2,301 research outputs found

    Weakly supervised segmentation from extreme points

    Full text link
    Annotation of medical images has been a major bottleneck for the development of accurate and robust machine learning models. Annotation is costly and time-consuming and typically requires expert knowledge, especially in the medical domain. Here, we propose to use minimal user interaction in the form of extreme point clicks in order to train a segmentation model that can, in turn, be used to speed up the annotation of medical images. We use extreme points in each dimension of a 3D medical image to constrain an initial segmentation based on the random walker algorithm. This segmentation is then used as a weak supervisory signal to train a fully convolutional network that can segment the organ of interest based on the provided user clicks. We show that the network's predictions can be refined through several iterations of training and prediction using the same weakly annotated data. Ultimately, our method has the potential to speed up the generation process of new training datasets for the development of new machine learning and deep learning-based models for, but not exclusively, medical image analysis.Comment: Accepted at the MICCAI Workshop for Large-scale Annotation of Biomedical data and Expert Label Synthesis, Shenzen, China, 201

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring

    Get PDF
    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Automatic Ultrasound Scanning

    Get PDF

    Design Simulation and Assessment of Cellular Automata Based Improved Image Segmentation System

    Get PDF
    A variety of methods may be found in the numerous image segmentation techniques. Here a method of text retrieval conducted is typically to produce a collection of localized features. In computer science, object recognition is the problem of automatically "identifying", or classifying, an object. In certain instances, the awareness of artifacts is deeper into image in image segmentation through image processing. The algorithm used for image segmentation has a direct impact on the outcome of the whole approach, therefore it is important to choose carefully. It is important to choose a segmentation method appropriate for a certain framework. There are several ready-to-use segmentation methods, so one by one evaluate the tools to see which works best. Segmentation algorithms have reached such a level of complexity that a research employing them is often considered impractical. The given research undertakes the process of improved graph cut method to select the foreground and background of image through labelling and segmentation of the image. Results have been compared on the performance parameter to analyse the effectiveness of the proposed algorithm for segmentation of the images
    corecore