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ABSTRACT 

Parallel programming is vital to fully utilize the multicore architectures that dominate the 

processor market. The market, however, is constantly evolving, with new processors and 

new architectures getting released annually. Using an open parallel processing language, 

such as OpenCL (Open Computing Language), enables the use of a single program across 

multiple architectures. It also enables a method of evaluation between multiple devices so 

the best choice can be made for a given application. In this research, OpenCL is used to 

evaluate the performance of two signal processing algorithms across two graphics 

processing units and one central processing unit. Experimental results show that for each 

algorithm, a specific device can clearly be shown to outperform the others. 
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EXECUTIVE SUMMARY 

Utilizing the most powerful computing equipment available is vital to processing 

the increasing amount of data collected by increasingly powerful sensors. The fast 

processing of collected data and the information required by the systems is vital to 

enabling the Navy to maintain its lead in control of the seas. Alternatively, utilizing more 

powerful but less expensive processors allows for a larger number to be utilized, 

potentially allowing for a wider area of coverage. The multitude of different processors 

available, and the multitude of architectures used by those processors, makes it difficult 

to determine what the most powerful computing equipment is for a given application 

without evaluation. 

Current processor architectures are almost entirely multicore. This allows for 

greater performance but also requires programming methods that are much different from 

standard, sequential programming. Open Computing Language (OpenCL) is a parallel 

programming language that contains a library of functions and data structures that serve 

as an open-source method for using the C language for parallel programming. The 

OpenCL developers leave the creation of the compiler for the language up to the 

processor manufacturers. Although this causes some fragmentation in the market, it 

enables each developer to focus on optimizing the library for their specific device 

architecture. 

Central processing units (CPUs) and graphics processing units (GPUs) are two of 

the devices present in virtually all modern computing systems. CPUs are the backbone of 

the majority of computing systems, while GPUs are the devices that enable the visual 

display of all the information provided by the system. As a result of their prevalence, 

there is strong competition between manufacturers to create the most powerful and least 

expensive device. They are, therefore, an important area for consideration as a 

component in a processing system. In this research, two GPUs and one CPU were 

evaluated. The CPU tested was the Intel Xeon E5-2643, while the two GPUs were both 

provided by NVIDIA. The GeForce GTX 650 is a “typical” GPU, while the Tesla K20c 

is a member of a family of GPUs designed solely for data processing.  
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For this research, two signal processing algorithms were used to evaluate the three 

processors. The Fourier transform is extremely important to signal processing, allowing 

for the determination of the frequencies present in the incoming signal. In the processing 

of acoustic data this is particularly important, as it is one of the few ways to discriminate 

between underwater targets. The fast Fourier transform (FFT) algorithm is one of the 

most efficient methods for calculating the Fourier transform on a finite sequence. 

Modulation is vital to communications as before a signal can be transmitted through any 

medium it must be modulated. Shift keying functions change a parameter of a carrier 

sinusoid, depending on the binary symbol to be transmitted. Binary phase-shift keying 

(BPSK) modulates the phase of the carrier wave using single binary bits as the 

modulating symbol. An FFT and BPSK algorithm were, therefore, both used to evaluate 

the three devices. This includes the inverse FFT and a BPSK demodulation algorithm. 

The two test algorithms delivered different results for the performance of the 

processors. In addition to requiring that an input signal be a power of two, the FFT 

algorithm did not operate on each of the devices at the test signal lengths. Due to device 

specifications, the CPU could not perform the algorithm for small signal lengths, while 

the two GPUs were unable to operate on large signal lengths.  For the operable signal 

lengths, however, the two GPUs vastly outperformed the CPU as expected. The GeForce, 

for the smaller signal lengths, outperformed the Tesla. This was contrary to the original 

hypothesis. The IFFT (inverse FFT) algorithm, as it only added a single function to scale 

the results of the FFT algorithm, performed similarly. 

When simulating the BPSK algorithm for a large amount of data, the GeForce 

performed the slowest of the three devices. The Tesla performed the fastest and required 

time on the order of milliseconds. With a limited but more realistic set of parameters for 

the modulation scheme, the GeForce and CPU outperform the Tesla for a brief period. 

The CPU performance, however, is hurt by its necessity to act as the host of the 

application, performing computations that the GPUs do not need to perform. The 

demodulation algorithm performed similarly to the forward modulation. 

An additional application was used to evaluate the performance of the devices, a 

combination of the two algorithms and their inverse. A number of test sequences were 



 xvii 

sent through BPSK modulator, the FFT, the IFFT, and the BPSK demodulator. Here the 

performance closely aligned with the same trend of the performance of the FFT 

algorithm, with the CPU performing worst and the GeForce outperforming the Tesla 

when a smaller number of symbols was used. 

It is clear from the results that the performance of the devices is strongly affected 

by the algorithm used. In this case, although the Tesla performance was not the best in 

every situation, it was consistent. In certain situations, this is more important than 

occasional higher performance. In addition, cost must sometimes be considered. The 

Tesla costs $3,000 while the GeForce costs only $300. Either way, it is necessary for the 

specific algorithm that is to be employed get tested. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

In order to maintain its lead in sea control, it is necessary for the U.S. Navy to 

utilize the most powerful computing equipment available. Architectural differences in the 

various processors available, however, make it difficult to determine what the best 

computing equipment would be for a given application. Also, the ever-evolving 

technology market can make certain hardware obsolete within 18 months. It is clearly 

necessary to evaluate the available options prior to hardware selection. Using an open 

computer language for the testing platform allows for less expensive software 

development. Utilizing commercial off-the-shelf (COTS) processors as the hardware 

devices can provide a suitable, relatively inexpensive solution to the problem of the 

constantly changing market. 

B. PROJECT GOAL 

The goal of this research is to determine which of the three provided processors is 

best suited to perform two specific signal processing algorithms. Ideally, a single device 

will clearly outperform the others, making for a clear decision. Realistically, of course, 

this may not be the case. 

C. MOTIVATION 

In warfare, one of the key areas where processing data is important is signals 

intelligence (SIGINT). Maintaining an advantage in the area of SIGINT is vital to 

preserving spectral dominance. In the area of SIGINT, it is necessary to process the large 

amount of data that is received. Although ideally data processing and interpretation are 

always done as quickly as possible, speed is especially important in warfare. Decrypting 

a received or intercepted signal could be a matter of life or death. 

Acoustics is another area that supplies a large amount of data that is required to be 

processed. This is increasingly true as sensors continue to become more powerful. The 

ability of sensors to collect more and more data directly correlates to a need to process 
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more and more data. However, it is unmistakably undesirable for the increase in data to 

also lead to an increase in the time it takes to process the data. It is essential, therefore, to 

update the hardware that processes the incoming data at the same time that the sensors 

collecting the data are upgraded. 

In December of 2004, Chief of Naval Operations Admiral Vernon Clark approved 

the release of a document outlying the general vision of the U.S. Navy’s newest concept 

of operations (CONOPS) for antisubmarine warfare (ASW). Inside the CONOPS, the use 

of a distributed network of miniaturized sensors is described several times [1]. Utilizing 

such a network of sensors would improve the understanding that warfighters have of the 

theater in which they are operating [2]. In order to create this type of network, it would 

likely be necessary to utilize small, high-performance processors that can do a large 

amount of the associated data processing necessary prior to that data getting sent to a 

collector for further analysis. 

Finally, it is not just necessary to be able to process more data from external 

collectors. As technology continues to play an increasingly large role in all areas, it is 

necessary to improve the level of performance at which that technology operates. 

