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Abstract

Bone Marrow Edema (BME), and more recently known as Edema Like Marrow Signal Inten-
sity (ELMSI), is an observed change in the Bone Marrow (BM) in Magnetic Resonance Imaging
(MRI), described as areas of intermediate to low signal in the T1-weighted sequences and areas of
high signal in the fluid-sensitive sequence. Aiding health care professionals in identifying ELMSI
more efficiently is the primary motivation for developing a Computer-aided diagnosis system. The
first step in the its development is efficiently segmenting the bone in the MRI. For the past few
years, occurred an increase in the usage of Deep Learning (DL) architectures in medical imaging
problems, especially the usage of Convolutional Neural Networks (CNN) to solve increasingly
more complex problems. The dissertation proposes the implementation of DL architectures and
later Transfer Learning (TL) techniques to achieve the goal of bone segmentation of the dataset
provided by the University Hospital Center of São João. With the data from 72 patients, imple-
menting a U-Net, a slightly modified U-Net and an Attention U-Net and TL techniques, using a
pre-trained U-Net on the OAI ZIB dataset and a pre-trained VGG-16 encoder for a U-Net model
pre-trained the ImageNet dataset. For T1-weighted images, segmentation results obtained values
from 88.38 to 93.69% for DICE Similarity Coefficient and from 78.68% to 88.46% for Intersec-
tion over Union coefficient. According to the segmentation results, the DICE Similarity Coeffi-
cient coefficient for the fluid-sensitive images ranged from 86.20 to 92.02%, while the Intersection
over Union coefficient ranged from 76.51% to 85.67%. The best results were achieved with the
Attention U-Net and the VGG-16 encoder U-Net model pre-trained in the ImageNet dataset.

Keywords: Bone Marrow Edema, Edema Like Marrow Signal Intensity, Magnetic Resonance
Imaging, Image Segmentation, Machine Learning, Deep Learning, Bone Segmentation, Transfer
Learning.
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Resumo

O Edema da Medula Óssea é uma alteração observada na Medula Óssea na Ressonância Mag-
nética (RM), descrita como sinal intermédio e hipossinal na sequência ponderada em T1 e como
hipersinal na sequência sensível ao líquido. Auxiliar os profissionais de saúde a identificar o
Edema da Medula Óssea de forma mais eficiente é a principal motivação para o desenvolvimento
de um sistema de diagnóstico auxiliado por computador. O primeiro passo no seu desenvolvimento
é a segmentação eficiente do osso na RM. Nos últimos anos, ocorreu um aumento no uso de ar-
quiteturas de Deep Learning (DL) em problemas de imagem médica, especialmente o uso de Redes
Neurais Convolucionais (CNN) para resolver problemas cada vez mais complexos. Esta disser-
tação propõe a implementação de arquiteturas DL e posteriormente técnicas de Transfer Learning
(TL) para atingir o objetivo de segmentação óssea do conjunto de dados fornecido pelo Centro
Hospitalar Universitário do São João. Com os dados de 72 pacientes, a implementação de uma
U-Net, uma U-Net ligeiramente modificada e uma Attention U-Net, acrescida de técnicas de TL,
usando uma U-Net pré-treinada no conjunto de dados OAI ZIB e um codificador, pré-treinado no
dataset ImageNet, de uma VGG-16 num modelo U-Net. Os resultados da segmentação alcançaram
valores para a sequência ponderada de T1 para o coeficiente de similaridade DICE entre 88.38%
e 93.69% e para o coeficiente de Cruzamento sobre União entre 78.68% e 88.46%. Os resultados
da segmentação alcançaram valores para a sequência sensivel ao líquido no que diz respeito ao
coeficiente de similaridade DICE entre 86.20% e 92.02% e ao coeficiente de Cruzamento sobre
União entre 76.51% e 85.67%. Os melhores resultados foram alcançados com o modelo Attention
U-Net e com o modelo que usa o codificador da VGG-16 numa U-Net, pré-treinado no conjunto
de dados ImageNet.

Palavras-chave: Edema da Medula Óssea, Intensidade do Sinal de Edema Semelhante à Medula,
por Ressonância Magnética, Segmentação de Imagem, Aprendizagem Computacional, Aprendiza-
gem Profunda, Segmentação Óssea, Conhecimento por Transferência.
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“Do not let anyone rob you of your imagination, your creativity, or your curiosity. It is your place
in the world; it is your life. Go on and do all you can with it, and make it the life you want to

live.”

Mae Jemison
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Chapter 1

Introduction

1.1 Context

Bone marrow (BM) is one of the most extensive human tissues found in the centre of long

and axial bones. Among its composition are "red marrow" and "yellow marrow". While "red

marrow" is composed of 40% water, 40% fat cells, and the remaining 20% hematopoietic cells,

"yellow marrow" consists of 80% fat cells, 15% water, and 5% hematopoietic cells. The bone

marrow dynamically changes during growth, and there is a decrease in the amount of "red marrow"

throughout the years [1, 2].

The term bone marrow edema (BME) was firstly introduced by Wilson et al. [3] in 1988 to

describe the fluid content alteration in the bone marrow, is currently being replaced by the term

Edema Like Marrow Signal Intensity (ELMSI), representing more properly a histopathological

diagnosis [4]. It is observed only in Magnetic Resonance Imaging (MRI), described as areas of

intermediate to low signal in the T1-weight imaging and areas of high signal in the fluid-sensitive

sequence. The fluid-sensitive sequences have a large range of types: T2 or proton-density (PD)

weighted images with fat suppression. Those alterations indicate an increase in water content,

replacing normal bone marrow tissue with more vascular tissue [1]. Although the presence of

ELMSI in MRI is not a pattern to a specific diagnosis, it can be caused by trauma, tumour, some

illnesses such as osteoarthritis, human growth or high-performance sports practice [5]. Being

present in multiple parts of the human body, such as the foot, ankle, knee, hip and shoulder, can

be associated with a wide range of diseases, sometimes associated with pain [6]. A Computed

Tomography (CT) scan or an X-ray cannot detect ELMSI lesions, so MRI is the primary method

of searching for them.

1.2 Motivation

Due to the pain that ELMSI is most of the time associated with, adding to the need to study the

progressiveness of some diseases that have ELMSI as one of its symptoms, and the association

with sports medicine, the early screening of the ELMSI could help physicians and healthcare
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professionals on increasing the accuracy of the diagnosis, the efficiency of the treatments and

maybe delay or prevent the progress of some diagnostics [7]. Therefore, if there is a possibility to

make the automatic ELMSI identification, the impact would be widely positive on the life of the

patients and the treatments applied.

Easing the diagnosis process can save time and increase the efficiency of the job done by physi-

cians and health professionals. Since the 1960s, computer-aided diagnosis (CAD) has become one

of the most relevant research topics, where Machine Learning (ML) techniques and later Deep

Learning (DL) techniques have been applied to medical imaging problems to provide improved

diagnostics and disease detection resources [8]. To run an efficient CAD, one of the most im-

portant steps is image segmentation, which is the main goal of the dissertation. The importance

of this step in a CAD system development relies on separating important regions in the image,

particularly the "separation" between the bone and the rest of the MRI scans.

The diagnosis by medical imaging is vital to health professionals to identify which is the

illness and its correspondent treatment in a noninvasive approach. Although essential, usually, the

raw analysis of the resultant image takes a considerable amount of time (depending on the reason

and the specifics of the case and illness), and it is also dependent on the visual interpretation and

experience of the health professionals when analysing. Thus, using CAD systems can reduce

the impact of the mentioned factors when trying to make a diagnosis, tumours localisation or

other types of structures, assist the study of the state of the anatomical structure, the adaptation of

treatments and the evaluation of the progressiveness of diseases [9].

In order to have a CAD system that can reliably identify ELMSI in MRI scans, the first step has

to proceed with the image segmentation, especially identifying where the bone is. There is already

some work done on similar problems regarding bone segmentation in MRI, but the variability

and complexity of the human anatomy are crucial factors that influence the segmentation problem.

MRI is a noninvasive approach to the study of soft-tissue structures of the human body. MRI scans

usually contain dozens of 2D images, so manual segmentation is time and resource consuming.

The healthcare and medical field have more relevant and time-sensitive tasks to address. Therefore,

automatic bone segmentation is necessary when analysing the presence or absence of ELMSI [10].

1.3 Goal

This dissertation is focused on the implementation of segmentation models for the problem of

bone segmentation in MRI.

1.4 Contributions

This dissertation presents the following contributions:

• The study and implementation of deep learning architectures to segment the bone in the

MRI image dataset;
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• The presentation of different approaches regarding the U-Net, some of its variants and pre-

trained models applied to the segmentation task;

• Finishing with an discussion of the results achieved.

1.5 Document Structure

The document is divided into six chapters with the following structure:

• In Chapter 1, are presented the context of the ELMSI, motivation for the work done, the

goals of the dissertation and the contributions achieved;

• Followed by Chapter 2, where is presented the clinical background concerning ELMSI and

medical imaging;

• Then, Chapter 3, are presented all the literature research done concerning DL architectures,

as well as some already implemented approaches in similar topics of medical imaging seg-

mentation;

• Later on Chapter 4, the implementation method, data and environment of the study will be

described;

• The Chapter 5, presents the results and their evaluation regarding all the implementation

approaches;

• Finally, Chapter 6 gives a global conclusion about the work done and the results obtained,

giving some insights regarding possible work for the future.
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Chapter 2

Background

In this chapter, it is presented in Section 2.1, the topic Medical Imaging, more specifically Mag-

netic Resonance Imaging. In Section 2.2, it is possible to contextualize clinically Bone Marrow

and Bone Marrow Edema.

2.1 Medical Imaging

Medical imaging is an essential field and asset for physicians and healthcare providers to be

able to analyze and inspect inside of the human body, evaluate the existence of conditions and

study their progression in a non-invasive way. X-Ray, Magnetic Resonance Imaging (MRI), Ul-

trasound, and Computed Tomography (CT) are examples of modalities currently used by health

care professionals are [11].

MRI is a diagnostic modality and imaging technique that uses no ionizing radiation, so it im-

pacts the patient’s health less than other imaging modalities with ionizing radiation. Additionally,

it has great soft tissue contrast and can produce three-dimensional images with high resolution.

The first mention of the technique, where the current MRI is based, is from the 1940s, but only

in the 1970s was used to do imaging of the human body [11]. Some atoms, especially hydrogen

atoms present in the human body in water and fat tissue, have a fundamental angular momentum,

the spin, making them behave like spinning magnets when in the presence of an external uniform

magnetic field. Under those circumstances, the phenomenon happens because the hydrogen atoms

only contain a proton in their nucleus. The atoms are excited by a radio pulse in a resonance

frequency, generating an oscillation, and a receiver coil picks up the potential difference gener-

ated by that oscillation. When the radio pulse is shut off, the nuclei realign, but at different rates,

generation differential relaxation rates and signals. Those signals can be detected, and the differ-

ent tissues react with different timings generating different signals in the MR image creation. In

order to obtain greater contrast, the proton density can also be weighted by the relaxation times

generating different modalities of the image, the T1-weighted and the T2-weighted images. Those

modalities are obtained by the radio-frequency pulse variation and spacings of pulse sequences,

for example, the spin-echo pulse sequence [11]. The T1-weighted images are MR images that

5



6 Background

display signal intensity based on the longitudinal relaxation time and are acquired using short TR

(repetition time, the time to complete a full iteration of a pulse) and TE (echo time) values. The

fatty tissues appear brighter than other anatomical tissues. T2-weighted images display signal

intensity based on the transverse relaxation time and are acquired using long TR and TE values

[12, 13].

2.2 Bone Marrow

Bone Marrow (BM) is found in the centre of axial and long bones, accounting for up to 4 to

5% of the total body weight and is one of the largest tissues in the human body. Coupled with

being a very dynamic organ, BM is always changing with the increase of age and due to its main

purpose of supplying red cells, platelets and white cells to the blood. In Figure 2.1, it is possible

to observe a representation of the bone anatomy where bone marrow is present. Although being

a tissue with a varied constitution, as already mentioned, the main parts are the "Red marrow"

and "Yellow marrow". These two types of marrow differ significantly in their structure. The first

is hematopoietically active marrow, being responsible for the production of the blood and blood

plasma cells such as platelets, and white and red blood cells, which are found in adult joints at the

end of long bones, in the cavities of the skull, sternum, scapulae, vertebrae, ribs and pelvic bones.

