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Abstract

The World Health Organization estimates that more than one-tenth of births are prema-

ture. Premature births are linked to an increase of the mortality risk, when compared with

full-term infants. In fact, preterm birth complications are the leading cause of perinatal

mortality. These complications range from respiratory distress to cardiovascular disorders.

Vital signs changes are often prior to these major complications, therefore it is crucial to per-

form continuous monitoring of this signals. Heart rate monitoring is particularly important.

Nowadays, the standard method to monitor this vital sign requires adhesive electrodes or

sensors that are attached to the infant. This contact-based methods can damage the skin

of the infant, possibly leading to infections. Within this context, there is a need to evolve to

remote heart rate monitoring methods.

This thesis introduces a new method for region of interest selection to improve remote

heart rate monitoring in neonatology through Photoplethysmography Imaging. The heart

rate assessment is based on the standard photoplethysmography principle, which makes use

of the subtle fluctuations of visible or infrared light that is reflected from the skin surface

within the cardiac cycle. A camera is used, instead of the contact-based sensors. Specifically,

this thesis presents an alternative method to manual region of interest selection using

methods of Machine Learning, aiming to improve the robustness of Photoplethysmography

Imaging. This method comprises a highly efficient Fully Convolutional Neural Network to

select six different body regions, within each video frame. The developed neural network

was built upon a ResNet network and a custom upsampling network. Additionally, a new

post-processing method was developed to refine the body segmentation results, using a

sequence of morphological operations and centre of mass analysis. The developed region of

interest selection method was validated with clinical data, demonstrating a good agreement

(78%) between the estimated heart rate and the reference.

Keywords: photoplethysmographic imaging, heart rate monitoring, premature infant, deep

learning, convolutional neural network, image semantic segmentation
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Resumo

A Organização Mundial de Saúde estima que um décimo dos nascimentos são prematuros.

Os nascimentos prematuros estão associados a um aumento do risco de mortalidade. De

facto, complicações ligadas a nascimentos prematuros são a principal causa de mortalidade

perinatal. Estas complicações abrangem dificuldades respiratórias e complicações cardiovas-

culares. Estas complicações são frequentemente precedidas por alterações nos sinais vitais.

Assim, a monitorização contínua do prematuro é fundamental, particularmente a monitori-

zação do ritmo cardíaco. O método standard para monitorizar este sinal requer eléctrodos

adesivos ou sensores que necessitam de ser acoplados à pele. Estes métodos de monitori-

zação de contacto podem provocar danos na pele frágil do prematuro, podendo resultar em

infeções. Assim, existe a necessidade de evoluir para métodos de monitorização remota do

ritmo cardíaco.

Esta tese introduz um novo método de seleção da região de interesse para melhorar

a performance da monitorização do ritmo cardíaco em neonatologia através de fotopletis-

mografia de imagem. A extração do ritmo cardíaco é baseada nos fundamentos do método

standard de fotopletismografia: num ciclo cardíaco existem flutuações subtis na quantidade

de luz refletida na superfície da pele, na gama do visível e infra-vermelho. Uma câmara de

vídeo é utilizada em fotopletismografia de imagem, ao invés de sensores de contacto. Especi-

ficamente, a tese apresenta um método alternativo à seleção manual da região de interesse,

utilizando métodos de Machine Learning para aumentar a robustez do método de fotopletis-

mografia de imagem. Este método compreende uma rede neuronal altamente eficiente para

selecionar seis regiões do corpo, a cada frame de vídeo. A rede neuronal foi desenvolvida

com base numa ResNet modificada e uma rede neuronal customizada. Adicionalmente, um

novo método de pós-processamento foi desenvolvido, utilizando operações morfológicas e

a análise dos centros de massa. O método desenvolvido foi validado, demonstrando uma

grande concordância (78%) entre o ritmo cardíaco estimado e a referência.

Palavras-chave: fotopletismografia de imagem, monitorização do ritmo cardíaco, prema-

turo, deep learning, redes neuronais, segmentação semântica de imagem
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Chapter One

Introduction

According to the World Health Organization [29], 15 million babies are born premature,

each year. This can be translated into: More than one in 10 infants does not complete 37

weeks of gestation. Despite the inhomogeneous incidence between countries, high rates of

preterm births are present across different areas of the globe, ranging from 5% to 18% of the

total births across the analyzed 184 countries in 2010. Particularly, Portugal, alongside with

Germany, holds one of the highest rates of preterm births in Europe (10% in 2017 [71]) , with

more than 200 babies born with less than 28 weeks of gestation, i.e. extreme preterm babies.

Additionally, the World Health Organization anticipates an increase of the aforementioned

numbers. Thus, preterm birth, specially its prevention [7], still poses a dilemma for both

obstetricians and neonatologists despite the ongoing research and the general progress of

medicine.

Premature infants are born not fully developed. Besides the neurodevelopmental prob-

lems highly associated with this type of patients, the functional immaturity of the varied or-

gans and their regularization mechanisms commonly leads to complications such as temper-

ature instability, respiratory distress syndrome, a compromised immune system, sepsis and

cardiovascular disorders [7]. Particularly, the latter can result in irregular cardiorespiratory

patterns which can lead to clinical complications namely apneas, cardiopulmonary arrest

and sudden infant death syndrome [42]. In fact, UNICEF [22] stated that the leading cause

of newborn deaths were due to preterm birth complications (35%) followed intrapartum-

related events (24%) and severe infections (sepsis or menigitis) (15%). Thus, preterm birth

complications are the leading cause of perinatal mortality around the world.

Changes in the vital parameters are often observed prior to the major complications

associated with the preterm infants, therefore it is crucial to perform continuous monitoring

of this signals. In clinical practice, vital parameters such as body temperature, heart rate,

blood pressure, respiratory rate and arterial blood oxygen saturation are extracted using

reliable monitoring modalities [23]. However, most of this traditional monitoring modalities

are contact based and often invasive. Particularly, heart rate standard monitoring modal-

ities require electrodes or sensors that are placed directly on the infant skin. This kind of

monitoring is often linked to discomfort potentially causing infant stress [42]. Additionally,
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infants with a gestational age bellow 34 weeks do not have a fully functional skin [69]. The

underdeveloped skin structure coupled with the frequent change of electrodes and sensors

make preterm infants a patient group prone to the development of infections. As a result,

neonates suffering from this complications will be exposed to antibiotics, possibly escalating

to last resort antibiotics, thus contributing to the appearance of resistant bacterial strains

[9], which could be avoided. Also, the risk of epidermal stripping caused by the infant

movements can lead to acute pain, which leads to hemodynamic changes [6]. Besides the

aforementioned negative effects of electrodes placement, the associated wires also lead to

discomfort and hinder not only the clinical staff activities but also the interaction between

parents and infants.

Within this context, it is clear that there is a need to evolve to non-contact heart rate

monitoring methods, since many aforementioned clinical complications, associated with the

usage of electrodes, could be avoided if the measurement of vital parameters did not rely

on mechanical or conductive contact. Recent advances in technology are opening the door

for the emergence of a new generation of non-contact and non-invasive vital parameter

monitoring modalities.

Photoplethysmography Imaging emerged as a promising heart rate monitoring method

for relatively still adult patients. However, it quickly paved its way to address non-contact

heart rate monitoring in newborn infants. This topic of research is already a central theme

in neonatology. Photoplethysmography Imaging makes use of the subtle fluctuations of

visible or infrared light that is reflected from the skin surface within the cardiac cycle. This

subtle fluctuations are noticeable in the pixels intensity values of high bit-depth video data,

allowing the extraction of the PPGI signal and consecutively the heart rate.

Photoplethysmography Imaging offers diverse advantages over other monitoring modali-

ties. For instance, since the PPGI sensor is a video camera, Photoplethysmography Imaging

constitutes a remote non-contact, non-invasive and passive monitoring method. Therefore,

it is a painless and stress free method. Additionally, the measured radiation lays within

the visible and infrared electromagnetic spectrum, i.e., this monitoring technique does not

require the usage of harmful radiation. Also, multiple measuring sites can be used for heart

rate extraction given the two-dimensional image provided by the video camera, i.e, each

pixel can be considered as an individual sensor. Finally, for heart rate assessment, resorting

exclusively in visible light, no dedicated light source may be needed.

Despite the aforementioned advantages, Photoplethysmography Imaging presents some

drawbacks. Firstly, despite the recent important contributions to the field, there is still little

conclusions about its feasibility in real world use, specially in the scope of neonatology. Sec-

ond, the accurate extraction of the heart rate is highly dependent on the working conditions,

i.e, lightning conditions highly influence PPGI signal quality.
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1.1 Aim of the thesis

To access the heart rate of the newborn infant using Photoplethysmography Imaging, a

three step process needs to be conducted. Firstly, within the image receptive field, a skin

region needs to be selected and continuously tracked along the video frames. This region

corresponds to the region of interest. Then, the PPGI signal, corresponding to the average

pixel intensity of the previously selected region of interest, needs to be extracted. Finally,

the PPGI signal is processed to provide a heart rate estimation.

This thesis aims to develop an innovative region of interest selection method for neonates

video recordings, thus replacing the current manual and non robust region of interest track-

ing methods. This novel region of interest selection method intends to enhance the robust-

ness of heart rate monitoring through photoplethysmography imaging and consequently,

contributing to the evolution of this monitoring modality in neonatal care.

In this context, models from the realm of Deep Learning were developed in order to

select, for each video frame, six heart rate measuring sites, i.e., regions of interest. The

capacity to estimate the predefined regions of interest that are linked to six body parts

(head, torso, right arm, left arm, right leg and left leg) during different lightning conditions,

skin tones and body positions is explored. Besides the good segmentation results, the

developed convolutional neural network also demonstrated to be computationally efficient.

Additionally, a post-processing method to further refine the region of interest selection model

results was developed.

Algorithms for extraction and processing of the PPGI signal for heart rate assessment

were also implemented. Then, the capacity of the developed region of interest selection

method to identify successful measuring sites to extract the heart rate was validated using

real clinical data, demonstrating a good agreement between the estimated heart rate and

the reference.
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1.2 Organization of the thesis

The remaining content of this thesis is organized into the following six chapters:

Medical Foundations of the Thesis covers the medical foundations of the thesis

including a brief overview of the cardiovascular system and the photoplethysmography

imaging method.

Deep Learning covers the fundamentals of Deep Learning.

State-of-the-art briefly presents the standard heart rate monitoring modalities as well

as the emerging methods for non-contact heart rate estimation. Then, the state-of-the-art

of region of interest selection methods for heart rate estimation through Photoplethysmog-

raphy Imaging in neonatology is presented. Finally, an overview of the state-of-the-art of

methods for image segmentation relying on Deep Learning models is presented.

Clinical Study provides the details of the datasets used to develop and validate the

proposed method for region of interest estimation.

Region of Interest Selection describes in detail the developed Deep Learning model

for region of interest selection in neonates’ recordings. Additionally, a novel post-processing

method for region of interest results refinement is presented. The models were validated us-

ing data collected at the Neonatology Department of the RWTH Aachen University Hospital

as well as at the Saveetha Medical College and Hospital of Chennai, India.

PPGI and Heart Rate Extraction intends to validate the capacity of heart rate as-

sessment when the proposed method for region of interest selection is used to identify the

measuring sites along the video frames. In this context, an algorithm to extract and process

the PPGI signal for heart rate estimation is described in detail. The performance is eval-

uated using a subset of the data collected at Saveetha Medical College and Hospital. The

agreement between the PPGI estimated heart rate and the reference heart rate is evaluated.

Conclusions concludes this thesis. An overview of the main results and achievements

is provided as well as the future perspectives of this topic of research.
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Chapter Two

Medical Foundations of the Thesis

This chapter aims to provide the medical background necessary for the following chapters.

In Section 2.1, the cardiovascular system is described including its anatomy and physiol-

ogy. Information about the human physiology presented in this chapter is taken from [32],

unless specified otherwise. When relevant, the characteristics of the premature infants

cardiovascular system are discussed. Also, the principles of Photoplethysmography Imaging

are detailed in Section 2.2.
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2.1 Cardiovascular System

The cardiovascular system can be further divided into the heart and circulatory system.

While the heart pumps blood through the arteries, the circulatory system carries the blood

and is responsible for exchanging nutrients, electrolytes, dissolved gases and waste prod-

ucts between the blood and the surrounding tissues [58]. To accomplish effective and fast

exchanges, the circulatory system comprises a vast network of vessels reaching all body

tissues, including skin tissues. The two systems work together to ensure that adequate

blood flow is delivered to all body tissues [44].

2.1.1 The heart

The heart can be subdivided into the right and left pumps. While the right subdivision

pumps blood through the lungs, allowing the exchange of gases between the blood and

alveoli, the left subdivision pumps the oxygenated blood to all the body tissues, supplying

them with nutrients and oxygen. Thus, the afterload of the left heart subdivision is superior

to the afterload of the right heart subdivision.

Each aforementioned heart subdivision is a pulsatile two-chamber pump composed by an

atrium, which is a weaker primer pump, and a ventricle which is the main pumping chamber,

that pumps the blood through the pulmonary (right ventricle) or peripheral circulation (left

ventricle). Therefore, the ventricles supply the main pumping force. Pumping is performed

discontinuously by cyclic contraction and relaxation of the chambers that constitute the

heart.

2.1.2 Cardiac Cycle

The cardiac cycle comprises the cardiac events that occur from the beginning of one heart-

beat to the beginning of the next. Each cycle is initiated by a spontaneous electric triggering

impulse, i.e. an action potential, generated in the sinus node. The generated action poten-

tial is propagated rapidly through both atria, causing their contraction and consequently

the inflow of blood into the respective ventricles. Then, the cardiac impulse travels to the

atrioventricular node. Because of this conducting system, there is a delay of more than 0.1

seconds before the impulse reaches the ventricles. Then, the Purkinje fibers distribute the

impulse through the ventricles causing their strong contraction and consequently the inflow

of blood into the aorta and pulmonary artery.

Figure 2.1 illustrates the cardiac events during a cardiac cycle. The cardiac cycle com-

prises two periods: a relaxation period, called diastole, during which the heart fills with

blood; and a contraction period, called systole.

The diastole period can be further divided into three phases. The first period is called

period of rapid filling of the ventricles and it is characterized by the rise of the ventricular

volume curve for about the first third of diastole. This fast increase is caused by the opening

of the atrioventricular valves due to the large amounts of blood accumulated in the atria
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Figure 2.1: Cardiac events within the cardiac cycle. The values both for pressure and volume
are linked to the left heart pump (left ventricle and left atria) of an average healthy adult.
Figure extracted from [28].

during the ventricular systole period, that caused the development of a moderately increased

pressure with respect to the low diastolic ventricular pressure. This pressure difference

between the two chambers allow blood to flow rapidly into the ventricles. During the middle

third of diastole, only a small amount of blood normally flows into the ventricles. During the

last third of diastole, the atria contract and give an additional thrust to the inflow of blood

into the ventricles. The latter justifies the term of primer pump attributed to the atria since

atrial contraction usually causes an additional 20 % filling of the ventricles, increasing the

ventricular pumping effectiveness as much as 20 %. The last diastole period is called atrial

systole.

Similarly to diastole, the systole period can be further divided into three phases. Systole

starts with a period of isovolumic (Isometric) contraction. Initially, the ventricular pressure

rises due to the beginning of ventricular contraction. This rising causes the atrioventricular

valves to close. However, the opening of the semilunar valves do not happen until the

ventricle builds up enough pressure to equal the pressures in the aorta and pulmonary

artery. Thus, during 0.02 to 0.03 seconds, isovolumic or isometric contraction is occurring

in the ventricles, but there is no blood flowing from the ventricle, meaning that tension is

7
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increasing in the muscle but the volume inside the chambers is constant. As soon as the

pressure inside the ventricles surpass the pressure in the arteries, the semilunar valves

open. While in adults, the left ventricular pressure reaches the 120 mmHg, in newborns, it

reaches the 70 mmHg [79]. Immediately, blood begins to flow out of the ventricles, initiating

the ejection period. About 70 % of the blood emptying occurs during the first third of the

period of ejection and the remaining 30 % emptying during the next two thirds. Therefore,

the first third is called the period of rapid ejection, and the last two thirds, the period of slow

ejection.

Finally, with ventricular relaxation begins the period of isovolumic (Isometric) relaxation.

Initially, the ventricular pressure decreases rapidly. Then, when the ventricular pressure

equals the pressure in the arteries, the aortic and pulmonary valves close. For another 0.03

to 0.06 seconds, the ventricular muscle continues to relax, even though the ventricular vol-

ume does not change, giving rise to the period of isovolumic or isometric relaxation. During

this period, the intraventricular pressures decrease rapidly back to their low diastolic levels.

Then the atrioventricular valves open to begin a new cycle of ventricular pumping.

2.1.3 Heart Rate

The described periodic activity of the heart can be measured and further analysed in order

to access the well-being of the infant. The heart rate corresponds to the number of heart

contractions within a minute. A normal heart rate depends on a variety of factors including

age. In fact, for a premature or newborn infant, a normal heart rate corresponds to double of

the normal heart rate of an adult. Additionally, while in healthy adults diastole comprises

the longest time period, in newborn infants, diastole and systole have an equal duration

(approximately 0.2 s each). Another difference in the heart rate parameter between the

aforementioned age groups is the normal heart rate values range. The heart rate of a

healthy newborn infant comprises a wide range of normal heart rate values [39] [79]. Table

2.1 shows the mean heart rate range for each age group.

Table 2.1: Mean heart rate range for each age group [39].

Age Mean heart rate (range)
[bpm]

premature 120-170
0-3 months 100-150
3-6 months 90-120
6-12 months 80-120

1-3 years 70-110
3-6 years 65-110
6-12 years 60-95
> 12 years 55-85

For newborn infants with less than 24 hours of life, the mean heart rate is 120 bpm.

Afterwards, the heart rate progressively rises to 160 bpm at the first month. Then, the heart
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rate progressively decreases stabilizing at 75 bpm, when reaching 12 years of age.

9



C H A P T E R 2 . M E D I CA L F O U N D AT I O N S O F T H E T H E S I S

2.2 Principles of Photoplethysmography

The optical properties of the skin suffer subtle fluctuations within the cardiac cycle. This

macroscopic, yet invisible, fluctuations are originated by the periodic pressure changes which

cause a rhythmic expansion and contraction of arterial blood vessels: during systole, the

arterial blood vessels are expanded; during diastole, the opposite is patent. The expansion

of the arterial blood vessels is proportional to its blood volume. Since blood has a different

absorption spectrum than the surrounding tissue (see Appendix B), changes in blood volume

within a cardiac cycle are detectable through the amount of reflected light from the skin

surface: during the low blood pressure period, the tissue contains less blood, leading to a

higher light reflection; on the other hand, during the high blood pressure period, the increase

in blood volume in the tissue will lead to a decrease in the reflected light [80].

2.2.1 Photoplethysmography and Photoplethysmography Imaging

Photoplethysmography and Photoplethysmography Imaging are monitoring methods

that take advantage of the subtle blood volume fluctuations in the skin surface.

The emergence of photoplethysmography dates back to 1938 [37]. The fundamental

working principles of this monitoring technique remains unchanged. A light source irradi-

ates light of intensity I in in the visible or near-infrared range into the subject’s skin. Then,

a portion of this light is reflected, Ire f l , another portion is absorbed by the tissues, Iabs, and

the remaining is transmitted, I trans. Figure 2.2 illustrates the photoplethysmography work-

ing principle. The periodic changes in the arterial vessels blood volume modulate both the

reflected and transmitted light that will reach the sensors [11]. Additionally, the intensity

of the reflected, absorbed and transmitted light also depends on a great variety of factors

including the skin tone, blood perfusion, blood oxygenation level [1] and the wavelength of

the irradiated light. Usually, in neonatoly, PPG sensors are placed, in special socks.

The transition of photoplethysmography into a non-contact monitoring method was not

until the year of 2000 [10] [80] with the introduction of photoplethysmography imaging.

Based on the same principles of photoplethysmography, photoplethysmography imaging

replaces the photodiode, traditionally used as a sensor in contact based photoplethysmogra-

phy, for a video camera. Thus, instead os having a single measuring site, the video camera

provides a two-dimensional array of sensors, i.e. each individual pixel is considered as a

small sensor. Each sensor measures the photons that are reflected from the patient’s skin

surface, Ire f l . PPGI systems include a CCD or CMOS camera with high SNR, quantum effi-

ciency and frame rate [11]. Besides the video camera, a dedicated light source can be used

during the acquisitions [9]. However, PPGI signal can still be obtained using the reflection of

existing ambient light, if lightning conditions are favourable [74] [78] [11] [1]. Additionally,

an optical bandpass filter can be attached to the camera lens. Figure 2.3 Illustrates the

photoplethysmography imaging working principle.

10
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Figure 2.2: Nature of the PPGI signal. Figure extracted from [11].

Figure 2.3: PPGI aquisition. Figure extracted from [11].
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Chapter Three

Deep Learning

In this chapter, basic concepts regarding Deep Learning for image semantic segmentation

are discussed. Section 3.1 introduces the concept of artificial neural networks. Then, a more

detailed discussion of Convolutional Neural Networks is provided in Section 3.2. Unless

otherwise mentioned, the content presented in the aforementioned sections is taken from

[2].

