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Summary

Medical ultrasound has been a widely used imaging modality in healthcare platforms for
examination, diagnostic purposes, and for real-time guidance during surgery. However,
despite the recent advances, medical ultrasound remains the most operator-dependent
imaging modality, as it heavily relies on the user adjustments on the scanner interface to
optimize the scan settings. This explains the huge interest in the subject of this PhD project
entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been
to develop automated techniques to minimize the unnecessary settings on the scanners,
and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new
quantitative measures. Thus, four major issues concerning automation of the medical
ultrasound are addressed in this PhD project. They touch upon gain adjustments in
ultrasound, automatic synthetic aperture image quality optimization, automated vessel
segmentation in ultrasound, and lack of CAD in point-of-care lung ultrasound.

The goals of this PhD are achieved for each of the subjects. First, a new automated
time gain compensation technique is proposed that compensates for gains of the scans in
2-D. The proposed model outperforms the current 1-D curve compensation in commercial
scanners, as the 2-D topology of the scans are not fully integrated in those techniques.
Second, an automated generic technique is proposed for optimization of synthetic aperture
image quality. This generic model can be used for any imaging regime using any trans-
ducer geometry. Third, a hybrid vessel segmentation technique is proposed that combines
both vector velocity estimates (VFI) and B-mode images. The technique enables the
wall-to-wall visualization of VFI, as well as provides a firm ground for quantitative quan-
tification of VFI in state-of-the-art US scanners. Finally, a new technique is introduced to
detect disease-related reverberation artifacts in lung ultrasound, thereby exploiting the
full potential of this imaging modality.
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Resumé
(Summary in Danish)

Medicinsk ultralyd er en udbredt realtids billedmodalitet, der benyttes i klinikken
til både diagnostisering og under operationer. På trods af den konstante udvikling er
medicinsk ultralyd stadig meget brugerafhængigt, da mange parametre skal justeres og
optimeres manuelt for at opnå det bedst mulige resultat af en undersøgelse. Motivatio-
nen i dette PhD projekt har derfor været at automatisere en række af disse processer,
således at brugerafhængigheden kunne minimeres. Ydermere har fokus været på at
udvikle algoritmer, der kunne assistere brugeren i det daglige arbejde ved brug af et
computer-automatiseret diagnosticeringsværktøj (CAD). Denne afhandling gennemgår
fire større problemstillinger relateret til automatisering af medicinsk ultralyd. Disse emner
er automatiseret kontrol af “gain”, automatisk syntetisk apertur billedkvalitets-optimering,
automatiseret segmentering af blodkar samt manglen på automatiserede diagnostiser-
ingsværktøjer til lungepatienter.

Denne PhD afhandling forsøger at løse hver af de fire opstillede problemstillinger.
Således foreslås en automatiseret “gain” kompenseringsteknik, der kan justere “gainen”
for 2-D ultralydsbilleder. Den foreslåede metode udkonkurrerer de nuværende 1-D kom-
penseringskurver i kommercielle scannere, da 2-D topologien ikke er fuldt integreret i
disse teknikker. Den anden problemstilling foreslår en automatisk generisk metode til
optimering af billeder genereret med syntetisk apertur teknikker. Den generiske model
er kompatibel med en hvilken som helst billeddannelsesmetode og kan benyttes af alle
transducergeometrier. Den tredje problemstilling løses ved at kombinere information om
blodets bevægelse i 2-D og et B-mode billede. En metode baseret på disse input kan pro-
ducere en forbedret og automatiseret segmentering af blodkarrene, hvilket giver et bedre
udgangspunkt for at estimere kvantitative værdier i “state-of-the-art” ultralydsscannere.
slutteligt præsenteres en ny teknik, der automatisk kan identificere artefakter relateret til
lungesygdomme.
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CHAPTER 1
Introduction

Medical ultrasound (US) is a widely used imaging modality to assist medical doctors
for examination, diagnostic purposes, and for real-time guidance during surgery (Harvey
et al. 2002; OBrien and Holmes 2007). Today, US is used for a great variety of imaging
applications, such as cardiac imaging (Willadsen 2004; Tong et al. 2013), abdominal
imaging (Meire et al. 2001; Moore, Holliday, et al. 2008), fetal imaging (Thompson,
Trudinger, and Cook 1985), and recently also for lung imaging (Volpicelli, Cardinale,
et al. 2008; Gargani 2011; Lichtenstein 2014). Ultrasound scanners are often the preferred
modality of choice as they

• provide a real-time and non-invasive imaging with a high quality of soft tis-
sue (Wardlaw et al. 2006); and

• are inexpensive compared with other imaging modalities (OBrien and Holmes
2007); and

• are mobile, and thus can be used at point-of-care (Moore and Copel 2011), while
remaining safe for the patients.

These factors can be compared with other medical imaging modalities such as com-
puted tomography (CT) and magnetic resonance imaging (MRI), whose comprising large
and relatively expensive systems cannot easily be transported to the patient (Harvey et al.
2002; Terkawi et al. 2013). Medical US is progressing continuously with a rapid pace,
and new imaging methods are constantly being exploited (OBrien and Holmes 2007).
Many of the new techniques aim to extend the application field of US into new areas, and
to improve the quality of the images and thereby making the diagnostic process more
reliable.

Many new technological features have been added to the modern diagnostic US
systems. However, despite the recent advances, medical US remains the most operator-
dependent imaging modality, as it heavily relies on the actions of medical doctor to
optimize the scan settings (Baker, J. Jensen, and Behrens 2013). These for instance,
include the overall image gain, the gain as a function of depth (Pye, Wild, and McDicken
1992; Lee, Kim, and Ra 2006; Tang, Luo, and Liu 2009), Doppler sensitivity (Stewart
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Figure 1.1: The keyboard of a commercial ultrasound scanner. The zoom-in shows the
TGC gain sliders.

2001), pulse repetition time (Stewart 2001), echo canceling filter (Schlaikjer, Torp-
Pedersen, and J. A. Jensen 2003), focusing (J. N. Tjøtta, S. Tjøtta, and Verfring 1991),
and many more. This is also reflected by the keyboard, which most modern scanners have
(see Fig. 1.1). Here, a plethora of buttons are present and they have slightly different
functions and placement for each new scanner and manufacturer. This introduces sources
of errors, prolongs the education time, and also slows down the work-flow for the clinical
users. In such systems, operator’s skill in obtaining the images plays a critical role in
the radiologist’s ability to confidently provide a correct diagnosis. However, operator
skill varies as a result of experience, education, and knowledge of the ultrasound system
capabilities. This variability can lead to significant differences in the diagnostic images
provided, even in same type of study or on the same patient.

Another major problem with current US is that many parameters are measured manu-
ally on the images, and often have to be corrected to be useful. This again, introduces the
possibility for error and slows down the clinical process.

Prior to discussing the objectives of this PhD project, the state-of-the-art of medical
US has to be studied.

1.1 State-of-the-art ultrasound and the need for automation

Four major issues concerning the medical US are addressed in this PhD project. They
touch upon gain adjustments in US, synthetic aperture image quality, segmentation of
major vessels in US, and point-of-care lung ultrasound. For each of them, the state-of-the-
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art, the challenges, and the suggestions to reduce the engineering adjustments performed
by the user are introduced.

1.1.1 Automated Gain adjustments
Ultrasound waves propagating in tissue encounter losses in scanned media. Two main
mechanisms contribute to the acoustic attenuation: absorption and scattering. Time gain
compensation (TGC) is usually used to compensate for the acoustic attenuation. TGC
offsets the attenuation of ultrasound echo signals along the depth, so that echoes belonging
to deep structures are more amplified compared with echoes of superficial structures. This
provides more uniform signals to be displayed on the scanner (Lee, Kim, and Ra 2006).

Modern US scanners use a 1-D curve for time gain compensation (TGC). The user
adjusts the shape by manually using TGC sliders for different depths, and the image
quality is dependent on the adjustments. An automatic adjustment of the TGC (ATGC)
without user intervention can address the shortcomings of the manual TGC (Pye, Wild,
and McDicken 1992). To date, several designs of ATGC are proposed in the literature (Pye,
Wild, and McDicken 1992; Lee, Kim, and Ra 2006; Tang, Luo, and Liu 2009). However,
the majority of these algorithms rely on the presence of sufficiently large homogeneous
soft tissues with uniform distribution of attenuation in other tissues is ignored in these
algorithms (Klesenski 1996; Lee, Kim, and Ra 2006; Tang, Luo, and Liu 2009). These
methods fail to compensate the overall gain when large fluid collections such as the urine
bladder and gallbladder are present that change the uniform distribution of the attenuation
drastically. Large anechoic segments, surrounded by soft tissue, present a large variation
in attenuation. A new automated gain compensation that considers the 2-D topology of
the scanned media is then essential.

1.1.2 Optimization of synthetic aperture image quality
When it comes to US imaging techniques, Synthetic Aperture (SA) has shown that it
highly improves the frame rate in comparison with conventional US imaging, where one
line at a time is beamformed for generating the final ultrasound image (Gammelmark
and J. A. Jensen 2003). In SA, emissions with large areas of sonification can be used
and a complete resolution image can be beamformed for each emission. By adding a
series of low resolution images (LRI) a high resolution image (HRI) is generated (Nikolov
2001). However, several different interdependent parameters effecting the image quality
in SA such as number of successive emissions, F#, aperture size, and αmax. Achieving
optimal image quality using SA sequence is then highly dependent to optimizing the
parameters involved in image acquisition. An automated optimization procedure of the
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interdependent parameters is then required for ensuring the optimal image quality in SA
sequence designs.

1.1.3 Automated segmentation of major vessels
Current vessel segmentation techniques in US use only B-mode images as the input to
their algorithm (Mao et al. 2000; Golemati et al. 2007; Santhiyakumari et al. 2011; Loizou
2014). The information about the flow moving inside the vessel is therefore not considered.
Flow data adds invaluable information by locating the regions inside the vessels, and
strengthen the segmentation of the vessels. One study used a combination of B-mode
and contrast enhanced images for segmentation (Carvalho et al. 2015). The technique
segments the border of the carotid artery which can hardly be detected in standard B-mode
images. Nonetheless, it requires special micrometer-sized gas bubbles to be injected into
the blood stream, which is not achievable in everyday use in a normal scan session.

The challenge remains in devising an accurate vessel segmentation technique that
incorporates both B-mode image and flow data non-invasively, to better identify the
vessels. Vector Flow Imaging (VFI) (J. A. Jensen et al. 2016a,b) can be used for this
purpose, as it enables reliable, robust, and non-invasive estimation of blood flow. A
new segmentation technique, using a combination of B-mode and VFI data, can be an
alternative. This is mainly because the VFI is robust, reliable, and can be acquired in
real-time along with the B-mode. Thus, the technique has the potential for automated
quantification of flow in state-of-the-art US scanners.

1.1.4 Automated point-of-care lung ultrasound
In daily clinical practice, patients suspected for pulmonary disease such as pulmonary
edema or pneumothorax are imaged with X-ray, and often repeatedly imaged with short
intervals to monitor the effect of the applied treatment (Volpicelli, Mussa, et al. 2006;
Gargani 2011). Lung ultrasound (LUS) is a well-established modality but is often bypassed
as the medical staff handling these patients is not familiar with the method (Lichtenstein
2014). The bed-side LUS is an emerging technique, and the standard pathological routine
for diagnosing pulmonary disease is to analyze a single scan or frame by a doctor (Gargani
2011). However, a major factor affects the accuracy of the examination. That factor is
interpretation error for reasons including inexperience and habituation. Computer-assisted
interpretation can potentially address the issue related to interpretation error. Despite
the recent developments of LUS, there are no computerized and automated models
for detecting pulmonary diseases in the literature. Therefore, an automated technique
for detecting pulmonary disease based on physical understanding of ultrasonic specific
features such as reverberation artifacts related to diseases in LUS is needed.
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1.2 Objective

The overall objective of this project is to develop algorithms to reduce the engineering
adjustments done by the medical doctors on the scanners to optimize the quality of the
scans. A second goal is to automate the diagnostic process by developing automatic
methods for yielding quantitative measures.

The first part of this dissertation investigates algorithms for optimizing the gain
settings employed in acquiring the data. Algorithms for adjusting the gain to optimize
both the acquisition process and the display. A large database of clinical images acquired
at University Hospital of Copenhagen, Rigshospitalet, is used to validate the algorithm.

The second part of the project seeks to develop automated and generic techniques to
optimize the SA image quality.

The third part of the project seeks to develop methods for assisting the diagnostic
process. This comprises methods for automatically segmenting vessels and from this , to
automatically determine quantitative flow measures, such as volume flow.

Finally, the last part of the dissertation focuses on implementing automated techniques
for detecting pulmonary diseases in point-of-care lung ultrasound.

1.3 Scope

As noted in previous sections, this PhD project addressed four different topics. First,
the TGC is addressed and a new automated method is introduced that compensates the
images in 2-D compared with 1-D curve compensation. Second, SA image quality is
addressed, when SA is used for image acquisition and a novel and automated method for
optimization of SA image quality is proposed. Third, the segmentation of major vessels
in US is addressed. This is performed to assist vector flow images VFI (wall-to-wall
visualization of VFI), and to automate the quantification of VFI in state-of-the-art US
scanners.

Finally, this project addressed the lack of an automated tool for identifying pulmonary
disease in point-of-care LUS, and thus introduced a new technique to quantify disease-
related reverberation artifacts.

Therefore, the scope of this PhD entitled ”Automated Ultrasound Scanning” has the
following steps:

1. Automatic gain adjustments in medical US and clinical validation of the proposed
method.

2. Proposing an automated optimization procedure for optimizing interdependent
parameters effecting SA image quality.
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3. Proposing a novel vessel segmentation technique in US that uses the combination
of B-mode and VFI flow data. The proposed method implements automated VFI
quantitative flow measures, such as peak systolic velocity (PSV) and volume flow.

4. Proposing an automated method for detecting disease-correlated reverberation
artifacts in LUS, more specifically B-lines.

1.4 Scientific contributions

The thesis compiles the research presented in two manuscripts that have been submitted
for publication in ISI journals, and a patent application taken up by Analogic. Additionally,
five conference proceedings are included in the project. Besides the included papers, the
author has contributed to publications on segmentation of vessels and validation of VFI
quantitative measures, both experimentally and during clinical settings. A full publication
list is given below.

1.4.1 Journal papers
Paper A: Ramin Moshavegh, C. Ewertsen, K. L. Hansen, A. H. Brandt, T. Bechsgaard,

M. C. Hemmsen, B. Martins, M. B. Nielsen, and J. A. Jensen. Advanced Gain
Adjustments for Ultrasound Imaging. Submitted to Journal of Ultrasound in
Medicine and Biology (UMB).

Paper B: Ramin Moshavegh, C. A. Villagomez-Hoyos, M. B. Stuart, B. Martins, and
J. A. Jensen. Advanced Multi-objective Synthetic Aperture Image Quality Op-
timization. Submitted to IEEE Trans. Ultrasons., Ferroelec., Freq. Contr..

1.4.2 Conference papers
Paper C: Ramin Moshavegh, K. L. Hansen, H. M. S. M. C. Hemmsen, C. Ewertsen, M.

B. Nielsen, and J. A. Jensen. “Novel automatic detection of pleura and B-lines
(comet-tail artifacts) on in vivo lung ultrasound scans”. In: Proc. SPIE Med. Imag.
Vol. 9790, pp. 97900K-97900K-7, 2016.

Paper D: Ramin Moshavegh, M. C. Hemmsen, B. Martins, K. L. Hansen, C. Ewertsen, A.
H. Brandt, T. Bechsgaard, M. B. Nielsen, and J. A. Jensen. “Advanced automated
gain adjustments for in-vivo ultrasound imaging”. In: Proc. IEEE Ultrason. Symp.,
pp. 1–4, 2015.

Paper E: Ramin Moshavegh, M. Hemmsen, B. Martins, A. Brandt, K. Hansen, M. Nielsen,
and J. A. Jensen. “Automated hierarchical time gain compensation for in-vivo
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ultrasound imaging”. In:Proc. SPIE Med. Imag., Vol. 9419, pp. 941904-941904-9,
2015.

Paper F: Ramin Moshavegh, J. Jensen, C. A. Villagomez-Hoyos, M. B. Stuart, M. C.
Hemmsen, and J. A. Jensen. “Optimization of synthetic aperture image quality”.
In: Proc. SPIE Med. Imag., Vol. 9790, pp. 97900Z-97900Z-9, 2016.

Paper G: Ramin Moshavegh, B. Martins, K. L. Hansen, T. Bechsgaard, M. B. Nielsen, and
J. A. Jensen., “Hybrid Segmentation of Vessels and Automated Flow Measures
in In-Vivo Ultrasound Imaging”. In: Proc. IEEE Ultrason. Symp., 2016 IEEE
International, pp. 1–4, 2016.

1.4.3 Patent application
Patent A: Ramin Moshavegh, B. Martins, and J. A. Jensen.Wall-to-wall vessel segmentation

in US imaging using a combination of VFI data and US imaging data, Patent
Application, filed on September 09, 2016, number: ANA1311-US; PD08509.

1.4.4 Second-author journal paper
SA A: A. H. Brandt, R. Moshavegh, K. L. Hansen, T. Bechsgaard, J. A. Jensen, L.

Lönn, and M. B. Nielsen. Ultrasound Vector Flow makes Insonation Angle irrel-
evant in Portal Vein Velocity Measurements. Submitted to American Journal of
Roentgenology (AJR), Dec 2016.

1.4.5 Additional papers
• P. T. Sarnikowski, A. B. Kjær, R. Moshavegh, and J. A. Jensen. “Automatic

segmentation of vessels in in-vivo ultrasound scans”. Accepted To be published:
Proc. SPIE Med. Imag., 2017.

1.5 Other contributions

Besides the conducted research and the published papers, several software projects were
developed for the benefit of the colleagues at the center for fast ultrasound imaging (CFU).
A collection of scripts was programmed in Python for acquiring beamformed RF-data
from the BK3000 scanner.

A MATLAB interface was programmed to visualize The US data (B-mode and flow
data), and to perform quantitative measures such as PSV and volume flow is on the
US data. The visualization tool entitled “CFUvisualization” consists of a collection of
MATLAB and C++ scripts. Excluding all external scripts, CFUvisualization consists of



8 Chapter 1. Introduction

more than 10,000 lines of code. The tool can be used for visualizing US B-mode and
VFI data with multiple options for renderization of the flow. The tool can also be used
for performing quantitative flow measurements such as measuring PSV and volume flow
using the VFI data. The tool enables exporting high quality plots from MATLAB, PDF
conversion, creation of high quality video from MATLAB figures for publications.

1.6 Outline of the thesis

The structure of the thesis is four-fold. The first chapter introduces the technical back-
ground related to the conducted research. The subsequent chapters concern the scientific
contributions and are structured to demonstrate the progress of project. This thesis is
presented as a whole, and the chapters are intended to be read in succession. The thesis is
designed to enforce logical and scientific rigor and make it easy to read.

This chapter has:

• Provided an overview of the state-of-the-art medical US in TGC, SA imaging,
vessel segmentation and finally, point-of-care LUS. The shortcomings of each are
also reviewed. The rationale for introducing new automated techniques For TGC,
SA image optimization, segmentation of vessels in US, and pulmonary disease
detection in LUS is discussed.

• Defined the aim, objectives, and scope of this research.

• Highlighted the main scientific contributions in this PhD project.

The remainder of the thesis is organized as follows:

Chapter 2 deals specifically with the problem of automatically, accurately and robustly ad-
justing the gains in ultrasound imaging. The chapter acquaints the reader with the
acoustic attenuation and discusses the shortcomings of the recent implementations
of TGC, specially in regard to gain compensation in scans with large anechoic
regions. It then presents an ATGC algorithm that adapts to the large attenuation
variation between different types of tissues and structures. The technique relies on
decay of the power spectral density of the received signal with respect to depth, as
well as estimates of scattering strength, and noise level to gain a more quantitative
understanding of the underlying tissue.

Chapter 3 deals specifically with the optimization of SA image quality. The task of automati-
cally selecting optimal parameters for acquisition of the SA images. The chapter
introduces the principles of the synthetic aperture (SA), reviews the literature on
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SA, and highlights the need to automatically optimize the parameters affecting the
SA image quality. It then presents a pilot study of image quality optimization for
SA based on the performance measures of full-width at half maximum (FWHM)
and the contrast resolution (CTR). The multi-objective optimization technique used
in this chapter is based on theory of Pareto optimality.

Chapter 4 introduces the transverse oscillation (TO) and synthetic aperture flow imaging
(SAFI) –the two techniques used for acquisition of velocity data in this project.The
velocity data is combined with the optimized B-mode from Chapter 3, and used in
Chapter 5 to segment vessel lumen in ultrasound images.

Chapter 5 deals specifically with the segmentation of major vessels, particularly carotid
artery, and automating quantitative flow measures in ultrasound using VFI. The
chapter thus, proposes and discusses a novel hybrid technique for accurate vessel
segmentation that fuses VFI data and B-mode for robustly detecting and delineating
vessels. The proposed method delineates the vessels in ultrasound scans and enables
a better visualization of flow inside the vessel, as well as providing a firm ground
for quantitative flow measures for VFI, such as PSV and volume flow.

Chapter 6 introduces a technique for automated detection of disease correlated reverbera-
tion artifacts, more specifically B-lines, in ultrasound lung scans. The proposed
technique also enables quantitative measures in bed-side lung ultrasound, thereby
exploiting the full potential of this imaging technique.

Chapter 7 reviews the work that is presented in this PhD project and summarizes the major
contributions and findings. In addition, it proposes an avenue of future research.
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CHAPTER 2
Advanced Hierarchical Gain

Adjustments
The present chapter deals specifically with the problem of automatically, accurately and
robustly adjusting the gains in ultrasound imaging. The chapter acquaints the reader with
acoustic attenuation and time gain compensation (TGC), reviews the recent implemen-
tations of TGC in commercial scanners, and discusses their shortcomings. The chapter
then presents an automated hierarchical TGC (AHTGC) algorithm that adapts to the large
attenuation variation between different types of tissues and structures. The technique
relies on decay of the power spectral density of the received signal with respect to depth,
as well as estimates of scattering strength, and noise level to obtain a more quantitative
understanding of the underlying tissue. The proposed algorithm is applied to in-vivo
ultrasound scans and the image quality is evaluated.

The remainder of this chapter is organized as follows. Sections 2.1 discusses the
acoustic attenuation. Section 2.2 introduces the time gain compensation (TGC) and
reviews the current implementations of TGC. Section 2.3 presents a high level description
of the proposed technique. Sections 2.4 to 2.8 introduce the different steps of the algorithm.
Section 2.9 describes the scan protocol of the study, and introduces the images acquired.
Sections 2.10 and 2.11 empirically evaluate the results. Finally, Section 2.12 summarizes
the chapter.

2.1 Attenuation

Ultrasound waves propagating in tissue encounter energy loss in scanned media. Two
main mechanisms contribute to the acoustic attenuation: absorption and scattering. Real
tissue data suggest that attenuation has a power-law dependency on frequency. As a
consequence of the frequency dependency of attenuation, ultrasound waves become
smaller in amplitude as they propagate in media, and change shape (Jensen 1996; Szabo
2014). A linear dependency is often considered between the attenuation and the distance
traveled, and the frequency. The most commonly used unit for attenuation in ultrasound is
dB/cm×MHz. Attenuation values for different human tissues are depicted in Table 2.1.

13
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Tissue
Attenuation
dB/cm×MHz

Liver 0.6 – 0.9
Kidney 0.8 – 1.0
Spleen 0.5 – 1.0

Fat 1.0 – 2.0
Plasma 0.01
Bone 16.0 – 23.0
Blood 0.17 – 0.24

Table 2.1: Attenuation values for human tissue (taken from (Jensen 1996))

The acoustic attenuation is due to different phenomena. A strong factor is scattering,
which spreads the acoustic energy in all directions. Another important factor is absorption
of the energy. This is mainly due to viscous loss, heat conduction, and losses associated
with molecular exchanges of energy. Absorption mechanism accounts for roughly 75%
to 95% of the total attenuation (Jensen 1996). Complex nature of the tissue structures in
the human body complicates the formulation of frequency dependence of the attenuation.
Thus, literature often, reports a basic phenomenological model for attenuation. The
amplitude attenuation transfer for a plane wave propagating through tissue is given by:

|H(f ; z)| = exp(−(β0z + β1fz)), (2.1)

where z is depth in tissue, f is frequency, β0 is assumed to be the frequency-
independent attenuation, and β1 is the frequency-dependent attenuation term. The major
part of the attenuation is the frequency-dependent term, and frequency-independent at-
tenuation is usually disregarded from the model. The frequency-dependent attenuation
causes a larger attenuation of higher frequencies than lower frequencies. This reduces the
mean frequency of the spectrum of the received signal, as it propagates in the tissue, and
changes the shapes of the spectrum of the signal. Assume a Gaussian pulse given by:

p(t) = exp(2(Brf0π)
2t2) cos(2πf0t), (2.2)

where f0 is the center frequency, andBr is the relative bandwidth. The linear decrease
in mean frequency with depth can be explained by taking the Fourier transform of (2.2)
and multiplying by the attenuation function(2.1):
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Pa(f) =
1

2Brf0
√
2π


exp

(
− (f0 − f)2
2(Brf0)2

)
+ exp

(
− (f0 + f)2

2(Brf0)2

)


× exp(−(β0z + β1fz)).

(2.3)

Condidering only the term for positive frequencies yields

Pap(f) =
1

2Brf0
√
2π


exp

(
−f

2
0 + f2 − 2f0(1− β1zB2

rf0)f

2(Brf0)2

)


× exp(−β0z).

(2.4)

The maximum value of the spectrum, coinciding with its mean value, is attained
when the argument of the exponential is zero, since the spectrum is symmetric. The first
derivative with respect to frequency will also be zero due to symmetry, so

2fmean − 2f0(1− β1zB2
rf0) = 0←→ fmean = f0 − (β1zB

2
rf

2
0 )z. (2.5)

The mean frequency will, thus, decrease linearly with depth and it is dependent on at-
tenuation, transducer center frequency, and bandwidth. Eq. (2.5) also holds approximately
for other pulse shapes, where a nearly linear decrease in center frequency is seen with
depth, and the downshift is dependent on attenuation, frequency, bandwidth, and spectral
shape. Thus, RF echoes are strongly attenuated by the tissues scanned (Lee, Kim, and Ra
2006). For a tissue with attenuation of 0.7 dB/cm×MHz, The acoustic wave would be
attenuated 2×12×3.5×0.7 = 58.8 dB for a received signal using a 3.5 MHz transducer
with an imaging depth of 12 cm (as the sound penetrates the tissue twice). Therefore, the
received signals span a wide dynamic range, and are not suitable to be visualized before
the gains are compensated for the attenuation.

2.2 Time-Gain-Compensation (TGC)

TGC is usually used to compensate for the acoustic attenuation. TGC offsets the at-
tenuation of ultrasound echo signals along the depth, so that echoes belonging to deep
structures are more amplified compared to echoes of superficial structures. This provides
more uniform signals to be displayed on the scanner (Lee, Kim, and Ra 2006).

Current ultrasound scanners use a TGC curve for time gain compensation. The user
adjusts the shape by manually using TGC sliders for different depths, and the image
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quality is dependent on the adjustments. An automatic adjustment of the TGC (ATGC)
without user intervention can address the shortcomings of the manual TGC (Pye, Wild, and
McDicken 1992). To date, several designs of ATGC are proposed in the literature (Inbar
and Delevy 1989; Pye, Wild, and McDicken 1992; Lee, Kim, and Ra 2006; Tang, Luo,
and Liu 2009). Pye. et. al. (Pye, Wild, and McDicken 1992) proposed a technique,
in which the gain applied to each location in the image is determined by using echo
information averaged over a large part of the image.

Lee. et. al. (Lee, Kim, and Ra 2006) proposed an algorithm, which consisted of
both TGC and dynamic range (DR) optimization. The algorithm used log-compressed
digital echo data as input. The gains along the depth are first compensated and then an
optimization procedure is performed to find the optimal dynamic range. The paper used a
single TGC curve for compensating all the scan lines. An attenuation curve is computed
and used for the purpose of compensation. However, the curve is computed from the
log-compressed data and the complex nature of the RF data is already lost.

The majority of these algorithms rely on the presence of sufficiently large homoge-
neous soft tissues with uniform distribution of attenuation (Klesenski 1996; Lee, Kim,
and Ra 2006; Tang, Luo, and Liu 2009). Thus, the dependency of the attenuation for
several different tissues is ignored in these algorithms. These methods fail to compensate
the overall gain when large fluid collections such as the urine bladder or gallbladder are
present that change the uniform distribution of the attenuation drastically. Large anechoic
segments, surrounded by soft tissue, present a large variation in attenuation. Also, at
present, TGC is performed manually or automatically on the commercial scanners, using
a 1-D curve, in which the 2-D topology of the scan plane is ignored. The main challenge
remains to devise an effective ATGC that considers the 2-D topology, and potential drastic
changes in the attenuation distributions, of the scanned media.

2.3 High-level description of the proposed algorithm

The novelty of the proposed technique comes from incorporating several physical esti-
mates of the scanned media as constituents of the compensation strategy. Fig. 2.1 shows
the diagram of the the proposed algorithm, which contains five distinct steps as follows.

1. First, the shadow regions on the scans are detected and excluded from the gain
compensation procedure.

2. Second, the received signal by the transducer is calibrated for the shape of the beam
profile to ensure that all the scanned media receives the same amount of energy.
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Figure 2.1: Diagram of the proposed AHTHC algorithm.

3. Third, a 2-D SNR map is computed for each frame, and a feature (F1 ) is computed
to decide whether the frame contains large anechoic regions (Type 1) or not (Type
2).