Contrasting, the "yellow marrow" is hematopoietically inactive, meaning that it does not produce

the components of the blood and plasma, and is composed mainly of fat cells containing only a

small amount of capillaries making its vasculature scant [2, 14]. Whereas both types of marrow

have fat cells, they differ in the concentration of unsaturated acids, being the "red marrow" the

one with greater concentration. The hematopoietic activeness of the "red marrow" is reduced with

the human growth and bone development until more or less the 25 years old mark, and that is

responsible for the conversion of the "red marrow" to the "yellow marrow". In Figure 2.2, it is

possible to see the amount of "red marrow" through the growing years. Notably, the conversion

starts right after birth, first evident in the phalanges of the hands and feet. The conversion is

not homogeneous to all the bones and occurs at different rates until a good distribution of both

marrows is achieved for each individual. The balance is different from person to person, sex, age,

health state and bone shape are parameters that will affect the ratio between "red" and "yellow"

marrow. MRI is the ideal monitor of those changes thanks to its rich soft-tissue contrast. [2, 14].

2.3 Bone Marrow Edema

BME, as introduced by Wilson et al. [3] in 1988, is currently being replaced by the term Edema

Like Marrow Signal Intensity (ELMSI), representing more properly a histopathological diagnosis

[4]. It is used to express the existence of interstitial fluid within marrow extracellular spaces, which

demonstrates areas of intermediate to low signal in the T1-weight imaging and areas of high signal

in the fluid-sensitive sequence, when compared with the normal bone marrow [17]. The different

sensitivity can be seen in the T1-weighted images as darker regions, and fluid-sensitive sequences
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Figure 2.1: Representation of bone anatomy. From [15].

as brighter zones, [18] as shown in Figure 2.3. The change in the sensitivity of T1-weighted and

fluid-sensitive sequences can be associated with the replacement of bone marrow fat by water [19],

and are significantly different from the changes in case of infection, stress or other prognoses.

As previously mentioned, ELMSI can be associated with multiple diagnoses and different

stages of the disease and can be found in multiple parts of the human body such as the hip, knee,

ankle, foot, shoulder or spine. [20]. Currently, MRI is the radiographic modality of choice to

visualize bone marrow lesions since they can not be visualized by X-Ray or CT scanning. ELMSI

is not specific to any pathology type, but the context in which it is found should be considered when

diagnosing and prescribing treatment and recovering analysis [18]. The main influencing factors

are the patient’s age, sex, medical history, and the presence or absence of symptoms, for example,

pain. It is common to find appearances of ELMSI in growing children since the conversion of the

"red marrow" to "yellow marrow" is still taking place [21]. Similarly, there are reported cases of

ELMSI in people with intensive regular exercise, such as athletes, as seen in runners that show

foot and ankle marrow edema [22].

Although common to growing children and to regular intensive athletes and most of the time

asymptomatic, ELMSI is associated with some painful diagnoses. In the case of athletes, the

appearance of ELMSI is associated with damage in their articular cartilage, and early screening can

avoid some possible injuries [23]. The list of associated diagnoses is extensive, including trauma,

Osteomyelitis, Bone Marrow Edema Syndrome (BMES), Osteochondritis Dissecans, Neoplasm,

Osteonecrosis, Degenerative Arthritis, Transient Osteoporosis, Transient Bone Marrow Edema
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Figure 2.2: Representation of the amount of "red marrow" in tubular bones from birth until 25
years old, expressed as black colour. From [16].

Syndrome (TBMES) and tumours [4]. Bone marrow edema is commonly (up to 82% cases) seen

in degenerative joint diseases such as Osteoarthrosis and Rheumatoid Arthritis [18]. Concerning

the Osteoarthrosis diagnosis, ELMSI is limited to areas where the cartilage is defective, where

the patients are very likely to have pain when ELMSI is found in the MRI scans. The presence

and growth of the ELMSI can be a prognostic indicator of the progression of Osteoarthrosis. For

Rheumatoid Arthritis, which is a chronic condition that usually leads to joint destruction, ELMSI

is frequently sighted in MRIs of patients and is also an important indicator of the progression of

the chronic disease. However, it is most common to associate ELMSI with traumatic cases. After

the contusion or bruise, leakage of the interstitial fluid and haemorrhage within the marrow occurs,

achieving fracture when the injury reaches the bony cortex. In the presence of tumours, we can

also encounter regions with ELMSI [18], admitting that a large amount of ELMSI is associated

with a small-sized lesion, we are usually in the presence of a benign tumour.

In terms of treatments, when trying to avoid surgical options, the physicians apply multiple

medication combinations according to the patient’s symptoms and reduce the progression of the

associated diseases. However, the treatment depends on the cause of the ELMSI, having different

medications for each condition, but with the intent of pain relief and anti-inflammatory action.

One common approach is the use of Iloprost (Ilomedin, Schering, Berlin, Germany), applied as

a pain reliever and to regress the ELMSI in patients with a bone bruise, stress-related ELMSI,

and reactive ELMSI with osteoarthritis. Regarding the non-invasive therapies, the patient could

be subject to extracorporeal shock wave therapy [24]. In contrast, the invasive approaches are

counting with surgical intervention, associated with core decompression when ELMSI is located

in the hip, and possible injections of hydroxyapatite cement in the ELMSI area [25].
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Figure 2.3: From left to right, fluid-sensitive sequence, T1-weighted sequence and X-Ray. In all
the images, we can see noted ELMSI and the correspondent area in the X-Ray. Scans from the
dataset of the problem associated with this dissertation.

Diagnosing ELMSI faster, with more accuracy and less resource consuming, especially when

ELMSI is a sign of chronic degenerative diseases, is essential to getting a faster and more efficient

treatment that accesses each need of the patients. Additionally, treatment is helpful for retard-

ing the progression of those diseases as well as preventing further cartilage damage by applying

preventive and conservative measures [23].

2.4 Summary

Medical imaging is a crucial asset to health professionals because it allows the examination of

the human body in a non-invasive way and without using surgical approaches. The development

of non-impact methods has made it possible to examine conditions, such as ELMSI in bones,

with less impact on the human body. ELMSI is only observed using some MRI techniques and is

associated with multiple medical diagnoses. Its early screening and turning it easier to diagnose

will greatly impact the approach of the health professionals regarding treatment and increase the

quality of living of the patients.
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Chapter 3

Literature Review

The chapter is divided into two sections. The first Section, 3.1 has the purpose of introducing the

Image Segmentation (IS) problem, its basic algorithms related to Machine Learning (ML), such as

thresholding, regional growth, random forests and clustering methods, and the usage of approaches

related to Deep Learning (DL) for problems related with brain and tumour segmentation. After

that, Section 3.2 presents the methods found relevant regarding the bone, cartilage segmentation

of the knee and bone segmentation of the shoulder joint and the models used to achieve the goal

of bone segmentation.

3.1 Image Segmentation

Using Image Segmentation (IS), a picture can be broken up into several segments, such as sets

of pixels, intensities, or textures, to identify objects and their boundaries. In ML and DL applied

to the image data type, being able to understand and extract information from images is the main

goal, and thus image segmentation is the first step in image analysis [26]. The problems in ML can

be divided into supervised learning, where the model takes advantage of a provided label dataset

and uses it to train; unsupervised learning, where a dataset in which no labelled data is provided,

and the goal is to discover patterns within the data and create clusters based on the similarity

between the data; and reinforced learning where the goal is to make a sequence of decisions, the

training stage is responsible for learning how to detect the external environment and decide which

interpretation will yield the best result [27].

Medical Imaging Segmentation is a difficult task due to the variety of the anatomy of the

human body, the complexity of the images because of the presence of different artifacts, and

the lack of homogeneity in intensity. It requests that the process of analysing the images be

done by experienced experts [28]. Image segmentation algorithms play a vital role in biomedical-

imaging applications, such as quantification of tissue volumes, localisation of pathology and study

of anatomical structure [29]. IS can be divided by the goal of the actual task. If the idea is to

allocate classes to each image pixel with a semantic label, it is called semantic segmentation [30].

If the primary purpose of the technique is to partition individual objects in the image, it is called

11
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instance segmentation and extends the scope of the semantic segmentation because it not only

assigns a class to each pixel but also can delineate each object of interest in the image [31, 32].

As previously mentioned, IS is the first step to the image processing problem. There is a wide

range of ML approaches. Regarding methods that are under classic ML algorithms and that are

common to be referenced in literature are the techniques that use intensity analyses and shape

modellings, such as edge-based detection, threshold techniques, regional growth segmentation, as

well as non-deep learning techniques such as random forests and clustering methods [32, 33].

Starting with the simplest method of IS, the threshold method takes the grayscale information

processing by evaluating the grayscale value of the different encountered elements. The algorithm

can be divided into global and local threshold methods, where the first divide the background and

target by a threshold, and the second selects multiple thresholds to divide the image into multiple

regions and backgrounds depending on those thresholds. The approach is helpful because it does

not require an extensive calculation and obtains results faster, but it has struggled with problems

where there is not a significant grayscale difference and an excellent overlap of elements [34].

Another example of an algorithm is the regional growth segmentation, where its main charac-

teristic is to have similar properties to the pixels and thus form small regions, making them expand

to include all the homogeneous neighbours [35]. It requires the selection of the seed pixel, check-

ing its surroundings to merge the similar pixels. It has the advantage of providing a reasonable

boundary, but it has a high computational cost compared to other ML algorithms, and it is influ-

enced by noise and grayscale unevenness [34]. Segmentation by edge detection is also used in IS

problems to separate elements within the image into distinct regions. It is still affected by noise

and can identify fake and weak edges [36].

Random Forests (RF) is an algorithm that introduced a new concept to image segmentation:

"contextual information". They are a good algorithm for detection, localization, segmentation

and image-based prediction. Combining the idea of bagging (training each tree with the dataset)

with random feature selection where, at each node, is selected a subset of features, to assemble

randomized decision-based trees (set of binary tests of the features), that they are fed with the

input data to make a prediction [37, 38]. They help remove the irrelevant features and have good

accuracy with small amounts of data, but they are very computational expensive [39].

The clustering approach is the grouping of objects regarding their similar attributes, and those

groups are called clusters. Clustering is a general term that includes multiple algorithms that have

different "main" ideas concerning how the clusters are formed. In the K-Means algorithm, for

example, data vectors are grouped into predefined clusters, the centroids are initialized randomly,

and each pixel is assigned to a cluster by Euclidean distance. This process is repeated until no

significant changes are observed in the arrangement of the clusters [35]. The K-Means clustering

is very fast and straightforward, being a promising approach for large data sets, but the number of

clusters has no explicit criteria for its selection, and each interaction has to go by all the samples

[34].

Although the success of the application of the ML methods, the usage of Deep Learning (DL)

approaches to Medical Image Segmentation has grown throughout the years, especially for MRI
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Figure 3.1: A graphical representation of the artificial neuron. From [42].

and ultrasound (US) images [40]. Deep Learning (DL) is a sub-part or the "evolution" of ML

concerning the usage of multi-layer structures to automatically learn and extract features from a

raw set of data. It takes advantage of the Artificial Neural Networks (ANN), which are inspired

by the human brain, to create models composed of those structures and combine them in multiple

layers. Usually, the ANN is a set of interconnected, hierarchically organized neurons, where the

different layers perform different transformations on the data input to obtain different levels of

abstraction to extract features, and there are three types of layers: the input layer, hidden layers

and the output layer[41]. Its main structure, the neuron demonstrated in Figure 3.1, has a set of

weights that grant the ability to control the flow of information from each input, and a decision is

taken using an activation function. The output of the neuron y can be defined as represented in the

equation 3.1, where x values are the inputs, the w are the weights and φ is the activation function.

y =
n

∑
i=1

wixi +b (3.1)

For the network to learn, it occurs, during training, modification of the weights that control

the inputs into the neuron, where the goal is to minimize a Loss function. In trying to solve the

problem, this function is a relationship between the values obtained and the reference, and its

primary purpose is to evaluate the precision of the network. There are also a large number of loss

functions, and the selection of the appropriate one to solve the problem can be very crucial [42].

Adding to that, the neural networks take advantage of a method called backpropagation, where

the difference between the output result and the reference is calculated and then propagated from

the last layer to the first one. The network also needs an optimizer responsible for, interactively,

finding a local minimum to find the optimal weights and bias.

The advantage of using DL techniques is that instead of extracting the features manually, it

only needs a small prepossessing and the feature engineering that was needed before is now on

the side of the computer [43]. There are multiple approaches in the DL scope, depending on
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Figure 3.2: For the IS problem the most common network architectures applied. From [28].

the actual dataset. Convolution Neural Networks (CNNs), for example, have been applied for

automatic brain tumour segmentation [44] and for segmentation of breast tumour [45], and the

reported results surpass the ones using classical ML approaches. In Figure 3.2 can be seen as the

most common method of DL for image segmentation.

