179 research outputs found

    Fabric Image Representation Encoding Networks for Large-scale 3D Medical Image Analysis

    Full text link
    Deep neural networks are parameterised by weights that encode feature representations, whose performance is dictated through generalisation by using large-scale feature-rich datasets. The lack of large-scale labelled 3D medical imaging datasets restrict constructing such generalised networks. In this work, a novel 3D segmentation network, Fabric Image Representation Networks (FIRENet), is proposed to extract and encode generalisable feature representations from multiple medical image datasets in a large-scale manner. FIRENet learns image specific feature representations by way of 3D fabric network architecture that contains exponential number of sub-architectures to handle various protocols and coverage of anatomical regions and structures. The fabric network uses Atrous Spatial Pyramid Pooling (ASPP) extended to 3D to extract local and image-level features at a fine selection of scales. The fabric is constructed with weighted edges allowing the learnt features to dynamically adapt to the training data at an architecture level. Conditional padding modules, which are integrated into the network to reinsert voxels discarded by feature pooling, allow the network to inherently process different-size images at their original resolutions. FIRENet was trained for feature learning via automated semantic segmentation of pelvic structures and obtained a state-of-the-art median DSC score of 0.867. FIRENet was also simultaneously trained on MR (Magnatic Resonance) images acquired from 3D examinations of musculoskeletal elements in the (hip, knee, shoulder) joints and a public OAI knee dataset to perform automated segmentation of bone across anatomy. Transfer learning was used to show that the features learnt through the pelvic segmentation helped achieve improved mean DSC scores of 0.962, 0.963, 0.945 and 0.986 for automated segmentation of bone across datasets.Comment: 12 pages, 10 figure

    Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

    Full text link
    The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data. Our framework has three contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.Comment: Accepted by Medical Image Analysis (with a new title 'Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis'). The manuscript is available from following link (https://doi.org/10.1016/j.media.2019.06.005

    Automated Distinct Bone Segmentation from Computed Tomography Images using Deep Learning

    Get PDF
    Large-scale CT scans are frequently performed for forensic and diagnostic purposes, to plan and direct surgical procedures, and to track the development of bone-related diseases. This often involves radiologists who have to annotate bones manually or in a semi-automatic way, which is a time consuming task. Their annotation workload can be reduced by automated segmentation and detection of individual bones. This automation of distinct bone segmentation not only has the potential to accelerate current workflows but also opens up new possibilities for processing and presenting medical data for planning, navigation, and education. In this thesis, we explored the use of deep learning for automating the segmentation of all individual bones within an upper-body CT scan. To do so, we had to find a network architec- ture that provides a good trade-off between the problem’s high computational demands and the results’ accuracy. After finding a baseline method and having enlarged the dataset, we set out to eliminate the most prevalent types of error. To do so, we introduced an novel method called binary-prediction-enhanced multi-class (BEM) inference, separating the task into two: Distin- guishing bone from non-bone is conducted separately from identifying the individual bones. Both predictions are then merged, which leads to superior results. Another type of error is tack- led by our developed architecture, the Sneaky-Net, which receives additional inputs with larger fields of view but at a smaller resolution. We can thus sneak more extensive areas of the input into the network while keeping the growth of additional pixels in check. Overall, we present a deep-learning-based method that reliably segments most of the over one hundred distinct bones present in upper-body CT scans in an end-to-end trained matter quickly enough to be used in interactive software. Our algorithm has been included in our groups virtual reality medical image visualisation software SpectoVR with the plan to be used as one of the puzzle piece in surgical planning and navigation, as well as in the education of future doctors

    SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location on MRI

    Full text link
    Magnetic Resonance Imaging (MRI) is pivotal in radiology, offering non-invasive and high-quality insights into the human body. Precise segmentation of MRIs into different organs and tissues would be highly beneficial since it would allow for a higher level of understanding of the image content and enable important measurements, which are essential for accurate diagnosis and effective treatment planning. Specifically, segmenting bones in MRI would allow for more quantitative assessments of musculoskeletal conditions, while such assessments are largely absent in current radiological practice. The difficulty of bone MRI segmentation is illustrated by the fact that limited algorithms are publicly available for use, and those contained in the literature typically address a specific anatomic area. In our study, we propose a versatile, publicly available deep-learning model for bone segmentation in MRI across multiple standard MRI locations. The proposed model can operate in two modes: fully automated segmentation and prompt-based segmentation. Our contributions include (1) collecting and annotating a new MRI dataset across various MRI protocols, encompassing over 300 annotated volumes and 8485 annotated slices across diverse anatomic regions; (2) investigating several standard network architectures and strategies for automated segmentation; (3) introducing SegmentAnyBone, an innovative foundational model-based approach that extends Segment Anything Model (SAM); (4) comparative analysis of our algorithm and previous approaches; and (5) generalization analysis of our algorithm across different anatomical locations and MRI sequences, as well as an external dataset. We publicly release our model at https://github.com/mazurowski-lab/SegmentAnyBone.Comment: 15 pages, 15 figure

    Image Processing and Analysis for Preclinical and Clinical Applications

    Get PDF
    Radiomics is one of the most successful branches of research in the field of image processing and analysis, as it provides valuable quantitative information for the personalized medicine. It has the potential to discover features of the disease that cannot be appreciated with the naked eye in both preclinical and clinical studies. In general, all quantitative approaches based on biomedical images, such as positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI), have a positive clinical impact in the detection of biological processes and diseases as well as in predicting response to treatment. This Special Issue, “Image Processing and Analysis for Preclinical and Clinical Applications”, addresses some gaps in this field to improve the quality of research in the clinical and preclinical environment. It consists of fourteen peer-reviewed papers covering a range of topics and applications related to biomedical image processing and analysis

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Get PDF
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho
    • …
    corecore