729 research outputs found

    Parallel 3D Fast Wavelet Transform comparison on CPUs and GPUs

    Get PDF
    We present in this paper several implementations of the 3D Fast Wavelet Transform (3D-FWT) on multicore CPUs and manycore GPUs. On the GPU side, we focus on CUDA and OpenCL programming to develop methods for an efficient mapping on manycores. On multicore CPUs, OpenMP and Pthreads are used as counterparts to maximize parallelism, and renowned techniques like tiling and blocking are exploited to optimize the use of memory. We evaluate these proposals and make a comparison between a new Fermi Tesla C2050 and an Intel Core 2 QuadQ6700. Speedups of the CUDA version are the best results, improving the execution times on CPU, ranging from 5.3x to 7.4x for different image sizes, and up to 81 times faster when communications are neglected. Meanwhile, OpenCL obtains solid gains which range from 2x factors on small frame sizes to 3x factors on larger ones

    Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous Processors

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of cores in a CPU-GPU heterogeneous processor. We first speculatively execute segmented sum operations on the GPU part of a heterogeneous processor and generate a possibly incorrect results. Then the CPU part of the same chip is triggered to re-arrange the predicted partial sums for a correct resulting vector. On three heterogeneous processors from Intel, AMD and nVidia, using 20 sparse matrices as a benchmark suite, the experimental results show that our method obtains significant performance improvement over the best existing CSR-based SpMV algorithms. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSRComment: 22 pages, 8 figures, Published at Parallel Computing (PARCO

    CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5Comment: 12 pages, 10 figures, In Proceedings of the 29th ACM International Conference on Supercomputing (ICS '15

    HIGH PERFORMANCE COMPUTING FOR RECONNAISSANCE APPLICATIONS

    Get PDF
    Parallel programming is vital to fully utilize the multicore architectures that dominate the processor market. The market, however, is constantly evolving, with new processors and new architectures getting released annually. Using an open parallel processing language, such as OpenCL (Open Computing Language), enables the use of a single program across multiple architectures. It also enables a method of evaluation between multiple devices so the best choice can be made for a given application. In this research, OpenCL is used to evaluate the performance of two signal processing algorithms across two graphics processing units and one central processing unit. Experimental results show that for each algorithm, a specific device can clearly be shown to outperform the others.Ensign, United States NavyApproved for public release; distribution is unlimited

    Portable performance on heterogeneous architectures

    Get PDF
    Trends in both consumer and high performance computing are bringing not only more cores, but also increased heterogeneity among the computational resources within a single machine. In many machines, one of the greatest computational resources is now their graphics coprocessors (GPUs), not just their primary CPUs. But GPU programming and memory models differ dramatically from conventional CPUs, and the relative performance characteristics of the different processors vary widely between machines. Different processors within a system often perform best with different algorithms and memory usage patterns, and achieving the best overall performance may require mapping portions of programs across all types of resources in the machine. To address the problem of efficiently programming machines with increasingly heterogeneous computational resources, we propose a programming model in which the best mapping of programs to processors and memories is determined empirically. Programs define choices in how their individual algorithms may work, and the compiler generates further choices in how they can map to CPU and GPU processors and memory systems. These choices are given to an empirical autotuning framework that allows the space of possible implementations to be searched at installation time. The rich choice space allows the autotuner to construct poly-algorithms that combine many different algorithmic techniques, using both the CPU and the GPU, to obtain better performance than any one technique alone. Experimental results show that algorithmic changes, and the varied use of both CPUs and GPUs, are necessary to obtain up to a 16.5x speedup over using a single program configuration for all architectures.United States. Dept. of Energy (Award DE-SC0005288)United States. Defense Advanced Research Projects Agency (Award HR0011-10-9-0009)National Science Foundation (U.S.) (Award CCF-0632997

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Refactoring for introducing and tuning parallelism for heterogeneous multicore machines in Erlang

    Get PDF
    This research has been generously supported by the European Union Framework 7 Para-Phrase project (IST-288570), EU Horizon 2020 projects RePhrase (H2020-ICT-2014-1), agreement number 644235; Teamplay (H2020-ICT 2017-1) agreement number 779882, and EPSRC Discovery, EP/P020631/1. EU COST Action IC1202: Timing Analysis On Code-Level (TACLe), and by a travel grant from EU HiPEAC.This paper presents semi‐automatic software refactorings to introduce and tune structured parallelism in sequential Erlang code, as well as to generate code for running computations on GPUs and possibly other accelerators. Our refactorings are based on the lapedo framework for programming heterogeneous multi‐core systems in Erlang. lapedo is based on the PaRTE refactoring tool and also contains (1) a set of hybrid skeletons that target both CPU and GPU processors, (2) novel refactorings for introducing and tuning parallelism, and (3) a tool to generate the GPU offloading and scheduling code in Erlang, which is used as a component of hybrid skeletons. We demonstrate, on four realistic use‐case applications, that we are able to refactor sequential code and produce heterogeneous parallel versions that can achieve significant and scalable speedups of up to 220 over the original sequential Erlang program on a 24‐core machine with a GPU.PostprintPeer reviewe
    corecore