Submarines, for example, are now utilizing digital photonics masts in place of more 

traditional periscopes. This requires a large amount of processing capability. 

D. RELATED WORK 

Many studies have been conducted that have looked at the processing abilities of 

different computing devices. Due to its cross-platform operability, Open Computing 

Language (OpenCL) is frequently used for the evaluations. The majority of the studies 

have found that even though an OpenCL program can be run on any device for which the 

developer has created a compiler, performance across multiple devices is not necessarily 

portable. Of course, it could sometimes be unwise to compare the analysis of results from 

different devices due to differences in architectures, but in certain cases it can be useful. 

For example, it might be desired to explore how a specific algorithm runs on specific 

devices. 
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In certain cases, due to differences in how the different types of processors handle 

certain computations, performance portability can be abysmal. A study by researchers at 

the University of Chicago gathered initial results that found the “portable performance of 

three OpenCL programs is poor, generally achieving a low percentage of peak 

performance (7.5%–40% of peak GFLOPS and 1.4%–40.8% of peak bandwidth)” [3]. 

They identified several areas where portable performance could be improved, both in the 

test algorithms themselves and in the OpenCL compilers. After modifying the test 

algorithms portable performance was increased “from the current 15% to a potential 67% 

of the state-of-the-art performance” [3]. Although this wording is slightly vague, it does 

show that it is possible to improve performance portability. In addition, it must be noted 

that manually making changes to the test algorithms greatly increases development 

time—where the ability to compile OpenCL programs on multiple platforms without 

making changes is what makes the desired, decreased development time possible. 

Researchers at China’s National University of Defense Technology also identified 

areas to convert OpenCL programs written specifically for GPUs into programs that 

would run more efficiently on central processing units (CPUs). However, they found that 

in doing so the changes they made to the programs were “good for CPU [sic], while bad 

for GPU [sic]” [4]. In this case, the researchers manually transformed the OpenCL 

programs. They are also purportedly working on “developing an automatic transforming 

tool to implement [their] present work” [4]. Even automatic program transformations, 

however, make trade-offs for increased performance on one type of device over another 

and increase development time. 

E. ORGANIZATION OF THESIS 

The rest of this thesis is organized as follows. The problem at hand is discussed in 

Chapter II; namely, the two algorithms covered as well as the differences that exist 

between computing devices. A background to parallel processing is also provided in 

Chapter II. The methods by which the research was carried out are described in Chapter 

III, covering the OpenCL programming language, the three test devices, and the two 
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algorithms. The findings of the research are discussed in Chapter IV, and the overall 

conclusions as well as recommendations for future work are provided in Chapter V. 
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II. PROBLEM DESCRIPTION 

A. DIFFERENCES IN COMPUTING DEVICES 

As mentioned previously, different processing devices use different architectures. 

These differences are explored in this section. 

1. Central Processing Units 

Central processing units have been the core component in many computing 

systems since their inception. For the computing systems that have them, CPUs are the 

brain of the system, carrying out the instructions stored in memory. As semiconductor 

technology has improved and feature size decreased, CPU performance has vastly 

increased. In order to evaluate the performance of CPUs and other computing devices, 

the Standard Performance Evaluation Corporation (SPEC) collects and publishes various 

results of their benchmark programs. Shown in Figure 1 is a graph of the single-thread 

integer performance of various CPUs covering a period of 18 years, produced using a 

Python script written by Canadian programmer Jeff Preshing.  

 

 Single-thread integer performance of CPUs relative to time based on Figure 1. 

data from the SPEC, after [5]. 
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Single-thread performance is used to remove any impact that parallel processing 

might have, allowing for a better comparison between older and newer CPUs. The results 

shown in Figure 1 are normalized to the performance of the Sun Ultra Enterprise 2 [6], 

with the performance of that machine having a value of one. It should be noted that the 

vertical axis scale is logarithmic. As can be seen, CPU performance increased 

dramatically for the first 10 years, and although the performance increase appears to have 

slowed slightly, it has not stopped improving. Single-thread floating-point performance 

can be seen in Figure 2 and shows much the same results as Figure 1. 

 

 Single-threaded floating-point performance of CPUs relative to time Figure 2. 

based on data from the SPEC, after [5]. 

2. Graphics Processing Units 

As personal computers became more and more commonplace, their operating 

systems shifted from providing text-based output, such as the Microsoft Disk Operating 

System, towards graphical user interfaces (GUI). As GUI displays became more complex 

and required more computationally intensive calculations, GPUs were developed to share 

the computational load with CPUs. Initially, graphics processors were not separate 
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devices as is currently the case. Rather, early GPUs were integrated with the computer’s 

motherboard and shared the system random access memory (RAM). Some computer 

systems today—typically only laptop computers and netbooks that place an importance 

on size and weight—still use integrated graphics processors. Dedicated GPUs, however, 

have become increasingly powerful, following much the same trends that early CPUs did. 

In fact, even as CPU performance increases have slowed, GPU performance still swiftly 

improves each year [7]. A graph of the performance over time of NVIDIA’s GeForce line 

of processors is shown in Figure 3, measured in gigaFLOPS (where one gigaFLOP is 910  

floating point operations per second [FLOPS]). The GPU performance is compared to 

Intel’s CPU performance over the same period. 

 

 NVIDIA GPU and Intel CPU raw computing power in gigaFLOPS Figure 3. 

relative to time, from [7]. 

As GPUs became more powerful, it was realized that their high computational 

performance could be put to use in areas other than displaying GUIs. Modern GPUs are 

exclusively multicore devices. As such, they are inherently parallel. This is necessary to 

be able to handle the processing of thousands of pixels with multiple bits per pixel. 

Researchers recognized that they are well suited to handle the processing of large 

amounts of other data. GPUs dedicated to data processing, such as the NVIDIA Tesla 
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family of processors, have been developed that are in fact only able to operate as data 

processors—that is, they are unable to display graphics data. 

3. Field Programmable Gate Arrays 

Since their invention in the 1980’s, field-programmable gate arrays (FPGA) have 

been used in many areas of computing. As their name suggests, FPGAs are 

reprogrammable devices that can be used and reused in a vast multitude of situations. 

FPGAs consist of large numbers of logic blocks that can be reconfigured using a 

hardware description language to suit the programmer’s needs. FPGAs also contain 

memory blocks of varying sizes. In processing data, one of the key advantages FPGAs 

maintain over other devices is their low power requirement. Some FPGA power 

consumption can be on the order of milliwatts [8], whereas certain processors can require 

over 100 W. This, combined with the ability to optimize FPGA architectures to the 

specific problem at hand enable them to remain viable even with clock speeds that are 

typically much lower than other processors. 

Programming FPGAs, however, is usually more difficult than writing regular 

programs. It typically requires an intimate knowledge of a hardware description language 

such as Verilog. For large applications, this can be extremely tedious and time 

consuming, greatly adding to the development cost. To aid in FPGA development, 

however, an FPGA developer, Altera, released a software development kit (SDK) that 

enables compilation of OpenCL applications on certain devices. Another manufacturer, 

Nallatech, has developed FPGA-based processors that utilize Altera FPGAs and the 

Altera OpenCL SDK. On the other hand, Xilinx is working on developing its own 

OpenCL SDK. 

