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ABSTRACT 
 
 

SHAPE/IMAGE REGISTRATION FOR MEDICAL IMAGING: NOVEL 
ALGORITHMS AND APPLICATIONS 

 
 

Ahmed M. Shalaby 
 

Novmber 20, 2014 
 

 

This dissertation looks at two different categories of the registration approaches: Shape 

registration, and Image registration. It also considers the applications of these approaches 

into the medical imaging field.  

Shape registration is an important problem in computer vision, computer graphics and 

medical imaging. It has been handled in different manners in many applications like shape-

based segmentation, shape recognition, and tracking. Image registration is the process of 

overlaying two or more images of the same scene taken at different times, from different 

viewpoints, and/or by different sensors. Many image processing applications like remote 

sensing, fusion of medical images, and computer-aided surgery need image registration.         

This study deals with two different applications in the field of medical image analysis. 

The first one is related to shape-based segmentation of the human vertebral bodies (VBs). 

The vertebra consists of the VB, spinous, and other anatomical regions. Spinous pedicles, 

and ribs should not be included in the bone mineral density (BMD) measurements. The VB 

segmentation is not an easy task since the ribs have similar gray level information.
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This dissertation investigates two different segmentation approaches. Both of them 

are obeying the variational shape-based segmentation frameworks. The first approach deals 

with two dimensional (2D) case. This segmentation approach starts with obtaining the 

initial segmentation using the intensity/spatial interaction models. Then, shape model is 

registered to the image domain. Finally, the optimal segmentation is obtained using the 

optimization of an energy functional which integrating the shape model with the intensity 

information. The second one is a 3D simultaneous segmentation and registration approach. 

The information of the intensity is handled by embedding a Willmore flow into the level 

set segmentation framework. Then the shape variations are estimated using a new distance 

probabilistic model. The experimental results show that the segmentation accuracy of the 

framework are much higher than other alternatives. Applications on BMD measurements 

of vertebral body are given to illustrate the accuracy of the proposed segmentation 

approach. 

The second application is related to the field of computer-aided surgery, specifically 

on ankle fusion surgery. The long-term goal of this work is to apply this technique to ankle 

fusion surgery to determine the proper size and orientation of the screws that are used for 

fusing the bones together. In addition, we try to localize the best bone region to fix these 

screws. To achieve these goals, the 2D-3D registration is introduced. The role of 2D-3D 

registration is to enhance the quality of the surgical procedure in terms of time and 

accuracy, and would greatly reduce the need for repeated surgeries; thus, saving the 

patients time, expense, and trauma.
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CHAPTER 1 
 

INTRODUCTION 
 

 
“If we knew what it was we were doing, it would not be called research, would it?” 

- Albert Einstein (1879 - 1955) 

 

 
Shapes registration is an important problem in computer vision, computer graphics 

and medical imaging. It has been handled in different manners in many applications like 

shape-based segmentation, shape recognition, and tracking. On the other hand, image 

registration is the process of overlaying two or more images of the same scene taken at 

different times, from different viewpoints, and/or by different sensors. Many image 

processing applications like remote sensing for change detection, fusion of medical images, 

and computer-aided surgery need image registration. 

1.1 Introduction 
 

This work deals with two different applications in the field of medical image analysis. 

The first one is related to shape-based segmentation of the human vertebral bodies (VBs). 

The vertebra consists of the VB, spinous, pedicles, and other anatomical regions. Spinous 

processes, pedicles, and ribs should not be included in the bone mineral density (BMD) 

measurements since the BMD measurements are restricted to the VBs. The VB 

segmentation is not an easy task since the ribs and spinal processes have similar gray level 

information. Intensity based segmentation models may not be enough to obtain the 

optimum this target. Hence, a new shape based segmentation method is proposed. The 

second application is related to the field of computer-aided surgery, specifically on ankle 
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fusion surgery. The long-term goal of this work is to apply this technique to ankle fusion 

surgery to determine the proper size and orientation of the screws which are used for fusing 

the bones together. In addition, try to localize the best bone region to fix these screws. To 

achieve these goals, the 2D-3D registration is introduced. The role of 2D-3D registration 

is to enhance the quality of the surgical procedure in terms of time and accuracy, and would 

greatly reduce the need for repeated surgeries; thus, saving the patient’s time, expense, and 

trauma. 

1.2 Motivation behind This Work 
 

It is clear that, the work of this dissertation is directed into two different medical 

applications. The following sections give more details about these applications and why 

this work is needed. 

1.2.1 Shape Registration and Vertebral Body segmentation 

 
When images have noise, missing information, and occlusion problems, traditional 

segmentation methods will not be able to obtain desired segmentation. To solve the 

possible problems in the image, the shape prior information is integrated in the 

segmentation process. As shown in Figure 1.1, shape-base segmentation can be defined as 

the integration of the prior shape model into the segmentation via the shape registration 

process. In this matter, the prior shape model is obtained in advance using a number of 

training shapes of the object of interest. For the VB segmentation problem, there are limited 

publications dealing with this issue.  

In this work, two different segmentation approaches are introduced. Both of them 

are obeying the variational shape-based segmentation frameworks. 
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Figure 1.1 Shape based segmentation of the human VB. 

  

The first approach deals with two dimensional (2D) case. This segmentation 

approach starts with obtaining the initial segmentation using the intensity/spatial 

interaction models. Then, shape model is registered to the image domain. Finally, the 

optimal segmentation is obtained using the optimization of an energy functional which 

integrating the shape model. The shape variations are modelled using two-dimensional 

principal component analysis (2D-PCA). The proposed method is tested on the synthetic 

and clinical images/shapes and it is shown to be robust under various noise levels and 

missing object information. The proposed shape based segmentation methods are less 

variant to the initialization. 

The second one is a 3D simultaneous segmentation and registration approach. The 

information of the intensity are handled by embedding an edge-mounted Willmore flow 

into the level set segmentation framework. Then the shape variations are estimated using a 

new distance probabilistic model which approximates the marginal densities of the 

vertebral body and its background in the variability region using a Poisson distribution. 

The experimental results show that the segmentation accuracy of this framework are much 
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higher than other alternatives. This study reveals that the proposed method is robust under 

various noise levels and completely eliminates the user interaction. Applications on bone 

mineral density (BMD) measurements of vertebral body are given to illustrate the accuracy 

of the proposed segmentation approach. 

1.2.2 Image Registration and Ankle Fusion 
 

An ankle fusion is a procedure that removes the damaged articular cartilage from 

the surfaces of the distal tibia, talus and fibula.  The cut ends of the tibia and talus are 

brought together and held in place with screws and/or plates. The screws are typically 

stainless steel or titanium.  Based on two plane C-arm fluoroscopy in the operating room, 

the doctor decides the size, the length, and the orientation of these screws.   

 

Figure 1.2 Components of the image-guided ankle/foot surgery 

 

Yet there is one resounding issue with the current procedures to accomplish ankle 

fusion.  The surgeon has limited visibility of the concave Subtalar joint below the talus, 

and too often the screws are too long or slightly at the wrong angle, resulting in screw 

penetration into the Subtalar joint, causing pain or joint damage.  If this occurs, surgery is 
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required to remove the screws, causing the patient additional time off work, surgery 

expense, and trauma. 

We are proposing to create an image-guided tool that would allow the screws 

selected to be the proper length, and the angle selected to be the optimum angle, to fuse 

tibia to the talus, but not allow the screws to protrude through the talus into the Subtalar 

joint, as shown Figure1.1. The first step of that tool is the 2D-3D registration process. The 

process, in short, is aligning a 3D model based on pre-operative CT scans to corresponding 

2D X-ray image acquired in the operation room (OR).  

One of the key challenges of the 2D-3D registration problem is solving the 

correspondence problem; i.e., detecting features that are common between images in 

different modalities. A logical approach is to simulate one of the modalities given a 

complete reconstruction obtained from the other modality; i.e., simulate X-ray images from 

a CT volume. Given a real 2D image (i.e., X-ray image from the C-arm) and candidates 

generated from another modality (i.e., CT), a transformation (T) may be estimated, based 

on a certain some similarity measure, which relates the real image to the best candidate; 

thus, correspondence between 2D to 3D is established. Therefore, a good similarity 

measure has to be identified that can quantify the quality of the alignment between the 

images and defining a procedure to modify and refine current estimates of the 

transformation parameters in a way that the similarity score is optimized. In other words, 

provided that we have a suitable similarity function, the best alignment parameters can be 

located with the help of an optimization procedure. Additionally, as the registration results 
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are expected during the medical procedure, the computation time would also be 

constrained. 

To achieve these goals, a new framework based on Exponential Correlation (EC) 

or Individual Entropy Correlation Coefficient (IECC) is proposed as new similarity 

measures for the 2D-3D registration process. It was tested on different clinical CT scans of 

human ankle and foot. Experiments demonstrated that EC-based framework is fast and 

performs almost as good as traditional similarity measures (that need more time) which is 

compatible with the time limitation of the interventional applications. From the accuracy 

point of view, the IECC-based framework is the most accurate system but at the expense 

of execution time. 

1.3 Contributions of This Dissertation 
 

This dissertation involves theoretical developments, system design and integration, 

as well as practical evaluation by professionals. Summarizing the main contributions of 

this work: 

In Chapter 3 and 5:  

 Two new shape based segmentation approaches are presented to isolate the human 

VBs. 

 The first approach integrates intensity, spatial interaction, and shape prior 

information. It adopts the graph cut model for initial labeling and two-dimensional 

principal component analysis (2D-PCA) for shape construction. 

 The second approach incorporates both shape information and an edge-mounted 

Willmore flow into the level set segmentation.  



 

 
7  

 To get the optimal segmentation, a new vaiational energy function is formulated 

using the appearance models and shape constraints and iteratively minimized it 

using gradient descent. 

 Applications on bone mineral density (BMD) measurements of vertebral body are 

given to illustrate the accuracy of the proposed segmentation approaches. 

In Chapter 4 & 6: 

 New 2D-3D registration framework is specially adopted for ankle fusion. 

 Specifically, adopting two novel similarity measures that quantify the quality of the 

alignment or (mapping) between 2D X-ray image and 3D CT volume. 

 The framework was implemented based on shear-warp factorization (SWF) 

rendering techniques with Exponential Correlation (EC) and Individual Entropy 

Correlation Coefficient (IECC) as new similarity measures for the registration 

process.  

 Experiments demonstrated that EC-based framework is fast and performs almost as 

much as NMI which is compatible with the time limitation of the interventional 

applications.  

 Proposed approach can be considered as a step towards a robust computer-aided 

surgical station for ankle fusion surgery. 
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1.4 Document Structure 
 

This document is divided into two main parts. The first part (Chapters 2, 3 and 4) 

covers the theoretical background of the shape and image registration approaches. Chapter 

2 briefly reviews on the fundamentals of level sets methods and mathematical foundations. 

Chapter 3 gives an introduction to the basics of shape registration, and discusses the 

fundamental definition of shape representation and the variational approaches. Chapter 4 

deals with the image registration problem. It discusses the different classification of image 

registration algorithm and introduces two novel similarity measures: Exponential 

correlation (EC) and Individual Entropy Correlation Coefficient (IECC). The second part 

(Chapters 5 and 6) presents two proposed frameworks for two different applications in the 

medical imaging field. Chapter 5 introduces two novel shape based approach for the 

vertebral body (VB) segmentation framework. The first one deals with 2D case. In this 

approach, two-dimensional principle component analysis (2D-PCA) technique is exploited 

to extract the shape prior. The obtained shape prior is then registered into the image domain 

to develop a new shape-based segmentation approach. The experimental results show that 

the noise immunity and the segmentation accuracy of 2D-PCA based approach are much 

higher than conventional PCA approach. The other approach is a novel 3D vertebral body 

segmentation method in computed tomography (CT) images. The proposed approach 

depends on both intensity and shape information. The information of the intensity are 

handled by embedding an edge-mounted Willmore flow into the level set segmentation 

framework. Shape information is gathered from a set of training shapes. Then the shape 

variations are estimated using a new distance probabilistic model which approximates the 
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marginal densities of the vertebral body and its background in the variability region using 

a Poisson distribution. Chapter 6 introduces a new framework for the 2D-3D registration 

of CT volumes and corresponding X-ray images. The objective is to apply this approach 

into ankle fusion. Different methods were used to evaluate registration quality of our 

system. Evaluation results confirm the degree of accuracy and robustness of the proposed 

framework. The proposed framework can be considered as a step towards a robust image-

guided surgical station for ankle fusion Chapter 7 concludes the study and give insights for 

extensions and future work to be tackled during the dissertation. 
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THEORETICAL BACKGROUND 
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CHAPTER 2 
 

FUNDAMENTALS OF LEVEL SETS METHODS 

 

Active contours are curves that deform within digital images to recover object shapes. They 

are classified as either parametric active contours or geometric active contours according 

to their representation and implementation. In particular, parametric active contours are 

represented explicitly as parameterized curves in a Lagrangian formulation. Geometric 

active contours are represented implicitly as level sets of two dimensional distance 

functions which evolve according to an Eulerian formulation. They are based on the theory 

of curve evolution implemented via level set techniques. 

Parametric active contours are the older of the two formulations and have been used 

extensively in many applications over the last decades. A rich variety of modifications 

based on physical and non-physical concepts have been implemented to solve different 

shape estimation problems [7,64,84]. Geometric active contours were introduced more 

recently and were hailed as the solution to the problem of required topological changes 

during curve evolution [85, 86]. Modifications and enhancements have been added to 

change their behavior or improve their performance in a variety of applications [87, 88, 

91–93], including a number of more global region based models which have appeared 

recently in the literature [94–99]. 

Geometric active contours or level set methods (Osher and Sethian, 1988) 

essentially find the shape without parameterizing it, so the curve description is implicit 

rather than explicit, by finding it as the zero level set of a function. The zero level set is the  
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Figure 2.1. Surfaces and level sets. 

interface between two regions in an image. This can be visualized as taking slices through 

a surface shown in Figure 2.1a. As we take slices at different levels (as the surface evolves) 

then the shape can split (Figure 2.1b). This would be difficult to parameterize, but it can be 

handled within a level set approach by considering the underlying surface.  

At a lower level (Figure 2.1c), we have a single composite shape. As such, we have an 

extraction which evolves with time (to change the level). The initialization is a closed curve 

and we shall formulate how we want the curve to move in a way analogous to minimizing 

its energy. According to [86], the level set function is the signed distance to the contour. 

This distance is arranged to be negative inside the contour and positive outside it. The 

contour itself, the target shape, is where the distance is zero, at the interface between the 

two regions. Armed with these level set techniques, we can efficiently compute solutions 

to problems in geometry, fluid mechanics, computer vision, and materials sciences. 

In this article, the level set methods will be deeply studied. We will concentrate on 

the basic theory and formulations of these techniques. Also we will touch the important 
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applications of level sets in computer vision field. The following section covers some 

important definitions which are required as a bit of background to explain these techniques. 

2.1 Definitions 
 

As a starting point, it begins by recalling some important definitions. Then the 

representation of level sets will be analyzed in detail. 

2.1.1 Simple Closed Curve 

It is a connected curve that does not cross itself and ends at the same point where it 

begins - called also Jordan curve. Examples are circles, ellipses, and polygons. See 

Figure 2.2 

 
(a)                                                 (b) 

 
Figure 2. 2. (a) Simple closed cure, (b) Not simple curve. 

 
2.2.2 Curvature 

The curvature of a curve is, roughly speaking; the rate at which that curve is turning. Since 

the tangent line or the velocity vector shows the direction of the curve, this means that the 

curvature is the rate at which the tangent line or velocity vector is turning. For example, a 

circle has a constant curvature because it always is turning at the same rate; a smaller circle 

has a higher constant curvature because it turns faster. 
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2.2.3 Distance Transform 

It is possible to describe a shape not just by its perimeter, or its area, but also by it skeleton. 

Here we do not mean an anatomical skeleton, more a central axis to a shape. This is then 

the axis which is equidistant from the borders of a shape, and can be determined by a 

distance transform. In this way we have a representation that has the same topology, the 

same size and orientation, but contains just the essence of the shape. As such, we are again 

in morphology and there has been interest for some time in binary shape analysis. 

Essentially, the distance transform shows the distance from each point in an image 

shape to its central axis. Intuitively, the distance transform can be achieved by successive 

erosion and each pixel is labeled with the number of erosions before it disappeared. 

Accordingly, the pixels at the border of a shape will have a distance transform of unity, 

those adjacent inside will have a value of two, and so on. This is illustrated in Figure 2.3, 

where Figure 2.3a shows the original shape with initial values of the distance and Figure 

2.3b shows the distance transform, where the pixel values are the distance. Here, the central 

axis has a value of 3, as it takes that number of erosions to reach it from either side. 

 

Figure 2. 3. Illustrating distance transformation. 
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2.2 Idea of Curve Evolution 
 

Let a piece of rope – with two ends glued together- dropped to the ground. If the 

rope does not cross over itself, it will be considered as a simple closed curve. One defining 

characteristic of a curve is its curvature, which measures how fast the curve bends at any 

spot. 

Now, suppose each piece of the curve moves perpendicular to the curve with speed 

proportional to the curvature. Since the curvature can be either positive or negative 

(depending on whether the curve is turning clockwise or counterclockwise), some parts of 

the curve move outwards while others move inwards. In Figure 2.4, the red arrows are 

where the curvature is negative, and the green arrows are where the curvature is positive: 

the arrows are of different lengths because the magnitude (or "strength") is larger at the 

green arrows than it is at the red ones. 

 

Figure 2. 4. Rope on the ground. 
 

What happens to this curve as it moves according to this "motion by curvature"? If the 

initial curve is a circle, It is clear that each point on the curve races in towards the center, 

and the contour must collapse stay a circle and collapse to a single point. Regarding the 
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rope, you can probably convince yourself that the shape relaxes itself and smooths out and 

becomes more circular. Actually, the  motion by curvature is one component of many 

physical phenomena (for example, surface tension in a soap bubble and freezing rates at 

the edge of a snowflake both depend on the curvature at a point). Now, let us try to build a 

computer model of what happens to an evolving contour moving under its curvature. 

 

2.3 Representation of an Evolving Contour/Interface 

 
2.3.1 Parameterized representation (Snakes) 

In order to move a contour, we need first a good way to describe it. One of these ways is 

called “curve parameterization”. Suppose we try to use this parameterized representation 

of a contour as the backbone of a numerical algorithm. We can walk around the curve, and 

plant a blue dot at regular intervals. These dots, together with the ropes that connect them 

together, form a discrete view of the boundary; see Figure 2.5. 

 

Figure 2.5. Parameterized representation of a contour. 
 
