96 research outputs found

    Premature Atrial and Ventricular Contraction Detection using Photoplethysmographic Data from a Smartwatch

    Get PDF
    We developed an algorithm to detect premature atrial contraction (PAC) and premature ventricular contraction (PVC) using photoplethysmographic (PPG) data acquired from a smartwatch. Our PAC/PVC detection algorithm is composed of a sequence of algorithms that are combined to discriminate various arrhythmias. A novel vector resemblance method is used to enhance the PAC/PVC detection results of the Poincare plot method. The new PAC/PVC detection algorithm with our automated motion and noise artifact detection approach yielded a sensitivity of 86% for atrial fibrillation (AF) subjects while the overall sensitivity was 67% when normal sinus rhythm (NSR) subjects were also included. The specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy values for the combined data consisting of both NSR and AF subjects were 97%, 81%, 94% and 92%, respectively, for PAC/PVC detection combined with our automated motion and noise artifact detection approach. Moreover, when AF detection was compared with and without PAC/PVC, the sensitivity and specificity increased from 94.55% to 98.18% and from 95.75% to 97.90%, respectively. For additional independent testing data, we used two datasets: a smartwatch PPG dataset that was collected in our ongoing clinical study, and a pulse oximetry PPG dataset from the Medical Information Mart for Intensive Care III database. The PAC/PVC classification results of the independent testing on these two other datasets are all above 92% for sensitivity, specificity, PPV, NPV, and accuracy. The proposed combined approach to detect PAC and PVC can ultimately lead to better accuracy in AF detection. This is one of the first studies involving detection of PAC and PVC using PPG recordings from a smartwatch. The proposed method can potentially be of clinical importance as this enhanced capability can lead to fewer false positive detections of AF, especially for those NSR subjects with frequent episodes of PAC/PVC

    Feasibility of atrial fibrillation detection from a novel wearable armband device

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is the world’s most common heart rhythm disorder and even several minutes of AF episodes can contribute to risk for complications, including stroke. However, AF often goes undiagnosed owing to the fact that it can be paroxysmal, brief, and asymptomatic. OBJECTIVE: To facilitate better AF monitoring, we studied the feasibility of AF detection using a continuous electrocardiogram (ECG) signal recorded from a novel wearable armband device. METHODS: In our 2-step algorithm, we first calculate the R-R interval variability–based features to capture randomness that can indicate a segment of data possibly containing AF, and subsequently discriminate normal sinus rhythm from the possible AF episodes. Next, we use density PoincarĂ© plot-derived image domain features along with a support vector machine to separate premature atrial/ventricular contraction episodes from any AF episodes. We trained and validated our model using the ECG data obtained from a subset of the MIMIC-III (Medical Information Mart for Intensive Care III) database containing 30 subjects. RESULTS: When we tested our model using the novel wearable armband ECG dataset containing 12 subjects, the proposed method achieved sensitivity, specificity, accuracy, and F1 score of 99.89%, 99.99%, 99.98%, and 0.9989, respectively. Moreover, when compared with several existing methods with the armband data, our proposed method outperformed the others, which shows its efficacy. CONCLUSION: Our study suggests that the novel wearable armband device and our algorithm can be used as a potential tool for continuous AF monitoring with high accuracy

    A real-time ppg peak detection method for accurate determination of heart rate during sinus rhythm and cardiac arrhythmia

    Get PDF
    Objective: We have developed a peak detection algorithm for accurate determination of heart rate, using photoplethysmographic (PPG) signals from a smartwatch, even in the presence of various cardiac rhythms, including normal sinus rhythm (NSR), premature atrial contraction (PAC), premature ventricle contraction (PVC), and atrial fibrillation (AF). Given the clinical need for accurate heart rate estimation in patients with AF, we developed a novel approach that reduces heart rate estimation errors when compared to peak detection algorithms designed for NSR. Methods: Our peak detection method is composed of a sequential series of algorithms that are combined to discriminate the various arrhythmias described above. Moreover, a novel PoincarĂ© plot scheme is used to discriminate between basal heart rate AF and rapid ventricular response (RVR) AF, and to differentiate PAC/PVC from NSR and AF. Training of the algorithm was performed only with Samsung Simband smartwatch data, whereas independent testing data which had more samples than did the training data were obtained from Samsung’s Gear S3 and Galaxy Watch 3. Results: The new PPG peak detection algorithm provides significantly lower average heart rate and interbeat interval beat-to-beat estimation errors—30% and 66% lower—and mean heart rate and mean interbeat interval estimation errors—60% and 77% lower—when compared to the best of the seven other traditional peak detection algorithms that are known to be accurate for NSR. Our new PPG peak detection algorithm was the overall best performers for other arrhythmias. Conclusion: The proposed method for PPG peak detection automatically detects and discriminates between various arrhythmias among different waveforms of PPG data, delivers significantly lower heart rate estimation errors for participants with AF, and reduces the number of false negative peaks. Significance: By enabling accurate determination of heart rate despite the presence of AF with rapid ventricular response or PAC/PVCs, we enable clinicians to make more accurate recommendations for heart rate control from PPG data