B. PARALLEL PROCESSING 

It has already been shown that as the technology behind the production of 

computer devices has improved, the raw processing power of computing devices has 

increased. In order to prevent a plateau in performance, manufacturers began to create 

processors with multiple cores. The first multicore processor was released in 2001 by 

IBM [9, p. 5] and was used for multiple applications. Today, virtually all processors 
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produced have multiple cores. Even certain (relatively) low performance processors used 

in mobile computers—such as Intel’s Atom family of processors—can be purchased that 

contain two or more cores [10]. On the other end of the spectrum, Intel’s Many Integrated 

Core Architecture (MIC), used by Intel’s Xeon Phi coprocessors, can provide power-

hungry users with up to 61 cores [11], and each of the processors in the NVIDIA Tesla 

family of GPUs contains over 2,000 Compute Unified Device Architecture (CUDA) 

cores per processor [12]. 

In order to make full use of multicore devices, new programming styles and 

languages were developed; otherwise, running the programs that were created for single-

core devices could potentially waste the processing power provided by the extra cores. 

Initial methods of parallel programming were convoluted, particularly when attempting 

to use GPUs for processing non-graphical data—the programmer had to “trick” the GPU 

into thinking it was performing graphics rendering tasks. In order to improve upon the 

programming process, a few months after the November 2006 release of its GeForce 

8800 GTX GPU, NVIDIA released a public compiler for its CUDA C language [13]. By 

taking the C programming language and adding certain keywords, NVIDIA created the 

“first language specifically designed by a GPU company to facilitate general-purpose 

computing on GPUs” [13]. Because CUDA C is proprietary, however, it can only be 

compiled to run on NVIDIA processors. This limits its usefulness. 

OpenCL is an open source alternative to NVIDIA’s CUDA C. Originally released 

in 2008, OpenCL was initially developed by Apple and is currently maintained by one of 

the many working groups of the Khronos Group, a consortium of technology companies 

that define open standards for a variety of software APIs [14]. The Khronos Group leaves 

the development of the OpenCL compilers to each individual company, enabling 

improved performance on individual devices but also creating the potential for 

fragmentation. NVIDIA was the first company to release its compiler for OpenCL in 

early 2009, and AMD released its compiler several months later [9, p. 5]. OpenCL 

version 2.0 was released in 2013 [15]. As each company creates its own compiler, 

however, not all vendors have updated their compilers, supporting only earlier versions of 

the language. 
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C. SIGNAL MODULATION 

In order to transmit data over long distances, some type of modulation scheme 

must be used to manipulate some parameter of the analog sinusoidal carrier signal and 

convey the data. The modulation can itself be either analog or digital, both of which 

manipulate the carrier sinusoid amplitude, frequency, or phase. Digital modulation 

schemes use the concept that when conveying digital data there are a limited, discrete 

number of symbols that can be transmitted. The digital schemes all follow the general 

equation 2nN   where N  represents the number of possible symbols that can modulate 

the carrier wave and n  represents the number of bits per symbol. As a result of the 

limited number of modulation symbols, the variable parameter of the carrier sinusoid also 

has a limited number of possible values. Signals modulated by an analog method, on the 

other hand, can theoretically have an infinite number of values. Examples of three binary 

digital modulation schemes (where the modulation symbols are single bits) are shown in 

Figure 4. 

 

 Three binary digital modulation schemes: phase-shift keying, Figure 4. 

frequency-shift keying, and-amplitude shift keying, as well as the 

original binary bitstream. 
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Once a signal has been modulated, transmitted, and received, it must be 

demodulated. This is done by matching the value of the carrier sinusoid modulation 

parameter to its potential values. Whether using analog or digital modulation, this is a 

fairly straightforward process, particularly when a scheme that modulates either 

amplitude or frequency is used. If a phase modulation scheme is used, the demodulator 

must be synchronized with the signal before the demodulation can take place. Otherwise, 

the interpretation of the transmitted symbols will be incorrect. 

D. FOURIER TRANSFORM 

One of the first steps typically done in signal analysis is the determination of the 

frequencies present in the incoming signal. This is done by taking the Fourier transform 

of the signal. The Fourier transform is calculated as 

       2j ftt dG t g tf g e 







     , (1) 

where ( )g t  is the incoming signal, integrated over time t , and ( )G f  is the value of the 

Fourier transform over frequency f . Conversely, the inverse Fourier transform is 

determined by 

      1 2j ftt f dfg G f G e 







     . (2) 

Both of these equations can also be represented in terms of angular frequency  , where 

2 f  . Substituting this into Equation (1) gives 

     j tt dtg tg e 







      (3) 

When calculating the inverse Fourier transform in terms of  , it is necessary to divide 

the result by 2  due to the relation between   and f . 

The importance of the Fourier transform lies in the physical information it gives 

about the transformed signal. The spectrum given by the Fourier transform indicates the 

properties of the sinusoids necessary to recreate the signal (the phases and relative 

amplitudes of the sinusoids) [16, p. 96]. Periodic signals have Fourier spectrums that 

have discrete frequencies with finite amplitudes. Consider a signal  
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    ( ) 0.7sin 2 50 sin 2 120y t t t    (4) 

where ( )y t  is comprised of two sinusoids. This signal, along with its single-sided Fourier 

transform (which has been truncated to more easily show the relevant portion of the 

spectrum) is shown in Figure 5. The signals here are sampled with a sample rate of 10.0 

kHz. Although it is easy to see that the signal  y t  is periodic, it is clear that it is not a 

single sinusoid. It is also difficult to visually determine what the component sinusoids 

may be. Taking the Fourier transform easily enables the determination of any and all 

sinusoids present in the signal. This is, therefore, a very important algorithm for signal 

processing. 

 

 A sinusoidal signal with its two component sinusoids and its Fourier Figure 5. 

transform. 

In order to calculate the Fourier transform of a signal using computers, the 

discrete Fourier transform (DFT) is used. For a sequence  
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 0 1 1, , , Nx x x x    (5) 

having length N , the DFT is 

    
1

0

N
kn

N

n

X k x n




   (6) 

where 

 
2

j
N

N e





 . (7) 

Calculating the DFT directly, however, is computationally expensive, having 

complexity of order 2( )O n . The fast Fourier transform (FFT) algorithm was developed in 

1965 as a method to more efficiently calculate the Fourier transform of a discrete 

sequence and has complexity of only order ( log )O n n  [17]. Although not a new 

algorithm by any means, the efficiency of the FFT, when combined with the importance 

of the Fourier transform, has made it one of the most important algorithms developed in 

the last century [18]. 

  



 14 

THIS PAGE INTENTIONALLY LEFT BLANK 



 15 

III. RESEARCH METHODS 

A. OPENCL 

As previously discussed, OpenCL is an open, “royalty-free native, cross-platform, 

cross-vendor standard” for use in the area of parallel programming on heterogeneous 

systems [15]. OpenCL is not a completely separate language. Instead, it is primarily a 

library of functions and data structures that enable programmers to write code using C 

that runs on any device for which there is a compiler. Utilizing an open computer 

language and library has several benefits over a proprietary one. First and foremost 

among these benefits is the ability to run on a vast multitude of systems, preventing a 

system from remaining in use simply because it is the only workable solution. In 

addition, because there is generally a large population of users, it is easier to both find 

bugs in the language and fix those bugs. 