Additionally, this chapter further details the concept of image semantic segmentation

(Section 3.3). In Section 3.4, Fully Convolutional Neural Networks are discussed. Finally,

this chapter provides an insight into transfer learning (Section 3.5).
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3.1 Artificial Neural Networks

Artificial neural networks are inspired in the biological neural system, simulating the learn-

ing mechanism of biological organisms. Similarly to the human nervous system, which is

based on biological neurons, artificial neural networks are based on basic computational

units, also called neurons.

3.1.1 Neuron Model

Figure 3.1 illustrates a biological neuron and the mathematical neuron model. Both neurons

receive input signals through the dendrites and produce an output that is sent from the axon.

In the mathematical neuron model, the input signals that come from the axons (Figure 3.1

- x0) interact multiplicatively (Figure 3.1 - x0w0) with the dendrite of the receiving neuron,

i.e., each artificial synapse has a synaptic strength associated. In other words, the influence

of the input signal is controlled by a learned weight (w), also called parameter. All the

weighted input signals are then summed in the cell body. The output of a neuron is modelled

with a non-linear activation function (f ). Commonly, the sigmoid function was employed as

the activation function [26]. However, in this thesis, the rectified linear unit function is used

instead (more details in Appendix B.1).

Figure 3.1: Illustration of the biological neuron (left) and mathematical neuron model (right).
Figure extracted from [26].

In sum, the neurons response to input signals is modelled as shown in Equation 3.1.

a = f (
∑

i
wixi +b) (3.1)

where a represents the activation value of the neuron, f denotes the activation function,

wi the synaptic strength weight associated with the neuron input, xi, and b denotes the

neuron bias.

3.1.2 Neural Networks

Neural networks are an assembly of neurons that are connected and organized in layers,

meaning that the output of the neurons of a layer can become the input of the neurons of

the following layer. Note that neurons organized in a cycle are not allowed since it would

14
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originate an infinite loop. Thus, the input is always passed forward. The connections

between neurons can be arranged in a fully-connected layer, where neurons between two

adjacent layers are fully pairwise connected. This arrangement comprises a high number of

operations which is computationally expensive [26]. Figure 3.2 illustrates an example of a

neural network structure relying on fully-connected layers.

Figure 3.2: Artificial neural network illustration. Figure extracted from [26]

As seen in Figure 3.2, artificial neural networks comprise an input layer, some hidden

layers and an output layer. This layer arrangement is able to define a function by using

the input and propagating the computed values from the input layer to the output layer

using the learned weights as intermediate parameters. The learning procedure comprises

the adjustment of the weights using training data, i.e., examples of input-output pairs of

the function to be learned. For example, the training data is the pixels of an image (input)

and the pixel wise label (output). This adjustments occur by using the predictions obtained

from the inputs in the training data and comparing them with the annotated output label in

the respective training data pair. Prediction errors cause a weight adjustment in the neural

network relying on the backpropagation process (more details in Section 3.1.3). The goal is

to provide many different training examples to make the neural network correctly predict

an example not seen before (model generalization).

The size of the neural network i.e., the number of hidden layers, is linked to its ability

to learn more complex functions from the available training data. Neural networks with

multiple hidden layers are frequently referred as deep neural networks.

3.1.3 Backpropagation

Backpropagation comprises the process of updating the weights of a neural network during

the training process. By progressively modifying the weights, the function defined by the

neural network is adjusted to provide more accurate predictions, reducing the prediction

error. In other words, it finds the set of weights that provide the loss function local minima.

3.1.3.1 Loss Function

One can define the training process as an optimization process, where the goal is to find a set

of weights that provide the better classification performance. To evaluate the performance
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of a specific set of weights a loss function is used. This loss function provides a value that

represents the difference between the neural network prediction and the desired annotated

output. It is defined as a function of the network predictions. The loss function employed in

the current thesis is the Cross-Entropy Loss (Equation 3.2).

L =−∑
x

p(x)log(q(x)) (3.2)

where p refers to the true distribution and q the estimated distribution. Note that the

losses are averaged across observations for each minibatch of images. By calculating the

loss function over a minibatch of images, instead of computing the loss of one single example,

it is possible to have as estimate of the loss over the training set. The quality of the estimate

increases with the size of the minibatch. Additionally, computation over a batch of m images

can be much more efficient than m computations for individual examples [40].

3.1.3.2 Gradient computation

After the forward pass, where a training image is fed into the network and a forward cascade

of computations across the network layers occurs, the network presents an output and the

loss function is computed. The gradient computation step comprises the computation of

the loss function gradient with respect to the network weights, ∇L(x) where x is a vector

of inputs i.e., the training image and the neural network weights. Note that it is possible

to compute the gradient with respect to the input image, however only the gradient for the

weights is computed to perform the weights update [26].

The gradient of the loss function, which is the vector of partial derivatives, is calculated

using the chain rule of differential calculus. These partial derivatives provide an insight into

the weights that have contributed the most to the loss and are used to update the weights.

Using the network illustrated in Figure 3.3, an example of gradient computation taken from

[73] will be given.

Figure 3.3: Illustration of a simple multilayer network. Figure extracted from [73].
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For simplicity reasons, the quadratic loss function will be used in the example. The loss

function, L, corresponds to Equation 3.3.

L = 1
2

∑
l

(e l)2 (3.3)

e l = dl − yl (3.4)

where e l refers to the error between the desired annotated output, dl , and the network

prediction, yl . The network prediction, yl , depends on outputs of the previous layer, v j and

the output layer weights, W o
j , as seen in Equation 3.5.

yl =
∑

j
W o

j v j (3.5)

Using the chain rule of differential calculus, the Jacobian is given by:

∂L
∂W o

jl
= ∂L
∂e l

∂e l

∂yl

∂yl

∂W o
jl

(3.6)

Calculating the respective partial derivatives for equations 3.3, 3.4 and 3.5 originates

the following Jacobian for the output layer:

∂L
∂W o

jl
=−v j e l (3.7)

Then, the gradients of the hidden layers are sequentially computed. Using the computed

gradients, the weights can be updated using, for example, the Adam optimization algorithm,

which will be described in the following Section.

3.1.3.3 Adam optimization algorithm

The Adam optimization algorithm is an optimization algorithm used to update the network

weights to minimize the loss function. It is an extension of stochastic gradient descent. As

the authors of this algorithm state [43], this method is straightforward to implement, is

computationally efficient, has little memory requirements and is well suited for problems

that are large in terms of data and/or parameters. Additionally, the Adam optimization

algorithm is less likely to stagnate in saddle points of the loss function when compared with

the stochastic gradient descent algorithm.

The Adam optimization algorithm combines the idea of introducing a momentum term

in the stochastic gradient descent and the RMSProp optimization algorithm. Instead of

minimizing the loss function by updating the weighs in the negative gradient direction, the

update is made relying on two momentums. The first momentum is computed using the

current gradient estimate. The second is computed using the squared gradient estimate.

These two momentums are then corrected by introducing the current iteration number, in

order to avoid the problem of making large steps at the begin of the optimization process
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(since the initial first and second momentum start at zero). The weight updating step

uses the aforementioned unbiased momentums. The following pseudo-code summarizes the

Adam optimization algorithm.

Algorithm 1: Adam optimization algorithm

first _momentum = 0 ;
second _momentum = 0 ;
for t = 0:num _itearations do

∇L(xt) = compute _gradient(x) ;
first _momentum(t+1) = β1× first _momentum(t) + (1-β1)×∇L(xt) ;
second _momentum(t+1) = β2× second _momentum(t) + (1-β2)×∇L(xt)×∇L(xt) ;
first _unbias(t+1) = first _momentum(t+1) / (1-βt

1) ;
second _unbias(t+1) = second _momentum(t+1) / (1-βt

2) ;
x -= learning _rate × first _unbias(t+1) /

p
second_unbias(t+1)+1e−7 ←

update weights ;
end for

where ∇L(xt) is the gradient estimates, β1 and β2 refers to friction. The β1 hyperpa-

rameter decays the current first momentum and the β2 hyperparameter decays the current

second momentum. They typically assume a high number (0.9 and 0.999 for the first and

second momentum respectively).

The addition of these momentums address the saddle points problem since, despite the

zero gradient, the momentums will allow the evolution from the local minima. Note that,

similarly to stochastic gradient descent, the weights are updated for every minibatch of

images by evaluating the loss and respective gradients within the minibatch.

3.1.3.4 Learning Rate

The learning rate is a hyperparameter that determines the step size of each iteration to-

wards the loss function local or global minima. If set too high, it causes suboptimal perfor-

mance. If set too low, it causes slow convergence. There is a need to formulate the learning

rate as a decreasing function over the training process to further improve the network per-

formance. During the initial iterations, when the loss function is still far from its minimum,

it is beneficial to have high learning rates, causing bigger weight changes. When the net-

work is closer to its optimal solution, it is beneficial to have a lower learning rate, that will

finetune the solution. This process of learning rate scheduling is applied in the current

thesis.

3.1.4 Practical issues in Neural Networks training

Despite the potential of a neural network to be an approximation of complex functions,

there are some challenges regarding the training process of a neural network, that might

compromise its performance.
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3.1.4.1 Overfitting

One of the most important challenges refers to the possibility that, by fitting a model to

specific training data, the model will not be able to provide a good prediction performance

on unseen data. In other words, the possibility of a model to not generalize. Thus, when

the model perform extremely good on the training data and poorly in test data, the model

suffered overfitting. This problem is common when the training data is insufficient i.e., in-

sufficient number of training examples. It is possible to design a neural network architecture

less prone to overfitting.

3.1.4.2 Vanishing and Exploding Gradient Problem

The vanishing gradient problem is linked to neural networks that comprise a high number

of layers, making the weight updating process unstable. When this problem occurs, the

weight updates in the early layers of the network can either be extremely small (vanishing

gradient) or increasingly large (exploding gradient). This phenomenon is primarily caused

by the product operation in the gradient computation (chain rule) which can lead to an

exponential decrease or increase the gradient across the layers.

The vanishing gradient problem is particularly present when the Sigmoid activation

function is used. From Figure 3.4, it is possible to conclude that, for large and small in-

puts, the derivative is close to zero. When using the chain rule for gradient computation,

where the derivatives of each layer are progressively multiplied, the gradient decreases

exponentially during backpropagation when the derivatives are close to zero. This causes

the gradient to vanish in the early network layers.

Figure 3.4: Sigmoid function and its derivative. Extracted from [21]

There are several methods to address this problem including the usage of the ReLU

activation function, whose derivative is always one for positive values. In addition batch

normalization layers, which will be further described in Section 3.2.3, also provide a solution

for this problem.

3.1.4.3 Internal Covariance Shift

The internal covariance shift problem arises from the change of the layers’ input distribu-

tions as the parameters of its previous layer are updated [59]. This makes the network
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converge more slowly [40]. Similarly to the vanishing and exploding gradient problem, the

internal covariance shift problem scales during propagation across the layers. Thus, this

problem is particularly important for deep convolutional networks. The solution lies with

the usage of batch normalization layers (described in Section 3.2.3).
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3.2 Convolutional Neural Networks

The current thesis introduces a novel Convolutional Neural Network to address the task

of image semantic segmentation (details in Section 3.3). Convolutional neural networks

extend from the ordinary neural networks. This kind of networks are designed to have an

image as the input. Having an image as input makes the use of fully-connected structures

not manageable due to the high number of weights to be optimized [26]. For example, an

input image of resolution of 576×960×3 would require, for the first fully-connected layer,

1 658 880 weights. Thus, CNN are tailored to encode certain properties, such as high

efficiency and reduced the amount of parameters. In particular, each neuron, instead of

being connected to all neurons in the previous layer, will only be connected to a small region

of neurons [26].

The CNN neurons are arranged in three dimensions: width, height and depth [26]. For

the first layer of a CNN and an input image of resolution of 576×960×3 the width, height

and depth would be 960, 576 and 3, respectively. Thus, for the first layer, the depth refers

to the number of input colour channels. However, for the remaining layers, the depth refers

to the number of feature maps, also called channels.

As previously described, a CNN comprises a sequence of layers that sequentially trans-

form a three dimensions input into an output volume. The layers used to build the CNN

architecture will be detailed forthwith.

3.2.1 Convolutional layer

Convolutional layers are the core building block of a CNN. This layer type comprise sets

of three dimensional learnable filters (or kernels). While the width and height of these

filters tend to be low, the depth equals the full depth of the input volume, which can reach

thousands of channels. Using this filter structure allows each neuron in the convolutional

layer to connect with a local region of the input volume [26].

During the forward pass, each filter is convolved across the width and height of the input

volume. Meaning that, for each iteration, a dot product between the filter’s parameters and

the input volume region is computed (see Figure 3.5). At the end, each filter produces a

two dimensional feature map that gives the responses of that filter at every spatial position.

Thus, by stacking the produced feature maps along the depth dimension, an output volume

is produced. The networks early convolutional layers filters commonly activate in response

to simple visual features such as an edges. While higher layers usually learn filters that

recognize more complex patterns [26].

The size of the convolutional layer output volume depend on three hyperparameters:

depth, stride and padding. The first refers to the number of filters. The stride specifies the

amount of pixels that the filter shifts at time. Finally, the padding refers to the number of

zeros introduced around the input volume borders. All these hyperparameters are set before
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Figure 3.5: Illustration of a convolution operation. Figure extracted from [62].

training. Equation 3.8 shows the relationship between output volume spatial size, O, the

input volume spatial size, I, the filter spatial size, K, the stride, S and the padding, P [26].

O = I −K +2P
S

+1 (3.8)

Commonly, an activation function proceeds a convolutional layer. In the case of a ReLU

activation function, every negative value in the resulting feature map will be replaced with

zero.

3.2.2 Pooling Layer

Pooling layers are usually placed in-between successive convolutional layers. This type of

layers downsamples the feature maps in order to reduce the number of parameters and the

number of operations in the network. The pooling layer also plays a role in decreasing the

probability of overfitting [26].

The most common form of this layer is maxpolling (see Figure 3.6), where the output vol-

ume is produced by keeping the maximum input value within the filter. Besides maxpolling,

average polling is also used in CNN.

Figure 3.6: Illustration of a maxpolling operation. Figure extracted from [26].

Similarly to the convolutional layer, the output spatial size depend on the filter size

(width and height) and the filter’s stride. Note that this layer does not have parameters
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associated, since it computes a fixed function of the input [26].

3.2.3 Batch Normalization

To address the problem of internal covariate shift, Ioffe et al. [40] propose the Batch normal-

ization layer, in which the input feature map distribution is normalized. Therefore, each

batch normalization layer comprises two learnable parameters: the feature map is multi-

plied by the gama parameter, referring to standard deviation, and then the beta parameter

is added, referring to the mean. The normalization is performed for each training minibatch.

Besides providing a solution to the internal covariate shift problem, this layer allows

the usage of higher learning rates by reducing the dependence of gradients on the scale

of the parameters [40]. Therefore, by incorporating this layer in the CNN structure, it is

possible to achieve a higher training speed. Additionally, Batch normalization reduces the

probability of overfitting because it has a slight regularization effects. In fact, Ioffe et al.

state that the noise added by this layer can eliminate the need for Dropout layers.

3.2.4 Transpose convolution

Transpose convolution is a layer in which a upsampled dense feature map is computed from

a downsampled and course input [54]. This layer can also be referred as deconvolutional

layer. Contrary to simple interpolation methods, transpose convolutional layers learn to

upsample the course inputs in an optimal manner using learnable weights. These weights

are bases to reconstruct shape of an input image [54].

In convolutional layers, an activation in the output feature map is connected to a re-

gion of the input feature map, the region corresponding to the filter window. In transpose

convolutional layers a single input activation will influence multiple activations in the out-

put feature map (see Figure 3.7). In other words, an activation in the input feature map

is distributed over a region in the output feature map, by multiplying the input value by

the corresponding filter weight. This process is then repeated for every value in the input

feature map. Note that there is an overlap of values in the output feature map. Thus, the

final activations of the output feature map corresponds to the sum of the overlapped values.

Figure 3.7: Illustration of a transpose convolution operation. Figure extracted from [54].
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3.3 Semantic Image Segmentation

Semantic image segmentation aims to assign one of the predefined object classes to

every image pixel. This pixelwise labelling task constitutes one of the most challenging

problems in computer vision since it comprises the challenge of simultaneous classification

and localization: objects in the images are associated to a semantic concept and, its classifi-

cation label is attributed to the pixels with the appropriate coordinates in the output score

map[63].

CNNs have shown an outstanding performance in computer vision tasks given their

ability to capture abstract, meaningful and compact feature representations. This success

is linked to the CNNs built-in invariance to spatial object transformations namely object

rotation, rescaling and translation. While this invariance contributes to the success of the

classification tasks, it inherently limits the spatial accuracy in the localization task [16],

where abstraction of spatial information is undesired.

Besides the spatial abstraction associated with CNNs structures, there is an additional

barrier to accurate object localization prediction: the reduced resolution of the image mul-

tidimensional feature representation. The image downsampling arises from the repeated

application of pooling and downsampling convolutional layers characteristic of standard

CNNs [15].

3.3.1 Receptive Field and Effective Receptive Field analysis

The receptive field is the region of the input feature map space (including the depth)

that influences the value of a neuron in the output feature map. The receptive field size of a

neuron in the output feature map after a convolutional layer depends on the RF of the input

feature map as well as the convolution filter size and stride. A high filter size and stride will

generate a large RF.

The ERF is the region of the input image (including the depth) that can possibly modu-

late the neuron activity in the output feature map. Note that RF and ERF are the same for

the first convolutional layer and progressively differ along the FCNN [48].

The RF and ERF analysis constitutes an important step during the design of FCNN

based architectures for computer vision tasks. In lower layers of the network, the kernel

size should be sufficiently large to originate wide RF capable of capturing the global context

from input image. On the other hand, if the context is too wide, it will include an excessively

large neighbourhood leading to the presence of noise in the feature maps. In fact, Fakhry

et all. [25] proved the above-mentioned statement by applying two networks with extreme

kernel sizes to the task of semantic image segmentation. Employing a convolutional layer

with a kernel size of 3 × 3 as the first layer of the network revealed to lead to a very small

receptive field to successfully capture global discriminative features from the input image.

On the other hand, an initial convolutional layer with a kernel size of 11 × 11 revealed to be

excessively large to lead to a good performance.
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3.4 Fully Convolutional Neural Networks

Fully convolutional neural networks are designed to address the task of image semantic

segmentation. As previously mentioned in Section 3.3, the task of semantic image segmen-

tation comprises both localization and classification. To achieve a high performance in the

image classification task, the models should adopt a deep convolutional structure with large

kernel sizes and multiple maxpooling layers to enable the extraction of abstract and global

features from the input image. In the other hand, for the task of localization, the models

should adopt a fully convolutional structure with lower kernel sizes to retain the object

shape and localization information.

Since the model structure requirements for each task are naturally contradictory, the

developed FCNN models should adopt a structure that optimizes the trade-off between local-

ization accuracy and classification performance. There are several types of model structures,

including image pyramid structures, atrous convolution structures and encoder-decoder

structures. The latter will be further discussed since it is the structure used in the current

thesis.

3.4.1 Encoder networks, the features extractors

The purpose of the encoder network is to automatically extract meaningful features from

the input image. The process of constructing a meaningful multidimensional feature map is

achieved by submitting the input image into a sequence of convolution operations, where the

complexity of the extracted features gets progressively higher. It is a hierarchical feature

engineering process in which the filters in earlier layers capture primitive characteristics

of the image (lines, edges, etc.) whereas the filters in deeper layers capture abstract and

complex characteristics with semantic meaning [3].

Regular pre-trained image classification networks are usually adapted to address the

task of feature extractors. The adaptation comprises the replacement of the fully connected

layers for convolutional layers. The ResNet models family is detailed forthwith since it is

used in the current thesis as the decoder network, instead of the widely used VGG-16.

3.4.1.1 ResNet

The ResNet models architecture won the first place in the ILSVRC 2015 competition [67].

These models address the challenge of image classification, meaning that the network ex-

pects an RGB image and outputs an image label.

The ResNet networks architecture uses a residual learning framework to address the

challenge of training deep neural networks. As illustrated in Figure 3.8, the residual block

proposed by He et. al. includes shortcut connections that skip one or more layers. These

shortcut connections simply perform identity mapping, and their outputs are added to the

outputs of the stacked layers. The staked layers in each residual building block fit a residual

mapping. The authors of [34] argue that the performance of the network is not compromised
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by adding extra layers, using this residual blocks, because if an identity mapping is already

optimal, the residual mapping can be pushed to zero.

Figure 3.8: Residual learning: a building block. Figure extracted from [34].

ResNet-50 is a 50 layer CNN model that belongs to the ResNet models family [34]. The

combination of an initial max pooling operation and the stacked convolutional layers of the

four ResNet-50 3-layer bottleneck residual blocks (see Figure 3.9) significantly reduces the

spatial resolution of the resulting feature maps by a factor of 32. On the other hand, the

number of channels of the feature maps is increased from 3 to 2048 channels.

Figure 3.9: Bottleneck building block. Figure extracted from [34].

3.4.1.2 ResNet-50 vs VGG-16

This Section details the ResNet step-change improvements over VGG-16.