    Atrial Fibrillation Detection from Wrist Photoplethysmography Signals Using Smartwatches

    Get PDF
    Detection of atrial fibrillation (AF) from a wrist watch photoplethysmogram (PPG) signal is important because the wrist watch form factor enables long term continuous monitoring of arrhythmia in an easy and non-invasive manner. We have developed a novel method not only to detect AF from a smart wrist watch PPG signal, but also to determine whether the recorded PPG signal is corrupted by motion artifacts or not. We detect motion and noise artifacts based on the accelerometer signal and variable frequency complex demodulation based time-frequency analysis of the PPG signal. After that, we use the root mean square of successive differences and sample entropy, calculated from the beat-to-beat intervals of the PPG signal, to distinguish AF from normal rhythm. We then use a premature atrial contraction detection algorithm to have more accurate AF identification and to reduce false alarms. Two separate datasets have been used in this study to test the efficacy of the proposed method, which shows a combined sensitivity, specificity and accuracy of 98.18%, 97.43% and 97.54% across the datasets

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Widefield Computational Biophotonic Imaging for Spatiotemporal Cardiovascular Hemodynamic Monitoring

    Get PDF
    Cardiovascular disease is the leading cause of mortality, resulting in 17.3 million deaths per year globally. Although cardiovascular disease accounts for approximately 30% of deaths in the United States, many deleterious events can be mitigated or prevented if detected and treated early. Indeed, early intervention and healthier behaviour adoption can reduce the relative risk of first heart attacks by up to 80% compared to those who do not adopt new healthy behaviours. Cardiovascular monitoring is a vital component of disease detection, mitigation, and treatment. The cardiovascular system is an incredibly dynamic system that constantly adapts to internal and external stimuli. Monitoring cardiovascular function and response is vital for disease detection and monitoring. Biophotonic technologies provide unique solutions for cardiovascular assessment and monitoring in naturalistic and clinical settings. These technologies leverage the properties of light as it enters and interacts with the tissue, providing safe and rapid sensing that can be performed in many different environments. Light entering into human tissue undergoes a complex series of absorption and scattering events according to both the illumination and tissue properties. The field of quantitative biomedical optics seeks to quantify physiological processes by analysing the remitted light characteristics relative to the controlled illumination source. Drawing inspiration from contact-based biophotonic sensing technologies such as pulse oximetry and near infrared spectroscopy, we explored the feasibility of widefield hemodynamic assessment using computational biophotonic imaging. Specifically, we investigated the hypothesis that computational biophotonic imaging can assess spatial and temporal properties of pulsatile blood flow across large tissue regions. This thesis presents the design, development, and evaluation of a novel photoplethysmographic imaging system for assessing spatial and temporal hemodynamics in major pulsatile vasculature through the sensing and processing of subtle light intensity fluctuations arising from local changes in blood volume. This system co-integrates methods from biomedical optics, electronic control, and biomedical image and signal processing to enable non-contact widefield hemodynamic assessment over large tissue regions. A biophotonic optical model was developed to quantitatively assess transient blood volume changes in a manner that does not require a priori information about the tissue's absorption and scattering characteristics. A novel automatic blood pulse waveform extraction method was developed to encourage passive monitoring. This spectral-spatial pixel fusion method uses physiological hemodynamic priors to guide a probabilistic framework for learning pixel weights across the scene. Pixels are combined according to their signal weight, resulting in a single waveform. Widefield hemodynamic imaging was assessed in three biomedical applications using the aforementioned developed system. First, spatial vascular distribution was investigated across a sample with highly varying demographics for assessing common pulsatile vascular pathways. Second, non-contact biophotonic assessment of the jugular venous pulse waveform was assessed, demonstrating clinically important information about cardiac contractility function in a manner which is currently assessed through invasive catheterization. Lastly, non-contact biophotonic assessment of cardiac arrhythmia was demonstrated, leveraging the system's ability to extract strong hemodynamic signals for assessing subtle fluctuations in the waveform. This research demonstrates that this novel approach for computational biophotonic hemodynamic imaging offers new cardiovascular monitoring and assessment techniques, which can enable new scientific discoveries and clinical detection related to cardiovascular function