4. In the fourth step, a TGC curve is computed dynamically for each frame and used
to compensate for the gains in that frame.

5. Finally, a 2-D normalized map highlighting the anechoic regions is generated for
the frame and used to correct the adjusted gains inside the anechoic regions after
applying the TGC curve. This correction is performed only on the scans including
large fluid collections (Type 1).

2.4 Insonified-region detection

The main purpose of this step is to determine the insonified region on the ultrasound
scans. Often, during normal scan sessions, the transducer is not perfectly attached to the
body surface, generating long dark shadows in the image. The Imperfect connections are
expected to be seen more on scans acquired using convex arrays, where sides of the array
are not always touching the body. These generate shadows appearing on one or both sides
of ultrasound images. Therefore, identifying the insonified regions and excluding the
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Algorithm 1 Shadow detection
Input: Env envelope of RF-data,
Output: Bshdw binary mask outlining the shadow regions.

1: procedure SHDW
2: Let Bshdw be a binary mask with the same size as Env.
3: Let min env be the minimum intensity of Env in dB and N be the size of the
Env.

4: for each i ∈ N do
5: if Env(i) ≤ min env + 0.1× |min env| then
6: Bshdw(i) = 1 # Creating the binary mask by including very dark regions
7: end if
8: end for
9: Let M be the number of columns of the Env.

10: for each i ∈ M do
11: if sum(Bshdw(i).col) ≤

0.9× length(Bshdw(i).col) then
12: Bshdw(i).col = 0 # Excluding scan-lines shorter then 90% of scan

depth.
13: end if
14: end for
15: Bshdw = rmv obj(Bshdw) # function removing objects that are not attached

at least to one side of the Bshdw.
16: end procedure

shadow regions from the gain adjustment process are essential to reduce the unnecessary
gain adjustments and increase the speed of the algorithm.

The RF-data is used in this step to identify the insonified regions. For this purpose,
the envelope of the RF data is computed. A binary mask, including intensity values lower
than 10% of the dynamic range of the envelope data is generated. Each scan-line in the
binary mask is then treated independently. Scan-lines longer than 90% of the maximum
scan depth are kept on the binary mask and shorter ones are excluded. Parts of the mask
that are not attached to one of the right or left borders are also excluded from the mask.
This ensured that only elongated and very dark regions on one side or both sides of the
scan remained. Those regions are considered as non-insonified areas and are excluded
from the gain adjustments. Alg. 1 details the procedure. Fig. 2.2 shows a detected dark
shadow, which is overlaid with brown color on top of the B-mode image.
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(b) Shadow regions overlaid with color on the
B-mode image.

Figure 2.2: Figure shows a in-vivo scan of human liver, for which shadow regions extracted
using Alg. 1, and overlaid with brown color on the B-mode image. Only insonified-regions
are used in gain adjustment.

2.5 Energy equalization

Another essential step in the gain adjustment is to compensate for the focusing effects
and beam profile, and to homogenize the energy distribution in the scan plane. For this
purpose, an experiment is conducted, in which a tissue mimicking speckle phantom is
scanned and 50 frames are acquired. The mean of all 50 frames computed yielded a mean
frame. The lateral median of the 50 scan lines bracketing the center-line on the mean
frame is computed to yield an energy curve as a function of depth, which is shown in
Fig. 2.3(a). The curve, in a sense, describes the energy distribution in the scan. The curve
is then inverted, normalized to a maximum of one, and used to scale the energy levels
of all the scan-lines in the image (see Fig. 2.3(b)). This is performed to ensure that the
energy is equally distributed throughout the scanned media.

2.6 SNR map

This section computes 2-D SNR maps and uses them as a rough indication of whether
the images contain large fluid regions or not. Complex IQ data are used to compute the
SNR for all the frames. The acquired frame from the transducer, is contaminated with
noise and can be written as Yi = Si +Ei , where matrix Si is the desired frame signal,
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(b) Inverted and normalized energy curve in (a) which is applied to all scan
lines for energy equalization.

Figure 2.3: Illustration of energy equalization procedure using tissue mimicking phantom
measurements. 50 frames of a tissue mimicking phantom is acquired. 50 frames are
averaged and a mean-frame is generated. (a) This curve shows the lateral Median of the
energy levels of 50 scan lines bracketing the center-line of the mean-frame. (b) The curve
in (a) is inverted, scaled to a maximum of one and applied to all scan-lines.

Ei is the noise contribution, and i is the frame number. The measurement is performed
on a tissue mimicking phantom with an attenuation of 0.5 dB/cm×MHz and N frames
acquired, the mean acquired signal is given by

M = Ŷ = E {Yi} = E {Si +Ei} =
1

N

N∑
i=1

(Si +Ei) (2.6)

in which matrix M represents the mean of acquired frames. Given the assumption that
E {Ei} = 0, the mean acquired signal by averaging all the frames will be equivalent to
the mean desired signal and can be written as M = Ŷ = Ŝ. The noise contribution for
each frame is estimated by subtracting the mean of the all frames from a single frame
Ei = Yi − Ŷ. Therefore, the noise power for the ultrasound system is expressed as
follows:
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Figure 2.4: SNR and noise contribution along the center-line of a scan of a tissue
mimicking phantom with an attenuation of 0.5 dB/cm×MHz.

Pnoise =

∣∣∣∣∣∣
1

N

N∑

i=1

E2
i

∣∣∣∣∣∣
(2.7)

Finally, the SNR map for an acquired in vivo frame is determined by dividing the signal
power of that frame by the system noise power Pnoise computed in (2.7)

Psignal(i) = |Yi|2 (2.8)

SNRdB(i) = 10 log10

(
Psignal(i)

Pnoise

)
(2.9)

where Yi in (2.8) is the signal acquired from frame number i in a sequence of in vivo
scans. The power of signal changes from frame to frame, while the noise power is
unchanged. The variation of noise and SNR with depth for a scan of tissue mimicking
phantom along its center-line is depicted in Fig. 2.4. Also, two examples of the 2-D SNR
maps computed from scans of the human bladder and liver are shown in Figs. 2.5(a) and
2.5(c) respectively.

The essential first step in the proposed time gain compensation algorithm is to de-
termine whether the scans included large fluid collections or not. As it is anticipated,
fluid collections appear as very low SNR regions on the SNR maps. Two features are
specifically designed to characterize this property on SNR maps. First, a cumulative
histogram of the values inside the SNR map is computed. Then, a curve is fitted to the
counts, and the slopes of the fitted curve at 25th and 80th percentiles of the curve are used
to characterize the amount of fluid in the scans.
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The idea behind using these two features is to benefit from changes in distribution of
SNR values in SNR maps to distinguish between different scans. The number of counts
of low SNR values in scans with large fluid collections is higher compared to that of
scans with small or no fluid collections. This yield a steeper slope of the cumulative
histogram at low SNR values (i.e. 25th percentile) for scans with large anechoic regions
compared to that of scans with no anechoic regions. The same effect decreased the slope
of the cumulative histogram at high SNR values (i.e. 80th percentile) for scans with
large anechoic regions compared to that of scans with no anechoic regions. The rate of
decrease in the slope at the 80th percentile is much larger than the increase in the slope at
the 25 percentile. Therefore, it is decided to use the slope at the 80th percentile (F1) to
distinguish between the two different scans with large fluid collections and small or no
fluid collections. The value of F1 is determined empirically using 4 scans additional to the
44 scans used for evaluation of the AHTGC algorithm. F1 < 2500 dB−1 characterized a
scan with large fluid collection, otherwise, the scan is considered to contain small or no
collections of fluid.

Figs. 2.5(b) and 2.5(d) illustrate how this feature is calculated for two scans of the
human bladder and liver. These two figures show the cumulative histogram of the SNR
images over 100 bins. 100 bins are used to ensure that a high variation of SNR values in
each map is captured in the histogram and also that the precision of the density estimation
is not jeopardized. In the next step of the algorithm, each scan is dynamically compensated
for the attenuated gain using a TGC curve.
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(a) 2-D SNR map of a scan of human bladder.
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(c) 2-D SNR map of a scan of human liver.
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(d) Cumulative histogram of SNR values in (c).
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Figure 2.5: Two examples of 2-D SNR maps computed for scans of human bladder and liver with illustration of how

their corresponding slope feature is calculated. (a) 2-D SNR map of the human bladder. (b) Cumulative histogram of all SNR

values in map (a) and slopes calculated at 25th and 80th percentiles of the fitted curve. (c) 2-D SNR map of the human liver.

(d) Cumulative histogram of the values in map (c) and slopes calculated at 25th and 80th percentiles of the fitted curve. (e)

Boxplots of 80th percentile slopes for two types of scans.
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2.7 Dynamic TGC

A TGC curve is dynamically computed for each frame and used to compensate for the
gains. For this purpose, the envelope of the acquired scan is first computed. A cumulative
histogram of the intensity values is then generated. The intensity values less than half
of the maximum intensities in the envelope are disregarded and a mask of strong signal
regions is generated. The mask is applied to the envelope, and the lateral median of
the intensities lying inside the mask is computed. The computed curve presents drastic
fluctuations and cannot be used directly to analyze the axial intensity changes in the
envelope. To address this, the curve is smoothed using a Sovitsky-Golay filter. This
technique fits a low-degree polynomial to a subset of adjacent data points by the linear
least-squared method. If data points are equally spaced, an analytical solution to the
least-squared method can be reached by expressing it as a generic set of convolution
coefficients. Applying the convolution coefficients onto the subset of data points produces
an estimate of the smoothed signal together with its derivatives at the central point of
the subset. Smoothing a data set using convolution coefficients was first introduced by
Savitzky and Golay in 1964 (Savitzky and Golay 1964). The values of the convolution
coefficients depend solely on the size of the subset and the order of the polynomial that is
fitted to the subset. For instance, fitting a second-order polynomial to a subset of five data
points gives the following equations for approximating the zero, first, and second-order
derivatives (Orfanidis 1996):

yn =
1

35
(−3xn−2 + 12xn−1 + 17xn + 12xn+1 − 3xn+2), (2.10)

ẏn =
1

35
(−7xn−2 − 3.5xn−1 + 3.5xn+1 + 7xn+2), (2.11)

ÿn =
1

35
(10xn−2 − 5xn−1 − 10xn − 5xn+1 + 10xn+2). (2.12)

Eqs. (2.11)–(2.12) find the first and second-order derivatives of yn at xn, where n is the
central data point of the subset. Each window of five data points is weighted by the
Savitzky-Golay convolution coefficients, Bk, which for the two derivatives are B1 =
1
35 [−7,−3.5, 0, 3.5, 7] and B2 = 1

35 [10,−5,−10,−5, 10], respectively.
Then the general trend of the curve is extracted by applying the singular-spectrum

analysis (SSA). SSA does not require a model of time series, and extracts the trend of time
series in the presence of noise and oscillations (Golyandina, Nekrutkin, and Zhigljavsky
2001).

The basic algorithm of SSA has two parts: decomposition of a time series, and then
reconstruction of a desired additive component, such as a trend. For decomposition, a
window with length of L(1 < L < N) is chosen and a trajectory matrix X ∈ RL×K ,
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K = N − L + 1 is constructed, with step-wise portions of the time series xn taken as
columns:

(x0, ..., xN−1)→ X =




x0 x1 . . . xN−L
x1 x2 . . . xN−L+1

...
...

. . .
...

xL−1 xL . . . xN−1




(2.13)

Then the Singular Value Decomposition (SVD) of X is performed, where the j’th
SVD component is represented by an eigenvalue j and a real-value eigenvector Uj of
XXT :

X =

L∑

j=1

√
λjUjV

T
j , V j =

XTUj√
λj

. (2.14)

The SVD components are sorted in the descending order of their eigenvalues. The
reconstruction has three steps. First, a sub-group (ξ ⊂ 1, . . . , L) of several SVD compo-
nents are chosen. The second step is performed by hankelization (averaging along entries
with indices i+ j = const) of the L×K matrix from the selected ξ components of the
SVD. Finally, reconstruction of a time series component of length N from the Hankel
matrix by the one-to-one correspondence but in the reverse direction, see below the exact
formulae.

The result of the reconstruction stage is a time series additive component:

Xξ =
∑

ξ

√
λjUjV

T
j → G = (g0, . . . , gN−1)

(2.15)

For a complete description of the SSA algorithm, see ((Golyandina, Nekrutkin, and
Zhigljavsky 2001), Chapter 1) and (Alexandrov 2008). Trend extraction in SSA requires
choosing a window length L, and selecting a group of SVD components used for trend
reconstruction. The L is assumed to be 5% of the maximum penetration depth.

The reconstructed trend curve depicts the trend of intensity change within the envelope
and harbors no sudden fluctuations. The curve is finally normalized to its maximum,
inverted and applied as a TGC to the envelope to compensate for the gradual changes in
the intensities (see Fig. 2.6). Alg. 2 details the dynamic TGC curve computation for a
frame. The dynamic adjustment of intensities using this curve might over-gain inside the
fluid regions. The next step computes normalized attenuation maps that can be used to
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correct the possible miss-adjusted gains inside the fluid regions after applying the TGC
curve.
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Figure 2.6: Illustration of a TGC curve dynamically computed for an in vivo scan of the
human liver using ALg 2. TGC curve does not harbor any sudden fluctuations.

2.8 Tissue characterization map

A log spectral difference method adapted from Kuc (Kuc, Schwartz, and Micsky 1976;
Kuc 1984) is used to compute tissue characterization maps highlighting less attenuating
regions. The beamformed RF data is used to compute the characterization maps. Each RF
line is partitioned into several overlapping segments, in which each RF segment is gated
axially by a Tukey function to alleviate the spectral leakage at both boundaries. Each
two overlapping segments in the RF line are paired together, where the upper segment is
considered as the proximal and the underlying segment is considered as the distal segment.
For each pair, the difference between the logarithm of power spectra is computed, a line
is fitted to the power spectral difference, and the slope of the resulting line is considered
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Algorithm 2 Dynamic TGC calculation
Input: Env envelope of RF-data,
Output: TGC Time-gain compensation curve dynamically computed for each frame.

1: procedure DYNATGC
2: Let Env be a discrete gray scale image and let ni be the number of occurrences

of gray level i.
3: p

Env(i) = p (Env = i) = ni

N , 0 < i < L # probability of an occurrence of a
pixel of level i in the Env.

4: Let L be the total number of gray levels in the Env (in our case 256), N being
the total number of pixels in the image, and p

Env(i) be the image’s histogram for
pixel value i, and normalized to [0, 1].

5: for each i ∈ L do
6: cdf

Env(i) =
∑i
j=0 pEnv(j) # define the cumulative distribution function

corresponding to p
Env

.
7: end for
8: Let thl be the gray value for which cdf

Env=0.5 and thh be the gray value in which
cdf

Env=1.
9: Let Ibright be a zero gray scale image with the same size as image Env

10: for each ii ∈ N do # N is the total number of pixels in the image Env.
11: if thl ≤ Env(ii) ≤ thh then
12: Ibright(ii) = Env(ii) # Ibright contains parts of theEnv lying between

the two thresholds of thl and thh.
13: end if
14: end for
15: TGC = lat med(Ibright) # computes the lateral median of Ibright.
16: TGC = Sovitsky Golay(TGC) # smoothes the TGC curve using Sovitsky-

Golay filter.
17: TGC = SSA(TGC) # performing single-spectrum-analysis and extracting

the trend of TGC.
18: TGC = TGC

max(TGC) # normalizes the TGC curve to its maximum.
19: TGC = 1

TGC # inverts the curve to be multiplied to each scan line.
20: end procedure
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Figure 2.7: Illustration of how attenuation coefficients are computed. The scanned plane
is subdivided to several overlapping proximal and distal segments. Each RF segment is
gated axially by a Tukey function to alleviate the spectral leakage at both boundaries. The
the slop of the line fitted to the curve created from subtracting the log spectra of the two
segments identifies the attenuation coefficient.

as an attenuation value for the proximal segment (see Fig. 2.7). Both proximal and distal
segments are moved down on the RF line and several attenuation values are calculated
along the RF line by pairing the proximal and distal segments. Blocks are overlapped 50%
to increase axial resolution of the characterization maps. The resulted values for RF lines
are laterally averaged over scan lines to reduce the high variability of the characterization
values in the map. Fig. 2.8 shows an example of a normalised tissue characterization
map computed for a scan of human bladder, overlaid on the B-mode image. The length
of the RF segments and the number of averaging scan lines determined the axial and
lateral resolution of the estimated profiles, respectively. The literature suggests the axial
RF segment lengths to be between 1 to 2 cm, and that the number of the averaging lines
should be between 8 to 25 RF lines (Klimonda, Litniewski, and Nowicki 2009). In this
study, anechoic regions adjacent to soft tissue presented a large attenuation variation.
To capture this variation, the length of axial segments is set to 1 cm, and the number
of averaging RF lines is set to 10 lines. The generated characterization maps are then
normalized and multiplied to the compensated images using the dynamic TGC curve
(Section 2.7) to correct the gains inside the fluid collections.
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Figure 2.8: Normalized tissue characterization map computed for a scan of human bladder.
Values close to zero indicate structures attenuating less, and regions with values close one
identify the structures attenuating more.

2.9 Scan protocol and image data

Fifteen subjects are recruited and scanned after informed consent, and a total of 45
abdominal sequences each containing 50 frames are acquired. In addition to the urine
bladder and gallbladder scans with large anechoic regions, other anatomical locations
such as the liver and kidney are also included in the dataset. This is done to evaluate the
performance of the algorithm on images with less-variable attenuation distribution. The
beamformed RF data are acquired using a BK3000 ultrasound scanner (BK Ultrasound,
Denmark) connected to a 192-element 3.5 MHz convex array transducer (9040, BK
Ultrasound). The dynamic received focus technique with factory preset TGC is employed
to generate the sequences.

2.10 Evaluation of image quality

The proposed algorithm is applied to all 45 in-vivo movie sequences each containing 50
frames. To empirically evaluate the performance of the AHTGC algorithm, matching pairs
of in vivo sequences, one adjusted by the factory preset TGC with no default gains and the
other processed with AHTGC, are evaluated side by side by four experienced radiologists.
The evaluation is double blinded, and each pair is shown twice by randomizing the left
and right positioning. This resulted in a total of 360 (45image pairs × 4evaluators ×
2random displays) independent visual evaluations. The radiologists are asked to score the
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Figure 2.9: Evaluation of the image quality performed by randomizing the position of
matching pairs of processed and unprocessed data. The image on the left is a AHTGC
processed scan of human liver, and the image on the right is right is the scan adjusted by
the factory preset TGC with no default gains.

image quality of each pair on a visual analogue scale (VAS) ranging between -50 and +50.
This is performed by dragging a slider towards their favored cine loop, where a positive
scale favors the processed sequence with the AHTGC algorithm (see Fig. 2.9). The
distribution of ratings from the individual doctors are shown in Fig. 2.10. Visualization
and assessment are handled using the program IQap (Hemmsen et al. 2010). Figs. 2.11
to 2.14 show eight examples of the experimental results of the AHTGC algorithm applied
to scans of a human bladder, gallbladder, liver and carotid artery.

2.11 Evaluation criteria

The Wilcoxon signed-rank test, a non-parametric statistical hypothesis test, is applied
to the provided ratings by the radiologists to examine whether radiologists preferred the
processed sequences or the unprocessed data. This test is often used when comparing
repeated measurements on a single sample to assess whether their population mean ranks
differ.
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Figure 2.10: Distribution of visual analogue scale (VAS) scores from assessment of overall
image quality by four expert radiologists using the tool shown in Fig. 2.9. Positive values
favor AHTGC algorithm.

2.12 Summary

The average VAS score computed is highly positive 11.1 (p-value: 1.09 × 10−13), ex-
plicitly indicating that the Proposed AHTGC technique is preferred by the doctors. The
Wilcoxon signed-rank test is also applied to scores provided by doctors only for scans
with large anechoic regions (type 1). The p-value: 3× 10−5 indicated that in a subset of
cine-loops with large fluid collections, the proposed AHTGC is preferred.

This chapter presented an automatic hierarchical TGC that uses estimates such as focus
gain and energy level, scatterer strength, and decay of the spectrum of the received signal
for gain adjustments. 2-D SNR maps are used for distinguishing between the different
scans. 2-D tissue characterization profiles are used to correct the gains after scaling the
gains by TGC curves. The proposed technique is automatic, robust, and has a more
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flexible control over the gains, specially for the anechoic regions. The technique alleviates
the problems with 1-D manual and automated TGC methods, reduces the unnecessary
and manual gain adjustments on the scanners keyboards, and has the potential to facilitate
the use of scanners in point-of-care ultrasound.
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(a) Result of AHTGC applied to a sagittal view of a human gallbladder and inferior
vena cava. The Image on the left is adjusted by the factory preset TGC with no default
gains, and The image on the right is processed with AHTGC.

(b) Result of AHTGC applied to a axial view of a human liver. The Image on the left is
adjusted by the factory preset TGC with no default gains, and The image on the right
is processed with AHTGC.

Figure 2.11: In-vivo scans adjusted by the factory preset TGC with no default gains
”AHTGC OFF” are compared with the identical scans processed with AHTGC algorithm
”AHTGC ON”.
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(a) Result of AHTGC applied to a sagittal view of a human carotid and jugular vein.
The Image on the left is adjusted by the factory preset TGC with no default gains, and
The image on the right is processed with AHTGC.

(a) Result of AHTGC applied to an axial view of a human gallbladder. The Image on
the left is adjusted by the factory preset TGC with no default gains, and The image on
the right is processed with AHTGC.

Figure 2.12: In-vivo scans adjusted by the factory preset TGC with no default gains
”AHTGC OFF” are compared with the identical scans processed with AHTGC algorithm
”AHTGC ON”.
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(a) Result of AHTGC applied to an axial view of a human bladder. The Image on the
left is adjusted by the factory preset TGC with no default gains, and The image on the
right is processed with AHTGC.

(b) Result of AHTGC applied to an axial view of a human bladder. The Image on the
left is adjusted by the factory preset TGC with no default gains, and The image on the
right is processed with AHTGC.

Figure 2.13: In-vivo scans adjusted by the factory preset TGC with no default gains
”AHTGC OFF” are compared with the identical scans processed with AHTGC algorithm
”AHTGC ON”.
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(a) Result of AHTGC applied to an axial view of a human gallbladder. The Image on
the left is adjusted by the factory preset TGC with no default gains, and The image on
the right is processed with AHTGC.

(b) Result of AHTGC applied to a scan of human kidney. The Image on the left is
adjusted by the factory preset TGC with no default gains, and The image on the right
is processed with AHTGC.

Figure 2.14: In-vivo scans adjusted by the factory preset TGC with no default gains
”AHTGC OFF” are compared with the identical scans processed with AHTGC algorithm
”AHTGC ON”.
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CHAPTER 3
Synthetic Aperture Image Quality

Optimization
The present chapter deals specifically with the optimization of SA image quality, the
task of automatically selecting optimal parameters for acquisition of the SA images. The
chapter discusses the principles behind the SA, reviews the literature on SA, and highlights
the needs for SA image quality optimization. This chapter consequently, proposes a
method for SA image quality optimization using a multi-objective optimization technique
based on theory of Pareto optimality.

The remainder of this chapter is organized as follows. Section 3.1 introduces the
SA, Section 3.2 reviews the literature on SA, and Section 3.3 discusses the need for
optimization in SA. Sections 3.4 and 3.5 introduce the steering of the SA emissions, and
the concept of grating lobes, respectively. Section 3.6 introduces the quality metrics used
in this chapter for either optimization, or the assessment of the image quality. Section 3.7
introduces the analogy of the multi-objective Pareto optimality, and Section 3.8 uses
the optimization procedure to optimize the SA image quality in simulation. Section 3.9
details the measurements cunducted in the study. Section 3.10 presents the results and
Section 3.11 discusses the findings. Finally, Section 3.12 summarizes the chapter.

3.1 Principle of synthetic aperture

The basic principle in synthetic aperture (SA) imaging is to transmit a spherical wave
using a single element or a transducer sub-aperture, which propagates in all directions
in the medium simultaneously. The echoes recorded by the transducer elements used
for reception contain information about every scatterer in the insonified region. Thus,
the received signals can be steered and focused at all image points to form a complete
image after one emission. This process is repeated by emitting a series of spherical waves
one by one, and the reconstructed low resolution images (LRIs) are finally summed to
produce a high resolution image (HRI). Fig. 3.1 illustrates the approach. Conceptually,
the reconstruction of each point or pixel in the displayed SA image is performed by

39
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coherently summing for all transmissions the echoes received from a point target located
at the center of each pixel.

+

Trasmit aperture

Receive aperture

Low resolution 
image

High resolution 
image

Figure 3.1: Illustration of the SA imaging principle. At each transmit event a single
element or a sub-aperture is used to generate a spherical wave. The ultrasound pulse
propagates in all directions in the medium simultaneously, and, thus, the recorded echoes
contain information about every scatterer within the interrogated region. By steering and
focusing these signals at every image point, a complete image is reconstructed after one
emission. This procedure is repeated for all aperture element, and the resulting images
are finally summed to produce the displayed ultrasound image.

3.2 Review of the synthetic aperture techniques

The modality was first introduced in radar systems in 1950s. In 1974, Burckhardt
(Burckhardt, Grandchamp, and Hoffmann 1974) was the first in the literature to mention
about application of the SA in medical imaging. He used the principles of the SA sonar
and translated them for the use in ultrasound B-mode imaging. His investigations indicated
that the lateral resolution using SA was improved in compare with that of conventional
B-mode imaging. His paper also showed that SA was able to break the conventional
paradigm between the frame rate and spatial resolution, and that object motion would
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have deteriorating effects on resolution. Finally, Burckhardt (Burckhardt, Grandchamp,
and Hoffmann 1974) suggested that the problem could be addressed by developing a fast
parallel SA imaging system.

Conventional ultrasound imaging techniques acquired an image by sequentially beam-
forming one image line at a time. The acquisition time is, thus, limited by the speed of
sound c. The maximum frame rate fmax for a frame with N lines with a depth of D is
given by

fmax =
c

2DN
. (3.1)

Therefore, by increasing depth and number of lines, the frame rate gets progressively
lower. Another issue to be addressed in conventional techniques is the single transmit
focus, for the situation which imaging is only optimally focused in one depth. This is
usually addressed by performing compound imaging of number of transmit foci, which
also decreased the frame rate. These issues opened new horizons for developing alternative
imaging techniques in which the problem with the frame rate and the single transmit
focusing.

SA has shown that can highly improve the frame rate and focus problems of traditional
techniques (J. A. Jensen 2006). In standard SA approach, spherical waves are emitted in
transmit that covers the full region of intereset. The received signals for all or part of the
elements in the aperture are sampled for each transmission. The data are used to generate
low resolution images (LRI), which are only focused in the receive (due to the un-focused
transmission). The LRIs are then combined to generate a high resolution image (HRI) to
synthesize the transmit focusing. The focus is both dynamic in transmit and receive, and
the highest possible resolution for delay-sum beamforming is obtained everywhere in the
image. Therefore, SA addressed the problems with low frame rate; when emissions with
large areas of sonification can be used, and a complete LRI can be beamformed for each
emission. By combining all the LRIs the final HRI is generated (J. A. Jensen, S. Nikolov,
et al. 2006). SA also decouples the pulse repetition time and number of lines. This is
possible as only a few set of emissions can create a full image, thus, very fast imaging
can be performed.

Since the first introduction in 1974 (Burckhardt, Grandchamp, and Hoffmann 1974),
different reconstruction algorithms have been introduced, in time and frequency doamin
for SA. The frequency domain reconstruction algorithms became interesting in early
synthetic aperture radar (SAR) (Goodman 1996). Given the limitations of available
computational power at the time, they were very suitable for signal processing tasks.
Other frequency based reconstruction was implemented by Mayer et al. (Mayer et al.
1990) and Busse (Busse 1992). Time domain SA reconstruction algorithms were also
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introduced, which were computationally more expensive (Soumekh 1999). A mono-static
SA focusing was introduced by (Bennett et al. 1982), and the performance of the system
was discussed. O’Donnell in early 1990s used SA for intra-vascular imaging (O’Donnell
and Thomas 1992). Ylitalo investigated several transducer geometries in SA and studied
the signal-to-noise ratio (Ylitalo 1994; Ylitalo and Ermert 1994; Ylitalo 1995, 1996a,b).
He also developed a real-time SA system.

In SA there is a trade-off between image quality and frame rate. However, the
relationship is not straightforward, and many parameters must be considered such as
signal to noise ratio (SNR). Given that SA uses expanding spherical waves, The signal
energy might drop. To address the issue, SA using spherical waves has been studied
for multi-element excitation using subapertures by O’Donnell and Thomas (O’Donnell
and Thomas 1992), Karaman et al. (Karaman, Li, and O’Donnell 1995), (Karaman and
O’Donnell 1998), Nikolov et al. (S. I. Nikolov, K. Gammelmark, and J. A. Jensen 1999),
and for sparse synthetic aperture systems by Lockwood et al. (Lockwood, Talman, and
Brunke 1998). Compared to conventional imaging, SA imaging has shown to improve
anatomical imaging (K. L. Gammelmark and J. A. Jensen 2003), flow estimation (S. I.
Nikolov and J. A. Jensen 2003; J. A. Jensen and S. I. Nikolov 2004; Yiu, Lai, and Yu
2014). All these applications required study of the number of emissions to preserve the
frame rate and obtain optimal image quantity, useful for anatomic imaging, for fast flow
estimation, and for image segmentation. Therefore, optimization of the SA imaging and
transducer parameters should be performed to obtain the best trade-off between frame
rate and image quality.