Receptive Field: As previously stated in Section 3.3.1, a FCNN model for the task of

semantic image segmentation requires the ability to capture global features of its input to

be successful. The moderately large kernel size (7×7) of the ResNet-50 first convolutional

layer optimizes the trade-off between capturing global discriminative features and noise

interference. This kernel size contrasts with the kernel size (3×3) of the VGG-16 first

convolutional layer. The larger kernel size of the ResNet-50, leads to an increase of the

receptive fields of each neuron in the resulting feature maps, enabling the extraction of more

discriminative features which ultimately improves the overall performance. On the other

hand, in deeper layers, the ResNet-50 network comprises stacked residual blocks containing
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convolutional layers with small kernel sizes to allow the model to grow deeper. Since these

successive convolutional layers steadily increase the network receptive field, regardless of

the kernel size, the higher layers will still comprise a very large receptive field. However,

not all pixels belonging to this large receptive field contribute equally to its corresponding

unit in the feature map. In fact, studies [56] show that modern deep CNNs, such as the

ResNet-50, tend to gather information mainly from a much smaller region, i.e. the effective

receptive field, of the theoretical receptive field. Thus, the effective receptive field does

not include an excessively large area of the input image, leaving aside the possibility of

undesired noise in the feature maps that can negatively affect the localization performance.

Computation efficiency: Despite being a much deeper network than VGG-16, the

ResNet-50 is more efficient with respect to computational complexity. By reducing the

features map resolution by a factor of four in the first two layers with respect to the input

image, and employing stacked residual blocks containing convolutional layers with small

kernel sizes, the ResNet-50 manages to achieve only 3,8 billion FLOPs, which is only 25 %

of VGG-16 (15.3 billion FLOPs)[34].

Memory: While the ResNet-50 comprises 25,6 million parameters, the VGG-16 com-

prises 138 million parameters. This difference reflects on the memory needed to store the

network.

3.4.2 Decoder Networks

The feature maps that result from the encoder networks usually have a low-resolution when

compared with the input image. To obtain high-resolution predictions, the FCNN architec-

tures include a decoder network, responsible for the feature maps upsampling process.

The existing decoder networks are further discussed in Section 4.2.1.
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3.5 Transfer Learning

Transfer learning is a training procedure in which a model is firstly trained for a certain

general task, using a large dataset, and then the model is fine-tuned for a specific task,

using a small dataset. Note that both tasks need to be related and the used datasets should

have similar content.

Training an entire CNN from scratch, using a small dataset, usually leads to overfitting.

Instead, it is common to pre-train the model using a very large dataset, and then use the

obtained weights either as an initialization of the fine-tuning stage or even fixed for the task

of interest. During the fine-tuning process it is possible to fine-tune all the weights of the

CNN, or keep some of the earlier layers’ weights fixed, and only fine-tune some higher-level

portion of the network [26]. For CNNs, the dataset that is commonly used in the pre-training

phase is the ImageNet dataset, which comprises 1.2 million images with 1000 categories.

During the fine-tuning process, a smaller learning rate is usually used, in comparison

to the learning rate used during the pre-training stage. This is because it is expected that

the weights are relatively good after pre-training, thus, it is not desirable to distort them

too quickly and too much [26].

All in all, transfer learning is a powerful tool, which allows the development of high

performance CNN models using small datasets. Therefore, it reduces the need for large

datasets which can be extremely hard to obtain, specially in the field of medicine.
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Chapter Four

State-of-the-art

The current project aims to adapt methods from the realm of deep learning, namely

methods for image semantic segmentation task, to formulate a model for automatic ROI

selection. This chapter aims to provide an insight into the current methods for ROI selection

and the current state-of-the-art of image semantic segmentation deep learning models.

Section 4.1 briefly covers the classic contact-based HR monitoring methods, as well as

novel unobtrusive HR monitoring methods. Section 4.1.1 focuses on ROI selection methods

employed for PPGI signal extraction in the scope of neonatology. Finally, Section 4.2 intro-

duces the state-of-the-art of image semantic segmentation methods, including human body

part segmentation models.
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4.1 HR Monitoring Methods

In standard clinical environment, the continuous HR assessment commonly depends

on reliable and reasonably priced monitoring techniques such as the ECG and/or the PPG

[46]. The ECG is the most widely used method to monitor this vital sign. It records the

cyclic electrical activity that is generated by the cardiac muscle cells and projected onto the

body surface. This is achieved by measuring the voltage between specific measuring sites,

requiring the attachment of electrodes to the patients’ body. On the other hand, the PPG is

based on the fact that fluctuations in the arterial vessels blood volume, within the cardiac

cycle, are responsible for the change in the tissue’s light abortion, as described in Section 2.2.

Besides the HR, the PPG also measures the oxygen saturation given the different absorption

spectrum of the oxygenated and deoxygenated hemoglobin [11]. While providing reliable

results, both ECG and PPG are contact based methods, which makes them inappropriate

for specific types of patients, including patients with skin burns, patients with skin diseases

and neonates [46].

Given the drawbacks linked to classical HR monitoring methods, several research groups

are exploring noninvasive and unobtrusive methods to continuously determinate the HR.

New approaches based on different measurement principles have been proposed such as

capacitive electrocardiography, ballistocardiography, video-based motion analysis, thermog-

raphy and photoplethysmographic imaging [11].

Similar to conductive ECG, the capacitive electrocardiogram takes advantage of the

voltage signal caused by the de- and repolarization of the cardiac muscle cells. This moni-

toring method measures the differential bioelectrical signal unobtrusively due to capacitive

coupling, not requiring any galvanic contact to acquire the electrocardiogram waveform [11].

The ballistocardiography as well as the video-based motion analysis methods both take

advantage of the body surface displacement and vibration effects induced by the contraction

of the heart chambers and by the pulse wave that travels trough the vascular system. There

are several methods to measure these mechanical effects. Ballistocardiography systems

can range from piezoelectric polymer films placed under a bed’s mattress to pneumatic and

hydraulic methods that detect pressure variations in, for example, air cushions. Addition-

ally, ballistocardiography can also rely on optical methods which include the measurement

of optical fibers deformations in a mattress and the scattering of IR light inside the mat-

tress itself [11]. On the other hand, video-based motion analysis methods quantifies subtle

displacements of the body surface due to blood pulsation relying on video recordings.

The thermography method is based on the fact that fluctuations in blood flow produce

cyclic heat patterns that are synchronized with the HR. The subtle changes in temperature

can be visualized and analyzed in the far or mid-infrared range. Note that, similarly to

photoplethysmographic imaging, the aforementioned patterns are related to superficial

perfusion [11].

Photoplethysmographic imaging, PPGI, captures the blood volume microscopic fluctua-

tions relying on the macroscopic changes in the optical properties of the skin, as detailed

30



4 . 1 . H R M O N I T O R I N G M E T H O D S

in Section 2.2.1. The photoplethysmographic imaging method state-of-the-art is further

detailed forthwith.

4.1.1 HR Estimation through PPGI in Neonatology

Regardless the type of patient, most methods for video-based HR extraction follow the

same line of approach. The selection of a ROI and its tracking over time usually constitutes

the first step. The ROI comprises skin regions containing pulsatile information. Once ROI

is selected, the next step involves the extraction of the signal and the respective HR from

the pixels belonging to ROI. Figure 4.1 illustrates the aforementioned steps.

Figure 4.1: Illustration of the steps for HR detection through PPGI. Figure A refers to the
experimental setup. Figure B refers to the region of interest selection. Figure C refers to
the PPGI signal extraction. Figure D refers to the signal processing step. Figure E and F
refer to heart rate computation. Figure extracted from [1].

The majority of studies related to HR extraction from PPGI signals mainly focus on adult

subjects restricted to controlled environments where the subject motion is minimum and

lightning conditions are optimal [77] [38] [64] [74] [47]. However, the well-established ROI

selection methods used in relatively still adults are not suitable in the scope of neonatology

given the unpredictability of the neonates’ positions and the high level of body motion in

the recordings. The latter makes the selection of the ROI and its tracking particularly

challenging. Additionally, the incubator restricts the camera angle to the neonate and

can cause unwanted refractions. Up to date, few research groups applied the topic of HR

estimation through PPGI in neonatology applications. The current section provides an

overview of the state-of-art of HR estimation through PPGI in the scope of neonatology,

specifying the methods employed in the ROI selection step, the main focus of the thesis.

4.1.1.1 Datasets

The reviewed literature with respect to studies regarding neonates, present results

based on datasets that range from seven [68] to 30 [14] different subjects. These small
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datasets compromise the application feasibility of the presented works in actual NICUs. The

challenge of sharing large amounts of data associated with raw video streams, combined with

the rigorous requirements of data acquisition in a NICU environment and the impossibility

to properly anonymize the raw data represent a major drawback to the development of large

datasets.

The more common type of datasets comprises videos recorded in a controlled environ-

ment and dedicated light sources, where the cameras are placed directly above the neonate.

The videos were recorded either through the incubator glass [9] [68] [18] [4], directly with

open incubators [1], or through a specially-drilled hole in a closed incubator [78] [14]. Some

dataset’s recordings comprise the majority of the infant’s body, whose skin is partially or

not covered [78]. While others apply zoom to focus specific uncovered body parts [1]. On

the other hand, Sikdar et al. [70] presents HR results based on a dataset that comprises a

diverse range of body positions and angles with respect to the video camera.

With the exception of Blanik et al. [9], the aforementioned works rely on RGB cameras.

Blanik et al. used an optical filter with a pass band above 720 nm attached to a camera with

a sensitive wavelength range of 320-950 nm to filter most of the ambient light, minimizing

fluctuating lightning conditions and artifacts. Additionally, the neonates were illuminated

by an infrared light emitting diode array (850 nm).

4.1.1.2 ROI selection methods

Despite presenting an important contribution to the field regarding signal processing

methods, in [1] [68] [18] [78] [4] [70] the PPGI signal is extracted within a manually chosen

region that is sometimes tracked along the frames resorting to rudimentary object tracking

methods. Since the selected ROI contains merely skin, it offers only few recognizable image

features, making it extremely difficult to track along the video frames. Thus, this leads to a

non-continuous HR estimation during motion periods. To address this challenge, researchers

are developing new methods for automatic and continuous ROI selection that do not resort

to human supervision.

Despite aiming to extract respiration rate, Jorge et al. [42] proposed an approach for

ROI selection worth mentioning giving its applicability for HR extraction. In [42], the ROI

selection is accomplished through a color-based 2-class classifier based on Gaussian Mixture

models. It clusters each pixel from each frame into skin and nonskin classes. In this model

the ROI consists of the largest continuous skin region in each frame. However, having a

color-based skin classifier, where the ROI is not associated with the anatomical structure of

interest, leads to non-robust vital parameter extraction results for continuous monitoring

over extended periods of time, as the author states in his conclusions.

Blanik et al. [9] opted to divide the video frames into 30 pixels edge length squares and

compute a quality index for each one. This quality index reflects the likelihood of the square

to contain HR information. All the squares possessing a quality index above a threshold of

90% of the best quality index value will belong to the ROI and, consequently, will be used
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for HR estimation. Despite the fact that the ROI is not directly linked to an anatomical

structure, this method guarantees that the selected area is representative of the parameter

that will be extracted. However, in periods of intense motion, the technique still yields poor

results.

Relying on techniques from the realm of Deep Learning, Chaichuleea et al. [14] [31]

managed to detect the presence of the neonate in the incubator, identify the skin region

and define two different ROIs for vital-sign estimation. For this purpose, they proposed a

CNN with three branches from a shared core network. The patient detection branch was

implemented using global average pooling with two outputs containing the prediction of the

two classes. The skin segmentation branch was implemented following the FCNN proposed

by Long et al. [54]. The body part detection branch locates the neonate’s head, torso and

diaper relying on bounding boxes using a Faster R-CNN network [66].

The model is capable of producing accurate segmentation results and is robust to changes

in different skin tones, pose variations, lighting variations, and routine interaction of clinical

staff. The authors reported outstanding results in the HR estimation performance when

employing the developed FCNN, proving the method’s ability to provide excellent measuring

sites. However, as the authors state in the discussion section, the model is unable to achieve

real-time performance given its VGG-16 feature extractor (see Section 3.4.1.2) and its region

proposal generation network.

The high precision rate obtained in ROI detection using a CNN model prove that this

approach may be more appropriate to the ROI detection problem in the scope of neonatology.

Therefore, by changing Chaichuleea et al. CNN feature extractor to a model with fewer

parameters and by combining the skin segmentation task with the body part identifica-

tion task, the current thesis aims to develop a semantic image segmentation FCNN model

capable of real-time inference and accurate segmentation performance.
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4.2 Semantic Image Segmentation using Machine Learning

Computer vision tasks (semantic image segmentation, image classification, object de-

tection, face recognition, etc.) had a substantial progress due to the use of CNNs. With the

advantage of extracting compact and meaningful features from images without human su-

pervision, CNNs became the mainstream approach regarding computer vision applications

overthrowing classical methods focussing on hand-crafted features to describe images and,

for example, nonparametric statistical methods [13] for pixel classification. Although the

application of CNNs started as a method to address the image classification problem, it

quickly paved his way to address the semantic image segmentation task. The emergence

of challenging datasets, such as the PASCAL VOC [24], further encouraged this topic of

research.

There are two main families of CNN methods to address the image segmentation task:

region-proposal-based methods [36] [33], where multiple region proposals are generated

and then each region will be individually processed (image instance segmentation), and

FCNN methods, that process the input image at once not differentiating different instances

(image semantic segmentation). The latter will be further analyzed, since it is the base of

the proposed method for ROI selection, due to its high computational efficiency.

4.2.1 FCNN methods for image semantic segmentation

As detailed in Section 3.4, FCNNs comprise an encoder and a decoder network. Several

new FCNN approaches that are proposed for the specific task of image semantic segmen-

tation have contributed to this research topic by presenting new decoder architectures, in

other words, new strategies to upsample the low resolution feature maps, outputted by

feature extractors. The purpose of the presented decoders is to achieve accurate pixel-wise

predictions.

For the encoder network, a modified VGG-16 [72] network is commonly adopted as a

feature extractor in CNN models for image semantic segmentation [54] [59] [15] [60] [5] [14]

[53] [81]. Typically, the weights of the feature extractor correspond to the weights of the

network when trained on the ImageNet object classification dataset [67].

Long et al. [54] introduced the first FCNN for image semantic segmentation by present-

ing the first decoder network with a novel architecture feature, the skip connections. The

novel skip architecture comprises the combination of information encoded in early, high-

resolution intermediate feature maps with information encoded in deeper feature maps.

The latter leads to an increase in the segmentation performance, particularly along the

object boundaries. The model accepts the whole image as input. Despite the promising

results, this architecture comprises a high number of parameters hindering the application

of an end-to-end training style. Thus, the authors use a stage wise training process where

additional decoder layers are progressively added to the previous trained network until no

progress in the performance is observed.
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Several authors used the core FCNN structure proposed by Long et al.. For example,

Oliveira et al. [60] further refined Long et al. decoder architecture for the particular task of

segmenting human body parts. The latter architecture is further discussed in Section 4.2.2

since it will be used as inspiration for the decoder network presented in the current thesis.

Additionally, some other decoder variations have been proposed. The authors of Segnet

[5] introduced the unpooling operation. Instead of using skip connections, the decoder

network proposed in [5] uses the unpooling operation, where the max-pooling indices of the

encoder network are reused to perform non-linear upsampling. Noh et al. [59] proposed

a new image semantic segmentation model by learning a deconvolutional network. This

deconvolutional network comprises a series of deconvolution and unpooling layers to learn

the upsampling of low-resolution feature maps. The latter upsampling process, conducted

by the deconvolutional layers, is mediated by learned filters that constitute the bases to

reconstruct the shape of the input object from the multidimensional feature map outputted

by the encoder network. Additionally, some models [16] [15] [81] [51] further refine the

object segmentation with the dense CRF post-processing method [45], achieving outstanding

results.

Some approaches address the challenge of upsampling low resolution feature maps by

modifying the feature extractor architecture to provide feature maps at a higher spacial

resolution. In [17] [15] [16] , Chen et al. employs the atrous convolution operation which

allows the prediction of mid-resolution feature maps that can be upsampled to match the

input image resolution using bilinear interpolation.

After the release of ResNet networks [34], semantic image segmentation has made a

new breakthrough: by replacing the VGG-16 layers with a ResNet network a significant

improvement both in the prediction performance and computational cost was observed [66]

[16] [65] [17] [52] [63]. Particularly, Peng et al. [63], following the skip architecture fea-

ture, uses the output of each residual block of the ResNet-101 in the upsampling process.

The intermediate ResNet-101 feature maps are fed into a sequence of convolutional layers

before being combined with the previous decoder layer. This sequence, named Global Convo-

lutional Network, intends to enlarge the effective receptive field to make up for the typical

ResNet-101 small effective receptive field. With this effective receptive field adjustment,

the proposed model addresses both localization and classification task, characteristic of im-

age semantic segmentation. Following this trend, the proposed method for ROI selection

employs a ResNet-50 as the feature extractor.

4.2.2 FCNN model for human body parts segmentation

Some authors [16] [41] [52] report the results of its proposed models on the PASCAL

human parts dataset (details of the dataset in Section 6.2.2). Despite the promising results,

the architectures are complex. The FCNN model proposed by Oliveira et al. [60] is designed

to address the human body parts segmentation problem relying on a less complex decoder

network but still presenting outstanding results.
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Similarly to [54], the encoder network of Oliveira et al. corresponds to a modified VGG-

16 image classification network. The modification tailors the VGG-16 network for the task of

image semantic segmentation and comprises the replacement of its fully connected layers by

convolutional layers. This alteration allows the encoder network to produce coarse feature

maps.

The novelty of the model proposed by Oliveira el al. relies on the upsampling process,

in other words, in the decoder network. Despite following a skip connection architecture,

where each layer of the decoder network combines the upsampled output of its previous

layer with the pooled features of the corresponding layer of the encoder network, the combi-

nation procedure includes an additional layer, a spacial dropout layer [75]. The combination

of the feature maps corresponds to the following procedure: the intermediate encoder net-

work feature map is fed into a convolutional layer followed by dropout and is then element

wise summed to the output of the corresponding layer in the decoder network (see Figure

4.2). This output is then submitted into a bilinear interpolation operation followed by a

convolutional operation to expand the feature map resolution by a factor 2. The described

upsampling process is repeated until the feature map reaches the input image resolution.

Figure 4.2: Illustration of the first decoder layer of Oliveira et. al. model. Figure extracted
from [60].

The addition of the dropout layer in the decoder network improved the robustness to

overfitting resulting in excellent segmentation results (details of the results in Appendix

D.2.4). However, the model proposed by Oliveira et al. requires excessive computational

cost due to the high number of parameters and high number of floating point operations.

Therefore, it is not suitable for real time performance applications. The model proposed in

this work, for ROI selection, addresses the aforementioned problem using the Oliveira et al.

decoder as a reference and a different feature extractor as the encoder network.
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Chapter Five

Clinical study

This chapter details the characteristics of the Neonaten and Navpani datasets used to

develop and validate the proposed method for continuous non-contact heart rate monitoring

of preterm infants. Section 5.1 details the characteristics of the studies. Section 5.2 describes

the acquirement hardware.
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5.1 Description of the studies

In this thesis, a dataset recorded in two different hospital settings was used.

The Neonaten dataset was collected at University Hospital Aachen (UKA), Department

of Neonatology (Aachen subset) and was approved by the ethics committee of the UKA,

Aachen, Germany (EK 327/16). Both video recordings (IR and RGB) and reference data

(PPG and ECG) were acquired from nine neonates that were placed in incubators or in

warming beds / cribs. Except for one infant, two measurements per infant were performed

giving a total of 17 recordings. The clinical study involved five males and four females with a

mean gestational age at birth of 30 weeks and a mean biological age of 49 days (minimum:8

days. maximum:241 days).

The Navpani dataset (Chennais subset) was recorded at Saveetha Medical College and

Hospital and was approved by the institutional ethics committee of Saveetha University

(SMC/IEC/2018/03/067). Neonates were recorded either under an infant radiant warmer

or in a transport incubator. The clinical study involved seven males and 13 females with a

mean gestational age at birth of 35 weeks; a mean biological age of 17 days (minimum:1 day.

maximum:77 days).

In both datasets, the majority of the infants were awake during the whole measurements.

Consequently, the recordings comprise a high level of bodily activity. Also, no constrains

were imposed regarding the neonates’ position and clinical staff activity which proceeded

normally with the patient care routine. The environment of the NICU is not modified thus,

there is a presence of both natural and artificial lightning. The latter can negatively affect

the PPGI signal.

The combination of the Neonaten and Navpani datasets generates a datset that com-

prises a great variety of body positions and orientations, camera angles and skin colours.

The patient demographics of the 29 neonates that comprise the dataset are listed in Ap-

pendix C.
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5.2 Experimental Setup

The Neonaten RGB data was recorded using the CMOS colour camera GS3-U3-23S6C-C

(FLIR, USA). Simultaneously, IR data was recorded using the monochrome CMOS camera

GS3-U3-23S6M-C (FLIR, USA) equipped with a 940 nm filter (BN940, Midwest Optical

Systems, Inc., USA). The cameras acquired 16-bit images with a resolution of 1200×1920

pixels at 25 frames per second. In addition to ambient light, a S75-WHI lighting module

(STEMMER IMAGING AG, Germany) was used. The reference HR was provided through

the PPG waveform filmed from the patient monitor.