Sun et al. [46] applied a Convolutional Neural Networks (CNN) to segment brain tumors with

low computational requirement. To achieve the goals, it was implemented an Application Specific

CNN, which focused on the specificity of the task, in this case, the brain tumour segmentation task.

The implementation had three steps: pre-CNN, the CNN and pos-CNN. The first had the goal of

reducing the volume of the input data by removing tumour-free slices by evaluating the symmetry

of the brain (slices with tumours are asymmetrical) and slices with an incomplete appearance in

the brain. Afterwards, the data was fed to the developed CNN.

In a nutshell, CNNs are models for processing data that have a grid pattern (example: images),

inspired by the hierarchical organisation of the human visual cortex, and designed to automatically

and adaptively learn features from low to high-level patterns. These structures are composed of

three types of layers, convolution layers and pooling layers, both responsible for feature extraction

and fully connected layers responsible for mapping the extracted features into a final output. The

convolution layers imply the stack of mathematical operations like convolutions, and it plays the

most critical role in this approach [47]. Each convolutional layer applies a filter, called the kernel,

convoluting each filter across the spatial dimensionality of the input to produce a 2D activation

map. Each kernel will have a corresponding activation map, and at the end, all maps will be

stacked along the depth dimension to form the total output volume [48]. Each feature map is used

to extract local characteristics of the same positions in former different feature maps [49]. These

layers can significantly reduce the complexity of the model by the optimisation of its output [48].

Pooling layers reduce the number of parameters and complexity of the representation by reducing

the dimensionality. Finally, the fully connected layers contain neurons that are directly connected

to the neurons in the previous layer and connect them to every single neuron of the current layers,

and the last layer is followed by an output layer [50], as shown in Figure 3.3.
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Figure 3.3: Overview of a CNN and the training process. From [50].

Regarding Sun et al. [46] implementation of the CNN, it was specifically designed to receive

as input 2D brain image slices of the four modalities present in the dataset. The convolution layers

are used to feature extraction from the four modalities input, as well as tumour localization and

pixel classification. It only uses 108 convolution kernels used in the seven convolution layers. Due

to the simplicity of the model developed, were used three different modes of convolution (standard,

depthwise and group convolution), as well as normalization to uniform the data distributions were

performed, the kernel applied in each convolution was carefully tailored, and the usage of Full-

ReLu activation function to cope with information loss of the normal ReLu function. The pos-

CNN is used to identify the pixels that were wrongly classified as positive, using the idea that

tumours are a 3D volume and the area of each one of them should be found in consecutive slices.

The model performed well compared with the baseline, achieving DICE Similarity Coefficient

(DSC) scores for enhancing tumour of 77.2%, 89.2% for whole tumour and 76.3% for tumour

core. However, the high performance the model presented is specific for tumour segmentation and

allowed the reduction of randomness and redundancy in computation, as well as the dependency

on training samples, increasing efficiency.

Yongchao et al. [51] proposed an approach to segment brain MRIs utilizing a Fully Convo-

lutional Network (FCN) and Transfer Learning (TL). Following 2D slides of the 3D volume was

the input to the FCN that used the VGG network [52] (composed of thirteen convolutional layers

followed by three fully connected layers), that was pre-trained on the ImageNet dataset [53] (large

dataset containing annotated images for computer vision projects). The VGG network discarded

the fully connected layers, being substituted by specialized convolutional layers, and the max-

pooling layers divide the base network into five stages, as represented in Figure 3.4. The main

advantage reported was the need for a low number of training images regarding the main problem

of 3D brain segmentation. It is essential to mention that the main goal was to segment brain MRI

images from neonates to ageing adults with core structure differences. It was reported significantly

reduce segmentation running time and promising results with a lower amount of training images
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Figure 3.4: Proposed network for the brain segmentation, where the last VGG Net layers were
substituted by the specialized layers. From [51].

while comparing with the baseline.

3.2 Bone Segmentation

3.2.1 Knee Bones and Cartilage segmentation in MRI

The evaluation of the Osteoarthritis progressiveness in knee joints motivated multiple approaches

for the segmentation of knee cartilage. Older studies apply classical approaches such as "region

growing" [54] and "edge-based" [55], semi-automated approaches. The more recent approaches

mainly work with DL techniques due to the upgrade in the accuracy and better results [56].

3.2.1.1 Model and Atlas Based approaches

Graham Vincent et al. [57] proposed a statistical model based on Active Appearance Model

(AAM) (introduced by Cootes et al. [58]), that uses the training set of manual segmented im-

ages by an expert, to develop statistics of the shape and image features information. The model

performed reasonably well, presenting a maximum mean distance (evaluates the similarity of two

images) of 1.4 mm. Fripp et al. [59] proposed the utilization of a hybrid 3D Active Shape Model

(ASM) (also introduced by Cootes et al. [60]) for the BS, which is also a statistical model to

generate a suggestion of the shape of the bone and it is used an atlas as a base for the devel-

opment of the statistical model. The results presented a high accuracy on an inhomogeneous

database, where the ASM obtained close enough solutions to boundaries. Both approaches were

marked as sensible to the initialization parameters. Besides statistical approaches, Yin Yin et al.

[61] proposed the utilization of a layered optimal graph image segmentation of multiple objects

and surfaces (LOGISMOS), which is an n-dimensional graph approach based on "algorithmic in-

corporation of multiple spatial inter-relationships" in a single graph [61]. The proposed method

envisages the segmentation of the femoral bone, femoral cartilage, the tibial bone, tibial cartilage,

the patellar bone and the patellar cartilage, constituting an issue of simultaneous segmentation.

It starts with a pre-segmentation step, followed by the construction of a graph that contains all

relationships and surface cost elements, where the segmentation of all the surfaces coincides with

the optimization [61]. Regarding the atlas-based methods, the approach seeks to label structures
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by mapping the image to an anatomical pre-constructed atlas (introduced by Rohlfing et al. [62],

and the atlas distinguishes the spatial relationship of the anatomical structures) and each image

voxel is assigned by using the label of the correspondent structure in the atlas [63]. Tamez-Peña

et al. [64] implemented a multi-atlas approach by enhancing the atlas-based method with outlier

detection, developing multiple anatomical knee atlas defined by experts from MRI datasets. The

results presented confirm that it was possible and reliable to automatically segment the bone and

cartilage in the knee, presenting a DSC Similarity Coefficient (DSC) (measures the similarity of

two images) of 88% for the femur bone. Liang Shan et al. [65] also applied multi-atlas to achieve

a fully-automatic segmentation of the femoral and tibial cartilage with a non-local patch-based

label function to allow spatial separation of the cartilage. It also required an expert segmentation

of the femur, tibial and the corresponding cartilage. It was demonstrated that the multi-atlas seg-

mentation is appropriate for cartilage segmentation, being robust, overcoming occasional failures

[65].

3.2.1.2 Deep Learning approaches

The most recent approaches use CNNs and their variations and improvements for segmenting

knee cartilage and bones. Although the CNNs can be extended from 2D to 3D, the 3D version

has large memory and training time requirements [66]. Liu et al. [56] proposed to implement

musculoskeletal cartilage and bone segmentation using an automated method that combines a se-

mantic segmentation Convolutional Encoder-Decoder network (CED), which is a paired encoder

and decoder network and a 3D simplex deformable modelling. As the core of the CED segmenta-

tion engine, the team chose a SegNet architecture composed of the encoder and decoder networks,

designed to be an efficient pixel-wise semantic segmentation [67]. The SegNet is similar to the

VGG-Net network type because it uses the same thirteen convolutional layers, and each encoder

layer group is repeated five times. To recover the feature maps using up-sampling, the proposed

approach removes the same structure as the VGG-Net. The big difference between the SegNet

with the VGG-Net is that the decoder network is a reverse process of the encoder and mimics

the same number of five decoder layer groups, consisting of an up-sampling layer followed by

a trainable convolutional layer and a ReLU activation. Finally is followed by the last layer that

is responsible for the production of class probabilities for each pixel [56]. The 3D dimensional

deformable model is based on the class probability output by the SegNet. In Figure 3.5, it is

possible to see a representation of the SegNet utilized. For training the SegNet the 3D volume

was dissembled into 2D images and labels. The SegNet uses batches of the 2D image slices and

compares them with the pixel-wise class labels. Ally to that was applied an objective function to

estimate the training loss and to update the parameters of the SegNet until a pre-defined maximum

of interaction steps. In the test phase, the fully trained SegNet is utilized to segment the 2D testing

images. A 3D fully connected Conditional Random Field (CRF) is applied to refine the segmen-

tation by improving the label assignment for the voxels with similar contrast. The 3D simplex

deformable process takes the individual segmented object to be refined to preserve tissue bound-

ary and maintain anatomical geometry. After that, the 3D segmentation is obtained by merging all
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Figure 3.5: SegNet used to perform the cartilage segmentation. From [56].

the segmentation objects [56]. It is mentioned that the CED network implementation was crucial

because it is better suited to perform complex transformations and is less sensitive to overfitting.

There is also a suggestion of the methodology to implement concerning the ELMSI problem by

applying a different image intensity threshold technique to isolate and measure the volume of the

ELMSI [56]. Despite the success of the approach, and the top performance for segmenting the fe-

mur mentioned, some aspects need to be considered when trying the same approach in the future.

The CED process requires computational resources and many pixel-wise annotated training sets

for evaluating each new tissue contrast.

Almajalid et al. [10] addressed the problem of segmenting soft tissues of the knee by starting

to segment the bone first, considering it as the first step to cartilage segmentation, as mentioned

before. Therefore, it was developed a fully automatic segmentation for the knee bone by taking

advantage of a U-Net and applying some changes to the basic U-Net structure. U-Net was firstly

introduced by Ronneberger et al. [68] as a network that would be able to work with smaller

training sets and achieve more precise segmentation. The U-Net basic structure is represented in

Figure 3.6 and has two paths. The first one is the contracting path, also known as the encoder,

which is similar to the regular convolution network and provides some classification information.

The second is the expansion path, known as the decoder, and consists of up-convolutions and

concatenations with feature extraction. The increase in the output’s resolution is passed to the

final convolution layer to achieve the fully segmented image [69]. The contracting path consists

of two successive 3×3 convolutions followed by a ReLU (Rectified linear activation unit, which

transforms the negative input values into zero) and a max-pooling layer (which calculates the

maximum value for each path of the feature maps), repeating multiple times. The second path

is the expansion path, where each stage up-samples the feature map using 2×2 up-convolution.

After that, the feature map is cropped and concatenated onto the up-sampled map. This process is

followed by two successive 3×3 convolutions and ReLU activation. Moreover, finally, to produce

the segmented image, an additional 1×1 convolution is done to reduce the feature map to the

required number of channels [69]. The U-Net has proven to efficiently perform the segmentation

of images with a limited number of labelled training images. It combines the information from

the downsampling path with the contextual information of the upsampling path. The limitations
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Figure 3.6: Basic U-net architecture. From [69].

are regarding the size of the image being limited and the skip connections imposing a restrictive

fusion, which causes accumulation of the same scale feature maps [28].

The slight modified U-Net used Almajalid et al. [10] takes the 3D image chunk to tune any

parameter of the dataset due to the capability of the method to self-adjust to a varying dataset.

Before the implementation, the dataset was optimized and also divided into three groups train,

validation and test. The preparation of the dataset also included the manual marking of all the

femur bones as ground truth. The U-Net basic structure was modified to accept multiple channels

as inputs instead of only one channel, as well as the addition of padding to control the shrinkage of

the image size while applying each convolution to avoid losing the pixels near the borders. Adding

to that, instead of the original stochastic gradient descent optimizer of the original version, it was

used the Adam optimization algorithm to update the network weights based on the training data

and take advantage of the DSC to verify the accuracy [10]. In total, the modified network has

twenty three convolutional layers. It was reported favourable results for the segmentation of 3D

knee MRI, for the segmentation achieving a DSC of 96.73% to original U-Net and 97.22% using

the modified U-Net for the image size of 352×352 [10].

Cheng et al. [70] presented an alternative to patellofemoral bone segmentation, simplifying

the CNN architecture with the implementation of a Holistically Nested Network (HNN), firstly in-

troduced by Xie et al. [71]. The HNN is a simplification of the CNNs, deleting the decoding path.