For the case of B-mode SA imaging, the number of emissions can be kept relatively
high, whereas when flow estimates are needed, less emissions and consequently higher
frame rates are interesting (O’Donnell and Thomas 1992; Karaman, Li, and O’Donnell
1995; Karaman and O’Donnell 1998; S. I. Nikolov, K. Gammelmark, and J. A. Jensen
1999). Few studies have investigated the application of synthetic aperture focusing for
affordable ultrasound systems (Karaman, Li, and O’Donnell 1995). Other Studies have
also applied SA focusing in ultrasound imaging (Vray et al. 1997).

3.3 Synthetic aperture and the need for optimization

Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates
of both slow and fast flow at high frame rates. However, the use of broader beams
can generate higher side lobes, which degrades the image quality. This demands more
emissions for a higher quality image, and as a consequence, lowers the frame rate. The
trade-off between the image quality and frame rate must then be taken into account. This
is why, optimization of parameters effecting the SA image quality is of great importance.
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According to the literature review of SA in Section 3.2, currently, There are no
automated and generic techniques in the literature for selecting optimal parameters in SA
for different scenarios, such as B-mode imaging or flow imaging. The main challenge
in devising such technique is to consider a multi-objective optimization regime that can
accommodate several interdependent imaging parameters.

3.4 synthetic aperture steered emissions

In addition to subdividing the aperture in small portions during transmit in SA, each
emission can also be steered to provide a better insonification of the interesting regions
(see Fig. 3.2). However, every transducer element has a directivity pattern that determines
the element’s acceptance angle. This angle is related to how much an emission can be
steered, and to the minimum receive F-number used for beamforming. The first essential
step in designing steered emissions prior to image quality optimization, is to investigate
the angular response of the transducer elements used in this study. Jensen et al. (J. Jensen,
Stuart, and J. A. Jensen 2016) used the same transducer as this study and employed a
model proposed by Oddershede and Jensen (Oddershede and J. A. Jensen 2007) based
on SNR considerations to determine the opening angle of a virtual source. It is done to
determine the element acceptance angle. The study showed that the acceptance angle
for the transducer elements is ±38◦ giving a F-number of 0.64. Therefore, minimum
and maximum thresholds of ±30◦ is used in this study as the maximum possible steering
angle of the SA emissions during optimization. This is performed by considering that in
imaging setups the maximum steering angle ranges between −30◦:0.25◦:+30◦.

3.5 Grating Lobes and λ/2-pitch requirement

In linear array transducers, owing to regular spacing of the array elements, grating
lobes exist in transmission and reception, if the inter-element pitch is wider than a half
wavelength (Barthez, Léveillé, and Scrivani 1997; Szabo 2014).

For a linear array transducer, the location (angle θg) of receive grating lobes is obtained
as (Huang, Que, and Jin 2004; Szabo 2014):

θg = sin−1
(
sin(θs)−

mλ

p

)
, (m = ±1,±2,±3, ...) (3.2)

where p is the transducer pitch, λ is the receive-signal wavelength, θs is the steering
angle of the main receiving lobe and m is a signed integer that is the order of the grating
lobes. The location of the main receiving lobe corresponds to the value of m = 0.
Considering the first order grating lobe (m = ±1),
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sin(θs)−

λ

p

)
. (3.3)

With a pitch of λ as for most commercial linear transducers, a steered wave of 15◦

generates a grating lobe at -48◦. This is illustrated in Fig. 3.3, where the top and middle
images show the emitted fields for a fixed time using a 1.5λ-pitch array and a λ-pitch
array with Hamming transmit apodization. There is energy behind the wave front that
travels in a direction -48◦ off axis. The grating lobe amplitude is around −25 dB relative
to the main lobe, and the large spatial extend of the grating lobe in the near field results
in artifacts in the final image. A pitch of λ/2 moves grating lobes outside the imaging
plane even for steered wave fronts as shown in Fig. 3.3 (bottom image). The spherical
edge waves emanate from the transducer edges. They can be suppressed in the emitted
field by the use of apodization in transmit, and a Hamming apodization (weight 0.5) is
efficient for this as shown in all three arrays.
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(a) 1.5λ-pitch array with Hamming apodization.

(b) λ-pitch array with Hamming apodization.

(c) λ/2-pitch array with Hamming apodization.

Figure 3.3: Illustration of grating lobes, when a SA emission is emitted at 15◦. For a
1.5λ-pitch array (top image), λ-pitch array (middle), and λ/2-pitch array(bottom). A
Hamming (0.5) window was applied as apodization for the three arrays.

3.6 Imaging performance measures

Three metrics used in the literature for evaluating the performance of the ultrasound
imaging quality are contrast resolution (CTR) (Ranganathan and Walker 2007; Guenther
and Walker 2009), detail resolution or full-width at half maximum (FWHM) (Szabo
2014), and the contrast-to-noise ratio (CNR) (Lediju et al. 2011). Given the fact that CTR
and FWHM are commonly used features to describe the quality of images in ultrasound
imaging, this paper uses these two features for optimization. Optimization is performed
based on the rate of changes in these features, while considering all the possible setups.

The CNR is not used in the optimization procedure. However, it is used as an
alternative and independent measure for quantifying anechoic regions in measurements.
This was done to evaluate, whether the optimal setup achieved by optimization, actually
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yielded the optimal image quality.

3.6.1 Contrast resolution (CTR)

The CTR measures the contrast resolution and determines the ability of the imaging
system to differentiate between an anechoic region bracketed within a uniform scattering
medium. Ranganathan and Walker (Ranganathan and Walker 2007) quantified CTR as the
ratio between the energy outside of a circular area surrounding the point spread function
(PSF) with radius of r to the total energy of the PSF. Therefore it gives a measure of
clutter energy outside the main lobe of the PSF. The CTR is then related to the radius r
and is given as

CTR(r) =

√
Eout(r)

Etotal
, (3.4)

where Eout(r) is the PSF energy outside a circular region with radius r centered at the
peak of the PSF and Etotal is the total energy. CTR can be calculated for either a fixed
radius to get a contrast measure, or by fixing the CTR to determine resolution as the
required radius for a fixed relative energy. In this study the radius r is kept fixed, and
CTR is determined as the relative energy for a fixed radius of 2.5λ (r2.5λ).

3.6.2 Contrast-to-Noise Ratio (CNR)

The Contrast-to-Noise Ratio (CNR) is also used to quantify cyst contrast as (Lediju
et al. 2011):

CNR =
µs − µc√
δ2s + δ2c

, (3.5)

where µc and µs are the mean intensities of envelope-detected signals from a region inside
a cyst and a region of image speckle, and δ2c and δ2s are the corresponding variances. The
cyst and speckle regions are of the same size and at the same depth.

3.6.3 Detail resolution

The detail resolution is the -6 dB width of the main lobe of the point-spread-function
(PSF), i.e., the full width at half maximum (FWHM) (Szabo 2014). The FWHM is usually
measured both axially and laterally, and those are both influenced by the bandwidth of the
imaging system. The lateral FWHM is also dependent on the pulse wavelength, size of
the aperture (F number), and the maximum steering angle of the emissions.
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3.7 Method of optimization

This section describes the multi-objective optimization used in this study for optimizing
the SA image quality based on the theory of Pareto optimality (Deb 2005).

In many circumstances, solutions in the presence of conflicting objectives are needed.
In such cases, solutions are chosen such that sensible trade-offs exist among different
objectives. Pareto optimization is used for finding these solutions. In multi-objective opti-
mality theory, many solutions are found that satisfy the Pareto optimality criterion (Coello,
Lamont, and Veldhuizen 2007). Consider an imaging system , in which two parameters of
x1 and x2 are required to be optimized with respect to two interdependent objectives of
f1 and f2 (i.e. performance metrics). vector x = {x1, x2} represents a possible solution
or setup of the imaging system, which is a combination of x1 and x2. Notice, F is the
objective function. A point P = F (x) is a set of interdependent objectives and can be
shown by P = {f1, f2}.

Pareto optimality criterion considers a solution to be optimum, only if there are no
other solutions better than that with respect to all the objectives. A solution x′ = {x1, x2}
is a Pareto optimal solution if there exists no other solutions like x for which P = F (x)
dominates P′ = F (x′). A point P (a set of parameters in objective space) is dominating
another point P′ (mathematically given by P � P′), when P is no worse than P′ in all
objectives, and P is strictly better than P′ in at least one objective. Therefore, a Pareto
optimal solution is given by

P∗ :=
{

x′| 6 ∃ x : P � P′
}
. (3.6)

The set of all optimal solutions is called the Pareto front or curve or surface (see red
curve in Fig. 3.4). The shape of the Pareto front manifests the nature of trade-off between
different parameters in the objective space. In this study the Pareto optimization is applied
to a two-objective problem, in which two interdependent metrics of CTR and FWHM are
used. The Pareto front is particularly interesting, because it contains the solutions where
improvement in one variable is not possible without jeopardizing the other. Hence, in this
study only the Pareto optimal solutions are considered.

The optimization proposed in this paper, aims to optimize SA image quality for
superficial and small parts ultrasound imaging, such as carotid artery imaging for areas
bracketed under the surface of the transducer. The interesting imaging area in this study,
corresponded to the scanned region in a traditional line-by-line technique without steering
of emissions.
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Figure 3.4: Illustration of how the Pareto optimization is performed. The axes of decision
space include independent variables (imaging parameters that can be independently
changed), whereas the axes of objective space contain the dependent variables (the
interdependent features such as CTR and FWHM). The set of all Pareto optimal solutions
or the Pareto front is shown with the red curve. The knee point of this curve represents the
best trade-off between the dependent variables, and the best solution to the optimization.

3.8 Optimization of the SA sequence

This section explains how the optimization technique is performed using simulations.

3.8.1 Simulations
As described in Section 3.5, a λ/2-pitch transducer is more suitable in image formation in
terms of producing much less grating lobes. Based on this, a λ/2-pitch array was modeled
and six different point scatterers are simulated independently along the center-line of the
transducer located at depths of 10, 20, 30, 40, 50, and 60 mm. Simulations are performed
using the Field II program (J. A. Jensen and Svendsen 1992; J. A. Jensen 1996, 2014)
(see Table 3.1 for details of the parameters used). A Hamming apodization on the active
transmit aperture is used to reduce the edge waves.

The independent variables are number of emissions N and the maximum steering
angle αmax. The evaluation of the image quality is performed with respect to the CTR
and FWHM, which are thus, the dependent variables or objectives. The dependency
means that improvement in one metrics jeopardizes the other. The objective function F
maps the independent variables (N and αmax) to the dependent objectives (FWHM and
CTR) (see Fig. 3.4). An automated technique is developed in MATLAB to generate a
Pareto plot and it’s Pareto front, for each of the six point targets. Several combinations
of N and αmax (x in the decision space) are used for generating a HRI of each of point
scatterers, and calculating the corresponding FWHM and CTR.
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Table 3.1: Parameters used for simulation and measurements.

Parameters λ/2-pitch transducer

Number of elements 192

Trans. center frequency f0 4.1 MHz

Wavelength λ 0.376 mm

Element pitch 0.2 mm (0.56λ)

Element height 6 mm

Elevation focus 38 mm

Cycles in emitted pulse 1

Transmit apodization Hamming

Receive apodization Hamming

Transmit F-number 0.8

Receive F-number 1

Emission steering angles -30◦:0.25◦:+30◦

trans. sub aperture size (elements) 48

Based on Section 3.4, αmax are set to vary from -30◦ to +30◦ with 0.25◦ separation
between emissions. This is performed to ensure that emissions are not outside the
transducer element’s acceptance angle. Number of emissions set to vary between 1 to
256. Received signals from all elements are stored for each emission and beamformation
are performed using the BFT3 toolbox (Hansen, Hemmsen, and J. A. Jensen 2011). The
beamformed LRIs are subsequently combined to HRIs. Several HRIs are generated
by considering several combinations of maximum beam steered angle (αmax) and the
number of emissions (N ). The image quality of the HRIs are then evaluated by computing
both CTR and the lateral FWHM for simulated point scatterers. Section 3.8.2 details how
exactly the Pareto optimization is applied in simulation.

3.8.2 Optimization of the setup
For each simulated scatterer, two plots are generated. First one, quantifying the CTR as a
function of αmax and N , and the second, quantifying the FWHM as a function of αmax
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and N . Each of these plots represented a decision space for the simulated point scatterer
(see the decision space in Fig. 3.4).

Two constraints based on the rate of improvement in CTR and FWHM, when increas-
ing the αmax andN , is put on the number of required HRIs. First, at least an improvement
of 1% is required in FWHM, when steering 2◦ more and using 2 more emissions. Second,
at least an improvement of 2.5% is required in CTR, when steering 2◦ more and using
2 more emissions. The two constrains must be both satisfied, and those combinations,
for which the constraints are no longer satisfied, are excluded from the possible optimal
solutions. The remaining of the decision spaces are merged in a Pareto plot(see objective
space in Fig. 3.4). It must be pointed out that several other constraints could have been
used, such as weighting either CTR or FWHM and cut-off at a specified CTR or FWHM,
yielding specified HRI quality. As mentioned in Section 3.7, the Pareto front is particularly
interesting, but special attention must be paid to the knee-point solution on the Pareto
front. It represents the best (among other points in the Pareto front) trade-off between
CTR and FWHM for each point scatterer (see knee-point in Fig. 3.4). The center of
gravity of all the knee-point solutions, belonging to all six point scatterers, is used as an
optimal solution for the SA imaging system. This is done to include depth-dependency
and to achieve a setup that yields good quality images for depths less than 60 mm.

3.9 Measurements

Phantom measurements are made using the SARUS experimental ultrasound scanner (J. A.
Jensen, Holten-Lund, et al. 2013) driving a 192-element 4.1 MHz λ/2-pitch linear trans-
ducer (BK Ultrasound). A SA B-mode imaging sequence using the virtual sources behind
the transducer is used to perform the imaging. Parameters used in the imaging sequence
are depicted in the Table 3.1. First, a geometry wire phantom including two wires is
scanned. A multi-purpose, multi-tissue phantom containing three anechoic cysts located
at 17 mm, 48 mm, and 75 mm (Model 040GSE, CIRS inc., Virginia, USA) with acoustic
attenuation of 0.5 dB/(cm×MHz) is also scanned.

The in-vivo measurements are also performed using the SARUS scanner, driving a
192-element 4.1 MHz λ/2-pitch linear transducer (BK Ultrasound). The same imaging
sequence as for the phantom measurements is used, but with the optimal values of the max-
imum steering angle αmax and the number of emissions N (computed in Section 3.10.1).
Longitudinal scans of the right common carotid artery, and common carotid with bulbous
are acquired from a 29 year-old male volunteer.
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3.10 Results

This section presents the results of the simulations performed for the optimization proce-
dure, phantom measurements and in-vivo measurements performed with the optimized
sequence.

3.10.1 Simulation results

(a) CTR decision space, computed as a function
of αmax and N for scatterer at 20 mm.

(b) FWHM decision space as a function of
αmax and N for scatterer at 20 mm.

(c) Pareto plot (Objective space) created by
merging the CTR and FWHM decision spaces
for scatterer at 20 mm.

Figure 3.5: Optimization procedure demonstrated for the scatterer at 20 mm. (a) shows
the CTR decision space. (b) shows the FWHM decision space. White lines on (a) and (b)
are the border lines. the enumerated points are the Pareto front optimal solutions. The
green point (number 6) is the knee-point solution shown in (c).
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Figure 3.6: Illustrates the αmax and N corresponding to the knee-points computed for six
scatterers. The yellow diamond (αmax = 22◦ and N = 32 ) is the center of the gravity of
all points and considered to be the optimal setup for SA imaging.

The automated optimization technique is applied to six scatterers. The simulation
results shown in this paper, belong to one of the six scatterers (located at 20 mm), which
exemplifies the optimization performed. The CTR and Lateral FWHM of HRIs for the
scatterer 20 mm, for all combinations of αmax and N , is shown in the Figs. 3.5(a) and
3.5(b). The white lines on figures show the areas of the plots satisfying the two constraints
put on rates of changes of CTR and FWHM (mentioned in Section 3.8.2). The axial
FWHM is not considered, as the simulations showed that it is very close to λ, for all the
combinations. The areas satisfying the two constraints merged into a Pareto plot shown in
Fig. 3.5(c). It represented the objective space of dependent variables (CTR and FWHM)
for the point scatterer located at 20 mm.

The Pareto plots, alone, do not yield the optimal setup for the SA imaging sequence.
That is why, Pareto fronts are more interesting, because they decrease the number of
optimal solutions to be considered for imaging. The Pareto fronts for all six scatterers
are computed. Fig. 3.5(c) shows the Pareto plot belonging to the scatterer at 20 mm.
The enumerated points on the Pareto front, show the optimal solutions (set of αmax and
N ) that yield the optimal solutions for the 20 mm scatterer. The eight frontier points
in Fig. 3.5(c) are shown with blue points on the CTR and FWHM decision spaces in
Figs. 3.5(a) and 3.5(b). The knee-point of the pareto-front is also shown with green circle
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(a) HRI from 4 emissions. (b) HRI from 32 emissions.

(c) HRI from 256 emissions.

Figure 3.7: Simulation results of a point scatterer located at 20 mm. HRIs reconstructed
from low, optimal and high number of emissions.

on the Pareto front in Fig. 3.5(c). The αmax and N corresponding to the knee-points
computed for six scatterers are shown in Fig. 3.6. The yellow diamond (αmax = 22◦ and
N = 32 ) is the center of the gravity of all points and the optimal setup for SA imaging.
This optimal setup requires 32 emissions and 22◦ maximum sweeping angle. Fig. 3.7
shows the point scatterer simulated at 20 mm. HRIs of the scatterer are reconstructed
using three different number of emissions (N = 4, 32, 256). The FWHM and CTRs are
depicted in the Table 3.2.
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Table 3.2: Simulated scatterer at 20 mm quality metrics.

Scatterers 20 mm

N = 4 FWHM = 1.40λ CTR = -25.41 dB

N = 32 (optimal) FWHM = 1.49λ CTR = -30.25 dB

N = 256 FWHM = 1.50λ CTR = -30.31 dB

3.10.2 Phantom measurement results
3.10.2.1 Wire phantom results
An experiment is conducted, where a phantom containing two wires located at 32.5 mm,
and 57.5 mm are imaged using a SA sequence using varying number of emissions. Fig. 3.8
shows the HRIs belonging to two wires located at 32.5 mm (left column), and 57.5 mm
(right column). Each HRI is reconstructed with 4, 32 and 256 emissions, where the 32
emissions is the optimized sequence. The FWHM and CTR corresponding to each of the
reconstructions is depicted in the Table 3.3.

The results show that the FWHM increases 0.41λ from 4 emissions to 32 emissions
for the wire at 32.5 mm, but it only changes 0.07λ from 32 emissions to 256 emissions.
for the same wire, the CTR improves 3.63 dB from 4 emissions to 32 emissions for the
wire at 32.5 mm, while it does not change from 32 emissions to 256 emissions. For the
wire at 57.5 mm, the FWHM increases 0.04λ from 4 emissions to 32 emissions for the
wire at 32.5 mm, but it only changes 0.02λ from 32 emissions to 256 emissions. The
CTR changes are not noticeable for this wire. The point wires reconstructed with 32
emissions represent similar CTR and FWHM compared with wires reconstructed with
256 emissions. This suggests that for the same image quality, number of emissions can be
lowered from 256 to 32.

3.10.2.2 Cyst phantom results
A multi-purpose phantom, containing three anechoic cysts located at 17mm, 48 mm,
and 75 mm (Model 040GSE, CIRS inc., Virginia, USA) with acoustic attenuation of
0.5 dB/(cm×MHz) is scanned, and the HRIs reconstructed with different number of
emissions. Fig. 3.10 shows the phantom measured and HRIs reconstructed with N = 4,
the optimized sequence (αmax = 22◦ and N = 32 ), and also N = 256. To evaluate the
quality of the HRIs, the CNR is used to quantify cysts contrast. The mean CNRs of the
two cysts located at 17 mm and 48 mm, are computed for the HRIs reconstructed with
increasing number of emissions. This is done to evaluate the performance of the sequence
for small parts imaging, and scanning superficial tissues located not beyond 60 mm in
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depth. Fig. 3.10 shows that the CNR increases from 1.475 to 1.82 by reaching to 32
emissions, and plateaus after 32 emissions. This coincides with the simulation and wire
phantom measurement results, and indicates that for achieving a specific image quality,
the number of emissions does not have to be increased to more than the optimal value
computed for the SA.

3.10.2.3 In-vivo results
A healthy 28 male is scanned using the optimized SA sequence with (αmax = 22◦ and
N = 32 ), in two longitudinal views of the common carotid, and carotid with bulbous.
The results are shown in Fig. 3.11.

3.11 Discussion

High-quality SA imaging demands fast beamformation, fast and precise interpolation,
choosing the appropriate receive F-number, number of emissions, and in case of using
steering emissions, choosing the correct steering angles. These considerations, all together,
increase the contrast and lower the side-lobes in HRI. As discussed in the Section 3.5,
having a good control over the emissions wave front is crucial, and a λ/2-pitch transducer
ensures avoiding the grating lobes behind the wave front.

A multi-objective optimization technique is used to optimize the SA image quality,
by automatically selecting the optimal number of emissions, and the steering angles.
The optimization performed on λ/2-pitch transducer. However, the method is a generic
optimization technique and can be applied for any kind of transducer and imaging regime.

The optimization performed in this study is a 2-objective optimization, in which two
SA imaging parameters of αmax and N was optimized only. The technique can be more
advanced and the number of parameters to be optimized can be increased. For SA, the
optimization can be 4-objective, by optimizing the αmax, N , F-number, and aperture size
(the transmit sub-aperture). If the number of dependent variables does not change (only
CTR and FWHM are considered), then the technique yields two 4-D decision spaces
(one for the CTR, and one for the FWHM). The final objective space would still be 2-D,
because of considering CTR and FWHM only.

A higher dimension decision space requires a higher dimension objective space.
For a 4-objective optimization (4-D decision spaces), a 3-D objective space can be a
good alternative (Using CTR, FWHM, and CNR), since the solutions in 4-D decision
spaces can be distributed in 3-D objective space, and do not squeeze in a 2-D space
that might not be quantitatively representative. The only trade-off is that the volume
of the space increases so fast that the available data become sparse. This sparsity is
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(a) HRI from 4 emissions.

(b) HRI from 32 emissions (optimal).

(c) HRI from 256 emissions.

Figure 3.8: Phantom measurement results of wires located at 32.5 mm and 57.5 mm.
HRIs reconstructed from low, optimal and high number of emissions.

Table 3.3: Wire phantom measurements quality metrics.

Scatterers 32.5 mm 57.5 mm

N = 4 FWHM = 1.09λ CTR = -19.62 dB FWHM = 1.38λ CTR = -10.19 dB

N = 32 (optimal) FWHM = 1.5λ CTR = -23.25 dB FWHM = 1.44λ CTR = -10.39 dB

N = 256 FWHM = 1.43λ CTR = -23.2 dB FWHM = 1.46λ CTR = -10.3 dB
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(a) HRI from 8
emissions.

(b) HRI from 32
emissions.

(c) HRI from 256
emissions.

Figure 3.9: Measured cyst phantom and reconstructed from low, optimal, and high number
of emissions. All three images are shown using a 60 dB dynamic range.
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Figure 3.10: CNR computed for measured phantom images and reconstructed with
increasing number of emissions.

problematic for any optimization technique that requires statistical significance. The
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(b) Measured Common carotid with bulbous
on a healthy subject and reconstructed from 32
emissions.

Figure 3.11: Measurements performed on a 28 years old healthy male using the optimized
sequence.

“curse of dimensionality” has to be considered, when increasing the number of parameters
to be optimized (see Chapter 2 of (Hastie, Tibshirani, and Friedman 2009)). This refers to
how certain optimization techniques or machine learning algorithms may perform poorly
in high-dimensional data. Increasing the number of parameters will not necessarily yield
a correct optimization.

Another challenge in high quality SA, is the inter-emission tissue motions. They are
more obvious, when number of emissions used for recunstructing HRI is very high. The
issue is addressed by (Denarie et al. 2013; K. L. Gammelmark and J. A. Jensen 2014),
and can be compensated for. The clutter behind the wire in Fig. 3.8 can be due to a
long impulse response of the transducer. It can also be related to artifacts arising from
quantization of the transmit delay profile at 70 MHz (Stuart et al. 2015).

SA image quality is investigated using a λ/2-pitch transducer, and slightly improved
contrast is obtained for the same number of emissions when using λ/2-pitch rather than
λ-pitch (Hasegawa and Korte 2016). Other techniques exist for lowering the grating lobes
in SA and plane wave, which are mainly based on sparse-aperture methods (Lockwood,
Talman, and Brunke 1998), special apodizations of the array (Cooley and Robinson 1994),
or modulating receive beams (Ponnle, Hasegawa, and Kanai 2013). The common problem
with these techniques is mainly the reduced transmitted energy. The other problem with
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these methods is that transmit grating lobes are not always avoided. However, the grating
lobes can be completely avoided by using a λ/2-pitch transducer, as suggested in this
paper.

3.12 Summary

This paper presented a hierarchical and automated optimization technique for character-
izing the optimal setup in SA imaging. The optimization technique is performed using
simulation. The results of the simulation showed that with only αmax = ±22◦ and
N = 32 , the image quality is comparable with a high number of emissions. Phantom
measurement results, also indicated that CNR increases from 1.475 to 1.82 by reaching
to 32 emissions, and plateaus after 32 emissions. Wire phantom measurement results
indicated that for achieving a specific image quality, the number of emissions does not
have to be increased to more than the optimal value. Improvements in frame rate is also
achievable by using less number of emissions. This can be highlighted when high frame
rate is needed for velocity estimation, and when the standard deviation of the velocity
estimates are related to the frame rate. The technique is applied for a λ/2-pitch transducer,
and image quality is compared for simulations, phantom measurements and in-vivo scans.
The grating lobes are avoided by using a λ/2-pitch transducer, and therefore fewer emis-
sions are needed to obtain the same image quality. Thus, with a pulse repetition frequency
of 5 kHz, more than 156 fps are obtained. The proposed generic technique in this study
can be applied to any ultrasound imaging modality, using any transducer geometry.
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CHAPTER 4
Vector Velocity Estimation

Abnormal blood flow is considered a diagnostic marker in determining the physiological
state of a diseased vessel. Measuring flow velocities is therefore of great importance in
medical ultrasound, as it provides a non-invasive tool for monitoring blood flow.

The present chapter introduces the transverse oscillation (TO) and synthetic aperture
flow imaging, the techniques used for acquisition of velocity data in this project. The
velocity data is used in Chapter 5 in combination with the optimized B-mode from
Chapter 3 to segment vessel lumen in ultrasound images.

Blood flow measurement using ultrasound is considered as a quantitative diagnostic
bio-marker to determine the physiological state of a vessel. Ultrasound provides a non-
invasive tool for measuring blood flow, in which abnormal velocities measured can be
signs of abnormal flow due to a diseased vessel.

Two commonly used flow techniques for velocity measurement are color flow mapping
(CFM) and the spectral Doppler (SDU). In both techniques, ultrasound pulses are emitted
to the scanned media with a specific pulse repetition frequency (PRF). The returned
echoes from the scanned media is then recorded by the transducer. Given the fact that
the back scattering tissue moves in between successive emissions, a time-shift will be
generated between the received signals. The velocity of the moving scatterer can then
be found from the time shift. However, there is a limitation inherent in these techniques.
They can only detect the movements in parallel to the ultrasound beam (the axial velocity
component vz), given by vz = |v|cos α, where |v| is the in-plane velocity magnitude and
α is the beam-to-flow angle. For situations, where blood moves at an angle relative to
the beam, the measured flow needs to be compensated for that angle. This compensation
is performed manually, by dividing the measured velocity to the cosine of the angle α,
which is the angle between the insonifying beam and the the vessel wall. This means that
finding the correct blood velocity highly depends on the user’s skills that exact angle. The
dependency is related to the inverse of the cosine 1

cos(α) and increases with the angle, as
illustrated in Fig. 4.1.

The angle-dependency hinders the possibility of measuring blood flow in vessels
oriented at an angle close to 90◦, which is quite unfortunate, as superficial vessels lie
mostly perpendicular to the skin surface,and therefore, also to the insonation beam. It
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Figure 4.1: Blood velocity estimated in a vessel oriented at the angle α to the insonifying beam
has to be compensated by a factor of 1

cos(α)
. It is illustrated that this factor increases exponentially

with increasing angle, thus, the task of compensation gets progressively harder as angle increases.

is therefore, suggested by the literature that the insonation angle should be between 45◦

and 60◦ to obtain the must reliable flow estimates (Picot and Embree 1994; Kruskal et al.
2004).

The angle-dependency can be addressed by using velocity vector flow imaging (VFI)
techniques for velocity data for conventional sequential data acquisition (Jensen et al.
2016a) or parallel acquisition (Jensen et al. 2016b). These include speckle tracking (Tra-
hey, Allison, and Ramm 1987), transverse oscillation (TO) (Jensen 1996a; Jensen and
Munk 1998; Jensen 2000; Udesen and Jensen 2006), directional beamforming (S. I.
Nikolov and Jensen 2001; Jensen and S. I. Nikolov 2004; Jensen, S. Nikolov, et al. 2006;
Villagomez-Hoyos et al. 2016) , and synthetic aperture flow imaging (Jensen and S. I.
Nikolov 2002).

Given the fact that TO and synthetic aperture flow imaging are used for acquiring
the velocity data in this project, only these two methods are explained in this chapter.
Therefore, the technical background of these two velocity estimators are detailed only.