 

Recall that the length and direction of the arrows is determined by the local curvature. The 

strategy is to advance the positions of the dots according to the arrows, recalculate new  
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Figure 2.6. Topological changes. 
 

arrows, and then advance the dots again. Unfortunately, there are several flaws in this 

approach, some inconvenient, some fatal. A look at the figure reveals an inconvenient one: 

the dots try and cross over themselves, and it becomes hard to keep the connecting ropes 

organized. A solution is to stop the advancement periodically, re-walk along the curve, and 

drop new equi-spaced dots. However, doing this for a propagating surface in three 

dimensions is very complex. A more serious problem comes when the evolving boundary 

attempts to change its topology. Taking a slight detour, consider two separate circular 

flames, each burning outwards at a constant speed, as shown in Figure 2.6. As the two 

separate flames burn together, the evolving contours merge into a single propagating front. 

However, a numerical algorithm based on a discrete parameterization runs into real trouble. 

The two pairs of dots located inside the burned region must somehow be removed if we 
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want to track the true "edge" of the expanding flame. Trying to systematically determine 

which dots to remove is a confusing task. On the other hand, doing same algorithm in three 

dimensions is very complex. 

2.3.2 Level sets representation (Geometric active contour) 

Rather than follow the contour itself, the level set approach instead takes the original 

contour and adds an extra dimension to the problem. We are going to re-introduce a 

coordinate system, using the xy plane which contains the contour, and a z direction to 

measure height. 

Suppose there is a function z = φ(x, y, t=0), to take as input a point (x, y), and assigns 

a height z.  Where z is the distance from (x, y) to the nearest point on the contour at time t 

= 0. This builds a surface (shown in red at Figure 2.7) with the property that it intersects 

the xy plane exactly at the contour. The red surface is called the level set function, because 

it accepts as input any point in the plane and hands back a height as output. The blue 

contour is called the zero level set, because it is the collection of all points that are at height 

zero. 

 

Figure 2. 7. The Level Set Surface (in red) plots the distance from each point (x, y) to the contour 
(in blue). 
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The plan is to figure out how to change the height of the surface φ(x, y, t), in time to match 

the evolution of the contour. The goal is to let the level set function expand, rise, fall, and 

do all the work. Then, to find out where the contour is at any time, we can simply cut the 

surface at zero height, or, plot the zero contour. It is clear that, level set methods exchange 

a geometric, moving coordinate representation for a fixed coordinate perspective where 

each point (x, y) adjusts its value to measure the distance to the evolving interface/contour. 

At first glance, it might seem impractical to take the problem of a moving curve 

and trade it in for a moving surface. More dimensions usually mean more work. The reason 

the extra dimension is so powerful is that, rather than track dots around which can collide 

and stretch apart, we can now stand at each point (x,y) and adjust the height of the level set 

function. This means, for example, that the topological problems have vanished; two 

expanding flames which merge into one simply means that the zero level set at a particular 

time becomes one curve rather than two. 

One of the most advantages of the level set approach is that nothing is changed for 

interface problems in three (or more) dimensions: while slightly harder to visualize, the 

strategy is still the same. First, embed the evolving surface in one higher dimension. In the 

case of a propagating surface, this would mean using a time-dependent function φ(x, y, z, t 

= 0) in four-dimensional space. Then, adjust this higher dimensional function 

corresponding to motion of the interface, and compute the "zero" level set to find the 

position of the propagating interface.  

The following sections discuss more technical details about level set methods and 

its mathematical formulations 
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2.4 Mathematical Formulations 
 

Suppose you are given an interface separating one region from another (either a 

closed curve in two dimensions or a closed surface in three dimensions), and a speed F that 

tells you how to move each point of the interface. Here, F can depend on all sorts of 

complex physics, such as heating on either side of the interface, or fluid mechanical effects. 

Regardless, we shall assume that the speed F is handed to us, and gives the speed in the 

direction perpendicular to the interface. It is clear that any tangential component will have 

no effect on the position of the front. 

 

Figure 2. 8. A contour propagating with Speed F. 

 

An initial value for the level set function φ(x, y, t = 0) will be built based on the signed 

distance d from each point (x, y) to the initial contour, choosing a positive distance if we 

are outside the blue region, and a negative if we are inside. This constructs an initial value 

for the level set function φ.  All that remains is to figure out how to adjust its value in time 

to match the evolving interface. 
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Let us assume that the interface C is controlled to change in a constant manner and evolves 

with time t by propagating along its normal direction with speed F, where F is a function 

of curvature and speed, according to: 

��

��
= �.

��

|��|
                                                                  (2.1) 

Here, the term 
��

|��|
 is a vector pointing in the direction normal to the surface. The curve is 

then evolving in a normal direction, controlled by the curvature. At all times, the interface 

C is the zero level set, so: 

�(�(�),�)= �                                                           (2.2) 

The level set function φ is positive outside the region and negative when it is inside, and it 

is zero on the boundary of the shape. As such, by differentiation: 
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and by the chain rule we obtain 
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By rearrangement, and substitution from (2.1): 
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= −�|��|                                       (2.5) 

 

A little bit of algebraic manipulation produces the level set equation, namely: 

 

�� + ����
� + ��

� = �                                         (2.6) 

 

where the subscripts means that we are taking partial derivatives. 
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2.5 Solution of Level Set Equation 
 

The above level set equation is called an initial value partial differential equation, 

where it describes the time-evolution of a solution on the basis of an initial state, and partial 

deferential because the equation contains partial derivatives. This is a form of the 

Hamilton– Jacobi equation, which is a partial differential equation that needs to be solved 

so as to obtain the solution. One way to achieve this is by finite differences and a spatial 

grid (the image itself). We then obtain a solution that differences the contour at iterations 

< n+1 > and < n > separated by an interval  Dt as: 

�(�,�, D�)����� = �(�,�, D�)��� − D�(�|����(�,�)
<�>|)              (2.7) 

where ����  represents a spatial derivative. 

In the following sections, we will discuss a collection of schemes for solving 

general Hamilton- Jacobi and level set equations in a triangulated and finite element 

framework. 

2.6 The Effects of Curvature and Viscosity Solutions 
 

An illustration of the power of partial deferential equations comes from, consider 

the following example. Starting from the simple case of a constant speed function F = 1, 

and a sinusoidal initial interface, consider two solutions to the problem. One called: The 

Swallowtail solution and the second called: The leading wave Solution. As illustrated in 

Figure 2.9, the two solutions are the same until a corner develops in the propagating 

interface, at which point one of them overlaps itself, while the other chooses only the 

leading wave. Intuitively, the "leading wave" solution seems like the physically correct 

one, especially in light of the earlier discussion about removing markers which do not lie  
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Figure 2.9. The two possible solution of sinusoidal evolution example. 

 

on the boundary between inside and outside. The problem now is: as soon as, the evolving 

front develops the sharp corner, all possibilities are off. We cannot evaluate the partial 

derivative at a place when the slope makes a sudden jump in direction. The solution comes 

from the mathematical theory of viscosity equation. 

Loosely speaking, viscosity measures the ability of a fluid right damp sharp 

transitions and mute sudden changes. If you drop a marble in a jar of honey, the viscosity 

of the honey slows it down. This idea of viscosity will be used to smooth out the corner in 

the propagating interface. We can think of this as adding a little viscosity. With this in 

mind, let us consider a speed of the form F = 1-0.lk, where k is the local curvature of the 

contour. k is defined to be: 

k = �.�                                                           (2.8) 

where �. Is the divergence operator, and N is the normal direction. According to 

[102], =
��

|��|
 . 
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Figure 2.10. The effects of curvature. 

 

Now, Substitute this speed into the level set equation to produce:  

�� + ���
� + ��

� = �.�k                                             (2.9) 

 

As observed from Figure 2.10, even though there is very little smoothing going on with 

such a small amount of curvature, it is enough to guarantee that a corner never develops. 

So, we can say that: the theory of viscosity solutions leads to a remarkable fact: if we take 

a sequence of problems, each with ever smaller viscosity, they will head towards the corner 

"leading wave" solution. This means that all we need to do is solve for the viscosity solution 

of the level set equation, and we are guaranteed to pick out the right topological evolving 

front. For more details about the viscosity solutions and level sets, please see [64]. 

2.7 Motion under Curvature (Curvature Flow) 
 

As a first application of level set methods, we can revisit motion by curvature k, 

and examine what happens to a closed curve moving with speed F = -k (the minus sign is 

chosen so that convex parts move in, and concave parts move out). We have seen that a 

circle must collapse smoothly to a point before it disappears, and argued that more 

complicated simple closed curves must smooth out. In fact, Grayson, [100], proved that 
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every simple closed curve collapses smoothly to a single point, without crossing over itself. 

This is a remarkable theorem: no matter how complicated or convoluted a curve might be, 

it quickly relaxes itself into a circular object and shrinks down to a point. As shown in 

Figure 2.11 and 2.12, we show such curves shrinking to a circular object; from there, it is 

easy to believe that it shrinks to a point and disappears. 

                                                                             

Figure 2.11. A contour propagating with F = -k.       Figure 2.12. Another example for curvature. 

 

2.8 A level Set Formulation for Willmore Flow 
 

A level set formulation of Willmore flow is derived using the gradient flow 

perspective. Starting from single embedded surfaces and the corresponding gradient flow, 

the metric is generalized to sets of level set surfaces using the identification of normal 

velocities and variations of the level set function in time via the level set equation. The 

approach in particular allows to identify the natural dependent quantities of the derived 

variational formulation. Furthermore, spatial and temporal discretization are discussed and 

some numerical simulations are presented. 
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The Willmore energy of a surface as a function of mean and Gaussian curvature, 

captures the deviation of a surface from sphericity. As such this energy and its associated 

gradient flow play an important role in digital geometry processing, geometric modeling, 

and physical simulation. 

Let M be a d-dimensional surface embedded in d+1 and denote by x the identity 

map on M. Consider the energy  

�� =
�

�
 ∫ ����
�

 ,                                                    (2.10) 

where h is the mean curvature on M, i e., h is the sum of the principle curvatures on M. The 

corresponding l2-gradient flow – the Willmore flow is given by the geometric evolution 

problem 

��

��
= ∆��(�)�(�)+ �(�)�‖�(�)‖� −

�

�
�(�)�� �(�),                               (2.11) 

which defines for a given initial surfaceM0 a family of surfaces M(t) for t ¸ 0 with M(0) = 

M0. Here S(t) denotes the shape operator on M(t), n(t) the normal field on M(t), and ||.|| the 

Frobenius norm on the space of endomorphisms on the tangent bundle  M(t). 

Now we consider M(t) to be given implicitly as a specific level set of a 

corresponding function �(t) : Ω   for a domain d+1. Thus, the evolution of   �M(t) 

can be described by an evolution of �(t) . In this case, the level set equation (2.5) turns into 

the equation: 

��

��
= −|��(�)|�∆��(�)+ � �‖�(�)‖� −
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�
�(�)���,                                  (2.12) 

where ∆�� = ∆� − �
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 is the Laplacian Beltrami operator on h with n = 
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|��|
, S = (I 
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− n⊗ n)(∇×∇)� is the shape operator on �, and ‖�‖ is the Frobenius norm of S. 

Let us emphasize that different from second order geometric evolution problems, 

such as mean curvature motion, for fourth order problems no maximum principle is known. 

Indeed, two surfaces both undergoing an evolution by Willmore flow may intersect in finite 

time. Hence, a level set formulation in general will lead to singularities and we expect a 

blow up of the gradient of Á in finite time. If one is solely interested in the evolution of a 

single level set, one presumably can overcome this problem by a re-initialization with a 

signed distance function with respect to this evolving level set.  

In this dissertation, a novel 3D vertebral body segmentation method in computed 

tomography (CT) images will be presented. This approach depends on both intensity and 

shape information. The information of the intensity are handled by embedding an edge-

mounted Willmore flow into the level set segmentation framework. Shape information is 

gathered from a set of training shapes. Then the shape variations are estimated using a new 

distance probabilistic model which approximates the marginal densities of the vertebral 

body and its background in the variability region using a Poisson distribution. More details 

about this algorithm will be discussed in Chapter 5. 
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CHAPTER 3 
 

VARIATIONAL SHAPE REGISTRATION 
 

Shape registration is a fundamental problem in computer vision, and a core component in 

various medical applications. Recognition, tracking and retrieval are some other examples 

of applications that may benefit from shape alignment. Numerous approaches have been 

developed to solve this problem, each of which has its strengths and its limitations. These 

approaches can be categorized based on three main aspects: 1) the selected model to 

represent the shape, 2) the transformation model, and 3) the mathematical framework 

chosen to recover the matching parameters. 

Shape representation is handled differently in each application. For instance, in [1], 

the authors choose to represent the shape to be registered as the zero level sets of distance 

functions in a higher dimensional space. This implicit representation is known to be 

invariant to translations and rotations, and performs accurately in the case of homogeneous 

scales. To account for anisotropic scales, the authors proposed to maximize an information 

based criterion, namely the Mutual Information (MI), in the embedding space. Hong [2] 

proposed a new shape representation algorithm and showed its potential in image matching 

and segmentation. This algorithm is based on integral kernels and represents a shape as the 

area of intersection between the kernel and the inside and outside of the shape. The kernel 

width has a major effect on the method output and its appropriate selection was not clearly 

discussed. In [3], an approach was proposed to solve the shape registration problem by 

using a volumetric representation of shapes through vector level sets. The authors claimed 

that this representation is more suitable for scale variations. In [4], the authors used the 
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point-set representation for shapes in order to solve the non-rigid registration problem. This 

representation, also known as a cloud of points representation, was also used in [5], where 

the authors proposed to describe each sample point by a “shape context”, and use this 

descriptor to match shapes for object recognition purposes. Other methods have been 

considered to represent shapes in different applications. These methods include, among 

others, medial axis [6] and Fourier descriptors [7]. 

Transformation models can be divided into two classes: global and local [8]. The 

global transformation models are usually defined by a small set of parameters, e.g., rigid 

(rotations and translations), similarity (rigid plus homogeneous scale), and affine, which in 

addition to rotations and translations, account for anisotropic scales and/or shearing. Such 

transformations can be used alone to efficiently align two shapes. However, in the case of 

local deformations, more complex and general transformations are to be considered in 

order to establish dense correspondences between the two input shapes. 

Different techniques were developed to solve the non-rigid shape registration 

problem. In [9], the authors presented the Thin Plate Spline-Robust Point Matching (TPS-

RPM) algorithm, to jointly estimate the rigid and non-rigid transformations between two 

clouds of points that may be of different sizes. Thin plate splines were also adopted in [5] 

where corresponding points are determined by iteratively minimizing the overall shape 

context distances, and the TPS transformation is re-estimated at each iteration to recover 

the local transformation maps. More recently, Chen and Bhanu [10] introduced a global-to 

local procedure to align non-rigid shapes. The shape context descriptors are used to recover 

a global similarity transformation, while the local deformation is performed within an 
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optimization formulation, in which the bending energy of TPS transformation is 

incorporated as a regularization term. In [11], Yezzi and Soatto proposed a definition of 

motion for a deforming object and introduced the notion of “shape average”, which allowed 

the derivation of new algorithms to align non identical shapes using region-based 

techniques. Zheng and Doermann [12] proposed a relaxation labeling-based point 

matching algorithm for non-rigid shapes. The authors formulated point matching as a graph 

matching problem and used the shape context distance to initialize the matching of graphs, 

followed by relaxation labeling updates. Huang [13] introduced a hierarchical shape 

registration algorithm using a B-spline based-Incremental Free Form Deformations (IFFD) 

model to recover the local registration field between two globally aligned shapes. 

This chapter deals with the global registration (more specifically affine 

transformation) using the signed distance function which is widely used in the registration 

methods and shape models and point correspondence. The input shapes were implicitly 

embedded into a higher dimensional space of distance transforms. Then, a new 

dissimilarity criterion is used which is optimized to recover the transformation parameters 

that globally align the two input shapes. This new criterion supports both similarity and 

affine (without shearing) transformations. A comparison with the method presented in [1] 

is illustrated by a specific 2D example as a way of validating the proposed method. 

3.1 Shape Representation 
 

Human anatomical structures such as spine bones, kidneys, livers, hearts, and eyes 

may have similar shapes [14]. These shapes usually do not differ greatly from one 

individual to another. There are many works which represent and model the shape 
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variability. The objective of a shape representation is to describe the desired features of the 

shape of interest and serve the shape descriptor to be a good classifier to differentiate 

among all the shapes involved [15]. Also, the shape representation significantly affect the 

shape registration algorithm. This section will briefly overview the shape representation 

and modeling techniques. In general, the shape representations methods can be folded into 

three categories: 

(a) Landmark based, 

(b) Contour (edge) based, and 

(c) Region based methods. 

One of the most important study for the landmark based shape representation and modeling 

is the active shape models (ASM) and active appearance models (AAM) proposed by 

Cootes et al. [16, 17, 18]. The active contour models method is a contour (edge) based 

method proposed by Kass et al [19]. This method is also categorized as the explicit shape 

representation which requires parameterizations of the contour. Also, Fourier descriptors, 

shape signatures, wavelet descriptors are some of the contour based shape representations. 

Landmark and contour based representations, which can be called as the explicit shape 

representation, suffer when applied to shape modeling since they do not allow the shape to 

undergo topological changes. Also, these representations requires point-wise 

correspondence between training shapes. 

This work represents shapes using the regions based methods. Medial axis, convex 

hull, and level sets representations are some of the region based shape representations. The 

shape representation using the level set method [20] is known as the implicit representation 
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Figure 3. 1. Implicit shape representation using the signed distance function. 
 

which does not need contour parameterizations and does handle the topological changes of 

shapes.  

           In this work, the shape is represented using the signed distance function (SDF) 

which is used firstly in registration by Paragios et al. [21]. Let �:� → � be an � − � image 

usually � = � or � = �, �:� → � be a function that refers to a distance function 

representation for a given shape/contour � where � ⊂ ��  be an image domain which is 

bounded. The shape can be represented as follows:  

 

 ��(�,�)= �

�,(�,�)∈ �

−��((�,�),�)> �,(�,�)∈ � �

+��((�,�),�)< �,(�,�)∈ � − [� �]

 (3.1) 

 

where � � represents the inside region of the shape �. Let (�,�) represents an pixel location 

on �. For ∀(�,�)∈ �, the distance between any (�,�) point and its nearest surface point 

can be calculated as follows:  

 ��((�,�),�)= ���
(�,�)∈�

�(� − �)� + (� − �)�.            (3.2) 

 

Examples of such representation are shown on Figure 3.1. 
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3.2 Basics of Shape Registration 
 

 Registration is the important method for shape-based segmentation, shape 

recognition, tracking, feature extraction, image measurements, and image display. Shape 

registration can be defined as the process of aligning two shapes of a scene [22]. 