It produces multiscale outputs in a single path using feed-forward neural networks. It can reduce

the hyperparameter space, avoid overfitting, sometimes associated with the U-Net, and reduce the

computational cost. Due to its capability of training and prediction using the whole image end-to-

end, the segmentation uses local and global contextual information [70]. It is mentioned that the

HNN is a appropriate candidate for the knee segmentation task because it does not need manual

pre-processing of the data, as well as being a good approach for both young and older patients

and is not subject to the variability of the structures between different patients. Before the data
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Figure 3.7: Modified U-net architecture used by Almajalid et [69]

entered the HNN, all images were pre-processed using different techniques for uniformity of the

images. After that, the images went through the HNN, which was divided into five staged convo-

lution layers, where each layer used different size and number of filters, feeding the feature maps

to be used in the layer that follows, with its side outputs, that produce fine-to-coarse probability

maps. From left to right, the most shallow layer generated a probability map with finer details and

the deep layer generated the probability map containing global contextual information. With the

production of a probability map in mind, each output layer was inserted following the convolu-

tional layers by merging the feature maps at each stage. To merge every resultant probability map,

a weighted fusion layer was used to compute the final prediction. The representation of the HNN

is shown in Figure 3.8. The implementation was fully automatic, and it successfully segmented

the patella and the distal femur, with a high DSC similarity coefficient (which validation metric

that gives the similarity of two samples) results (97% for the femur and 94% for the patella). It

was no mentioned significant differences in the accuracy of automatically segmenting immature

bones compared to the mature bones [70]. It is mentioned that the size of the training dataset and

variability should be considered when applying the model to other similar problems.

Ambellan et al. [72] applied, for the segmentation of bone and cartilage of the knee, an ap-

proach that combined Statistical Shape Model (SSM) and a CNN. The combination is represented

in Figure 3.9. SSM are sets of models that can describe a collection of similar structures and

the possible anatomic variations, in this case, the variability for the knee. The model applied

2D CNNs, sub-regional 3D CNNs and SSM-based techniques in a segmentation pipeline. In the

first step, the 2D CNN created the rudimentary segmentations of the femur and tibial bone. The

regularization of the segmentation masks was followed by fitting the SSM. After that, the output

of the SSM was fed to a 3D CNN to segment small MRI sub-volumes. The next step concerns

the application of SSM post-processing, which uses pre-defined regions of the SSMs to enhance
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Figure 3.8: HNN architecture representation. From [70].

the output results of the 3D CNN. To finalize, the cartilage was segmented using 3D CNNs. The

process segments the bone and the tibia independently and individually. For the 2D CNNs, it was

applied a variant of the U-Net architecture, where it was possible to segment the tibia and femur

individually by the increase of the number of input channels compared with the original model to

enhance the spatial consistency of the segmentation results between individual slices. Regarding

the SSM step, it was implemented to face inaccuracies in areas with low-intensity contrast. SSMs

cannot express osteophytic details since deformations are patient-specific. The 3D CNN, mainly

3D U-Nets, were applied to face this issue, trained on small sub-volumes of the MRI scans. The

SSM post-processing is used to finalize the femur and tibia bones segmentation by correcting the

false positive voxels that are located outside the typical range of osteophytic growth. The model

achieved high segmentation accuracy rounding 98% of DSC in all the tests performed. Several

compromises were made regarding the sizes of the sub-volumes in order to reduce the computa-

tional costs [72].

3.2.2 Shoulder Joint Segmentation in MRI

Wang et al. [73] combined a U-Net segmentation model with an AlexNet (proposed by Krizhevsky

et al. [74]). The U-Net received an input image of the labelled training set, including the humeral

head and articular bone. The AlexNet is used to determine the edges of the bones accurately.

AlexNet was adapted by increasing the number of channels to segment the MRI image and ad-

justing the convolutional kernel and pooling kernels. For the dataset, the images were filtered for

noise reduction and radiologists labelled the joint bones and humeral head parts that mattered. In

order to increase the data seen by the architecture, were performed data augmentation techniques,
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Figure 3.9: Proposed cascade of CNN and SSM steps. From [72].

such as random 90-degree rotation, random vertical flip, horizontal random flip and others. The

workflow, represented in Figure 3.10, starts with generating candidate bone regions with the re-

sultant partial segmentation using the U-Net and the AlexNet. The next step was extracting the

effective bone from the rectangle candidates, predicted by the average value of the rectangle area

in the forward and backward prediction frames. Finally, the edge refining segmentation occurs,

after which the soft tissues and noisy areas that were not the bone and cartilage parts are filtered.

It was reported that high values for accurate measurement were dependent on the size of the block

used in the first steps, but rounding accuracy of 97% [73].

3.3 Summary

This Chapter presented the problem of IS and its importance when analysing Medical Images

because IS is the first step in multiple biomedical-imaging applications. For the past few years,

DL methods have surpassed the usage of ML approaches to the medial imaging world due to less

feature engineering required by DL methods, and it has shown better results in multiple different

problems. Multiple networks were developed and optimised to be focused on biomedical imaging

problems. Multiple CNNs were developed for the brain, organs and tumour segmentation, as well

as the implementation of pre-trained models in the segmentation problem. Concerning BS, the DL

models have been gaining more relevance than the latter ML approaches, the U-Net architecture

and some of its variants are the most relevant and used architectures for the BS problem.
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Figure 3.10: Segmentation framework representation. From [73].
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Chapter 4

Methodology and Experimental Setup

This Chapter gives a data contextualisation, its analyses and the steps taken to its presentation

(Section 4.1). All the implementation procedures taken to apply the segmentation models are

presented in Section 4.2.

4.1 Data

4.1.1 Data from University Hospital Center of São João

The dataset provided by the University Hospital Center of São João (UHCSJ) contained images

from 72 patients until the age of 18 that had MRI scans and X-ray scans of each subject. In Figure

4.1 is represented the sex distribution of the dataset and in Figure 4.2 is presented the age distribu-

tion between cases. Each folder of each patient has an XML file that contains patient details, exam

details and scan file distribution, an executable to see the scans, and the Digital Imaging and Com-

munications in Medicine (DICOM) binaries. Most medical imaging methods rely on computer

processing, where the computer collects, stores, and utilises the data, for example, constructing

3D models from the input data. Different methods and technologies that acquire medical imaging

created the need to standardise the way that even if we used different machines and computers,

one could get to process the outputs of the acquisition. Therefore, it was developed a standard

communication protocol where different manufactured equipment could output information to be

processed in the same computer, the protocol DICOM. Nowadays, the DICOM protocol allows

effective medical imaging storage and transfer over large geographical areas, a great development

from its first version, developed in the 1970s [75]. As said, DICOM was developed to ease the

interchange and standardisation of medical images. It also defines network-oriented services that

provide transfer and printing capabilities and media formats for the exchange of data successfully.

The DICOM documents use Information Object Definitions (IODs), which are attributes to de-

scribe certain aspects of the image and are the central components of the data structures [76], and

are of great importance. For example, "patient" is an information object that has attributes such as

"patient name" and "patient ID number". Those attributes describe the type of the object, data of

the patient, performed procedures or reports and technical information about the medical imaging

25



26 Methodology and Experimental Setup

Edema Non Edema

10

15

20

25

13

18

23

18
N

um
be

ro
fp

at
ie

nt
s

Female Male

Figure 4.1: Representation of the sex of patients in the dataset.
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Figure 4.2: Representation of distribution of patients’ ages.

device used that usually differ from manufacturer to manufacturer, such as device manufacturer,

device serial number and others. It is accepted a wide range of image types, for example, X-ray in-

tensity images are used, and it supports multi-dimensional multi-frame images. The compression

method accepts the standards such as JPEG, JPEG Lossless, or MPEG-2 for video [75].

The dataset has 72 patients, that had all the personal information that can identify the patient

was omitted for motives of confidentiality, where in 36 patients ELMSI was identified in the MRI

scans, and manually annotated by two health professionals as demonstrated in Figure 4.3, also

locating the normal signal muscle and normal signal bone marrow, as well as the annotation of the

resultant ELMSI area in the X-Ray scan latter on, there were added slices with bone annotated.

The other 36 patient scans with no ELMSI found had the healthy bone annotated, as seen in

Figure 4.4. For the dissertation problem, the only scans used to perform training, the validation

and testing of the models, were the ones with the bone annotation without ELMSI. Later on, more
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slices with bone annotated were added concerning the scans of the patients with ELMSI. The T1-

weighted images had 356 slices, while the fluid-sensitive images had 349 slices, where the bone

was annotated. All the scans were from the coronal plane.

4.1.1.1 Preparing the data

For each case, there is available an XML file, where it is possible to find some information

about the anonymized patient, for example, age and sex, as well as to access the correspondent

images of the MRI scans and the medical annotations. Some slices had irrelevant annotations,

such as arrows and measurements not concerning the bone segmentation, as shown in Figure 4.5.

Those irrelevant annotations were removed, only remaining the annotations of the bone. Some

other slices had annotations of bone with open lines that needed to be closed in order to produce

the pair MRI slice and the ground truth to feed the models for training. Adding to that, some

pairs needed the correction of the annotation positioning in order to coincide with the location of

the bone. After getting the pair MRI and ground-truth, as presented in Figure 4.6, the images go

through a pipeline to feed the models, where they are normalised to have values between [0,1] by

the min-max normalisation method [77]. Then they are rescaled to the target input size, depending

on the model to be applied. The dataset was divided in order to obtain the training, validation

and testing set according to the 60% for training, 20% for validation and 20% for testing ratio, as

represented in Table 4.1.

Table 4.1: Dataset split into training, validation and testing sets

T1-weighted sequence Fluid-sensitive sequence
Training 213 209

Validation 72 70
Testing 71 70

4.1.1.2 Data augmentation

The dataset is considered very small compared with other problems in DL. In order to provide

more cases for the model to learn, some techniques of data augmentation were applied: horizontal

flip, rotation of 20 and -20 degrees, a small vertical shift and a Gaussian blur. In Figure 4.7, are

represented examples of the applied techniques. All the augmentation techniques were applied in

the training set, increasing the number of training images as presented in Table 4.2.

Table 4.2: Data augmentation numbers

T1-weighted sequence Fluid-sensitive sequence
Before data augmentation 213 209
After data augmentation 1278 1254
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Figure 4.3: From the dataset, scans where ELMSI was annotated, as well as the identification
of the tibia and the quadriceps muscle. From left to right, fluid-sensitive sequence image, T1-
weighted sequence and X-Ray.

Figure 4.4: From the dataset, scans where no ELMSI was found, and the healthy bone was an-
notated, as well as the identification of the tibia and the quadriceps muscle. From left to right,
fluid-sensitive sequence image, T1-weighted sequence MRI and X-Ray.

Figure 4.5: Examples of excluded annotations.
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(a) MRI slice (b) Ground truth

Figure 4.6: Slice from the University Hospital Center of São João and the correspondent ground
truth.

4.1.2 OAI ZIB dataset

This dataset was produced by experts in Zuse Institute Berlin1, and is a publicly available dataset

[78]. It contains manual segmentations for four anatomical structures: femoral, femoral cartilage,

tibial, and tibial cartilage. The scans correspondent of the manual segmentations are from the

dataset of the Osteoarthritis Initiative (OAI) 2. A pair of slice and correspondent annotation is

represented in Figure 4.8. There are 507 different Double Echo Steady State (DESS) sequences

of the sagittal view of knees corresponding a 507 different patients. The DESS sequences are 3D

coherent steady-state sequences, that combine features from different types of signals, granting

the capability of signalising the fluid brightly, and the bone appears extremely dark. The DESS

sequence is great for combining morphological and functional analysis with high resolution, but

it requires a long scan time and presents metallic susceptibility artefacts. In general, 3D DESS

allows great assessment of cartilage thickness and volume [79, 80]. The ages of the patients have

an average of 61.87±9.33, and 48.32% are women [78].

4.1.2.1 Preparing the data

The OAI ZIB dataset comes with the location of the MRI slices on the OAI database that cor-

responds to the annotations. When the MRIs were extracted from the OAI database, they had to

be pre-processed, so all unwanted cartilage labels were converted into the background, and all

bones labels were converted to the same label, 1, and were flipped so that the bone areas coincided

with the bone areas in the MRI. In addition, the slices where there was no bone annotated were

removed. Motivated by the need to feed the pair to the model, there was also a process of normal-

isation, as mentioned before, where the values of the slice were normalised in order to belong to

1https://pubdata.zib.de/
2https://data-archive.nimh.nih.gov/oai/

https://pubdata.zib.de/
https://data-archive.nimh.nih.gov/oai/
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(a) Original MRI slice (b) Horizontally flipped slice

(c) 20º rotated slice (d) -20º rotated slice

(e) Vertical shifted slice (f) Gaussian blurred slice

Figure 4.7: Data augmentation techniques applied to a T1-weighted image slice.
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(a) MRI slice (b) Annotation

Figure 4.8: Slice from the OAI dataset and the correspondent annotation from the OAI ZIB dataset
[78].

the range of [0,1] by the same min-max method [77]. In total, there were 62708 slices of the knee

with annotated bone in it. Figure 4.9 represents a final pair of slice and ground truth.