The TO approach is the only vector velocity estimator implemented on a commercially
available ultrasound scanner (Hansen et al. 2011). Fig. 4.2 shows an example of the TO
on a commercial scanner, where blood flow in a vessel perpendicular to the beam angle is
measured by conventional color flow mapping, and the TO approach.
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Figure 4.2: (a) and (b) show blood flow inside a vessel lying perpendicular to the insonify-
ing beam, using conventional CFM, and TO, respectively. (a) shows that the conventional
method is incapable of detecting the actual flow, as the movement of the blood generates
no shift between successive received echoes by the transducer. The same measurement
is performed in (b), but now using the TO. The image depicts a map of the flow with
vector velocities indicating both directions and magnitudes of the flow. The figure is taken
from (BK Medical 2015).

4.1 Transverse Oscillation

Conventional Doppler techniques consisted of generating the oscillating field along the
propagating pulse, from which the axial velocity component vz can be estimated. The
underlying idea of TO was introduced by Jensen, Munk and Anderson (Anderson 1998;
Jensen and Munk 1998) consisted of a transverse oscillation, introduced perpendicular to
the propagation of the pulse, which enables detection of the lateral velocity component
vx. The transverse oscillation can be explained by considering a interference pattern
generated, when two point sources emit pulses simultaneously. The interference pattern
introduced, generates a double-oscillating field, which varies spatially with respect to both
axial oscillation (along the direction of the pulse), and lateral oscillation (areas where the
two waves meeting each other).

The double oscillating field can be visually perceived by considering the pattern
formed when two point sources (i.e. two fingers, or two droplets) pounding in into still
water. An oscillating wave front propagates in all directions around each point source.
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λz

λx

Figure 4.3: Two droplets pounding still water surface, generating oscillations that travel out in
all directions. In regions where the two oscillation patterns interfere, a double-oscillating field is
created.

The two oscillating wave fronts will eventually meet and create an interference pattern,
as shown in Fig. 4.3. In some areas, the interference pattern creates a double oscillating
field characterized by the two wavelengths λz and λx.

Center frequency of the emitted pulse determines the axial wavelength λz . However,
the latteral oscillation is more complex and depends on the distance between the two point
sources, depth, and also the axial wavelength.The spatial wavelength of the transverse
oscillation λx(z) can be approximated by (Udesen and Jensen 2006),

λx(z) = 2λz
z

d
. (4.1)

where d is the distance between the two point sources, z is the axial depth, and λz is the
wavelengths of the emitted pulse.

The analogy of generating a double-oscillating field using two point sources can be
translated to ultrasound systems, when two transducer elements act as point sources and
generate ultrasonic waves. The transducer transmits pulses from two distinct positions
and create an oscillating presure field. Fig. 4.4(b) depicts an example of the oscillating
field generated by using two apodization functions. This approach is first introduced
by Jensen (Jensen and Munk 1998). The apodization function shows two sets of active
elements or sub-apertures (see the two apodizing windows onthe surface of the transducer
in Fig. 4.4(a)). This double-apodization function can be either implemenetd in transmit, or
in receive. Either of the implementations results in the same pressure map observed by the
transducer. Therefore, any apodization function containing the two distinct windows, will
generate a double-oscillating pattern, from which the axial and lateral velocity components
can be determined.
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To estimate the axial velocity, Hilbert transform is performed to yield the in-phase and
the quadrature signal. The two signals are essentially characterized by being 90◦ phase
shifted to each other. This phase shift enables the calculation of the instantaneous phase
of the received signal. Phase calculation is also essential, as it illustrates the changes
across multiple emissions, when the tissue movement exists between successive pulses.
The direction of the movement, is also identified by sign of the phase change. Changes
in the in-phase and the quadrature signals across several emissions, determines the flow
direction.

Essentially these two signals are obtained by sampling the received signal with a
frequency, at least four times greater than the center frequency of the emitted pulse, which
automatically results in 90◦ phase shift between two samples. Sampling the signal with
four-times the center frequency corresponds to sampling at instances which are λz/4
separated in axial direction. To yield the same in the lateral direction, two lines, which are
λx/4 separated are required to be beamformed. Fig. 4.4(a) shows the two beamformed
lines in the receive.

The calculated axial and lateral quadrature signals, are then used to determine the
phase change in axial and lateral directions. The size of the phase change is proportional to
the velocity of the moving scatterer. The details for how exactly the velocity components
derived is explained by Jensen (Jensen 1996b, 2001). The idea is that an ultrasound pulse
is emitted, from the received signal by the transducer with a double-windowed apodization,
the two in-plane velocity components are measured. The velocity components are then
overlaid on the B-mode, which illustrates the 2-D vector velocity field. Fig. 4.2 shows a
screen-shot of the visualization of the vector velocities in a human carotid artery, using a
BK3000 ultrasound scanner (BK Ultrasound, Denmark).

4.2 Velocity estimation using synthetic aperture (SAFI) and direc-
tional beamforming

The current implementation of TO on ultrasound scanners, sequentially probes the scanned
media in different directions to create vector flow images (VFI). The frame rates of
scanners using this technique are limited to 15Hz – 30Hz, depending on the size of the
image and the desired penetration depth. Normally, such frame rates are not sufficient for
capturing complex flow characteristics during a cardiac cycle. As an alternative to The
TO, The use of broader beams or SA was proposed. The advantages of using the SA in
compare with the conventional line-by-line scanning is discussed in detail in Chapter 3.
This section details how SA can be used with directional beamforming for estimating
vector velocities.
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Figure 4.4: (a) shows the transducer with the two apodizations windows for creating the
double-oscillating field. The two lines (Rx beam 1 and Rx beam 2) are the required lines
to be beamformed in receive to determine the in-phase, and the quadrature signal in the
lateral direction. (b) shows an example of a double-oscillating field created by using the
apodizations. The distance between the two lines is expanded due to the lateral wavelength
increasing as a function of depth, see (4.1). Two figures are taken from (Jensen and Munk
1998).

SA insonifies a broad region of Interest (ROI), which enables focusing in any direction
in media to estimate the velocity components. Fig. 4.5 introduces the concept, in which
only four emissions are used. Four signals from a single moving scatterer measured
at two different aperture configurations. The aperture configuration for first and thrid
emissions is the same, as well as aperture configuration for second and fourth emissions.
combination of the pairwise emissions, create two identical but slightly shifted point
spread functions between emissions (see third row in Fig. 4.5).

A directional beamforming can be used to determine the velocity and direction of the
moving target. The directional beamforming has two main steps. First a set of velocity
components are computed for each emission pair. second, the velocity components
from two emission pairs are compared. The comparison reveals a crossing between the
estimated velocities, which determines the actual velocity and direction of the moving
target. Cross-correlation of directional lines beamformed in several directions inside the
low resolution image determines the set of velocities. A velocity is estimated for each
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Figure 4.5: The figure depicts four signals measured from a moving target. They are measured
with two different aperture configurations. Assume that first and third emissions are combined in
one emission, and second and fourth emissions are combined in another(taken from (S. I. Nikolov
2001)).

directional line. The process is repeated for many directional lines, and a velocity-to-angle
map is generated (see Fig. 4.6). The intersection of the profiles in the velocity-to-angle
map depicts the actual velocity with the corresponding flow angle.

Therefore, flow estimation using SA and directional beamforming benefits from the
fact that velocities can be accurately found in any direction, and independent to the beam-
to-flow angle. This technique is able to generate VFI images from only few emissions,
compared to the commercial scanners that need several hundred emissions to complete a
vector flow map (VFM).
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Figure 4.6: Several signals measured from a point target moving with speed of 0.1m s−1 an
angle of 70◦.Top row shows that three different aperture configurations are used and three emission
pairs are measured. Bottom row illustrates the velocity-to-angle profiles generated from the three
emissions pairs. The intersection of the three profiles (red dot), determines the correct velocity of
the moving target. The figure is from (Villagomez-Hoyos et al. 2016)
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CHAPTER 5
Hybrid segmentation of vessels in

ultrasound
The following chapter deals with the segmentation of major vessels, in particular carotid
artery (CA), and automating quantitative flow measures in ultrasound. The chapter
presents a literature review of CA segmentation techniques in US. It also, acquaints the
reader with the importance of automated quantitative flow measures. The chapter thus
proposes and discusses a hybrid technique for accurate vessel segmentation that fuses VFI
data and B-mode for robustly detecting and delineating vessels. The proposed method
delineates the vessels in ultrasound scans and enables a better visualization of flow inside
the vessel, as well as providing the firm ground for quantitative flow measures for VFI
such as Peak systolic velocity (PSV) and volume flow.

The remainder of this chapter is organized as follows. Section 5.1 Reviews the state-
of-the-art CA segmentation techniques and highlights the need for a new automated
hybrid technique. Section 5.2 present a high-level description of the proposed segmen-
tation technique. Sections 5.3 to 5.6 introduce the different steps of the segmentation
method. Section 5.7 introduces the quantitative flow measures, such as PSV and volume
flow. Section 5.8 implements the automated quantitative flow measures. Sections 5.9
and 5.10 present the evaluations carried out for assessment of the segmentation, and the
automated measures. Section 5.11 discusses the results for segmentation and automated
flow measures. Finally, section 5.12 summarizes the chapter.

5.1 Review of the state-of-the-art carotid artery segmentation tech-
niques in ultrasound

A chronological overview of the segmentation methods proposed in the literature for
segmenting the carotid artery is presented in Table 5.1. This review is pertinent to the
hybrid segmentation technique proposed in this chapter.
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Table 5.1: Carotid artery segmentation approaches found in the literature.

Author Segmentation Method Images Year

Wendelhag et al. (Wendelhag et al. 1997) Dynamic programming USC 1997

Mojsilovic et al. (Mojsilovic et al. 1997) Texture based IVUS 1997

Mao et al. (Mao et al. 2000) Discrete dynamic contour USC 2000

Selzer et al. (Selzer et al. 2001) Edge tracking USC 2001

Cheng et al. (Cheng et al. 2002) Snakes USC 2002

Gutierrez et al. (Gutierrez et al. 2002) Active contour and baloon USC 2002

Xiao et al. (Xiao et al. 2002) Inhomogeneity correction USC 2002

Stein et al. (Stein et al. 2005) Gradient based USC 2005

Delsanto et al. (Delsanto et al. 2007) Fuzzy C means and Snakes USC 2007

Loizou et al. (Loizou et al. 2007) Snakes USC 2007

Golemati et al. (Golemati et al. 2007) Hough transform USC 2007

Faita et al. (Faita et al. 2008) First-order edge operator USC 2008

Destrempes et al. (Destrempes et al. 2009) Nakagami distributions USC 2009

Rossi et al. (Rossi, Brands, and Hoeks 2010) Anisotropic barycenter USC 2010

Santhiyakumari et al. (Santhiyakumari et al. 2011) Active contours USC 2011

Molinari et al.(Molinari et al. 2012) Multi-resolution edge snapper USc 2012

Xu et al. (Xu et al. 2012) Hough and dual Snake USC 2012

Petroudi et al. (Petroudi et al. 2012) Active contours and level sets USC 2012

Lara et al. (Menchon-Lara et al. 2014) Neural networks USC 2013

Yang et al. (Yang et al. 2013) Active shape model USC 2013

Carvalho et al. (Carvalho et al. 2015) Graph based dynamic programming USC + CEUS 2015

Note: USC is ultrasound B-mode carotid images, IVUS is intravescular ultrasound images, and CEUS is contrast
enhanced ultrasound images.

According to the literature, basically, all segmentation techniques, but one, use only
B-mode images as the input to the segmentation procedure. The flow data corresponding
to the B-mode images are then not considered in these techniques. The flow data add
invaluable information to the segmentation, and can locate the regions inside the vessels.
Carvalho et al. (Carvalho et al. 2015) used contrast enhanced ultrasound images (CEUS)
in addition to the B-mode images. The CEUS images are used to extract the center-line of
vessels, as an indication of regions inside the vessel. For generating these images in-vivo,
contrast agents must be used for the subjects, which are micrometer-sized gas bubbles that
flow inside the blood stream. However, This is not achievable for everyday use in a normal
scan session. Thus, the challenge remains in devising an accurate vessel segmentation
procedure that incorporates both B-mode image and flow data non-invasively, to better
identify the vessels.

As dicussed in Chapter 4, VFI enables angle independent visualization of blood
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flow, and allows doctors to see and estimate the direction and velocity of blood flow in
all directions and at any angle. This provides an angle independent and non-invasive
visualization of blood hemodynamics of the cardiovascular system in real time (Pedersen
et al. 2012). These advantages make VFI estimates a reliable alternative marker for
identification of vessels, and for being incorporated in the segmentation of vessels. This
chapter thus presents a hybrid segmentation algorithm that fuses B-mode and vector
velocity estimations (VFI) for robustly detecting and segmenting vessels in ultrasound
images.

5.2 High-level description of the proposed segmentation algorithm

The novelty of the proposed technique comes from combining VFI estimations and B-
mode as input to the segmentation procedure. The proposed algorithm contains five
distinct steps.

1. First, the shadow regions on the scans are detected and excluded from the segmen-
tation procedure. The technique proposed in Section 2.4 of Chapter 2 is used for
this purpose.

2. Second, a marker image is generated from both VFI data and B-mode.

• Binary mask of the VFI data is generated.

• A skeletonization procedure is employed , and center-line of the VFI data is
extracted. The center-line indicated to the locations inside the vessel boundary.
This center-line is called the inner-marker of the vessel.

• A binary mask containing the strong specular regions in B-mode is generated,
and multiplied to a dilated version of the VFI mask. This mask indicated to
regions ouside the vessel boundaries. The mask is called the outer-marker.

• The combination, union, of the inner-marker and outer-marker yielded the
marker image. The marker image is used in a region growing procedure to
delineate the vessel boundary.

3. Third, a marker-controlled watershed is applied to the median filtered B-mode
image, with respect to the marker image. The result of watershed includes the
vessel structures and also the artifacts.

4. In the fourth step, Artifacts are rejected and the vessel structure is retained.

5. Finally, a rigid co-registration of the segmentations of successive frames is per-
formed to deform the segmentations towards the actual vessel boundaries.
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5.3 Generating the marker image

5.3.1 Detection of inner-markers
The main purpose of this section is to find markers that indicate to the areas inside the
vessel boundaries. The VFI data can be used to address this, since it can be obtained in
real-time non-invasively, along with the B-mode, and is independent of the insonation
angle.

Detection of inner-markers are achieved by skeletonization of the VFI data. The
absolute value of VFI estimates is first computed and a binary mask of the VFI data
generated (see Fig. 5.1(b). The skeletonization process started by computing the Euclidean
distance transform of the inverted binary mask of VFI data (see Fig. 5.1(c)). The ridge
lines on the distance transform are considered as the center-line of the flow data (see
Fig. 5.1(d)). The center-line of the flow data, in a sense, serves as the inner-markers
indicating to the locations inside the vessel boundary.

5.3.2 Detection of outer-markers
Information regarding non-vessel regions are also required to fully equip the segmentation
process. The detection of outer-markers are achieved by using both the VFI mask and the
B-mode image. Strong specular regions are extracted from the B-mode and used as an
indication of regions outside the vessels.

For this purpose, the envelope of the acquired scan is first computed. A cumulative
histogram of the intensity values is then generated. The intensity values less than half
of the maximum intensities in the envelope are disregarded, and a mask of strong signal
regions is generated. The mask is then multiplied to a dilated version of the VFI mask
and yielded the outer-marker mask as shown in Fig. 5.2(a).

The inner- and outer-markers are combined in one binary mask, so called ”marker
image” (see Fig. 5.2(b)). The marker image fully equips the segmentation algorithm with
information regarding regions corresponding to the inside and outside of the vessel. The
marker image is used to initialize and narrow the region of interest for a region growing
algorithm applied to the B-mode image.

5.4 Marker-controlled watershed

Region growing algorithms start from a set of initialization points (seeds) characterizing
the desired regions and use specific similarity criteria to append neighboring pixels. The
procedure is continued until the entire image is partitioned. Many variations of the region
growing algorithms have been introduced in the literature. Smeulders et al. (Smeulders
et al. 1978) and Kondo et al. (Kondo and Taniguchi 1986) initiated the region growing
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(a) Absolute value of VFI overlaid on B-mode.
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(b) Binary mask of VFI data.
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(c) Distance transform of inverted mask in (b).
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(d) Center-line of image in (c) (inner-markers).

Figure 5.1: Illustration of how inner-markers are detected for a scan of CA phantom.

algorithm from local maxima on the image. Adams et al. (Adams and Bischof 1994),
on the other hand, proposed a seeded region growing algorithm. However, generating
the initialization seeds is not straightforward. In fact, seeding is the most difficult part
of the segmentation. The seeding procedure must provide markers that are accurately
correspond to the desired objects. To address this issue, Adams (Adams and Bischof
1994) suggested to put manual seeds corresponding to the desired objects. This limits
the final segmentation, so that the result has the same number of objects as the seeds.
Therefore, this is not achievable in real-time imaging as the seeds are required to be
detected automatically. The watershed trasnform is a special case of seeded region
growing, and has been a major segmentation tool in mathematical morphology (Beucher
and Lantuejoul 1979). The analogy of watershed originates from geography. Consider
a landscape with holes pierced in local minima. When the landscape is flooded, basins
would fill up with water from those local minima, and if the merging of waters of different
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(a) Outer markers generated from B-mode and
VFI.
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(b) Marker image –combination of (d) and (e).

Figure 5.2: Outer-markers and marker image generated for a scan of CA phantom.

basins are stopped by dams, the landscape is therefore partitioned in catchment basins
separated by dams (watershed lines). The process is exemplified in the Fig. 5.3. A
B-mode image can be regarded as a topographic landscape by considering gray levels as
altitude. Watershed transform can be appllied to the B-mode images for segmentation

Catchment basins Watershed lines

Topographic surface

Minima

Figure 5.3: Analogy of the watershed by simulating the flooding of a topographic surface
from its regional minima.

of vessel structures. However, specular pattern of the B-mode images might lead to
over-segmentation of non-desired structures. The marker-controlled watershed introduced
by Beucher and Meyer (Meyer and Beucher 1990) can address this issue. To avoid over-
segmentation due to numerous sources of flooding, Mayer (Meyer and Beucher 1990)
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suggetsed that a priori set of markers should be defined and flooding are only allowed from
those markers (instead of flooding from all the minima in the image). Thus, the essential
step in marker-controlled watershed is the extraction of object markers. This means that
if the extracted markers fails to mark an object, the segmentation fails to segment the
object too. Since the first introduction in 1990 (Meyer and Beucher 1990), several studies
developed fully automated algorithms for the extraction of desired markers. Thresholding
methods introduced by Kamgar-Parsi (Kamgar-Parsi and Kamgar-Parsi 2001) is sensitive
to noise. Techniques using the distance transform (Borgefors 1986) results in multiple
markers for one object. Marker extraction techniques based on mathematical morphology
such as h-minima, top hat transforms and the skeleton of the gradient image are also
proposed (Bengtsson, Wahlby, and Lindblad 2004).

In this study, a marker-controlled watershed is used to delineate the boundaries of
the vessel-like structures bracketed by the marker image generated in Section 5.3. The
B-mode image is median filtered, and a watershed segmentation of this filtered image
with respect to the Marker image yielded the segmentation of the vessel-like structures
(see Fig. 5.4(a)). However, segmentation results contain non-vessel structures that should
be excluded.
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(a) Result of watershed segmentation.
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(b) Artifacts rejected from image (g).

Figure 5.4: Marker-controlled watershed applied to the B-mode image with respect to the
marker image.

5.5 Artifact rejection

The marker-controlled watershed resulted in over-segmented regions, which are not
vessels. This step implements artifact rejection based on size, shape and amount of flow
to ensure that only the vessels are retained (see Fig.5.4(b)). Basically, elongated objects
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containing the inner-marker (center-line of VFI data) are kept in segmentation results
and the rest are excluded. Even though, the retained structures in this step are vessel-like
objects, the boundaries of the vessels might present some discrepancies with respect to
the actual vessel boundaries.

5.6 Inter-frame co-registration of segmentations

To refine the segmentation, so that it follows the exact vessel boundaries, an inter-frame
co-registration of segmentations is performed. To deform parts of the segmentation that
does not follow the actual vessel boundaries, 10 to 25 frames (depending on the frame
rate) neighboring in time are considered. Segmentations performed on all the neighboring
frames are co-registered and regions matching in at least 80% of the frames are considered
to be the actual vessels (See Fig. 5.5).

Figure 5.5: Inter-frame co-registration and refinement.

5.7 Quantitaive flow measures and the need for automation

Today’s commercial ultrasound scanners are not able to present a perfect wall-to-wall
delineation of vessels, while displaying the VFI images. Of particular interest is the extrac-
tion of new features that can express several desired properties of a vessel (i.e. constriction
in carotid artery) in a single feature such as peak systolic velocity (PSV) (Grant et al.
2003; Reutern et al. 2012) using VFI. The volume flow is also a very interesting measure
when inspecting the VFI, which quantifies the flow and characterizes the vessel (Hansen,
Heerwagen, et al. 2013; Hansen, Olesen, et al. 2014; J. Jensen, Olesen, Hansen, et al.
2014; Brandt et al. 2016). However, this measure is very susceptible to the vessel diame-
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ter, which makes the accurate delineation of the vessel very essential (J. Jensen, Olesen,
Hansen, et al. 2014; J. Jensen, Olesen, Stuart, et al. 2016).

The proposed method delineates the vessel walls and enables the correct estimation of
the volume flow. In the current implementation of VFI in ultrasound scanners, the correct
volume flow estimation is not possible. The reason is that the VFI does not perfectly
attach to the vessel walls, and therefore the VFI data is not available for regions very close
to the vessel walls.

5.8 Enabling VFI automated measures

In this section the possibility of automating two crucial flow measures such as PSV and
volume flow using VFI are introduced.

Spectral Doppler ultrasound (SDU) is the most commonly used tool for quantitative
flow measures, such as peak velocities, resistive index, turbulence, and also the degree
of stenosis. However, all of these measurements performed by spectral Doppler have to
be corrected for the insonation angle. As discussed in Chapter 4, the angle correction is
relatively impossible for complex and pulsating flow through constrictions, where flow
angles fluctuate drastically over time and space (J. A. Jensen 2016). Quantitative measures
acquired using this technique are then susceptible to angle correction, and can result in
mis-diagnosis. Today’s ultrasound devices use power Doppler or color flow mapping
(CFM) to determine the flow and compute flow measures using the spectral velocity
estimation (J. A. Jensen 1996; Evans and McDicken 2000). Transverse Oscillation
(TO) vector flow imaging (J. A. Jensen and Munk 1998) and using synthetic aperture
(SA) and directional beamforming introduced in Section 4.2 can be used to remedy the
problems. Therefore, accurate and reliable quantitative flow measures can be calculated
from the vector velocities estimated using these techniques. The remaining of the chapter
implements automatic flow measures from VFI, and evaluate the performance of the
implementations.

5.8.1 Automated Peak systolic velocity (PSV) measurement using
VFI

The importance of the PSV, as a crucial flow meaure, to identify the stenosis is discussed in
Section 5.7. PSV is also an important constituent of the clinical protocol, when examining
a patient suspected of having carotid artery disease. In such meaurements, automatic
PSV and automaic velocity angle estimations would be invaluable. This is because, the
automatic meaurements reduces both the intera- and inter-observer variability (Steel et al.
2003)
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Vector velocities acquired using the TO or SAFI can be used for PSV estimator.
Consider a vector flow image (VFI) at time t acquired from a longitudinal section of
a vessel (see Fig. 5.6). The image contains all the velocity estimates inside the vessel.
A 2-D vector velocity v(r,m, t) identifies velocity magnitude and direction located on
a perpendicular line to the vessel boundaries denoted by m and at distance r from the
center-line of the vessel. Several vector velocities along the line m are used for computing
the PSV as shown in Fig. 5.6. The PSV along line m in a cardiac cycle can be calculated
by

PSV (m, t) :=
{
max

(
v(r,m, t)

)
|∀r : 0 ≤ r ≤ R

}
, (5.1)

where R is the radius of the vessel, e is a unit vector normal to the surface S. Flow can be
in any direction within the VFI image.

5.8.2 Automated volume flow measurement using VFI
The same VFI image used for PSV, is used for volume flow estimator. Given the fact
that the acquired VFI is 2-D, three assumptions have been made to be able to estimate
the volume flow. The first assumption is that flow is axisymmetric. The second is that
cross-section of vessel is circular. Finally the third is that the velocity is sampled along a
diameter of the vessel. The volume flow Q of a fluid passing through a circular surface S
at time t is given by

Q(t) =

∫

S

v(x, t) · e dS, (5.2)

where v is a velocity vector positioned at x with respect to a random origin, e is a unit
vector normal to the surface S, and · denotes the dot product operator.

Several vector velocities v(r,m, t) along the linem are used for estimating the volume
flow as shown in Fig. 5.6. The volume flow is implemented using the method proposed in
(J. Jensen, Olesen, Stuart, et al. 2016). The volume flow passing through the line m can
be given by

Q(m, t) = π

∫ R

−R
v(r,m, t) · e |r| dr, (5.3)

in which the rotation of the 2-D velocity profile around the axis of the vessel is due to the
fact that the velocity vectors are assumed to be axisymmetrical.

The projection of v onto e ensures a flow, normal to the cross-section of the vessel. A
discrete version of the integral in (5.3), considering a finite number N of velocity vectors
sampled along the line m can be given by
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v(r,m,t)

Flow
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e
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Figure 5.6: Longitudinal view of a vessel, and velocities estimated along line m. The
vector velocity sample v(r,m, t) is at a radial and perpendicular distance r from the center
axis. The radius of the vessel is R, and the radial distance between velocity estimation
points is ∆g. The line-to-flow angle is α = 90◦, and vector e is a unit vector normal to
the cross-sectional vessel area.

Q(m, t) = π∆g2
N/2∑

n=−N/2
v(n,m, t) · e |n|. (5.4)

where∆g is the distance between two velocity samples and substitutes dr so that r = n∆g.
This is, in a sense, the sum of volume flows in semi-annular rings with area of π∆g2|n|,
each corresponding to a velocity component v(n,m, t) · e. The angle between the line m
and the normal vector e is α = 90◦, which is used to calculate ∆g. Also, a mean volume
flow for a cine-loop can be computed by averaging several volume flows from different
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perpendicular lines to the vessel, over a number of frames Nf in the cine-loop as follows

Q =
1

MNf

Nf∑

t=1

M∑

m=1

Q(m, t), (5.5)

where M is the number of perpendicular lines chosen on the VFI. In pulsatile flow, Nf
frames usually cover the whole number of cardiac cycles.

5.9 Evaluation of the segmentation algorithm

The proposed segmentation algorithm is applied to sequences acquired from carotid artery
of five healthy volunteers. Each measurement contained 500 frames. Also a phantom
mimicking a carotid artery at its bifurcation is scanned and used in this study. The
beamformed RF data are acquired using a BK3000 scanner (BK Ultrasound, Denmark)
connected to a 192-element 4.1 MHz linear array transducer (9032, BK Ultrasound). The
beamformed RF data are simultaneously recorded by a research interface on the scanner,
and processed with the proposed algorithm off-line. Automated segmentation results are
compared with manual segmentations performed by an experienced user on 60 frames
(10 frame randomly chosen from each sequence). Dice coefficient denoting the similarity
between segmentations is then computed. The coefficient ranges between 0 and 1. A
value of 1 indicates perfect agreement and a value of 0 indicates no agreement.

5.10 Empirical evaluation of the quantitative flow measures measured
from VFI

Section 5.8 argued that TO VFI (J. A. Jensen and Munk 1998), and SA with directional
beamforming introduced in Section 4.2 can be used to address the inherent problems of
the SDU. It is consequently, expected to achieve more accurate and reliable quantitative
flow measures from the VFI compare to SDU. However, prior to implementing the VFI
measures in a commercial scanner, it must be investigated whether it performs better
than the already used SDU. Therefore, PSVs measured from VFI and SDU are compared
in-vitro and in-vivo.

5.10.1 in-vitro measurement setup
A Bk3000 ultrasound scanner equipped with VFI (BK3000, BK Ultrasound, Herlev,
Denmark) was used to obtain VFI data. The in-vitro evaluation of the VFI was performed
with both, a linear (4.1 MHz) and a convex (3.5 MHz) transducer (BK ultrasound, Herlev,
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Denmark). This was done to validate the PSVs measured from superficial structures using
the linear array, and from deep structures using the convex array.

For in-vitro flowrig validation of VFI, a flow system (CompuFlow 1000, Shelley
Medical Imaging Technologies, Toronto, Canada) circulating a blood-mimicking fluid
(BMF-US, Shelley Medical Imaging Technologies, Toronto, Canada) in a closed loop was
used.

The linear transducer was fixed at a distance of 1.5 cm from the vessel of 12 mm in
diameter with a beam-to-flow angle of 60 degrees. For increasing constant flowrig peak
velocities of 5-60 cm/s, SDU and VFI data were recorded. For precision analysis, each
velocity setting was recorded twice.

The convex transducer was positioned at 7 cm from the vessel. SDU and VFI data
were recorded for increasing constant flowrig peak velocities of 5-50 cm/s. For precision
analysis, each velocity setting was recorded twice. VFI was measured 10 times for the
peak velocity of 25 cm/s, and the STD of VFI peak velocities was then calculated.

5.10.2 in-vivo measurement setup
Thirty two healthy volunteers were recruited after informed consent, and approval obtained
from the National Committee on Biomedical Research Ethics (journal no. 15000104).
Each volunteer was fasted for 4 to 6 hours prior to the examination. The convex transducers
(3.5 MHz 6C2, BK ultrasound, Herlev, Denmark) was used for this study. All the Scans
were performed in supine position, at intercostal and subcostal views. Two cine-loops
with both SDU and VFI were recorded at each scan view for precision analyses.

For intera- and inter- observer study, Three radiologists were asked to re-scan a subset
of 10 subjects from the 32 subjects –while blinded to the peak velocity estimates provided
by SDU on the scanner.

