3,610 research outputs found

    Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG)

    Get PDF
    open13E. De Momi; C. Caborni; F. Cardinale; G. Casaceli; L. Castana; M. Cossu; R. Mai; F. Gozzo; S. Francione; L. Tassi; G. Lo Russo; L. Antiga; G. FerrignoDE MOMI, Elena; Caborni, Chiara; F., Cardinale; G., Casaceli; L., Castana; M., Cossu; R., Mai; F., Gozzo; S., Francione; L., Tassi; G., Lo Russo; L., Antiga; Ferrigno, Giancarl

    Retrospective evaluation and SEEG trajectory analysis for interactive multi-trajectory planner assistant

    Get PDF
    Purpose: Focal epilepsy is a neurological disease that can be surgically treated by removing area of the brain generating the seizures. The stereotactic electroencephalography (SEEG) procedure allows patient brain activity to be recorded in order to localize the onset of seizures through the placement of intracranial electrodes. The planning phase can be cumbersome and very time consuming, and no quantitative information is provided to neurosurgeons regarding the safety and efficacy of their trajectories. In this work, we present a novel architecture specifically designed to ease the SEEG trajectory planning using the 3D Slicer platform as a basis. Methods: Trajectories are automatically optimized following criteria like vessel distance and insertion angle. Multi-trajectory optimization and conflict resolution are optimized through a selective brute force approach based on a conflict graph construction. Additionally, electrode-specific optimization constraints can be defined, and an advanced verification module allows neurosurgeons to evaluate the feasibility of the trajectory. Results: A retrospective evaluation was performed using manually planned trajectories on 20 patients: the planning algorithm optimized and improved trajectories in 98% of cases. We were able to resolve and optimize the remaining 2% by applying electrode-specific constraints based on manual planning values. In addition, we found that the global parameters used discards 68% of the manual planned trajectories, even when they represent a safe clinical choice. Conclusions: Our approach improved manual planned trajectories in 98% of cases in terms of quantitative indexes, even when applying more conservative criteria with respect to actual clinical practice. The improved multi-trajectory strategy overcomes the previous work limitations and allows electrode optimization within a tolerable time span

    Automatic Computation of Electrodes Trajectory for Deep Brain Stimulation

    Get PDF
    International audienceIn this paper, we propose an approach to find the optimal position of an electrode, for assisting surgeons in planning Deep Brain Stimulation. We first show how we formalized the rules governing this surgical procedure into geometric constraints. Then we explain our method, using a formal geometric solver, and a template built from 15 MRIs, used to propose a space of possible solutions and the optimal one. We show our results for the retrospective study on 8 implantations from 4 patients, and compare them with the trajectory of the electrode that was actually implanted. The results show a slight difference with the reference trajectories, with a better evaluation for our proposition

    Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment.

    Get PDF
    PURPOSE: About one-third of individuals with focal epilepsy continue to have seizures despite optimal medical management. These patients are potentially curable with neurosurgery if the epileptogenic zone (EZ) can be identified and resected. Stereo-electroencephalography (SEEG) to record epileptic activity with intracranial depth electrodes may be required to identify the EZ. Each SEEG electrode trajectory, the path between the entry on the skull and the cerebral target, must be planned carefully to avoid trauma to blood vessels and conflicts between electrodes. In current clinical practice trajectories are determined manually, typically taking 2-3 h per patient (15 min per electrode). Manual planning (MP) aims to achieve an implantation plan with good coverage of the putative EZ, an optimal spatial resolution, and 3D distribution of electrodes. Computer-assisted planning tools can reduce planning time by quantifying trajectory suitability. METHODS: We present an automated multiple trajectory planning (MTP) algorithm to compute implantation plans. MTP uses dynamic programming to determine a set of plans. From this set a depth-first search algorithm finds a suitable plan. We compared our MTP algorithm to (a) MP and (b) an automated single trajectory planning (STP) algorithm on 18 patient plans containing 165 electrodes. RESULTS: MTP changed all 165 trajectories compared to MP. Changes resulted in lower risk (122), increased grey matter sampling (99), shorter length (92), and surgically preferred entry angles (113). MTP changed 42 % (69/165) trajectories compared to STP. Every plan had between 1 to 8 (median 3.5) trajectories changed to resolve electrode conflicts, resulting in surgically preferred plans. CONCLUSION: MTP is computationally efficient, determining implantation plans containing 7-12 electrodes within 1 min, compared to 2-3 h for MP

    Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control

    Get PDF
    BACKGROUND: The use of non-ionizing electric fields from low-intensity voltage sources (\u3c 10 V) to control malignant tumor growth is showing increasing potential as a cancer treatment modality. A method of applying these low-intensity electric fields using multiple implanted electrodes within or adjacent to tumor volumes has been termed as intratumoral modulation therapy (IMT). PURPOSE: This study explores advancements in the previously established IMT optimization algorithm, and the development of a custom treatment planning system for patient-specific IMT. The practicality of the treatment planning system is demonstrated by implementing the full optimization pipeline on a brain phantom with robotic electrode implantation, postoperative imaging, and treatment stimulation. METHODS: The integrated planning pipeline in 3D Slicer begins with importing and segmenting patient magnetic resonance images (MRI) or computed tomography (CT) images. The segmentation process is manual, followed by a semi-automatic smoothing step that allows the segmented brain and tumor mesh volumes to be smoothed and simplified by applying selected filters. Electrode trajectories are planned manually on the patient MRI or CT by selecting insertion and tip coordinates for a chosen number of electrodes. The electrode tip positions and stimulation parameters (phase shift and voltage) can then be optimized with the custom semi-automatic IMT optimization algorithm where users can select the prescription electric field, voltage amplitude limit, tissue electrical properties, nearby organs at risk, optimization parameters (electrode tip location, individual contact phase shift and voltage), desired field coverage percent, and field conformity optimization. Tables of optimization results are displayed, and the resulting electric field is visualized as a field-map superimposed on the MR or CT image, with 3D renderings of the brain, tumor, and electrodes. Optimized electrode coordinates are transferred to robotic electrode implantation software to enable planning and subsequent implantation of the electrodes at the desired trajectories. RESULTS: An IMT treatment planning system was developed that incorporates patient-specific MRI or CT, segmentation, volume smoothing, electrode trajectory planning, electrode tip location and stimulation parameter optimization, and results visualization. All previous manual pipeline steps operating on diverse software platforms were coalesced into a single semi-automated 3D Slicer-based user interface. Brain phantom validation of the full system implementation was successful in preoperative planning, robotic electrode implantation, and postoperative treatment planning to adjust stimulation parameters based on actual implant locations. Voltage measurements were obtained in the brain phantom to determine the electrical parameters of the phantom and validate the simulated electric field distribution. CONCLUSIONS: A custom treatment planning and implantation system for IMT has been developed in this study and validated on a phantom brain model, providing an essential step in advancing IMT technology toward future clinical safety and efficacy investigations

    Blisk blades manufacturing technologies analysis

    Get PDF
    Ponencia presentada a 8th Manufacturing Engineering Society International Conference, MESIC 2019, 19-21 June 2019, Madrid, SpainThe paper presents blisk blades manufactured by different manufacturing processes. In this sense, different milling trajectories are presented, and, super abrasive machining strategies and EDM technologies are also tested. Machining times, costs and surface finish are analysed in order to determine optimal machining process for blisk manufactured in low machinability materials.The authors wish to acknowledge the financial support received from HAZITEK program, from the Department of Economic Development and Infrastructures of the Basque Government and from FEDER founds, related to the projects with acronym HARDCRAFT and TURALOY. Besides, thanks are also addressed to the Vice chancellor of innovation, social compromise and cultural action from UPV/EHU (Bizialab program from Basque Government) and to Spanish Project MINECO RTC-2017-6039-5

    Previous, current, and future stereotactic EEG techniques for localising epileptic foci

    Get PDF
    INTRODUCTION: Drug-resistant focal epilepsy presents a significant morbidity burden globally, and epilepsy surgery has been shown to be an effective treatment modality. Therefore, accurate identification of the epileptogenic zone for surgery is crucial, and in those with unclear noninvasive data, stereoencephalography is required. AREAS COVERED: This review covers the history and current practices in the field of intracranial EEG, particularly analyzing how stereotactic image-guidance, robot-assisted navigation, and improved imaging techniques have increased the accuracy, scope, and use of SEEG globally. EXPERT OPINION: We provide a perspective on the future directions in the field, reviewing improvements in predicting electrode bending, image acquisition, machine learning and artificial intelligence, advances in surgical planning and visualization software and hardware. We also see the development of EEG analysis tools based on machine learning algorithms that are likely to work synergistically with neurophysiology experts and improve the efficiency of EEG and SEEG analysis and 3D visualization. Improving computer-assisted planning to minimize manual input from the surgeon, and seamless integration into an ergonomic and adaptive operating theater, incorporating hybrid microscopes, virtual and augmented reality is likely to be a significant area of improvement in the near future

    Blisk blades manufacturing technologies analysis

    Get PDF
    The paper presents blisk blades manufactured by different manufacturing processes. In this sense, different milling trajectories are presented, and, super abrasive machining strategies and EDM technologies are also tested. Machining times, costs and surface finish are analysed in order to determine optimal machining process for blisk manufactured in low machinability materials.RYC-2017-2264
    corecore