5,479 research outputs found

    Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm

    Full text link
    Short-pulse fibre lasers are a complex dynamical system possessing a broad space of operating states that can be accessed through control of cavity parameters. Determination of target regimes is a multi-parameter global optimisation problem. Here, we report the implementation of a genetic algorithm to intelligently locate optimum parameters for stable single-pulse mode-locking in a Figure-8 fibre laser, and fully automate the system turn-on procedure. Stable ultrashort pulses are repeatably achieved by employing a compound fitness function that monitors both temporal and spectral output properties of the laser. Our method of encoding photonics expertise into an algorithm and applying machine-learning principles paves the way to self-optimising `smart' optical technologies

    Optimizing single-mode collection from pointlike sources of single photons with adaptive optics

    Get PDF
    Army Research Office MURI on Hybrid Quantum Interactions Program W911NF09104.The collection efficiency of light from a point-like emitter may be extremely poor due to aberrations induced by collection optics and the emission distribution of the source. Analyzing the aberrant wavefront (e.g., with a Shack-Hartmann sensor) and correcting accordingly can be infeasible on the single-photon level. We present a technique that uses a genetic algorithm to control a deformable mirror for correcting wavefront aberrations in single-photon signals from point emitters. We apply our technique to both a simulated point source and a real InAs quantum dot, achieving coupling increases of up to 50x00025; and automatic reduction of system drift.PostprintPeer reviewe

    Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements.

    Get PDF
    PurposeTo investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON).MethodsAll patients with molecularly confirmed MON, i.e. Leber's Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections.ResultsMM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls.ConclusionThe prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces

    Intelligence of Astronomical Optical Telescope: Present Status and Future Perspectives

    Full text link
    Artificial intelligence technology has been widely used in astronomy, and new artificial intelligence technologies and application scenarios are constantly emerging. There have been a large number of papers reviewing the application of artificial intelligence technology in astronomy. However, relevant articles seldom mention telescope intelligence separately, and it is difficult to understand the current development status and research hotspots of telescope intelligence from these papers. This paper combines the development history of artificial intelligence technology and the difficulties of critical technologies of telescopes, comprehensively introduces the development and research hotspots of telescope intelligence, then conducts statistical analysis on various research directions of telescope intelligence and defines the research directions' merits. All kinds of research directions are evaluated, and the research trend of each telescope's intelligence is pointed out. Finally, according to the advantages of artificial intelligence technology and the development trend of telescopes, future research hotspots of telescope intelligence are given.Comment: 19 pages, 6 figure, for questions or comments, please email [email protected]

    Machine learning-based automated segmentation with a feedback loop for 3D synchrotron micro-CT

    Get PDF
    Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat die Grundlage für die Untersuchung der 3D-Struktur opaker Proben mit einer Auflösung im Mikrometerbereich und höher geschaffen. Dies führte zur Entwicklung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaffung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedenster Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer lebender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssysteme und Robotik ermöglichte die vollständige Automatisierung der Röntgenbildgebungsexperimente und die Kalibrierung der Parameter des Versuchsaufbaus während des Betriebs. Die Weiterentwicklung der digitalen Detektorsysteme führte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Empfindlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen führten zu einer beträchtlichen Steigerung des Durchsatzes des Bildgebungsprozesses, aber auf der anderen Seite begannen die Experimente eine wesentlich größere Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschließend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschritte den Weg für die Durchführung effizienterer Hochdurchsatzexperimente zur Untersuchung einer großen Anzahl von Proben, welche Datensätze von besserer Qualität produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein hoher Bedarf an einem effizienten, automatisierten Workflow für die Röntgendatenanalyse, welcher eine solche Datenlast bewältigen und wertvolle Erkenntnisse für die Fachexperten liefern kann. Die bestehenden Lösungen für einen solchen Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie für Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden. Daher sind sie nicht für Hochdurchsatzdatenströme optimiert und auch nicht in der Lage, die hierarchische Beschaffenheit von Proben zu nutzen. Die wichtigsten Beiträge der vorliegenden Arbeit sind ein neuer automatisierter Analyse-Workflow, der für die effiziente Verarbeitung heterogener Röntgendatensätze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperparameter für den spezifischen Datensatz zu finden. Für die Analyse von Faserstrukturen in Proben wurde eine neue, hochgradig parallelisierbare 3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept der emittierenden Strahlen basiert und eine präzisere morphologische Analyse ermöglicht. Alle entwickelten Methoden wurden gründlich an synthetischen Datensätzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungsbedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in der Lage ist, eine Reihe von Datensätzen ähnlicher Art zu verarbeiten. Darüber hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten Workflows und der Methoden vorgestellt und der Gemeinschaft als Module für die Sprache Python zur Verfügung gestellt. Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich für Mikro-CT-Datensätze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbesondere wurde dieser Arbeitsablauf für die Analyse der Medaka-Fisch-Datensätze angewandt, was eine automatisierte Segmentierung und anschließende morphologische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. Darüber hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der morphologischen Analyse von Polymergerüst-Datensätzen eingesetzt, um einen Herstellungsprozess in Richtung wünschenswerter Eigenschaften zu lenken

    Jacobian Methods for Dynamic Polarization Control in Optical Applications

    Full text link
    Dynamic polarization control (DPC) is beneficial for many optical applications. It uses adjustable waveplates to perform automatic polarization tracking and manipulation. Efficient algorithms are essential to realizing an endless polarization control process at high speed. However, the standard gradientbased algorithm is not well analyzed. Here we model the DPC with a Jacobian-based control theory framework that finds a lot in common with robot kinematics. We then give a detailed analysis of the condition of the Stokes vector gradient as a Jacobian matrix. We identify the multi-stage DPC as a redundant system enabling control algorithms with null-space operations. An efficient, reset-free algorithm can be found. We anticipate more customized DPC algorithms to follow the same framework in various optical systems

    Table of Contents

    Get PDF
    Contains the table of contents
    corecore