Registration requires transformations, which are mappings of points from the source 

(reference) shape to the target (sensed) shape [23]. The registration problem is formulated 

such that a transformation that moves a point from a given source shape to another target 

shape according to some dissimilarity measure, needs to be estimated [21]. The 

dissimilarity measure can be defined according to either the curve or to the entire region 

enclosed by the curve. Figures 3.2 shows an example of the registration process from the 

source to the target shape. The source and target shapes and transformation can be defined 

as follows: 

 Source (��) shape which is kept unchanged and is used as a reference 

 Target (��) shape which is geometrically transformed to the source shape.  

 Transformation (�): The function is used to warp the target shape to take the 

geometry of the reference shape [22]. The transformation can be written as a 

function �:�� → �� which is applied to a point � in �� to produce a transformed 

point which is calculated as � = �(�). The registration error is calculated as 

�(�)− � for each transformed pixel. 
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Figure 3.2. Registration example of a point from the source to the target shape. 

 

        In general, there are three categories of the registration methods: rigid, affine, and 

elastic transformation. In literature the rigid and affine transformations are classified as 

global transformations and elastic transformations are as local transformation [24]. A 

transformation is global if it is applied to the entire image. A transformation is local if it is 

a composition of two or more transformations determined on different domains (sub-

images) of the image. 

    • A rigid body transformation is the most fundamental transformation and is useful 

especially when correcting misalignment in the scanner. This transformation allows 

only translation and rotations, and preserves all lengths and angles in an image. 

    • An affine transformation allows translation, rotation, and scaling. Some authors 

defined the affine transformation as the rigid transformation plus scaling. Affine 

transformations involving shearing (projection) are called projective transformation. 

An affine transformations will map lines and planes into lines and planes but does not 

preserve length and angles. 

 

�� �� 

�
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    • An elastic transformation allows local translation, rotation, and scaling, and it has more 

number of parameters than affine transformations. It can map straight lines into 

curves. An elastic registration is also called as a non-linear or curved transformation. 

This transformation allows different regions to be transformed independently.  

 

A global transformation is used to register �� to �� with scale, rotation, and translation 

parameters. For the 2D case, the transformation is assumed to have scaling, rotation, and 

translation components, as follows: 

 � = �
��  �
� ��

� ,� = �
���(�) −���(�)
���(�)    ���(�)

�,�� = [��,��]
�. (3.3) 

The transformation will be in the form:  

 �(�)= � = ��� + ��. (3.4) 

As said before, the global registration  using the signed distance function is adopted which 

is widely used in the registration methods and shape models and point correspondence. 

 

3.3 Global Registration of Shapes Using the Variational approach 

 
This section focuses on the specific implicit representation of shapes using signed 

distance transforms and how this representation can be used for global shape alignment. 

The implicit representation of shapes using the signed distance map was employed before 

to achieve global alignment of shapes (e.g., [25-27]). This representation is proven to be 

invariant to rotations and translations, and can be efficiently used in the case of 

homogeneous scaling. This chapter presents a cost function which measures the disparity 
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between the implicit representations of the two input shapes. This measure leads to accurate 

results even when dealing with anisotropic scales. 

   Global transformation models are usually defined by a small set of parameters. 

These models include, among others, the rigid transformation (translations and rotations), 

the similarity transformation (translations, rotations, and isotropic scaling), the affine 

transformation, which in addition to translations and rotations, accounts for anisotropic 

scaling and/or shearing. Such a transformation can be used alone to efficiently align two 

shapes, or it can be used as a pre-step for a local matching algorithm. Several techniques 

have been proposed to achieve global alignment between shapes. Some of these techniques 

are feature-based (e.g., Fahmi, et al., 2006[28]). Such a technique proceeds by extracting 

salient features and uses them to match a set of corresponding points. Finally, the matched 

points are used to recover the transformation parameters. Other methods, on the other hand, 

recover these parameters by directly optimizing a similarity/dissimilarity criterion between 

the two shape representations. For instance, in Huang et al., 2006 [1], an approach is 

proposed to achieve global registration of shapes by maximizing the MI between the SDF 

representation of the input shapes.  

In [30], a new sum of squared differences (SSD) criterion is introduced in the space of 

signed distance transforms to globally align shapes. This new criterion can handle both 

rigid and affine transformations and leads to more accurate results when compared to other 

criteria. 
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3.3.1 SDF-based dissimilarity measure 

 
 Let �� and �� be the signed distance representations of the shapes, �� and ��, 

respectively. Consider an image point �, whose transform by � is denoted by ��, and let ��� 

be the level set function obtained by transforming �� by �.  

So that, new sum-of-squared differences criterion were introduced in order to 

recover the parameters of the transformation �. We derive the formaulas for that measure 

for 2D and 3D cases as below. 

3.3.1.1 Two Dimensional Case: 

The dissimilarity measure is defined as follows: 

 �(�,�,��)= ∫
�
(∥� ∥��(�)− ��(��))

���, (3.5) 

 where, ∥� ∥= ���(|��|,|��|) is the infinity norm of the matrix �. Note that in the absence 

of scale variations, our measure coincides with the one proposed in Paragios et al., 

2003[25]. For computational and technical considerations, one can consider a narrow band 

formed of points that are a distance � away from the source shape and their projections on 

the target shape,  

�(�,�,��)= ∫
�
��(��(�),��(��))[∥� ∥��(�)− ��(��)]

���,            (3.6) 

where, ��(�,�)= �
�,    �� ��� (|�|,|�|)> �,
�,    ���������.                

 

Each parameter of the transformation � is recovered by solving its corresponding Euler-

Lagrange equations using a gradient descent scheme[10]:  

 
���

��
= �∫

�
�
�∥�∥

���
��(�)− ���

�(��)������������
�

�� .�(�)��, (3.7.a) 
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���

��
= �∫

�
�
�∥�∥

���
��(�)− ���

�(��)� �
������������

�� .�(�)��, (3.7.b) 

 
��

��
= �∫

�
����

�.���(������������)
��(������������)

�� .�(�)��, (3.7.c) 

 
���

��
= �∫

�

���

��
(��).�(�)��, (3.7.d) 

 
���

��
= �∫

�

���

��
(��).�(�)��, (3.7.e) 

where �(�)= ��(��(�),��(�))(∥� ∥��(�)− ��(��)), and � denotes the gradient 

operator. Note that, since positive scale values are considered, the terms 
�∥�∥

���;�
 equal either 

� or �. 

3.3.1.2 Three Dimensional Case 

For the three dimensional case, the similarity transform � is defined by:  

�� = �.� .� + � where, � = �

�� � �
� �� �

� � ��
� ,� = �

��

��

��
�. (3.8) 

 and � = � (��,��,��)= � � ⋅� � ⋅� �, with  

� � = �

� � �
� ����� �����
� −����� �����

� ,� � = �

����� � −�����
� � �
����� � �����

� ,� � =

�

����� ����� �
−����� ����� �

� � �
�   (3.9) 

In this case, the cost function, to be minimized in order to recover the nine parameters of 

the transformation �, is given by:  

 �(�,� ,�)= ∫
�
(∥� ∥��(�)− ��(��))

���,             (3.10) 
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 where, ∥� ∥= ���(|��|,|��|,|��|) is the infinity norm of the matrix �.  

            As was done in the 2D case, a narrow band formed of points can be considered that 

are a distance � away from the source shape and their projections on the target shape, and 

solve the following Euler-Lagrange equations for each of the nine parameters of � using a 

gradient descent scheme[10]:  

���

��
= �∫

�
�
�∥�∥

���
��(�)− ���

�(��)�

���� + ���� + ����
�
�

��.�(�)��, (3.11.a) 

���

��
= �∫

�
�
�∥�∥

���
��(�)− ���

�(��)�

�
���� + ���� + ����
�

��.�(�)��, (3.11.b) 

���

��
= �∫

�
�
�∥�∥

���
��(�)− ���

�(��)�

�
�
���� + ���� + ����

�� .�(�)��, (3.11.c) 

Similarly,  

 
���

��
= �∫

�
[���

�(��).�.� �
�.� �.� �.�].�(�)��,                            (3.12.a) 

 
���

��
= �∫

�
[���

�(��).�.� �.� �
�.� �.�].�(�)��,                           (3.12.b) 

 
���

��
= �∫

�
[���

�(��).�.� �.� �.� �
�.�].�(�)��,                            (3.12.c) 

 
���

��
= �∫

�

���

��
(��).�(�)��,                                                          (3.12.d) 

 
���

��
= �∫

�

���

��
(��).�(�)��,                                                          (3.12.e) 

 
���

��
= �∫

�

���

��
(��).�(�)��,                                                           (3.12.f) 
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where �(�)= ��(��(�),��(�))(∥� ∥��(�)− ��(��)), � denotes the gradient 

operator, and  

� �
� = �

� � �
� −����� �����
� −����� −�����

� ,� �
� = �

−����� � −�����
� � �
����� � −�����

�, 

� �
� = �

−����� ����� �
−����� −����� �

� � �
�.                                                           (3.13) 

Note that, since we are considering positive scale values, the terms 
�∥�∥

���;�;�
 equal either 0 or1 

3.3.2 Experimental results 
 
To quantitatively validate the model in (3.6), several registration experiments were 

performed. For each trial, the source shape is fixed and the target shape is generated by 

deforming the source using a known transformation � = �(�,�,��) which will be 

considered as the Ground Truth (GT). Then, this model is used to recover the optimal 

alignment parameters. The recovered parameters are then compared to the GT and to those 

obtained when using a homogeneous scale-based measure; the case in which, �� = �� =

�, the matrix � reduces to the scalar �, and the measure given by (3.6) is changed 

accordingly, as well as the Euler-Lagrange equations, as presented in [25]. In each case, 

the algorithm leads to more accurate results and one can see that the isotropic scale-based 

criterion completely fails when the difference between �� and �� is large (see e.g., last two 

columns of Figure 3.3). Table 3.1 summarizes some of these results.  

Another set of experiments was carried out to compare the registration performance 

of the proposed criterion with the other two criteria (as in [25] and [26]) by registering 
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pairs of arbitrary shapes that belong to the same class. Some of these results are presented 

on Figure 3.4 and Figure 3.5 respectively. One can easily notice from these figures that the 

proposed method outperforms the other two methods. 

 

Table 3.1. Comparison of recovered parameters when using our model (M1) (Equation. 2.6) vs. the 
use of similarity-based model (M2), i.e., �� = �� = �, (Paragios et al., 2003[25]); GT stands for 

ground truth. 

  Transformation 
Corpus Callosum Fish 

GT M1 M2 GT M1 M2 
�� 1.5 1.50 0.99 0.6 0.60 0.71 
�� 0.9 0.90 — 1.0 1.00 — 

�∘ 10 10 22.75 60 60 52.03 
�� 2.5 1.61 0.14 -3.5 -4.17 -5.82 
�� 0.0 -0.6 2.50 -5 -5.16 -7.52 

 

Finally, several three dimensional experiments were carried out to test the proposed global 

alignment algorithm. A 3D tooth shape of size ��� × ��� × ��� is used as te target shape. 

This shape is used to generate various deformed instances by randomly assigning different 

values to the transformation parameters (��, ��, ��, ��, ��, ��, ��, ��, and ��). For each 

trial, the generated deformed shape is used as the source and is registered to the target shape 

using the proposed algorithm. Some of the corresponding results are shown on Figure 3.6. 

For each trial, one can notice the high accuracy of the registration results. 
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(a)   (b)   (c)  

Figure 3.3. Global registration. (a) Input Shapes (blue: source; red: target). (b) Registration results 
using the isotropic-scale based model, (c) Registration using the proposed model (2.6).  

        

     

     

     
(a)   (b)   (c)  

 

Figure 3.4. Global registration. (a) Input Shapes. (b) Registration using homogeneous scale-based 
measure, (c) Registration using the proposed registration model (2.6). 
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(a) 

  
(b) 

  
(c) 

Figure 3.5. Global Matching: Proposed Signed Distance- vs. VDF-based affine registrations [26]. 
(a) Input Shapes. (b) Affine Registration using the VDF representation (c) Affine Registration 
using the new SSD criterion (2.6). 
 

 

Figure 3.6. Global registration of 3D shapes of two tooth shapes. (a) Input Shapes. (b) An 
intermediate state. (c) Registration using the proposed registration model (2.10). 

 

 

(a) 
 
 
 
 
(b) 
 
 
 
 
 
(c) 



 

 
44  

 

 

Figure 3.7. More examples for global registration of 3D shapes of various shapes. (a) Input Shapes. 
(b) An intermediate state. (c) Registration using the proposed registration model (2.10). 

 
 

3.4 Summary 
 

In this chapter, a Variational framework for global registration of shapes has been 

presented. The shapes are implicitly represented through their sign distance maps. A new 

criterion, measuring the disparity between the two representations, was proposed to 

globally align the input shapes. This criterion supports both rigid/similarity and affine 

transformations. Various experiments were presented to show the effectiveness of the 

proposed framework. A possible direction of the present work is its extension to 

image/volume registration. 

 

 

 

(a) 
 
 
 
 
(b) 
 
 
 
 
 
(c) 
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CHAPTER 4 
 

FUNDAMENTALS OF IMAGE REGISTRATION  
 

 
Image registration is establishment of correspondence between images of the same scene. 

Many image processing applications like remote sensing for change detection, estimation 

of wind speed and direction for weather forecasting, fusion of medical images like PET-

MRI, CT-PET etc. need image registration. Image registration is a process of aligning two 

images acquired by same/different sensors, at different times or from different viewpoint. 

To register images, it is needed to determine geometric transformation that aligns images 

with respect to the reference image. The most common transformations are rigid, affine, 

projective, perspective and global. Over the years, a large range of techniques has been 

developed for various types of problems. A typical image registration algorithm consists 

of three coupled components: an alignment measure (also known as similarity/dissimilarity 

measure, registration function, etc.) that quantifies the quality of alignment; a class of 

admissible geometric transformations that can be applied to the image(s), i.e., employed to 

spatially “warp” the image(s); and an optimizer that seeks the transformation that 

maximizes the similarity as quantified by the alignment measure. Figure 4.1 illustrates 

these components.  

From the application’s point of view, registration algorithms can be classified based 

on several criteria. The classifications presented here are partially based on [31]. The 

criteria and their primary subdivisions are: 

 Modality: Mono-modal refers to the case  where all images are obtained from  the 
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Figure4.1. Block diagram of a typical image registration algorithm. 

 

same imaging sensor type and there are no major differences between the intensity 

ranges that correspond to the same physical/physiological phenomenon. In a multi-

modal setting, these ranges can differ drastically. This is typically due to different 

sensor types. 

 Dimensionality: This refers to the number of dimensions of the images. Historically, 

images have typically had two spatial dimensions. Today, however, several imaging 

technologies provide 3D volumes. Moreover, some sensors, e.g. functional MRI, 

provide a video, i.e. a sequence of images. When treating the video as one big data 

set, time can be thought of as an extra dimension. One convention is to denote time 

as a 0.5 dimension. This is helpful to clarify some ambiguities, e.g. 3D (three spatial 

dimensions) versus 2.5D (two spatial dimensions + time). Most of today’s 

applications involve 2D/2D, 3D/3D and 2D/3D registration. 

 Speed: Offline refers to applications where time is not an important constraint. Online 

denotes a heavy time constraint, typically indicating real-time applications. An 

important online example is intra-operative procedures performed within the 
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operating room. Some scientific applications (e.g. human brain mapping), on the 

other hand, do not have a heavy time constraint. 

 Employed Information Content: In the registration literature, one can identify two 

trends in the type of information employed. Landmark based approaches rely on the 

definition of landmarks. Alignment is computed based on these landmarks (sets of 

points, lines or surfaces) only. These landmarks can have a clear physical meaning 

(e.g. the cortical surface of the human brain [32], fiducial markers visible in all 

modalities [33], etc.). In landmark based registration, the set of identified points is 

sparse compared to the original image content, which allows fast optimization. 

However, performance of the algorithm heavily depends on the landmark 

identification. Image content based approaches, on the other hand, rely on pixel 

intensity information. These typically extract features from pixels (e.g. intensity 

values [34], gradient vectors [35], wavelet coefficients [36], etc.) and compute an 

alignment based on the set of feature samples. These are usually slower than 

landmark based algorithms, but have the potential to produce accurate and robust 

results in contexts where landmarks are difficult to define or determine. 

 Locality of Alignment Measure: Alignment quality can be measured for the whole 

image, using global measures, e.g. sum of squared differences of all pixel values, or 

for a neighborhood of a pixel location using local measures, e.g. local correlation. 

 Transformation: Generally speaking, there are two types of geometric 

transformations: global models, e.g. rigid-body, affine, spline based, etc., where a 

small set of parameters determine the transformation and nonparametric models (also 
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known as optical flow, dense matching, etc.), where each pixel is allowed to move 

independently. Note that in the latter case, if there was no restriction on the 

transformation, an image could be made to look similar to any other image with the 

same intensity range as the first image. Thus, these methods require regularization to 

overcome ill-posedness and incorporate prior knowledge about the deformation field. 

 Optimization: Typically, iterative methods are employed within a multi-resolution 

pyramid, to speed up convergence. Popular choices of optimizers are: gradient-

descent and its variants [34], Powell’s method [37], Downhill simplex method and 

Levenberg Marquardt optimization [38]. 

 

In this chapter, our analysis are restricted to global image content-based registration 

approaches, which provide a general framework and require minimal knowledge about the 

specifics of the application domain.  In the following sections, the theoretical aspects of an 

image registration problem are reviewed. 

 

4.1 Problem Definition 
 

Let Ij be in a family U of scalar valued images defined on Ω, a finite subset of Rd, 

d ∈ Z+. For example, all brain MRI volumes may constitute a family, U. The relationship 

between any two images I1 and I2 can be written as: 

�� = �(�� ∘�)+ ℵ                                                  (4.1) 

Where A: Rd  Rd is a geometric transformation that models the misalignment that we 

want to recover, f is a cross-image family mapping that captures the volumetric variation 

and ℵ is some noise. In this model (��,�� ∘�) is a (optimally) registered pair of images. 
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The goal of the algorithm is to estimate �, by maximizing a similarity measure (or, 

minimizing a dissimilarity measure). As discussed before, we are searching for the best 

alignment of two images by transforming one onto the other, it is a very crucial issue to 

assess how similar two images actually are. The two main classes of similarity measures 

are feature-based and intensity-based. The following section gives more details about the 

intensity based measures. 