5.11 Results and discussion

5.11.1 Segmentation results
Automated segmentation results were compared with manual segmentations performed
by an experienced user on 60 frames (10 frame randomly chosen from each sequence).
Dice coefficient denoting the similarity between segmentations was then computed. The
coefficient ranges between 0 and 1. A value of 1 indicates perfect agreement and a value of
0 indicates no agreement. The Dice coefficient was 0.91, indicating that vessel boundaries
obtained using the algorithm are highly accurate and consistent with the experts’ visual
perception of vessel boundaries. Two examples of segmentations performed by the
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proposed hybrid method on scans acquired from a carotid phantom with a bifurcation and
carotid of a normal male subject are shown in Figs. 5.7(a) and 5.7(b) respectively.

(a) Carotid artery segmented on carotid phan-
tom.

(b) Carotid artery segmentation in-vivo.

Figure 5.7: Results of carotid segmentations performed on phantom and in-vivo scans.

5.11.2 VFI validation results
5.11.2.1 In-vitro results
Fig. 5.8 shows the results of in-vitro flowrig validation of VFI for measuring PSV. Relative
errors of the PSVs measured from VFI and spectral Doppler comparing to the actual
PSVs were 14.5% and 29.5% respectively (see Fig. 5.9). The figure shows that VFI offers
a more precise and reliable alternative for velocity estimation of PSV in comparison with
the current clinical standard using spectral Doppler, for the linear array.

5.11.2.2 In-vivo results
Precisions of VFI and SDU for the intercostal view were 18.1% and 28.3%, and those of
the subcostal view were 23.2% and 76.8%, respectively.

Bias between VFI and SDU was 0.57 cm/s (p=0.38) intercostal and 9.89 cm/s (p <
0.001) subcostal. Intra- and interobserver agreement was highest for VFI (interobserver
ICC: VFI 0.80, SDU 0.37; intraobserver ICC: VFI 0.90, SDU 0.86).
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Figure 5.8: Comparison of flowrig PSV measured by VFI and spectral Doppler.
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Figure 5.9: Relative errors of measurements with VFI and spectral Doppler.

5.11.3 Automated VFI measures results
PSV and volume flow, are implemented in an in-house tool specialized for VFI visual-
ization and quantitative flow measures. All the PSV and volume flow measurements are
performed using this application. Fig. 5.10(a) shows a screen shot of the visualization tool,
in which a carotid artery belonging to a 29 years old healthy male subject is segmented
and VFI is visualized. The PSV and volume flow are also measured using the application
and reported across three cardiac cycles. PSV was 52.66 cm/s and the volume flow was 9
cm3/s. The distribution of angle during one cardiac cycle was 89.54± 1.46 degrees.
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5.11.3.1 Automated PSV
Using the proposed segmentation method, the vessel walls are accurately delineated.
Fig. 5.10(a) shows an example of segmentation of a human carotid. The red lines indicate
the location of the vessel walls delineated by the proposed method. user located a point
on either side of the vessel boundaries. A perpendicular line to the vessel boundaries is
automatically created across the vessel. Then, PSV along the perpendicular line, through
the vessel, across a specified number of cardiac cycles is calculated. The red horizontal
line indicates the position as well as the mean-angle of the peak velocity throughout the
cycle. The green horizontal line indicates the center and the circular cross-section found
inside the vessel for measuring the volume flow discussed in the next section. Fig. 5.10(b)
shows the velocity profile measured at the PSV point across three cardiac cycles.

5.11.3.2 Automated volume flow
For Volume flow measurements in-vivo, first, the vessel walls are automatically delineated,
and VFI is refined so that it covers the whole vessel region. This enables the correct
estimation of volume flow. Second, the volume flow can be computed with minimal user
actions. This is performed by selecting a point on either of the vessel walls. A vessel
cross-section between the segmented walls is automatically generated for computing the
volume flow in VFI (see yellow circular cross-section in Fig. 5.10(a)). The volume flow
is then estimated using the formula in 5.4.

5.12 Summary

This chapter presented a novel hybrid segmentation algorithm that combines VFI and
B-mode to delineate the vessel boundaries. The algorithm also implemented PSV and
volume flow for VFI. The empirical results showed a dice coefficient of 0.91, indicating a
good match between segmentation performed by the algorithm and the expert. The results
of the flowrig measurements also showed that VFI was 15% more precise than spectral
Doppler for PSV measurement.

The results indicated that regardless of the beam-to-flow angle, VFI is more precise in
compare with SDU for PSV estimation in the portal vein. Furthermore, VFI can estimate
the same peak velocity in the main portal vein with an insonation angle inapplicable for
spectral Doppler. Therefore, the proposed method enables a better visualization of VFI,
as well as the automatic quantitative flow measures using vector velocities. The algorithm
can also be used in daily clinical practice as an alternative tool for making a quantitative
flow measures.
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(a) Carotid artery of a 29 years old male subject is segmented and
VFI is visualized. PSV and volume flow are measured automatically
across three cardiac cycles.
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Figure 5.10: Automated segmentation and quantitative flow measurements performed on
a carotid artery of a 29 years old male subject.
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All the flow measures introduced in this chapter, are implemented in an in-house
application specialized for VFI visualization and quantitative flow measures. All the
PSV and volume flow measurements are performed using this application. Also, the
distribution of peak velocity amplitudes and angles across specified number of cardiac
cycles can be automatically computed and reported.
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CHAPTER 6
Automated Detection and

Visualization of B-line Artifacts in
Lung Ultrasound Imaging

The present chapter aims to present a automated technique for diagnosing pulmonary
diseases using lung ultrasound. The chapter thus, presents a technique for automated
detection of disease correlated reverberation artifacts, more specifically B-lines, in ultra-
sound lung scans. B-lines are the most commonly used artifacts for diagnosing pulmonary
diseases in lung ultrasound. They are reverberation artifacts, which arise from the pleura
and spread down without fading to the edge of the screen. Apart from the recent advances
in application of lung ultrasound, there are no computerized and automated techniques for
characterizing the B-line artifacts and pulmonary disease in the literature. This chapter
proposes an automatic method for accurate detection of B-lines in ultrasound lung scans.
The proposed method also enables quantitative measures in bed-side lung ultrasound,
thereby exploiting the full potential of this imaging technique.

The remainder of this chapter is organized as follows. Section 6.1 reviews the literature
in lung ultrasound and B-line artifacts. Section 6.2 introduces the B-line artifacts, and
section 6.3 gives high-level describtion of the proposed method. Sections 6.4 to 6.9
discuss the proposed technique. Section 6.10 is the scan protocol of the study, and
section 6.11 introduces the images acquired. Section 6.12 presents the results and discuss
the findings. Finally, section 6.13 summarizes the chapter.

6.1 Review of the state-of-the-art lung ultrasound imaging

Lung ultrasound has received increasing attention in recent years, as it enables a quick
visual analysis of lung, as well as diagnosis of pulmonary diseases without imposing
radiation. In lung ultrasound imaging, An intimate mixture of air and water characterizes
the lung state. Change in their balance can be a sign of pulmonary disease. Interactions of
water and air in ultrasound lung scans generate a variety of artifacts, and a lung ultrasound
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image of pulmonary disease is therefore based on analyzing these artifacts rather than
pure visualization of the structures (D. Lichtenstein, Meziere, et al. 1999; E.Agricola et al.
2005; Volpicelli, Mussa, et al. 2006; Gargani, Frassi, et al. 2008). B-lines are reverberation
artifacts generated by multiple reflections of the ultrasound beam trapped between air- and
water-rich structures. They originate from the visceral pleura (serous membrane covering
the surface of the lungs) and spread down to the edge of the screen. B-line detection is
essential in the assessment of lung-edema in lung ultrasound imaging, which is often
present in patients with heart and lung diseases as well as patients having undergone
major surgery (Volpicelli, Mussa, et al. 2006; Gargani 2011; D. A. Lichtenstein 2014).
B-lines are also used to detect pneumothorax as B-lines disappear, when a pneumothorax
is present.

The condition where air is found within the pleural cavity can result in a collapsed lung,
and if untreated be fatal. In daily clinical practice, patients suspected for pulmonary edema
or pneumothorax are imaged with X-ray, and often repeatedly imaged with short intervals
to monitor the effect of the applied treatment. Lung ultrasound is a well-established
modality, but it is often bypassed, as the medical staff handling these patients are not
familiar with the method.

In 1997, Lichtenstein (D. Lichtenstein, Mézière, et al. 1997) showed a correlation
between B-lines in ultrasound and chest computed tomography (CT). Even though lung
ultrasound already had been used for evaluation of pleural effusion, it was the first time
that the diagnostic value of B-line artifacts was shown. In 2004, Picano (Jambrik et al.
2004) showed the correlation between the number of B-lines detected by lung ultrasound
and X-ray findings for assessing the presence of extra-vascular lung water (EVLW). Since
then, multiple studies have shown the methodological validation and clinical application
of B-lines for diagnosing pulmonary diseases (E.Agricola et al. 2005; Volpicelli, Mussa,
et al. 2006; Gargani, Lionetti, et al. 2007; Gargani, Frassi, et al. 2008). The common
practice for diagnosing pulmonary edema with ultrasound is based on visual analysis and
interpretation of B-lines on still lung ultrasound images.

For the detection of pneumothorax, the detection of a single B-line excludes pneumoth-
orax in the imaged lung segment. Several B-lines on an ultrasound scan are called ”lung
rockets” or B+ lines. This pattern distributed in more scans on each lung defines diffuse
alveolar-interstitial syndrome (in some cases caused by pulmonary edema) (Volpicelli,
Mussa, et al. 2006). The standard pathological routine for diagnosing this disease is
to detect B+ pattern in a single scan or frame. A study performed by intensivists (D.
Lichtenstein, Meziere, et al. 1999) showed that the mean distance between two adjacent
B-lines at lung surface is never more than 7 mm, and this should be the widest distance
between B-lines to be significant. Another study used the criteria of counting at least three
artifacts with a distance between adjacent lines of no more than 7 mm for identifying a
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Figure 6.1: Anatomy of the secondary lobule and its components. The interlobular septum
is thickened due to the existence of fluid.

B+ pattern (Volpicelli, Cardinale, et al. 2008). On the other hand, visualization of isolated
B-lines, or visualization of multiple B-lines of more than 7 mm apart in a single scan, was
considered a normal finding (Volpicelli, Cardinale, et al. 2008). However, a major factor
affects the accuracy of the examination. That factor is interpretation error for reasons
including, inexperience, and habituation. Computer-assisted interpretation can potentially
address the issue of interpretation error, and facilitates the adoption by users . Based
on the authors’ knowledge, apart from recent advances in application of B-lines, there
are no computerized and automated models for characterizing the B-line artifacts in the
literature.

6.2 B-lines artifacts

B-lines are the most commonly used artifacts for diagnosing pulmonary diseases. They
are reverberation artifacts that originate from water-thickened pulmonary interlobular
septa (Gargani 2011), and spread down without fading to the edge of the screen. Fig. 6.1
shows the anatomy of secondary lobule, in which the interlobular septum is thickened
due to the existence of fluid. In ultrasound images of lung, B-lines originate from the
visceral pleural line and extend to the edge of the display. Fig. 6.2 illustrates how B-lines
are generated in ultrasound.
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Figure 6.2: Illustration of how B-line artifacts are generated. They are hyper-echoic
reverberation artifacts arising from the pleural line and spreading down towards the lower
edge of the screen.

6.3 High-level description of the proposed algorithm

The proposed method contains six distinct steps.

1. First, the pleural line is delineated using a random walks method (Grady 2006;
Karamalis et al. 2012).

2. Second, the upper-pleural region is excluded from the scan and the B-line artifacts
are identified on the scan plane.

3. Third, an alternate sequential filtration is applied to the results of step 2 to better
highlight the B-lines.

4. Fourth, the result of step 4 is top-hat filtered to make sure that B-lines are laterally
detached.

5. Fifth, a Gaussian model is fitted to each detected B-line.

6. Finally, the center or peak point of the fitted Gaussian models corresponding to the
B-lines are calculated and used to determine the position of the B-lines. B-lines are
then overlaid on the B-mode image.
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6.4 Pleural line delineation

The first essential step in detection of B-lines is to delineate the pleural line on the lung
scans. For this purpose, a graph based approach that computes a per-pixel uncertainty map
based on the information depicted by an ultrasound image is used (Karamalis et al. 2012).
This method rather specifically measures the uncertainty in attenuated and/or shadow
regions. To identify the map for each ultrasound frame, a random walks framework is
used that takes into account ultrasound specific constraints (Karamalis et al. 2012). The
solution of the random walks equilibrium problem is global and takes the entire content
of the RF data into account. The required starting points are automatically placed at the
beginning of each scan-line to represent the transducer elements. Thus, a problem is
formulated by computing the probability of a random walk starting from a pixel to reach
the transducer elements. The domain specific knowledge for ultrasound is integrated
with a simple modeling of the ultrasound image formation process. The ultrasound
specific constraints obtained from physics of acquired RF data by the transducer must be
integrated to ensure the accuracy of the confidence map. One of the fundamental properties
of ultrasound is the attenuation of the signal by increasing depth. The Beer–Lambert Law
is used to express the depth dependent attenuation, and the attenuated signal I could be
given by I = I0 exp (−αd), where I0 is the initial intensity, α the attenuation coefficient,
and d the distance from the source. This property is included into the confidence map in a
way that the further away a random walk starts from the transducer is, the more unlikely
it will be able to reach one of the transducer elements. The computed confidence map
is used to determine the upper-pleural region and exclude that from the RF-data prior to
detecting the B-lines (see Fig. 6.3(b) on page 105). The pleural line is delineated on the
confidence map by globally thresholding the confidence map to be higher than the global
threshold of the entire map. The region with values higher than the threshold is considered
the upper pleura, and the rest is lower pleural region. In the next step the B-lines starting
from the pleura and appearing inside the lower pleural region are detected.

6.5 B-lines detection

B-line detection contains four steps. First, The area on the scan corresponding to the
upper-pleura is excluded from the data (Fig. 6.3(c) on page 105), and the B-lines are
characterized from the remaining of the RF-data. This is done because B-lines originate
from the pleura and extend downwards to the end of the screen. Second, to extract the
vertical edges in the RF-data, a normalized cumulative histogram the remained RF-data is
computed axially. This yielded an axial-cumulative image, in which each column is the
cumulative sum of the corresponding scan-line in the RF-data (Fig. 6.3(d) on page 105).
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Each column of the axial-cumulative image is normalized to the maximum brightness of
the same column. Third, this image is inverted and an adaptive histogram equalization
is performed to increase the contrast (Fig. 6.3(e) on page 105). Finally, a binary mask
including the strong specular regions inside the histogram-equalized image is generated
(Fig. 6.3(f) on page 105). This binary mask, outlines the most prominent B-lines in the
envelope data . The procedure is detailed in Algorithm 3. This mask is further manipulated
in Sections 6.6 and 6.7 to better characterize and visualize the B-lines.

6.6 B-lines axial improvement

The binary mask generated in the previous section and shown in Fig. 6.3(f) on page 105,
provides a very crude characterization of B-lines. An alternate sequential filtering (ASF)
procedure using a repeated sequential morphological opening and closing is applied to the
mask. ASF closes small gaps axially and isolates the objects laterally. The procedure is
depicted in Algorithm. 5. ASF highlights the vertical B-lines and isolate them from each
other laterally. Fig. 6.3(g) on page 105 is the result of ASF, in which the B-lines are better
identified in comparison with those in Fig. 6.3(f) on page 105. An axial line-structuring
element, along the ultrasound beam, is used for ASF filtering. This is used to ensure
that only elongated and axial information (B-line artifacts) in the compressed data are
preserved and highlighted.

6.7 B-lines latteral separation

The generated mask in the previous step contains prominent axially elongated and adjacent
tails locating the B-lines. However, the tails can be laterally connected that deteriorate
the clean separation of them (B-lines). To separate and extract the B-lines automatically,
a top-hat transformation is used. The top-hat transformation originally proposed by
Mayer (Meyer 1977) is a mathematical morphology operator that uses morphological
opening or closing for extracting bright (respectively dark) objects from an uneven
background in a 2D grey-scale image. Top-hat transformation can be formulated in two
ways: white top-hat (WTH) and black top-hat (BTH). WTH can also be used to
identify prominent peaks in a 1D signal, and the BTH as the dual of the WTH can be
used to identify the prominent minima in a 1D signal. In this study a (WTH) with a flat
disk structuring element is used to extract the B-lines. The WTH transformation of a 1D
signal f with a flat structuring element B is defined as Twhite(f) = f − (f ◦B).

To identify the actual B-lines, the top-hat transform is applied using a line structuring
element (B) that is somewhat longer than the size of the connected regions. The ◦ is the
opening operator and is basically a min operation that removes the regions smaller than
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Algorithm 3 B-line detection
Input: RF , which is the RF-data acquired from the scanner.
Output: Binary mask (Bbl) in which the strong axial B-lines are highlighted.

1: procedure B-LINE DETECTION
2: Env = log10

(
|H{RF}|

)
# performing the Hilbert transformation, and com-

puting the envelope of RF data.
3: Let Ax cdf(M,N) be a discrete gray scale image denoting the axial cumulative

image of the envelope data with M rows and N columns.
4: for each i ∈ M do
5: for each ii ∈ N do
6: Ax cdf(i, ii) =

∑i
j=0 Env(j,ii)

max(Env(ii).col) # computing the axial cumulative sum
and normalizing to the maximum intensity of that column.

7: end for
8: end for
9: Bc = max(Ax cdf)−Ax cdf # inverting the axial cumulative image.

10: Bc = adapthisteq(Bc) # function performing the adaptive histogram equaliza-
tion.

11: Let Bc be a discrete gray scale image and let ni be the number of occurrences of
gray level i.

12: p
Bc (i)

= p (Bc = i) = ni

n , 0 < i < L # probability of an occurrence of a pixel
of level i in the image.

13: Let L be the total number of gray levels in the image (in our case 256), n being
the total number of pixels in the image, and p

Bc (i)
be the image’s histogram for pixel

value i, and normalized to [0, 1].
14: for each i ∈ L do
15: cdf

Bc (i)
=
∑i
j=0 pBc (j)

# define the cumulative distribution function corre-
sponding to p

Bc
.

16: end for
17: Let thl be the gray value for which cdf

Bc=0.5 and thh be the gray value in which
cdf

Bc=1.
18: Let Bbl be a zero binary mask with the same size as image Bc
19: for each ii ∈ N do # N is the total number of pixels in the image Bbl.
20: if thl < Bc(ii) < thh then
21: Bbl(ii) = 1
22: end if
23: end for
24: end procedure
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Algorithm 4 Alternate sequential filtering
Input: Bin Binary mask outlining most prominent edges in RF-data, and N maximum
size of the structuring element in ASF.
Output: BASF Binary mask in which the strong axial B-lines are highlighted.

1: procedure ASF
2: BASF = Bin
3: for each i ∈ N do
4: Let Slin be a line structuring element of length N.
5: BASF = (BASF 	 Slin)⊕ Slin # performing the morphological opening.
6: BASF = (BASF ⊕ Slin)	 Slin # performing the morphological closing.
7: end for
8: end procedure

Note: ⊕ and 	 denote morphological dilation and erosion respectively.

the size of structuring element. Subtracting this signal from the original signal produces a
signal that only contains the desired strong peaks. Fig. 6.3(h) on the facing page shows
B-lines detected after top-hat filtering for a lung scan of a healthy subject.

6.8 Gaussian model fitting

The B-lines curve after top-hat filtering is quite rough and the peak points of the B-lines
are not well-defined. A Gaussian model is fitted to each B-line (Fig. 6.3(i) on the next
page). The peak points of the Gaussian models were calculated and considered to be the
position of the B-lines along the pleura. The final Gaussian-fitted B-line mask is then
overlaid on the B-mode.

6.9 Enabling automated quantification of B-lines

The essential first step to automate the characterization of B-lines is to implement measures
that can quantify the distribution of these lines in ultrasound lung sequences. The average
number of B-lines across the acquired frames in each sequence is computed automatically,
and used as an indication of whether the scans acquired from the subject was normal or
not.

6.10 Scanning protocol

The proposed algorithm was applied to in-vivo ultrasound lung scans acquired from
healthy subjects and patients after informed consent. An eight-zone scanning proto-
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(a) LUS image.
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(b) Confidence map of image in (a).
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(c) Upper pleura excluded from
image in (a).
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(d) Axial-cumulative image of (c).
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(e) Image (d) inverted and the histogram
equalized.
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(f) Strong specular regions de-
tected on (e).

-2 -1 0 1 2

Lateral position [cm]

0

1

2

3

4

5

6

A
x
ia

l 
p
o
s
it
io

n
 [
c
m

]

(g) Result of ASF.
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(h) Result of top-hat.
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(i) Result of Gaussian fitting.

Figure 6.3: B-line detection performed on a LUS scan of a patient with pulmonary edema.
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(a) LUS image.
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(b) Confidence map of image in (a).
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(c) Upper pleura excluded from
image in (a).
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(d) Axial-cumulative image of (c).
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(e) Image (d) inverted and the histogram
equalized.
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tected one (e).
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(g) Result of ASF.
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(h) Result of top-hat.
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(i) Result of Gaussian fitting.

Figure 6.4: B-line detection performed on a LUS scan of a healthy subject.
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Figure 6.5: 8-zone scanning protocol. Chest was divided into 8 zones (4 per hemithorax),
for each of which the intercostal spaces were examined for B-lines and the best scan is
recorded (one scan per zone).

col (Volpicelli, Cardinale, et al. 2008) was used for acquiring ultrasound lung scans. The
ultrasound examination consisted of bilateral scanning of the ventral and dorsal chest
walls performed on subjects in cranial and caudal positions. This standardized acquisition
is employed to ensure that the lung is thoroughly examined. Chest was divided into 8
zones (4 per hemithorax), for each of which the intercostal spaces were examined for
B-lines and the best scan was recorded (one scan per zone). Fig. 6.5 shows where on the
subjects examination was performed.

6.11 Ultrasound dataset

Four healthy subjects and four patients with different degrees of pulmonary edema were
scanned. The patients had undergone major open-chest surgery. The healthy subjects were
four males of 32, 42, 31 and 28 -year-old. The first patient was a 67-year-old male, who
have had coronary artery bypass grafting (CABG) for stenotic coronary arteries (abnormal
narrowing in 3 vessels). The second patient was a 44-year-old female, who have had
surgery for myxoma (benign tumor) in the left atrium. The third patient was a 83-year-old
male, who have had CABG surgery for stenotic coronary arteries (abnormal narrowing in
3 vessels). Finally, the fourth patient was a 68 years old male, with heart-mate (mechanical
heart) because of cardiomyopathy ; a chronic disease of the heart muscle in which the
heart muscle becomes enlarged, thick, or rigid.

A coarse method to predict the level of edema is to measure the need of extraO2 to the
patient. The normal required O2 concentration is around 21%. The higher supply of O2



108 Chapter 6. Automated Detection and Visualization of B-lines

increases the probability of presence of pulmonary edema in patients. The oxygen supply
for the patients is depicted in Table 6.1. A total of 64 lung sequences each containing
50 frames were acquired. The study was approved by the Danish National Committee
on Biomedical Research Ethics and the local Ethics Committee, and the volunteers were
included into the study after informed consent. The beamformed RF data were acquired
using a BK3000 ultrasound scanner (BK Ultrasound, Denmark).

6.12 Results and discussion

Figs. 6.3 on page 105 and 6.4 on page 106 show two examples of the B-lines detection
procedure performed on LUS scan of a patient and healthy volenteer, respectively.

Figs. 6.6 on page 110 and 6.7 on page 111 show two examples of the B-lines overlaid
on the B-mode image.

The algorithm was applied to all 64 acquired lung sequences (3200 frames). The
proposed algorithm used all data in a sequence and not single frames, as in conventional
lung ultrasound, for B-line detection. Fig. 6.6 shows two examples of the detected pleura
and B-lines on lung scans of a patient and a healthy subject. Average number of B-lines
was calculated for each subject across 8 scans recorded from a subject. The can potentially
be used as an indication of whether the scans acquired from the subject was normal or not.
The results are shown in Table 6.1.

The average number of B-lines values were more than 0.2 in scans belonging to the
patients. On the other hand, in the healthy subjects, Average number of B-lines were
lower than 0.2. The results of the study showed that the proposed algorithm was able to
detect the B-lines on ultrasound scans. The proposed method can potentially be used as an
automated tool to differentiate between scans belonging to patients and healthy subjects.

6.13 summary

This chapter presented a novel automatic B-line detection algorithm. It automatically
finds B-lines (comet tail artifacts) using sequences of B-mode ultrasound for diagnosing
pulmonary diseases. The empirical results showed that the proposed technique was able
to detect the B-lines and was able to differentiate the ultrasound scans acquired from the
patients with sever edema and those acquired from healthy subjects. Chest x-ray doesn’t
provide a quantification for pulmonary edema and is not the best modality for detection
of pulmonary edema even though it is modality most often chosen due to availability.
Chest x-ray is a ionizing modality, which is harmful for cellular DNA, while ultrasound
is harmless. Also, Chest x-ray imaging is a service offered by the radiology department,
while lung ultrasound is performed bedside by staff of the home department of patient.
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The proposed automated algorithm will ease the use of lung ultrasound and may be used by
e.g. nurses without profound knowledge of ultrasound. The algorithm can potentially be
used in daily clinical practice as a tool for making a quantitative estimation of pulmonary
edema and detection of pneumothorax. Furthermore, the algorithm can be an aid for the
untrained personnel performing the ultrasound scan, as well as providing a quantitative
measure for B-lines presence.
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(a) LUS scan containing two
B-lines.
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overlaid.

Figure 6.6: lung scan of a patient after surgery, for which the pleural line is outlined, and
two B-lines are detected.
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Figure 6.7: lung scan of a healthy subject, for which the pleural line is outlined, and no
B-lines are detected.
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CHAPTER 7
Project Conclusion and Perspectives
Medical US has been a widely used imaging modality to assist medical doctors for
examination, diagnostic purposes, and for real-time guidance during surgery (Harvey
et al. 2002; OBrien and Holmes 2007). However, despite the recent advances, medical
US remains the most operator-dependent imaging modality, as it heavily relies on the
user intervention to optimize the scan settings (Baker, Jensen, and Behrens 2013). This
explains the huge interest in the subject of this thesis. The thesis has presented the results
of the PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of
this project have been to develop automated techniques to minimize the adjustments done
by the users on the scanners to optimize the image quality and to improve the computer-
aided diagnosis in US by introducing new quantitative measures. Four major issues
concerning automation of the medical US are addressed in this PhD project. They touch
upon ATGC, automatic SA image quality optimization, automated vessel segmentation in
US, and introducing CAD in LUS.

Chapter 2 Adressed the implications behind current TGC implementations and de-
veloped a new automated TGC. In this chapter, the recent implementations of TGC in
commercial scanners are reviewed, and their shortcomings are discussed. The main prob-
lems with the current implementations are that they rely on the presence of sufficiently
large homogeneous soft tissues with uniform distribution of attenuation (Klesenski 1996;
Lee, Kim, and Ra 2006; Tang, Luo, and Liu 2009), and that they perform TGC using a
1-D curve, in which the 2-D topology of the image is ignored. This is in fact problematic
for scans with large fluid collections. To address the issue, an automated hierarchical TGC
(AHTGC) algorithm is proposed. The new technique relies on decay of the power spectral
density of the received signal with respect to depth, as well as estimates of scattering
strength, focus gain and energy level for gain adjustments. For the first time, 2-D SNR
maps are used for distinguishing between the scans with and without large anechoic
regions. 2-D tissue characterization profiles are also used to correct the gains after scaling
the gains by TGC curves. This ensures that the 2-D topology of the scanned media is
taken into account during the gain adjustments. Paper C shows the initial implementation
of the AHTGC, evaluated on 44 abdominal scans by two radiologists. The results of
the visual evaluations are highly in favor of the proposed algorithm. Paper D equips

113
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the AHTGC with a shadow detection module, which automatically removes the shadow
regions from gain compensation. It also adds a dynamic TGC step to the algorithm
that benefits from singular spectrum analysis for trend extraction. Paper A expands the
automated technique in detail and presents in-vivo results. The AHTGC is evaluated
by four radiologists on 45 US sequences acquired from diverse population anatomical
structures. The Wilcoxon signed-rank test is applied to scores provided by doctors to
examine whether radiologists preferred the processed sequences or the unprocessed data.
The p-value: 2.09× 10−23 explicitly indicated that the Proposed AHTGC technique is
preferred by the doctors. A separate evaluation is also performed on the scans with large
anechoic regions. The p-value: 3×10−5 indicated that in a subset of cine-loops with large
fluid collections, the proposed AHTGC is preferred. The proposed technique is automatic,
robust, and has a more flexible control over the gains, specially for the anechoic regions.
The technique alleviates the problems with 1-D manual and automated TGC methods,
reduces the unnecessary and manual gain adjustments on the scanners keyboards, and has
the potential to facilitate the use of scanners in point-of-care ultrasound.

Chapter 3 addressed the lack of a generic technique for the optimization of SA image
quality, the task of automatically selecting optimal parameters for acquisition of the SA
images (based on review in review in Section 3.2). The trade-off between the image quality
and frame rate is discussed, and the need for SA image quality optimization is highlighted.
This chapter consequently proposed a method for SA image quality optimization using
a multi-objective optimization technique based on theory of Pareto optimality. The
technique can accommodate several imaging parameters. The optimization technique is
performed using simulation. The initial results of the proposed technique are presented in
Paper E. Paper A extends the optimization technique and presents in-vivo results. The
results of the study showed that with only αmax = ±22◦ and N = 32 , the image quality
is comparable to a high number of emissions. The proposed technique is applied for a λ/2-
pitch transducer, and image quality is compared for simulations, phantom measurements
and in-vivo scans. The grating lobes are avoided by using a λ/2-pitch transducer, and
therefore fewer emissions are needed to obtain the same image quality. Thus, with a pulse
repetition frequency of 5 kHz, more than 156 fps are obtained. The proposed optimization
technique is generic and can be applied to any US imaging modality, using any transducer
geometry.