For the Navpani data acquisition, the same cameras as in the Aachen subset was used.

While illumination in the visual domain was ambient, active IR illumination was provided

using a matching LED lamp (S75-940-W, Smart Vision Lights, USA) and an additional

diffusion filter (LEE Filters, UK). The reference HR was directly extracted from the Philips

patient monitor.

The basic setup for PPGI monitoring and its components are shown in Figure 5.1.

Figure 5.1: Experimental setup of the Neonaten dataset acquisitions. The cameras and ded-
icated light are installed in a tripod pointing at the neonate at a distance of approximately
1m.
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Chapter Six

Region of Interest Selection
Deep Learning for Skin and Body Part Semantic Segmentation

In this chapter, a new method for region of interest selection is discussed. The pro-

posed method comprises a Convolutional Neural Network for the task of simultaneous skin

and body part semantic segmentation and a refinement algorithm to further refine both

classification and localization performance.

Section 6.1 describes the proposed Convolutional Neural Network. Section 6.2 details

the process of Dataset construction. Section 6.3 describes the training procedure. In Section

6.4 a new post-processing method is described. Finally, Section 6.6 presents the performance

evaluation of the new method for region of interest selection. Finally, Section 6.7 discusses

the results of the proposed method for ROI selection.
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6.1 Skin and Body Part Segmentation Network

Similar to [5] [54] [59] [60], the proposed model follows an encoder-decoder architecture.

The model is an optimized version of Oliveira’s et al. FCNN to further improve efficiency in

terms of both memory and computation time during inference.

6.1.1 Reimplementing an Encoder-Decoder Architecture

Figure 6.1 illustrates the detailed configuration of the proposed FCNN. The network

is composed of two parts: encoder and decoder networks. The encoder network (Figure 6.1

A-F) takes an image as input and outputs a rich multidimensional feature representation,

whereas the decoder network (Figure 6.1 G-S) gradually recovers the object shape and detail

information from the coarse feature representation extracted from the encoder network. The

output of the decoder network provides a prediction mask in the same resolution as the input

image. Subsequently, the softmax layer (Figure 6.1 T) outputs a probability map for each

class that contains the probability of each pixel to belong to the respective class.

For the encoder network, a modified version of the ResNet-50 [34] pretrained on Ima-

geNet dataset [20] is used. For the decoder network, the architecture proposed by Olivera

et all. [60] is used as a base.

6.1.2 Encoder Network

Given the outstanding results of employing very deep CNNs for the semantic image

segmentation task [63] [16] [52] [41] [65] [17], the proposed encoder network is a re-purposed

ResNet-50 [34], a state-of-art deep CNN designed for image classification. Section 3.4.1.1

details the architecture of the ResNet-50 network.

The original ResNet-50 takes a fixed-size image and estimates a probability for each

one of the predefined classes. To tailor the ResNet-50 to the semantic image segmentation

task, the average pooling layer and the final fully-connected layer are eliminated. This

alteration prevents the complete loss of localization information and promotes feature maps

with higher resolution. Thus, the encoder network consists of one initial convolutional layer

followed by one max pooling layer and four bottleneck residual blocks.

6.1.3 Decoder Network

The decoder network was implemented using the FCNN proposed by Oliveira et all.

[60] as a base which, in turn, is a refinement of the architecture of Long et al. [54]. This

FCNN performs a series of spatial upsampling to progressively enlarge the feature maps,

while incorporating intermediate feature maps from the encoder network to recover the

original shape of the input object with high localization accuracy. Table 6.1 provides a full

description of the employed decoder architecture.
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Figure 6.1: Overview of the proposed FCNN architecture. The encoder network (A-F) out-
puts a coarse multidimensional feature representation of the input. The decoder network
(G-S) progressively increases the feature maps resolution to generate a dense pixel-wise
class prediction. Intermediate feature maps from the encoder are used during the upsam-
pling process to refine the prediction result. For brevity reasons ReLUs are omitted.
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In contrast to methods relying on simple bilinear interpolation [60] [16], where no

learning is involved, the proposed decoder network generates high-resolution segmenta-

tion masks using five transposed convolution operations (Figure 6.1 G, J M, P and S). Each

transposed convolution upsamples the feature map by a factor of two, using multi-channel

upsampling kernels. Section 3.2.4 details the transpose convolution operation. The first

transposed convolutional layer takes the output of the fourth residual block of the ResNet-50

as an input. The following four transpose convolutional layers take, as input, the element-

wise sum of the previous transposed convolutional layer output and an intermediate feature

map from the encoder network, followed by a convolutional and batch normalization layer.

The previous transposed convolutional layer output provides a preliminary feature map

at a coarse resolution, whereas the ResNet-50 intermediate feature map contributes with

information to refine the low-resolution preliminary feature map.

The intermediate feature maps selected to incorporate the decoder network have the

same subsampling factor as the output of each transposed convolutional layer, allowing

the direct concatenation operation. Thus, the outputs of the first convolutional layer, the

following max-pooling layer and second and third residual blocks of the ResNet-50 (Figure

6.1 A, B, D and E, respectively) constitute the intermediate layers that will be fused during

the up-sampling process (subsampling factor of 2, 4, 8 and 16 respectively). For example,

the input of the second transposed convolutional layer (Figure 6.1 J) is the concatenation

result of the first transposed convolutional layer output (Figure 6.1 G) and the output of

the third residual block of the ResNet-50 (Figure 6.1 E), both with a sixteenth of the input

image resolution.

The key design step to allow the element wise sum of the feature maps is the dimension-

ality reduction step conducted by the convolutional layers of the decoder-network (Figure 6.1

H, K, N and Q). These convolutional layers compress the intermediate encoder feature maps

that will be used during the upsampling process. Thus, convolving the intermediate feature

maps with 1×1×K ×7 learnable parameters, where K denotes the number of channels of

the intermediate feature maps, ensures that the intermediate feature maps have the same

number of channels as the transposed convolutional layer output. The batch normalization

layer that follows the convolutional layer improves the robustness to over-fitting and reduces

the internal covariate shift (mode details in Section 3.2.3). The employed batch normaliza-

tion layer replaces the spacial dropout layer used in the Oliveira et al. encoder-decoder

architecture given its proven effectiveness [40]. Note that batch normalization and dropout

layers can not be employed simultaneously because of their an incompatibility, which causes

a decrease in performance [50].

Each transposed convolutional layer is followed by a ReLU activation function to better

deal with the vanishing gradient problem [30]. The final high-resolution feature maps are

fed to a softmax layer (Figure 6.1 T) which generates a dense score map at the same size as

the input image.

44



6 . 1 . S K I N A N D B O DY PA R T S E G M E N TAT I O N N E T W O R K

Table 6.1: Detailed configuration of the proposed Decoder network. For brevity reasons
ReLUs are omitted from the table. The terms "conv", "transconv"and "batchnorm"denote
convolution, transpose convolution and batch normalization, respectively. The letters next
to each layer name correspond to the respective layer in the Encoder-Decoder network
illustration 6.1. An image with a resolution of 3 × 576 × 960 is assumed as input (channels
× height × width).

Name Kernel size Stride Pad Input size Output size

encoder network (A-F) - - - 3 × 576 × 960 2048 × 18 × 30
transconv-G 2 2 0 2048 × 18 × 30 7 × 36 × 60
conv-H 1 1 0 1024 × 36 × 60 7 × 36 × 60
batchnorm-I - - - 7 × 36 × 60 7 × 36 × 60
transconv-J 2 2 0 7 × 36 × 60 7 × 72 × 120
conv-K 1 1 0 512 × 72 × 120 7 × 72 × 120
batchnorm-L - - - 7 × 72 × 120 7 × 72 × 120
transconv-M 2 2 0 7 × 72 × 120 7 × 144 × 240
conv-N 1 1 0 64 × 144 × 240 7 × 144 × 240
batchnorm-O - - - 7 × 144 × 240 7 × 144 × 240
transconv-P 2 2 0 7 × 144 × 240 7 × 288 × 480
conv-Q 1 1 0 64 × 288 × 480 7 × 288 × 480
batchnorm-R - - - 7 × 288 × 480 7 × 288 × 480
transconv-S 2 2 0 7 × 288 × 480 3 × 576 × 960

6.1.3.1 Analysis of the Decoder Network

The hierarchical structure of the filters in the encoder network is also applied to the

filters’ structure of the transposed convolutional layers: the complexity of the object’s char-

acteristics encoded in the filters is progressively higher. Thus, the details of the object shape

are recovered, as the feature maps are propagated through the layers in the decoder network.

Figure 6.2 emphasize the progressive increment of the object’s reconstruction complexity

through the decoder network.

6.1.4 Decoder Variants

Decoder variants were developed to allow the comparison between different upsampling

methods and decoding techniques. Note that all the following decoders variants share the

same ResNet-50 encoder network.

In order to analyse the impact of an upsampling process mediated by learned parameters,

a decoder variant was developed, where the transposed convolutional layer is replaced

by a bilinear interpolation layer where no learning is involved - Encoder-decoder-bilinear.

Following the bilinear interpolation layer is a convolutional layer, with trainable parameters,

that will densify the sparse upsampled maps. Note that, by setting the sampling factor to

two, no other alterations to the decoder network are necessary besides the inclusion of

an initial convolutional layer. The main purpose of the initial convolutional layer is the

dimensionality reduction of the encoder output feature maps, to match the number of the
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(a) Transconv-G (b) Transconv-J (c) Transconv-M

(d) Transconv-P (e) Transconv-S (f) Input

Figure 6.2: Activation maps of each transpose convolution in the decoder network. Each
body part class has a separate activation map however, for effective visualization, the illus-
trated activation maps are the sum of the individual activation maps from all the body part
classes. A progression from coarse to detailed body parts shape can be seen from top left to
bottom right. Lower transpose convolutional layers capture a coarse object configuration
and localization, whereas the finer details are encoded in the deeper layers. Noisy activa-
tions are suppressed in the final transpose convolution because of the colour information
that is introduced by the output score map generated by the last batch normalization layer
(Figure 6.1 R).

decoder output classes (6 body part classes plus a background class).

A decoder variant that does not include the concatenation of intermediate encoder net-

work feature maps in the decoder network is also created - Encoder-decoder-unconnected. In

this decoder variant no structure information will be harnessed from the encoder network

meaning that the upsampling process will rely exclusively in learned multi-dimensional

upsampling kernels.

In addition to the above variants, a new decoder variance is included where the batch

normalization layers of the encoder networks are replaced with dropout layers - Endoder-

decoder-dropout. The latter approach is similar to the decoder network proposed by Oliveira

et al. [60].
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6.2 Datasets

6.2.1 Neonaten-Navpani Dataset

To train the FCNN to identify skin pixels and simultaneously categorize them into

one of the six predefined human body parts classes, a dataset of frames from the neonates’

recordings and its ground truth masks need to be created. To this end, a set of frames was

selected from the available recordings and manually annotated.

The designed dataset comprises frames from both the Neonaten and Navapani record-

ings. Therefore, apart from including a great variety of body positions, this dataset contains

neonates with a wide range of skin tones. This variety, coupled with data augmentation

methods (subsection 6.3.2.3), will keep the model from overfitting.

The developed method for continuous non-contact HR monitoring comprises the PPGI

signal extraction from RGB and IR recordings. Thus, a Neonaten-Navpani-RGB dataset

containing RGB frames and a Neonaten-Navpani-IR dataset containing IR frames needs to

be constructed.

6.2.1.1 Frame Selection

The high frame rate associated with the neonates’ recordings leads to consecutive

frames containing similar body positions and illumination. To ease the process of selection

of meaningful and distinct frames within a recording, a MATLAB algorithm was developed.

The algorithm sequentially selects a pair of frames (k,k+2) where k ∈ [0, N −2] being N

the recording’s length. The motion between the pair of frames is computed relying on the

Block-matching algorithm.

Frames with a motion value above a defined threshold are displayed in a GUI to allow

the final manual selection of the frames that will be saved to be part of the training and

validation dataset.

To reduce computational effort, the user can manually crop the first frame of the record-

ing to reduce the background (incubator walls, empty mattress, etc.). The selected crop will

be propagated along all the recording’s frames.

A total of 563 RGB PNG images and 81 IR PNG images were saved at their original

resolution, (3×1200×1920 and 1200×1920, respectively). Additionally, 48 RGB images of

a dummy in several body positions positions were included in the dataset.

6.2.1.2 Ground Truth Annotation Protocol

The ground truth annotation is the process of manually labelling the neonate’s body

regions where the skin is exposed. The selected frames are labelled using the polygon

and smart polygon tool in the MATLAB Image Labeler application. The MATLAB image

labeller application generates a PNG ground truth image and a mat file containing the label
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definitions. The label definitions were kept the same for all frames and are displayed in

table 6.2.

Table 6.2: Label definitions.

Label name Pixel label ID Description

Background 0 background
Head 1 skin pixels belonging to the head
Torso 2 skin pixels belonging to the torso
Right arm 3 skin pixels belonging to right arm
Left arm 4 skin pixels belonging to left arm
Right leg 5 skin pixels belonging to right leg
Left leg 6 skin pixels belonging to left leg

6.2.1.3 Infrared Dataset

Although both IR and RGB recordings were acquired simultaneously, the camera angles

were slightly different. Thus, the ground truth annotations of the RGB frames can not be

linked to the IR respective frames. To construct the Neonaten-Navpani-IR dataset, RGB

frames of the Neonaten-Navpani-RGB dataset were manipulated to resemble IR frames.

Two Neonaten-Navpani-IR datasets were constructed with two levels of image manipulation.

The selected 81 true IR frames will allow the testing of the manipulation quality.

The wavelength of the IR radiation is closer to the wavelength captured in the red

channel when compared with the remaining colour channels. Thus, one Neonaten-Navpani-

IR dataset is constructed upon the red channel of the RGB frames - Neonaten-Navpani-IR-

redchannel.

The second Neonaten-Navpani-IR dataset is generated by manipulating the histogram

of the red channel of the RGB frames. A MATLAB algorithm will range over the Neonaten-

Navpani-RGB dataset and, for each RGB frame, it will select the respective frame in the IR

recording. The histogram of the red channel of the RGB frame is then adjusted to match the

histogram of the IR frame, using the imhistmatch MATLAB function. An example of this

histogram transformation is illustrated in Figure 6.3. The second Neonaten-Navpani-IR

dataset, Neonaten-Navpani-IR-manipulated, comprises the histogram adjusted red channel

frames.

6.2.2 PASCAL Human Parts Dataset

The PASCAL human parts dataset is a subset of the general PASCAL VOC 2010 dataset

[24], which contains extra detailed annotations of human body parts (eyes, nose, upper arm,

etc.). The annotations were merged to form six body part classes and one background class,

similarly to the Neonaten-Navpani dataset annotations. Only images containing human

subjects were used, giving a total of 3584 images.
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(a) (b)

(c)

Figure 6.3: Illustration of the histogram manipulation process. The histogram of the red
channel of the RGB frame (6.3b) is adjusted to match the histogram of the true IR cor-
responding frame (6.3a). The result of the histogram adjustment is displayed in Figure
6.3c.

6.2.3 Freiburg Sitting People Dataset

The Freiburg sitting people dataset was created by Oliveira et al. [60] and provides

high-resolution annotations of images of people. The dataset comprises 200 images of sitting

people from multiple viewing angles and orientations. Similarly to PASCAL human parts

dataset, the dataset contains detailed ground truth annotations for multiple body parts.

Once again, the annotations were merged to generate six body part classes.
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6.3 Network Training

The proposed FCNN is very deep and, despite the effort to reduce the number of param-

eters of the encoder network, the whole architecture contains a great amount of parameters

to tune. In addition, the Neonaten-Navpani dataset is extremely small to successfully train

the model without overfitting. Thus, to train the model for the specific task of segmenting

neonates’ body parts, a two-stage training procedure is employed: pre-training stage and

fine-tuning stage. This stage wise training system falls into the concept of transfer learning.

The designed model can be trained end-to-end thanks to the long range encoder-decoder

connections that efficiently propagate the gradient to early low level layers during the

backward pass.

6.3.1 Pre-training Stage

Firstly, the network is trained using the combination of the PASCAL human parts and

the Freiburg sitting dataset. These datasets contain a great variety of body scales and poses,

allowing the generation of a flexible and generalized base model. The pre-training stage is

the first stage of the transfer learning process where the model is trained to perform the

general task of body part segmentation.

For training, 90 % of the combined dataset images is used, while the remaining will be

employed for validation.

6.3.1.1 Weight Initialization

Despite the ResNet-50 network alterations (see Section 6.1.2), the initial architecture

remains unchanged enabling the initialization of the encoder network with the publicity

available pre-trained weights for the classification task on the large ImageNet dataset. Note

that by using the pre-trained weights as a starting point, the knowledge learned for the task

of image classification is transferred for the task of semantic image segmentation.

The decoder network needs to be trained from scratch. The weights of the convolutional

and transpose convolutional layers are initialized using the initialization scheme proposed

by He et al. specially designed for CNNs that rely on asymmetric, non linear activations

[35]. The weights of the batch normalization layers are initialized with ones and the biases

with zeros.

6.3.1.2 Data Preprocessing

Before each epoch, the training dataset is shuffled and each batch is then selected

orderly to ensure that all images are used and that each image is only selected once within

an epoch. The batch size was set to six due to GPU memory limitations (more details see

Section 6.5).

The selected batch of images and their respective ground truth masks are resized to a

resolution of 320×320. The images are normalized using the mean and standard deviation
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of the ResNet-50 pretrained on ImageNet. Before being fed into the network, the training

images are submitted into a process of data augmentation that is described in Section

6.3.2.3.

For the IR model training, both the training and validation images are transformed into

greyscale images by substituting the RGB channels for their mean. Note that, an image

with three channels is still fed into the network.

6.3.2 Fine-tune Stage

The network is fine-tuned using the Neonaten-Navpani dataset. Given the small num-

ber of neonates of the clinical study, a balanced 5-fold cross validation technique is employed.

For two neonates, the two measurements were not performed within the same conditions:

one measurement was performed when the neonate was inside the incubator and the other

when the neonate was in the infant radiant warmer . Thus, for training purposes, the latter

measurements are treated like measurements associated to different subjects. Therefore,

the clinical study size is assumed to be 31 neonates. The 31 neonates are splitted into five

groups having a fairly equal representation of skin colour and body positions. The patient

demographics and body positions present in each fold are listed in table C.1. The distribution

of the dataset frames for each fold is listed in Appendix D.1.

Table 6.3: Summary of the patient demographics in the five folds. M = Male, F = Female, W
= White, B = Black, WB = Mixed White and Black, Su = Supine, P = Prone, Si = Side.

Fold Subjects Gender Skin colour Inside the incubator Lying position
M F B W BW Yes No Su P Si

1 7 1 6 2 1 4 1 6 6 1 0
2 7 2 5 2 2 3 2 5 5 1 1
3 5 4 1 1 2 2 1 4 4 1 0
4 5 2 3 1 2 2 1 4 5 0 0
5 7 3 4 2 1 4 0 7 7 0 0

Total 31 12 19 8 8 15 5 26 27 3 1

The model is trained on four folds and the remaining fold is employed for validation. The

process is repeated five times so that each fold is employed for validation once. Thus, from

the fine-tuning stage, five sets of weights are generated. The validation results from the five

trained models are combined to produce an overall class prediction performance metric.

6.3.2.1 Weight Initialization

The parameters of the model pre-trained on the PASCAL human parts and Freiburg

sitting dataset are used to initialize all the layers of the encoder-decoder network. This

procedure falls into the second stage of the transfer learning process, where the knowledge

learned for the general task of human body parts segmentation is transferred for the specific

task of simultaneous skin and body part segmentation.
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6.3.2.2 Data Preprocessing

Depending on the selected fold and the type of model (RGB or IR), the training and

validation datasets are constructed from the Neonaten-Navpani-RGB or Neonaten-Navpani-

IR dataset. The batch size was set to three.

Similarly to the pre-training stage, each batch is selected orderly from the training

dataset. The patch of images and their respective ground truth mask are resized to a

resolution of 960×600 and then cropped equally from both sides to a resolution of 960×576.

The cropping step make both the width and height divisible by 32 (the downsampling factor

of ResNest-50) avoiding dimensions errors in the element wise sum step. Before being fed

into the network, the images are also normalized using the mean and standard deviation of

the Neonaten-Navpani-RGB or Neonaten-Navpani-IR dataset, depending on the model type

(RGB or IR). The training images are then submitted into the process of data augmentation

described in Section 6.3.2.3.

6.3.2.3 Data Augmentation

The relative small size of the Neonaten-Navpani dataset, compared to popular datasets

for computer vision applications [24] [67], may induce overfitting of the CNN. To improve

the generalization of the network’s parameters, the training data was synthetically modified.

At each batch, a set of image transformations were applied.

• Scaling: since cameras can be positioned at different distances from the neonate, it is

important for the model to be invariant to different body scales. Each training image

was randomly resized by a scale factor between 0,7 and 1,4.

• Rotation: to increase the robustness of the network to different rotations each train-

ing image was randomly rotated by an angle of up to 30 degrees.

