1,768 research outputs found

    Automated Analysis of Orthopaedic X-ray Images based on Digital-Geometric Techniques

    Get PDF
    This thesis reports several methods for automated analysis and interpretation of bone X-ray images. Automatic segmentation of the bone part in a digital X-ray image is a challenging problem because of its low contrast against the surrounding flesh. In this thesis, we propose a fully automated X-ray image segmentation technique, which is based on a variant of entropy measure of the image. We have also analyzed the geometric information embedded in the long-bone contour image to identify the presence of abnormalities in the bone and perform fracture detection, fracture classification, and bone cancer diagnosis

    Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks

    Full text link
    Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a fully automated deep learning approach to the problem of bone age assessment using data from Pediatric Bone Age Challenge organized by RSNA 2017. The dataset for this competition is consisted of 12.6k radiological images of left hand labeled by the bone age and sex of patients. Our approach utilizes several deep learning architectures: U-Net, ResNet-50, and custom VGG-style neural networks trained end-to-end. We use images of whole hands as well as specific parts of a hand for both training and inference. This approach allows us to measure importance of specific hand bones for the automated bone age analysis. We further evaluate performance of the method in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.Comment: 14 pages, 9 figure

    Automated Distinct Bone Segmentation from Computed Tomography Images using Deep Learning

    Get PDF
    Large-scale CT scans are frequently performed for forensic and diagnostic purposes, to plan and direct surgical procedures, and to track the development of bone-related diseases. This often involves radiologists who have to annotate bones manually or in a semi-automatic way, which is a time consuming task. Their annotation workload can be reduced by automated segmentation and detection of individual bones. This automation of distinct bone segmentation not only has the potential to accelerate current workflows but also opens up new possibilities for processing and presenting medical data for planning, navigation, and education. In this thesis, we explored the use of deep learning for automating the segmentation of all individual bones within an upper-body CT scan. To do so, we had to find a network architec- ture that provides a good trade-off between the problem’s high computational demands and the results’ accuracy. After finding a baseline method and having enlarged the dataset, we set out to eliminate the most prevalent types of error. To do so, we introduced an novel method called binary-prediction-enhanced multi-class (BEM) inference, separating the task into two: Distin- guishing bone from non-bone is conducted separately from identifying the individual bones. Both predictions are then merged, which leads to superior results. Another type of error is tack- led by our developed architecture, the Sneaky-Net, which receives additional inputs with larger fields of view but at a smaller resolution. We can thus sneak more extensive areas of the input into the network while keeping the growth of additional pixels in check. Overall, we present a deep-learning-based method that reliably segments most of the over one hundred distinct bones present in upper-body CT scans in an end-to-end trained matter quickly enough to be used in interactive software. Our algorithm has been included in our groups virtual reality medical image visualisation software SpectoVR with the plan to be used as one of the puzzle piece in surgical planning and navigation, as well as in the education of future doctors

    Shape/image registration for medical imaging : novel algorithms and applications.

    Get PDF
    This dissertation looks at two different categories of the registration approaches: Shape registration, and Image registration. It also considers the applications of these approaches into the medical imaging field. Shape registration is an important problem in computer vision, computer graphics and medical imaging. It has been handled in different manners in many applications like shapebased segmentation, shape recognition, and tracking. Image registration is the process of overlaying two or more images of the same scene taken at different times, from different viewpoints, and/or by different sensors. Many image processing applications like remote sensing, fusion of medical images, and computer-aided surgery need image registration. This study deals with two different applications in the field of medical image analysis. The first one is related to shape-based segmentation of the human vertebral bodies (VBs). The vertebra consists of the VB, spinous, and other anatomical regions. Spinous pedicles, and ribs should not be included in the bone mineral density (BMD) measurements. The VB segmentation is not an easy task since the ribs have similar gray level information. This dissertation investigates two different segmentation approaches. Both of them are obeying the variational shape-based segmentation frameworks. The first approach deals with two dimensional (2D) case. This segmentation approach starts with obtaining the initial segmentation using the intensity/spatial interaction models. Then, shape model is registered to the image domain. Finally, the optimal segmentation is obtained using the optimization of an energy functional which integrating the shape model with the intensity information. The second one is a 3D simultaneous segmentation and registration approach. The information of the intensity is handled by embedding a Willmore flow into the level set segmentation framework. Then the shape variations are estimated using a new distance probabilistic model. The experimental results show that the segmentation accuracy of the framework are much higher than other alternatives. Applications on BMD measurements of vertebral body are given to illustrate the accuracy of the proposed segmentation approach. The second application is related to the field of computer-aided surgery, specifically on ankle fusion surgery. The long-term goal of this work is to apply this technique to ankle fusion surgery to determine the proper size and orientation of the screws that are used for fusing the bones together. In addition, we try to localize the best bone region to fix these screws. To achieve these goals, the 2D-3D registration is introduced. The role of 2D-3D registration is to enhance the quality of the surgical procedure in terms of time and accuracy, and would greatly reduce the need for repeated surgeries; thus, saving the patients time, expense, and trauma

    Modeling of Craniofacial Anatomy, Variation, and Growth

    Get PDF
    • …
    corecore