For one knowledgeable in the CUDA C language, the OpenCL programming 

model appears very similar—many of the differences between the two languages are only 

differences in terminology. For one without much experience in parallel programming, 

on the other hand, the OpenCL library is daunting. OpenCL calls any function that is 

intended to be run on one or more target devices a kernel. The list of possible kernels that 

can be called is known as the program [9, p. 7]. When kernels are called they are placed 

into a queue, which is itself a member of the context, which keeps track of the queue of 

the device and any associated data [9, p. 7]. All of these structures are managed by the 

application host. One of the best analogies for the organization of an OpenCL application 

is one comparing it to a game of cards, which can be seen in Figures 6 and 7. 
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 A pictorial representation of a game of cards, from [9, p. 9] Figure 6. 

 

 A pictorial representation of kernel distribution among OpenCL-Figure 7. 

compliant devices, from [9, p. 8] 

In addition to the organization of the application, an understanding about the 

break-up of the device is important to the OpenCL programmer. When a kernel is sent to 

the device, it runs multiple times according to the method by which it is called. Each 
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instantiation of the kernel runs on the smallest OpenCL processing element, the work 

item. Work items are organized into larger work groups [9, p. 65], with potentially 

thousands of work groups per compute device—the applications target device. A final 

important OpenCL term is the compute unit, which is the processing block handling the 

work group [9, p. 66]. A compute device contains multiple compute units, which can only 

execute on a single work group at a time [9, p. 66]. This is shown in Figure 8. 

 

 A visual representation of the deployment of work groups to compute Figure 8. 

units, from [9, p. 66]. 

Finally, the OpenCL memory model is extremely important. In OpenCL, memory 

is classified as one of three types: global, local, and private. Global memory can be 

accessed by any work item of any work group, whereas local memory can only be 

accessed by work items of a specific group [9, p. 88]. Finally, private memory can only 

be accessed by a single work item [9, p. 88]. Global memory exists only in buffers that 

must be created by the host prior to the launch of the kernel. Local memory is normally 

initialized by the work items after the kernel has been launched, but local memory arrays 
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must first be defined by the host. Private memory has the smallest size and quickest 

access times of the three types while global memory is the largest and slowest [9, p. 88]. 

A pictorial representation of the types of memory is shown in Figure 9. 

 

 The OpenCL memory model, from [19]. Figure 9. 

B. DEVICES USED 

For this research project, three different processors were used from two different 

manufacturers. Two GPUs were used. The Tesla K20c and GeForce GTX 650 were both 

designed by NVIDIA. The one CPU used, a Xeon E5-2643, was designed by Intel. The  

 

 



 19 

majority of the processor specifications to follow were obtained through OpenCL, while 

memory bandwidth and power consumption numbers were obtained through product 

datasheets. 

1. NVIDIA GPUs 

Both the Tesla K20c and GeForce GTX 650 use NVIDIA’s latest compute 

architecture, named Kepler. Designed for maximum performance, the Kepler architecture 

is built with several features that give it strength in the area of data processing. The 

Kepler architecture utilizes newly designed “Streaming Multiprocessors (SM)” [20] 

(NVIDIA’s organizational unit for groups of compute cores). These SMs each contain 

192 CUDA cores [20]. In addition, the Kepler architecture supports “dynamic 

parallelism,” enabling the “GPU to dynamically spawn new threads by adapting to the 

data without going back to the host CPU” [20]. Finally, the architecture allows for 

multiple CPU cores to utilize a single GPU at the same time [20]. Although the last two 

features were not utilized in the course of this project, both introduce areas for potential 

further research. 

Because both GPUs utilize the same architecture, many of their OpenCL 

capabilities are the same. At the time this research was conducted, the NVIDIA OpenCL 

compiler supported the OpenCL standard only up to version 1.1. The GPUs both have 

maximum work group sizes of 1024 and can use memory addresses up to 32 bits in 

length. The final relevant capability similar across the two GPUs is the size of their local 

memory, 49 kB. 

a. Tesla K20c 

The Tesla family of GPUs is NVIDIA’s current high-performance GPU line 

designed solely for general-purpose computing on GPUs (GPGPU). In addition to the 

specifications listed above, the K20c has a clock frequency of 705 MHz, 13 SMs 

(equivalent to OpenCL compute units) for 2496 CUDA cores [21], and 5 GB of global 

memory. It also has a memory bandwidth of 208 GB/s [21] and can draw up to 225 W of 

power. 
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b. GeForce GTX 650 

Unlike the Tesla, the GTX 650 is a standard GPU, designed for video gaming. 

Nonetheless, it is still powerful for GPGPU applications. The GTX 650 has a clock 

frequency of 1.058 GHz, approximately 300 MHz faster than the K20c. Many of its other 

specifications, however, are (as expected) lower than the members of the Tesla family. It 

contains only 2 SMs for a total of 384 CUDA cores [22] and has only 1 GB of global 

memory, as well as having a memory bandwidth of only 80 GB/s [22]. It does, on the 

other hand, require much less power—the GTX 650 draws a maximum of only 64 W 

[22]. 

2. Intel Xeon E5-2643 

The Xeon family of CPUs is the current line of Intel processors designed for use 

in servers. The E5-2643 that was used is a four core processor [23] with a clock speed of 

3.3 GHz. The Intel compiler supports OpenCL standard version 1.2, and the E5-2643 has 

16 compute units and a maximum work group size of 8192. Its local memory size of 32 

kB is smaller than the NVIDIA GPUs, which is acceptable as memory transferring is 

much more expensive for GPUs, even though the E5-2643 has a memory bandwidth of 

only 51.2 GB/s. Intel lists the E5-2643 as having a cache size of 10 MB [23]. OpenCL 

lists the E5-2643 as having a global memory size of 33 GB, but this is actually the system 

RAM. The CPU global memory, therefore, is not physically on the CPU. OpenCL 

classifies the workstation RAM as part of the host device, which the E5-2643 also serves 

as in this case. The CPU therefore has access to it. The Xeon line of CPUs can access 

memory up to 64 bits in length [23]. Finally, the E5-2643 draws a maximum of 130 W 

[23]. 

3. Device Comparison 

In order to more easily compare the three devices used, several of the important 

specifications are shown in Table 1. An additional important factor for consideration, 

although not one that has an impact on performance, is the cost of each processor. The 

Tesla K20c is far and away the most expensive of the three devices at a cost of $3,000 

per processor. The GeForce GTX 650 is only $130, while the Xeon E5-2643 is $885. 
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Table 1.   Device specifications relevant to the conducted research. Note that the 

listed memory for the Xeon E5-2643 is actually the system RAM. 

 

Global 

Memory 

(GB) 

Local 

Memory 

(kB) 

Max Work 

Group Size 

Memory 

Bandwidth 

(GB/s) 

Clock 

Frequency 

(MHz) 

Tesla 

K20c 
5 49 1024 208 705 

GeForce 

GTX 650 
1 49 1024 80 1058 

Xeon E5-

2643 
33* 32 8192 51.2 3300 

4. FPGA 

Originally, an FPGA-based processor from the manufacturer Nallatech (which 

uses the Altera OpenCL compiler, as previously mentioned) was to be included in the 

research. The board, however, did not arrive in time for testing to be conducted on it. 

C. TESTING ALGORITHMS 

In order to quantify the performance of each of the processors, two data 

processing algorithms were used. Both were chosen on account of their importance in the 

area of communications. A binary phase-shift keying (BPSK) modulation scheme was 

chosen because before a signal can be transmitted, it must be modulated. The FFT was 

chosen because the Fourier transform is one of the first steps of signal analysis. 

1. Binary Phase-Shift Keying 

a. Motivation 

Phase-shift keying (PSK) is a method of digital modulation that operates by 

changing the phase of a carrier sinusoid according to the symbol being conveyed. In 

binary phase-shift keying, two symbols can be encoded, where each symbol is a single 

bit. A block diagram for a basic BPSK modulator is shown in Figure 10, where the 

middle block represents the modulation of the phase of the carrier signal. 
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 A block diagram of a BPSK modulator. Figure 10. 