• Flipping: since human body is symmetric, it is acceptable to randomly horizontally

flip the training image.

• Colour variations: to increase robustness to variations in illumination and skin

colour, the brightness, contrast and saturation were slightly modified within an inter-

val of 0,9 to 1,1.

6.3.3 Optimization and Loss Function

The standard Adam optimization algorithm is employed for optimization, where the

initial learning rate, β1, β2 and ε are set to 0.0001, 0.9, 0.999 and 1 ×10−8, respectively. For

the pre-training stage, the learning rate remained constant throughout the training. While

for the fine-tuning stage a "step"learning rate policy was employed, where the learning rate

was progressively reduced by a factor of 0,5 every 30 epochs. The training procedure is

stooped after training and testing loss convergence.

The cross-entropy loss is used as the loss function to train the network.
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6.4 Refinement Algorithm

The proposed deep FCNN was designed to perform image semantic segmentation. In-

herently to this concept is the inability to distinguish two instances of the same class. This

has an negative impact on the PPG signal, when a subject besides the neonate enters the

field of view of the recording. To overcome this limitation and further improve the body parts

segmentation overall performance, a post-processing method was developed. A high-level

illustration of the whole model pipeline is shown in Figure 6.4.

Figure 6.4: Model illustration. The proposed FCNN provides a semantic segmentation mask
of the input frame. The semantic segmentation mask is preprocessed and then fed into the
refinement algorithm to refine the segmentation results and eliminate instances besides the
neonate.

The refinement algorithm assigns a score to each instance, favouring larger in-

stances that are spatially closer to the global CM and anatomically correct positioned with

respect to the remaining body parts. The instance with the higher score is kept and the

remainder will form a calibration mask that will be propagated to the following frames to

erase mislabelled instances.

6.4.1 Notation

Consider a segmentation mask X defined over a set of variables {X1, ..., XN }. The domain

of each variable is a set of labels L = {l1, ..., lp}. In the proposed FCNN, X ranges over seven

possible pixel-level image labellings, p ∈ {0, ...,6}, given an input frame of size N. Xq is the

label assigned to pixel q.

The segmentation mask X is divided into six segmentation masks, Y r
i = {Y r

i1
, ...,Y r

iN
} for

i ∈ {1, ...,6}, containing the segmentation of each body part. The domain of each of Y r
i is a

pair of labels, being one of the elements of the pair the background label and the other the

label l i.

The refinement model generates six refined segmentation masks with only one instance,

Ŷi = {Ŷi1 , ..., ŶiN }, by computing a score associated to each instance present in Yi, si =
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{si1 , ..., siki
} where ki denotes the number of instances of Yi. These scores arise from op-

erations over the CMs of each body part instance in Y, cmi = {cmi1 , ..., cmiki
}, and the global

CM, cmg.

At inference time, an additional set of calibration masks will be generated, Ci = {Ci1 , ...,CiN },

where Ci ∈ [0,1]. These calibration masks will propagate the segmentation refinement and

instance elimination to the following frames.

6.4.2 Segmentation Mask Preprocessing

The primary goal of the preprocessing step is to transform the raw semantic segmen-

tation masks provided by the FCNN, X , into instance segmentation masks, Y. To ease

the score computation process and make the refinement algorithm computationally effi-

cient, residual isolated segments will be eliminated from the raw semantic segmentation

masks to avoid unnecessary computation of CMs. The preprocessing relies on morphological

operations.

The semantic segmentation mask X is divided into six semantic segmentation masks,

Y r
i = {Y r

i1
, ...,Y r

iN
} for i ∈ {1, ...,6}, containing the raw segmentation of each body part. Each

raw segmentation mask, Y r
i , is converted into a binary mask, Y b

i :

Y b
i =

{
0 if Y r

i = 0,

1 if Y r
i = l i,

The binary segmentation mask Y b
i is then submitted into a erosion process where the

erosion operation is repeated six times with the structuring element illustrated in Figure

6.5a. Small segments in the mask will be removed in this erosion process. To approximately

restore the shrinked regions and connect close segments that probably belong to the same

instance, the binary segmentation mask Y b
i is then submitted into a dilation process, where

the dilation operation is repeated 100 times with the structuring element illustrated in

Figure 6.5a. Note that the number of both erosion and dilation operations was manually

optimised for the neonates recordings’ field of view.

Isolated segments in the processed Y b
i are considered individual instances. The ap-

plication of the connected-component labelling algorithm, with the structuring element

illustrated in Figure 6.5b and a squared connectivity equal to one, a instance segmentation

mask of dilated instances is generated, Y l
i . The element wise multiplication of the labelled

dilated instance mask with the unprocessed binary semantic segmentation mask, Y b
i , gener-

ates an instance segmentation mask, Yi. The process is repeated for i ∈ {1, ...,6} generating

a set of instance segmentation masks Y.

The different segmentation masks that result from the preprocessing process are illus-

trated in Figure 6.6.
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1 1 1
1 1 1
1 1 1

a

0 1 0
1 1 1
0 1 0

b

Figure 6.5: Structuring elements employed during the image preprocessing. 6.5a is the
structuring element used in the erosion and dilation process and 6.5b is the structuring
element employed in the connected-elements algorithm

6.4.3 Score Computation

A score is computed for each instance in Yi when the number of instances is superior

to one, ki > 1. The score function (equation 6.1) is denoted by sm( j), where j ∈ {0, ...,km},

and models the compatibility of the instance m j, with label lm and CM cmm j , with the

remaining body parts instances nh, with label ln and CMs cmnh . Note that n∩m = 0 and

n∪m = i.

sm( j)=∑
n

∑
h

f (lm, ln, cmm j , cmnh )+ g(lm, cmm j , cmg) (6.1)

where f (lm, ln, cmm j , cmnh ) is the pairwise score function (equation 6.2) and g(lm, cmm j , cmg)

is the proximity score function (equation 6.3).

f (lm, ln, cmm j , cmnh )=µ(lm, ln)×d(cmm j , cmnh ) (6.2)

where d denotes the function that computes the distance between the cmm j and cmnh

and µ(lm, ln) is a weight matrix that encodes the weights that will penalize CMs distances

that are not in line with the anatomically correct position of the human body. The following

example illustrates the intuition behind the pairwise score: an instance j labelled as right

leg, lm = 5, and with a CM, cmm j , close to the CM, cmnh , of an instance classified as head,

ln = 1, will generate a lower pairwise score when compared with a different instance, j+1,

with the same label, lm = 5, with a CM ,cmm j+1 , distant to the the same CM cmnh with

ln = 1,

g(lm, cmm j , cmg)= θ(lm)×d(cmm j , cmg) (6.3)

where θ is a weight matrix that encodes the weights that will penalize instances which

are distant from the global CM, cmg, depending on the label lm. Both weight matrices, θ

and µ are displayed in Figure 6.7b and Figure 6.7a, respectively. Note that both θ and µ

were manually optimised.
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(a) Segmentation mask illustra-
tion.

(b) Segmentation mask, X.

(c) Individual body part raw segmentation masks, Y r
i .

(d) Individual body part binary segmentation masks, Y b
i .

(e) Individual body part instance segmentation masks of dilated instances, Y l
i .

(f) Individual body part instance segmentation masks, Yi.

Figure 6.6: Illustration of the semantic segmentation mask (X) evolution across the prepro-
cessing process.
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Finally, a score that reflects the relative size of the instance, m j, with respect to the

size of all the remaining instances classified with the same label, lm, is added to sm( j) to

generate the final score, Sm( j), of the instance m j (equation 6.4).

Sm( j)=β× (max(sm)−min(sm))× Nm j

Nm
+ sm( j) (6.4)

where β is a parameter that regulates the influence of the size score in the final instance

score. Nm j denotes the number of pixels of the instance m j and Nm denotes the total number

of pixels of the instances with the same label as m j, lm.

head torso right arm left arm right leg left leg
head 0 -1 -2.1 -2.1 1 1
torso -1 0 -1 -1 -1 -1

right arm -2.1 -1 0 -1 0.5 0.5
left arm -2.1 -1 -1 0 0.5 0.5
right leg 1 -1 0.5 0.5 0 -1.7
left leg 1 -1 0.5 0.5 -1.7 0

a

head torso right arm left arm right leg left leg
CMg -2 -4 -4 -4 0.1 0.1

b

Figure 6.7: Weight matrices. 6.7a corresponds to the µ weight matrix. 6.7b corresponds to
the θ weight matrix

6.4.4 Calibration Masks

The segmentation mask preprocessing and the score computation is too computationally

expensive (approximately one second per image) to be applied in every frame of the recording

for real time applications. In addition, since multiple consecutive frames contain similar

information, the application of the refinement algorithm to every frames is redundant.

Thus, for each application of the refinement algorithm, a set of calibration masks will be

generated, Ci = {Ci1 , ...,CiN }, where Ci ∈ [0,1] and i ∈ {1, ...,6}. These calibration masks are

matrices with the same size, N, as the recording frame.

The calibration mask Ci is initialized with ones, then, it will be filled with zeros on the

coordinates of the mislabelled instances i.e instances with the lower scores. The element

wise multiplication of the calibration mask Ci with the raw semantic segmentation masks

Y r
i , generates refined segmentation masks with only one instance, Ŷi. Figure 6.8 illustrates

the calibration masks operation.
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Figure 6.8: Illustration of the calibration masks operation. The refinement algorithm gener-
ates one calibration mask per body part. The element wise multiplication of the calibration
mask with the respective body part segmentation mask will erase the mislabelled instances.
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6.5 Hardware and Software

The training and testing framework was implemented in Python, specifically the Py-

Torch package [61] was used to implement the proposed FCNN model and all its different

decoder variants.

For the PASCAL human parts and Freiburg sitting dataset, the training and testing

procedure of the models was conducted in the Google Colaboratory research tool, whereas,

for the Neonaten-Navpani dataset, the training and testing procedure of the models was

conducted on a workstation:

1. The Google Colaboratory research tool is a cloud service based on Jupyter Notebooks

that allows the execution of python code in a virtual machine fully configured for deep

learning applications. The virtual machine is equipped with an Intel Xeon Processor

CPU @2.3 Ghz, 12.6 GB RAM and a NVIDIA Tesla K80 GPU with 2496 CUDA cores

and 12 GB of GDDR5 memory.

2. The workstation is equipped with an Intel Xeon Gold CPU @ 3.4 Ghz, 128 GB RAM

and a NVIDIA Quadro P4000 glsGPU with 1792 CUDA cores and 8 GB of GDDR5

memory.
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6.6 Evaluation

To perform a complete analysis of the proposed FCNN, its decoder variants (see sec-

tion 6.1.4) and the model proposed by Oliveira et al. [60], multiple performance indices

are considered to evaluate both the computational effort and class prediction performance.

Specifically, to analyse the computational effort, the model complexity, the computational

complexity, the peak GPU memory usage and inference time are reported. To quantitatively

compare the class prediction performance of the considered FCNN models in the PASCAL

human parts and Freiburg sitting people dataset, two evaluation metrics were employed:

class average accuracy and class average IoU. To evaluate the performance of the proposed

FCNN model in the Neonaten-Navpani dataset, a new evaluation metric was introduced:

class average precision. The inclusion of the latter metric, that is not commonly used in

the evaluation of image semantic segmentation models, is specially important for the task

of ROI selection for PPGI extraction, where the most important factor to consider is the

number of FP that can negatively interfere with the PPGI signal quality.

In order to perform a direct and fair comparison in the computational effort evaluation,

the considered models are implemented using the same PyTorch framework, meaning that

the publicity available model proposed by Oliveira et al. [60] is convert in PyTorch. The

considered models are designed to predict seven classes (background, head, torso, right and

left arm and right and left leg) and to expect batches of images with shape 3×H×W , where

H and W are the height and with of the image. For the class prediction performance analysis

the accuracy and IoU values reported for the model proposed by Oliveira et al. are extracted

from the original paper [60].

Unless otherwise specified, the following results are originated from models that follow

the training procedure specified in Section 6.3.

6.6.1 Computational Effort

6.6.1.1 Model Complexity

To analyse the complexity of the different considered FCNN models, the total amount

of learnable parameters is taken into account. Additionally, following the approach in

[8], the size of the file that contains the learned parameters of each considered FCNN

model is compared in Table 6.4, having a direct relation with the total amount of learnable

parameters. The file size also provides an insight into the minimum amount of GPU memory

required for each model during training and inference.

The proposed FCNN model and its decoder variants have 18 % of the learnable param-

eters of the encoder-decoder architecture proposed by Oliveira et al. [60]. This substantial

difference in the model’s complexity mainly derives from the employed encoder network: the

proposed model and its decoder variants rely on a modified ResNet-50, which is significantly

smaller in the number of learnable parameters when compared with the modified VGG-16

in the Oliveira et al. architecture. The characteristic high number of learnable parameters,
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Table 6.4: Total amount of learnable parameters, number of learnable parameters in the
encoder and decoder network and size of the file containing the learnable parameters values
for each considered model.

Method Total nº of parameters Nº of encoder parameters Nº of decoder parameters File size (KB)

Encoder-decoder-bilinear 23 592 480 23 508 032 84 448 276 341
Encoder-decoder-unconnected 23 567 140 23 508 032 59 108 276 480

Encoder-decoder-dropout 23 577 836 23 508 032 69 804 276 617
Encoder-decoder-batchnorm 23 577 892 23 508 032 69 860 276 624

Encoder-decoder-Oliveira 134 729 180 134 260 544 468 636 -

which exceeds the hundreds of millions, of the encoder-decoder architectures that rely on

the VGG-16 network [60] [54] often hinder the adoption of a end-to-end training style thus

leading to a multi-stage training style. On the other hand, as mentioned in Section 6.3, the

proposed FCNN model is able to perform an end-to-end training procedure.

The proposed FCNN model and its decoder variants have a large number of learnable

parameters in the encoder network (23M) which contrasts with the relatively small number

of learnable parameters in the decoder network. Thus, the relatively small fluctuations of

the considered decoder variants learnable parameters number are not meaningful in terms

of both model complexity and memory. However, it is worth noticing the lower number of

learnable parameters of the Encoder-decoder-unconnected model, which mainly derives from

the elimination of the convolutional layers that allow the concatenation of the intermediate

feature maps from the encoder network and the feature maps outputted by the transpose

convolutional layers.

6.6.1.2 Peak Memory Usage

The maximum occupied GPU memory during one forward pass, which includes the

memory required to process the batch of images besides the memory required to store the

network learnable parameters and feature maps, is also evaluated. For the sake of simplicity,

only values for the Encoder-decoder-batchnorm, Encoder-decoder-unconnected and Encoder-

decoder-Oliveira models are reported in Figure 6.9, since the remaining decoder variants

reveal similar results to those for the Encoder-decoder-batchnorm model.

From Figure 6.9, it can be seen that, for all the considered batch sizes, the proposed

FCNN model and its variants are able to perform a forward pass, for an image with a

resolution of 576×960, without surpassing the maximum available GPU memory (8GB) of

the NVIDIA quadro p4000. The memory efficiency of the proposed FCNN model was one

of the primary motivations behind the its design. On the other hand, the model proposed

by Oliveira et al. is unable to perform a single forward pass for batch sizes superior to nine

images on the same GPU.

As expected, the encoder-decoder-unconnected model reveals a slightly reduction on the

maximum occupied GPU memory across different batch sizes when compared to the remain-

ing FCNN models. The latter mainly derives from the fact that the proposed FCNN and

the models with decoder variants where information from different intermediate encoder

61



C H A P T E R 6 . R E G I O N O F I N T E R E S T S E L E C T I O N

0 5 10 15 20 25
0

2

4

Batch size

M
ax

im
um

al
lo

ca
te

d
G

P
U

m
em

or
y

[G
B

]

Encoder-decoder-batchnorm
Encoder-decoder-Oliveira

Encoder-decoder-unconnected

Figure 6.9: Maximum occupied GPU memory vs. batch size. This graph shows the maximum
occupied GPU memory during one forward pass across different batch sizes of images with
a resolution of 576×960.

layers are combined during the upsampling process, imply the storage of intermediate fea-

ture maps from the encoder network which requires the extensive usage of memory during

inference and training time.

6.6.1.3 Computational Complexity

The computational complexity of each considered model is measured relying on the

number of floating-point multiplication and adds operations, FMAs, required for a single

forward pass. Note that the number of FLOPs is approximately twice the number of FMAs,

since multiply-add operations are counted as single operations.

The proposed FCNN model and its decoder variants have approximately 6.5 % of the

total number of FMAs of the encoder-decoder architecture proposed by Oliveira et al. (see

Appendix D.2.1). This major difference between the number of FMAs will be reflected on

the inference time since the number of operations required to perform a forward pass has a

linear relationship with the time necessary for a image to be processed [8]. Thus, the limited

number of operations of the proposed FCNN model keeps the processing speed in a range

suitable for real-time applications, as discussed in Section 6.6.1.4.

6.6.1.4 Inference Time

Figure 6.10 reports the per image inference time for a image of size 576×960 for each

considered model, as a function of batch size. For statistical validation, the reported times

corresponds to the average over 10 runs on the NVIDIA Quadro p4000 GPU. For the

sake of simplicity, only values for the proposed FCNN model and for Oliveira et al. model
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Figure 6.10: Inference time vs. batch size. This graph shows the inference time during one
forward pass across different batch sizes of images with a resolution of 576×960. Missing
data points for the Encoder-decoder-Oliveira model plot are due to lack of enough system
memory required to process larger batches.

are reported, since the remaining decoder variants reveal similar results to those for the

proposed FCNN model.

Not surprisingly, the Oliveira et al. model yields the higher inference time per image

proving once more the linear relationship between computation complexity and inference

time [12]. As previously stated, the Oliveira et al. model is unable to perform a forward

pass for batch sizes superior to nine, for images with a resolution of 576×960, given the

GPU memory restrictions of the Quadro p4000 GPU. Thus, no data points for batch sizes

superior to nine can be reported. It is worth noticing the substantial decrease in inference

time as the batch size increases, for the Oliveira et al. model. This inference time shortening

derives mainly from batch processing optimisation.

The proposed FCNN and its decoder variants can process 30 images per second on the

NVIDIA Quadro p4000 GPU for images of size 576×960. Thus, the proposed FCNN model is

able to achieve real-time performances for recordings captured at 25 FPS. On the other hand,

the Oliveira et al. model does not exceed the 4 FPS frame rate, making it an impossible

contender for real-time applications on an NVIDIA Quadro p4000 GPU.

6.6.2 Class Prediction Performance

6.6.2.1 PASCAL human parts dataset and Freiburg sitting RGB dataset

In table 6.5, the results of the proposed FCNN model and its decoder variants on the

combined PASCAL human parts and Freiburg sitting validation RGB dataset are displayed.
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Table 6.5: Quantitative results on the PASCAL human parts and Freiburg sitting validation
RGB dataset. For each method, the IoU and accuracy for each class and the mean IoU
and accuracy are reported. The proposed encoder-decoder architecture (Encoder-decoder-
batchnorm) outperforms all the other methods in all the body part classes. Particularly
noteworthy are the significant improvements in both accuracy and IoU for thinner classes
such as the right and left arm and right and left leg.
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Encoder-decoder-bilinear 66 55 18 12 29 33 73 71 24 12 31 41 36 50
Encoder-decoder-unconnected 47 52 10 12 30 32 51 72 10 12 30 39 31 43

Encoder-decoder-dropout 65 53 33 32 44 43 73 67 39 40 48 46 45 63
Encoder-decoder-batchnorm 67 56 35 36 46 45 72 69 40 43 52 52 48 66

The proposed FCNN achieves a better performance with 48 % mean IoU and 66 % mean

accuracy, when compared to other decoder variants. As expected, the decoder variant where

skip connections are not present yields the worst class prediction performance. This result

proves the positive impact of incorporating the object shape information present on inter-

mediate encoder feature maps during the upsampling process. The poor performance of

the decoder variant where the upsampling process was conducted by bilinear interpolation

proves the importance of an upsampling process mediated by learned parameters, specifi-

cally to recover the spacial information of thinner body part classes such as the right and

left arm and right and left leg.

Qualitative visual results of the proposed FCNN model on new testing images are illus-

trated in Figure 6.11.

The proposed model is also compared with the encoder-decoder model proposed by Oliveira

et al.. It is worth noting that the model proposed by Oliveira et al. and other state-of-art

semantic segmentation models have achieved outstanding results on the PASCAL humans

parts dataset, since their ultimate goal is to obtain the highest accuracy, regardless of the

computational effort. Also, while the proposed encoder-decoder model is trained end-to-end,

the model proposed by Oliveira et al. adopts a stage wise training method.

To perform a fair comparison, the proposed model is trained following the same dataset

division as Oliveira et al. for a coarse body part prediction. Thus, the model is trained

to segment the body into four parts, meaning that the model will predict 5 classes: head,

torso, arms, legs and background. The model will be trained exclusively on 70% of the

PASCAL human parts dataset and the remaining 30% will be employed for testing. The class

prediction performance results on the PASCAL human parts testing dataset are displayed

in Appendix D.2.2.
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(a) input frame (b) ground truth (c) prediction

Figure 6.11: Qualitative results of the proposed FCNN model trained on the PASCAL human
parts and Freiburg sitting people dataset. The model shows great segmentation results on
new testing images. However, the model has some difficulties in segmenting infants. Note
that the testing images have the same image resolution as the training and validation
dataset.
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Although results provided by the proposed FCNN are surpassed significantly by the

results provided by Oliveira et al. architecture, its poor performance on the remaining

performance indices constitute a hard constraint in its practical application, specifically

for the ROI selection task where low computational effort is mandatory. Additionally, the

learning efficiency [12] of Oliveira et al. model is low compared with the learning efficiency

of the proposed FCNN model, which reveals its poor ability to utilise its parametric space

(see Appendix D.2.2).

