springer, Heidelberg (2013)

18. Gruber, T.R., et al.: A translation approach to portable ontology specifications.
Knowl. Acquisition 5, 199–220 (1993)

19. Walisadeera, A., Wikramanayake, G., Ginige, A.: Designing a farmer centred ontol-
ogy for social life network. In: International Conference on Data Technologies and
Applications. Springer (2013)

20. Johnson, P., Johnson, H., Waddington, R., Shouls, A.: Task-related knowledge
structures: analysis, modelling and application. In: BCS HCI, pp. 35–62. Citeseer
(1988)

21. Mathai, M., Ginige, A.: Context based content aggregation for social life net-
works. In: 8th International Joint Conference on Software Technologies, pp. 570–
577 (2013)

22. Di Giovanni, P., Romano, M., Sebillo, M., Tortora, G., Vitiello, G., Ginige, T.,
De Silva, L., Goonethilaka, J., Wikramanayake, G., Ginige, A.: User centered sce-
nario based approach for developing mobile interfaces for social life networks. In:
2012 First International Workshop on Usability and Accessibility Focused Require-
ments Engineering (UsARE), pp. 18–24. IEEE (2012)

23. Sears, A., Jacko, J.A.: The Human-computer Interaction Handbook: Fundamen-
tals, Evolving Technologies and Emerging Applications. CRC Press, Boca Raton
(2007)

24. Maia, M., Almeida, J., Almeida, V.: Identifying user behavior in online social
networks. In: Proceedings of the 1st Workshop on Social Network Systems, pp.
1–6. ACM (2008)

25. Nov, O., Naaman, M., Ye, C.: Motivational, structural and tenure factors that
impact online community photo sharing. In: ICWSM (2009)

26. De Silva, L.N.C., Goonetillake, J.S., Wikramanayake, G.N., Ginige, A.: Farmer
response towards the initial agriculture information dissemination mobile proto-
type. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar,
D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp.
264–278. Springer, Heidelberg (2013)

Author Index

Ahmed, Samir Ben 24

Belli, Fevzi 72
Berger, Christian 164
Bósa, Károly 235
Brambilla, Marco 180

Cordero, P. 290
Craß, Stefan 256

Dévai, Gergely 131
Dóra, Pryscilla Marcilli 84

Enciso, M. 290

Faßbender, Stephan 215
Franch, Xavier 148

Gharsellaoui, Hamza 24
Giannini, Paola 114
Ginige, Athula 306
Gregersen, Allan Raundahl 99
Guevara, A. 290

Hansson, Jörgen 164
Heisel, Maritta 215
Hirsch, Jürgen 256

Jørgensen, Bo Nørregaard 99

Kloukinas, Christos 273
Kühn, Eva 256

Leiva, J.L. 290
Leskó, Dániel 131
Leung, Hareton K.N. 3

Markovski, J. 199
Mathai, Maneesh 306
Meixner, Gerrit 180
Mendes, Emilia 40
Mora, Á 290
Moura, J. Antão B. 84

Nakatani, Takako 57
Nilsson, Martin 164

Oliveira, Ana Cristina 84
Ozkaya, Mert 273

Perini, Anna 148

Rana, Rakesh 164
Raneburger, David 180
Rasmussen, Michael 99
Rossi, C. 290

Sato, Keita 57
Sesum-Cavic, Vesna 256
Seyff, Norbert 148
Shaqiri, Albert 114
Staron, Miroslaw 164

Tejfel, Máté 131
Törner, Fredrik 164

Zhou, Peng 3

	Preface
	Organization
	Contents
	Software Engineering and Applications
	Strategies for Scheduling Risk Mitigation in Software Project Management
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Project Risk
	2.2 Risk Management Process
	2.3 Time Elements in Risk Management
	2.4 A Stochastic Simulation Model

	3 Scheduling Strategy for Risk Mitigation
	3.1 Definition of Scheduling Strategy
	3.2 New Scheduling Strategies

	4 Methodology
	4.1 Simulation and SMRMP
	4.2 Measurement of Strategy Performance
	4.3 Cases for Simulation
	4.4 Parameters of SMRMP

	5 Performance of Scheduling Strategies
	5.1 Results of Simulation
	5.2 Answers to the Research Questions

	6 Conclusion
	Acknowledgements
	References

	Real-Time Reconfigurable Scheduling of Sporadic Tasks
	1 Introduction
	2 Background
	2.1 State of the Art
	2.2 Formalization