The mathematical approach for BPSK modulation is relatively simple. Consider 

the equation 

  
2

( ) cos (1 )b
n c

b

E
x t t n

T
      (8) 

where ( )nx t  is the modulated signal at time t  for bit n , bE  is the energy per bit, bT  is the 

duration of each bit, c  is the signal’s carrier frequency, and n  is a given bit in the 

bitstream. In the case of Equation (8), a zero in the bitstream shifts the carrier signal 

phase by 180°, whereas a one does not shift the original phase. An example of a BPSK 

modulated signal is shown in Figure 11. 

 

 An example of a BPSK modulated signal. Figure 11. 
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As with other forms of demodulation, BPSK demodulation is done by matching 

the received signal with the original carrier wave. The aforementioned necessity of 

synchronicity, however, is shown in Figure 11. The modulated ones and zeroes vary only 

by their phase. If the incoming signal is not synchronized to the carrier wave, the 

demodulated bitstream will be inaccurate. 

b. OpenCL Algorithm 

Although the BPSK modulation algorithm is simple, converting it into parallel 

code required some consideration as to the values of the modulation parameters in order 

to achieve the best possible performance. To parallelize the processing, each work group 

is created to process one symbol. It must be noted that this is not a BPSK modulation 

symbol of 1 bit but instead is defined as an integer of 32 bits, as per the C programming 

language, of the transmitting data. In essence, one parallel processing symbol is used to 

execute 32 BPSK modulation symbols. Each work group is comprised of sF  work 

elements, where sF  is the number of samples per data bit. The value sF  can vary 

depending on the need of the granularity of the transmitting sinusoid as given by 

Equation (8), where time t  has sample space 1/ sF . Each work item then computes the 

modulation 32 times (one work item per bit of the integer). 

The application calls the kernel using the OpenCL command 

EnqueueNDRangeKernel, providing the predetermined values for the number of 

work groups and the size of each work group. Passed to the kernel is a global memory 

buffer for the modulated signal, a global buffer for the signal that has already been 

converted to binary by the host device, the number of samples per bit sF , the number of 

bits per symbol, and a global buffer of time steps. A local memory array of time steps is 

also defined as it can be accessed much faster than the global buffer, which is then only 

read once for the initialization of the local array. The two time step arrays have the same 

length sT F  with the distance between each step 1 sF . As a result, each kernel has an 

unchanging location in the modulated signal for each bit of its group symbol relative to 

the other groups. 
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 Inside the kernel, and for each bit, a check is performed to determine whether 

that bit is a zero or a one. The value for a sine wave of length T  with the appropriate 

phase offset (either zero or π radians) is then created for a specific point in time and 

saved into the global buffer for the modulated signal in the appropriate position. The 

kernel then moves on to the next bit after incrementing its specific element of the local 

time array. 

c. Demodulation 

The demodulation kernel uses slightly different parameters than the modulation 

kernel in order to operate more efficiently. There are no local buffers required as the 

kernel only reads from the time step buffer. In addition, the kernel does not require the 

parameter for the number of bits per symbol. This is because for the demodulation, the 

number of work items in a work group is equal to that number (i.e., 32). Each work item 

processes one bit out of the 32 provided. Each work item processes the associated sample 

points for that bit, which maps from the sinusoid to the digital bit value. To map the 

sample points from the received sinusoid to the digital bit value, the work item adds each 

sample point ir  to a corresponding sample point ik  from a sinusoid with known 

amplitude and phase. If iC  is the sum of the two sample points at time i  then 

 i i iC r k  .  (9) 

For a given bit duration there are sF  number of sums. Hence, to determine of the 

sinusoid represents a one or a zero, the summation 

 
1

sF

i

i

X C


   (10) 

is compared to a threshold. 

2. Fast Fourier Transform 

a. Motivation 

As has already been mentioned, the Fourier transform is a very important 

algorithm in signal processing. As the Cooley-Tukey algorithm remains one of the top 

FFT algorithms, it is a wise algorithm to use as a benchmark for parallel performance. 



 25 

b. Algorithm 

The source code for the FFT algorithm used is primarily from source code 

provided by M. Scarpino [9, p. 295], which employs the Cooley-Tukey algorithm. 

Although small changes were made as necessary to the host application, the kernels 

provided by Scarpino remain unchanged and calculate the FFT of a complex sequence. 

The sequence is required to be a power of two. If this is not already the case, the 

sequence is padded with zeroes. This implementation of the FFT employs three different 

kernels. The first kernel performs four-point FFTs on groups of four elements, merging 

the calculated values with the ones obtained from the other work items across the same 

group, using the local memory of the work group. Each group created by the first kernel 

calculates the FFT on 1024 floats (or 512 doubles). If the length of the signal is greater 

than these values, the first kernel launches multiple work groups. It then passes the FFT 

results from these work groups to the second kernel for stitching and merging of the FFT 

results. The third kernel is called only when the inverse FFT (IFFT) is desired, dividing 

each value of the output of the final instantiation of the second kernel by the number of 

points of the sequence. 

Launching the FFT kernel from the host device requires more setup than the 

BPSK kernel requires. Some of this setup is where the differences with the original 

source code exist. As mentioned previously, the work group size is required to be 1024 

work items when using the float data type. This is reduced to 512 when using the double 

data type. This was discovered after extensive testing, noting that when using the Xeon as 

the compute device the FFT algorithm was not working in certain cases. The NVIDIA 

GPUs, however, were. The original algorithm used the maximum work group size of the 

target device, which for the GPUs was suitable. The local memory for each work group is 

calculated by obtaining the maximum local memory that a device allows per work group 

and dividing that maximum by twice the size of the data type used (i.e., four bytes for a 

float and eight bytes for a double). This local memory is used by the work groups to 

perform the FFT operation. 

The FFT kernels each receive fewer parameters from the host than the BPSK 

kernel, with each kernel further in the stage requiring fewer parameters than the previous 



 26 

one. The initial kernel uses a global buffer in which the initial sequence is stored and the 

final FFT is saved. A local buffer is defined for the work group and values are passed for 

the number of points per group and the FFT total size and direction (specifying whether 

the FFT is being calculated or the inverse FFT). The second kernel does not require local 

memory or the total size of the FFT but does require knowing the stage in the FFT at 

which the kernel is. The third kernel requires only the global buffer for the data, the 

number of points per work group, and the scaling value by which to multiply the FFT 

values. 
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IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In each case, performance was evaluated using the profiling built into OpenCL. 

Using this requires the device queue be created using the 

CL_QUEUE_PROFILING_ENABLE command. Following this, any function added to 

the queue can be profiled. This includes each kernel that is launched and the reading of 

the memory buffers from the compute device back to the host. The initial writing of the 

buffers, however, cannot be profiled. As a side effect of using the inherent OpenCL 

profiling, functions that are carried out only on the host device are not evaluated. This is 

both a positive and a negative. The most important aspect of the algorithm, the kernel(s), 

gets evaluated while any overhead functions are not. These overhead functions could add 

a substantial amount of time to the overall performance of the application. However, as 

this overhead is the same for each of the devices used, and the goal of this research is to 

directly compare the performance of the three processors, this overhead can be ignored. 

MATLAB was used to process the resulting data. MATLAB functions were also used to 

verify that the output of the algorithms was correct. 