4.2 Intensity-Based Similarity Measures 

Feature-based measures do some processing with the images first in order to obtain 

significant information, which can be used to judge the similarity. This can be the position 

of significant landmarks, or the parameterization of certain shapes within the images, 

which are obtained by segmentation. However, this processing usually needs some user 

interaction, which is often not desirable. 

On the contrary, intensity-based measures use the full raw image information. A 

similarity measure is derived using all intensity values in the two images. However, one 

may consider introducing a region of interest in order to omit non relevant image parts. 

Working with this kind of measure is often referred to as pixel based registration, too. The 

main advantage is that registration can be executed right after image acquisition. No further 

user input is needed for instance for selecting landmarks or setting the parameters for a 

segmentation. This is the kind of similarity measurement that we are going to use. Figure 

4.2 shows an overview about the three classes of measures. 
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Figure4.2. Classification of image similarity measures. 

 

4.2.1 Measures using only Image Intensities 
 

This class of similarity measures compares the intensity values of both images pair-

wise at the same pixel positions. Subsequently one single value is composed out of it with 

a certain scheme. An advantage of this kind of measure is that it can be used not only with 

two-dimensional images, but with any kind of data in arbitrary dimensions, as no spatial 

information is considered. 

4.2.1.1 Sum of Intensity Differences 

One very simple similarity measure is the sum of squared differences (SSD) between two 
images: 
 

��� =
�

�
∑ (��(�)− ��(�)�∈��

)�                                   (4.2) 
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where � stands for the coordinates vector of the image, the vector � is defined on the set 

Dx defined as the overlap domain (eventually combined with a region of interest) of the 

images. N is the number of pixels in Dx. It can be shown that SSD is the optimum measure 

when two images only differ by Gaussian noise (i.e. f in (4.1) to be the identity function). 

Therefore this measure is mostly used in registration applications where two images from 

the same modality are used, otherwise this constraint is not realistic. Besides simplicity, 

another reason to use this measure may be that specific optimization algorithms can be 

used, that can minimize sum-of-squares expressions very efficiently. Due to its simplicity, 

this measure is especially used for intramodality registration [39]. 

4.2.1.2 Correlation Coefficient 

Linear correlation is used everywhere in mathematical and computer science problems, 

when the relation between two data sets have to be assessed in a fast and simple way. In 

this case, the linear dependency of the pixel values in one image to the other is needed to 

be quantized. This measure is called Normalized Cross Correlation (NCC), often referred 

to as Correlation Coefficient as well:                                         

��� =
∑ (��(�)− ����∈��

).(��(�)− ���)

�(��(�)− ���)
�.�(��(�)− ���)

�
 

(4.3) 
���  and ���  are the mean intensity values in the images �� and ��, respectively. The 

denominator is the product of the standard deviations in the two images. 

Normalized Cross Correlation has been used for various registration problems. In 3D-3D 

registration it is mainly limited to images of the same modality, however there are 
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approaches using NCC on image data transformed to Fourier-space [39]. It is being used 

and evaluated for 2D-3D registration [40, 41] and slice-to-volume registration [42] as well. 

4.2.2  Measures using Spatial Information 
 

This class of measures still evaluates the data pixel-wise, but in addition some kind 

of neighborhood information is involved at every position. This can be done by adding all 

differences within a certain radius (Pattern Intensity), or by calculating gradient images for 

further examination. 

4.2.2.1 Pattern Intensity 

This measure [41] directly assesses the content of a difference image, Idiff = I1 − sI2. If the 

images are perfectly aligned, the difference image should contain the fewest amount of 

patterns, or be constant in the optimum case. Pattern Intensity now sums up over 

differences between neighbored pixels in Idiff : 

���,�(�)=
�

�
∑ ∑

��

���(�����(�,�)������(�,�))
��,��,�∈��                      (4.4) 

 
where (u,w) ∈ �� such that (x – u)2 + (y − w)2 < r2. Good working parameters are r = 3 and 

 = 10 [40], the latter selecting the values in the difference image where the measure is the 

most sensitive. The scaling factor s for creation of the difference image should be chosen 

so that the difference image has the least contrast. Note that a constant shift between the 

image intensities does not affect the similarity measure, as it only assesses differences in 

the difference image. 

4.2.2.2 Gradient Correlation 

By using horizontal and vertical Sobel templates, four gradient images dI1/dx, dI1/dy, dI2/dx 

and dI2/dy are created. Then Normalized Cross Correlation (4.3) is calculated of these 
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horizontal and vertical gradient images, respectively. The final value of the measure is the 

average of the two NCCs [40]. 

4.2.2.3 Gradient Difference 

This measure, proposed in [40] evaluates two difference images IdiffH and IdiffV which are 

calculated from gradient images.  Same 1/(1 + x2) structure as pattern intensity is applied:               

��(�)= �
��

�� + (������(�,�))�
+ �

��
�� + (������(�,�))�

�,�∈���,�∈��

  

(4.5) 
 

������(�,�)=
���

��
− �

���

��
   and  ������(�,�)=

���

��
− �

���

��
 

 
Ah and Av are constants which work well if they are set to the variance of the respective 

reference image. 

4.2.3 Histogram Based Measures 
 

Those measures overlap with what is often termed Information Theoretic Measures. 

Here, successful registration means to maximize the amount of shared information in the 

two images, or two minimize the amount of information present in a difference image. In 

order to automate this idea, some measure of information is needed as prerequisite. The 

most commonly used one is the Shannon entropy: 

� = − ∑ �(�)����(�)�                                               (4.6) 

where �(�) denotes a discrete probability distribution. Another entropy concept adopted 

for registration has been introduced in [43], the Cumulative Residual Entropy. If the 

amount of information in an image is to be assessed, the image pixel intensity is treated as 
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random variable. �(�) is then the probability that any pixel in the image has the intensity 

a. It is being summed up over all possible intensities, e.g. [0 . . . 255] for 8 bit images.  

 

Figure4.3. Joint and individual histograms for a synthetic and an X-Ray image. 

 

 

Therefore the distribution can be composed by creating a histogram (counting the 

occurrences of every possible intensity value) and dividing by the number of pixels in the 

image. Similar to that, a joint probability distribution is created by counting the occurrences 

of every pair of intensities in two images (at the same pixel position, respectively), resulting 

in a two-dimensional histogram. Figure4.3 shows a joint histogram and the respective two 

individual histograms. Once those distributions are computed, every further processing is 

done on them, without considering any of the original image data. To mention is, that the 

measures from section 4.2.1 can be rewritten in order to be computed based on histogram 
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information, too. However, this is not the original idea of those measures, and the 

respective calculation is more costly. 

4.2.3.1 Entropy of the difference image 

In this case the entropy of a difference image Idiff = I1 − sI2 is examined [40]. If the two 

images are matching perfectly, the difference image should be empty (i.e. have constant 

intensity values), which results in an entropy of zero. 

4.2.3.2 Mutual Information 

For measuring the amount of combined information in two images, the joint entropy is 

used: 

�(��,��)= ∑ �(�,�)����(�,�)�,�                                        (4.7) 

it is being summed up over the intensity range of both images. The intensity probabilities 

p(a, b), also called probability distribution function (PDF) can be visualized as a two-

dimensional joint histogram. Every value of p(a, b) tells the occurrence of the intensity a 

in the first and intensity b in the second image at the same positions, respectively. If I1 and 

I2 are totally unrelated, the joint entropy will be the sum of the entropies of the individual 

images. The more similar the images are, the lower the joint entropy is (if the images are 

the same, it equals the entropy of the images, H(I1, I2) = H(I1) = H(I2)). Mutual Information 

now combines the entropy calculations of the individual images and the combination: 

�� = �(��)+ �(��)− �(��,��)= ∑ �(�,�)
����(�,�)

��(�)��(�)
�,�                    (4.8) 

The range of this measure is now [0,Hmax], where Hmax is the maximum entropy that is 

possible. It can be achieved by assuming equal distribution of all intensity values in the 

image, i.e. a constant histogram: 
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���� = − ∑
�

�
l��

�

�
= ��� (�)�                                               (4.9) 

 
where n is the number of histogram entries, e.g. 256. It is desirable to normalize the mutual 

information measure to have a value between 0 and 1. This can be done easily: 

��� =
���

�(��)��(��)
= � −

�(��,��)

�(��)��(��)
                                     (4.10) 

Some important features of normalized mutual information: 

 The result is zero if one or both of the images are constant. 

 The result is one if both images are identical or the pixel values in one image are only 

scaled and shifted with respect to the pixel values in the other image. However, this is 

only valid if no rounding errors occur and no intensities get lost on the bounds. This 

implicates that the entropies of both images are still the same. 

 Varying the size of the histograms and the joint probability distribution has an 

important effect on the MI value. On the other hand, if high-resolution images are used 

and the registration estimation is already very close to the optimum, full histogram 

resolution results in a very sharp rise to a value of one. 

A very important property of Mutual Information is, that it assumes no functional 

dependency between the images at all, only statistical dependence between the intensities. 

Due to this fact this measure is very popular in registration problems where different 

modalities are involved. A very comprehensive work about Mutual Information and its 

information-theoretic background can be found in [46].  

One drawback of Mutual Information that is criticized sometimes, is that it does 

not consider any spatial information. In recent years some ideas have come up that would 

compute Mutual Information not just on intensity values, but on vectors incorporating 
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intensity and one to three spatial parameters, for instance the pixel location in the images. 

The consequence is that the entropies of multi-dimensional probability distributions have 

to be computed. Those distributions, and especially the respective joint probability 

distribution, usually cannot be saved in an array anymore. Thus the problem is generalized 

to estimating the necessary entropies, discarding any explicit form of the underlying 

probability distributions.  

4.2.3.3 Correlation Ratio 

This is an alternative approach of an information theory based similarity measure, 

introduced by Roche et al. [47]. It can be seen as a measure of how well one image explains 

the other. Therefore the image intensities are treated as random variables and a functional 

dependency between the images is assumed. A very important characteristic of correlation 

ratio is, that it is not symmetric. One has to decide in advance which image should be the 

model, and therefore is used as a base for the estimation of the second image. The basic 

equation is:                                                

�(��|��)=
���(�(��|��))

���(��)
 

(4.11) 
 

In this case the variables I1 and I2 stand for random variables of the image intensities, 

respectively. Assuming that I2 is totally independent of I1, the expectation E(I2 | I1) = E(I2) 

is constant and thus its variance is zero. On the other hand, assuming full functional 

dependence, every value of I2 can be predicted given knowledge of I1 and therefore E(I2 | 

I1) = I2, resulting in a similarity measure value of 1. Computing the actual value is done 

with: 
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�(��|��)= � −
�

��
∑ ��

���(�)� , 

 
�� = (∑ ����(�)� )− (∑ ���(�)� )�, 

 

��
� = (

�

��(�)
∑ ���(�,�)� )− (

�

��(�)
∑ ��(�,�)� )�,                       (4.12) 

 

 
Correlation Ratio originates as an extension of Normalized Cross Correlation. When using 

this measure with images of the same modality, the behavior of Correlation Ratio and 

Correlation Coefficient is indeed very similar. In contrast to Mutual Information, the 

Correlation Ratio is not based on entropies, but on the variance of an image random 

variable that is conditioned with the random variable of another image. The main advantage 

of this is that proximity information in the intensity space is considered, whereby the 

entropy and joint entropy calculations only assess pairs of intensity ranges.  

4.2.4. Proposed Similarity measures 
 

In this framework, two novel image similarity measures are adopted from [48] and 

[49]. The first one is called exponential correlation (EC). The other is called pixel-based 

individual entropy correlation coefficient (IECC). Both are used as the similarity measure 

between the synthetic X-ray images and the reference X-ray image in order to evaluate the 

current quality of alignment. Section 4.5 explains the experiments, and evaluates the 

accuracy of the results. 

4.2.4.1 Exponential Correlation (EC) 

In this section, a novel image similarity measure is presented. It is called Exponential 

Correlation (EC). This measure is compared to others such as SSD, correlation, NCC, joint 

entropy, MI, and NMI. The experiments have shown that the proposed similarity measure 
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is capable of describing complex relationship between image intensity values while 

offering a favorable speed-performance trade-off as compared to other known similarity 

measures. 

Given that the reference image (R) and the floating image (F), their EC value can be 

calculated using the following equation:  

��(�,�)= ∑ ���(�)��
�
− �����(�)��

�
− ���∈��

,                         (4.13) 

where �� and �� represent the mean of intensity values of  images F and R respectively. 

When two images are geometrically aligned, EC value is maximized. 

It is clear that the EC similarity measure (4.13) is able to determine the correspondence 

among images with complex relationships between the pixel values much better than NCC. 

4.2.4.2 Individual Entropy Correlation Coefficient (IECC) 

In this type of similarity measures, we deal with the images R and F as two random 

variables. A 1D histogram is constructed for each image. It shows the distribution of the 

pixel values. Since these values vary over a wide range, they were rescaled into N=64 bins. 

A 2D histogram h(a,b) is obtained from the pair of floating image and reference image. 

Each entry in this histogram represents the number of times intensity a in image R coincides 

with intensity b in the other image F. The probability distribution of this 2D histogram 

values is obtained from h(a,b). It is called the joint probability distribution and can be 

expressed as: 

�(��,��)=
�(��,��)

∑ ∑ �(��,��)
�
���

�
���

 .                                        (4.14) 
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As all histogram based measure (Section 4.2.3), the pixel-based IECC depends 

on  �(��,��). It represents the ratio between the pixel-based component of the mutual 

information between the two images, and the sum of the pixel-based components of the 

two marginal entropies of each image. So, IECC is expressed as [49]: 

����(�,�)= ∑ ∑
����,��������

����,���

������(��)
�

�(��)����(��) � �������������

�
���

�
���  ,                     (4.15) 

where   �(��)   and    �����   are the marginal probability distribution of each image. When 

two images are geometrically aligned, IECC value is maximized.  

4.3 Geometric Transformations 
 

Different transformation models are utilized for various registration applications. 

Recall that, image registration consists of establishing correspondence means matching of 

identical shapes in related image pair. This requires geometric transformation of one image 

into another. Change in viewpoint or relative motion between the camera and object planes 

introduces distortion in the features of an image e.g. a circle may appear ellipse. However, 

certain features of object shape remain intact even after such transformations. These 

features are called invariants. The fundamental characteristic of any image registration 

technique is the type of spatial transformations or mapping used to properly overlay two 

images. The most common global transformations are rigid, similarity, affine, projective. 

4.3.1 Rigid Body Transformation 
 
This transformation will be in the form:  

 �� = �� + ��                                                       (4.16) 
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where � = �
���(�) −���(�)
���(�)    ���(�)

� �� ��� �������� ������,��� �� = [��,��]
� is 

translation vector. �� and � are the transformed and original 2D points, respectively. The 

Rigid transformation is invariant to lengths and angles. 

4.3.2 Similarity Transformation 
 
This transformation will be in the form:  

 �� = ��� + ��                                                       (4.17) 
 

Here s is a scaling factor. Similarity invariants are angles, ratios of lengths, and ratios of 

areas. 

4.3.3 Affine Transformation 
 

The most commonly used registration transformation is the affine transformation 

which is sufficient to match two images of a scene taken from the same viewing angle but 

from different position. It is composed of scaling, translation, and rotation. It is global 

transformation which is rigid. Affine transformations are more general than rigid. The 

general 2D affine transformation: 

�� = ��� + ��                                                       (4.18) 

where � = �
��  �
� ��

�is the scaling matrix. Angles and lengths are not preserved. Parallel 

lines remain parallel. 

4.3.4 Projective Transformation 
 

This is the most general geometric transformation. Here, two 2D points �� and � 

(represented in homogeneous coordinates), are related by a 3 × 3 non-singular 

transformation matrix: 



 

 
62  

�
��
�
� = � �

�
�
�                                                       (4.19) 

where        

� = �

��� ��� ���
��� ��� ���
��� ��� �

�                                                 (4.20) 

 
Projective invariants include the cross ratio of four collinear points, or four concurrent lines 
[44]. 
 

4.4 Optimization 
 

Given a similarity measure, �(I1, I2), and a family of geometric transformations, W, 

registration is merely an optimization problem: 

�∗ = ������
�∈�

�(��,�� ∘�)                                      (4.21) 
 

Some methods, e.g. Fourier based algorithms [45] that deal with simple transformation 

spaces (e.g. translation only) and simple alignment measures (e.g. SSD), can solve (4.21) 

directly. Most methods, on the other hand, do not enjoy a well-behaved, low dimensional 

objective function. Typically, registration algorithms attempt to solve the optimization 

using an iterative strategy. For a detailed survey, see [38]. With the family of global 

transformations, the goal is to search for the optimum set of transformation parameters 

values. Note that the similarity measure gradient (with respect to transformation 

parameters) is commonly used to speed up this search. Popular choices of optimizers are: 

gradient-descent and its variants [34], Powell’s method [37], Downhill simplex method 

and Levenberg Marquardt optimization [38]. 
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4.5 Experimental Results 

This section compares the accuracy and the execution time of the different 

similarity measures. A test set of 200 images is used with 512×512 pixels in the experiment 

(Google search). All images are converted to gray scale. All these images represent the 

reference images. The other set of images for registration (the floating images) is 

constructed by applying various degradations to the images from the test set. In this way, 

various changes in the image acquisition process are simulated (such as a change in the 

position of the light source or a change of the sensor type), assuming the same scene has 

been imaged [35]. By utilizing the same registration process and changing only the image 

similarity measure, the registration accuracy will reflect the accuracy of the image 

similarity measure. This experiment was independently repeated for image registration 

using translation and scaling transformation. We compare between seven different 

measures: SSD, NCC, EC, H, MI, NMI and IECC (See Section 4.2). 

For the translation, the similarity measure is calculated for a shift of ± 100 pixels, 

with a step of one pixel. For the scaling, the scaling factor is calculated for the interval 

[0.5,2], with a step size of 0.1. In all experiments the similarity measure is calculated in the 

overlapping image region only, i.e. the set Dx is defined as � ⋂�, and both translation and 

scaling are done in the y-axis direction only. The exhaustive search for the maximum, 

instead of implementing an optimization algorithm, is done to be sure that the global 

maximum and the correct alignment is achieved. 

The average registration error and standard deviation for the translation registration 

(in pixels) are show in Table 4.1. We can notice that the first row (average) reflects the 
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accuracy of the similarity measure, showing a larger bias for some similarity measures (e.g. 

NCC). The second row (standard deviation) reflects the image similarity measure precision, 

showing that IECC measure is much accurate and precise than others. 