Only the proposed FCNN model and the decoder variant model where dropout is em-

ployed will be further tested on the Neonaten-Navpani dataset since they yield the best

trade-off relation between class prediction performance and computational effort.

6.6.2.2 Neonaten-Navpani-RGB dataset

Table 6.6 summarises the class prediction performance of the proposed FCNN model

and of the encoder-decoder-dropout model. Note that the reported validation results are the

combination of the model’s validation results for each fold. The class prediction performance

of the proposed FCNN model for each fold is reported in Appendix D.2.3.

Table 6.6: Quantitative results on the Neonaten-Navpani-RGB dataset for images of size
576×960. For the considered methods, the mean IoU, accuracy and precision across the five
folds are reported for each class. Additional, the overall mean IoU, accuracy and precision
are reported.
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Encoder-decoder-dropout 79 35 46 34 50 34 84 45 62 51 58 41 90 50 60 45 70 54 46 57 62
Encoder-decoder-batchnorm 80 41 49 35 56 40 85 49 62 55 64 49 89 58 61 46 72 56 50 61 64

The proposed FCNN outperforms the encoder-decoder-dropout model by 3.5% for mean

accuracy, 3.7% for mean IoU and 2.1% for mean precision. The higher performance achieved

by the proposed FCNN model proves, once more, the superiority of batch normalization

layers over dropout layers [40].

Despite the relatively low mean IoU, reported for the proposed FCNN model, for the

majority of the frames, the model did not produce labels outside the the neonate’s skin,

meaning that the low IoU mainly derives from mislabelled body parts and not from poor

skin identification performance. Also, a substantial difference between the segmentation

performance of the right and left side can be noted. This difference is caused by the un-

balanced nature of the Neonaten-Navpani dataset, where the majority of the neonates are

mostly lying with their head on the left side of the recording, making the left arm and leg

often farthest away from the camera and often hidden behind the remaining body parts,

thus hindering the proper training of the left arm and leg classes.
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Qualitative visual results of the proposed FCNN model are illustrated in Figure 6.12

and Figure 6.13. As shown in Figure 6.12, the model is able to successfully identify the

skin pixels belonging to the neonate and discard the skin pixels belonging to the hands and

arms of the clinical staff. Thus, the proposed model reveals a certain independence on colour

information. Additionally, the model shows a good performance in body part segmentation,

correctly labelling the skin pixels into one of the predefined six body part classes even

for challenging body positions and lightening conditions. Thinner and smaller body part

regions (e.g. foot that is separated from the continuous skin region of the leg by sensors and

cables) are also precisely labelled. The proposed model is also able to affectively distinguish

the right and the left when the neonate is in a supine position, despite the similar visual

appearance of the categories. Also, the body region boundaries are well preserved, proving

the effectiveness of using the shape information from early layers of the encoder-network to

recover fine spatial details (e.g. segmentation around cables, sensors).

On the other hand, as shown in Figure 6.13, the model is unable to correctly identify

the right and left arm if the neonate is in a prone position. Also, the incubator and the

breathing mask pose a challenge to accurate segmentation, which mainly derives from the

lack of training examples where these two components are present.

6.6.2.3 PASCAL human parts dataset and Freiburg sitting grey scale images
dataset

The evaluation of the model trained to select the ROI in IR recordings, will be per-

formed exclusively on the proposed FCNN model and on the model where a dropout layer is

employed instead of the batch normalization layer.

Contrary to RGB data, the proposed model achieves a worse class prediction performance

on the PASCAL human parts dataset and Freiburg sitting grey scale images dataset, when

compared with the encoder-decoder-dropout model. The latter outperforms the proposed

model by 8.5% and 14.4% in the overall mean IoU and accuracy, respectively (see Appendix

D.2.4). Thus, for a dataset with a reduced amount of information per image, the dropout

layer reveals a stronger regularization action, creating a more dependent and robust set of

parameters. Those parameters will lead to a better class prediction performance in a diverse

dataset, such as the PASCAL human parts dataset.

The class prediction performance of the models for grey scale images is lower when

compared with the class prediction performance for RGB images, given the lower number

of degrees of freedom in the input information. Note that the proposed FCNN model yields

a higher decrease in class prediction performance, specially for thinner classes such as the

right and left leg and right and left arm.

6.6.2.4 Neonaten-Navpani-IR dataset

In this Section, the success of the image manipulation techniques employed in the

construction of the two Neonaten-Navpani-IR datasets is analysed. Note that both datasets
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(a) input frame (b) ground truth (c) prediction (d) input frame (e) ground truth (f) prediction

Figure 6.12: Qualitative results of the proposed FCNN model for simultaneous skin and
body part semantic segmentation. All the input images have the same image resolution
as the training dataset. The model shows a good performance, particularly with its ability
to identify the neonate and its body parts within a variety of positions. Additionally, the
model successfully ignores the hands and arms of the clinical staff which highlights a certain
independence on colour information.

comprise true IR images and manipulated RGB images. For testing, only true IR images

are employed. The experiments are conducted relying on the proposed FCNN model and on

the encoder-decoder-dropout model.

The class prediction performance of both models is higher when they are trained on

the Neonaten-Navpani-IR dataset where the red channel of the RGB images is further

manipulated (see Appendix D.2.5). Thus, the histogram manipulation of the RGB images

red channel is a better approximation to true IR images than the raw red channel. An

experiment where only IR images are employed during training needs to be conducted to

extract further conclusions.

The stronger regularization action of the dropout layer, when there is less information

per image available, is further emphasized when comparing the difference in class predic-

tion performance of the considered models between the two Neonaten-Navpani-IR datasets.

The difference for the encoder-decoder-dropout model does not surpass the 2% for all the

evaluation metrics. Whereas, for the proposed FCNN model, the difference reaches the

13% for overall mean precision. Thus, the encoder-decoder-dropout model is able to better
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(a) input frame (b) ground truth (c) prediction

Figure 6.13: Qualitative failure results of the proposed CNN model for simultaneous skin
and body part semantic segmentation. All the input images have the same image resolution
as the training dataset. The model shows an inability to correctly label the left arm if the
neonate is in a prone position, labelling it as right arm. Additionally, the breathing mask
hinder the correct labelling of the head.
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generalize its weights and therefore have a better class prediction performance when using

a dataset where grey scale images comprise very distinct pixel values from those of testing

images (true IR frames).

(a) input frame (b) ground truth (c) prediction

Figure 6.14: Qualitative results of the proposed CNN model for simultaneous skin and body
part semantic segmentation on testing IR frames.

Despite the higher encoder-decoder-dropout model’s ability to better generalize its learn-

able parameters, the proposed FCNN model still outperforms the encoder-decoder-dropout

model by 3.5% on the overall mean precision for the Neonaten-Navpani-IR-manipulated

dataset where histogram manipulation is applied to the red channel of Neonaten-Navpani-

RGB images. Thus, and despite the reduced number of testing images per fold, which limits

the formulation of a generalized conclusion, the proposed FCNN seems to be more indicated
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for ROI selection, where precision is one of the key elements for successful PPGI extrac-

tion. The class prediction performance of the proposed FCNN model for each fold on the

aforementioned Neonaten-Navpani-IR is reported in Appendix D.2.5.

Despite the efforts to adapt the Neonaten-Navpani-RGB dataset to resemble IR im-

ages, the class prediction performance of the proposed model trained on the manipulated

Neonaten-Navpani-IR dataset is still low compared with the class prediction performance of

the model trained on the Neonaten-Navpani-RGB dataset. A higher class prediction perfor-

mance would be achieved if the model was only trained with IR images. However, similarly

to what happened with the model trained on the PASCAL human parts and Freiburg sitting

people grey images dataset, the class prediction performance is expected to be lower given

the lack of colour information.

Qualitative visual results of the proposed FCNN model trained on the Neonaten-Navpani-

IR-manipulated on IR images are illustrated in Figure 6.14. As shown in the figure, the

model is able to identify the skin pixels for despite the lack of colour information. However,

the model reveals some difficulties in labelling the skin pixels into the correct body part

classes.

6.6.3 Impact of Transfer Learning

In this Section the effect of transfer learning is studied, relying exclusively on the

proposed FCNN model. Experiments are carried out where the training on the Neonaten-

Navpani-RGB dataset starts from the weights of the model trained on the PASCAL human

parts and Freiburg sitting RGB dataset and where the training on the Neonaten-Navpani-

RGB dataset starts from the pre-trained weights of ResNet-50, for the image classification

task on the ImageNet dataset.

When no transfer learning is employed, the individual and overall class prediction per-

formance is much worse, specially on thinner classes such as arms and legs, due to poor

generalization (see Appendix D.2.6). When the weights of the model trained on the PASCAL

human parts and Freiburg sitting RGB dataset are used as a starting point, the mean IoU

improves from 19% to 50 %, showing that transfer learning is essential when training deep

learning models on small and challenging datasets.

Besides the substantial improvement in the final class prediction performance, leverag-

ing knowledge from the general human body part segmentation task revealed to improve

the learning process of the proposed model in two more aspects. Firstly, the initial prediction

performance achieved on the test Neonaten-Navpani dataset is significantly higher when

compared with the non pre-trained model. The latter indicates that the human body parts

segmentation task is highly related to the simultaneous skin and body parts segmenta-

tion task. Secondly, despite the unchanged learning rate, the pre-trained model is able to

achieve a higher prediction performance in a lower number of epochs. These three aspects

are pointed in [76] as indicators of positive transfer learning. Figure 6.15 illustrates the

aforementioned indicators.
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Figure 6.15: Mean accuracy vs. training epoch. This graph shows the evolution of the
mean accuracy for the pre-trained and non pre-trained encoder-decoder-batchnorm model
during the training on second fold of the Neonaten-Navpani dataset. The graph emphasizes
the three benefits of transfer learning: the initial mean accuracy of the pre-trained model
is higher than the mean accuracy of the non pre-trained model, the pre-trained model
mean accuracy evolution reveals a higher slope indicating a higher rate of performance
improvement and the higher asymptote of the pre-trained model mean accuracy indicates a
higher performance after reaching the global optimal solution.

6.6.4 Effect of Data Augmentation

To examine the impact of data augmentation, an additional experiment is conducted

where the network is fine-tuned with the Neonaten-Navpani-RGB dataset without resorting

to data augmentation methods.

An overall performance of 54.6% mean IoU is obtained which is 5% more than the

performance achieved when the model is fine-tuned using data augmentation methods. The

latter contradicts the intuition that data augmentation always leads to an increase in the

class prediction performance. This contradiction mainly derives from the balanced nature

of the five folds, meaning that, despite the diversity of the Neonaten-Navpani dataset, the

balanced dataset distribution between the five folds allows the training of the model with

subjects similar to ones in which the model will be validated. Thus, the overfitting of the

model to the training examples leads to an improvement in the class prediction performance

of the model since validation and training examples are similar. On the other hand, the

data augmentation generalizes the learnable parameters of the model, leading to a poorer

class prediction performance in the validation examples. However, this generalization is

desirable to enable the model to accurately identify the ROIs in distinct subjects.
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6.6.5 Receptive Field Analysis

The proposed model exhibits the characteristic limitation of semantic image segmenta-

tion algorithms based on FCNNs [59]. The network fixed receptive field size makes it unable

to handle multiple object scales. Thus, subjects that are too small with respect to the size

of the receptive field are often classified as background. The latter limitation is illustrated

in Figure 6.16. However, for the Neonaten-Navpani dataset, the described limitation is not

relevant since subjects have a favourable and fairly constant scale.

(a) input frame (b) ground truth (c) prediction

Figure 6.16: Qualitative results of the proposed FCNN model, trained on the PASCAL
human parts and Freiburg sitting people dataset. The model shows an inability to identify
subjects that are too small with respect to the size of the receptive field, labelling them
as background. The first line illustrates the latter limitation: the model is not able to
correctly identify the body parts of the subjects that have a small scale. The second line is
the prediction of the first image after zooming, to prove that the model is able to correctly
label and identify the body parts when the same subjects have a favourable scale. Note that
the illustrated input images have the same resolution as the training images, 320×320.

Despite the fixed receptive field size, the context information that each neuron capture

from the input image can be changed by varying the input image resolution. Experiments

were carried out where the proposed FCNN model is trained on the Neonaten-Navpani-

RGB dataset using three different input resolutions: 288×480, 576×960 and 1184×1920.

The model yields substantially better class prediction performance for the intermediate

resolution (see Appendix D.2.8) outperforming the higher and lower resolution by 12.5%

and 4.4% for the mean IoU, respectively. For the higher resolution, the receptive field of

the model is not sufficiently large to capture the global context of the input image, whereas,

for the lower resolution, the receptive field of the model is to wide, including a excessively

large neighbourhood. Particularly noteworthy is that, despite the scales being equal in

absolute, the results of having a excessively small receptive field are far more worse than

having a excessively large receptive field. The described receptive field analysis is valid for

the Neonaten-Navpani dataset, where all the subjects have a relative constant size in the
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images.

6.6.6 Refinement Algorithm

As mentioned in Section 6.4, the refinement algorithm aims to improve the body part

segmentation overall performance. In this section, the effect of this new post-processing

method is quantitatively measured. Note that the proposed refinement algorithm will not

improve the class prediction accuracy. Instead, it will improve the IoU and precision metrics

by converting the mislabelled pixels into background, thus reducing the number of FP. For

the sake of simplicity, only the mean IoU and the mean precision across the 31 subjects are

reported in Table 6.7, the box plot comparing the precision percentage obtained before and

after the refinement algorithm is presented in the appendix.

Table 6.7: Quantitative results on the Neonaten-Navpani-RGB dataset before and after
the application of the refinement algorithm. The reported results for each class correspond
to the mean IoU and mean precision across the 31 subjects. Note that the results before
the refinement are collected after the pre-processing procedure, where residual isolated
segments are eliminated. The latter justifies the difference between the results presented
in Table D.4 and the results in the present table.
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Before refinement 89 38 52 39 60 42 97 53 66 48 82 57 53 67
After refinement 89 38 57 44 60 42 98 53 73 55 82 57 55 70

Table 6.7 shows that the refinement algorithm substantially boosts the class prediction

performance of the proposed FCNN, offering a 5% absolute increase in the mean IoU and a

7% absolute increase in the mean precision of the right and left arm class. For the remaining

four classes no substantial difference was attained. Besides the head class, where the

mean accuracy across all the subjects suffered a decrease of 1%, the mean accuracy for

the remaining body part classes remains unchanged after the application of the refinement

algorithm.

The performance increase does not occur for all subjects: for recordings where only one

instance per class is present, the application of the refinement algorithm does not affect the

class prediction performance. On the other hand, for the remaining subjects, the refinement

algorithm yields consistent improvements over the baseline model. For example, for subject

S009_S006 (Figure 6.17 fourth line), the refinement algorithm yields about 8% improvement
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in both IoU and precision for the head class, and a 8% and 10% improvement in the IoU and

precision, respectively, for the right arm class.

(a) input frame (b) before refinement (c) after refinement

Figure 6.17: Qualitative results of the refinement algorithm.

Qualitative visual comparisons of the proposed FCNN model’s results before and after

the refinement algorithm are illustrated in Figure 6.17. The segmentation results of the

proposed FCNN before the application of the refinement algorithm include the segmenta-

tion of body parts that do not belong to the neonate. Employing the refinement algorithm

further improves the performance by removing the false positive body parts and isolated

segmentations.

Despite the great results of the refinement algorithm as a post-processing method, its
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Figure 6.18: Mean IOU vs. training epoch. This graph shows the evolution of the mean
IOU of the proposed FCNN model on the Neonaten-Navpani-RGB training and validation
dataset during the training on the first fold.

parameters were manually optimized to fit the Neonaten-Navpani dataset, where the size of

the subjects in the field of view are approximately constant across the different recordings.

Thus, the refinement algorithm results can not be generalized to larger and more diverge

dataset, such as the PASCAL human parts dataset, where the subjects appear at different

scales.

6.6.7 Network Training

6.6.7.1 RGB model

In the pre-training stage, where the proposed FCNN model is trained on the PASCAL hu-

man parts and Freiburg sitting people RGB dataset, the model converges to global optimal

solution after approximately epoch 300, using a batch size of six. The training takes ap-

proximately 50 hours on Google Colab. The amount of time required for the proposed model

to converge is substantially low, when compared with the 240 hours required to train the

model proposed by Oliveira et al. on the same dataset.

In the fine-tuning stage, where the proposed FCNN model is trained on the Neonaten-

Navpani-RGB dataset, the model converges to global optimal solution after approximately

epoch 100, using a batch size of three. The training takes approximately 9 hours on the

workstation. Note that the fine-tuning stage is repeated five times, one for each fold. Thus,

the five models take around 95 hours to train.

The evolution of the overall mean IoU of the Neonaten-Navpani-RGB training and

validation dataset during the training process is shown in Figure 6.18.
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Figure 6.19: Mean IoU vs. training epoch. This graph shows the evolution of the mean
IoU of the proposed FCNN model on the Neonaten-Navpani-IR-manipulated training and
validation dataset during the training on the first fold..

6.6.7.2 IR model

In the pre-training stage, where the proposed FCNN model is trained on the PASCAL

human parts and Freiburg sitting people grey images dataset, the model converges to global

optimal solution after approximately epoch 450, using a batch size of three. The training

takes approximately 75 hours on Google Colab.

In the fine-tuning stage, where the proposed FCNN model is trained on the Neonaten-

Navpani-IR-manipulated dataset, the model converges to global optimal solution after ap-

proximately epoch 90, using a batch size of three. The training takes approximately 7.5

hours on the workstation. Note that the fine-tuning stage is repeated five times, one for

each fold. Thus, the five models take around 112.5 hours to train.

The evolution of the overall mean IoU of the Neonaten-Navpani-IR-manipulated training

and validation dataset during the training process is shown in Figure 6.19.
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6.7 Discussion

The proposed FCNN model produces semantic segmentation masks that are progres-

sively refined across the decoder network in a coarse-to-fine manner. During this process,

intermediate feature maps from the encoder network are incorporated to progressively re-

cover the fine details in the produced segmentation mask. A new architecture feature was

introduced, the batch normalization layer, that replaces the dropout layer. Additionally,

the ResNet-50 was introduced to replace the traditional VGG-16. Experimental results on

several computational effort indicators proved the computational efficiency of the proposed

model both in terms of computational efficiency but also in terms of memory usage. Thus,

making the model appropriate to address the ROI selection task at real time, which was one

of the primary motivations behind its design. However, contrary to previous works, there

was a class prediction performance decrease when replacing the VGG-16 for the ResNet-50.

To justify the latter statement new tests need to be conducted, however, the end-to-end

training procedure could be the main factor behind the class prediction performance discrep-

ancy since, as pointed in [5], the multi-stage training procedure employed by Oliveira et al.

enables the model to achieve higher accuracy.

Despite the discouraging results on the PASCAL human parts and Feiburg sitting

dataset, the proposed model revealed good segmentation results on the Neonaten-Navpani-

RGB dataset being robust to various skin tones, body position and locations (e.g. incubator

or infant radiant warmer) and routine interactions of clinical staff. Despite the lower class

prediction performance for the Neonaten-Navpani-IR dataset the model also revealed good

results given the fact that colour information is not present. Applying the refinement algo-

rithm leads to a class prediction improvement.

Worth noticing is the high precision of the head class both for the RGB and IR model

(80% and 62%, respectively), which is the most common area to extract the PPGI signal in

adults [77] [64] [47].

In future work, more subjects should be included to further generalize the parameters of

the model. Also, the downsampling of the ground truth masks during the training process,

to match the size of the input frame, was not a good practice. As pointed in [17], the

downsampling process removes the fine annotations which leads to no back-propagation of

fine structure details. Instead, the segmentation masks provided by the FCNN should be

upsampled to match the original resolution of the ground truth masks which, in turn, is the

resolution of the recordings’ frames.

Overall, this new method for ROI selection is capable of tracking multiple possible

measurement areas for continuous extraction of the PPGI signal. The PPGI extraction will

be conducted by the proposed FCNN model, pre-trained on the PASCAL human parts and

Freiburg sitting people dataset and further fine-tuned on the Neonaten-Navpani dataset

with images with a quarter-resolution of the neonates’ recordings frames.
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Chapter Seven

PPGI and Heart Rate Extraction

The current chapter’s aim is to prove that the new developed model for ROI selection pro-

vides the necessary measuring sites for HR assessment. Section 7.1.1 presents the algorithm

to extract the PPGI signals. The proposed algorithm to compute the HR is described in Sec-

tion 7.1.2. The results are presented in Section 7.2 and discussed in Section 7.3.
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7.1 Methodology

The current approach to address the HR estimation through RGB and IR video record-

ings is based on the fact that subtle changes in the skin’s reflected light accompany the

blood volume fluctuations of superficial blood vessels due to the cardiac cycle. The approach

takes a sequence of frames of a neonate as input and returns a HR value. The first step

of the proposed method comprises the automatic selection of the ROIs for each frame, i.e

the identification of the neonate’s skin pixels and their simultaneous classification into one

of the predefined body parts. To this end, the method proposed in Chapter 6 is employed.