Due to the parallel nature of the GPUs, it was hypothesized that the two NVIDIA 

processors would outperform the CPU. In addition, it was assumed that the K20c would 

outperform the GeForce, as it is designed specifically for GPGPU. The hypothesis, and 

this assumption, is shown to be inaccurate in some cases. 

A. FFT RESULTS 

After making the necessary modifications to the host code, tests were done on 

complex sequences of various lengths to quantify the performance of each device. For 

each signal length, the FFT algorithm was run on each of the three devices 10 times, with 

those 10 runs averaged together. An initial run was also conducted as a “warming run” 

which was not included in the average. It was found that after an unspecified amount of 

time where a device was not in use (or occasionally when the application was updated 

and recompiled) the runtime for the algorithm would be much larger than the following 

time. In one case, for example, the initial runtime for a simulation on the GeForce took 
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approximately 350 µs, while the average of the following five was approximately 70 µs. 

This is not a result of memory getting carried over across iterations, as between iterations 

all memory is cleared. This shows the necessity of a warming run. 

1. Performance: Float Data Type 

Shown in Figure 12 are the results for the FFT simulation while using the float 

data type. The number of complex integers input to the FFT is given, in a base two 

logarithmic scale, on the horizontal axis, while the average runtime for the FFT is given, 

in microseconds, on the vertical axis. 

 

 Runtime results of the FFT algorithm on all three devices using the Figure 12. 

float data type. 

As expected, the GPUs outperform the CPU. This is particularly true at higher 

signal lengths, where the Xeon performance deteriorates much more quickly than the 
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GPUs. Interestingly, the GeForce outperforms the Tesla at lower signal lengths. At a 

signal length of 8192, for example, the Tesla takes 116.1 µs to complete the kernel while 

the GeForce takes only 80.8 µs. The Xeon takes 829.1 µs. The GeForce only begins to 

perform worse than the Tesla upon reaching the signal length where the algorithm begins 

to break down (this is discussed in detail below). The results for only the NVIDIA GPUs 

are shown in Figure 13 to more easily compare their performance. The differences in 

runtimes for the lower signal lengths, where the GeForce outperforms the Tesla, are 

small—less than 40 µs. 

 

 Runtime results of the FFT algorithm on the NVIDIA GPUs using the Figure 13. 

float data type. 

For the Xeon at signal lengths smaller than 4096, the application does not 

complete, returning a segmentation fault. This is caused by the requirement that the  
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number of complex floats per work group equal the maximum work group size, which is 

8192. Without meeting this strict requirement for the number of complex floats per 

group, the FFT does operate using the Xeon. 

In addition to this problem on the Xeon, the FFT begins to break down at larger 

signal lengths, as mentioned above. This breakdown occurs in one of three ways. The 

algorithm, when run on the GPU at higher signal lengths, continues to operate, but the 

results are inaccurate. At the first length this occurs, a visual inspection of the results 

reveals a pattern between the output and the correct FFT (as calculated by the CPU and 

verified using MATLAB). This implies that the output is possibly recoverable. An 

example of this pattern is shown in Table 2.  

Table 2.   Output of the FFT algorithm for the Tesla showing the possible 

recoverability of the incorrect GPU output. 

 CPU Output GPU Output 

X[0] 33550336.00 + j 0.00 33288192.00 + j 0.00 

X[1] −4095.91 + j 10680706.69 0.00 + j 0.00 

X[2] −4095.84 + j 5340352.46 −8191.47 + j 10680704.27 

X[3] −4096.00 + j 3560234.42 0.00 + j 0.00 

X[4] −4095.92 + j 2670174.68 −8191.74 + j 5340349.04 

X[5] −4095.80 + j 2136138.77 0.00 + j 0.00 

X[6] −4095.96 + j 1780114.92 −8192.25 + j 3560229.67 

X[7] −4095.87 + j 1525810.97 0.00 + j 0.00 

X[8] −4095.96 + j 1335084.20 −8191.87 + j 2670168.24 

As can be seen, the GPU produced value for [0]X  is accurate. The value for each 

odd numbered point is equal to zero and incorrect. Then, for each even point, the real 

portion is equal to twice the value it should be, while the complex portion is equal to the 

correct value from the point [ 2]X N . The GeForce is the first to break down in this 

manner, doing so at signals of length 16384. The Tesla does so at signals of length 

32768. For signal lengths greater than these, the results are completely unrecoverable. 

For the GeForce, this is for 32768 floats, and for the Tesla, this is for 65536. Finally, at 

signals of length 65536, the Xeon outputs the correct FFT approximately 50 percent of 

the time, while the rest of the outputs are unrecoverable numbers. The pattern of the 

breakdowns is more easily seen in Table 3. 
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Table 3.   A comparison of the signal lengths at which the FFT algorithm breaks 

down on the three devices with the float data type. 

 Signal Length 

Device 1024 2048 4096 8192 16384 32768 65536 

Xeon SEGFAULT Correct operation 
50% correct 

output  

GeForce Correct operation 
Possible 

fix 

Unusable output 

Tesla Correct operation Possible fix Unusable output 

 

The cause of the high signal length breakdowns was discovered to be a cause of 

the second kernel in the algorithm. This is the case for both the CPU and two GPUs. This 

was determined by comparing the data output from the first kernel. The intermediate data 

output from the first kernel in the cases where the final FFT output was correct was equal 

to the intermediate data when the final output was incorrect. 

2. Performance: Double Data Type 

As a comparison to the algorithm operation using the float data type shown in 

Figure 13, the results for the FFT algorithm run using the double data type are shown in 

Figure 14. Doubles use twice the amount of memory as floats, and it is expected, 

therefore, that the algorithm functions only on smaller signals. This is the case, although 

the breakdowns in algorithm operation did not occur in a similar fashion. This is shown 

in Table 4. The GeForce only output useable results for signals of length 1024 and 2048. 

The Tesla produced similar results to the GeForce but, interestingly, for a signal of length 

16384, reliably produced accurate output values. The Xeon performed the same as when 

using the float data type, where it did not operate at the low signal lengths (although it did 

operate for signals of length 2048 in this case due to the size of the double data type 

being twice that of the float) and produced accurate FFT results at the highest signal 

length (32768 in this case) 50 percent of the time. The runtimes for the double data type 

were also slower, in general, than the runtimes for the float data type. At a signal length 

of 8192, in comparison to the previous results, the Tesla took 117.6 µs, the GeForce 

144.5 µs, and the Xeon 956.9 µs. 
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 Runtime results of the FFT algorithm on all three devices using the Figure 14. 

double data type. 

Table 4.   A comparison of the signal lengths at which the FFT algorithm breaks 

down on the three devices with the double data type. 

 Signal Length 

Device 1024 2048 4096 8192 16384 32768 

Xeon SEGFAULT Correct operation 
50% correct 

output 

GeForce Correct operation Possible fix Unusable output 

Tesla Correct operation Possible fix Correct operation Unusable output 

 

3. Algorithm Output 

When it is actually correct, the output of the FFT algorithm is correct to a high 

degree of accuracy. An example of this accuracy is shown in Figure 15 where the  
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(truncated) output of the OpenCL algorithm is compared to the (truncated) output of the 

FFT function built into MATLAB. The sequence passed through the FFT algorithms is 

the function  

 
1,

[ ] 4

0,

N
n

rect n

otherwise




 



  (11) 

where in this case 4096N  . The top plot  MX   is the output of the MATLAB 

function, while the bottom plot  OX   is the output of the OpenCL algorithm. As can be 

seen, the output of both algorithms is visually the same. This visual similarity is the case 

regardless of the device used for the OpenCL computation. 