4.2 Models implementation

The main goal of this study was to implement DL approaches to the problem of bone segmen-

tation. According to [28] there are multiple implemented approaches regarding Medical Imaging

Segmentation, especially for segmentation of internal organs, such as the chest organs, eyes and

brain. It implemented the following models: U-Net and a slightly modified version of the U-

Net, and an Attention U-Net. Furthermore, pre-trained models were implemented in the OAI ZIB

dataset and a U-Net that used the pre-trained encoder of a VGG-16 model in the ImageNet dataset.

4.2.1 Environment and tools

The implementation of the proposed models took place in the Google Colab3 environment. It

is an environment facilitated by Google Research, free to use, that is a hosted Jypyter notebook

service, with no setup required, providing free access to computing resources and GPUs. The used

GPU for the training of the models fluctuated between NVIDIA Tesla T4 and NVIDIA Tesla K80

and disk space of 36GB. The CPU was Intel(R) Xeon(R) CPU @ 2.30GHz.

All the code was developed in Python 3.7 [81] due to its known applicability in DL projects, as

well as its available libraries with free access for image processing and DL development. Regard-

ing image processing, were used some libraries: OpenCV [82], Scikit-image [83], and Pydicom

[84]. For the model implementation and all the processes involving training, validating and testing

the libraries or APIs used were TensorFlow [85] and Keras [86].

3https://colab.research.google.com/

https://colab.research.google.com/
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(a) MRI slice (b) Annotation

Figure 4.9: Slice from the OAI dataset and the correspondent pre-processed annotation from the
OAI ZIB dataset.

4.2.2 U-Net

The network implemented is referenced in subsection 3.2.1.2, which was mainly developed for

solving problems of medical imaging segmentation [68]. It is a model that applies a contracting

path, responsible for the down-sampling, and an expansive path, responsible for the up-sampling

part. The network is composed of nineteen 2D convolution layers. A Rectifier Linear Unit follows

the first eighteen convolution layers (ReLU), represented in equation 4.1 as an activation function,

responsible for outputting a positive number in case of positive input and zero in case of nega-

tive input. The last convolution layer is followed by a Sigmoid activation function, represented

in equation 4.2, that outputs values between [0,1] in order to obtain a prediction for the pixels.

The first eighteen convolution layers are followed by a Batch Normalisation layer responsible for

standardising the inputs to a layer for each mini-batch, stabilising the learning process. In the

contracting path, are used four layers of Max Pooling 2×2, with the responsibility of reducing the

spatial size of the representation, in order also to reduce the number of parameters to be computed

for each feature map. It is an efficient way to detect features after down-sampling in a more effi-

cient way, avoiding overfitting, and it does that by picking the max value of a determined region

of the feature map. In the expanding path, are applied four transposed 2D convolution layers to

the connections, which were obtained by an image cut. These steps are important because non of

the convolutions applies padding to the input images, giving masks with less spatial dimensions.

In Figure 4.10 is a representation of the model used.

ReLU = max(0,x) (4.1)

Sigmoid = σ(x) =
1

1+ e−x (4.2)

Were tested multiple hyperparameters, such as different loss function, learning rate, batch size,

and optimiser. In Table 4.3 is presented, all the options considered while searching for the most
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suitable combination of hyperparameters. Concerning loss functions, were tested the DICE loss

function, the Binary Cross Entropy loss function and the Tversky loss function. In the following

expressions, A represents the true value and B the prediction.

• DICE loss function: it is inspired by the DSC, which measures the similarity of the perdi-

tion and the ground truth. It is twice the amount of the intersection area between the segment

predicted and the ground truth, divided by the total number of pixels, as represented in equa-

tion 4.3 and the DICE loss function is represented in equation 4.4 [28, 87].

DSC =
2|A∩B|
|A∪B|

(4.3)

DICELoss = 1− 2|A∩B|
|A∪B|

(4.4)

• Binary Cross Entropy loss: it measures the difference between two probability distribu-

tions. Usually used in classification problems, image segmentation is applied at pixel level

classification [87]. It is defined by the expression on equation 4.5.

BCE =−(A× log(B)+(1−A)× log(1−B)) (4.5)

• Tversky loss: is associated with Tversky index (TI) [88] (presented in equation 4.6), is a

generalization of the DSC. It adds a weight on errors by the help of a β coefficient (default

being 0.2) [87], represented in equation 4.7.

T I =
AB

AB+β (1−A)b+(1−β )A(1−B)
(4.6)

T verskyLoss = 1− AB
AB+β (1−A)b+(1−β )A(1−B)

(4.7)

Concerning optimisers, two were tested, Stochastic Gradient Descent (SGD), the basic al-

gorithm responsible for the convergent of the networks, by updating the parameters of the net-

work, using backpropagation and the Adaptive Moment Estimation (Adam) optimiser, which is

a stochastic gradient descent method as well, but based on adaptative estimation of moments of

first and second order [89]. The learning rate and the batch size were selected according to the

most efficient pair. The method used for the initialisation of the weights is called He initialisation,

which finds values from a truncated normal distribution on zero and keeps the size of the previous

layer in mind. The weights are still random but have different ranges according to the size of the

previous layer of neurons.
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Figure 4.10: U-NET model representation used.
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Figure 4.11: Slightly modified U-NET model representation used.
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Table 4.3: Hyper parameters tested

Optimizer Learning Rate Epochs Batch size Loss
1 Adam 0.1 100 8 DICE loss
2 Adam 0.01 100 8 DICE loss
3 Adam 0.001 100 8 DICE loss
4 Adam 0.0001 100 8 DICE loss
5 SGD 0.1 500 8 DICE loss
6 SGD 0.01 500 8 DICE loss
7 Adam 0.001 100 16 DICE loss
8 Adam 0.001 100 32 DICE loss
9 Adam 0.001 100 16 BCE loss
10 Adam 0.001 100 16 Tversky loss

4.2.3 Attention U-Net

Furthermore, another model was applied, in the same line as U-Net. The Attention U-Net is a

variant of the original model developed by Oktay et al. [90] for the segmentation of the pancreas.

Adding Attention Gates (AG) to the U-Net standard model helped it focus on specific objects and

improve sensitivity to foreground pixels [90]. The AG is applied in the expansive path through

which the features extracted in the contracting path must pass before the concatenation. For the

segmentation problem, the AG allow the network to focus on the segmenting objects [91]. The AG

weights the feature map according to each class, and the network can then focus on a particular

class. Figure 4.12 represents the AG, where the input features xl are scaled with the attention

coefficient α . Both input signals suffer a 1×1×1 convolution and its result goes through a pipeline

of transformations that include a ReLU activation (σ1), followed by a 1×1×1 convolution, then

Sigmoid activation (σ2), and finally a grid resampler [90, 91]. In the end, there is a concatenation

of the pipeline signal with the original input signal. The representation of the model used 4 is in

4.13.

4.2.4 Pre-trained models

Intending to increase the performance of the bone segmentation task, TL was applied. Firstly,

research was done on public datasets concerning the problem of bone segmentation. Of the two

datasets found, one of them was already unavailable, remaining the OAI ZIB dataset. The goal

was to train the U-Net with the OAI ZIB and then use the training to transfer the features learned

and used in the dataset from the University Hospital Center of São João. Minor alterations were

needed in the U-Net model, mainly due to the efficiency of training, the reduction of the time

needed to train with this large dataset and due to the limitations of the environment used to train

the network. For example, the environment was not able to support batch sizes bigger than one

hundred and twenty eight. Besides Batch Normalization, Dropout layers were used in order to

prevent the possibility of overfitting. The number of filters for every convolution was reduced as

4https://github.com/bnsreenu/python_for_microscopists

https://github.com/bnsreenu/python_for_microscopists
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Figure 4.12: Attention Gate and all its constituents. From [90].

presented in Figure 4.11. The network was trained using 10−3 as a learning rate, for 50 epochs,

with the batch size of 128 (for training time optimisation and due to the larger amount of data

available), using DICE loss and the Adam optimiser. After having the outcomes of the modified

U-Net implementation, meaning after the model was trained on the OAI ZIB dataset and obtaining

the correspondent weights, in a first attempt, they were used to initialise the weights to perform

the model training for the dataset from the University Hospital Center of São João, instead of the

previous initialisation method, to understand the impact of weights initialisation in the problem

resolution. The second experiment was done, taking only the encoder part of this pre-trained

model corresponding to the contraction path of the model, freezing its layers, and training the rest

of the model with the dataset provided by the University Hospital Center of São João. After that

occurred a fine-tuning by de-freezing those layers and applying some more training with a very

small learning rate of 10−7. For the last tests, the encoder of one VGG-16 network [52] trained

in the large ImageNet dataset [53] and used as the base encoder in the contracting path, with its

layers frozen while training with the University Hospital Center of São João’s dataset. After that

training, fine-tuning was applied with a very small learning rate of 10−7.

4.3 Summary

Before the implementation of the DL architectures, the data was analysed and needed a small

pre-processing before being fed to the models, as well as the implementation of techniques of

data augmentation. Another dataset was also pre-processed to prepare for the implementation of

TL techniques. The implementation of the architectures followed the pre-processing: U-Net and

a slightly modified version of the U-Net, an Attention U-Net and pre-trained models in the OAI

ZIB dataset and a U-Net that used the pre-trained encoder of a VGG-16 model in the Image Net

dataset.
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Figure 4.13: Attention U-NET representation.



Chapter 5

Results and Discussion

The current chapter presents the metrics in Section 5.1 that will be used in Section 5.2 to evaluate

the results obtained regarding the segmentation of bone with methods referenced earlier in this

dissertation.

5.1 Metrics

The metrics are responsible for evaluating the performance of the models in the problem context.

The annotations done by the health professionals are taken as ground truth, and with those as

references, it is possible to evaluate the segmentation result. The following metrics were selected

to measure the performance of the models implemented [28]:

• Precision: measures the proportion of input cases that are reported as true as represented in

equation 5.1.

Precision =
T P

T P+FP
(5.1)

• Recall: measures the proportion of the relevant results correctly classified as represented in

equation 5.2.

Recall =
T P

T P+FN
(5.2)

• F1- Score: combines the Recall and the Precision in an harmonic mean as represented in

equation 5.3.

F1score = 2∗ Precision∗Recall
Precision+Recall

(5.3)

• DICE Similarity Coefficient (DSC): measures the similarity of the perdition and the ground

truth. It is twice the amount of the intersection area between the segment predicted and the

ground truth, divided by the total number of pixels, as represented in equation 5.4.

DSC =
2|A∩B|
|A∪B|

(5.4)
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• Jacquard Coefficient: also known as Intersection over Union (IoU), is a widespread metric

regarding image segmentation, and it is the amount of intersecting area of the prediction and

the ground truth mask, divided by the area of the union, and it is represented in the equation

5.5.

IoU =
|A∩B|
|A∪B|

(5.5)

5.2 Results and Discussion

The present thesis implemented the U-Net model and the Attention U-Net either trained from

scratch or by transferring knowledge from pre-trained models from a similar dataset [78] or in the

ImageNet [53]. For the identification of the adequate hyperparameters, the final combination that

revealed the most successful in terms of segmentation and the available environment resources

management is represented in Table 5.1. The results obtained in every test done were decisive

for the selection of the hyperparameters and for the guidance of the following steps to be taken.

All the tests were done in both T1-weighted and fluid-sensitive image sequences. All the models

were trained and tested three times, with different combinations of data for training, validation and

testing.

Table 5.1: Hyperparameters selected.