For the scaling, the accurate registration is achieved for a scaling factor of one. In 

this case the registration error is measured as [35]: 

����� = ����(� + �)                                                 (4.22) 
 

where � is the absolute error from the accurate registration result. The logarithm is 

introduced to assure that the scaling error is symmetrical, i.e. it gives the same error for 

shrinking and stretching the image by the same factor. Also it gives no error if the images 

are scaled by the same factor. The average registration error and standard deviation for the 

scaling registration are show in Table 4.2. 

To evaluate the execution time of the similarity measures, the Matlab® 7 was used1. 

The average execution time from 200 function calls is used to compare the performance of 

the similarity measures. The results of the experiment are shown in Table 4.3, which 

presents the average execution time of the different image similarity measures. From the 

data we can notice that EC is faster than H, NMI and IECC, and almost as fast as NCC, but 

slower than SSD. 

Table 4.1. Average and SD of the translation registration error for various types of image similarity 
measures. 

 SSD NCC EC H MI NMI IECC 
Average 

Error 
(in pixel) 

7.22873 12.37281 2.98327 -3.81182 -1.16434 -0.99451 -0.74560 

Standard 
Deviation 

87.87301 68.37853 41.73810 42.67132 28.95493 27.37621 22.06574 

                                                 
1 All algorithms are run on a PC with a 2 GHz Core i7 Quad processor with 6GB RAM. 
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Table 4.2. Average and SD of the scaling registration error for various types of image similarity 
measures. 

 SSD NCC EC H MI NMI IECC 
Average 

Error 
0.40675 0.20147 0.13237 0.13242 0.10876 0.0999 0.0422 

Standard 
Deviation 

0.7327 0.7285 0.60362 0.42384 0.45317 0.43389 0.34563 

 

Table 4.3. Average excusion time (in miliseconds) for each similarity measure. 

 SSD NCC EC H MI NMI IECC 
Time 

(in msec) 
4.301 14.287 15.987 43.733 44.189 43.572 45.613 

 
 

These results indicate that: For the interventional applications, although EC 

framework is not the most accurate, it has the advantage of reducing the execution time by 

almost two third as compared to NMI and IECC. On the other hand, if the accuracy is 

sought, IECC outperforms the other systems with comparative execution time to NMI. 

4.6 Summary 
 

Image registration is one of the most important tasks when integrating and 

analyzing information from various sources. It is a key stage in image fusion, change 

detection, super-resolution imaging, and in building image information systems, among 

others. This chapter gives a survey of the classical and up-to-date registration methods, 

classifying them according to their nature as well as according to the three major 

registration steps. Although a lot of work has been done in this area, automatic image 

registration still remains an open problem. Registration of images with complex nonlinear 

and local distortions, multimodal registration, and registration of N-D images (where N > 

2) belong to the most challenging tasks at this moment. 
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PART II 
 

APPLICATIONS FOR MEDICAL IMAGE ANALYSIS 
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CHAPTER 5 
 

SHAPE BASED SEGMENTATION OF THE VERTEBRAL BODY  
 

Isolating an organ from its surrounding anatomical structures is a crucial step in many 

unsupervised frameworks. Examples of these frameworks are those that assess the organ 

functions and those that are proposed for automatic classification of normal organ and 

acute rejection transplants. In this work, we propose segmentation frameworks for spine 

bone, more specifically the Vertebral Body (VB). 

Segmentation can be defined as partitioning the image into the meaningful areas using 

the existing (low level) information in the image and prior (high level) information which 

can be obtained using a number of features of an object. The human vision system aims to 

extract and use as much as possible information in the image. This information includes 

the intensity, motion of the object (in sequential images), spatial relations (interaction) as 

the existing information, and the shape of the object which is learnt from the experience as 

the prior information. The machine visual system cannot predict the prior information 

unless it is supplemented. Hence, any prior cue can be specified beforehand to enhance the 

segmentation or to obtain the desired segmentation. If the prior information of the object 

is not given beforehand to the machine vision task, the segmentation method may not give 

desired results due to noise, occlusion, and missing information in the image. 

One of the bone diseases, which is characterized by a reduction in bone mass, is 

osteoporosis. This disease results in an increased risk of fractures. Bone Mineral Density 
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(BMD) measurements and Fracture Analysis (FA) of the VBs should be obtained to 

accurately diagnose the osteoporosis. To obtain these measurements and analysis, VBs 

should be correctly segmented, which is the main objective in this chapter. 

Since BMD measurements and fracture analysis are restricted to the vertebral bodies, 

segmentation approaches should successfully isolate VB from processes, which constitute 

spine bone as shown in Figure 5.1. However, due to region inhomogeneities existing in CT 

images, isolating a VB from its background is not an easy task as shown in Figure 5.2.  To 

overcome these inhomogeneities and accurately segment VBs, we use both shape and 

appearance information. 

The literature is rich with organ segmentation techniques. However, in this chapter, we 

will review and introduce only some of these techniques whose basics depend on shape 

modeling and whose application is VB segmentation. 

(a)                                                      (b) 
 

Figure 5.1. The region of interest in the experiment, (a) The anatomical structure of the spine, (b) 
The red color shows the VB region. Bone Mineral Density (BMD) measurements and Fracture 
Analysis (FA) are restricted to the VB. 
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5.1  Anatomy of the Spine Column and Osteoporosis 
 

There are five sections of the spinal column including the cervical (7 VBs), thoracic 

(12 VBs), lumbar (5 VBs), sacral (5 VBs), and coccyx (3-5 fused VBs) as shown in Figure 

5.3. The VB consists of cortical and trabecular regions. Cortical and trabecular bones form 

70-80% and 20-30% of bone mass, respectively. Approximately 25% of the trabecular 

bone volume is bone tissue and 75% is bone marrow and fat. This proportion changes 

between different parts of the skeleton. Bone marrow has stroma, myeloid tissue, fat cells, 

blood vessels, sinusoids and some lymphatic tissue. The ratio between bone tissue and bone 

marrow also decreases with osteoporosis [103]. 

Osteoporosis is a bone disease characterized by a reduction in bone mass, resulting in 

an increased risk of fractures [103]. Figures 5.4 and 5.5 shows some example views of  

 

      (e)                                         (f)                                      (g)                                     (h) 

Figure 5.2. Typical challenges for vertebrae segmentation: (a) Inner boundaries. (b) Bone 
degenerative disease. (c) Osteophytes. (d) Double boundary, (e) weak bone edges, (f) osteophytes, 
and (g-h) low resolution. 

(a)                                         (b)                                     (c)                                      (d) 
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healthy, osteopenia, and osteoporosis bones. With osteoporosis, a subject's bone tissue has 

less than the normal proportion amount of calcium. The additional space is filled with fat. 

The ratio between the bone tissue and bone marrow is decreasing [103]. Low bone mass 

and osteoporosis occur more frequently in women. The bone begins loosing its weight and 

calcium soon after menopause. Without diagnosis and prevention, a woman can lose 20%-

30% of her bone mass during the first 10 years of menopause [104]. 

 

Figure 5.3. The sagittal view of the spine column. There are five regions of the spine column: 

cervical, thoracic, lumbar, and sacrum. 

Cervical 
Curve 

Thoracic 
Curve 

Lumbar 
Curve 

Sacral 
Curve 
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Figure 5.4. Differences of the healthy and osteoporosis bone. (This image is adopted from [108]). 
  

 

Figure 5.5. Three different bone tissues. (a) Healthy, (b) osteopenia, and (c) osteoporosis bones. 

(These images are adopted from [104]). 

 

Based on the Surgeon General report [104], there were approximately 10 million people 

over age 50 with osteoporosis and an additional 34 million with low bone mass or 

osteopenia in the United States in 2002. Unfortunately, the total number is expected to be 

increased to 61.4 million in 2020 as in [104]. These changes could cause the number of 

vertebrae, hip, and wrist fractures to increase rapidly by 2040. It should be noted that 50% 

from all osteoporotic fractures are vertebral [105]. 
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Doctors need the BMD measurements of vertebral bones in order to diagnose and treat 

osteoporosis. The BMD measurements remain the ’gold standard’ test for an osteoporosis 

diagnosis. The BMD measurements are strong predictors of fracture risk. In the Surgeon 

General’s report, it is strongly stated that the relationship between the BMD score and 

future fracture is stronger than the relationship between cholesterol and heart attack [60]. 

The BMD measurements are also used to assess bone changes in treated and untreated 

individuals for monitoring drug therapies. 

The rest of this chapter is organized as follows: Section 5.2 discusses the background 

of methods and related work to our problem. Section 5.3 and 5.4 introduces the general 

framework of proposed approaches and the pre-processing step required for the framework, 

respectively. Section 5.5 and 5.6 explain in details the proposed 2D and 3D approaches for 

VB segmentation, respectively, and compares the results with other alternatives. 

Applications on bone mineral density (BMD) measurements of vertebral body are given at 

Section 5.7.  Finally, summary is drawn in Section 5.8 

 

5.2 A review on VB Segmentation Methods and Related Work 
 

As it has been discussed before, the vertebra consists of the VB, spinous (spinal) 

processes, pedicles, and other anatomical regions (see Figure 5.1). Spinous processes, 

pedicles, and ribs should not be included in the BMD measurements since the BMD 

measurements are restricted to the VBs. As shown in figures, the VB segmentation is not 

an easy task since the ribs and spinal processes have similar gray level information.  

The literature is rich with organ segmentation techniques. However, we will discuss 

only some of these techniques whose basics depend on shape modeling and whose 
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application is VB segmentation. To tackle the problem of segmenting spine bones, various 

approaches have been introduced. For instance, Klinder et al. [107] developed an 

automated model-based vertebra detection, identification and segmentation approach. 

Kang et al. [53] developed a 3D segmentation method for skeletal structures from CT 

images. Their method starts with a three dimensional region growing step using local 

adaptive thresholds. Then a closing of boundary discontinuities and an anatomically-

oriented boundary adjustment steps are done. They presented various anatomical bony 

structures as applications. They evaluated their segmentation accuracy using the European 

Spine Phantom (ESP) [54]. In order to measure bone mineral density, Mastmeyer et al. 

[55] presented a hierarchical segmentation approach for the lumbar spine. They reported 

that it takes less than 10min to analyze three vertebrae, which is a huge improvement 

compared to what is reported in [56]: 1-2 hours. However, this framework needs excessive 

user interaction to precisely locate seed points to facilitate region growing segmentation. 

This process is time consuming and impractical for unhealthy bone segmentation. To 

analyze the fracture of VBs, Roberts et al. [106] used the active appearance model. Other 

techniques have been developed to segment skeletal structures and can be found for 

instance in [108-110]. 

Actually, there are a huge number of segmentation techniques in the literature: simple 

techniques (e.g. region growing or thresholding), parametric deformable models and 

geometrical deformable models. However, all these methods tend to fail in the case of 

noise, gray level inhomogeneities, and diffused boundaries. Organs have well-constrained 

forms within a family of shapes. Therefore segmentation algorithms have to exploit the 
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prior knowledge of shapes and other properties of the structures to be segmented. Leventon 

et al. [111] combined the shape and deformable model by attracting the level set function 

to the likely shapes from a training set specified by principal component analysis (PCA). 

To make the shape guides the segmentation process, Chen et al. [112] defined an energy 

functional, which basically minimizes a Euclidean distance between a given point and its 

shape prior. Huang et al. [1], combined registration with segmentation in an energy 

minimization problem. The evolving curve is registered iteratively with a shape model 

using the level sets. They minimized a certain function to estimate the transformation 

parameters. 

For 2D segmentation of the VB in CT images, the group in CVIP lab proposed various 

methods to segment VBs in [123]-[62] which can be considered as progressive VB 

segmentation studies. In [123], the shape model was not used and it was assumed that the 

detection rate of VBs was very accurate for cropping the pedicles automatically. In [52], a 

probabilistic shape model was introduced in addition to the intensity and spatial interaction 

information to enhance the results. However, the shape model was assumed to be registered 

to the object of interest manually. In [58]-[62], the probabilistic shape model was 

automatically embedded into image domain and they appeared to be more realistic 

experiments. In [61], the Chen-Vese level sets method which needs manual initialization 

was used, and was validated on a limited number of data sets. In [58], the shape prior is 

extracted using PCA on signed distance functions (SDF) of all training images. Then the 

shape model was registered into the image domain using the gradient descent approach 

[59]. 
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5.3 The Proposed Framework 
 

Intensity models may not be enough to obtain the optimum segmentation. Hence, a 

shape based iterative segmentation method is proposed. Figure 5.6 summarizes the main 

components of the typical framework. This framework contains three phases. In the first 

phase, a statistical shape model of human VB is obtained. Shape information is gathered 

from a set of training shapes. 

 

Figure 5.6. A General block diagram of the proposed framework. 

 

To eliminate the user interaction and to improve the segmentation accuracy and 

minimize the execution time, the human spine area is extracted using the Matched filter 

(MF) and each vertebrae of the input CT images is automatically separated. This second 

phase is considered as a pre-processing step. 

In the third phase, a curve/disk as the initial evolving front on the VB image/volume is 

initialized. Then, an iterative process begins to segment the desired VB. This phase can be 

considered as the main core of the proposed framework.  
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In this chapter, two different segmentation approaches are introduced. Both of them 

are obeying the variational shape-based segmentation frameworks described in Figure 5.6. 

  

The first approaches deals with two dimensional (2D) case. This segmentation 

approach starts with obtaining the initial segmentation using the intensity/spatial 

interaction models. Then, shape model is registered to the image domain. Finally, the 

optimal segmentation is obtained using the optimization of an energy functional which 

integrating the shape model. The shape variations are modelled using two-dimensional 

principal component analysis (2D-PCA). The proposed method is tested on the synthetic 

and clinical images/shapes and it is shown to be robust under various noise levels and 

missing object information. The proposed shape based segmentation methods are less 

variant to the initialization. 

The second approach is a three dimensional (3D) simultaneous segmentation and 

registration approach. The information of the intensity are handled by embedding an edge-

mounted Willmore flow into the level set segmentation framework. Then the shape 

variations are estimated using a new distance probabilistic model which approximates the 

marginal densities of the vertebral body and its background in the variability region using 

a Poisson distribution. The experimental results show that the segmentation accuracy of 

this framework are much higher than other alternatives. This study reveals that the 

proposed method is robust under various noise levels and completely eliminates the user 

interaction. Applications on bone mineral density (BMD) measurements of vertebral body 

are given to illustrate the accuracy of the proposed segmentation approach. More details 

about these two system will be discussed in Section 5.5 and 5.6, respectively. 
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5.4 The Pre-processing Phase and Detection of ROI 
 

To roughly remove the spinal processes and ribs and to detect the region of interest 

(ROI), i.e. VB region, some simple procedures are adopted as a pre-processing step. This 

step is required to: i) remove the unwanted anatomical structures simplifying the 

segmentation process, ii) crop the ROI minimizing the execution time, and iii) separate the 

vertebra in the input CT images eliminating the user interaction. Details on these 

procedures will be discussed in the following subsections. 

5.4.1 Spine Cord Extraction 
 

As a pre-processing step, the spinal cord is extracted using the Matched filter (MF). This 

process helps to roughly remove the spinous processes and pedicles. Additionally, it 

eliminates the user interaction and improves the segmentation accuracy. Let �(�,�) and 

�(�,�) be template and test images, respectively. To compare the two images for various 

possible shifts �� and ��, one can compute the cross-correlation �(��,��)as  

 �(��,��)= ∫ ∫ �(�,�)�(� − ��,� − ��)����,                      (5.1) 

where the limits of integration are dependent on �(�,�). The (5.1) can also be written as  

����,��� = ����(�(��,��)�
∗(��,��)),                                      (5.2) 

where �(��,��) and ����,���are the 2D Fourier Transform (2DFT) of �(�,�) and 

�(�,�), respectively with �� and �� denoting the spatial frequencies. The test 

image �(�,�) is filtered by ����,��� = �∗���,��� to produce the output �(��,��). 

Hence, ����,��� is the correlation filter which is the complex conjugate of the 2DFT of 

the reference image �(�,�). Figure 5.7(a) shows the reference image used in the MF. Some  
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examples of the VB detection are shown in Figs. 5.7(b-d). The MF is tested using 3000 

clinical CT. The detection accuracy for the VB region is 97.6%. The detection accuracy is 

increased to around 100% by smoothing all detected points of a dataset in the z-axis. After 

detecting the VB region, the ROI is cropped  to minimize the execution time. Figures 5.8 

shows different examples of this stage in the sagittal view.  

5.4.2 Vertebrae Separation 
 

To separate the VBs, the previously developed approach based on four points 

automatically placed on cortical shell is used [113]. A demonstration of the separation 

process of a VB is shown in Figure 5.9. Because cortical bone has higher gray level 

Figure 5.7. (a) The template used for the Matched filter, (b-d) a few images of automatic VB 
detection. The green line shows the detection of VB region. 

(a)               (b)               (c) 
Figure 5.8. Examples for the extraction of the spinal cord on a data set (a) The detected VB 
region, (b) The refined data to extract the spinal processes and ribs. and (c) The cropped data to 
reduce the size of the image. 
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intensity than trabecular bone and surrounding tissue, the boundary of the VB can be easily 

obtained. After cortical bone is obtained; four seeds are automatically placed. These seeds 

are placed using the relatively higher gray level intensity values of the cortex region 

images.  

Next, the histogram for a neighborhood around each seed is obtained. The histogram 

represents the number of voxels whose intensity values are above 200 Hounsfield Unit 

(HU). This value is obtained empirically. Vertical boundaries of a VB show higher gray 

level intensity than inner region of the VB and disks. Figure 5.9(c) shows histograms (the 

red line), and thresholds (the black line). To search vertical limits of the VB, the following 

adaptive threshold equation is used as follows: 

�� = �(�)+ � ∗ [���(�)− �(�)],                            (5.3) 

where κ=0.3 which is derived from experiments by trial-and-error, where A represents each 

histogram vector with the red line, max(A) and μ(A) are the maximum and average values 

in the histogram vector. In this step, 40 patients which totals to 153 VBs are used. The 

(a)                            (b)                                     (c)                             (d) 
Figure5.9. The separation of the VB region. (a) 3D view of three adjacent VB, (b) automated 
placement of 4 seeds on cortical bone and disc,(c) The histograms (red lines) and the thresholds  
(black lines) calculation along each detected seed, (d) separation of VB shown with red color. 
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proposed method produced about 89.3% successful separation results. 