 

 Comparison of the FFT output for a signal  rect n . The output of the Figure 15. 

MATLAB FFT is shown by  MX   and the output of the OpenCL 

algorithm is shown by  OX  . 
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An additional illustration of the accuracy of the OpenCL FFT algorithm is shown 

in Table 5. The root mean-square error (RMSE) of the output of the Xeon and the 

NVIDIA GPUs was calculated with respect to the output of the MATLAB function. Here 

a ramp function of length 16384 is used and the error calculated in the case of both the 

float and double data types. The Xeon has less error in each case. It should be noted that 

the two GPUs output the same numbers and, therefore, have the same RMSE values. In 

addition, when the double data type is used, the RMSE is slightly less, although the error 

in output of both the GPUs and CPU is negligible in each case. 

Table 5.   RMSE values for the FFT algorithm using a signal length of 16384. The 

algorithm does not operate on the GeForce for a length 16384 signal using 

the double data type. 

Data Type Device RMSE 

Float 

GeForce/Tesla 0.1063 

Xeon 0.0858 

Double 

Tesla 0.0819 

Xeon 0.0761 

B. BPSK PERFORMANCE 

For the evaluation of the three devices using the BPSK algorithm, various tests 

were run, alternating between keeping the number of symbols (integers) input to the 

algorithm constant and keeping the number of samples per bit ( sF ) constant. As in the 

evaluation of the FFT algorithm, the simulation is run with a warming run preceding the 

runs averaged together to calculate the performance. 

1. Initial Simulation 

Shown in Figure 16 is the first test run where sF  is held constant (at 100 samples 

per bit) while the number of symbols increases linearly. Five runs were averaged together 

in this case. The results produced here are different than the results from the FFT 
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algorithm. In this case, as is the case for all the BPSK simulations, the GeForce takes the 

longest to run the algorithm. As originally hypothesized, the Tesla performs the quickest. 

The runtimes of all three devices increase linearly as the number of symbols increases 

linearly, albeit with different slopes. One important consideration for the results of the 

BPSK algorithm is the scale of the vertical axis. Here, the scale of the vertical axis is in 

milliseconds, while the FFT algorithm produced runtimes on the order of microseconds. 

 

 Performance results for the BPSK algorithm for all three devices. The Figure 16. 

number of samples per bit is held constant at 100. 

Shown in Figure 17 are the results from the second test, where the number of 

symbols was held constant at 1000 and sF  allowed to grow linearly. As in the previous 

test, the GeForce performed the worst and the Tesla the best. In this case, however, the 

increase in runtime is not linear. The performance of the Tesla appears constant, while 

the performance of the GeForce is constant with the exception of large jumps every time 
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sF  reaches another multiple of 32. The significance of this arises when the maximum 

work group size of the GeForce (and Tesla) is considered. First, recall that the input to 

the kernel for desired work group size is sF  and that for both NVIDIA devices, the 

maximum number of work items per work group is 1024. If 1024 is divided by sF  (i.e., 

32), the result is 32, which is the value for the number of bits per symbol. Therefore, it 

can be deduced that every time sF  iterates past a multiple of 32, a new work group is 

required. This should be the case for the Tesla because its properties are the same, and in 

fact it is, as shown in Figure 18. This cannot be seen in Figure 17 as the scale for the 

vertical axis is too large. This result is interesting and can likely be utilized by the wise 

programmer. 

 

 Performance results for the BPSK algorithm for the three devices. The Figure 17. 

number of symbols is held constant at 1000. 
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 Performance results of the BPSK algorithm for the NVIDIA devices Figure 18. 

with a fixed number of symbols (1000). 

If one attributes the small scale variations for the performance of the Xeon to a 

low number of samples averaged together (as only five runs were used), then the runtime 

appears to be slowly increasing linearly. However, one would also assume that, based on 

the performance of the GPUs, the runtime should increase greatly when the product of sF  

and the number of bits per symbol reaches the maximum work group size. For the Xeon, 

this maximum value is 8192. In Figure 19, this is shown to be the case. 
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 Performance of the BPSK algorithm on the Xeon to show similarities Figure 19. 

with the NVIDIA results. A fixed number of symbols (1000) is used. 

An additional important result of the algorithm that should be considered is its 

output. When the float data type is used with 100 samples per bit and 512 symbols, the 

algorithm output totals 1.0 MB in size. If the double data type is used, the size of the 

output is twice that. There are differences between the values of the output numbers when 

the two data types are compared, but, as is the case with the FFT algorithm, the 

differences are small. 

2. Additional Simulations 

After the initial simulations, two changes were made to the host-side processing 

of the algorithm, the results of which are shown in Figure 20. It was first determined that 

using 100 samples per bit was an excessive waste of processing power. This number was 

decreased to 16, which in addition to being much smaller (and, therefore, creating less 

data) had the added benefit of being a power of two. This correlates to creating signal 
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lengths for a carrier wave that are also powers of two. In addition, it was decided to 

increase the number of runs averaged together to ten, instead of five, in order to better 

quantify the performance. It should also be noted that now the scale of the vertical axis is 

microseconds. 

 

 Performance of the BPSK algorithm on all three devices with 16 Figure 20. 

samples per bit and a variable number of symbols. The plotted 

performance is the average of 10 runs. 

The decrease in the number of samples per bit greatly decreases the runtime for 

the kernel. This is expected, as decreasing the number of samples decreases the amount 

of numbers the device needs to process. An interesting side effect of decreasing the 

quantity of numbers is shown by the plot of the Xeon performance. Unlike the GPUs, 

because the CPU has many fewer cores to perform calculations on, it is required to 

perform context switching. This is the act of changing the data a given core is working 

on. This is mitigated by proper scheduling. With fewer consecutive numbers to operate 
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on, however, context switching begins to play a much larger role in the total execution 

time for the processor. This has been documented previously by Lee et. al [24], and it can 

be seen that as the number of symbols being modulated increases, the runtime returns to 

its expected linearly increasing behavior. Both the GeForce and the CPU, however, for a 

small region of the test, perform quicker than the Tesla. The behavior of the Tesla is 

similar to the previous simulation. 

3. Demodulation 

The demodulation kernel was created separately from the modulation kernel. As 

such, it was necessary to profile it separately. Shown in Figure 21 are the results from the 

initial evaluation of the kernel’s performance. The vertical axis shows the average 

runtime of the kernel in microseconds, while the horizontal axis shows the number of 

integers resultant from the demodulation of the processed signal. The number of samples 

per bit was again 16. 

 

 Performance of the demodulation kernel on all three devices. The Figure 21. 

horizontal axis is the number of integers resultant from the 
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demodulated signal. 

The general performance results for the demodulation kernel are similar to the 

modulation kernel. The GeForce performs the worst and the Tesla the best. The 

performance of the two GPUs is not the same as it was for the modulation kernel, 

however. The runtime of the GeForce increases linearly while the Tesla is constant, 

excepting a jump at 105 symbols. This jump is not mirrored by the performance of the 

GeForce. In addition, Xeon performance is extremely erratic. The mean of the 

performance appears to remain relatively constant. This erratic behavior was repeated 

after an additional simulation with the same parameters. For this reason, it was decided to 

increase the number of runs averaged together to 15, the results of which are shown in 

Figure 22. The length of the simulation was also extended to 256 symbols. 