From the tracked individual measurement areas, individual PPGI signals are extracted. For

each PPGI signal, a quality index based on the signal’s frequency spectrum is calculated,

reflecting the likelihood of containing HR information. A new PPGI signal is computed

based on the weighted fusion of the extracted PPGI signals. The HR value will be computed

from the PPGI signal with the highest quality index. The selected PPGI is filtered to remove

signal fluctuations originated by external sources. To identify the HR, the wavelet syn-

chrosqueezed transform is analysed. The main steps necessary to compute the HR through

video recordings are further detailed forthwith.

7.1.1 PPGI Signal Extraction

The PPGI signal extraction comprises the computation of the average intensity for the

pixels within the identified ROIs. The average intensity of each ROI is computed for each

frame of the neonate’s recording according to Equation 7.1.

PPGIi(t)=
∑

ROI Ix,y(t)
N

(7.1)

where N corresponds to the number of pixels inside the ROI and Ix,y(t) corresponds to

the value of the pixel positioned in the coordinates x and y in the two dimensional grid

I(t). I(t) corresponds to the difference between the green and red channel of the frame

at time t. The first contains the strongest PPGI signal amongst the remaining channels,

that better correlates with the HR. The second, whose amplitude is poorly modulated by

the changes in the blood volume in superficial blood vessels [19], cancels the illumination

intensity changes due to external factors, that are present in both green and red channel

[1] [77] (see Figure 7.1). The average pixels’ intensity within each ROI for all frames forms

the PPGI signals, PPGI i(t), where i ∈ {1, ...,8} indexes the eight identified ROIs: six ROIs

identified by the FCNN and the two extra ROIs. The notation used for i is explained in

Appendix E.1.1. Thus, for each ROI, a PPGI signal is computed.

The mean intensity fluctuations that accompany blood volume changes within the car-

diac cycle are more visible in raw uncompressed video data. Thus, the green and red channel

used to compute I are the raw uncompressed channels after the demosaicing process at the

original resolution of 1200×1920 and a frame rate of 25 fps.
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Figure 7.1: From top to bottom: average of the head’s pixels’ intensity from the green, red
and blue channels. At the bottom: average of the head’s pixels’ intensity from the two
dimensional grid originated by the difference between the green and red channel, I(t). The
signals were extracted from the subject S009_S012.

The PPGI extraction was implemented in Python, specifically using the Pytorch library

[61].

7.1.1.1 Extra ROI

The proposed method for ROI selection identifies the head of the neonate as a measuring

site. However, structures that do not contain HR information (e.g. eyes and hair) are in-

cluded in the identified head region. Additionally, there is a uneven distribution of the blood

carrying capillaries density in the head’s skin region, which means that the total amount

of blood volume change within a cardiac cycle will depend on the skin region. Thus, the

strength of the PPGI signal component that is modulated by the blood volume fluctuations

will vary according to the head’s skin region. For instance, the forehead region has a high

blood perfusion when compared with other skin regions [27] and therefore usually yields a

strong PPGI signal [47] [55].

When extracting the PPGI signal from the whole identified head region, regions with low

or absent blood perfusion are included, introducing noise into the signal. An algorithm to

further divide the identified head region into two segments is developed in order to include

two extra ROIs to address the aforementioned problem.

The method to define two extra ROIs is based on the head’s pixels’ intensity distribution

and creates two sets of pixels with similar reflected light values. The method starts by

computing the cumulative sum of the values of the head’s pixels’ intensity histogram. Then,

two limits are created: the lower limit which corresponds to the intensity value which is

higher than the intensity value of 20% of the total number of the head’s pixels and the upper
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limit which is higher than the intensity value of 80% of the total number of the head’s pixels.

Using the latter limits, two sets of pixels are created: the head middle section comprising

pixels whose intensity values are higher than the lower limit and lower than the higher

limit and the head lower section comprising pixels whose intensity values are lower than

the lower limit. Figure 7.2 illustrates the pixels’ head division.
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(a) Cumulative distribution of the head’s pixels’
intensity. The two vertical lines separate the three
sets of pixels.
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Figure 7.2: Illustration of the head’s division into three sets of pixels according to the head’s
pixels’ intensity distribution. The head lower section comprises the skin area around the
cheeks and nose of the neonate which are normally associated to a better PPGI signal quality
when compared with the signal provided by the remaining sets of pixels. The head upper
section will not be used given its poor correlation with the HR. Note that the intensity
values are originated from the two dimensional grid I(t)

.

7.1.1.2 Implementation Details

To minimize the processing time, the algorithm iteratively processes a batch of 15

frames at the time. Thus, the algorithm starts by loading 15 frames from the raw uncom-

pressed video file. After demosaicing, the algorithm creates 2 groups of images: a RGB 8-bit

image group, Hn, and a one channel 16-bit image group, In, corresponding to the difference

between the green and red channel of each considered frame. Note that n ∈ {1, ...,15}.

Both image groups are converted into Pytorch tensors and transferred to the GPU mem-

ory. The frames belonging to H are resized to a quarter of the original frames’ resolution
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and cropped equally from both sides to match the resolution of 576×960. Then, the H

tensor, of size 15×3×576×960, is fed into the proposed FCNN model for ROI selection. The

first prediction mask is processed by the refinement algorithm proposed in Section 6.4 to

originate segmentation masks, Ci where i ∈ {1, ...,6}. The output prediction masks, M, of

size 15×576×960, and the calibrations masks are then upsampled using nearest-neighbour

interpolation to a resolution of 1200×1920. Note that the domain of M ranges over seven

possible labels, p ∈ {0, ...,6}.

Figure 7.3: Illustration of the PPGI extraction steps.

For each Mn and their correspondent In, six PPGI values are computed, each correspond-

ing to a PPGI value from a body part. Note that if the body part class was not identified in

the frame Hn, its correspondent PPGI value is zero. The PPGI values are extracted follow-

ing Equation 7.1. Firstly, the mask Mn is divided into six binary segmentation masks, Mb
nk

,

containing the individual segmentation of each body part. The element-wise multiplication

of In, Ci and Mb
ni

followed by the sum of the result’s elements results in the numerator of the

Equation 7.1. The sum of the elements of Mb
ni

originates the denominator of the Equation

7.1. Thus, the division of the aforementioned values results in the average intensity value

at the moment t from the ROI i. The process is repeated for all the ROIs in the frame

and for all the frames of the loaded batch of images. Additionally, from the element wise

multiplication of Mb
n1

, Ci and In the two extra PPGI i values are computed relying on the

process described in Section 7.1.1.1. All the PPGI values are saved. Then, a new batch of

frames is loaded and the process of PPGI extraction is repeated.

The process of PPGI extraction takes, on average, 0.46 s per image on an NVIDIA Quadro

p4000 GPU. The latter processing time includes the FCNN model inference time and the

time of the computations mentioned in the current section. When the refinement algorithm

step is excluded, the average processing time decreases to 0.26 s per image. The reported

processing time can be further optimized.
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7.1.2 HR Estimation

The current section describes the procedures employed in the HR estimation process.

7.1.2.1 Quality Index

The strength of the PPGI signal is not homogenous throughout the skin pixels. As

previously observed [47] [49] [57], the signal quality varies depending on the body part

and skin region within the body part, according to the density of blood carriyng capillaries.

Figure 7.4 illustrates the difference in the PPGI signal quality for different ROIs.
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Figure 7.4: From top to bottom: average of the pixels’ intensity for the head, torso, right arm,
lef arm, right leg and left leg regions. The strenght of the PPGI signal varies according to
the body region: the signal extracted from the head yields a better quality when compared
with the signals originated from the remaining body regions.

Thus, there is a need to compute a quality index for each extracted PPGI signal that will

reflect the likelyhood of containing HR information and the quality of the signal itself. The

quality index will determine which ROIs will allow a better HR estimation and which ROIs

should be rejected. The quality index computation follows the method employed in [9].

For the quality index, the PPGI signals are bandpass filtered in order to remove the

signal’s components related to breathing-synchronous motion.

By knowing that blood volume changes within the cardiac cycle causes low amplitude

fluctuations in the average pixels’ intensity, when compared with the artefacts introduced
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by sudden changes in illumination (e.g. shadows caused by clinical staff movement), PPGI

signals can be rejected for HR estimation, within the studied time window, if large amplitude

changes are present. Thus, within the studied time window, the quality index is set to zero if

the difference between the minimum and maximum signal’s amplitude is greater than 100.

The latter threshold was optimized manually and it is based on the fact that the observed

PPGI component that is modulated by blood volume fluctuations does not surpass the ± 50

amplitude value, after filtering.

For the remaining PPGI signals, a quality index is computed relying on the fact that the

PPGI component that is modulated by the blood volume changes has a dominant frequency

corresponding to the HR. Therefore, the frequency components of a good PPGI signal should

be concentrated in a small frequency band centred in the HR, in the signal’s frequency spec-

trum. Frequency components outside the aforementioned small frequency band correspond

to noise in the PPGI signal. Based on this assumption, a quality index can be estimated by

computing the ratio of the power of the PPGI signal in turn of the HR to the power of the

noise in the bandpass filter range. Thus, the quality index can be defined as:

QI i(t)=


∫ fmax+b

fmax−b DFTi( f )d f∫ B2
B1 DFTi( f )d f−∫ fmax+b

fmax−b DFTi( f )d f
fmax ∈ [60bpm,170bpm]

0 otherwise
(7.2)

where DFTi( f ) denotes the DFT of the filtered PPGIi signal over the considered time

window. The interval [B1,B2] correspond to the passband frequency of the bandpass filter

and the interval [ fmax−b, fmax+b] denotes a small frequency band centred in the HR. Note

that the computed maximum frequency needs to be inside the HR’s physiological range to

be considered the HR. Otherwise, the quality index is set to zero. The parameter b was

manually optimized and set to 0.25 Hz.

Figure 7.5 shows eight seconds of the filtered PPGI signals from the head, torso and

left leg regions and their respective DFT and quality index. The DFTs illustrate how the

quality index is defined: the blue area corresponds to the numerator and the yellow area

corresponds to the denominator of Equation 7.2. By comparing the PPGI signals and their

respective quality indexes, it is evident that the quality index correctly reflects the quality

of the PPGI signal.

7.1.2.2 PPGI signal fusion

Following [74] [31] and [78], that state that the HR estimation is more reliable when

fusing the signals obtained from different skin regions, the PPGI signals extracted from the

different tracked measuring sites are combined through a weighted average, following the

signal fusion method proposed in [47]. The weights are determined by the computed quality

indexes.

Given the fact that blood reaches different skin regions at slightly different times, it

is expected to observe varying delays amongst the extracted PPGI signals from the six

different body parts. However, when calculating the cross-correlation between the PPGI
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Figure 7.5: Illustration of the quality index definition. The yellow area represents the
denominator and the blue area corresponds to the numerator of Equation 7.2. The PPGI
signal extracted from the head detains the higher quality index due to the fact that its
frequency spectrum consists of a clear peak at the HR physiological range and no significant
peaks at the remaining bandpass filter frequencies.

extracted from the head and the PPGI extracted from the torso and arms, no significant

time lag between the PPGI signals was found. The small delays between the PPGI signals

are lower than 20 ms and, for the frame rate of 25 Hz, can be neglected. Therefore, no

preprocessing methods are needed for the PPGI signal fusion step. Given the poor quality of

the PPGI signal extracted from the legs, no assumptions on the time lag between the PPGI

signals can be made. The cross-correlation plot of the aforementioned PPGI signals can be

consulted in Appendix E.2.1.

Thus, the PPGI signal fusion can be simply defined as:

fPPGI(t)=
n∑

i=1
GI i × ˆPPGIi(t) (7.3)

where GI i denotes the quality index for the ROI i, ˆPPGI i(t) denotes the filtered PPGI

signal from ROI i and n corresponds to eight, the maximum number of ROIs. The signal

fusion operation is illustrated in Figure 7.6.

7.1.2.3 Temporal Filtering

Not all frequencies present in the extracted signal reflect the blood volume fluctuations

due to cardiac activity: the camera sensors captures the PPGI signal mixed with light

fluctuations coming from different sources. For instance, frequencies bellow 1Hz, are caused

by breathing-synchronous motion (see Figure 7.7).
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Figure 7.6: From top to bottom: filtered PPGI signals from the head and left leg. At the
bottom: PPGI’s weighted average. Note that the PPGI’s weighted average reveals to be
worse than the PPGI signal from the head region. The latter can be attributed to the fact
that the PPGI signal from the legs mainly contain noise.

The normal heart rate of a neonate ranges from 1.7Hz to 2.8Hz or from 100 to 170

beats per minute. Therefore, the extracted PPGI signals are preprocessed by applying a

2th order Butterworth bandpass filter with lower and upper cutoff frequency of 1.5Hz and

5Hz, respectively. Note that the upper cutoff frequency corresponds to 300bpm which is

considerably higher than the physiological HR range of the neonates. The wide passband of

the aforementioned filter allows the preservation of the PPGI waveform shape maintaining

possible systolic and diastolic peaks.
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Figure 7.7: Raw PPGI signal extracted from the torso region of the neonate S009_S012
where PPGI fluctuations due to breathing-synchronous motion is visible.
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7.1.2.4 HR computation

The extraction of the HR from the PPGI signal relies on the analysis of the signal’s

time-frequency plane. To this end, the wavelet synchrosqueezed transform is employed

using the analytic Morlet wavelet. From the time-frequency plane, the maximum-energy

time-frequency ridge is computed providing the HR estimation. This method computes a

HR value for each signal sample.

7.1.2.5 Implementation details

All the steps necessary for the HR estimation are implemented in MATLAB (MATLAB

2019a, The MathWorks, Natick, 2019) and are summarized in the Appendix E.2.2.

The raw extracted PPGIi(t) signals are resampled to a sampling frequency of 100 and

are then bandpass filtered relying on a 12th order Butterworth filter with cutoff frequencies

set to 1Hz and 20Hz. The filtered signals, ˆPPGIi(t), will be used to compute a sequence of

quality indexes. A quality index is computed for each ˆPPGIi(t) at each second, using a eight

seconds window, with a seven seconds overlap.

The quality index, QI i, is computed relying on Equation 7.2 and following the description

in Section 7.1.2.1. After computing the quality indexes of the eight ROIs, the ˆPPGIi(t)

signals are combined using the weighted average (see Equation 7.6), forming the fused

PPGI, f PPGI(t). Then, a new quality index is computed from the eight seconds f PPGI(t).

The PPGI signal that yields the greater quality index amongst the ˆPPGI i(t) and the

f PPGI(t) will be used for HR estimation. The raw PPGIi(t) signals are filtered, ˆPPGI2
i (t),

following the specifications reported in Section 7.1.2.3. To extract the HR, the wavelet

synchrosqueezed transform is computed for the selected PPGI signal over the eight seconds

window. The HR estimation, for each signal sample, corresponds to the frequency with

maximum energy in the estimated spectrum.

Once HR sequence is computed, a median filter of 6 seconds was applied to the HR

estimates to reduce artefacts introduced by noise and motion.
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7.2 Results

In the current section, the performance of the proposed algorithm is described relying

on five RGB recordings. The remaining RGB and IR recordings are excluded due to bad

VGC settings or lack of reference HR.

The HR estimation performance was examined for two different scenarios. Firstly, the

HR estimation performance is analysed assuming that only the PPGI signal from the whole

head region is available. Then, the same analysis is performed using the nine computed

PPGI signals and the methods described in Section 7.1.2. Additionally, for each scenario,

an analysis where high intensity motion periods are excluded from evaluation is performed,

using the automatic movement evaluation method from Section 6.2.1.1.

7.2.1 Performance Metrics

To perform a complete analysis of the HR estimation, three performance indices are

considered: the RMSE, the MAE and the percentage of time in which there is an agreement

between the reference HR and the HR estimate provided by the extracted PPGI signal, with

a tolerance of ± 5 bpm. Within the latter percentage of time, the estimates are deemed to be

accurate. Note that the HR of a neonate is typical higher than 100 bpm thus, an error of 5

bpm corresponds to a 5 % difference which is not clinically significant. During bradycardia

episodes, the difference can rise to 7 %, considering a HR of 75 bpm.

7.2.2 Head

The performance results for each considered subject are listed in Table 7.1. When

analysing the complete recording, the RMSE averaged 18 ± 10 bpm. In addition, the MAE

was 10 ± 5 bpm and the mean percentage of accurate estimates was 71 %. If high motion

intensity periods are excluded from the evaluation, the RMSE improves to 13 ± 7 bpm; the

MAE improves to 6 ± 3 bpm and the mean percentage of accurate estimates improves to

78%.

Table 7.1: Performance of the proposed method for HR estimation relying on the PPGI
extracted from the head. HMI stands for high motion intensity. The first columns of the
RMSE, MAE and prediction accuracy columns are the results when the complete recording
is considered, the second columns refer to the results when HMI periods are excluded.

Patient ID Measurement Recording time HMI time RMSE MAE Prediction accuracy
[s] [s] [bpm] [bpm] % of time

S009_S009 1 587 105 31 18 17 8 61 67
S009_S010 1 587 55 17 16 8 7 68 70
S009_S012 1 587 21 3 2 2 1 97 98
S009_S014 1 587 522 19 18 12 8 59 77
S009_S016 2 587 79 18 12 9 5 70 78

Mean 18 13 10 6 71 78
SD 10 7 5 3 15 12
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Particularly, the recording of the neonate S009_S012 originated a PPGI signal that

provides a HR estimation that is perfectly correlated with the reference HR, having an

agreement with the reference HR 97% of the recording time. Figure 7.8 depicts a Bland-

Altman plot which compares the proposed method and the gold standard method for HR

estimation, for subject S009_S012. According to the results, the estimated mean difference

was 0.76 bpm and the limits of agreement ranged from -5.2 bpm to 6.7 bpm. Note that the

majority of the outliers are coloured in red, meaning that they correspond to HR estimates

during high motion intensity periods.
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Figure 7.8: Bland-Altman plot comparing the proposed method (HR PPGI) and the gold
standard method (HRreference) for HR estimation. The plot comprises the results from the
subject S009_S012. The graph shows a bias of 0.76 and the 95% limits of agreement range
from -5.2 bpm to 6.7 bpm.

Lastly, Figure 7.9 shows the HR estimated using the PPGI signal extracted from the

head region (blue line) as well as the reference HR (yellow line), and the respective time-

resolved motion intensity profile. Both signals are extracted from the recording of the

subject S009_S012. When analysing the figure, it is evident that the major discrepancy

between the HR estimated by the proposed method and the reference, at approximately

t = 430 s, coincides with a high motion intensity period. The latter visually empathises

the improvements in the HR estimation performance indices when excluding high motion

intensity intervals from the evaluation.

7.2.3 Multiple Regions of Interest

The performance results for each considered subject are listed in Appendix E.3.1. The

comparison between both monitoring modalities for the complete recording showed a RMSE

of 16 ± 9 bpm. In addition, the MAE was 10 ± 5 bpm and the mean percentage of accurate

estimates was 62 %. If high motion intensity periods are excluded from the evaluation, the

RMSE improves to 13 ± 7 bpm; the MAE improves to 8 ± 5 bpm and the mean percentage

of accurate estimates improves to 68%.
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Figure 7.9: Left graph: illustrative example showing the HR obtained from the head’s PPGI
signal (blue line) and the reference HR (yellow line). Right graph: Movement intensity vs.
time. The signals correspond to subject S009_S012.
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Figure 7.10: Left graph: illustrative example showing the HR obtained with the proposed
method (blue line) and the reference HR (yellow line). Right graph: Movement intensity vs.
time. The signals correspond to subject S009_S016.

Figure 7.10 shows the HR estimated with the proposed method (blue line) as well as the

reference HR (yellow line), and the respective time-resolved motion intensity profile. Both

signals are extracted from the recording of the subject S009_S016. Similarly to Figure 7.9, it

is evident that the major discrepancies between the HR estimated by the proposed method

and the reference coincides with a high motion intensity period.

7.2.4 Performance for Different Skin Tones

Darker skin usually poses a challenge to HR estimation due to an expected decrease in

the PPGI signal strength [1], when compared with the PPGI signals extracted from lighter

skin tones. This decrease results from the decrease in the amount of light that reaches the

pulsatile vessels due to higher light absorption by the epidermal melanin, that is present in

a higher concentration in subjects with a darker skin tone.
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From the evaluated subjects, three had dark skin and the remaining two had light brown

skin. Particularly, Figure 7.11 displays the filtered PPGI signals extracted from neonate

S009_S009 and neonate S009_S012. The first has a dark skin and the second has a light

brown skin. Despite the signals’ amplitude difference, the PPGI signal extracted from the

infant with a darker skin tone still reveals a high correlation with the HR. Thus, there is

an indication that the extraction of the HR relying on the proposed method still works well

with subjects with darker skin, when using the appropriate light conditions.
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Figure 7.11: Left: PPGI signal extracted from neonate S009_S009 which has a dark skin
tone. Right: PPGI signal extracted from neonate S009_S012 which has a light brown skin
tone. Both signals are extracted from the head region.
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7.3 Discussion

The findings presented in the current chapter validate the proposed FCNN model for

ROI selection by demonstrating that it is possible to accurately and continuously monitor

the HR of neonates relying on the automatically selected ROIs from RGB recordings. The

proposed method also demonstrates the feasibility of continuous non-contact HR monitoring

in a NICU environment without interfering in the patient clinical routines, using a video

camera. The method is based on the fact that the cyclical blood volume fluctuations causes

periodic changes in the light reflected from the skin. Note that, no conclusions upon IR

recordings can be made.