5.5 Two Dimensional Approach for VB Segmentation 

 
In this method and after the pre-processing phase, initial labeling (f*) is obtained using 

the graph cuts which integrates the intensity and spatial interaction models, as shown in 

Figure 5.10 . Finally, the initial labeled image and the shape priors are registered to obtain 

the optimum labeling, as in [59]. To obtain the shape priors (p), the 2D-PCA is used on all 

training images. Figure 5.11 summarizes the main components of this framework. The 

following sections give more details about the shape model construction and the 

segmentation method 

 

 

 

 

 

5.5.1 Shape model construction 

In this work, the shape representation using the SDF is described. The objective of 

this step is to obtain the most important information of training images using 2D-PCA. As 

opposed to conventional PCA, 2D-PCA is based on 2D matrix rather than 1D vector. This 

means that, the image does not need to be pre-transformed into a vector [65]. 

 

(a)                          (b)                             (c)                        (d)              
Figure 5.10. An example of the initial labeling. (a) Original CT image, (b) detection of the 
VB region using MF, (c) the initial labeling, f* and (d) the SDF of the initial segmentation 
(f*) which is used in the registration phase. Red color shows the zero level contour. 
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In addition, the image covariance matrix (G) can be directly constructed using the 

original image matrices. As a result, 2D-PCA has two important advantages over PCA. 

First, it is easier to evaluate G accurately since its size using 2D-PCA is much smaller. 

Second, less time is required to determine the corresponding eigenvectors [51]. 

2D-PCA projects an image matrix X, which is an m×n matrix onto a vector, b, 

which is an n×1 vector, by the linear transformation. 

� = ��.                                                             (5.4) 

Suppose that there are M training images, the ith training image is denoted by 

��,(i=1,2,…,M) and the average image of all training samples is denoted by �� =
�

�
∑ ��
�
��� . 

Then, let us define the image covariance matrix G [51]: 

 

Figure 5.11. The proposed 2D shape-based segmentation framework. 
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� =
�

�
∑ (��− ��)��
��� (��− ��).                                       (5.5) 

It is clear that, the matrix G is n×n nonnegative definite matrix. 

Similar to PCA, the goal of 2D-PCA is to find a projection axis that maximizes ����. The 

optimal K projection axes bk, where k =1,2,…,K, that maximize the above criterion are the 

eigenvectors of G corresponding to the largest K eigenvalues. For an image X, its 

reconstruction ��  defined below is used to approximate it. 

 

�� = �� + � ����
��

���
,                                            (5.6) 

Where �� = (� − ��)��  is called the kth principal component vector of the sample image 

X. The principal component vectors obtained are used to form an m×K matrix Y = 

[y1,y2,…,yK] and let B = [b1,b2,…,bK], then (5.6) can be rewritten as: 

�� = �� + ���.                                                    (5.7) 

However, one disadvantage of 2D-PCA (compared to PCA) is that more coefficients are 

needed to represent an image. From (5.7), it is clear that dimension of the 2D-PCA principal 

component matrix Y (m×K) is always much higher than PCA. To reduce the dimension of 

matrix Y, the conventional PCA is used for further dimensional reduction after 2D-PCA.  

Now, let the training set consists of M training images {I1,…, IM}; with SDFs 

{�1 ,…, �M}. All images are binary, pre-aligned, and normalized to the same resolution. 

As in [65], the mean level set function of the training shapes, �� ,  is obtained as the average 

of these M signed distance functions. To extract the shape variabilities, ��  is subtracted 

from each of the training SDFs. The obtained mean-offset functions can be represented as 
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{���,…,���}. These new functions are used to measure the variabilities of the training 

images.  A set of 80 training VB images with 120×120 pixels is used in the experiment. 

According to (5.2), the constructed matrix G will be: 

� =
�

�
∑ ���

�����
��� ���.                                                (5.8) 

The goal of 2D-PCA is to find the optimal K eigenvectors of G corresponding to the largest 

K eigenvalues. The value of “K” helps to capture the necessary shape variation with 

minimum information. Experimentally, we find that, the minimum suitable value is K=10 

[63]. Less than this value, the accuracy of the segmentation algorithm falls drastically 

below other alternatives. After choosing the eigenvectors corresponding to 10 largest 

eigenvalues, b1,b2,…,b10, the principal component matrix Yi (m=120×K=10)  was obtained 

for each SDF of the training set (i=1,2,…,80). For more dimensional reduction, the 

conventional PCA is applied on the principal components {���⃑ �,…, ���⃑ �}. It should be noted 

that, ���⃑  is the vector representation of Y. The reconstructed components (after 

retransforming to matrix representation) will be: 

��{�,�} = ��{�,�},                                                    (5.9) 

Where U is the matrix which contains L eigenvectors corresponding to L largest 

eigenvalues l, (l =1,2,...,L), and �{�,�} is the set of model parameters which can be 

described as[63]: 

�{�,�} = ����,                                                            (5.10) 

where l ={1,…,L}, h={-µ,…,µ}, and µ is a constant which can be chosen arbitrarily (in the 

experiments, we chose L= 4,µ=3).The new principal components of training SDFs are 



 

 
84  

represented as {���,…, ���} instead of {��,…, ��} where N is the multiplication of L and 

standard deviation in eigenvalues (the number of elements in h), i.e. N =L( 2µ+1) [65]. 

Given the set {���,…, ���},the new projected training SDFs are obtained as follows: 

��� = �� + ����
�,       n=1, 2,…, N.                             (5.11) 

Finally, the shape model is required to capture the variations in the training set. This model 

is considered to be a weighted sum of the projected SDFs (5.8) as follows: 

�� = ∑�
��� �����  .                                           (5.12) 

Let � = [��,…,��]
� to be the weighting coefficient vector. By varying these weights, 

�� can cover all values of the training distance functions and, hence, the shape model 

changes according to all of the given images [63].  

5.5.2 Segmentation method 

To estimate the initial labeling f*, the graph cuts which integrates the linear 

combination of Gaussian (LCG) and Markov-Gibbs random field (MGRF) model is used 

[61]. An example of the initial labeling is shown in Figure 5.10c. To segment vertebrae, 

the volume was initially labeled based on its gray level probabilistic model. Then a 

weighted undirected graph with vertices corresponding to the set of volume voxels �, and 

a set of edges connecting these vertices is created [57]. Each edge is assigned a nonnegative 

weight. The graph also contains two special terminal vertices � (source) “vertebrae”, and � 

(sink) “background”. Consider a neighborhood system in �, which is represented by a set 

�of all unordered pairs {p,q} of neighboring voxels in �. Let � the set of labels {“0”, 

“1”}, correspond to the vertebrae and background regions respectively. Labeling is a 
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mapping from � to  , and denote the set of labeling by � = {��,…,��,…,�|�|}. In other 

words, the label fp, which is assigned to the voxel � ∈ �, segments it to vertebrae or 

background region. Now the goal is to find the initial segmentation, f*, by minimizing the 

following energy function [61]:  

�(�∗)= ∑�∈� ������ + ∑{�,�}∈� ����,���.                          (5.13) 

D(fp) measures how much assigning a label fp to voxel p disagrees with the voxel intensity, 

Ip, and V(fp, fq) is the pairwise interaction model which represents the penalty for the 

discontinuity between voxels p and q. For more information see [57]. Initially segmented 

region is used to obtain the SDF (Φf*) which is required in the next step; see Figure 5.2d. 

To use the shape prior in the segmentation process, we need to register f* and the 

shape prior p. The objective of the shape registration problem is to find the point-wise 

transformation between any two given shapes α and β minimizing a certain energy function 

based on some dissimilarity measure.  

In this chapter, the similar notation scheme in [65] is used. Let us define the result 

by β that is obtained by applying a transformation A (with scale, rotation, and translation 

parameters) to a given contour/surface α (It is clear that β and α correspond to f* and p). 

The shape representation used in this work changes the problem from the 2D/3D shape to 

the higher dimensional representation. Hence, we will look for a transformation A that 

gives pixel-wise correspondences between the two shape representations Φα and Φβ. For 

the 2D case, we assume that the transformation has scaling components, � = �
�� �
� ��

�, 

rotation angles � = �
��� (�) −��� (�)

��� (�) ��� (�)
� , and translations represented as �� =
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[�� ��]�. As discussed in Chapter 3, the transformation will be in the form A(x) = 

SRx+Tr. After scaling the components of the Φf* by A, the dissimilarity measure will be:  

r = ∥� ∥�� − ��∗(�)                                                 (5.11) 

(See section 3.3.1) and the squared magnitude of the above measure is summed over the 

image domain Ω to get an optimization energy function:   

����,��∗� = ∫
�
�����,��∗��

���� ,                         (5.12) 

where δε is an indicator function defined as:  

��(��,��∗)= �
�  ����� (|��|,|��∗|)> �

�  ����� (|��|,|��∗|)≤ �
      ,                (5.13) 

Due to δε, all pixels of a distance (measured from the nearest point on the boundary) greater 

than ε are not considered in the energy optimization problem which reduces the 

computational time of the problem (Narrow-banding effect). 

As discussed in chapter 3, after applying the gradient descent method, it is clear that [59]:  

�

��
��= ��

�

��(��,��∗)�
�[���||�||�� − ���∗

� ����]��, 

�

��
��= ��

�

�����,��∗��
�����

��������, 

�

��
��= �∫

�
�����,��∗��

�[���∗
� ]�� ,                          (5.14) 

                    

where   ��∈ {��,��},      ��∈ ���,���   and ��∈ {��,��}  of the transformation A. 

Regarding to the weighting coefficients ��’s (in 5.9) , and similar to [59], the energy 

function is a quadratic function of this weights, which leads to a closed-form when the 

derivatives with respect to the weights are zeros:   
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�� = �,                                                      (5.15)  

where Λ is a column vector of size N and Ψ is and N×N matrix. Their elements are 

calculated as follows [65]:  

��= ∫
�
��(��,��∗)[���∗ − ��(�)]�[���(�)− ��(�)]��,             (5.16) 

���= ∫
�
��(��,��∗))[���(�)− ��(�)]�����(�)− ��(�)���,         (5.17)                               

 ∀(i,j) ∈ [1,N]×[1,N]. Using unique training shapes (with variabilities not identical) 

guarantees that Ψ is a positive definite matrix avoiding singularity. 

5.5.3 Experimental Results 
 

The proposed framework is applied on clinical CT spine bone images. The clinical 

datasets were scanned at 120kV and 3.0mm, 2.5mm, 1.33mm, or 0.67mm slice thickness. 

The algorithm was tested on 500 CT slices/25 VBs which are obtained from 15 different 

patients. The goal is to segment the VB region correctly. The segmentation accuracy and 

robustness of the framework are tested on the phantom named as the European Spine 

Phantom (ESP) as well as the clinical datasets. All algorithms are implemented using 

Matlab® 72. 

To assess the proposed method under various challenges, a zero mean Gaussian noise 

with different signal-to-noise ratios (SNR) - from 0 dB to 100 dB – was added to the CT 

images. The segmentation accuracy is measured for each method using the ground truths. 

It should be noted that the ground truths are validated by a radiologist. The percentage 

segmentation accuracy (Acc) is calculated as follows:   

                                                 
2 All algorithms are run on a PC with a 2 GHz Core i7 Quad processor with 6GB RAM. 
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���% = ��� ∗ (� −
�����

��� ����� ������ �� ����� ������
) ,                   (5.18) 

where FP represents the false positive (i.e. the total number of the misclassified pixels of 

the background), and FN is the false negative (i.e. the total number of the misclassified 

pixels of the object). 

 A variety of methods was adopted to measure the accuracy of this framework. First, the 

visual inspection was used to evaluate the segmentation quality of the approach. Figure 

5.12 compares the results of different examples for the initial segmentation step using the 

scalar level set model [64] and the graph cut method [61] which is used in the proposed 

framework. As shown in this figure, the scalar level sets method fails to segment the whole 

vertebra in many cases. However, the graph cut approach can segment them well. 

Additionally, the boundaries detected by scalar level sets are not smooth, and some obvious 

boundaries are not detected. The graph cut method segments the image accurately. Figure 

5.13 shows various segmentation results of three different methods applied on some 

clinical datasets. These methods are: i) The graph cut segmentation (identical to initial 

labeling in this algorithm), ii) The PCA based segmentation described in [58], and iii) The 

2D-PCA based tensor level segmentation. The segmentation accuracies of the 2D-PCA 

based results shown in row (iii) are: 96.8%, 92.6%, 91.2% and 93.6% respectively. For 

PCA based results in row (ii), the segmentation accuracies are: 89.3%, 87.4%, 85.6%, and 

84.5% respectively.  It is clear that this method is more accurate than the method in [58]. 

Figure 5.14 shows the segmentation results of the ESP using (i) graph cut method and (ii) 

the segmentation algorithm (graph cut + shape prior) under different noise level.  With the 

proposed approach, much better results are obtained compared to the graph cut only. Figure 
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5.15 studies the effect of the initialization on the proposed framework. Results indicate that 

the performance of this method is almost constant with different initialization parameters.  

To quantitatively demonstrate the accuracy of the approach, the average segmentation 

accuracy of the segmentation method on 500 CT images under various signal-to-noise 

ratios is calculated and the results are compared with the PCA based segmentation method 

in [58]. Again, as mentioned before, the 2D-PCA based framework outperforms the 

conventional PCA described in [58] as shown in Figure 5.16a. Additionally, Figure 5.16b 

studies the effect of choosing the number of the projected training shapes N (see section 

5.5.1) on the segmentation accuracy. From this figure, it can be concluded that the 

performance of 2D-PCA is better than the conventional PCA under the same number of 

training shapes. In another word, to get the same accuracy of PCA framework, the 2D-PCA 

needs fewer training shapes. 

 

As a summary for this approach, a new shape based segmentation of VBs is 

proposed in clinical CT images using 2D-PCA. Validity was analyzed using ground truths 

of clinical datasets as well as the European Spine Phantom (ESP). The experimental results 

show that the noise immunity and the segmentation accuracy of 2D-PCA based approach 

are much higher than conventional PCA approach. On the other hand, the proposed system 

is fully automatic where it does not need any user interaction. 
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(a)                      (b)                           (c) 

Figure 5.12. Comparison between the intensity based segmentation (initial labeling) using: (b) 
Scalar level sets model [64], and (c) graph cut method [61]. 
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Figure5.13. Segmentation results of three different methods: (i) using graph cuts only, (ii) Method 
described in [58], and (iii) the 2D-PCA based segmentation. 
 
 

 

Figure5.14. Segmentation results of the ESP under different noise levels (i) using graph cut only. 
(ii) The algorithm (graph cut + shape prior). The red and yellow colors show the contour of the 
gold standards and segmented regions. 

(i) 

 

  

(ii) 
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(iii) 

 

(i) 

 

 
(ii) 

 

 



 

 
92  

 

 

Figure5.15. Segmentation results with various shape initialization. (i) the initial shape prior, and 
(ii) is the final results. The red and yellow colors show the contour of the gold standards and 
segmented regions. 
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(b) 
Figure 5.16. (a) The average segmentation accuracy of different segmentation methods on 500 CT 
images under various signal-to-noise ratios.(b) The effect of choosing the number of the projected 
training shapes N on the segmentation accuracy. 

 
 

5.6 Three Dimensional Approach for VB Segmentation 
 

In this approach, a 3D shape based iterative segmentation and registration method 

is introduced. Figure 5.17 summarizes the main components of the proposed framework. 

This framework contains two phases. In the first phase, a probabilistic shape model is 

obtained as previously presented in [61]. Shape information is gathered from a set of 

training shapes. Then the shape variations are estimated using a new distance probabilistic 

model which approximates the marginal densities of the vertebral body and its background 

in the variability region. In the second phase, we initialize a disk as the initial evolving 

front on the VB volume. Then, an iterative process which simultaneously does the 

segmentation and registration begins. 
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As discussed before, the ROI of the input CT images is detected and cropped using the MF. 

The benefits of the preprocessing step are twofold: 1) it eliminates the user interaction; 2) 

it improves the segmentation accuracy and minimizes the execution time.  

In the segmentation step, an improved level sets approach is used based on the edge-

mounted Willmore flow (adopted in [120]) in which a probabilistic shape model is 

integrated. To make the shape prior to be invariant to the transformation, we register it to 

the evolving front at each iteration. The overall segmentation framework is given in 

Algorithm 1. The following sections give more details about the shape model construction 

and the proposed method. 

5.6.1 Training and Shape Modeling 
 

A 3D shape of vertebral body is created from a subset of VB data sets. These VBs are 

selected from 10 healthy and 10 with low bone mass patients. This is done as follows: 30 

Figure 5.17. Block diagram of the proposed simultaneous segmentation and registration method 
for human vertebral bodies (VB) extraction from CT images. This framework contains two main 
components; the training phase and the segmentation phase. A pre-processing step is used to 
eliminate the user interaction and reduce the execution time.  
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VBs' volumes, where each VB consists of 8 CT slices, are manually segmented by a 

medical expert. Then the segmented binary images are aligned together using the 2D 

registration described in [56]. Finally, a “shape volume" �� = �⋃ �⋃ � is generated, 

which its slices are shown in Fig 5.18. Three regions in this shape model: white color 

represents the object region � (VB), black represents � (its background), and gray is the 

variability region �. Fig. 5.19(a) illustrates a 3D view of the VB and its variability region. 

To model variability region �, we use a distance probabilistic model to capture the 3D 

shape variations [61]. The distance probabilistic model describes the VB (and background) 

in the variability region as a function of the following normal distance.  

�� = ���
�∈���

∥� − � ∥ ,                                           (5.19) 

from a voxel � ∈ � to the organ/variability surface ���. Each set of voxels located at equal 

distance �� from ��� constitutes an iso-surface ��� for ��� as shown in Figure 5.19(b). 

To estimate the marginal density of the vertebral body, it is assumed that each iso-surface 

��� is a normally propagated wave from ���. The probability of an iso-surface to be object 

decays exponentially as the discrete index �� increases. So we model the distance 

histogram by a Poisson distribution. We estimate the vertebral body’s distance histogram 

as follows. The histogram entity at distance �� is defined as  

��� = ∑�
��� ∑

�
��� ∑�∈���

�(� ∈ ���),                       (5.20) 

(where the indicator function δ(A) equals 1 when the condition A is true, and zero 

otherwise, M (=30) is the number of training data sets, K (=8) is the number of CT slices 

of each data set, and ���is the vertebral body region in the training set i and in the slice j.  
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We change the distance �� until we cover the whole distance domain available in the 

variability region. Then we multiply the histogram with vertebral body prior value, which 

is defined as follows:  

�� =
�

��|�|
∑�
��� ∑

�
��� ∑�∈� �(� ∈ ���).                               (5.21) 

Finally, we calculate the distance marginal density of the object region as: 

������ = ��� �� �� ������ .                                   (5.22) 

The same scenario is repeated to obtain the marginal density of the background. An 

example of the distance marginal densities of the object and background region is shown 

in Figure 5.19(c). 