Optimizer Learning Rate Batch size Loss
Adam 0.001 16 DICE loss

Starting with the implementation of the U-Net model, the slightly modified U-Net model, the

Attention U-Net and the usage of data from the University Hospital Center of São João (UHCSJ),

the difference in the inputs of the models and architecture are responsible for the differences

in the segmentation results. In the Table 5.2 are presented the results obtained for each model

implementation, concerning the T1-weighted sequences, and in Table 5.3 concerning the fluid-

sensitive images. It is possible to observe that the original U-Net, where the input has the size of

224×224 pixels, performs better than using the size of 128×128 pixels. Regarding this difference,

it is due to the compression of the input image to 128×128. The Attention U-Net has the best

results in almost every metric using the size of 224×224 pixels and presented better results when

compared with the traditional U-Net. Although the improvements in the segmentation results are

not far apart, and the model was originally developed for the segmentation of the pancreas [90],

the model performs well. Regarding each metric, the best results are pointed between the different

models. It is possible to observe that the results regarding all metrics, except Recall, are better

concerning the T1-weighted sequence than the fluid-sensitive sequence. The values for the Recall

are possibly influenced by the difficulty of the model in determining the exact contours of the

bone. In the case of the fluid-sensitive sequence, there is a larger number of places where there is

no bone, but the model identified it (FP), and most of them are encountered within the limits of the

bone. Consequently, there is a decrease in the places where there was not bone predicted, but it is

bone (FN), preventing the onset of FP in the contours, as it happens in the T1-weighted. Therefore
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the recall is slightly higher. Concerning the metrics besides Recall, the better results are possibly

due to the slightly bigger dataset for the T1-weighted images and the fact that T1-weighted images

have a better defined transition/contrast between the bone and adjacent structures, making it easier

for the model to distinguish the difference between the anatomical structures.

Although there was no visible overfitting of the data, the models converged in the first few

epochs of the training,there was the will to increase the performance of the models motivated

the search for the already mentioned approaches of TL. All the results for the segmentation us-

ing TL approaches are presented in Table 5.4 concerning the T1-weighted images and in Table

5.5 concerning the fluid-sensitive images. The first step was the implementation of the U-Net

slightly altered, as well as the training of the model in the OAI ZIB dataset. Being a large and

diverse dataset, the segmentation results proved the robustness of the model, as shown in Table

5.6, achieving high values for all the metrics used. In Figure 5.1, it is possible to visualize three

segmentations of the test set for the OAI ZIB dataset and the resultant metrics. First, the usage of

the weights obtained from the training of the OAI ZIB dataset in the initialization of the slightly

modified U-Net did not show any impact on the results of the usage of this model, showing that

the low error values are not dependent on the initialization of the weights. Then, the encoder pre-

trained with the OAI ZIB dataset did not perform better than the model only trained with the data

from the University Hospital Center of São João. This might be explained by: (i) differences in

the image modalities between datasets (the OAI ZIB uses DESS and the data from the University

Hospital Center of São João uses T1-weighted and fluid-sensitive images); (ii) the view used in

the MRIs (in OAI ZIB have slices in sagittal view and the data from University Hospital Center

of São João have slices in coronal view); (iii) adding the difference in the anatomy of the bone

between the group of subjects (OAI ZIB have scans from full grown patients and the data from

University Hospital Center of São João has scans from children, which presents very different

anatomical structures when compared with adults). As a result of using the encoder of a VGG-16

model, pre-trained with the ImageNet dataset, and then transferring the knowledge to a U-Net,

were able to obtain results that were close to the best used model for T1-weighted images, the

Attention U-Net. The best results were obtained using this method, compared to all others, for

fluid-sensitive images. In Appendix A is possible to observe the DSC and IoU coefficient results

obtained for all the models implemented for the T1-weighted images and in Appendix B for the

fluid-sensitive images.

In brief, the best results concerning the segmentation of the dataset from the University Hos-

pital Center of São João are for the similarity coefficients DSC and IoU are, respectively, 93.69 ±
0.81% and 88.46 ± 1.23% produced by the Attention U-Net model for the T1-weighted images.

For the fluid-sensitive images, the similarity coefficients were 92.02 ± 0.49% and 85.67 ± 0.78%,

produced by the U-Net where the encoder uses the pre-trained encoder from a VGG-16 trained in

the ImageNet. Despite the high performance of the models, some aspects impact the achievement

of better results. First, the dataset from the University Hospital Center of São João is still con-

sidered a small dataset, even after applying some data augmentation techniques. The usage of a

bigger dataset will probably make the training more robust, as shown by the segmentation of the
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(a) Recall = 99.12%, Precision = 98.81%, F1 Score = 98.96%, DSC = 98.96%, IoU = 97.97%.

(b) Recall = 99.12%, Precision = 98.85%, F1 Score = 98.98%, DSC = 98.98%, IoU = 97.96%.

(c) Recall = 98.62%, Precision = 99.57%, F1 Score = 99.10%, DSC = 99.09%, IoU = 98.19%.

Figure 5.1: Results of three segmentations of the OAI ZIB dataset using the U-Net-S. The results
are presented below each image segmentation result.

dataset from OAI ZIB. The second aspect worth mentioning is the variability of the dataset, which

is usually a good thing for the model training, but there is an unbalance between the number of

examples of each bone anatomical shape. The third aspect that should be mentioned is the need to

increase the quality of the images and correspondent annotations to be fed to the model’s training.

In Figure 5.3 is possible to observe the results of the segmentation of five images of the test

set concerning T1-weighted images, and in Figure 5.4 are presented, the segmentation results of

five images of the fluid-sensitive images, regarding the application of the Attention U-Net. It is

possible to observe that the model has more difficulty hitting the exact contours of the bones, but

they can segment the images with considerable high performance. Concerning the T1-weighted

sequence segmentation results, besides the difficulty of segmenting the contours more or less ac-

curately, the model also has difficulty segmenting slices where the anatomical shape has less fre-

quency, as seen in 5.3b. For the fluid-sensitive images, is more flagrant the difficulty of segmenting

an image that has less contrast between the structures, with more "homogeneous signal pattern"

for the global image and the cortical bone that delimitates the bone/bone marrow is less evident in
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(a) From left to right, MRI scan to be segmented, followed by the error resultant of the segmentation of the
MRI T1-weighted sequence (represented in white) and the edema findings (represented in black) and the
annotation of edema that coincides with the error in segmentation (represented in black).

(b) From left to right, MRI scan to be segmented, followed by the error resultant of the segmentation of the
MRI fluid-sensitive sequence (represented in white) and the edema findings (represented in black) and the
annotation of edema that coincides with the error in segmentation (represented in black).

Figure 5.2: Evaluation of the influence of edema findings in comparison with the segmentation
results of the Attention U-Net for T1-weighted sequence and fluid-sensitive sequence.

this sequence type compared to the T-weighted sequence type 5.4b. Adding to that is the predic-

tion of bone that is not annotated but is expectable, as shown in 5.4c and 5.4e. These difficulties

are transversal to the other models.

Finally, after obtaining the segmentation results, it was intended to evaluate whether the

ELMSI would have any influence on the segmentation performed by the model, that is, if the

edema findings annotated in the slices of the test set were an integral part or not of the error result-

ing from segmentation. As previously mentioned, the models had more difficulty in segmenting

the contours of the bone, where contours of ELMSI can also be found, but as observed in Fig-

ure 5.2a for the T1-weighted images and Figure 5.2b for the fluid sensitive sequences, it makes a

small part of the total error of the segmentation. It was observed that the edema does not signif-

icantly influence the bone segmentation by the models, making on average 7.20% of the error in

segmentation for the T1-weighted sequence and 8.01% for the fluid-sensitive sequences.
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5.3 Summary

This chapter presents the evaluation of the methods implemented and the discussion of the

results obtained. Besides comparison, selects the best model according to the MRI modality. The

best model for the segmentation of the T1-weighted images was the Attention U-Net, and the best

model for fluid-sensitive images segmentation was the U-Net that had a VGG-16 model encoder,

pre-trained with the ImageNet dataset. The results showed high performance in the segmentation

task, presenting some difficulties in the segmentation of the exact contours of the bone and in the

segmentation of slices where the anatomical shape has less frequency.
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Table 5.2: Results for the T1-weighted images for the U-Net and Attention U-Net models. All the metrics are presented using the resultant average ±
its standard deviation (σ ).

Model Image shape Loss Recall (%) Precision (%) F1 Score (%) DSC (%) IoU (%)
U-NET 128×128 0.113 ± 0.007 66.68 ± 0.826 99.75 ± 0.42 80.00 ± 0.72 88.74 ± 0.71 79.93 ± 0.94
U-NET 224×224 0.066 ± 0.005 81.44 ± 1.22 99.20 ± 0.51 89.45 ± 0.56 93.40 ± 0.48 87.83 ± 0.77

U-NET-S 128×128 0.116 ± 0.010 66.16 ± 1.02 99.60 ± 0.84 79.51 ± 1.01 88.38 ± 1.02 79.43 ± 1.31
Attention U-Net 224×224 0.063 ± 0.008 82.60 ± 0.50 98.17 ± 1.22 89.71 ± 0.80 93.69 ± 0.81 88.46 ± 1.23

Table 5.3: Results for the fluid-sensitive images for the U-Net and Attention U-Net models. All the metrics are presented using the resultant average ±
its standard deviation (σ ).

Model Image shape Loss Recall (%) Precision (%) F1 Score (%) DSC (%) IoU (%)
U-NET 128×128 0.120 ± 0.011 68.83 ± 2.19 97.67 ± 0.70 80.53 ± 1.38 88.04 ± 1.07 79.22 ± 1.60

U-NET 224×224 0.091 ± 0.003 83.00 ± 0.21 95.16 ± 0.09 88.67 ± 0.16 90.86 ± 0.34 84.12 ± 0.29
U-NET-S 128×128 0.127 ± 0.012 67.86 ± 2.00 97.80 ± 0.83 79.83 ± 1.38 87.30 ± 1.18 78.13 ± 1.63

Attention U-Net 224×224 0.090 ± 0.011 84.08 ± 1.67 94.40 ± 2.13 88.93 ± 0.94 90.97 ± 1.08 83.99 ± 1.73
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Table 5.4: Results for the transfer learning approach for the T1-weighted images. All the metrics are presented using the resultant average ± its standard
deviation (σ ).

Model Image shape Loss Recall (%) Precision (%) F1 Score (%) DSC (%) IoU (%)
U-NET-S (Weights) 128×128 0.113 ± 0.004 66.38 ± 0.52 99.66 ± 0.61 79.77 ± 0.51 88.73 ± 0.45 79.98 ± 0.54
U-NET-S Encoder 128×128 0.121 ± 0.009 66.25 ± 1.26 99.15 ± 0.40 79.44 ± 0.97 87.91 ± 0.89 78.68 ± 1.15

U-NET VGG-16 Encoder 224×224 0.064 ± 0.007 83.54 ± 0.51 99.12 ± 0.61 89.48 ± 0.55 93.64 ± 0.66 88.31 ± 0.97

Table 5.5: Results for the transfer learning approach for the fluid-sensitive images. All the metrics are presented using the resultant average ± its
standard deviation (σ ).

Model Image shape Loss Recall (%) Precision (%) F1 Score (%) DSC (%) IoU (%)
U-NET-S (Weights) 128×128 0.113 ± 0.014 68.95 ± 1.14 97.61 ± 1.28 80.46 ± 1.14 87.73 ± 1.36 78.57 ± 0.33
U-NET-S Encoder 224×224 0.138 ± 0.003 67.51 ± 0.07 96.30 ± 0.12 79.37 ± 0.09 86.20 ± 0.21 76.51 ± 0.45

U-NET VGG-16 Encoder 224×224 0.080 ± 0.005 83.22 ± 1.66 96.83 ± 0.84 89.50 ± 0.60 92.02 ± 0.49 85.67 ± 0.78

Table 5.6: Results for the OAI ZIB dataset for the slightly modified U-Net. All the metrics are presented using the resultant average ± its standard
deviation (σ ).

Model Image shape Loss Recall (%) Precision (%) F1 Score (%) DSC (%) IoU (%)
U-NET-S 128×128 0.0116 98.81 98.87 98.84 98.84 97.70
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(a) Results of the segmentation of MRI slice T1-weighted sequence number 27: DSC = 97.29%, IoU =
94.71%.

(b) Results of the segmentation of MRI slice T1-weighted sequence number 20: DSC = 75.91%, IoU =
61.20%.

(c) Results of the segmentation of MRI slice T1-weighted sequence number 15: DSC = 95.17%, IoU =
90.80%.

(d) Results of the segmentation of MRI slice T1-weighted sequence number 45: DSC = 85.42%, IoU =
74.55%.

(e) Results of the segmentation of MRI slice T1-weighted sequence number 31: DSC = 84.03%, IoU =
72.50%.

Figure 5.3: Segmentation results using the Attention U-Net concerning five T1-weighted images
from the data provided by University Hospital Center of São João.
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(a) Results of the segmentation of MRI slice fluid-sensitive sequence number 11: DSC = 97.22%, IoU =
94.60%.

(b) Results of the segmentation of MRI slice fluid-sensitive sequence number number 24: DSC = 69.79%,
IoU = 53.59%.