Chapter 5 addressed the segmentation of major vessels, in particular the carotid artery,
and automating quantitative flow measures using VFI in US. The literature review in
Section 5.1 illustrated that the majority of current vessel segmentation techniques uses
only B-mode for the segmentation. This limits their segmentation approaches, as the
contrast of the vessels might not be high enough for segmentation purposes. However,
the information about the blood flow inside the vessel can improve the segmentation.
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Recently, contrast enhanced images (CEUS) are used in combination with B-mode images
for segmentation of vessels. This is very beneficial, as CEUS images provide information
about flow inside the vessel and can act as a marker for the vessel. However, the technique
requires injecting contrast agents to the blood stream, which is not achievable for everyday
use in a normal scan session. The challenge remains to incorporate a non-invasive and
reliable source of flow data for the vessel segmentation. The problem is addressed in this
project by using the VFI as a reliable alternative marker for identification of vessels, and
for being incorporated into the segmentation of vessels. According to the Chapter 4, VFI
enables an angle independent and non-invasive visualization of blood flow in real-time.
Chapter 5 thus presents a hybrid segmentation algorithm that fuses B-mode and VFI for
robustly detecting and segmenting vessels in ultrasound images. Paper G presented the
segmentation algorithm and evaluated the automated segmentation results in comparison
with manual segmentations performed by an experienced user on 60 frames (10 frame
randomly chosen from 6 sequences). The empirical results showed a dice coefficient of
0.91, indicating a good match between segmentation performed by the algorithm and the
expert. The proposed method delineates the vessels in ultrasound scans and enables a
better visualization of flow inside the vessel, and provides a firm ground for quantitative
flow measures for VFI such as Peak systolic velocity (PSV) and volume flow. Before
implementing the VFI measures in a commercial scanner, it must be investigated whether
VFI performs better than the already used SDU. Therefore, PSVs measured from VFI
and SDU are compared in-vitro and in-vivo. The results showed that VFI is more precise
compared with SDU for PSV estimation in the portal vein. Furthermore, VFI can estimate
the same peak velocity in the main portal vein with an insonation angle inapplicable for
SDU. Therefore, the proposed method enables a better visualization of VFI as well as
the automatic quantitative flow measures using vector velocities. The algorithm can also
be used in daily clinical practice as an alternative tool for making a quantitative flow
measures.

Chapter 6 investigated the possobility of automating the diagnosis of pulmonary
diseases using lung ultrasound. The chapter thus, presented a technique for automated
detection of disease correlated reverberation artifacts, more specifically B-lines, in ul-
trasound lung scans. The proposed method also enables the quantitative measures in
bed-side lung ultrasound, thereby exploiting the full potential of this imaging technique.

The goals of this PhD project are achieved for each of the subjects. First, a new
automated TGC is proposed that compensates for gains of the images in 2-D, compared
with the current 1-D curve compensation in commercial scanners. Second, an automated
generic technique for optimization of SA image quality is proposed. Third, for the first
time a hybrid segmentation technique that combines both VFI data B-mode images is
proposed. The technique enables the wall-to-wall visualization of VFI and automating
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the quantification of VFI in state-of-the-art US scanners. Finally, a new technique is
introduced to quantify disease-related reverberation artifacts in LUS.
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Advanced Gain Adjustments for Ultrasound
Imaging
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Abstract—Automating the gain adjustments on the ultrasound
scanners reduces the number of settings, and therefore, unnec-
essary user interactions. The growing need for automation is
emphasized in portable scanners, which seek the least amount of
adjustments to obtain the optimal image quality. The challenge
remains to devise an automated time-gain compensation (ATGC)
that compensates for the gains in scans with large changes in
the attenuation distributions. This paper presents an ATGC
algorithm that adapts to the large attenuation variation between
different types of tissues and structures. It relies on decay of
the received signal power spectral density with respect to depth,
as well as estimates of scattering strength, and noise level to
gain a more quantitative understanding of the underlying tissue.
The proposed algorithm is applied to a set of 45 in-vivo movie
sequences each containing 50 frames. The scans are acquired
by a BK3000 ultrasound scanner (BK Ultrasound, Denmark).
Matching pairs of in-vivo sequences, unprocessed and processed
with the proposed method are shown side by side and evaluated
by 4 radiologists for image quality. Wilcoxon signed-rank test is
applied to the ratings provided by radiologists. The average VAS
score is highly positive 11.1 (p-value: 1.09× 10−13) favoring the
gain-adjusted scans with the proposed algorithm.

I. INTRODUCTION

Radiofrequency (RF) echoes are strongly attenuated by
the tissues scanned [1]. The scattered signals span a wide
dynamic range, when they are received by the transducer,
and are not suitable to be visualized before gains adjustment.
Time gain compensation (TGC) is used to compensate for
the acoustic attenuation. TGC compensates for the attenuation
of ultrasound echo signals along the depth, so that echoes
belonging to deep structures are more amplified compared to
echoes of superficial structures. This provides more uniform
signals to be displayed on the scanner [1]. Current ultrasound
scanners use a TGC curve for time gain compensation. The
user adjusts the shape by manually using TGC sliders for
different depths, and the image quality is dependent on the
adjustments. An automatic adjustment of the TGC (ATGC)
without user intervention can address the shortcomings of the
manual TGC [2]. To date, several designs of ATGC have
been proposed in the literature [1], [2], [3], [4]. However, the
majority of these algorithms rely on the presence of suffi-
ciently large homogeneous soft tissue regions with uniform
distribution of attenuation [1], [3], [5], and the dependency of
the attenuation for several different tissues is ignored in these
algorithms. These methods fail to compensate the overall gain,

when fluid collections such as the urine bladder or gallbladder
are present, which change the uniform distribution of the
attenuation drastically. Anechoic segments, surrounded by soft
tissue, also present a large variation in attenuation.

This paper proposes a novel automated hierarchical TGC
(AHTGC) algorithm with focus on images with large anechoic
regions. The algorithm is based on a physical understanding
of the underlying tissue based on estimates of the scattering
strength, signal-to-noise ratio (SNR), and focusing gain. From
these, different constituents of the tissue can be determined.
Also, the decay of the received signal power spectral den-
sity with respect to depth is used to estimate normalized
attenuation profiles and to adapt the AHTGC to large fluid
collections. Portions of the proposed technique are presented
in two conference papers [6], [7]. This paper expands the
automated technique in detail, and presents in-vivo results
acquired using two different transducers.

The remainder of this article is organized as follows.
Section II introduces the proposed algorithm. Section III
introduces the measurement setup and image data used in the
study. Section IV presents the in-vivo results of the proposed
AHTGC algorithm and discusses the findings. The conclusion
is in Section V.

II. MATERIALS AND METHODS

The novelty of the proposed technique comes from in-
corporating several physical estimates of the scanned media
as constituents of the compensation strategy. The proposed
algorithm contains the five distinct steps shown in Fig. 1.

First, very dark regions (shadow regions) created due to
improper connection of transducer to the scanned media were
detected and excluded from the gain compensation procedure.
Second, the received signals were compensated for the shape
of the beam profile to ensure that the entire scanned area
receives the same amount of energy. Third, a 2-D SNR map
was computed for each frame. A feature (F1) was computed
to decide whether the frame contains large anechoic regions
(type 1) or not (type 2). In the fourth step, a TGC curve was
computed dynamically for each frame and used to compensate
for the gains in that frame. Finally, a 2-D normalized map
highlighting the anechoic regions was generated for the frame
and used to correct the adjusted gains inside the anechoic
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Fig. 1: Block diagram of the proposed algorithm.

regions after applying the TGC curve. The correction was only
performed on the scans with large fluid collections (type 1).

A. Insonified-region detection

The purpose of the first step was to identify the insonified
region on the ultrasound scans. Long dark shadows sometimes
appear in left or right edges of ultrasound images, when the
transducer is not perfectly attached to the surface during the
scan session. Detection of the shadow region and removing
it from the gain adjustment process are necessary. For this
purpose, the envelope of the RF data was computed. A binary
mask, only including the intensity values lying within lower
10% dynamic range of the envelope data was generated. Each
scan-line of the binary mask was treated independently. Scan-
lines longer than 90% of the total scan depth were kept on
the mask, and shorter scan-lines were excluded. Parts of the
binary mask, which were not attached to one of the right or left
edges of the screen, were also excluded from the mask. This
ensured that only elongated dark shadows touching one or both
edges of the screen remained in the mask. The generated mask
identified non-sonified parts of the scan, which were excluded
from the gain adjustments. Alg. 1 details the shadow detection
procedure.

B. Energy equalization

The effects of focusing gains related to the scan sequence
were considered in this step. A tissue mimicking speckle
phantom was scanned, and 50 frames were acquired. The mean
of all 50 frames was computed yielding a mean-frame. The
lateral median of the 50 scan lines bracketing the center-line
on the mean frame was computed yielding an energy curve as
a function of depth. The curve was then inverted, normalized
to a maximum of one, and used to scale the energy levels of
all scan-lines in every acquired image. This was performed to
ensure that the energy was equally distributed throughout the
scanned media.

Algorithm 1 Shadow detection
Input: Env envelope of RF-data,
Output: Bshdw binary mask outlining the shadow regions.

1: procedure SHDW
2: Let Bshdw be a binary mask with the same size as

Env.
3: Let min env be the minimum intensity of Env in dB

and N be the size of the Env.
4: for each i ∈ N do
5: if Env(i) ≤ min env + 0.1× |min env| then
6: Bshdw(i) = 1 # Creating the binary mask

by including very dark regions
7: end if
8: end for
9: Let M be the number of columns of the Env.

10: for each i ∈ M do
11: if sum(Bshdw(i).col) ≤

0.9× length(Bshdw(i).col) then
12: Bshdw(i).col = 0 # Excluding scan-lines

shorter then 90% of scan depth.
13: end if
14: end for
15: Bshdw = rmv obj(Bshdw) # function removing

objects that are not attached at least to one side of the
Bshdw.

16: end procedure

C. SNR map

Complex IQ data are used to compute the SNR for all
frames. The acquired frame from the transducer, is contam-
inated with noise and can be written as Yi = Si + Ei,
where matrix Si is the desired frame signal, Ei is the noise
contribution, and i is the frame number. To estimate the noise
contribution in the received signal Ei, a cine-loop of N frames
is acquired from a homogeneous tissue mimicking phantom
with an attenuation of 0.5 dB/cm×MHz. The mean of the
acquired signal is given by

M = Ŷ = E {Yi} = E {Si +Ei} =
1

N

N∑
i=1

(Si +Ei) (1)

in which matrix M represents the mean of acquired frames.
Also, given the assumption that E {Ei} = 0, the mean
acquired signal by averaging all frames will be equivalent to
the mean desired signal and can be written as M = Ŷ =
Ŝ. The noise contribution for each frame is estimated by
subtracting the mean of the all frames from a single frame
Ei = Yi − Ŷ. Therefore, the noise power for the ultrasound
device is expressed as follows:

Pnoise =

∣∣∣∣∣
1

N

N∑

i=1

E2
i

∣∣∣∣∣ (2)

Finally, the SNR map for an acquired in-vivo frame can be
determined by dividing the signal power of that frame by the
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system noise power computed in (2)

Psignal(i) = |Yi|2 (3)

SNRdB(i) = 10 log10

(
Psignal(i)

Pnoise

)
(4)

where Yi in (3) is the signal acquired from frame number i in
a sequence of in-vivo scans. The signal power changes from
frame to frame, while the noise power is unchanged.

The essential first step in the proposed time gain compensa-
tion algorithm is to determine whether the scans include large
fluid collections or not. It is anticipated that fluid collections
appear as very low SNR regions in the SNR maps. A feature
is specifically designed to characterize this property in SNR
maps. For this purpose, a cumulative histogram of the values
in the SNR map is computed. A curve is fitted to the counts,
and slopes of the fitted curve at 25th and 80th percentiles of
the curve are computed. The rates of changes in the slopes
at the 25th and 80th percentiles are used to characterize the
amount of fluid in the scans, and to distinguish between the
two different scans with large fluid collections (type 1) and
scans with small or no fluid collections (type 2).

D. Dynamic TGC

A TGC curve was dynamically computed for each frame
and used to compensate for the gains. For this purpose, the
envelope of the acquired scan was first computed. A cumu-
lative histogram of the intensity values was then generated.
The intensity values less than half of the maximum intensities
in the envelope were discarded, and a mask of strong signal
regions was generated. The mask was applied to the envelope,
and the lateral median of the intensities lying inside the
mask was computed. The computed curve presented drastic
fluctuations and could not be used directly to analyze the axial
intensity changes in the envelope. To address this, the curve
was smoothed using a Sovitsky-Golay filter [8], [9]. Then,
the general trend of the curve was extracted by applying the
singular-spectrum analysis (SSA). SSA does not require model
of time series, and extracts the trend of time series in the
presence of noise and oscillations (see chapter 1 of [10], and
[11]). The final curve depicted the trend of intensity change
within the envelope and harbored no sudden fluctuations. The
curve was finally normalized to its maximum, inverted and
applied as a TGC to the envelope to compensate for the gradual
changes in the intensities. Alg. 2 details the dynamic TGC
curve computation for a frame.

E. Tissue characterization map

The dynamic adjustment of intensities using the TGC curve
can over-gain inside the fluid regions. This section computes
normalized tissue characterization maps that can be used to
correct the possible miss-adjusted gains inside the fluid regions
after applying the TGC curve.

A log spectral difference method adapted from Kuc [12],
[13] was used to compute tissue characterization maps high-
lighting less attenuating regions. The beamformed RF data

Algorithm 2 Dynamic TGC calculation
Input: Env envelope of RF-data,
Output: TGC Time-gain compensation curve dynamically
computed for each frame.

1: procedure DYNATGC
2: Let Env be a discrete gray scale image and let ni be

the number of occurrences of gray level i.
3: p

Env(i) = p (Env = i) = ni

N , 0 < i < L #
probability of an occurrence of a pixel of level i in the
Env.

4: Let L be the total number of gray levels in the Env
(in our case 256), N being the total number of pixels in
the image, and p

Env(i) be the image’s histogram for pixel
value i, and normalized to [0, 1].

5: for each i ∈ L do
6: cdf

Env(i) =
∑i

j=0 pEnv(j) # define the cumula-
tive distribution function corresponding to p

Env
.

7: end for
8: Let thl be the gray value for which cdf

Env=0.5 and
thh be the gray value in which cdf

Env=1.
9: Let Ibright be a zero gray scale image with the same

size as image Env
10: for each ii ∈ N do # N is the total number of

pixels in the image Env.
11: if thl ≤ Env(ii) ≤ thh then
12: Ibright(ii) = Env(ii) # Ibright contains parts

of the Env lying between the two thresholds of thl and
thh.

13: end if
14: end for
15: TGC = lat med(Ibright) # computes the lateral

median of Ibright.
16: TGC = Sovitsky Golay(TGC) # smoothes

the TGC curve using Sovitsky-Golay filter. The window
lenght is 5% of the scan depth.

17: TGC = SSA(TGC) # performing single-spectrum-
snalysis and extracting the trend of TGC. The window
lenght is 5% of the scan depth.

18: TGC = TGC
max(TGC) # normalizes the TGC curve

to its maximum.
19: TGC = 1

TGC # inverts the curve to be multiplied
to each scan line.

20: end procedure

were used to compute the characterization maps. Each RF line
was partitioned into several overlapping segments, in which
each RF segment was gated axially by a Tukey function to
alleviate the spectral leakage at both boundaries. Each two
overlapping segments in the RF line were paired together,
where the upper segment was considered as the proximal and
the underlying segment was considered as the distal segment.
For each pair, the difference between the logarithm of power
spectra was computed, a line was fitted to the power spectral
difference, and the slope of the resulting line was considered
as an attenuation value for the proximal segment (Fig. 2).
Both proximal and distal segments were moved down on the
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Fig. 2: Illustration of how attenuation coefficients are com-
puted. The scanned plane is subdivided in to several overlap-
ping proximal and distal segments. Each RF segment is gated
axially by a Tukey function to alleviate the spectral leakage
at both boundaries. The slope of the line fitted to the curve
created from subtracting the log spectra of the two segments
identifies the attenuation coefficient.

RF line, and several attenuation values were calculated along
the RF line by pairing the proximal and distal segments.
Blocks were overlapped 50% to increase axial resolution of
the characterization maps. The resulting values for RF lines
were laterally averaged over scan lines to reduce the high
variability of the characterization values in the map. The
generated characterization maps were then normalized to a
maximum of one, and multiplied to the compensated images
by dynamic TGC in Section II-D to correct the gains inside
the fluid collections.

III. MEASUREMENTS

Fifteen healthy volunteers were scanned, and a total of
45 ultrasound sequences each containing 50 frames were
acquired. The age of the population was between 25 to 35, with
average of 29 years old. The study was approved by the Danish
National Committee on Biomedical Research Ethics and the
local Ethics Committee, and the volunteers were included
into the study after informed consent. The beamformed RF
data were acquired using a BK3000 ultrasound scanner (BK
Ultrasound, Denmark). Both Linear and convex transducers
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Fig. 3: The figure shows the shadow region detected for an
in-vivo scan of a human liver. The shadow region was detected
using Alg. 1, and overlaid with a brown bar on the B-mode
image. The shadow region was then excluded from the gain
adjustment.

were used in this study for data acquisition. Convex transducer
was a 192-element 3.5 MHz array (9040, BK Ultrasound),
and the linear transducer array was a 192-element 5.5 MHz
array (9022, BK Ultrasound). The dynamic received focus
technique with factory preset TGC was employed to generate
the sequences. In addition to the urine bladder and gallbladder
scans with large anechoic regions, other anatomical locations
such as the liver, kidney, and carotid artery were also included
in the dataset. This was done to yield a diverse dataset,
for evaluating the performance of the algorithm on images
comprising more or less varied attenuation distibutions.

IV. RESULTS AND DISCUSSION

The proposed AHTGC algorithm was applied to all 45 in-
vivo cine-loops, and evaluated in terms of image quality. This
section details the results obtained in different steps of the
proposed technique, and presents the results of the image
quality evaluations.

According to the Section II-A, long dark shadows were
usually created on the scan when the transducer was not
perfectly attached to the surface. It complicated the gain
adjustments, as dark shadows could be mistakenly considered
as anechoic regions. Fig. 3 shows a shadow detected and
overlaid with a brown bar on top of a B-mode image. The
colored area was removed from the gain adjustments.

Fig. 4 illustrates how energy equalization was performed
on the acquired sequences. Fig. 4a shows the energy levels of
the computed mean-frame, along the center-line as a function
of depth. The curve was then inverted and normalized to a
maximum of one in Fig. 4b. Finally, the normalized curve
was used to scale the energy levels in every acquired image.

Fig. 5 shows an example of a TGC curve dynamically
computed for a scan of human liver. The curve was applied
to scale all scan-lines of the image. Both Savitsky-Golay
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(a) Median of the energy levels of 50 scan lines on the mean-frame.
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(b) Inverted and normalized energy curve in (a) which was applied to scale all
scan lines for energy equalization.

Fig. 4: Illustration of the energy equalization procedure using
tissue mimicking phantom measurements. 50 frames of a
tissue mimicking phantom were acquired. 50 frames were then
averaged, and a mean-frame was generated. (a) This curve
shows the lateral median of the energy levels of 50 scan lines
bracketing the center-line of the mean-frame. (b) The curve
in (a) was inverted, scaled to a maximum of one and used to
scale all scan-lines.

smoothing and the SSA required a window length to operate
on the data. A window length equal to 5% of the total
penetration depth was chosen empirically. The window length
was thus automatically adapted to different scan depths. The
computed TGC curve did not harbor drastic fluctuations, which
would have appeared as horizontal artifacts when scaling the
image intensities.

The variation of noise and SNR with depth for a scan of
tissue mimicking phantom along its center-line are depicted in
Fig. 6. The black curve shows the noise power of the imaging
system as a function of depth. This curve was computed
using (1) and (2). The signal power was computed from the
received signal by the transducer using (3), and finally, the
2-D SNR maps are generated using (4). Two examples of the
2-D SNR maps computed from scans of a human bladder and
liver are shown in Figs. 7a and 7c, respectively.

Figs.7b and 7d illustrate how the feature F1 was calculated
for two scans of the human bladder and liver. These two
figures show the cumulative histogram of the SNR images over
100 bins. 100 bins were used to ensure that a high variation
of SNR values in each map was captured in the histogram,
and also, that the precision of the density estimation was not
jeopardized.
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(a) Scan of a human liver from which the TGC
curve is computed.
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Fig. 5: Illustration of a TGC curve dynamically computed for
an in-vivo scan of the human liver. The TGC does not harbor
any sudden fluctuations.
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Fig. 6: SNR and noise contribution along to the center-line
of scan of a tissue mimicking phantom with an attenuation
of 0.5 dB/cm×MHz.

The number of counts of low SNR values in the scans with
large fluid collections (type 1) was higher compared to that
of scans with small or no fluid collections. This yielded a
steeper slope of the cumulative histogram at low SNR values
(i.e. 25th percentile) for scans with large anechoic regions
compared to that of scans with no anechoic regions. The same
effect decreased the slope of the cumulative histogram at high
SNR values (i.e. 80th percentile) for scans with large anechoic
regions compared to that of scans with no anechoic regions.
By moving from type 2 scans to type 1 scans, the rate of
the decrease in the slope at the 80th percentile was much
larger than the increase in the slope at the 25th percentile.
Therefore, it was decided to use the slope at the 80th percentile
(F1) to distinguish between the type 1 and the type 2 scans.
The value of F1 was determined empirically using 4 scans
additional to the 45 scans used for evaluation of the AHTGC
algorithm. F1 < 2500 dB−1 characterized a scan with large
fluid collection, otherwise, the scan was considered to contain
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Fig. 7: Two examples of 2-D SNR maps computed for scans of a human bladder and liver with illustration of how their
corresponding slope features are calculated. (a) 2-D SNR map of the human bladder. (b) Cumulative histogram of all SNR
values in map (a) and slopes calculated at 25th and 80th percentiles of the fitted curve. (c) 2-D SNR map of the human liver.
(d) Cumulative histogram of the values in map (c) and slopes calculated at 25th and 80th percentiles of the fitted curve. (e)
Boxplots of 80th percentile slopes for two types of scans.
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Fig. 8: Normalized tissue characterization map computed for a
scan of human bladder. Values close to zero indicate structures
attenuating less, and regions with values close to one identify
the structures attenuating more.

small or no collections of fluid.
Boxplots in Fig. 7e show the distribution of values of

feature F1 for two types of scans. Scans including large fluid
collections were type 1, and scans with small or no collections
of fluid were type 2. The interquartile range of the boxplots
belonging to two groups had no overlap, indicating that feature
F1 was able to distinguish between the two scans.

Fig. 8 shows an example of a tissue characterization map
computed for a scan of the human bladder, overlaid on top
of the B-mode image. The length of the RF segments and
the number of averaging scan lines determined the axial and
lateral resolution of the estimated profiles, respectively. The
literature suggests the axial RF segment lengths to be between
1 to 2 cm, and that the number of the averaging lines should be
between 8 to 25 RF lines [14]. In this study, anechoic regions
adjacent to soft tissue presented a large attenuation variation.
To capture this variation, the length of axial segments was set
to 1 cm, and the number of averaging RF lines was set to 10
lines.

The proposed AHTGC algorithm was applied to the ac-
quired image sequences off-line. Matching pairs of in-vivo
sequences, one adjusted by the factory preset TGC with no
default gains and the other processed with AHTGC, were
evaluated side by side for image quality by four experienced
radiologists. The evaluation was double blinded, and each
pair was shown twice by randomizing the left and right
positioning. This resulted in a total of 360 (45imagepairs ×
4evaluators×2random displays) independent visual evaluations.
The radiologists were asked to score the image quality of each
pair on a visual analogue scale (VAS) ranging between -50 and
+50. This was performed by dragging a slider towards their
favored cine loop, where a positive scale favors the processed
sequence with the AHTGC algorithm. The ratings provided
by the four doctors were shown in Fig. 10. The Wilcoxon
signed-rank hypothesis test was applied to the provided ratings

Fig. 9: Evaluation of the image quality performed by random-
izing the position of matching pairs of processed and unpro-
cessed data. The image on the left is a AHTGC processed
scan of a human liver, and the image on the right is the scan
adjusted by the factory preset TGC with no default gains.

by the radiologists to examine whether radiologists preferred
the conventional TGC or the AHTGC processed sequences.
Visualization and assessment were handled using the program
IQap [15] shown in Fig. 9. The computed average VAS score
was positive ( p-value: 1.09×10−13) and estimated to be 12.16
favoring the compensated data with the AHTGC algorithm.
Fig. 10 also shows that even though the distribution of the
ratings provided by the doctors were different, they have
consistently preferred the proposed AHTGC algorithm. The
Wilcoxon signed-rank test was also applied to scores provided
by doctors only for scans with large anechoic regions (type
1). The p-value: 3 × 10−5 indicated that in a subset of cine-
loops with large fluid collections, the proposed AHTGC was
preferred. Fig. 11 shows two examples of the experimental
results of the AHTGC algorithm applied to scans of a human
gallbladder and carotid artery, obtained with a curved and
linear array, respectively.

V. CONCLUSION

This paper presented an automatic hierarchical TGC that
uses estimates such as focus gain and energy level, scatterer
strength, and decay of the power spectrum of the received
signal for gain adjustments. 2-D SNR maps were used for
distinguishing between scans with large anechoic regions (type
1) and scans with small or no anechoic regions (type 2). 2-
D tissue characterization profiles were used to correct the
gains after compensation by TGC curves. This alleviated
the problem with over-gaining the fluid regions in conven-
tional 1-D manual and automated TGC methods. The p-
value: 1.09× 10−13 computed for all 45 cine-loops indicated
that the proposed AHTGC was preferred by the radiologist
when compared to conventional TGC. The computed p-value:
3 × 10−5 for scans with large anechoic regions indicated
that in a subset of cine-loops with large fluid collections,
the proposed AHTGC was preferred. The proposed technique
is automatic, robust, and has a more flexible control over
the gains, especially, for the anechoic regions. The proposed
technique reduces the manual gain adjustments on the scanner
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Fig. 10: Distribution of visual analogue scale (VAS) scores
from assessment of overall image quality by four expert
radiologists using the tool shown in Fig. 9. Positive values
favor AHTGC algorithm.

keyboard, and can potentially facilitate the use of portable
scanners in point-of-care ultrasound.
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(a) Result of AHTGC applied to an axial view of a human gallbladder. The Image on the left is adjusted by the factory preset TGC with no default gains,
and the image on the right is processed with AHTGC.

(b) Result of AHTGC applied to a sagittal view of a human carotid and jugular vein. The Image on the left is adjusted by the factory preset TGC with no
default gains, and the image on the right is processed with AHTGC.

Fig. 11: In-vivo scans adjusted by the factory preset TGC with no default gains ”AHTGC OFF” are compared with the
identical scans processed with AHTGC algorithm ”AHTGC ON”.
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Abstract—This paper proposes Pareto optimization for se-
lecting the parameters essential for optimal synthetic aperture
imaging at high frame rates. Optimization of the image quality is
performed using simulations to determine number of emissions
N and maximum steering angle (αmax). The image quality is
quantified in terms of full-width at half maximum (FWHM)
and contrast resolution (CTR). Measurements are performed
using the experimental SARUS scanner connected to a λ/2-
pitch linear array transducer. A wire phantom and a tissue
mimicking phantom containing anechoic cysts are scanned using
the optimized parameters for the SA sequence. Grating lobes
are avoided by using a λ/2-pitch transducer, and therefore fewer
emissions were needed to obtain a high image quality. The results
show that SA imaging with 32 emissions and maximum sweep
angle of αmax = 22◦ yield an image quality comparable with
using 256 emissions and αmax = 30◦. The contrast-to-noise ratio
(CNR) increases from 1.475 to 1.82 from 8 to 32 emissions, and
plateaus after 32 emissions. A frame rate of 156 Hz can be
obtained for a pulse repetition of 5 kHz in-vivo.

Index Terms—Synthetic aperture, FWHM, contrast resolution,
grating lobes, multi-objective optimization, Pareto optimal, ultra-
sound imaging

I. INTRODUCTION

Synthetic aperture (SA) imaging can significantly improve
the frame rate and alleviate the focusing problems of conven-
tional techniques [1], [2], [3]. SA using spherical waves has
been studied for multi-element excitation using subapertures by
O’Donnell and Thomas [4], Karaman et al. [5], [6], Nikolov et
al. [7], and for sparse synthetic aperture systems by Lockwood
et al. [8]. Compared to conventional imaging, SA imaging
has shown to improve anatomical imaging [9], and flow
estimation [10], [11], [12]. In SA spherical waves are emitted in
transmit that covers a larger region of intereset. The received
signals for all or part of the elements in the aperture are
sampled for each transmission. This data is used to generate
low resolution images (LRI), which are only focused in the
receive (due to the un-focused transmission). The LRIs are
then combined to generate a high resolution image (HRI) to
synthesize the transmit focusing. The focus is both dynamic
in transmit and receive, at every image point. Therefore, SA
addresses the problems with low frame rate; when emissions
with large areas of sonification can be used, and a complete
LRI can be beamformed for each emission. By combining all
the LRIs the final HRI is generated [2] as shown in Fig. 1. SA
also decouples the pulse repetition time and number of lines.
This is possible as only a few set of emissions can create a
full image, thus, very fast imaging can be performed.