Figure 5.18. Constructing the shape prior volume. {VB1,⋯,VBM} training CT slices of different 
data sets. (M represents the number of training data sets). Last column shows the shape prior 
slices with variability region. 

 

Figure 5.19 (a) A 3D view of the 3D shape prior. (b) Different 3D views for the iso-surfaces 
���,� ∈ �. Green color represents the object region �, yellow color is the variability region � , 

gray waves represent the the iso-surfaces ���, and red contour is the object/variability surface 

���. (c) The probability of the object and background in the variability region. 

��� 
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5.6.2 Simultaneous Segmentation and Registration 
 

The level set method has been widely used for medical image segmentation. It achieved 

good results when coupled with prior shape models [55]. The level set segmentation 

framework contains a moving front, denoted by �, which is implicitly represented by the 

zero level of a higher dimensional function, �, that is: �(�)= {�/�(�,�)= �}. The 

equation that governs the evolution of the level set function �  is ∂�/∂t + F|∇ �| = 0, where 

F represents the speed function. In more recent applications, the variational framework is 

often considered. Under the variational framework, an energy �(�) is defined in relation 

to the speed function, and minimization of the energy generates the Euler–Lagrange 

equation and, hence, providing the evolution equation through the gradient descent as: 

��

��
= −

��(�)

��
                                                (5.23) 

In this work, the energy function of the segmentation can be formulated as  

�(�)= ����������(�)+ �������(�),                          (5.24) 

where α is a constant which controls how much we depend on the probabilistic shape prior. 

The first energy term is based on the intensity of the testing volume. The second term is 

based on the shape prior after registering it to the evolving front to be invariant to the 

transformation parameters. More details about ����������  and ������ will be described in 

the following sections. 

5.6.2.1 Intensity information 

 

Willmore energy is a function of mean curvature, which is a quantitative measure of how 

much a given surface deviates from a round sphere. It has been applied to image inpainting, 



 

 
98  

restoration of implicit surfaces [116], [118], and to studies of the bending energy of 

biological cell membranes as these cell membranes tend to position themselves to minimize 

Willmore energy [119]. Willmore flow is the gradient flow of Willmore energy. Willmore 

flow of a surface is the evolution of the surface in time to follow variations of the Willmore 

energy. Willmore energy was defined after the British Geometer T. Willmore [119] and is 

formulated as 

�� =
�

�
 ∫ ����
�

 ,                                                    (5.25) 

where � is a d-dimensional surface embedded in  ℝd+1 and h the mean curvature on �. 

In this method, we integrate Willmore flow into the level set segmentation framework as 

a geometric functional. Willmore energy is defined on the collection of level sets, and 

Willmore flow is enabled by defining a suitable metric, the Frobenius norm, on the space 

of the level sets. The Frobenius norm of an arbitrary matrix A = (aij)k×z , which is defined 

as ‖�‖� = (∑ ∑ �����
��

���
�
��� )�/�, coincides with the calculation for the gradient descent. It 

is equivalent to the l2-norm (the Euclidean norm) of a matrix, More importantly, it is 

computationally attainable comparing to l2-norm. As Frobenius norm is an inner-product 

norm, the optimization in the variational method comes naturally. Based on the formulation 

by Droske and Rumpf [120], Willmore flow or the variational form for the Willmore 

energy with respect to � is  

���

��
= −|��|�∆�� + � �‖�‖� −

�

�
����,                                  (5.26) 
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where ∆�� = ∆� − �
��

��
−

���

���
 is the Laplacian Beltrami operator on h with n = 

��

|��|
, S = (I 

− n⊗ n)(∇×∇)� is the shape operator on �, and ‖�‖ is the Frobenius norm of S. 

In order to ensure that the smoothing effect of Willmore energy acts around the 

constructed surface and does not affect adversely the edge of vertebrae, we  multiply the 

edge indicator function �(�)=
�

��|��∗�|�
 (where �� is a Gaussian function with �� 

variance) to the level set evolution[20]: 

�����������

��
= −�(�)|��|�∆�� + �{‖�‖� −

�

�
��}�.                               (5.27) 

5.6.2.2 Embedding shape prior information 

In this work, our contribution is to propose a new probabilistic energy function in the 

level set method using previously presented shape model [61]. To register the shape model 

to the evolving front, we use the similar approach presented in [56]. Each voxel in the shape 

prior has two probabilities for being i) an object and ii) a non-object. The shape prior is 

embedded in the level sets function in order to obtain more accurate segmentation results 

and extract the spinal processes automatically. The shape model is registered into the 

volume domain � by maximizing the probability of voxels inside the front belonging to 

the object space and the voxels outside the front belonging to the non-object space. This 

approach leads to the following energy function: 

������(�)= �
�

�� − ������� + �������(�)�� 

+ ∫
�
�� − ������� + ���� �� − ���(�)���,      (5.28) 

 
 

 

where ϕ represents the signed distance function of the evolving front, Hs is the Heaviside 

step function, and the translation and scaling parameters can be estimated as: 
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�� =
∫�����(�)��

∫����(�)��
 ,                                               (5.29)  

��
� =

∫�(����)
����(�)��)

∫����(�)��
 .                                          (5.30) 

After applying the gradient descent method, the gradient of this energy terms will be: 

�������

��
= �(�)[��(���� + ��)− ��(���� + ��)].                 (5.31) 

Finally, the change of the level set function with time using the two energy function will 

be: 

      
��

��
= −

�����������

��
− �

�������

��
 

                         = �(�)|��|�∆�� + �{‖�‖� −
�

�
��}�  − ��(�)�������� + ��� −

                                                                                                         ������� + ���� .            

(5.32) 

5.6.3 Experimental Results 
 

In this work, the training and testing images were acquired from GE LightSpeed VCT, 

Toshiba Aquilion, and Imatron C-150 CT scanners with the resolution range of 0.63 − 0.98 

mm and a slice thickness of 0.63 − 3.00 mm. For the testing stage, 40 data sets, 18 female 

and 22 male, and a phantom named as the European Spine Phantom (ESP) are examined 

in this study. The number of visible VBs for each scan changes from 2−7 with 16 − 140 

axial slices of 512x512 voxels. Totally, the proposed framework is tested on 153 of human 

lumbar and thoracic VBs. The ground truths are obtained by manual segmentation using a 

commercial 3D image segmentation software and are verified by three radiologists.  
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To evaluate the results we calculate the percentage segmentation accuracy from the ground 

truth using the Dice’s coefficient (DC) [112] and the Hausdorff distance (HD) [1]. The DC 

measures the concordance between two enclosed volumes as follows 

�� % = ���
� ��

���������
 ,                                         (5.33) 

where FP represents the number of false positive (i.e. the total number of the misclassified 

voxels of the background), FN is the number of false negative (i.e. the total number of the 

misclassified voxels of the object), and TP is the true positive (i.e. total number of the 

correctly classified pixels), as shown in Figure5.20(a). 

    On the other hand, The HD is defined as: 

��(�,�)= ��� {����∈� ����∈��(�,�),����∈� ����∈��(�,�)}           (5.34) 

where X and Y are the boundaries of two different volumes. It measures how far two subsets 

of a metric space are from each other, as shown in Figure5.20(b). A high DC and a low HD 

are desirable for good segmentation.  

To compare the proposed method (A1) with other alternatives, VBs are subsequently 

segmented using: (A2) the graph cuts with shape constrained (The approach described in 

section 5.5), (A3) the active appearance model (AAM) methods [18], (A4) Chan–Vese 

models combined with same prior shape energies (CVIP work described in [61]), and (A5) 

the level set method implemented around a narrow band without re-initialization [50]. All 

algorithms are run on a PC with 2.6GHz Core i7 Quad processor, and 8GB RAM. 

Algorithms are implemented using MATLAB®. 
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5.6.3.1 Results on Clinical CT Images  

The proposed algorithm is tested on 40 patients’ data sets containing 153 VBs. We 

compare the segmentation results of our method with the four algorithms described before, 

i.e. A2 , A3 [18], A4 [61], and A5 [50]. There is a crucial point which we need to clarify 

carefully. The alternative methods are tested after the preprocessing steps (spinal cord 

extraction and VB separation) give their output. Hence, we do not take advantage of the 

preprocessing steps for only the proposed segmentation process.  

Table 5.1 summarizes the average segmentation accuracy (the Dice’s coefficient (DC) 

and the Hausdorff distance (HD) in mm), as well as the average execution time (in sec) for 

each method. The proposed method reaches 92.12% overall DC. It outperforms all other 

alternative. For more meaningful comparison using HD, Figure5.20(c) represents the 

average geometrical dimensions of the human vertebrae as described in [105]. As can be 

seen, the framework leads to superior results over other methods. It reaches 9.11 mm 

overall HD which reflects how accurate the proposed segmentation approach is.  The 

experimental results in Table 5.1 show that the performance of this algorithm is superior 

                          (a)                                                    (b)           (c)                             
Figure 5.20. (a) In the segmentation quality measurements, there are 4 regions to be considered as: 
True positive (TP), false positive (FP), true negative (TN), and false negative (FN). (b) The 
calculation of the HD between the red line X and the blue line Y. (c) Average geometrical 
dimensions of the lumbar vertebrae, all measurements in millimeters (mm). 
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in terms of accuracy over others algorithms. This improvement in accuracy leads to more 

execution time. There is a tradeoff between the segmentation accuracy and execution time. 

We believe that the improvement of segmentation accuracy is more important to obtain 

better BMD measurements. 

Figure 5.21 illustrates the 2D projection in the axial view of the 3D level set evolution 

and segmentation of three different vertebra samples using the proposed method. We 

initialize a disk as the initial evolving surface on the VB volume. Then, an iterative process 

which simultaneously does the segmentation and registration begins. The resultant 3D 

volume of the VBs are shown in Fig. 5.21 (d). Figure 5.22 demonstrates the 2D projections 

of final 3D segmentation results in sagittal, coronal and axial view for different examples 

of the clinical data sets. These data sets have the lumbar and thoracic sections. Note that 

the unnecessary regions such as ribs and processes are eliminated as much as possible. 

For more illustration, samples of 3D segmentation results of a clinical data set for all 

tested methods are shown in Figure 5.23 In this figure, the red color represents the 

misclassified voxels. The proposed approach is successful in extracting the VB region. 

Other alternative methods have lower segmentation accuracy which may change the BMD 

measurements. 

5.6.3.2 Validation Using the Phantom 

To evaluate this algorithm, we segment the European Spine Phantom (ESP), which is an 

accepted standard for quality control in bone densitometry [54]. The ESP dataset was 

scanned at 120kVp and 0.75mm slice thickness. To assess the proposed method under 

various challenges, a Gaussian noise with zero mean and different variance σ2
n values 
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(from 0, 0.125, 0.25 and 0.5) is added to the CT images. 

Figure 5.24 shows that the approach accurately segments the VB without its processes 

and compares it with other 3 alternative methods (A2, A4 and A5 respectively). The red 

color represents the misclassified voxels. It is clear that this algorithm outperforms other 

methods with average DC of 93.73±1.86%. To evaluate the robustness of the proposed 

approach against noise, we calculate the average DC of this segmentation method on ESP 

dataset under various noise level and compare the results with A2, A3, A4 and A5. Again, 

the proposed framework outperforms the other alternatives as shown in Figure 5.25. 

Table 5.1. Average DC (%) and HD (mm) with standard deviation for segmentations of the 
clinical datasets using different methods. the average execution time of each method is 

summarized in the last row. 
 

Method A1 
PROPOSED 

A2 
GC+ SHAPE 

A3 
AAM 

A4 
CV+ SHAPE  

A5 
LS  

DC (%) 92.12±2.03 84.72±3.32 81.97±7.05 83.15±4.67 50.87±8.53 

HD (mm) 9.11±1.51 13.47±1.06 15.03±2.37 14.61±1.62 24.67±3.42 

Avg. Time(sec) 131.3 58.9 74.5 102.4 98.7 

 

 

Table 5.2. Average Relative Errors in BMD Measurement using different segmentation 
methods 

 

 A1 A2 A3 A4 A5 

Max (%, mg/cc) 5.92 9.92 23.6 17.6 28.4 

Min (%, mg/cc) 0.03 0.09 1.89 1.83 2.35 

Mean(%, mg/cc) 3.34 5.93 9.2 8.96 15.6 
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(a)                        (b)                         (c)     (d)       

Figure 5.21. 2D Axial projections of various stages of level set evolution for three different 
vertebrae using proposed method A1, (a) initial disk, (b) intermediate stage, (c) the final stage, 
and (d) the resultant 3D vertebral body. 

 

Figure 5.22. 2D projections of the 3D Segmentation method in (a) Sagittal, (b) Coronal, and (c) 
Axial views for different examples from the clinical data sets. (The red and yellow colors show 
the contour of the ground truths and segmented regions, respectively). 

                     
  (c)                         
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Figure 5.24. 3D segmentation results of ESP using the four different methods: (a) the result 
proposed method A1, (b) the result of Graph cuts with shape prior A2, (c) the result of Chen-Vese 
with shape prior A4, and (d) the result of level set method A5. The red color represents the 
misclassified voxels. 

 
 
 
 
 
 
 

Figure 5.23.  An example for the 3D segmentation of clinical data sets overlaid with ground truth 
(yellow) using different methods: (a) Proposed, A1, (b) Graph cuts with shape prior, A2, (c) AAM, 
A3, (d) Chen-Vese with shape prior, A4, and (e) The results of level sets, A5. The red color 
represents the misclassified voxels. 
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5.7 Bone Mineral Density Measurements 

 

After segmentation, the ultimate goal of this work is to successfully obtain the BMD 

measurements with high trueness and precision in volumetric CT datasets. This is a crucial 

step for doctors and clinical experts who need to diagnose the low bone mass in a human 

body. In the experiments, we use the 53 volumetric VBs from thoracic and lumbar spine. 

Since spinal BMD measurements are limited to the VBs, the spine processes, which are 

successfully removed using the 3D shape prior, should not be included. We obtain the 

BMD measurements for each tested method to be compared with reference BMD 

measurement. Figure 5.26 represents the box-plot of the relative errors in BMD 

Figure5.25. The average segmentation accuracy (DC) of different segmentation methods on ESP 
dataset under various noise level. The results show that the proposed method is robust under 
various noise levels.   
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measurements for each method (A1-A5) over the 53 VBs. Table 5.2 shows the average 

BMD relative error is 3.34 % for the proposed method, which reflects how accurate the 

proposed segmentation approach is. 

5.8 Summary 
 

In this chapter, two new approaches for shape based segmentation of VBs were 

proposed in clinical CT images. The first approach is used foe 2D segmentation case. It 

depends on 2D-PCA for shape modeling and conventional level sets methods for 

segmentation step. The experimental results show that the noise immunity and the 

segmentation accuracy of 2D-PCA based approach are much higher than conventional 

Figure5.26. Relative errors of BMD measurement of each method. The BMD measurement of 
the method (A1) has the lowest error and standard deviation.   
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PCA approach. Validity was analyzed using ground truths of clinical datasets as well as 

the European Spine Phantom (ESP). 

On the other hand, a 3D simultaneous segmentation and registration approach was 

presented. This second approach incorporates both shape information and Willmore flow 

into the level set segmentation. To get the optimal segmentation, a new energy function 

using the appearance models and shape constraints was formulated and iteratively 

minimized using gradient descent. Experimental results confirm the degree of accuracy and 

robustness of the proposed framework. It has achieved 92.12% overall DC which is much 

higher than existing methods. Moreover, from the application point of view, the proposed 

shape based segmentation approach is helpful to eliminate the spinal processes which are 

not required for BMD analysis and FA. This leads to more accurate BMD measurements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
110  

CHAPTER 6 
 

2D-3D REGISTRATION OF HUMAN ANKLE USING X-RAY AND CT 
IMAGES 

 

The registration of pre-operative 3D volumetric images to intra-operative 2D images 

provides an important way for relating the patient position and medical instrument location. 

In applications from orthopedics [67] to neurosurgery [66], it has a great value in 

maintaining up-to-date information about changes due to surgical intervention. The widely 

used 3D image modalities such as Magnetic Resonance Imaging (MRI), Computed 

Tomography (CT) and Positron Emission Tomography (PET) contain high resolution 

information about the imaged part of the human body. All these modalities can be greatly 

used for pre-operative procedure planning or evaluating an intervention post-operatively. 

However, the main drawback of these images is not completely reflecting the surgical 

situation, since they are static. In some applications it is important to use intra-operative 

images to follow the changes caused by the procedure or to visualize the location of a tool. 

In the operating room (OR), 2D images are more suitable for recording details about the 

current state. X-ray images are good examples of image modalities used for this purpose. 

Unfortunately, 2D images lack significant information that is present in the 3D modalities. 

So that, in order to relate between the OR 2D images and the detailed 3D model, experts 

need to mentally combine the information from the pre-operative and intra-operative 

images which is a very tough task. Therefore, it is useful to find a way to automate that 

procedure and making it reliable. The fusion of pre-operative and intra-operative images  
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Figure 6.1. Anatomy of the human foot. 

 

will be meaningful if the components are properly aligned in space.  To achieve this it is 

necessary to determine their relative position and orientation. The procedure that identifies 

a geometrical transformation that aligns two datasets is called registration. There are 

several approaches that can perform this task. Unfortunately, all of these techniques work 

on images of the same dimensionality, i.e. inputs are either 2D or 3D. But in this case, we 

need to align images with different dimensionality and combine the information from high-

resolution pre-operative datasets with the updated intra-procedural images. Additionally, 

as the registration results are expected during the medical procedure, the computation time 

would also be constrained. 

In this chapter, a simple framework for 2D-3D registration of human ankle using 

X-Ray and CT Images is introduced. Our system consists of three main steps: 1) Projection 

of the pre-operative 3D volume to generate a synthetic 2D image, 2) Similarity 

measurement to quantify the quality of the alignment between the generated image and the 

reference (intra-operative) image, and 3) Optimization process to modify and refine current 

    Tibia                          Fibula                     Talus                  Calcaneus 
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estimates of the problem parameters in a way that the similarity score is maximized. The 

rest of this chapter is organized as follows: Section 6.1 is related to the anatomy of the 

human foot and ankle bones. Section 6.2 talks about the long-term application of our work. 