(c) Results of the segmentation of MRI slice fluid-sensitive sequence number number 37: DSC = 82.64%,
IoU = 70.40%.

(d) Results of the segmentation of MRI slice fluid-sensitive sequence number number 47: DSC = 96.16%,
IoU = 92.65%.

(e) Results of the segmentation of MRI slice fluid-sensitive sequence number 61: DSC = 93.41%, IoU =
87.62%.

Figure 5.4: Segmentation results using the Attention U-Net concerning five fluid-sensitive se-
quences from the data provided by University Hospital Center of São João.



Chapter 6

Conclusion and Future work

Bone marrow is one of the largest human tissues with different constitutions during human

growth and is afflicted by multiple pathologies, EMLSI one of them. EMLSI describes an ob-

served alteration of the signal produced in the MRI modalities of T1-weighted and fluid-sensitive

sequences images and is a condition associated with several diagnoses. It is an important as-

pect for the evaluation of the progressiveness of some degenerative diseases and is most of the

times associated with pain. With the easement of the task of health professionals of identifying

the presence of EMLSI in MRIs, the implementation of a Computer-aided diagnosis system has

the most significant importance. For the development of this system, the first step is to segment

performance and accurately the bone in the MRI slices.

This thesis proposed the implementation of DL architectures and TL techniques to achieve the

Bone Segmentation goal in the dataset provided by the University Hospital Center of São João.

The models implemented were a U-Net, a slightly modified U-Net and an Attention U-Net. For

the techniques of Transfer Learning, first, only the weights from a pre-trained U-Net in another

similar dataset were used, followed by the usage of only the encoder part of that pre-trained U-Net

and finally, the usage of the encoder of a VGG-16 pre-trained in the Image Net dataset in a U-Net

model.

The best results for the similarity coefficients DSC and IoU are, respectively, 93.69 ± 0.81%

and 88.46 ± 1.23% produced by the Attention U-Net model for the T1-weighted images and

92.02 ± 0.49% and for the fluid-sensitive images 85.67 ± 0.78%, produced by the U-Net where

the encoder uses the pre-trained encoder from a VGG-16 trained in the ImageNet. The difference

in the results concerning the two modalities is possibly associated with the slightly better identified

transition between the bone and the rest of the knee surrounding structures.

Even though the relevant results obtained for the bone segmentation problem have shown that

it is possible to segment the bone of a small dataset with the characteristics presented and its

usage for training the models, some aspects can increase the efficiency of the models and increase

the segmentation metrics. Increasing the dataset size will benefit the model’s training, especially

by decreasing the discrepancy of the bone anatomical shape to help increase the performance

of the models. The thesis performed the application of models that accept 2D inputs, but some

49
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available models take into consideration the 3D nature of the bone. Another approach to be used

in future can be the development of a methodology that uses both image modalities to perform the

segmentation, instead of one for each, due to its interest in the future CAD system.



Appendix A

Segmentation Results - T1-weighted
images

Table A.1: Results of the segmentation of the T1-weighted images test set to all the implemented
models.

U-Net (128×128) U-Net (224×224) U-Net-S Attention U-Net

DSC % IoU % DSC % IoU % DSC % IoU % DSC % IoU %

1 78.80 65.04 86.94 76.94 87.92 78.43 96.17 92.62

2 90.63 82.85 86.68 76.48 89.14 80.47 86.97 76.95

3 84.91 73.78 92.36 85.82 83.18 71.24 94.14 88.90

4 83.85 72.15 91.73 84.77 84.27 72.88 93.69 88.13

5 93.31 87.44 96.51 93.26 90.38 82.47 96.00 92.31

6 90.97 83.46 93.88 88.46 90.67 82.93 95.14 90.74

7 74.69 59.62 87.97 78.58 72.74 57.19 86.66 76.54

8 90.53 82.68 95.68 91.71 90.58 82.83 96.39 93.03

9 87.33 77.51 90.14 82.06 87.05 77.10 93.42 87.65

10 54.19 37.01 79.85 66.42 36.74 22.68 60.67 43.75

11 90.39 82.45 94.46 89.49 89.42 80.81 95.39 91.21

12 92.92 86.79 96.29 92.85 91.27 83.98 96.55 93.33

13 92.27 85.66 92.71 86.36 92.60 86.23 94.99 90.45

14 84.01 72.52 88.94 80.09 83.27 71.39 92.33 85.77

15 78.08 64.05 87.52 77.82 77.54 63.40 89.15 80.44

16 90.82 83.19 94.85 90.23 90.24 82.21 95.73 91.82

17 91.02 83.52 95.31 91.05 89.63 81.18 96.71 93.62

18 89.61 81.18 95.38 91.20 89.37 80.81 96.23 92.73

19 82.44 70.09 88.49 79.37 81.98 69.44 90.28 82.26

20 70.18 54.01 90.47 82.55 63.90 46.92 75.91 61.20
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21 90.29 82.32 95.63 91.62 88.81 79.89 96.32 92.92

22 87.63 78.03 77.33 63.05 87.04 77.07 90.99 83.51

23 90.02 81.88 94.88 90.26 89.12 80.41 94.94 90.36

24 90.00 81.84 91.33 84.10 89.67 81.28 93.27 87.39

25 90.86 83.26 96.12 92.51 89.75 81.41 94.81 90.13

26 90.36 82.42 94.23 89.07 89.56 81.04 94.94 90.37

27 92.76 86.50 96.67 93.54 92.64 86.34 97.29 94.71

28 90.71 83.01 95.24 90.94 88.65 79.58 95.17 90.80

29 86.56 76.30 91.41 84.20 85.56 74.81 94.45 89.51

30 90.75 83.05 95.39 91.19 90.78 83.08 94.90 90.30

31 80.62 67.47 84.56 73.25 68.75 52.45 84.03 72.50

32 89.26 80.59 93.65 88.08 88.06 78.67 95.32 91.06

33 90.58 82.78 94.55 89.64 90.43 82.49 95.54 91.47

34 90.57 82.80 95.30 91.02 90.46 82.57 95.61 91.59

35 89.80 81.51 93.60 87.98 89.42 80.87 95.78 91.91

36 92.58 86.18 96.17 92.61 90.89 83.30 96.38 93.02

37 90.01 81.84 95.08 90.63 89.00 80.23 95.70 91.76

38 91.22 83.88 94.17 88.96 90.90 83.28 94.86 90.24

39 93.49 87.79 97.08 94.34 93.11 87.06 97.08 94.32

40 82.61 70.32 91.04 83.56 78.30 64.45 90.20 82.13

41 93.06 87.00 95.50 91.35 93.10 87.06 94.80 90.13

42 90.32 82.33 94.19 89.01 89.93 81.75 95.32 91.06

43 91.02 83.55 95.09 90.67 90.94 83.38 96.25 92.79

44 88.43 79.27 92.48 85.99 85.80 75.14 89.83 81.54

45 89.80 81.48 92.42 85.92 89.52 81.04 85.42 74.55

46 92.26 85.61 96.14 92.59 89.58 81.11 93.59 87.97

47 87.15 77.24 91.40 84.16 86.62 76.39 91.65 84.60

48 69.95 53.79 74.56 59.47 77.77 63.61 89.22 80.61

49 92.82 86.61 96.90 93.99 92.25 85.60 97.07 94.30

50 90.67 82.94 95.62 91.60 88.23 78.94 95.82 91.98

51 90.75 83.07 94.49 89.56 90.32 82.37 95.48 91.34

52 89.68 81.28 95.51 91.40 89.22 80.55 96.06 92.41

53 84.17 72.68 91.26 83.97 83.23 71.31 91.43 84.28

54 89.95 81.75 94.17 88.99 90.68 82.93 95.88 92.08

55 92.36 85.82 95.57 91.51 92.38 85.82 96.65 93.53

56 91.35 84.05 95.08 90.62 90.70 82.99 96.09 92.47

57 90.30 82.34 94.78 90.08 89.86 81.58 95.84 92.00

58 93.12 87.15 96.26 92.79 91.33 84.03 96.46 93.17

59 89.26 80.61 94.18 88.99 88.77 79.87 95.59 91.57

60 81.34 68.56 77.68 63.54 82.77 70.58 87.11 77.14
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61 89.32 80.66 92.05 85.29 82.42 70.11 94.28 89.16

62 91.45 84.28 95.25 90.95 89.96 81.80 95.58 91.54

63 91.72 84.68 96.67 93.56 92.06 85.29 97.06 94.29

64 81.39 68.69 91.38 84.12 80.23 67.06 91.66 84.58

65 89.79 81.47 95.11 90.68 90.01 81.80 95.69 91.74

66 91.20 83.84 96.27 92.82 90.49 82.64 94.84 90.19

67 91.48 84.32 95.31 91.04 91.01 83.50 95.45 91.30

68 86.35 75.97 92.78 86.53 86.77 76.62 92.66 86.29

69 90.41 82.50 94.52 89.62 89.14 80.42 94.83 90.18

70 75.22 60.31 90.24 82.24 73.31 57.96 73.65 58.29

71 89.95 81.74 95.40 91.24 89.78 81.52 96.44 93.12

72 90.67 82.97 95.92 92.14 89.94 81.73 96.46 93.16

AVG 87.75 78.71 92.69 86.70 86.68 77.24 93.11 87.59

Table A.2: Results of the segmentation of the T1-weighted images test set to all the transfer
learning models implemented.

U-Net-S (Weights) U-Net-S (Encoder) U-Net VGG16 (Encoder)

DSC % IoU % DSC % IoU % DSC % IoU %

1 88.93 80.11 84.06 72.52 84.61 73.34

2 90.62 82.86 91.37 84.10 96.04 92.38

3 85.91 75.34 84.63 73.33 94.01 88.70

4 85.23 74.35 67.87 51.27 93.33 87.51

5 92.53 86.11 93.17 87.20 96.71 93.64

6 91.12 83.68 84.55 73.24 94.86 90.24

7 75.92 61.18 74.91 59.76 89.19 80.56

8 91.37 84.11 91.15 83.75 95.71 91.79

9 88.18 78.87 88.63 79.62 93.16 87.18

10 49.81 33.53 46.80 30.91 71.36 55.54

11 90.39 82.47 88.95 80.05 95.30 91.04

12 92.69 86.39 92.69 86.34 96.84 93.87

13 92.80 86.58 90.41 82.58 93.09 87.05

14 83.47 71.64 79.31 65.65 90.16 82.10

15 76.85 62.36 75.86 61.12 86.33 75.94

16 90.51 82.66 87.41 77.64 94.70 89.96

17 90.93 83.39 90.81 83.16 95.51 91.40

18 90.07 81.96 89.40 80.85 95.41 91.24

19 83.89 72.24 82.61 70.37 91.54 84.40

20 73.02 57.51 69.18 52.89 86.72 76.56
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21 90.48 82.60 91.00 83.46 96.51 93.27

22 89.07 80.31 80.38 67.20 95.32 91.05

23 90.31 82.34 90.06 81.93 94.50 89.58

24 90.99 83.45 91.67 84.61 95.35 91.11

25 90.23 82.22 89.82 81.52 95.68 91.75

26 90.58 82.78 89.19 80.45 94.41 89.45

27 92.91 86.75 91.61 84.51 96.70 93.60

28 88.50 79.34 88.03 78.58 95.38 91.17

29 87.39 77.64 87.16 77.26 93.13 87.15

30 90.49 82.61 88.05 78.62 94.17 89.00

31 74.60 59.57 61.25 44.18 67.66 51.13

32 88.98 80.16 88.57 79.48 94.52 89.60

33 90.88 83.28 90.75 83.07 94.90 90.30

34 90.61 82.85 90.54 82.70 96.05 92.41

35 90.18 82.14 88.48 79.34 94.94 90.38

36 92.15 85.43 92.25 85.60 96.44 93.12

37 89.60 81.17 90.73 83.04 95.92 92.16

38 90.54 82.75 90.76 83.13 95.90 92.14

39 93.84 88.40 93.64 88.05 97.17 94.49

40 80.12 66.94 82.51 70.21 90.18 82.14

41 93.02 86.95 92.34 85.77 95.35 91.12

42 89.62 81.21 89.16 80.39 95.29 91.00

43 90.19 82.12 90.58 82.82 92.58 86.23

44 85.22 74.26 80.29 67.10 92.33 85.73

45 89.99 81.77 85.95 75.40 89.74 81.37

46 92.70 86.40 92.79 86.62 96.99 94.14

47 88.02 78.58 86.23 75.79 91.69 84.66

48 77.47 63.11 81.18 68.31 80.03 66.76

49 92.55 86.09 91.81 84.85 96.80 93.77

50 91.06 83.58 89.10 80.35 95.71 91.77

51 90.50 82.67 84.62 73.31 94.69 89.91

52 90.57 82.78 88.80 79.84 95.33 91.10

53 82.73 70.60 81.46 68.73 92.56 86.17

54 89.70 81.32 89.32 80.72 93.97 88.63

55 93.25 87.33 92.13 85.41 96.53 93.29

56 91.39 84.18 90.91 83.31 96.06 92.40

57 90.13 82.05 89.58 81.15 95.86 92.03

58 92.68 86.35 88.61 79.56 96.62 93.48

59 88.73 79.75 88.60 79.54 94.65 89.86

60 88.32 79.15 86.37 76.06 83.40 71.53
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61 87.82 78.30 87.08 77.13 93.27 87.41

62 91.51 84.38 90.14 82.09 95.01 90.48

63 91.82 84.89 90.83 83.21 96.95 94.07

64 81.48 68.77 81.03 68.11 92.05 85.31

65 89.16 80.47 88.54 79.40 94.98 90.42

66 91.49 84.34 91.99 85.20 94.52 89.60

67 91.49 84.31 91.16 83.75 95.22 90.88

68 88.67 79.62 85.63 74.94 94.02 88.70

69 90.14 82.06 90.20 82.21 94.55 89.67

70 77.37 63.12 74.61 59.64 90.58 82.84

71 90.46 82.61 89.59 81.14 96.20 92.68

72 91.81 84.85 91.20 83.85 95.86 92.05

AVG 88.02 79.14 86.42 76.79 93.18 87.62
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Appendix B

Segmentation Results - fluid-sensitive
images

Table B.1: Results of the segmentation of the fluid-sensitive images test set to all the implemented
models.