There is a trade-off between image quality and frame rate
in the imaging sequence. Therefore, optimization of the SA
and transducer parameters should be performed to obtain the
best trade-off between frame rate and image quality. Different
scenarios also require different imaging parameters. For the case
of B-mode SA imaging, the number of emissions can be kept
relatively high, whereas when flow estimates are needed, less
emissions and consequently high frame rates are of interest [4],
[5], [6], [7]. Recently, a technique for plane wave image quality
optimization was proposed, in which the number of emissions
and steering angles were optimized to attain the best images
at the highest possible frame rate [13]. It was shown that the
optimal setup for a simulated 4.1-MHz, λ/2-pitch transducer,
used 21 emissions and a maximum steering angle of 20◦ for
imaging depths from 0 to 60 mm.

This paper presents a SA image quality optimization tech-
nique based on the performance measures of full-width at half
maximum (FWHM) and contrast resolution (CTR). The multi-
objective optimization technique proposed in this paper, uses
the same analogy as for plane wave [13]. Optimizations are
performed using simulation.

Six point scatterers are simulated for a λ/2-pitch linear
transducer using the Field II program [14], [15], [16]. The CTR
and FWHM are computed for the six scatterers, and for all
possible combinations of number of emissions and maximum
steering angles. A Pareto optimization procedure [17], [18] is
then applied to identify the optimal setups in terms of having a
low CTR and a small FWHM. This multi-objective optimization
is used, where optimal decisions needed to be taken in the
presence of trade-offs between two or more metrics (i.e. CTR
and FWHM). The initial results of the proposed technique is
presented in a conference paper [19]. This paper extends the
optimization technique, and presents in-vivo results.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Principle of SA, investigates how to
avoid grating lobes, and presents the concept of steering in SA.
Section III proposes the multi-objective optimization used in
the paper. Section IV introduces the performance metrics used.
Section V explains simulations, as well as phantom and in-vivo
measurements carried out. The last three sections, present the
results, discuss the findings and conclude the paper.

II. SYNTHETIC APERTURE IMAGING

The essential first step in optimizing SA image quality is
to ensure that the SA emissions are as desired. This implies
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Fig. 1: Illustration of the SA imaging principle. At each transmit
event a single element or a sub-aperture is used to generate
a spherical wave. The ultrasound pulse propagates in all
directions in the medium simultaneously, and, thus, the recorded
echoes contain information about every scatterer within the
interrogated region. By steering and focusing these signals at
every image point, a complete image (LRI) is reconstructed
after one emission. This procedure is repeated for all aperture
element, and the resulting images are finally summed to produce
the displayed ultrasound image (HRI).

having emissions without grating lobes and edge waves by
using a λ/2 transducer. Also, the possibility of the steering
the SA emissions by considering the acceptance angle of the
transducer elements is considered SA sequence design.

A. Grating Lobes and λ/2-pitch requirement

Grating lobes exist in transmission and reception, for linear
array transducers, if the inter-element pitch is wider than a half
wavelength [20], [21]. The angle θg of receive grating lobes
are at [22], [21]:

θg = sin−1
(
sin(θs)−

mλ

p

)
, (m = ±1,±2,±3, ...) (1)

where p is the transducer pitch, λ is the receive-signal
wavelength, θs is the steering angle of the main receiving
lobe, and m is the grating lobes order. The location of the
main receiving lobe corresponds to m = 0. The first order
grating lobes (m = ±1), are at:

θg = sin−1
(
sin(θs)−

λ

p

)
. (2)

With a pitch of λ, as for most commercial linear transducers,
a steered wave of 15◦ generates a grating lobe at -48◦. This is
illustrated in Fig. 2, where the top and middle images show
the emitted fields for a fixed time using a 1.5λ-pitch array
and a λ-pitch array with Hamming transmit apodization. The
energy behind the wave front travels in a direction of -48◦

off axis. The grating lobe amplitude is around -25 dB relative

(a) 1.5λ-pitch array with Hamming apodization.

(b) λ-pitch array with Hamming apodization.

(c) λ/2-pitch array with Hamming apodization.

Fig. 2: Illustration of grating lobes, when a SA emission is
emitted at 15◦. For a 1.5λ-pitch array (top image), λ-pitch array
(middle), and λ/2-pitch array(bottom). A Hamming window
was applied as apodization for the three arrays.

to the main lobe, and the large spatial extend of the grating
lobe in the near field results in image artifacts. A pitch of λ/2
moves grating lobes outside the imaging plane even for steered
wave fronts as shown in Fig. 2 (bottom image). The spherical
edge waves emanate from the transducer edges. They can be
suppressed in the emitted field by the use of apodization in
transmit, and a Hamming apodization is efficient for this as
shown in all three arrays in Fig. 2.

B. SA steered emissions

In addition to subdividing the aperture in small portions
during transmit in SA, each emission can also be steered to
provide a better insonification of the interesting regions (see
Fig. 3). However, every transducer element has a directivity
pattern that determines the element’s acceptance angle. This
angle determines how much an emission can be steered, and
to the minimum receive F-number used for beamforming.
The first essential step in designing steered emissions prior
to image quality optimization, is to investigate the angular
response of the transducer elements used in this study. Jensen
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Fig. 3: Illustration of the steered SA emissions principle. At
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all N emissions.

et al. [13] used the same transducer as this study and employed
a model proposed by Oddershede and Jensen [23] based on
SNR considerations to determine the opening angle of a virtual
source. It was done to determine the element acceptance angle.
The study for the showed that the acceptance angle for the
elements was ±38◦ giving an F-number of 0.64. Therefore,
a minimum and maximum thresholds of ±30◦ were used in
this paper as the maximum possible steering angle of the SA
emissions. Thus, in the imaging setups the maximum steering
angle ranges between −30◦:0.25◦:+30◦.

III. METHOD OF OPTIMIZATION

This section describes the multi-objective optimization
(MOP) technique used for optimizing the SA image quality
based on the theory of Pareto optimality [18]. The optimization
can be defined as finding a vector of decision variables that
optimizes a vector function whose components are the objective
functions. These functions represent a mathematical description
of performance criteria, which are usually in conflict with
each other. Thus, optimization means finding such a solution
(decision variables) that yield acceptable values for all objective
functions [17].

A. Decision variable space

The decision variables are the quantities for which values
are to be selected in the optimization. They can be denoted as
xi, where i = 1, 2, . . . , n. The vector x of n decision variables
is x = [x1, x2, . . . , xn] (see decision space in Fig 4). In a SA
imaging sequence, the decision variables can be parameters
affecting the image quality such as number of emissions and
steering angles.

Decision Variable Space Objective Function Space
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Fig. 4: Illustration of how the Pareto optimization is performed.
The axes of decision space are decision variables (i.e. imaging
parameters of SA), whereas the axes of objective space are
the objective functions (i.e. CTR and FWHM). The set of all
Pareto optimal solutions or the Pareto front is shown with the
red curve. The knee point of this curve represents the best
trade-off between the objective functions, and the best solution
of the optimization.

B. Objective function space

Objective functions represent a set MOP’s goals to
be achieved. Objective function space denotes the space,
in which vectors resulting from evaluating MOP’s solu-
tions are plotted [17], [18]. The objective functions are
given by f1(x), f2(x), . . . , fk(x), where k is the number
of objective functions in the MOP. The vector f(x) =
[f1(x), f2(x), . . . , fk(x)] contains all the k objective functions
(see objective space in Fig 4). For designing a SA imaging
sequence, the objective functions are the performance metrics
used for assessing the imaging quality such as CTR and
FWHM.

C. Pareto optimality

Every point in the decision space indicate a solution and gives
one point in the objective space, which indicate the quality of
this solution in terms of the objective functions. Optimization
is used for finding these solutions, and optimal solutions are
found that satisfy the Pareto optimality criterion [17], [18].
The Pareto optimality considers a solution to be optimum, only
if there are no other solutions better than that with respect
to all the objective functions. A solution x′ = [x1, x2] is a
Pareto optimal solution, if there exists no other solutions like
x for which f(x) dominates f(x′). A set of objective functions
f(x) = {f1, f2} is dominating another set f(x′) (mathematically
given by f(x) � f(x′)), when f(x) is no worse than f(x′) in
all objective functions, and f(x) is strictly better than f(x′) in
at least one objective function. The set of all Pareto optimal
solutions (P∗) in decision space is given by

P∗ := {x′| 6 ∃ x : f(x) � f(x′)} , (3)

where 6 ∃ x denotes (there exists no other solutions like x. The
set of objective functions corresponding to the Pareto optimal
solutions (P∗) is called the Pareto front (PF∗), which is given
by

PF∗ := {u = f(x)|x ∈ P∗} . (4)
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The Pareto front is shown with a red curve in Fig. 4. The
shape of the Pareto front manifests the nature of trade-off
between different objective functions. The Pareto front is
particularly interesting, because it contains the solutions that
their objective vector components cannot be all simultaneously
improved [17]. Thus, in this study only the Pareto optimal
solutions are considered. Special attention must be paid to the
knee-point solution on the Pareto front. It represents the best
(among other points in the Pareto front) trade-off between the
objective functions (see knee-point in Fig. 4).

IV. IMAGING PERFORMANCE MEASURES

The metrics used for evaluating the ultrasound imaging
quality are contrast resolution (CTR) [24], [25], and detail
resolution or full-width at half maximum (FWHM) [21]. In
this study the Pareto optimization is applied to a two-objective
problem, in which two metrics of CTR and FWHM are used.
Optimization is performed based on the rate of changes in
these features, while considering all the possible setups. The
contrast-to-noise ratio (CNR) [26] is used as an alternative
and independent measure for quantifying anechoic regions in
measurements.

A. Contrast resolution (CTR)

The CTR measures the contrast resolution and determines
the ability of the imaging system to differentiate between an
anechoic region bracketed within a uniform scattering medium.
CTR is the ratio between the energy outside of a circular area
surrounding the point spread function (PSF) with radius of
r to the total energy of the PSF [24]. It gives a measure of
clutter energy outside the main lobe of the PSF. The CTR is
related to the radius r and is given as

CTR(r) =

√
Eout(r)

Etotal
, (5)

where Eout(r) is the PSF energy outside a circular region with
radius r centered at the peak of the PSF and Etotal is the
total energy. CTR can be calculated for either a fixed radius
to get a contrast measure, or by fixing the CTR to determine
resolution as the required radius for a fixed relative energy. In
this study the radius r is kept fixed, and CTR is determined
as the relative energy for a fixed radius of 2.5λ (r2.5λ).

B. Detail resolution

The detail resolution is the -6 dB width of the main lobe
of the point-spread-function (PSF), i.e., the full width at half
maximum (FWHM) in the lateral direction [21].

C. Contrast-to-Noise Ratio (CNR)

The Contrast-to-Noise Ratio (CNR) is also used to quantify
cyst contrast as [26]:

CNR =
µs − µc√
δ2s + δ2c

, (6)

where µc and µs are the mean intensities of envelope-detected
signals from a region inside a cyst and a region of image

speckle, and δ2c and δ2s are the corresponding variances. The
cyst and speckle regions are of the same size and at the same
depth.

V. METHODS OF SIMULATIONS AND MEASUREMENTS

The following section explains how the optimization tech-
nique was performed using simulations. The section then ex-
plains how the technique was implemented on the experimental
scanner SARUS, and details the setups for phantom and in-vivo
measurements.

A. Simulations

To avoid grating lobes, a λ/2-pitch array was modeled and
six different point scatterers were simulated independently
along the center-line of the transducer located at depths of 10,
20, 30, 40, 50, and 60 mm. Simulations were performed using
the Field II program [14], [15], [16] (see Table I for details of
the parameters used). A Hamming apodization on the active
transmit aperture was used to reduce the edge waves.

The decision variables were number of emissions N and the
maximum steering angle αmax. The evaluation of the image
quality was performed with respect to the CTR and FWHM,
which were thus, the objectives functions. An automated
technique is developed in MATLAB to generate a Pareto plot
and it’s Pareto front, for each of the six point targets. Several
combinations of N and αmax (x in the decision space) are
used for generating a HRI of each of point scatterers, and
calculating the corresponding objective functions of FWHM
and CTR.

Based on Section II-B, αmax were set to vary from -
30◦ to +30◦ with 0.25◦ separation between emissions. This
was performed to ensure that emissions were not outside
the transducer element’s acceptance angle. The number of
emissions varied between 1 to 256. Received signals from all
elements were stored for each emission and beamformation
were performed using the BFT3 toolbox [27]. The beamformed
LRIs were subsequently combined to HRIs. Several HRIs were
generated by considering several combinations of maximum
beam steered angle (αmax) and the number of emissions
(N ). The image quality of the HRIs were then evaluated by
computing both CTR and the lateral FWHM for simulated
point scatterers.

For each simulated scatterer, two plots were generated. First
one, quantifying the CTR as a function of αmax and N , and
the second, quantifying the FWHM as a function of αmax and
N . Each of these plots represented a decision space for the
simulated point scatterer (see the decision space in Fig. 4).

Two constraints based on the rate of improvement in CTR
and FWHM, when increasing the αmax and N . First, at least
an improvement of 1% was required in FWHM, when steering
2◦ more and using 2 more emissions. Second, at least an
improvement of 2.5% was required in CTR, when steering 2◦

more and using 2 more emissions. The two constrains must be
both satisfied, and those combinations, for which the constraints
are no longer satisfied, were excluded from the decision spaces.
The remaining of the decision spaces were used to create a
objective function space (see objective space in Fig. 4). It must
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TABLE I: Parameters used for simulation and measurements.

Parameters λ/2-pitch transducer

Number of elements 192

Trans. center frequency f0 4.1 MHz

Wavelength λ 0.376 mm

Element pitch 0.2 mm (0.56λ)

Element height 6 mm

Elevation focus 38 mm

Cycles in emitted pulse 1

Transmit apodization Hamming

Receive apodization Hamming

Transmit F-number 0.8

Receive F-number 1

Emission steering angles -30◦:0.25◦:+30◦

Trans. sub aperture size (elements) 48

be pointed out that several other constraints could have been
used, such as weighting either CTR or FWHM and cut-off at
a specified CTR or FWHM, yielding specified HRI quality.
The knee-point solution of the Pareto front represents the best
trade-off between CTR and FWHM for each point scatterer.
The center of gravity of all the knee-point solutions, belonging
to all six point scatterers, is used as an optimal solution for the
SA imaging system. This is done to include depth-dependency
and to achieve a setup that yields good quality images for
depths less than 60 mm.

B. Measurements

Phantom measurements were made using the SARUS
experimental ultrasound scanner [28] driving a 192-element
4.1 MHz λ/2-pitch linear transducer (BK Ultrasound). A SA
B-mode imaging sequence using the virtual sources behind the
transducer was used to perform the imaging. Parameters used
in the imaging sequence are depicted in the Table I. First, a
geometry wire phantom including two wires was scanned. A
multi-purpose, multi-tissue phantom containing three anechoic
cysts located at 17 mm, 48 mm, and 75 mm (Model 040GSE,
CIRS inc., Virginia, USA) with acoustic attenuation of 0.5
dB/(cm×MHz) was also scanned. The in-vivo measurements
were also performed using the same equipment as for the
phantom measurements. A SA imaging sequence, similar to
phantom measurements, with the optimal values of αmax and
N (computed in section VI-A) is used. Longitudinal scans of
the right common carotid artery, and common carotid with
bulbous were acquired from a 29 year-old male volunteer.

VI. RESULTS

This section presents the results of the simulations performed
for the optimization procedure, phantom measurements, and

(a) CTR decision space, computed as a function of αmax and
N for scatterer at 20 mm.

(b) FWHM decision space as a function of αmax and N for
scatterer at 20 mm.

(c) Pareto plot (Objective space) created by merging the CTR
and FWHM decision spaces for scatterer at 20 mm.

Fig. 5: Optimization procedure demonstrated for the scatterer
at 20 mm. (a) shows the CTR decision space. (b) shows the
FWHM decision space. White lines on (a) and (b) are the
border lines. The enumerated points are the Pareto front optimal
solutions. The green point (number 6) is the knee-point solution
shown in (c).
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knee-points and considered to be the optimal setup for SA
imaging.

in-vivo measurements performed with the optimized sequence.

A. Simulation results

The automated optimization technique is applied to six
scatterers. The simulation results shown in this paper, belong to
one of the six scatterers (located at 20 mm), which exemplifies
the optimization performed. The CTR and Lateral FWHM
of HRIs for the scatterer 20 mm, for all combinations of
αmax and N , is shown in the Figs. 5a and 5b. The white
lines on the figures show the areas of the plots satisfying the
two constraints put on rates of changes of CTR and FWHM
(mentioned in section V). The axial FWHM is not considered,
as the simulations showed that it was very close to λ, for all the
combinations. The areas satisfying the two constraints created
a Pareto plot shown in Fig. 5c. It represented the objective
function space of CTR and FWHM for the point scatterer
located at 20 mm.

The Pareto plots, alone, do not yield the optimal setup
for the SA imaging sequence. That is why, Pareto fronts are
more interesting, because they decrease the number of optimal
solutions to be considered for imaging. The Pareto fronts for
all six scatterers are computed. Fig. 5c shows the Pareto plot
belonging to the scatterer at 20 mm. The enumerated points on
the Pareto front, show the optimal solutions (set of αmax and
N ) that yield the optimal solutions for the 20 mm scatterer. The
eight frontier points in Fig. 5c are shown with blue points on
the CTR and FWHM decision spaces in Figs. 5a and 5b. The
knee-point of the pareto-front is also shown with green circle
on the Pareto front in Fig. 5c. The αmax and N corresponding
to the knee-points computed for six scatterers are shown in
Fig. 6. The yellow diamond (αmax = 22◦ and N = 32 ) is
the center of the gravity of all points and the optimal setup
for SA imaging. This optimal setup requires 32 emissions and

(a) HRI from 4 emissions. (b) HRI from 32 emissions.

(c) HRI from 256 emissions.

Fig. 7: Simulation results of a point scatterer located at 20
mm. HRIs reconstructed from low, optimal and high number
of emissions.

TABLE II: Simulated scatterer at 20 mm quality metrics.

Scatterers 20 mm

N = 4 FWHM = 1.40λ CTR = -25.41 dB

N = 32 (optimal) FWHM = 1.49λ CTR = -30.25 dB

N = 256 FWHM = 1.50λ CTR = -30.31 dB

22◦ maximum sweeping angle. Fig. 7 shows the point scatterer
simulated at 20 mm. HRIs of the scatterer were reconstructed
using three different number of emissions (N = 4, 32, 256).
The FWHM and CTRs are depicted in the Table II.

B. Phantom measurement results

1) Wire phantom results: A phantom containing two wires
located at 32.5 mm, and 57.5 mm were imaged using a SA
sequence using varying number of emissions. Fig. 8 shows the
HRIs belonging to two wires located at 32.5 mm (left column),
and 57.5 mm (right column). Each HRI was reconstructed
with 4, 32 and 256 emissions, where the 32 emissions is the
optimized sequence. The FWHM and CTR corresponding to
each of the reconstructions is depicted in the Table III.

The results show that the FWHM increases 0.41λ from 4
emissions to 32 emissions for the wire at 32.5 mm, but it
only changes 0.07λ from 32 emissions to 256 emissions. For
the same wire, the CTR improves 3.63 dB from 4 emissions
to 32 emissions for the wire at 32.5 mm, while it does not
change from 32 emissions to 256 emissions. For the wire at
57.5 mm, the FWHM increases 0.04λ from 4 emissions to 32
emissions for the wire at 32.5 mm, but it only changes 0.02λ
from 32 emissions to 256 emissions. The CTR changes are not
noticeable for this wire. The point wires reconstructed with 32
emissions represent similar CTR and FWHM compared with
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(a) HRI from 4 emissions.

(b) HRI from 32 emissions (optimal).

(c) HRI from 256 emissions.

Fig. 8: Phantom measurement results of wires located at 32.5
mm and 57.5 mm. HRIs reconstructed from low, optimal and
high number of emissions.

TABLE III: Wire phantom measurements quality metrics.

Scatterers 32.5 mm 57.5 mm

N = 4 FWHM = 1.09λ CTR = -19.62 dB FWHM = 1.38λ CTR = -10.19 dB

N = 32 (optimal) FWHM = 1.5λ CTR = -23.25 dB FWHM = 1.44λ CTR = -10.39 dB

N = 256 FWHM = 1.43λ CTR = -23.2 dB FWHM = 1.46λ CTR = -10.3 dB

wires reconstructed with 256 emissions. This suggests that for
the same image quality, number of emissions can be lowered
from 256 to 32.

2) Cyst phantom results: Fig. 10 shows the cyst phantom
measured and HRIs reconstructed with N = 4, the optimized
sequence (αmax = 22◦ and N = 32), and also N = 256. To
evaluate the quality of the HRIs, the CNR is used to quantify
cysts contrast. The mean CNRs of the two cysts located at 17
mm and 48 mm, were computed for the HRIs reconstructed
with increasing number of emissions. This was done to evaluate
the performance of the sequence for small parts imaging, and
scanning superficial tissues located above 60 mm in depth.
Fig. 10 shows that the CNR increases from 1.475 to 1.82 by
reaching to 32 emissions, and plateaus after 32 emissions. This
coincides with the simulation and wire phantom measurement
results, and indicates that for achieving a specific image quality,
the number of emissions does not have to be increased to more
than the optimal value computed for the SA.

C. In-vivo results

A healthy 29 male was scanned using the optimized SA
sequence with (αmax = 22◦ and N = 32 ), in two longitudinal
views of the common carotid, and carotid with bulbous. The
results are shown in Fig. 11.

VII. DISCUSSION

As discussed in the Section II-A, having a good control over
the emissions wave front is crucial, and a λ/2-pitch transducer
ensures avoiding the grating lobes behind the wave front.
The optimization performed in this study was a 2-objective
optimization, in which two SA imaging parameters of αmax and
N was optimized only. The technique can be more advanced
and the number of parameters to be optimized can be increased.
For SA, the optimization can be 4-objective, by optimizing
the αmax, N , F-number, and aperture size (the transmit sub-
aperture). If the number of objective functions does not change
(only CTR and FWHM are considered), then the technique
yields two 4-D decision spaces (one for the CTR, and one
for the FWHM). The final objective space would still be 2-D,
because of considering CTR and FWHM only.

A higher dimension decision space requires a higher di-
mension objective space. For a 4-objective optimization (4-
D decision spaces), a 3-D objective space can be a good
alternative, since the solutions in 4-D decision spaces can be
distributed in 3-D objective space, and do not squeeze in a 2-D
space that might not be quantitatively representative. The ”curse
of dimensionality” has to be considered, when increasing the
number of parameters to be optimized (see chapter 2 of [29]).
This refers to how certain optimization techniques or machine
learning algorithms may perform poorly in high-dimensional
data. Increasing the number of parameters will not necessarily
yield a correct optimization.

Another challenge in high quality SA, is the inter-emission
tissue motions. They are more obvious, when number of
emissions used for recunstructing HRI is very high. The issue
is addressed by [30], [31], and can be compensated for. The
clutter behind the wire in Fig. 8 can be due to a long impulse
response of the transducer. It can also be related to artifacts
arising from quantization of the transmit delay profile at 70
MHz [32].

SA image quality was investigated using a λ/2-pitch trans-
ducer, and slightly improved contrast was obtained for the
same number of emissions when using λ/2-pitch rather than
λ-pitch [33]. Other techniques exist for lowering the grating
lobes in SA and plane wave, which are mainly based on sparse-
aperture methods [8], special apodizations of the array [34],
or modulating receive beams [35]. The common problem with
these techniques is mainly the reduced transmitted energy.
The other problem with these methods is that transmit grating
lobes are not always avoided. However, the grating lobes can
be completely avoided by using a λ/2-pitch transducer, as
suggested in this paper.

VIII. CONCLUSION

This paper presented a hierarchical and automated opti-
mization technique for characterizing the optimal setup in
SA imaging. The optimization technique is performed using
simulation. The results of the simulation showed that with only
αmax = ±22◦ and N = 32, the image quality is comparable
with a high number of emissions. Phantom measurement results
also indicated that CNR increases from 1.475 to 1.82 by
reaching to 32 emissions, and plateaus after 32 emissions.
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(a) HRI from 8 emissions. (b) HRI from 32 emissions. (c) HRI from 256 emissions.

Fig. 9: Measured cyst phantom and reconstructed from low, optimal, and high number of emissions. All three images are shown
using a 60 dB dynamic range.
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Fig. 10: CNR computed for measured cyst phantom images
and reconstructed with increasing number of emissions.

Wire phantom measurement results indicated that for achieving
a specific image quality, the number of emissions does not have
to be increased to more than the optimal value. Improvements in
frame rate is also achievable by using less number of emissions.
This can be highlighted when high frame rate is needed for
velocity estimation, and when the standard deviation of the
velocity estimates are related to the frame rate. The technique
was applied for a λ/2-pitch transducer, and image quality was
compared for simulations and phantom measurements. The
grating lobes were avoided by using a λ/2-pitch transducer,
and therefore fewer emissions were needed to obtain the same
image quality. The in-vivo results of the optimized sequence for

carotid of a healthy subject are presented, in which with a pulse
repetition frequency of 5 kHz more than 156 fps are obtained.
The generic technique used in this study can be applied to any
ultrasound imaging modality, using any transducer geometry.
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Abstract

Time gain compensation (TGC) is essential to ensure the optimal image quality of
the clinical ultrasound scans. When large fluid collections are present within the
scan plane, the attenuation distribution is changed drastically and TGC compensation
becomes challenging. This paper presents an automated hierarchical TGC (AHTGC)
algorithm that accurately adapts to the large attenuation variation between different
types of tissues and structures. The algorithm relies on estimates of tissue attenuation,
scattering strength, and noise level to gain a more quantitative understanding of the
underlying tissue and the ultrasound signal strength. The proposed algorithm was
applied to a set of 44 in-vivo abdominal movie sequences each containing 15 frames.
Matching pairs of in-vivo sequences, unprocessed and processed with the proposed
AHTGC were visualized side by side and evaluated by two radiologists in terms of
image quality. Wilcoxon signed-rank test was used to evaluate whether radiologists
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preferred the processed sequences or the unprocessed data. The results indicate
that the average visual analogue scale (VAS) is positive ( p-value: 2.34 × 10−13)
and estimated to be 1.01 (95% CI: 0.85; 1.16) favoring the processed data with the
proposed AHTGC algorithm.

C.1 Introduction

Radiofrequency (RF) echoes are strongly attenuated by the tissues scanned (Lee, Kim,
and Ra 2006). These RF signals span a wide dynamic range, when they are received by
the transducer, and are not suitable to be visualized before the gains are adjusted. Time
gain compensation (TGC) is usually utilized to compensate for the acoustic attenuation.
TGC offsets the attenuation of ultrasound echo signals along the depth, so that echoes
belonging to deep structures are more amplified compared to superficial echoes. This
provides more uniform image to be displayed on the scanner (Lee, Kim, and Ra 2006).

Current ultrasound scanners use a TGC curve for time gain compensation. The user
adjusts the shape by manually using TGC sliders for different depths. However, this is
cumbersome and the image quality is highly dependent on the adjustments. An automatic
adjustment of the TGC (ATGC) without user intervention can address the shortcomings
of the manual TGC (Pye, Wild, and McDicken 1992). To date, several designs of ATGC
are proposed in the literature (Pye, Wild, and McDicken 1992; Lee, Kim, and Ra 2006;
Tang, Luo, and Liu 2009). However, the majority of these algorithms rely on the presence
of sufficiently large homogeneous soft tissues with an uniform distribution of attenuation
(Klesenski 1996; Lee, Kim, and Ra 2006; Tang, Luo, and Liu 2009). In other words, the
dependency of the attenuation for several different tissues is ignored in these algorithms.
These methods fail to compensate the overall gain when large fluid collections such as the
urine bladder or gallbladder exist that change the uniform distribution of the attenuation
drastically. Large anechoic segments, surrounded by soft tissue, present a large variation
in attenuation.

This paper extends the adaptive ATGC algorithm developed by Hemmsen et al. (Hemm-
sen, Hansen, et al. 2012), and propose an automated hierarchical TGC (AHTGC) algorithm
with focus on images with large anechoic regions. The algorithm is based on a physical
understanding of the underlying tissue based on the scattering strength, signal-to-noise
ratio, focusing gain, and tissue attenuation. From these, different constituents of the
tissue can be determined. For this purpose, the decay of the power spectrum frequency
components of the received signal with respect to depth is considered to estimate the
attenuation and to adapt the ATGC to the large attenuation variations. The remainder
of this paper is organized as follows. Section G.2 introduces the proposed algorithm.
Section 3 presents the in-vivo results of the proposed AHTGC algorithm and discusses
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Step I: A 2-D SNR map for each frame is computed and the slope at 80th percentile of its cumulative histogram
(i.e. feature F1) is determined.
Step II: A TGC curve is automatically determined for each frame and used to compensate the gains in that frame.
the input to this step is the envelope of RF-data. The output of this step is called ATGC frame.
Step III: A normalized 2-D attenuation map is generated for scans with large fluid collections, and used to
correct the gains inside the fluid regions. The input to this step is the RF-data, and the output of this step is
called AHTGC frame.

Figure C.1: Block diagram of the AHTGC algorithm.

the findings. Finally section 4 is the conclusion and the perspectives.

C.2 Materials and methods

It is common practice to assume that the attenuation has a linear relation with the frequency
of the acoustic wave (Kuc 1984). In this paper, the spectral difference method adapted
from Kuc (Kuc 1984) is used to generate 2-D attenuation maps. These maps are then used
to correct the mis-adjusted gains by the ATGC algorithm inside the anechoic regions.