To test the viability of the proposed method for ROI selection, a pilot study involving

five neonates was conducted. The considered RGB recordings include periods of high motion

intensity as well as periods of patient care routine, where there is an interaction between the

neonate and the clinical staff. The HR assessment was tested for two scenarios. A scenario

where only the PPGI signal from the head region is used, and a scenario where the nine PPGI

signals and the method described in Section 7.1.2 are used. For both scenarios, outstanding

results were obtained. Both Table 7.1 and Table E.2 report an excellent agreement between

the HR estimated using the proposed method and the reference HR. However, for the first

scenario, best agreements between the HR estimations and the reference HR were obtained

for all considered neonates when compared with the results of the second scenario. The

latter indicates that including multiple measuring sites, besides the head region, do not

benefits the HR assessment and that the head region contains the strongest PPGI signal.

Additionally, the employed quality index reveals to be a good metric for PPGI signal quality

assessment, given the small discrepancy between the results of the first and second scenario.

Regarding the HR estimation scenario, the best results were achieved for neonate

S009_S012. Figure 7.8 shows the Bland-Altman plot for the aforementioned neonate RGB

recording HR measurements. The plot demonstrates not only a small bias (0.76 bpm) but

also the high precision that can be achieved by this HR monitoring technique. The latter

reinforces again an excellent agreement between the studied monitoring modalities.

As previously mentioned, the employed signal fusion method was based on the work of

Kumar et al. [47]. Kumar et al. fused PPGI signals from small ROIs placed on the head

region. On the other hand, in the present method, the fused PPGI signals are extracted

from multiple body parts and, despite the negligible delay, the originated fused PPGI signal

reveals a low signal quality when compared to the signal quality of the PPGI signal extracted

from the head region. Therefore, fusing PPGI signals from multiple body parts do not

benefits the HR assessment.

The addition of the two extra ROIs by further dividing the ROIhead did not improve

the HR estimation performance. Instead, the PPGI signals extracted from the extra ROIs

contained more artefacts and the PPGI component modulated by the arterial blood volume

fluctuations was almost extinguished. Thus, a better PPGI signal is obtained by averaging

all the pixels belonging to ROIhead, which leads to the cancellation of the asynchronous
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reflection component changes across the pixels belonging to ROIhead, and to the addiction of

the synchronous reflection component changes across the pixels originated from the blood

volume fluctuations.

The low lightning conditions in the NICU coupled with the frequent interactions of the

clinical staff, creating pronounced shadows, negatively affects the PPGI signal. Additionally,

despite the FCNN’s ability to successfully track the ROI across the frames during high

motion intensity movement periods, the neonate’s movement where the orientation of the

tracked skin with respect to the illumination sources changes (e.g. rotational movement)

causes the average intensity value to change dramatically due to changes in the dominant

light source that incidents the tracked skin region. As expected, significant improvements

in the HR estimation metrics are verified when high motion intensity periods are excluded

from the evaluation (see Table 7.1 and Table E.2). To address the challenge of accurate HR

extraction during high motion intensity periods, a more robust algorithm for HR extraction

needs to be developed combining, more efficiently, the PPGI signals from the static ROI.

Note that standard contact based monitoring techniques, such as PPG or ECG, also contain

signal artefacts during high motion intensity movement periods [46] and they are still the

primary method to access the HR in the NICU.

In general, this chapter demonstrates that the HR assessment is possible for RGB record-

ings relying on the ROIs proposed by the developed FCNN, as corroborated by the reported

results. Thus proving that HR monitoring through video cameras might be a proper alter-

native to adhesive electrodes in a NICU environment.
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Chapter Eight

Conclusions

Continuous monitoring of heart rate is fundamental in the routine care of a premature in-

fant, since changes in the vital parameters are often observed prior to major complications.

Despite the advances in neonatal monitoring, the standard methods for heart rate monitor-

ing rely on adhesive electrodes and sensors that are attached to the skin. In addition to

causing stress, these contact-based methods can damage the fragile skin of the premature

causing pain and possible infections. Therefore, the development of a robust remote heart

rate monitoring technique is a great contribute to neonatal monitoring. In this thesis, the

heart rate assessment is based on the photoplethysmography imaging technique.

The goal of this master thesis was to develop an automatic method for region of interest

selection in order to improve the robustness of heart rate estimation, under the difficult

NICU scenario. In this context, novel region of interest selection algorithms were developed,

whose feasibility was tested in two different datasets. In addition, signal processing methods

for heart rate estimation were implemented. The performance of heart rate estimation was

tested on a small set of subjects.

In Chapter 6 a Fully Convolutional Neural Network model was developed. Besides being

computationally efficient, the segmentation results demonstrated that this approach is ca-

pable of accurately identify the six predefined body parts within the RGB or IR frame, even

in challenging conditions. Particularly, the head yielded the best segmentation performance

with 89 % of precision for RGB data and 79 % of precision for IR data. Pre-training the

network on a general large dataset revealed to be extremely important to achieve a good

segmentation performance. The latter is a major finding as it can be broadly applied in other

networks’ training in the field of medicine, where large datasets are scarce. In addition,

a novel post-processing method was developed, aiming to eliminate body part instances

besides those from the premature. This method further improved the segmentation perfor-

mance (up to 40 % in some body parts) for recordings where the care taker or parents are

present in the field of view. The combination of the latter tools provide an evolution from

manual to automatic robust selection of the region of interest.

Chapter 7 presents two approaches for heart rate assessment through the measuring

sites provided by the developed region of interest selection methods. For both approaches,
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the heart rate prediction performance was evaluated on five RGB recordings. For IR record-

ings, the heart rate assessment performance was not evaluated. The first algorithm extracts

the heart rate using exclusively the photoplethysmography imaging signal from the head

region. In this single region of interest approach, simple signal processing methods were

used. The second algorithm extends form the first by considering not only the photoplethys-

mography imaging signal from the head region, but also photoplethysmography imaging

signal from the remaining five body parts. In this multiple region of interest approach the

heart rate is extracted from the measuring site with the highest signal quality. Despite

the fact that, in both approaches, there was a high agreement between the reference heart

rate and the estimated heart, the single region of interest approach had a slightly better

performance. Therefore, the head region, the body part which yields better segmentation

performance, is the best to estimate the heart rate.

Despite the small number of subjects in the heart rate estimation study, the main goal

of the experiments reported in Chapter 7 is to prove that the proposed method for automatic

region of interest selection provides the necessary measuring sites for heart rate assessment.

Additionally, the results prove the feasibility of photoplethysmography imaging, making it

an alternative for monitoring the heart rate remotely in newborn intensive care units. The

major challenge in such scenario is the constant body movements which lead to changes in

the light that incidents on the successfully tracked skin leading to amplitude fluctuations

on the photoplethysmography imaging signal. Thus, the recording settings have a major

impact on the signal quality.

In the future, more subjects should be included in the study and new datasets should be

created following the same experimental setup, meaning that the camera position would be

constant throughout the datasets. Ideally, the camera should be placed from an angle from

above, similarly to the setup adopted by Chaichulee et al. [14]. By improving the camera

setup, illumination, and location of the neonate within the field of view the impact of the

variability of illumination during motion should be diminished. Additionally, the next step

would comprise the development of a robust and computationally efficient signal processing

algorithm to assess the heart rate.

This thesis also plays a role in heart rate monitoring using IR recordings. Despite

the impossibility to evaluate the heart rate estimation performance through this kind of

recordings, the segmentation results revealed a great potential.

All in all, this thesis contributes with a robust algorithm for region of interest selection,

bringing photoplethysmography imaging one step closer to be as accurate as standard heart

rate monitoring methods. Thus, in the future, photoplethysmography imaging may play a

major role in neonatal remote monitoring, being a good alternative to adhesive electrodes.

In sum, the future incubator should be a cable-free incubator with an incorporated imaging

system. Despite the good progress towards remote heart rate assessment in neonatology,

there is still a long way to go.
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Appendix A

Medical Foundations of the thesis

A.1 Visible and Near-infrared Spectrum

The contrast between the reflection coefficient of blood and bloodless tissue attributes mainly

to the fact that all forms of the haemoglobin molecule present in the blood absorb light more

strongly than the remaining tissues [74].

Figure A.1: Optical properties of the skin in visible and near-infrared spectrum [80].
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Appendix B

Deep Learning

B.1 Rectified Linear Unit Function

The rectified linear unit function, or ReLU, is commonly used as the activation function

nowadays. This activation function computes the function f (x)= max(0, x), meaning that the

activation is zero if x < 0 otherwise, the function is linear with slope 1. When compared with

the Tanh and Sigmoid activation functions, the ReLU function accelerates the convergence

of stochastic gradient descent. Additionally, it is more computationally efficient. However,

this activation function is associated with the appearance of permanent inactivated units

due to irreversible weights update. Note that this problem can be addressed with a low

learning rate. [26]

Figure B.1: Rectified Linear Unit Function (ReLU) activation function.
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Appendix C

Clinical Study

C.1 Patient Data

Table C.1 presents the information of the 29 subjects enrolled in the study.

Table C.1: Patient information, including the patient ID, gender (M = Male, F = Female),
gestational age and weight. The first number in the patient ID corresponds to the study (1
= Neonaten, 9 = Navpani)

Patient ID Gender Gestational age Age at measurement time Weight at birth Weight at measurement time
[weeks] [days] [g] [g]

S001_S002 F 35 17 2060 -
S001_S003 F 32 24 1290 -
S001_S004 M 32 24 1490 -
S001_S005 M 24 241 710 -
S001_S006 M 27 42 680 -
S001_S007 F 30 28 645 1145
S001_S008 M 30 8 1000 995
S001_S009 F 27 31 1125 1515
S001_S010 M 30 29 1100 1630
S009_S001 M 38 19 3300 3220
S009_S002 F 39 5 2790 2670
S009_S003 F 37 10 2460 2410
S009_S004 F 38 2 2620 2490
S009_S005 F 38 7 2500 2260
S009_S006 F 37 7 2908 3130
S009_S007 M 37 16 2790 2630
S009_S008 M 38 7 3374 3250
S009_S009 F 28 77 - -
S009_S010 F 28 77 1020 2270
S009_S011 F 36 3 2300 2200
S009_S012 F 37 7 2646 2520
S009_S013 M 37 2 2020 1835
S009_S014 M 39 3 3004 2960
S009_S015 F 39 4 2680 2060
S009_S016 M 26 63 765 1720
S009_S017 F 30 29 1150 1320
S009_S018 F 39 4 2200 2230
S009_S019 M 31 1 2005 2000
S009_S020 F 29 1 2990 2800

Mean 33.4 27.2 1986.5 2228.7
SD 4.7 45.6 871.9 630.0
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Appendix D

Region of Interest Selection

D.1 Neonaten-Navpani Dataset Distribution in Folds

Table D.1 reports the distribution of the Neonaten-Navpani dataset RGB and IR frames for

each fold.

Table D.1: Summary of the dataset frames distribution in the five folds. M = Male, F =
Female, W = White, B = Black, WB = Mixed White and Black, Su = Supine, P = Prone, Si =
Side.

Fold nº of RGB dataset frames nº of IR dataset frames nº of RGB dataset frames nº of IR dataset frames
per skin colour per skin colour per lying position per lying position
B W BW B W BW Su P Si Su P Si

1 32 20 75 3 2 13 115 12 0 16 2 0
2 31 23 64 2 2 9 107 3 8 11 1 1
3 21 44 38 1 7 7 89 14 0 11 4 0
4 31 49 32 8 8 3 112 0 0 19 0 0
5 17 24 62 4 4 8 103 0 0 16 0 0

Total 132 160 271 18 23 40 526 29 8 73 7 1
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A P P E N D I X D. R E G I O N O F I N T E R E S T S E L E C T I O N

D.2 Evaluation

D.2.1 Computational Complexity

Table D.2 reports the number of FMAs required for a single forward pass for an image

with a resolution of 320×320.

The substantial increase of FMAs in the Oliveira et al. encoder-network with respect to

the FMAs of the regular VGG-16 (31.51 GFMAs) derives from the padding increase, from

one to 100, on the first convolutional layer of the network.

Table D.2: Total amount of FMAs and number of FMAs in the encoder and decoder network
for each considered model. The reported values correspond to the number of FMAs required
for a single forward pass for an image with a resolution of 320×320.

Method Total nº of FMAs (GFMAs) Nº of encoder FMAs (GFMAs) Nº of decoder FMAs (GFMAs)

Encoder-decoder-bilinear 8.44 8.40 0.04
Encoder-decoder-unconnected 8.42 8.40 0.02

Encoder-decoder-dropout 8.44 8.40 0.04
Encoder-decoder-batchnorm 8.44 8.40 0.04

Encoder-decoder-Oliveira 129.17 129.11 0.06
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D. 2 . E VA L UAT I O N

D.2.2 PASCAL Human Parts Dataset and Freiburg Sitting RGB Dataset

Quantitative results of the proposed FCNN model and Oliveira el al. model
Table D.3 compares the models’ class prediction performance on the PASCAL human

parts validation dataset.

Table D.3: Quantitative results on the validation RGB PASCAL human parts dataset. For
each method, the IoU for each class and the overall mean IoU and accuracy is reported.
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Encoder-decoder-batchnorm 65 55 18 36 44 53
Encoder-decoder-Oliveira 83 79 74 77 78 86
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A P P E N D I X D. R E G I O N O F I N T E R E S T S E L E C T I O N

Learning efficiency
Learning efficiency is a metric proposed by [12] that reflects the capacity of a architec-

ture to better utilise its parametric space. The learning efficiency reported in Figure D.1,

corresponds to the ratio between the top accuracy and the number of parameters of the con-

sidered architecture. For all the considered models, the verified top accuracy corresponds to

the accuracy for the head class.
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Figure D.1: Learning efficiency vs. model. The encoder-decoder-Oliveira detains the lower
learning efficiency. On the other hand, the encoder-decoder-batchnorm has the higher
learning efficiency, meaning that the model takes fully advantage of its small number of
parameters.
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D.2.3 Neonaten-Navpani-RGB Dataset

Table D.4 reports the class prediction performance of the proposed FCNN on the Neonaten-

Navpani-RGB dataset for the five folds.

Table D.4: Quantitative results of the proposed CNN model (Encoder-decoder-batchnorm)
on the Neonaten-Navpani-RGB dataset for the 5 folds. The training and validation images
are downsampled by a factor of two in both dimensions (i.e. 576×960).
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D.2.4 PASCAL Human Parts Dataset and Freiburg Sitting Grey Scale
Images Dataset

Table D.5 compares the class prediction performance of the proposed FCNN and the

encoder-decoder-dropout model on the PASCAL human parts dataset and Freiburg sitting

grey scale images dataset.

Table D.5: Quantitative results on the PASCAL human parts and Freiburg sitting validation
grey images dataset. For each method, the IoU and accuracy for each class and the mean IoU
and accuracy are reported. The Encoder-decoder-dropout, Oliveira et al. model, outperforms
the proposed FCNN on the thinner body part classes (arms and legs).
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Encoder-decoder-dropout 61 50 31 30 43 44 67 63 37 36 46 50 43 60
Encoder-decoder-batchnorm 63 52 17 15 29 32 71 65 11 14 34 32 35 45
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D.2.5 Neonaten-Navpani-IR Dataset

Neonaten-Navpani-IR datasets
Table D.6 compares the class prediction performance of the proposed FCNN model and

the encoder-decoder-dropout model on both the Neonaten-Navpani-IR datasets. Similarly

to the results reported in Section 6.6.2.2, the reported results are the combination of the

models’ validation results on each fold.
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Model results on the Neonaten-Navpani-IR-manipulated dataset
Table D.7 reports the class prediction performance of the proposed FCNN model on the

Neonaten-Navpani-IR-manipulated dataset for each fold.

Table D.7: Quantitative results of the proposed FCNN model on the Neonaten-Navpani-IR-
manipulated datasets for images of size 576×960. The mean IoU, accuracy and precision
are reported for each class. Additionally, the overall mean IoU, accuracy and precision are
reported.
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D.2.6 Impact of Transfer Learning

Table D.8: Quantitative results on the Neonaten-Navpani-RGB dataset. The reported IoU
and accuracy for each class corresponds to the mean IoU and mean accuracy of the five folds
for each class.
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Encoder-decoder-batchnorm 80 41 49 36 56 40 85 49 62 55 64 49 89 58 61 46 72 56 50 61 64
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D.2.7 Effect of Data Augmentation

Table D.9: Quantitative results on the Neonaten-Navpani-RGB dataset. The reported IoU
and accuracy for each class corresponds to the mean IoU and mean accuracy of the five folds
for each class.
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D.2.8 Receptive Field Analysis

In table D.10, the results of the proposed FCNN on the Neonaten-Navpani-RGB dataset

using different input image resolutions are displayed.

Table D.10: Quantitative results on the Neonaten-Navpani-RGB dataset when changing the
input image resolution. The reported results for each class corresponds to the mean IoU,
mean accuracy and mean precision of the five folds for each class.
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Encoder-decoder-batchnorm 576×960 80 41 49 35 56 40 85 49 62 55 64 49 89 58 61 46 72 56 50 61 64
Encoder-decoder-batchnorm 1184×1920 71 24 31 31 39 31 77 33 39 42 46 39 85 49 56 45 62 49 38 46 58
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D.2.9 Refinement Algorithm

The box plot of Figure D.2 compares the precision obtained before and after the application

of the refinement algorithm. The statistical analysis has demonstrated that the quartiles

for the head, torso, right and left leg classes do not change substantially before and after

the refinement algorithm application. However, for the right and left arm, the statistical

analysis revealed a generalized increase of the quartiles’ values for the results obtained

after the refinement algorithm when compared with those obtained before.
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Figure D.2: Box plot comparing the class prediction precision before (blue) and after (yellow)
the refinement algorithm application for each class.
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Appendix E

PPGI and Heart Rate Extraction

E.1 PPGI extraction

E.1.1 Notation

Table E.1: PPGI notation.

Body part i

Head 1
Torso 2
Right arm 3
Left arm 4
Right leg 5
Left leg 6
head lower section 7
head middle section 8
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E.2 HR Estimation

E.2.1 Cross-correlation Plots

Figure E.1: Cross-correlation plot between the PPGI extracted from the head and the PPGI
extracted from the torso.

E.2.2 Implementation Details

Algorithm 2: Quality index algorithm

procedure qualityindex( fmax,DFT, ˆPPGI1
i (win));

if (1.3< fmax < 4) and (max( ˆPPGI1
i (win))−min( ˆPPGI1

i (win))< 100) then
QI i ←Equation 7.2

end if
else

QI i ← 0
end if
return QI;
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Algorithm 3: HR estimation algorithm

procedure hrestimator(PPGIi(t)) ← Input: set of resampled raw PPGI signals;
ˆPPGI1

i (t)←Set of filtered PPGI signals;
ˆPPGI2

i (t)←Set of filtered PPGI signals;
W ←Lenght of the time window;
J ←Window jump;
L ← lenght(PPGIi(t));
for k : J : L−W +1 do

win ← k : k+W −1;
for i = 1 : 8 do

DFT←FFT( ˆPPGI1
i (win));

fmax ←max(DFT);

QI i ← qualityindex( fmax,DFT, ˆPPGI1
i (win));

f PPGI(win)← f PPGI(win)+ ˆPPGI1
i (win)×QI i;

end for
DFT←FFT( f PPGI(win));
fmax ←max(DFT);

QI9 ← qualityindex( fmax,DFT, ˆPPGI1
i (win));

gPPGI(t)←PPGI(t) with the higher QI;
SST←wavelet synchrosqueezed transform of gPPGI(t);
HR ←maximum energy time-frequency ridge per sample from SST;

end for
return HR;

125



A P P E N D I X E . P P G I A N D H E A R T R AT E E X T R A C T I O N

E.3 Results

E.3.1 Multiple Regions of Interest

Table E.2: Performance results of the proposed method for HR estimation relying exclusively
on the PPGI extracted from the head region. HMI stands for high motion intensity. The
first columns of the RMSE, MAE and prediction accuracy columns are the results when the
complete recording is considered, the second columns refer to the results when HMI periods
are excluded.

Patient ID Measurement Recording time HMI time RMSE MAE Prediction accuracy
[s] [s] [bpm] [bpm] % of time

S009_S009 1 587 105 26 17 16 9 54 62
S009_S010 1 587 55 20 20 15 15 43 43
S009_S012 1 587 21 3 3 2 2 94 95
S009_S014 1 587 522 15 14 9 7 57 71
S009_S016 2 587 79 13 11 9 6 63 69

Mean 16 13 10 8 62 68
SD 9 7 6 5 19 19
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