	3 New Approach with Deadline Tolerance
	3.1 Preliminaries
	3.2 Feasibility Analysis for Tasks
	3.3 Contribution: An Algorithm for Feasibility Testing with Respect to Sporadic Task Systems
	3.4 The General OEDF Scheduling Strategy

	4 Experimental Results
	4.1 Simulations
	4.2 Discussion

	5 Conclusions
	References

	Applying a Knowledge Management Technique to Improve Risk Assessment and Effort Estimation of Healthcare Software Projects
	Abstract
	1 Introduction
	2 Introduction to Bayesian Networks
	3 Adapted Knowledge Engineering of Bayesian Networks Process
	3.1 Structural Development
	3.2 Parameter Estimation
	3.3 Model Validation

	4 Process Used to Build the BN Model
	4.1 Detailed Structural Development & Parameter Estimation

	5 Discussion
	6 Conclusions
	Acknowledgements
	References

	A Scenario Analysis Method with User Emotion and Its Context
	1 Introduction
	2 Related Work
	2.1 Emotion Analysis
	2.2 Scenario Analysis

	3 MuLSA: Multi-layered Scenario Analysis
	3.1 Basic Concept
	3.2 Overview of MuLSA
	3.3 Measurement of Emotions
	3.4 The Requirements Analysis Process

	4 Case Study
	4.1 Overview
	4.2 The Scenario
	4.3 Data Collection
	4.4 Results and Their Interpretation

	5 Threats to Validity
	5.1 Threats to Internal Validity
	5.2 Threats to External Validity
	5.3 Reliability

	6 Discussion and Conclusions
	References

	Assuring Dependability of Software Reuse: An Industrial Standard
	Abstract
	1 Introduction
	2 Notions and Practices of Reuse
	2.1 What Reuse Really Is
	2.2 Where Reuse Will Be Practiced
	2.3 Software Reuse Has Many Faces
	2.4 Software Reuse Has also Many Facets

	3 Software Development Driven by Reusability and Dependability Aspects
	4 Validation, Revalidation, and Reliability of Software Reuse
	5 Structure of IEC/PAS 62814 and How to Use It
	6 Concluding Remarks, Future Work
	References

	Simultaneously Improving Quality and Time-to-Market in Agile Development
	Abstract
	1 Introduction
	2 OQP: Software Quality Control
	2.1 OQP Principles
	2.2 Life Cycle

	3 Case Study
	3.1 Definition and Scope
	3.2 Planning and Design
	3.3 Preparation
	3.4 Execution, Analysis and Result Presentation
	3.5 Packaging

	4 Evaluation and Lessons
	5 Validation
	6 Related Work
	7 Conclusion and Outlook
	Acknowledgements
	References

	State of the Art of Dynamic Software Updating in Java
	Abstract
	1 Introduction
	2 Comparison of Dynamic Software Updating Systems
	3 The Dynamic Updating System Gosh!
	4 Benchmarking Gosh! and JRebel
	5 Experience
	5.1 Phantom Objects
	5.2 Absent State
	5.3 Lost State
	5.4 Oblivious Update
	5.5 Broken Assumption
	5.6 Transient Inconsistency
	5.7 Observations Based on Phenomena

	6 Merging Gosh! Dynamic Updating Model with JRebel
	6.1 Bootstrapping the JVM
	6.2 Context-Specific Runtime Updates
	6.3 Determining Which Classes are Updateable in General

	7 Conclusion
	References

	Compiling Functional to Scripting Languages
	1 Introduction
	2 Translation by Examples: Design Choices
	3 Core F#
	4 Intermediate Language
	5 Translation of Core F# to IL
	6 Comparisons with Other Work
	7 Conclusions and Future Work
	References

	Language Design and Implementation via the Combination of Embedding and Parsing
	1 Introduction
	1.1 Motivation
	1.2 Project Background
	1.3 Main Messages

	2 Compiler Architecture
	3 Detailed Analysis
	4 Related Work
	5 Discussion and Conclusions
	5.1 Lessons Learnt
	5.2 Plans and Reality
	5.3 Cost Model
	5.4 Was It Worth It?
	5.5 Future

	6 Summary
	References

	Enabling Informed Decision Making Through Mobile Technologies: A Challenge for Software Engineering
	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Analysis of the Current Scenario
	4 Envisaged Scenario
	5 Software Engineering Challenges
	5.1 Strengthening User Centrality
	5.2 Enabling User-Driven Evolution