Section 6.3 discusses the background of methods used in the experiment. Section 6.4 

explains the experiments, and evaluates the accuracy of the results. Finally, summary is 

drawn in Section 6.5 

6.1 Anatomy of the Foot and Ankle 
 

The foot and ankle in the human body work together to provide balance, stability, 

movement, and Propulsion. This complex anatomy consists of: 26 bones, 33 joints, 

muscles, tendons, ligaments, blood vessels, nerves, and soft tissue. In order to understand 

conditions that affect the foot and ankle, it is important to understand the normal anatomy 

of the foot and ankle. 

As shown in Figure 6.1, the ankle consists of three bones attached by muscles, 

tendons, and ligaments that connect the foot to the leg. In the lower leg are two bones called 

the tibia (shin bone) and the fibula. These bones articulate to the talus or ankle bone at the 

tibiotalar joint (ankle joint) allowing the foot to move up and down. The bottom of the talus 

sits on the heelbone, called the calcaneus.  

6.2 Ankle Fusion Surgery 
 
The majority of the medical applications for the proposed kind of registration have emerged 

in the field of radiology. Alignment information is important in planning, guidance and 

treatment procedures. This kind of work is crucial for the field of orthopedics and  
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Figure 6.2. Ankle fusion surgery. 

 

neuroradiology. It can be used in the following areas: Cranio-Catheter procedures, 

Metastatic Bone Cancer, Hip Replacement, and Spine Procedures [66]. 

The collaborators3 of this study are interested in applying the 2D-3D registration in the 

field of orthopedics. The major project is image-guided ankle fusion surgery. The long-

term goal of this work is to apply this technique to ankle fusion surgery to determine the 

proper size and orientation of the screws which are used for fusing the bones together. In 

addition, we try to localize the best bone region to fix these screws. An ankle fusion is a 

surgical operation usually done when an ankle joint becomes worn out and painful. The 

most common cause of this pain is an ankle fracture. After a serious fracture, the joint may 

wear out and become painful. For example, a joint that is out of balance after it heals from 

a fracture can wear out faster than normal. As shown in Figure 6.2, an ankle fusion removes 

the surfaces of the ankle joint and allows the tibia to grow together, or fuse, with the talus 

                                                 
3 R. Todd Hockenbury, M.D. Assistant Clinical Professor of Orthopaedic Surgery, University of Louisville 
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[79]. The cut ends of the tibia and talus are brought together and held in place with three 

screws. Based on the intra-operative X-ray images, the doctor decides the size, the length, 

and the orientation of these screws. The ultimate goal is to enhance the quality of the 

surgical procedure in terms of time and accuracy, and would greatly reduce the need for 

repeated surgeries; thus, saving the patient’s time, expense, and trauma. 

6.3 Proposed Method 
 
In this application, we focus on fusing CT and X-ray images. One of the key challenges 

when studying the 2D-3D registration problem is the need for an appropriate way to 

compare input datasets that are of different dimensionalities. One of the most common 

approaches is to simulate one of the modalities given the other dataset and an estimate 

about their relative spatial relationship, so that the images can be compared in the same 

space. Then a transformation T estimate can be updated to maximize the alignment 

according to some similarity measure. Most existing applications simulate 2D images from 

the 3D volume. It is more feasible to follow this approach. Simulated projection images 

that are to model the production of X-ray acquisitions from 3D volumetric CT are called 

Digitally Reconstructed Radiographs (DRRs). Figure 6.3 describes the main components 

of this framework. First, 3D translations {tx, ty, tz} and rotations {x,y,z} to the CT volume 

are applied. Using the CT volume, we perform projection to generate the DRR. The 

projected image (DRR) is defined as the floating image and the X-ray image as the 

reference image. After the projection step, we have to identify a similarity measure that 

can quantify the quality of the alignment between the images and defining a procedure to  
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Figure 6.3. The block diagram of 2D-3D registration process. 

 

modify and refine current estimates of the transformation parameters (rotation and 

translation) in a way that the similarity score is optimized. In other words, provided that a 

suitable similarity function is obtained, the best alignment parameters can be located with 

the help of an optimization procedure. More details about this framework will be discussed 

in the following subsections. 

6.3.1 Projection process 
 
A shear-warp factorization (SWF) method is used to generate synthetic 2D images from a 

given 3D CT volume (DRR images). It is one of the latest techniques of volume rendering 

[66]. In this method, a viewing transformation is applied to simplify the projection 

processing which is the mapping of world coordinates of the object into a virtual camera 

coordinates. The algorithm uses a principal viewing axis to choose a set of CT voxel slices 

to be resampled and composited. It also determines the order of the slices along the front-

to-back direction of the image volume [71]. Let Mview be a 4×4 affine viewing 

transformation matrix that transforms points from the object space to the image space.As 
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in [71], Mview can be factorized as Mview=Mwarp·Mshear. As shown in Figure 6.4(a), in image 

space, let the viewing direction vector is �����⃗ = (0,0,1)T and ������⃗   be the viewing direction 

vector transformed to object space. The relation between �����⃗  and ������⃗  will be: 

�����⃗ = �����,���. ������⃗                                                      (6.1) 

This system can be analytically solved for ������⃗   , yielding [72]: 

 

(6.2) 

where mi,j are elements of Mview . To get Mshear, assume that the principal viewing axis is 

the +Z axis of the object coordinate system (see Figure6.4). This shear causes the viewing 

direction to become perpendicular to the slices of the volume. To do that, the volume 

should be sheared in the x- direction by: --vo,x /vo,z. . A similar argument holds for the shear 

in the Y direction. Thus the shear coefficients will be: 

 

(6.3) 

 

(6.4) 

Thus, the shear transformation matrix Mshear can be described as: 

������ = �

� � ��� �
� � ��� �
� � � �
� � � �

�                                              (6.5) 

 

The second factor of the viewing matrix describes how to warp the intermediate image into 

the final image. So, we can get: 
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����� = �����.������
�� = ����� .�

� � −��� �
� � −��� �
� � � �
� � � �

�,                          (6.6) 

Figure 6.4(b) shows samples for projected 2D images using SWF approach with different 

viewing parameters (i.e. different tx,ty tz,x,y,z). The average elapsed time required to 

generate a DRR image (based on SWF) is 3.92±0.45 seconds4. More details about SWF 

and volume rendering techniques can be found in [66]-[72]. 

6.3.2 Similarity Measure 
 
In many registration systems, the quality of alignment is scored by objective functions. 

Common registration methods can be grouped into two major categories based upon the 

nature of the similarity measure to which they apply: they can be classified as feature or 

intensity-based [72]. 

Feature-based methods rely on the identification of natural landmarks in the input images 

in order to determine the best alignment. It is necessary to segment the most significant 

features in both of the input images and the matching criterion is then optimized with 

respect to them. 

Intensity-based methods operate on the pixel intensities directly. They calculate various 

statistics using the intensity values of the inputs which are then compared in the images to 

be aligned.  

According to literatures, intensity-based similarity measures are more suitable for 2D-

3D applications [68]. They suggested many objective functions that can be used in 

                                                 
4 As compared with conventional volume rendering methods (e.g. ray-casting), the SWF is significantly fast and robust.  



 

 
118  

matching X-ray and CT images. For example: normalized cross-correlation [68], pattern 

intensity [70], normalized mutual information (NMI) [73], [74], gradient correlation [72] 

and gradient difference [68].  

In the proposed framework, two novel image similarity measures are adopted from [77] 

and [80]. The first one is called exponential correlation (EC). The other is called pixel-

based individual entropy correlation coefficient (IECC). Both are used as the similarity 

measure between the DRR images and the reference X-ray image in order to evaluate the 

current quality of alignment.  

6.3.2.1 Exponential Correlation (EC) 

Given that the real X-ray image is the reference image (R) and the DRR image is the 

floating image (F), their EC value can be calculated using the following equation [81]:  

��(�,�)= �[���(�)��
�
− �����(�)��

�
− ��],                         (6.7) 

where � stands for the coordinates vector of the image, the vector � is defined on the set 

Dx defined as � ⋂ �, and �[.] denotes the expectation operator over the Dx. �� and �� 

represent the mean of intensity values of  images F and R respectively. When two images 

are geometrically aligned, EC value is maximized [81]. 

6.3.2.2 Individual Entropy Correlation Coefficient (IECC) 

In these types of similarity measures, we deal with the images R and F as two random 

variables. A 1D histogram is constructed for each image. It shows the distribution of the 

pixel values. Since these values vary over a wide range, they were rescaled into N=64 bins. 

A 2D histogram h(r,f) is obtained from the pair of floating image and reference image. 

Each entry in this histogram represents the number of times intensity r in image R coincides 
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with intensity f in the other image F. The probability distribution of this 2D histogram 

values is obtained from h(r,f). It is called the joint probability distribution and can be 

expressed as [80]: 

�(��,��)=
�(��,��)

∑ ∑ �(��,��)
�
���

�
���

 .                                         (6.8) 

As discussed in chapter 4, the pixel-based IECC depends on  �(��,��). It represents the ratio 

between the pixel-based component of the mutual information between the two images, 

and the sum of the pixel-based components of the two marginal entropies of each image. 

So, IECC is expressed as [82]: 

IECC(�,�)= ∑ ∑
����,��������

����,���

������(��)
�

�(��)����(��) � �������������

�
���

�
���  ,                     (6.9) 

where   �(��)   and    �����   are the marginal probability distribution of each image. When 

two images are geometrically aligned, IECC value is maximized. For more details, see 

[82].  

6.3.3 Optimization process 

Provided that a suitable similarity function is obtained, the best alignment parameters can 

be estimated with the help of an optimization process. The optimization process aims to 

maximize the similarity score between images. There are two major classes of optimization 

approaches: non-gradient and gradient methods. The first class might be easier to 

implement as it requires only the evaluation of the objective function and no additional 

computations to derive the consecutive search directions. However, the second could 

potentially be much faster as its search is guided towards the maximum. For simplicity, 

Nelder–Mead method (one of non-gradient methods) is used in the system [67]. 
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Figure 6.4. (a) Shear-warp factorization idea. (b) Examples for DRR based on SWF. (c) The initialization scenarios. 
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6.4 Experimental Results 

In this chapter, the framework is applied on clinical CT ankle datasets. The goal is to 

register these pre-operative CT data to intra-operative 2D images. The clinical datasets 

were scanned at 120KV with 2.5 mm, 1.33 mm, or 0.42 mm slice thicknesses. Our 

algorithm has been tested on 1500 CT slices which are obtained from 22 different patients. 

Regarding the intra-operative 2D images, the ray-casting volume rendering technique 

(excerpted from [68]) to generate ground truth X-ray images with different viewing 

transformations (i.e. known tx, ty, tz,x,y,z) that represent the intra-operative X-ray images 

is used. As a pre-processing step, the brightness of these X-ray images are adjusted to 

roughly segment the soft tissues from the ankle bones (see Figure6.5a). These images are 

used to test the quality of the system. For the initialization, we exploit the setup of the intra-

operative imaging machine to choose the proper initial orientation as shown in Figure6.4c 

(i.e. according to the intra-operative image, we initially start the DRR from view 1, 2, 3 or 

4).  

 A variety of methods to measure the accuracy of this framework is adopted. First, the 

checkerboard representation is used to visually evaluate the registration quality of the 

framework (see Figure 6.5d and 6.5e). In these examples, IECC is calculated as a similarity 

measure. Having a closer look at Figure 6.5e, it shows that the registration is very accurate, 

since the two parts coming from different images have no transition. . Edges of the foot 

bone are connected along the squares in all parts of the checkerboard image. Second, the 

correlation coefficient (defined in (3.3)) between the image R and the F is computed before 

and after the registration process using NMI (See Chapter 4), EC, and IECC for different 
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examples with different viewing parameters. Additionally, the execution time required for 

each example is measured (in minutes). The obtained results are summarized in Table 6.1. 

These results indicate that: For the interventional applications, although EC based 

framework is not the most accurate, it has the advantage of reducing the execution time by 

almost two third as compared to NMI and IECC. On the other hand, if the accuracy is 

sought, IECC outperforms the other two systems with comparative execution time to NMI 

approach. Finally, the mean error -and its standard deviation SD- of the estimated 

registration parameters {tx,ty,tz,x,y,z} using NMI, EC and IECC are summarized in Table 

6.2. This error is the average absolute difference between the ground truth parameters and 

the final estimated parameters after registration of a given view for all CT datasets. Again, 

and according to these results, the accuracy of the IECC framework is higher than the 

systems that are based on the other similarity measures; NMI and EC. 

6.5 Summary 
 

In this chapter, a new framework for registering pre-operative 3D volumetric data to intra-

operative 2D images was introduced into the field of orthopedics, specifically on ankle 

surgery. The framework was implemented based on SWF rendering techniques with 

Exponential Correlation (EC) or Individual Entropy Correlation Coefficient (IECC) as new 

similarity measures for the 2D-3D registration process. It was tested on different clinical 

CT scans of human ankle and foot. Experiments demonstrated that the EC-based 

framework is fast and performs almost as much as NMI which is compatible with the time 

limitation of the interventional applications. From the accuracy point of view, the IECC-  
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             (a)                       (b)                        (c)                       (d)                      (e) 
Figure 6.5. 2D-3D Registration results for different examples with different views for one of the 
clinical datasets using IECC as a similarity measure: (a) is the reference image (represents the intra-
operative X-ray generated by ray-casting algorithm) (b) is the initial floating (synthetic) image, 
generated by SWF algorithm (c) is the final floating image after registration, (d) is checkerboard 
representation before registration and (e) after registration. 
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based framework is the most accurate system with comparative execution time to NMI-
based system. 
 
 

Table 6.1. Correlation coefficient of the 2D-3D registration framework using NMI, EC and IECC 
for different views. The red values represent the execution time (in minutes). 
 

Example 

 Correlation Coefficient/ Execution Time (In Minutes) 

Before 

Registration 

After Registration 

(NMI) 

After Registration 

(EC) 

After Registration 

(IECC) 

View 1 0.6297 0.8234/ 2.9 0.8174/ 1.1 0.9974/ 2.7 

View 2 0.6102 0.8511/ 2.7 0.8741/ 0.9 0.9851/ 2.5 

View 3 0.5162 0.8923/ 3.0 0.8886/ 1.2 0.9904/ 3.1 

View 4 0.5716 0.8959/ 3.2 0.8896/ 0.9 0.9934/ 2.9 

View 5 0.5234 0.8738/ 3.6 0.8835/ 1.3 0.9884/ 3.2 

View 6 0.6453 0.9003/ 2.3 0.8921/ 0.7 0.9986/ 2.0 

View 7 0.5015 0.812/ 3.3 0.8236/ 1.5 0.9158/ 3.2 

View 8 0.4325 0.7887/ 4.2 0.7912/ 2.1 0.8368/ 4.0 

View 9 0.6235 0.8325/ 2.8 0.8553/ 0.9 0.9684/ 2.6 

View 10 0.5108 0.8351/ 3.2 0.8125/ 1.3 0.9213/ 2.9 

 
 
 

Table 6.2. Mean registration error and SD of the estimated parameters. 

 

 
 
 
 

Parameters tx (mm) ty (mm) tz (mm) x (deg) y (deg) z (deg) 

E
rr

or
s NMI 1.1±0.91 1.2±0.89 1.4±0.98 1.0±0.77 1.2±0.87 0.6±0.62 

EC 1.3±0.86 0.9±0.79 1.6±0.99 0.9±0.78 1.3±1.01 0.7±0.48 

IECC 0.9±0.52 0.8±0.41 1.1±0.69 0.7±0.36 0.9±0.41 0.4±0.29 
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CHAPTER 7 
 

CONCLUSION AND FUTURE DIRECTIONS 
 
 

This dissertation has presented different shape/image registration techniques with two new 

applications to medical imaging field. 

7.1 Conclusion 
 

In this dissertation, two different shape based approaches to segment the human 

VBs were presented. These approaches are considered as a direct application for shape 

registration. 

The first approach is used for 2D segmentation case. It depends on 2D-PCA for 

shape modeling and conventional level sets methods for segmentation step. The 

experimental results show that the noise immunity and the segmentation accuracy of 2D-

PCA based approach are much higher than conventional PCA approach. Validity was 

analyzed using ground truths of clinical datasets as well as the European Spine Phantom 

(ESP). 

For the 3D case, a simultaneous segmentation and registration approach was 

presented. This second approach incorporates both shape information and Willmore flow 

into the level set segmentation. To get the optimal segmentation, a new energy function 

using the appearance models and shape constraints was formulated and iteratively 

minimized using gradient descent. Experimental results confirm the degree of accuracy and 

robustness of the proposed framework. It has achieved 92.12% overall DC which is much 

higher than existing methods. Moreover, from the application point of view, the proposed 
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shape based segmentation approach is helpful to eliminate the spinal processes which are 

not required for BMD analysis and FA. This leads to more accurate BMD measurements. 

On the other hand, a new framework for registering pre-operative 3D volumetric 

data to intra-operative 2D images was introduced into the field of orthopedics, specifically 

on ankle surgery. The framework was implemented based on shear-warp factorization 

(SWF) rendering techniques with Exponential Correlation (EC) or Individual Entropy 

Correlation Coefficient (IECC) as new similarity measures for the 2D-3D registration 

process. It was tested on different clinical CT scans of human ankle and foot. Experiments 

demonstrated that EC-based framework is fast and performs almost as much as NMI which 

is compatible with the time limitation of the interventional applications. From the accuracy 

point of view, the IECC-based framework is the most accurate system with comparative 

execution time to NMI-based system. The proposed approach can be considered as a step 

towards a robust image-guided surgical station for ankle fusion surgery. 

 

7.2 Future Directions 
 
Future works can be directed as follows: 

 For the segmentation of the VB, although the proposed segmentation method in 

Chapter 5 is able to work on 2D/3D data sets, the shape registration is accomplished 

slice by slice. This work can be upgraded and tested in 3D framework. In this case, 

the user should expect an increased execution time since the registration parameters 

will be increased to 9 from 6. 
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 The high execution time of the shape registration via gradient descent approach can 

be decreased by adopting modern graphics processing units (GPUs). 

 In the literature, the segmentation is coupled with the pose estimation such as 

Sandhu et al. proposed [83]. They present a non-rigid approach to jointly solving 

the tasks of 2D-3D pose estimation from a 2D scene and 2D image segmentation. 

The proposed work in Chapter 5 can be upgraded using the similar idea. 

 For 2D-3D registration of the ankle fusion, Future directions are geared towards 

formulating a new objective function and implementing an advanced optimization 

technique to expand this work. 

 We are also aiming to apply the 2D-3D registration on real X-ray image (Not 

synthetic images). This requires a dataset of X-ray and CT images for the same 

patient. Also, it is very important to validate the proposed framework on a large 

number of datasets (up to100 scans). 

 Optimize the computational time of the registration process by adopting modern 

GPUs for direct volume rendering. 
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