    Atrial Fibrillation Detection from Photoplethysmography Data Using Artificial Neural Networks

    Get PDF
    Atrial fibrillation (AF) is one of the most common types of cardiac arrhythmia- especially in elderly and hypertensive patients, leading to increased risk of heart failure and stroke. Therefore, early screening and diagnosis can reduce the AF impact. The development of photoplethysmography (PPG) technology has enabled comfortable and unobtrusive physiological monitoring of heart rate with a wrist-worn device. It is important to examine the possibility of using PPG signal to diagnose AF in real-world situations. There are several recent studies classifying cardiac arrhythmias with artificial neural networks (ANN) based on RR intervals derived from ECG, but no one has evaluated ANN approach for wrist PPG data. The aim of this MSc thesis is to present an ANN-based classifier to detect AF episodes from PPG data. The used classifier is multilayer perceptron (MLP) that utilizes backpropagation for learning. This classifier is able to distinguish between AF and non-AF rhythms. The input feature of the ANN is based on the information obtained from an interbeat interval (IBI) sequence of 30 consecutive PPG pulses. The PPG dataset was acquired with PulseOn (PO) wearable optical heart rate monitoring device and the recordings were performed in the post-anesthesia care unit of Tampere University Hospital. The study was approved by the local ethical committee. The guidelines of the Declaration of Helsinki were followed. In total 30 patients with multiple comorbidities were monitored during routine postoperative treatment. 15 subjects had sinus rhythm (SR) and 15 had AF during the recording. The average duration of each recording was 1.5 hours. The monitoring included standard ECG as a reference and a wrist-worn PPG monitor with green and infrared light sources. As IBIs extracted from the PPG signals are highly sensitive to motion artefacts, IBI reliability was automatically evaluated using PPG waveform and acceleration signals before AF detection. Based on the achieved results, the ANN algorithm demonstrated excellent performance at recognizing AF from SR, using wrist PPG data

    Extraction of Heart Rate from Multimodal Video Streams of Neonates using Methods of Machine Learning

    Get PDF
    The World Health Organization estimates that more than one-tenth of births are premature. Premature births are linked to an increase of the mortality risk, when compared with full-term infants. In fact, preterm birth complications are the leading cause of perinatal mortality. These complications range from respiratory distress to cardiovascular disorders. Vital signs changes are often prior to these major complications, therefore it is crucial to perform continuous monitoring of this signals. Heart rate monitoring is particularly important. Nowadays, the standard method to monitor this vital sign requires adhesive electrodes or sensors that are attached to the infant. This contact-based methods can damage the skin of the infant, possibly leading to infections. Within this context, there is a need to evolve to remote heart rate monitoring methods. This thesis introduces a new method for region of interest selection to improve remote heart rate monitoring in neonatology through Photoplethysmography Imaging. The heart rate assessment is based on the standard photoplethysmography principle, which makes use of the subtle fluctuations of visible or infrared light that is reflected from the skin surface within the cardiac cycle. A camera is used, instead of the contact-based sensors. Specifically, this thesis presents an alternative method to manual region of interest selection using methods of Machine Learning, aiming to improve the robustness of Photoplethysmography Imaging. This method comprises a highly efficient Fully Convolutional Neural Network to select six different body regions, within each video frame. The developed neural network was built upon a ResNet network and a custom upsampling network. Additionally, a new post-processing method was developed to refine the body segmentation results, using a sequence of morphological operations and centre of mass analysis. The developed region of interest selection method was validated with clinical data, demonstrating a good agreement (78%) between the estimated heart rate and the reference

    Artificial neural network for atrial fibrillation identification in portable devices

    Get PDF
    none6siAtrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. A supervised fully connected artificial neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to the “AF Classification from a Short Single Lead ECG Recording” database and acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1%–93.0%), 90.2% (CI: 86.2%–94.3%) and 90.8% (CI: 88.1%–93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.openMarinucci D.; Sbrollini A.; Marcantoni I.; Morettini M.; Swenne C.A.; Burattini L.Marinucci, D.; Sbrollini, A.; Marcantoni, I.; Morettini, M.; Swenne, C. A.; Burattini, L
    • 

    corecore