	6 A Platform for Semantic Service Engineering
	6.1 The Personal Cloud
	6.2 The Mobile Device
	6.3 The Semantic Bus

	7 The Way Ahead
	8 Related Work
	9 Conclusions
	Acknowledgements
	References

	Early Verification and Validation According to ISO 26262 by Combining Fault Injection and Mutation Testing
	1 Introduction
	2 Background
	2.1 Automotive Software Development and ISO 26262
	2.2 ISO 26262
	2.3 Fault Injection
	2.4 Mutation Testing

	3 Related Work
	4 Framework for Early Verification and Validation According to ISO 26262
	5 Case Study: Validation
	5.1 Lessons Learned

	6 Conclusions
	References

	Platform-Independence in Model-Driven Development of Graphical User Interfaces for Multiple Devices
	1 Introduction
	2 Conceptual Approaches -- MDA and CRF
	2.1 Model Driven Architecture
	2.2 Cameleon Reference Framework
	2.3 Relating MDA and CRF for Multi-device GUI Development

	3 Multi-device GUI Generation in Practice
	3.1 Interaction Flow Modeling Language (IFML)
	3.2 Model Based Useware-Engineering (MBUE)
	3.3 Unified Communication Platform (UCP)

	4 Discussion
	5 Conclusions
	References

	Software Paradigm Trends
	Controllability for Nondeterministic Discrete-Event Systems with Data
	1 Introduction
	2 Finite Automata with Variables
	3 Controllability
	4 Partial Bisimulation
	5 Synthesis-Centric Model-Based Engineering
	6 Concluding Remarks
	References

	A Computer-Aided Process from Problems to Laws in Requirements Engineering
	1 Introduction
	2 Background
	3 Case Study: Voting System for Germany
	4 Structuring the Problem
	5 Transforming Problem Diagrams to Law Identification Pattern Instances
	6 Validation
	7 Related Work
	8 Conclusions
	References

	An Ambient ASM Model of Client-to-Client Interaction via Cloud Computing and an Anonymously Accessible Docking Service
	1 Introduction
	2 Overview on Our Model
	3 Related Work
	3.1 Ambient Calculus
	3.2 Ambient ASM

	4 Definitions
	5 The Extended Formal Model
	5.1 User Actions
	5.2 The Cloud Service Architecture
	5.3 Client-to-Client Interaction

	6 Anonymous Docking Service
	6.1 New Assumptions and Changes in the Model
	6.2 Request Preprocessing

	7 Conclusions
	References

	Modeling a Flexible Replication Framework for Space-Based Computing
	1 Introduction
	2 Related Work
	3 Generic Replication Framework
	3.1 Peer Model Design Concepts
	3.2 Framework Architecture

	4 Plugin Design
	4.1 Generic Multi-master Replication Pattern
	4.2 Hazelcast Replication
	4.3 Native Replication

	5 Evaluation
	6 Conclusions
	References

	Realizable, Connector-Driven Software Architectures for Practising Engineers
	1 Introduction
	2 Our Approach
	2.1 Support for Complex Connectors
	2.2 Realizable Software Architectures
	2.3 Design-by-Contract for Architecture Specifications

	3 DbC-based Specifications with XCD
	4 XCD Semantics
	4.1 Data Assignments in Contracts
	4.2 XCD and Architecture Realizability

	5 Formal Verification Analysis
	5.1 Avoiding Chaotic Behaviour Through Connector Protocols
	5.2 Reducing the State Space

	6 Conclusions
	References

	Improving Recommender Systems with Simplification Logic to Manage Implications with Grades
	1 Introduction
	2 Related Works
	3 Implications with Grades
	3.1 FASL Logic
	3.2 FASL Axiomatic System

	4 Application of FASL to a Context Recommender System
	5 Conclusions and Future Works
	References

	Task Oriented Context Models for Social Life Networks
	1 Introduction
	2 Background
	2.1 Components for SLN
	2.2 Context

	3 Task Oriented Context Model
	3.1 Need for Context Analysis in Farming Domain
	3.2 External or Domain Knowledge
	3.3 Task Knowledge
	3.4 Procedural Knowledge
	3.5 Application Domain Knowledge
	3.6 Context Models

	4 Architecture of SLN Application
	5 First Version Mobile Prototype
	6 Evaluation
	7 Conclusions
	References

	Author Index