U-Net (128x128) U-Net (224x224) U-Net-S Attention U-Net

DSC % IoU % DSC % IoU % DSC % IoU % DSC % IoU %

1 91.28 83.97 95.08 90.59 90.63 82.91 94.93 90.33

2 89.58 81.14 92.57 86.17 90.51 82.66 81.90 69.31

3 90.48 82.63 94.68 89.89 91.02 83.49 94.75 90.02

4 92.04 85.28 96.29 92.85 92.00 85.19 91.91 85.04

5 93.41 87.61 96.27 92.82 92.80 86.58 96.25 92.78

6 76.09 61.49 84.32 72.87 76.70 62.12 85.70 74.99

7 83.88 72.24 87.63 77.96 85.65 74.94 87.58 77.89

8 94.34 89.33 96.45 93.12 95.10 90.64 92.63 86.26

9 89.43 80.91 90.12 82.02 91.82 84.88 95.25 90.92

10 94.81 90.15 96.95 94.07 94.38 89.36 93.84 88.39

11 95.33 91.07 97.41 94.94 93.78 88.29 97.22 94.60

12 89.25 80.57 92.20 85.54 90.43 82.53 79.60 66.13

13 92.43 85.91 88.19 78.88 89.94 81.72 91.34 84.05

14 58.94 41.83 62.31 45.27 55.11 38.09 66.50 49.78

15 94.13 88.92 88.88 79.99 93.81 88.30 96.02 92.36

16 85.50 74.70 89.08 80.31 86.28 75.90 88.94 80.07

17 88.63 79.63 92.33 85.73 85.60 74.87 92.93 86.79

18 91.64 84.60 94.48 89.53 89.26 80.61 95.25 90.95

19 71.55 55.72 83.74 72.04 78.18 64.24 83.04 71.02

20 89.62 81.20 93.04 87.02 87.39 77.63 94.12 88.89

57
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21 83.51 71.64 89.67 81.27 82.23 69.83 80.33 67.13

22 90.46 82.60 94.73 89.98 90.74 83.09 94.43 89.44

23 79.77 66.44 68.27 51.82 71.23 55.35 73.68 58.32

24 78.45 64.53 71.84 56.04 74.58 59.59 69.79 53.59

25 93.20 87.28 96.78 93.75 87.57 77.86 92.29 85.68

26 84.57 73.28 90.27 82.24 84.29 72.83 84.26 72.80

27 94.81 90.14 95.15 90.75 94.82 90.12 95.04 90.53

28 89.85 81.55 92.56 86.16 88.35 79.20 93.12 87.13

29 92.30 85.73 96.62 93.44 92.23 85.58 95.95 92.21

30 92.34 85.79 93.17 87.18 92.82 86.57 94.88 90.26

31 91.42 84.23 95.55 91.52 89.68 81.30 92.74 86.45

32 90.65 82.93 92.04 85.27 89.71 81.37 93.71 88.20

33 92.77 86.51 94.68 89.89 93.01 86.96 93.12 87.13

34 72.64 57.01 74.88 59.83 69.32 53.11 87.58 77.91

35 91.25 83.92 94.94 90.35 91.23 83.91 96.48 93.19

36 81.02 68.08 82.67 70.46 88.17 78.77 85.17 74.17

37 84.82 73.68 84.60 73.30 78.96 65.20 82.64 70.40

38 90.80 83.15 94.53 89.63 89.92 81.72 94.92 90.33

39 92.41 85.90 95.26 90.94 91.36 84.10 95.90 92.11

40 91.40 84.20 94.95 90.36 92.11 85.38 95.20 90.86

41 89.37 80.76 94.79 90.10 89.59 81.20 95.70 91.77

42 92.10 85.35 95.31 91.02 92.83 86.63 94.89 90.29

43 69.24 52.93 70.51 54.39 65.88 49.15 81.74 69.08

44 85.82 75.19 90.18 82.13 86.00 75.44 91.27 83.95

45 92.02 85.20 95.55 91.49 91.72 84.72 88.49 79.35

46 87.28 77.43 92.36 85.82 80.90 67.87 83.40 71.52

47 92.47 86.00 95.32 91.07 92.10 85.38 96.19 92.65

48 92.40 85.87 96.13 92.55 91.40 84.15 96.15 92.59

49 85.95 75.45 87.98 78.52 84.39 73.06 79.74 66.33

50 82.67 70.51 89.30 80.63 78.58 64.79 78.92 65.15

51 91.44 84.24 94.83 90.17 90.50 82.61 92.33 85.75

52 86.98 77.02 90.35 82.39 83.54 71.84 91.08 83.62

53 93.37 87.58 94.80 90.12 92.98 86.90 95.85 92.05

54 92.64 86.30 96.56 93.35 92.18 85,51 96.50 93.23

55 93.15 87.15 94.83 90.17 92.04 85.25 96.65 93.53

56 82.05 69.58 88.62 79.57 82.80 70.65 85.31 74.42

57 93.41 87.63 96.03 92.33 93.09 87.09 96.33 92.90

58 90.28 82.28 93.79 88.31 88.91 80.03 90.76 83.12

59 92.58 86.17 96.62 93.47 91.49 84.32 95.00 90.46

60 89.36 80.73 92.50 86.02 85.08 74.00 85.88 75.25
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61 90.30 82.35 94.21 89.08 92.38 85.84 93.41 87.62

62 81.59 69.02 88.66 79.64 80.85 67.98 89.82 81.56

63 84.82 73.68 91.78 84.83 82.55 70.35 91.60 84.52

64 95.36 91.09 97.25 94.64 93.89 88.49 92.44 85.96

65 88.27 78.99 92.86 86.69 88.31 79.00 89.00 80.17

66 81.16 68.32 87.61 77.98 84.33 72.93 88.53 79.48

67 83.78 72.08 93.35 87.55 91.29 84.02 93.03 86.97

68 92.12 85.40 92.94 86.82 90.71 82.97 93.03 86.96

69 91.68 84.60 95.20 90.84 90.20 82.14 94.81 90.14

70 88.27 79.07 92.14 85.39 87.50 77.77 85.80 75.12

AVG 88.04 79.22 91.11 84.33 87.30 78.13 90.21 82.77

Table B.2: Results of the segmentation of the T2 fluid-sensitive images test set to all the transfer
learning models implemented.

U-Net-S (Weights) U-Net-S (Encoder) U-Net VGG16 (Encoder)

DSC % IoU % DSC % IoU % DSC % IoU %

1 91.79 84.83 91.60 84.51 94.54 89.64

2 91.15 83.73 88.47 79.32 91.43 84.20

3 91.79 84.80 88.97 80.20 95.98 92.28

4 91.85 84.96 92.05 85.26 96.09 92.47

5 93.34 87.52 93.06 87.03 96.50 93.24

6 77.28 62.96 75.78 61.18 87.22 77.34

7 84.24 72.81 83.00 70.94 87.48 77.74

8 94.83 90.19 93.89 88.50 96.92 94.04

9 91.61 84.50 88.84 79.87 92.96 86.85

10 94.56 89.68 94.57 89.71 97.10 94.37

11 94.37 89.35 94.83 90.20 97.60 95.32

12 89.48 80.91 86.75 76.61 93.61 87.97

13 89.99 81.79 86.36 76.02 88.53 79.43

14 58.49 41.37 50.83 34.19 65.36 48.56

15 94.18 88.99 93.43 87.70 90.67 82.94

16 86.78 76.67 83.77 72.11 91.37 84.17

17 83.23 71.27 87.63 77.95 88.53 79.39

18 91.09 83.62 89.64 81.22 94.91 90.31

19 74.97 59.93 67.49 50.96 86.16 75.64

20 89.62 81.21 89.48 80.89 94.38 89.35

21 83.44 71.66 83.33 71.36 89.07 80.31

22 90.95 83.42 89.76 81.45 95.38 91.17
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23 79.13 65.62 77.28 62.94 80.48 67.32

24 74.40 59.25 73.00 57.54 81.59 68.88

25 88.87 79.97 89.42 80.84 96.42 93.08

26 81.58 68.96 82.74 70.65 86.96 76.95

27 94.07 88.83 94.55 89.65 95.70 91.74

28 88.58 79.51 88.30 79.06 93.39 87.59

29 92.16 85.40 91.31 84.06 96.12 92.51

30 92.88 86.70 91.73 84.80 96.60 93.43

31 91.04 83.56 90.33 82.43 95.75 91.85

32 88.74 79.76 87.88 78.43 95.51 91.41

33 92.34 85.77 92.63 86.28 94.32 89.25

34 70.81 54.81 64.27 47.47 87.92 78.40

35 90.98 83.47 91.68 84.55 95.98 92.27

36 86.23 75.82 83.28 71.38 88.25 79.01

37 82.87 70.82 79.40 65.88 88.34 79.11

38 90.33 82.36 89.02 80.24 95.53 91.48

39 93.35 87.54 93.07 87.04 95.85 92.02

40 91.66 84.61 91.68 84.64 95.57 91.52

41 90.57 82.77 87.06 77.12 94.37 89.32

42 92.50 86.06 92.27 85.63 95.87 92.08

43 67.00 50.44 55.86 38.90 80.41 67.19

44 86.35 76.04 86.24 75.76 91.55 84.44

45 91.94 85.07 91.36 84.11 96.11 92.51

46 84.77 73.64 81.69 68.97 92.64 86.31

47 92.28 85.68 91.91 85.02 96.27 92.81

48 91.18 83.78 91.68 84.64 96.79 93.80

49 80.29 67.25 82.68 70.41 85.96 75.42

50 82.13 69.65 79.72 66.24 85.51 74.73

51 90.85 83.25 91.05 83.51 95.84 92.01

52 84.89 73.77 84.78 73.55 92.76 86.49

53 93.52 87.83 93.79 88.33 97.06 94.30

54 92.53 86.09 91.79 84.87 96.47 93.16

55 92.40 85.89 92.10 85.33 96.93 94.04

56 85.05 74.09 85.36 74.39 90.88 83.27

57 93.61 88.00 92.94 86.86 95.75 91.85

58 90.60 82.81 90.11 82.03 87.52 77.82

59 90.84 83.23 92.17 85.53 96.68 93.57

60 87.84 78.31 87.52 77.85 92.71 86.42

61 91.57 84.45 89.18 80.42 93.30 87.42

62 82.89 70.83 83.55 71.83 91.34 84.07
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63 88.62 79.57 75.26 60.17 92.07 85.36

64 94.27 89.17 94.33 89.29 97.43 94.99

65 87.28 77.40 86.38 75.99 94.57 89.72

66 83.15 71.19 82.73 70.57 88.96 80.09

67 90.03 81.89 78.71 64.92 92.88 86.70

68 91.51 84.38 90.14 82.06 94.67 89.85

69 89.70 81.30 91.73 84.67 96.28 92.82

70 84.93 73.75 85.02 73.95 93.72 88.20

AVG 87.77 78.81 86.35 76.83 92.36 86.22
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