 

 Performance of the demodulation kernel on all three devices. The Figure 22. 

horizontal axis is the number of integers resultant from the 

demodulated signal. The plotted performance is the average of 15 

runs. 
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Although the plot of the Xeon performance has smoothed out and lost its erratic 

nature, several curious behaviors have emerged. One is the fact that the runtime of the 

Xeon, which was previously higher than the GeForce, has dropped below it. The cause of 

the erratic behavior in the previous plot, then, is truly anomalous. The second curiosity is 

present in each of the three plots. As the plots are the average of 15 runs, it can be said 

with a strong degree of certainty that the spikes present in the plots are not anomalous. 

For the GPUs, this is enforced by the fact that they occur at regular intervals and further 

enforced by the fact that the spikes in both the Tesla and GeForce plots occur at the same 

signal lengths. This suggests that the spikes are a result of some value related to the 

Kepler architecture. No relation between the spikes occurrence every 64 symbols and an 

OpenCL parameter, however, can be found; as such the cause of the runtime spikes is 

unknown. The general trend of the performance of the NVIDIA processors is otherwise 

the same, with the runtime of the GeForce increasing linearly and the runtime of the 

Tesla remaining constant except at specific increases. The spikes in the performance of 

the Xeon, on the other hand, do not occur at consistent intervals.  

As a result of the spikes in runtime, it was decided to rerun this simulation. The 

results of the simulation are shown in Figure 23. Here, the length of the simulation was 

kept at 256 symbols, but the number of runs averaged together dropped back down to ten. 

The initial Xeon performance mirrors that of Figure 21, with erratic performance but a 

constant mean. It drops, however, and begins to mirror the performance of Figure 22 at 

around 52 symbols. This higher early performance could again show an example of the 

context switching problem present when utilizing the CPU. Additionally, the spikes in 

performance remain but are now in different positions than the previous simulation. The 

locations of the spikes in the runtimes of the two NVIDIA devices are once again in the 

same relative position but now have different intervals (93 symbols) between them. This 

suggests that the spikes are the result of a runtime factor rather than a compilation factor 

and not related to OpenCL directly. 
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 Performance of the demodulation kernel on all three devices. The Figure 23. 

horizontal axis is the number of integers resultant from the 

demodulated signal. The plotted performance is the average of 10 

runs. 

C. COMBINED ALGORITHM PERFORMANCE 

After creating and testing both algorithms, the two applications were combined 

into a single, larger application. The order in which the signal is passed through each 

kernel is shown in Figure 24. Due to the limits placed on the size of the input to the FFT 

kernel, the testing of the combined application was limited to test sequences that were 

fairly small. The size of the input xN  to the FFT kernel is 

 x S S BN F N N    (12) 

where 16SF   is the predetermined number of samples per bit, 32BN   is the number of 

bits per symbol and SN  is the number of symbols input to the modulation block. For only 

two modulated symbols, the length of the sequence input to the FFT algorithm is 1024. 



 44 

This is not a large number of symbols, but if just 32 symbols are used, the FFT breaks 

down on the GeForce. 

 

 Flow of the combined FFT and BPSK algorithms. Figure 24. 

The performance of the combined application on the three devices is shown in 

Figure 25. Only the float data type was evaluated. In general, the results mirror the results 

of the FFT algorithm at higher runtimes. 

 

 Performance of the combined algorithm on all three devices using the Figure 25. 

average of 10 runs. 
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In this case, again, the best performance for the sequences of smaller length is 

seen by the GeForce. The gap between the performance of the GeForce and Tesla, 

however, is much smaller in this case. This is likely a result of the much slower 

performance of the GeForce during the modulation and demodulation kernels. It was also 

decided to test the performance without the modulation and FFT kernels, leaving just the 

IFFT and demodulation kernels to perform on the data. It should be noted that the first 

two kernels were still performed in order to generate the data but only the last two were 

profiled. The results for this simulation are shown in Figure 26. It is expected that as 

these two kernels are half of the total application, they should take roughly half as long as 

the results shown in Figure 26. This is the case. 

 

 Performance of the IFFT and demodulation blocks of the combined Figure 26. 

algorithm on all three devices. 
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V. CONCLUSION AND RECOMMENDATIONS 

A. FINDINGS AND CONCLUSIONS 

One important difference between the BPSK algorithm and the FFT algorithm 

that has an effect on the performance of the algorithms is the amount of input data to each 

algorithm. For the FFT algorithm there is one complex number—two numbers of the data 

type in use—produced, whereas for the BPSK algorithm sF  numbers are produced for 

every bit of every number sent. When 50sF   and 1024 integers are modulated, the 

output is 34 MB in size. This is huge and is the main reason why the NVIDIA Tesla 

outperforms the other two processors on the BPSK algorithm. It was designed for 

processing large amounts of data. Even though the GeForce finishes executing the FFT 

algorithm sooner than the Tesla with smaller signal lengths, it has a lower ceiling for the 

size of the signal length. The Xeon, on the other hand, performs inconsistently 

approximately 50 percent of the time. This is not a feature that is desirable in a data 

processing system. The Xeon’s performance is hampered by its inherently serial nature 

and is further hampered by the fact that, in addition to executing the kernel, it is required 

to act as the host device of the application, executing the potentially high overhead 

associated therewith. 

Based on this research, the Tesla is the best processor out of the three provided. 

Although not the fastest processor in every case, its consistent, high performance 

processing make it the optimal processor. This, of course, does not take into 

consideration the cost of the processor. If cost is an important factor, the GeForce is 

likely the device that would be considered best. This is due to the fact that the cost of the 

GeForce is an order of magnitude less than the cost of the Tesla. This decision also does 

not consider the power consumption, which could also be a strong deciding factor in an 

eventual selection. 
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This research explored the performance of three specific devices for two specific 

algorithms. This conclusion, therefore, may not be applicable for every situation. This is 

reinforced by the highly circumstantial results of the Xeon on a single algorithm and the 

GeForce across the two algorithms. 

B. RECOMMENDATIONS FOR FUTURE WORK 

1. FPGA 

As no FPGA-based accelerator was available for testing, it is highly 

recommended that the two separate algorithms, and the combined application, be tested 

on one. Nallatech numerical accelerator boards use Altera FPGAs and the Altera OpenCL 

FPGA compiler to run numerically intensive applications. Including FPGAs as a potential 

hardware device is particularly necessary if the end goal for the selected hardware is in a 

situation where minimal power consumption is vital. 

2. Additional Algorithms 

It is recognizable from the results that the specific algorithm used has a high 

impact on performance. Because the GeForce performs well when executing the FFT 

algorithm but has the slowest execution for the BPSK algorithm, it is obvious that any 

specific algorithm to be used must be fully developed prior to device selection. Of course, 

there is little evidence to suggest that the consistently high performance of the Tesla 

would not also be extended to other algorithms. 

3. Utilizing Multiple Devices 

Utilizing multiple devices in parallel is also a possibility for further work, 

depending on the algorithm used. Although the same data cannot be operated on in two 

different locations at the same time, in certain situations it may be possible to further 

parallelize an application. 

4. Recovery of the FFT Output 

As mentioned in the discussion on the FFT algorithm, the results for the GPU for 

larger signal lengths are incorrect but possibly recoverable. It was determined that the 
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cause of each breakdown in the algorithm is caused by the second kernel of the 

algorithm. Further work can be done to find a solution. Possible solutions include the 

examination of, and revision of, the second kernel or the creation of an entirely new FFT 

algorithm. 
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