The proposed algorithm contains three distinct steps. First, a 2-D signal-to-noise ratio
(SNR) map for each frame is computed. Based on the SNR map it was decided if the
frame contained large anechoic regions or not. Then, a TGC curve is computed using
the algorithm of Hemmsen et al. (Hemmsen, Hansen, et al. 2012). This TGC curve is
applied to the original ultrasound frame. A 2-D attenuation map is then generated from
the original image and is used to correct the adjusted gains inside the anechoic regions
after applying the TGC curve. This correction is done only on the scans including large
fluid regions. The block diagram of the proposed AHTGC is shown in the Fig. F.1. Three
main steps of the algorithm are shown on the diagram and discussed in detail in this
section.



152 Paper C. Automated Hierarchical Time Gain Compensation (AHTGC)

0 50 100 150

−40

−30

−20

−10

0

10

20

30

Depth [mm]

A
m

p
lit

u
d

e
 [

d
B

]

 

 

SNR [dB]

Noise power [dB]

Figure C.2: SNR and noise contribution belonging to the center line of scan of a tissue
mimicking phantom with an attenuation of 0.5 dB/cm×MHz.

C.2.1 Step I. SNR map computation
Complex IQ data is used to compute the signal to noise ratio (SNR) for all the frames.
The acquired frame from the transducer, is contaminated with noise and can be written as

Yi = Si +Ei (C.1)

where matrix Si is the desired frame signal, Ei is the noise contribution, and i is the
frame number. The measurement is performed on a tissue mimicking phantom with an
attenuation of 0.5 dB/cm×MHz and N frames acquired, the mean acquired signal is
given by

M = Ŷ = E {Yi} = E {Si +Ei} =
1

N

N∑
i=1

(Si +Ei) (C.2)

in which matrix M represents the mean of acquired frames. Also given the assumption
that E {Ei} = 0, the mean acquired signal by averaging all the frames will be equivalent
to the mean desired signal and can be written as

M = Ŷ = Ŝ (C.3)

The noise contribution for each frame is estimated by subtracting the mean of the all
frames from a single frame

Ei = Yi − Ŷ (C.4)

Therefore, The noise power for the ultrasound device is expressed as follows:



C.2. Materials and methods 153

Pnoise =

∣∣∣∣∣∣
1

N

N∑

i=1

E2
i

∣∣∣∣∣∣
(C.5)

Finally, the SNR map for an acquired in-vivo frame is determined by dividing the signal
power of that frame by the system noise power computed from (C.5)

Psignal(i) = |Yi|2 (C.6)

SNRdB(i) = 10 log10

(
Psignal(i)

Pnoise

)
(C.7)

where Yi in (C.6) is the signal acquired from frame number i in a sequence of in-vivo
scans. The power of signal changes from frame to frame, while the noise power is
unchanged. The variation of noise and SNR with depth for a scan of tissue mimicking
phantom along its center line is depicted in Fig. C.2. Also two examples of the 2-D SNR
maps computed from scans of the human bladder and liver are shown in Figs. 2.5(a)
and 2.5(c) respectively. The essential first step in the proposed time gain compensation
algorithm was to determine whether the scans included large fluid collections or not.
As it is anticipated, fluid collections appear as very low SNR regions in the SNR maps.
A feature is specifically designed to characterise this property in SNR maps. First,
cumulative histogram of the values inside the SNR map is computed. Then, a curve is
fitted to the counts and the slope of the fitted curve at 25th and 80th percentiles of the
curve was used to characterise the amount of fluid in the scans.
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Figure C.4: Illustration of how the attenuation value for a pair of proximal and distal
segments is computed.

The idea behind using these two features was to benefit from changes in distribution
of SNR values in SNR maps to distinguish between different scans. Number of counts of
low SNR values in scans with large fluid collections is higher compared to that of scans
with small or no fluid collections. This yielded a bigger slope of cumulative histogram at
low SNR values (i.e. 25th percentile) for scans with large anechoic regions compare to
that of scans with no anechoic regions. The same effect decreased the slope of cumulative
histogram at high SNR values (i.e. 80th percentile) for scans with large anechoic regions
compared to that of scans with no anechoic regions. The rate of decrease in the slope at
80th percentile is much bigger than the increase in the slope at 25 percentile. Therefore,
it was decided to use the slope at 80th percentile (F1) to distinguish between the two
different scans with large fluid collections and small or no fluid collections. The value
of F1 was determined empirically using 4 scans additional to the 44 scans used for
evaluation of the AHTGC algorithm. F1 < 2500 dB−1 characterised a scan with large
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fluid collection, otherwise, the scan was considered to contain small or no collections of
fluid.

Figures 2.5(b) and 2.5(d) illustrate how this feature is calculated for two scans of the
human bladder and liver. These two figures show the cumulative histogram of the SNR
images over 100 bins. 100 bins are used to ensure that high variation of SNR values in
each map is captured in the histogram and also precision of the density estimation is not
jeopardized. In the next step of the algorithm, each scan is dynamically compensated for
the attenuated gain using a TGC curve.

C.2.2 Step II. TGC compensation by ATGC
Gains were corrected for all depths for each frame to obtain homogeneous images. The
automatic TGC correction in this section simulated the TGC adjustments performed by a
physician, eliminating the possible mistakes due to user intervention (Hemmsen, Hansen,
et al. 2012). The algorithm used envelope of RF-data as input. The correction was
performed by calculating a mask to filter out strong and weak specular regions inside the
envelope data. The mask was then applied to each envelope detected data and the median
value of all scan-lines for all depths in the recorded frame was found. The resulting curve
was normalized to a maximum of one, inverted and used to normalize all scan-lines in
that frame. The compensation is finally performed by dividing the values in every column
by the TGC curve. Next step of the proposed hierarchical algorithm is to compute 2-D
attenuation maps for those scans including large fluid collections. This is done by using a
spectral difference method described in the next section.

C.2.3 Step III. Attenuation map estimation and gain correction
An attenuation map is calculated for those scans characterised to have large fluid regions
in step I. This map is used to correct the over-gained regions inside the fluid collections
after they compensated with a the TGC curve in step II.

Beamformed RF data was used to compute the attenuation maps. Each RF line was
partitioned into several overlapping segments, in which each RF segment was gated
axially by a Tukey window to alleviate the spectral leakage at both boundaries. Each two
overlapping segments in the RF line were paired together, where the upper segment was
considered as proximal and the underlying segment was considered as distal segment.
For each pair the difference between the logarithm of power spectra computed, a line
fitted to the power spectral difference, and the slope of the resulting line considered as
an attenuation value for the proximal segment (see Fig. C.4). Both proximal and distal
segments were moved down on the RF line and several attenuation values were calculated
along the RF line by pairing the proximal and distal segments. Blocks were overlapped by
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Figure C.5: Examples of normalized attenuation maps overlaying on B-mode images

50% to increase axial resolution of the attenuation maps. Figure C.3 shows how the RF
data is subdivided into pairs of proximal and distal windows and overlapped to increase
the axial and lateral resolutions. The resulted attenuation values for RF lines are laterally
averaged over scan lines to reduce the high variability of the attenuation values in the
map.

Figure C.5 shows examples of computed and normalized attenuation maps overlaying
on B-mode images. The length of the RF segments and the number of averaging scan lines
determine the axial and lateral resolution of the estimated attenuation maps respectively.
Literature suggests the axial RF segment lengths to be between 1 to 2 cm (Klimonda,
Litniewski, and Nowicki 2009). It also suggests that the number of the averaging lines
should be between 8 to 25 RF lines. In this study, anechoic regions adjacent to soft
tissues presented large attenuation variation. To capture this variation, the length of axial
segments was set to 1 cm, and the number of averaging RF lines was set to 10 lines. The
generated attenuation maps were then normalized and multiplied to the compensated
images by ATGC (Hemmsen, Hansen, et al. 2012), to correct the gains inside the anechoic
regions.

C.3 Results and discussion

The proposed AHTGC algorithm was applied to in-vivo abdominal scans. Fifteen subjects
were scanned and a total of 44 abdominal sequences each containing 15 frames were
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acquired. In addition to the urine bladder and gallbladder scans that have large anechoic
regions, other anatomical locations such as the liver and kidney were also included in
the dataset. This was done to evaluate the performance of the algorithm on images with
less-variable attenuation distribution. The beamformed RF data were acquired using a
2202 ProFocus ultrasound scanner (BK Medical, Denmark) connected to a 192-element
3.5 MHz convex array transducer (8820e, BK Medical). The dynamic received focus
technique with factory preset TGC was employed to generate the sequences. A research
interface connected to the scanner simultaneously recorded the real-time beamformed RF
data from the scanner (Hemmsen, Nikolov, et al. 2012).

The proposed AHTGC algorithm was applied to the acquired image sequences off-
line in Matlab(2013b). Figure C.6 shows an example of the experimental results of the
AHTGC algorithm applied to a axial scan of the human bladder. The figure illustrates how
the gains were first compensated by ATGC, and then corrected using a 2-D attenuation
profile. Figure C.6(a) shows the original image in which gains were only adjusted by
the factory preset TGC with no default gains. Figure C.6(b) shows the calculated TGC
curve using the ATGC method discussed in the Section C.2.2. Figure C.6(c) shows the the
compensated image using the ATGC. Whilst the resulting image is more homogeneous,
the area inside the bladder is highly over-gained. The normalized 2-D attenuation profile
(see Fig. C.6(d) ) computed using the method introduced in Section C.2.3 was then
multiplied with the ATGC compensated image to correct the mis-adjusted high gains
inside the bladder. The result is shown in the Fig. C.6(e). It can be observed that inside of
the bladder is not over-gained and the uniformity of the result is comparable to the ATGC
corrected image shown in Fig. C.6(c).

A double blinded study was conducted to evaluate the performance of the AHTGC
algorithm. Matching pairs of in-vivo sequences, unprocessed and processed with AHTGC,
were evaluated side by side by two experienced radiologists. Each pair was shown twice
by randomizing the left and right positioning. This yielded a total of 176 independent
visual evaluations. The radiologists were then asked to score the image quality of each
pair on a visual analogue scale (VAS) ranging between -50 and +50. This is performed
by dragging a slider towards their favored movie sequence, where a positive scale favors
the processed sequence with the AHTGC algorithm. The distribution of ratings from
the individual doctors are shown in Fig. C.7. Wilcoxon signed-rank test was applied to
assess whether radiologists preferred the processed sequences or the unprocessed data.
The computed average VAS score is positive ( p-value: 2.34× 10−13) and estimated to
be 1.01 (95% CI: 0.85; 1.16) favoring the compensated data with the AHTGC algorithm.
Although the average VAS scores is not significantly positive, doctors consistently chose
the processed images with AHTGC to be better than the unprocessed images.

A secondary evaluation was conducted to assess the discrimination power of the
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Figure C.6: Illustration of how the proposed AHTGC algorithm is applied to a axial scan of the
human bladder. (a) Un-processesed scan. (b) TGC curve computed by the ATGC method in section
C.2.2. (c) ATGC compensated image (a) with curve (b). (d) 2-D attenuation map computed from
image (a). (e) Attenuation corrected image (c) with map (d).
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Figure C.7: Distribution of pooled answers from assessment of overall image quality by
two expert radiologists. Positive values favor AHTGC algorithm.

feature F1 to differentiate between two types of the scans. 44 scans used in this study
were visually divided into two categories, 11 scans including large fluid collections (type
1) and 33 scans with small or no collections of fluid (type 2). Feature F1 was computed
for all scans and boxplots illustrating the distribution of F1 for two types of scans were
generated and shown in Fig. 2.5(e). No overlap between interquartile interval of the two
boxplots indicated that feature F1 was able to discriminate between two types of scans.

C.4 Conclusion

This paper presented a hierarchical ATGC (AHTGC) algorithm, where estimates of SNR
and attenuation profiles used to correct the gains after applying the ATGC. The new
algorithm presents a robust and more flexible control over gain especially inside the large
anechoic regions. In addition, the proposed method adjusts the gains automatically, which
increases the clinical throughput by avoiding unnecessary user manual adjustments of
TGC on the scanner. Furthermore, the 2-D attenuation profiles provide solid foundation
for other processes like segmentation of the tissues and structures.
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Abstract

Automatic gain adjustments are necessary on the state-of-the-art ultrasound scan-
ners to obtain optimal scan quality while reducing the unnecessary user interactions
with the scanner. However, when large anechoic regions exist in the scan plane, the
sudden and drastic variation of attenuations in the scanned media complicates the
gain compensation. This paper presents an advanced and automated gain adjustment
method that precisely compensate for the gains on scans and dynamically adapts to
the drastic attenuation variations between different media. The proposed algorithm
makes use of several ultrasonic physical estimates such as scattering strength, focus
gain, acoustic attenuation, and noise level to gain a more quantitative understanding
of the scanned media and to provide an intuitive adjustment of gains on the scan.
The proposed algorithm was applied to a set of 45 in-vivo movie sequences each
containing 50 frames. The scans are acquired by a recently commercialized BK3000
ultrasound scanner (BK Ultrasound, Denmark). Matching pairs of in-vivo sequences,
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unprocessed and processed with the proposed method were visualized side by side
and evaluated by 4 radiologists for image quality. Wilcoxon signed-rank test was then
applied to the ratings provided by radiologists. The average VAS score was highly
positive 12.16 (p-value: 2.09 × 10−23) favoring the gain-adjusted scans with the
proposed algorithm.

D.1 Introduction

In ultrasound imaging the scanned media strongly attenuate the RF signals and therefore,
they span a wide dynamic range when they are received by the transducer. Time gain
compensation (TGC) is usually used to compensate for the acoustic attenuation before
received echoes are visualised on the scanner. TGC offsets the attenuation of the RF
signals along the depth, so those echoes belonging to the deep structures are more
amplified compared to the echoes from superficial structures. The result is a more uniform
image to be displayed on the scanner (Lee, Kim, and Ra 2006). A simple curve is usually
used in the current scanners for the TGC. The user manually adjusts the shape of this
curve using sliders corresponding to different depths. However, the image quality is
highly dependent on the adjustments, and they are rarely used by the users. An automatic
adjustment of the gains (ATGC) without user intervention obviates the shortcomings of
the manual TGC (Pye, Wild, and McDicken 1992). However, few designs are proposed in
the literature (Pye, Wild, and McDicken 1992; Lee, Kim, and Ra 2006; Tang, Luo, and
Liu 2009). Despite their advantage of reducing the interaction, such methods have an
inherent draw-back. These methods consider that large and homogeneous media exist
while scanning, and as a consequence, the dependency of the acoustic attenuation in the
presence of different tissues and structures is not highlighted. Therefore, they fail to adjust
the TGC and overall gain when large fluid collections such as urine bladder or gallbladder
exist (Lee, Kim, and Ra 2006; Tang, Luo, and Liu 2009; Litniewski, Klimonda, and
Nowicki 2012). To address the issue, a solution that integrates several measures based on
a physical understanding of the scanned media must be implemented.

The objective of this paper is to propose an advanced automated gain adjustment
algorithm based on the scattering strength, signal-to-noise ratio, focusing gain, and the
acoustic attenuation. From these parameters, different structures in the scanned media
are determined automatically, and gains are precisely adjusted in the scanned media.
The remainder of this paper is organized as follows. Section 2 introduces the proposed
algorithm. Section 3 presents the measurement setups of the proposed algorithm and
discusses the findings. Finally Section 4 gives the discussion and conclusion.
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D.2 Advanced Automated Gain Adjustments

The Advanced Automated Gain Adjustment (ADGA) contains five distinct steps. The
steps are discussed accordingly in the following sections.

D.2.1 Insonified-region detection
The purpose of the first step was to determine the insonified-region on the ultrasound
scans. Long dark shadows sometimes appear on one or both sides of ultrasound scans,
when transducer is not perfectly attached to the surface during the normal scan session.
Therefore, detection of insonified region and removing the dark shadows from the gain
adjustment process is necessary. For this purpose, the envelope of the RF data was
computed. A binary mask, only including the intensity values lying within lower 10%
dynamic range of the envelope data was generated . B-lines longer than 90% of the total
scan depth were kept on that binary mask and the shorter B-lines were excluded. Objects
that were not attached to one of the right or left borders were also excluded from the mask.
This made sure that only elongated and very dark regions on one side or both sides of the
scan remained. Those regions were considered as areas that were not insonified and were
excluded from the gain adjustments.

D.2.2 Energy equalization
The main purpose of the second step was to make sure that the energy is equally distributed
throughout the scanned media and its evenly highlighted. An experiment was conducted
in which a tissue mimicking speckle phantom was scanned, and 50 frames were acquired.
The mean of all 50 frames computed yielded a mean frame. The lateral median of the 50
scan lines bracketing the center line on the mean frame was computed yielded an energy
curve as a function of depth. This is shown in Fig. D.1(a). The curve was then inverted,
normalized to a maximum of one, and used to scale the energy levels of all the lines in
the image (Fig. D.1(b)).

D.2.3 2-D SNR map computation
2-D signal to noise ratio (SNR) maps of the acquired frames were computed from the
complex IQ data with the method previously introduced by authors (Moshavegh et al.
2015). The noise power of the ultrasound device is first computed. Then, the SNR map
for an acquired in-vivo ultrasound frame is computed by dividing the signal power of the
frame by the noise power of the system. An example of the 2-D SNR map computed from
scan of the human liver is shown in Fig. D.2(a). Fluid collections depict very low SNR
values in the SNR maps. Two features are then used to characterize this property. First,
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Figure D.1: Energy equalization step.

the cumulative frequency histogram of all SNR values inside the SNR map is generated.
A curve is fitted to the histogram values. The amount of fluid in the scan was then
characterized by slopes of the curve at 25th and 80th percentiles (Fig. D.2(b)).

D.2.4 Dynamic TGC
A TGC curve is dynamically computed for each frame and used to compensate the signal
levels. For this purpose, the envelope of the acquired scan is first computed. A cumulative
histogram of the intensity values is then generated. The intensity values less than half
of the maximum intensities in the envelope are disregarded, and a mask of strong signal
regions is generated. The mask is applied to the envelope, and the lateral median of
the intensities lying inside the mask is computed. The computed curve presents drastic
fluctuations and can not be used directly to analyse the axial intensity changes in the
envelope. To address this, the curve is smoothed using a Sovitsky-Golay filter. Then
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Figure D.2: 2-D SNR maps for a scan of human liver and the slope of histogram at 25th
(feature f1)and the 80th (feature f2) percentiles.

the general trend of the curve is extracted by applying the singular-spectrum analysis
(SSA). SSA does not require model of time series, and extracts the trend of time series in
the presence of noise and oscillations (Golyandina, Nekrutkin, and Zhigljavsky 2001).
The final curve depicts the trend of intensity change within the envelope and no sudden
fluctuations (Fig. D.3(b)). The curve is finally normalized to it’s maximum, inverted, and
applied as a TGC to the envelope to compensate for the gradual changes in the intensities.
The dynamic adjustment of intensities using this curve might over-gain inside the fluid
regions. Therefore, the next step computes an attenuation map that can be used to correct
the possible miss-adjusted gains inside the fluid regions after applying the TGC curve.

D.2.5 2-D attenuation map
2-D attenuation maps of the acquired scans were determined by a spectral difference
method adapted from Kuc (Kuc 1984). The attenuation maps were computed from the
beamformed RF data. RF lines were segmented to overlapping blocks. For each two
overlapping blocks, slope of a line fitted to the power spectral difference of the two blocks
was computed (Fig. D.4). That slope was considered as the attenuation value for the top
block. The overlapping blocks were moved on the RF data, several attenuation coefficients
were then calculated, and finally a 2-D attenuation map was determined. The method is
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Figure D.3: Illustration of a TGC curve dynamically computed for a frame of human liver
scan.

discussed in (Moshavegh et al. 2015). The attenuation map was normalized to a maximum
of one and multiplied to the gain-adjusted frame by the dynamic TGC in Section D.2.4.
This was performed to correct the gains inside the fluid collections.

D.3 Measurement setup

The proposed ADGA algorithm was applied to 45 in-vivo ultrasound sequences. Nine
subjects were scanned, and a total of 45 sequences, each containing 50 frames were
acquired. A collection of different anatomical locations such as urine bladder, gallbladder,
kidney, liver, and carotid artery was acquired and included in the dataset. This was done
to evaluate the performance of the ADGA on the scans including large fluid collections
and those horboring less-variable attenuation distribution.

The beamformed RF data were acquired using a recently commercialized BK3000
scanner (BK Ultrasound, Denmark) connected to a 192-element 3.5 MHz convex array
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Figure D.4: Illustration of how attenuation coefficients are computed.

transducer (9040, BK Ultrasound). The acquired sequences were generated by the
dynamic receive focusing technique with factory preset TGC. The beamformed RF data
were simultaneously recorded by a research interface on the scanner, and processed with
the proposed algorithm off-line. Fig. D.5 shows an in-vivo result of the algorithm applied
to scans of a human gallbladder and inferior vena cava.

To empirically evaluate the performance of the algorithm, matching Pairs of in-vivo
sequences, unprocessed and processed with the proposed algorithm, were evaluated side
by side by four experienced radiologists. The evaluation was double blinded, and each
pair was shown twice by randomizing the left and right positioning. This resulted in a
total of 360 independent visual evaluations. During the evaluation, each radiologist was
asked to rate the image quality of the pairs on a visual analogue scale (VAS) ranging
between -50 and +50. The rating was performed by moving a slider towards their favored
movie sequence. A positive scale favored the gain-adjusted sequence with the proposed
algorithm. Wilcoxon signed-rank hypothesis test was applied to the provided ratings by
the radiologists to check whether radiologists preferred the sequence with or without
the proposed algorithm. Visualization and assessment were handled using the program
IQap(Hemmsen et al. 2010).
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Figure D.5: Sagittal view of a human gallbladder and inferior vena cava.

D.4 Discussion and Conclusion

The average VAS score computed from the provided ratings was highly positive ( p-
value: 2.09 × 10−23) and estimated to be 12.16 favoring the gain-adjusted data with
the proposed algorithm. This paper presented an advanced automated gain adjustment
algorithm that utilises the estimates of attenuation, SNR , and focus gain to adjust the gains
on the ultrasound scans. The proposed method is automatic, robust, and demonstrates
reliable gain adjustments especially inside the large fluid collections. Also, the automatic
adjustment of gains on the scans significantly reduces the unnecessary and manual gain
adjustments on the ultrasound scanner. This highly increases the performance of the
clinical staff during the scan session.
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Abstract

Synthetic Aperture (SA) imaging produces high-quality images and velocity
estimates of both slow and fast flow at high frame rates. However, grating lobe
artifacts can appear both in transmission and reception. These affect the image quality
and the frame rate. Therefore optimization of parameters effecting the image quality
of SA is of great importance, and this paper proposes an advanced procedure for
optimizing the parameters essential for acquiring an optimal image quality, while
generating high resolution SA images. Optimization of the image quality is mainly
performed based on measures such as F-number, number of emissions and the aperture
size. They are considered to be the most contributing acquisition factors in the quality
of the high resolution images in SA. Therefore, the performance of image quality is
quantified in terms of full-width at half maximum (FWHM) and the cystic resolution
(CTR). The results of the study showed that SA imaging with only 32 emissions and
maximum sweep angle of 22 degrees yields a very good image quality compared with
using 256 emissions and the full aperture size. Therefore the number of emissions
and the maximum sweep angle in the SA can be optimized to reach a reasonably
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good performance, and to increase the frame rate by lowering the required number
of emissions. All the measurements are performed using the experimental SARUS
scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking
phantom containing anechoic cysts are scanned using the optimized parameters for
the transducer. Measurements coincide with simulations.

Keywords: Synthetic aperture, FWHM, cystic resolution, grating lobes, Multi objective
optimization, Pareto optimal, ultrasound imaging

E.1 Introduction

Synthetic aperture imaging (SA) addresses the problems with low frame rate in conven-
tional ultrasound imaging, where one line at a time is beamformed for generating the final
ultrasound image. In SA emissions with large areas of sonification can be used and a
complete resolution image can be beamformed for each emission. By combining all the
low resolution images the final high resolution image is generated (Jensen, S. Nikolov,
et al. 2006).

Number of emissions and aperture size are two parameters strongly effecting the
quality of the high resolution images in SA imaging. Different scenarios also require
different values of these parameters. For the case of B-mode SA imaging, the number of
emissions can be kept quite high, whereas when flow estimates are needed, less emissions
and consequently high frame rates are interesting (O’Donnell and Thomas 1992; Karaman,
Li, and O’Donnell 1995; Karaman and O’Donnell 1998; S. I. Nikolov, Gammelmark, and
Jensen 1999).

This paper presents a pilot study of image quality optimization for SA based on the
performance measures of full-width at half maximum (FWHM) and the cystic resolution
(CTR). All the possible imaging setups for different number of emissions and aperture
sizes are considered for a λ/2-pitch linear transducer. Six point scatterers located under-
neath the transducer are simulated using the Field II program (Jensen and Svendsen 1992;
Jensen 1996, 2014). For each possible combination of number of emissions N and the
aperture size αmax, the CTR and FWHM are computed for all scatterers and the values
recorded. Third, two independent plots featuring the CTR and FWHM as a function
of αmax and N are generated. The information of the two plots are then merged and
scatter-plotted as all possible setups. A Pareto optimization procedure (Deb 2005; Coello,
Lamont, and Veldhuizen 2007) is then applied to the scatterer plot to identify the optimal
setups in terms of having low CTR and also relatively small FWHM. The remainder of
this paper is organized as follows. Section G.2 introduces the proposed algorithm. Section
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TABLE E.1: PARAMETERS USED FOR SIMULATION.

Parameters λ/2-pitch transducer

Number of elements 192

Transducer center frequency f0 4.1 MHz

Wavelength λ 0.376 mm

Element pitch 0.2 mm (0.56λ)

Element height 6 mm

Elevation focus 38 mm

Cycles in emitted pulse 1

Transmit apodization Hamming

Receive apodization Hamming

Receive F-number 1

Emission steering angles -30◦:0.25◦:+30◦

3 presents the results of the proposed method and discusses the findings. Finally section 4
is the conclusion and the perspectives.

E.2 Materials and methods

This section first presents the quality metrics used in the study for optimization of SA
image quality, and then details the optimization procedure.

E.2.1 Imaging performance measures
Two of the main quality metrics used in the literature for evaluating the performance of the
ultrasound imaging quality are cystic resolution (CTR) and full-width in half maximum
(FWHM). This paper uses these two features and all the optimizations are performed based
on the rate of the changes in these features while moving between setups by changing the
sweep angle (corresponding to the aperture size) αmax and the number of emissions N .

The CTR measures the contrast resolution and determines the ability of the imaging
system to differentiate between an anechoic region bracketed within a uniform scattering
medium. Ranganathan and Walker (Ranganathan and Walker 2007) quantified CTR as the
ratio between the energy outside of a circular area surrounding the point spread function
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Figure E.1: Illustration of how the Pareto optimization is performed.The decision space
contains independent variables whereas the objective space contains the dependent vari-
ables. The set of all Pareto optimal solutions or Pareto front is shown with the red
curve.

(PSF) with radius of R to the total energy of the PSF. Therefore it gives a measure of
clutter energy outside the main lobe of the PSF.

The FWHM on the other hand measures the detail resolution. It is a measure of the
width of the main lobe of the PSF. The FWHM is usually measured both axially and
laterally and those are both influenced by the bandwidth of the imaging system. The
lateral FWHM is also dependent on the pulse wavelength, size of the aperture (F number),
and the maximum steering angle of the emissions.

E.2.2 Method of optimization
This section describes the method of multi-objective optimization used in this study
for optimizing the SA image quality based on the theory of Pareto optimality (Deb
2005). In many circumstances, solutions in the presence of the conflicting objectives are
needed. In such cases, solutions are chosen such that sensible trade-offs exist among
different objectives. Pareto optimization is used for finding these solutions. In this multi-
objective optimality theory, many solutions are found that satisfy the Pareto optimality
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criterion (Coello, Lamont, and Veldhuizen 2007). This criterion considers a solution to
be optimum only if there are no other solutions better than that with respect to all the
objectives. A solution x′ = {x1, x2} is a Pareto optimal solution if there exists no other
solutions like x for which P dominates P′. Notice, F is the objective function. A point P
is dominating another point P′ (mathematically given by P � P′), when P is no worse
than P′ in all objectives, and P is strictly better than P′ in at least one objective. Therefore
a pareto optimal solution is given by

P∗ :=
{

x′ | @ x : P � P′
}
. (E.1)

The set of all optimal solutions is called Pareto front or curve or surface (see red
curve in Fig. E.1). The shape of the Pareto front manifests the nature of trade-off between
different objectives. In this study the pareto optimization is applied to a two-objective
problem, in which two conflicting parameters are required to be optimized. The Pareto
front is particularly interesting because it contains the solutions where improvement in one
variable is not possible without jeopardizing the other. Hence, in this study only the Pareto
optimal solutions are considered while optimizing the SA image quality. Section E.2.4
describes how the Pareto optimization is applied in the study.

E.2.3 Simulations
A λ/2-pitch transducer pitch transducer was modelled and six different point scatterers
were simulated axially located underneath the transducer and positioned 10 mm apart
from each other. Simulations were performed using the Field II program (Jensen and
Svendsen 1992; Jensen 1996, 2014) (see Table E.1 for details of the parameters used).
A Hamming apodization on the active transmit aperture was used to reduce the edge
waves. In SA emissions were set to steer from -30◦ to +30◦ with 0.25◦ separation
between emissions. Received signals from all elements were stored for each emission
and beamformation were performed using the BFT3 toolbox (Hansen, Hemmsen, and
Jensen 2011). The beamformed low-resolution images were subsequently combined
to high-resolution images. Several high-resolution images were generated by varying
maximum beam steered angle (αmax) and the number of emissions (N ). The image
quality of the high-resolution images were then evaluated by computing both CTR and
the lateral FWHM for simulated point scatterers. For each simulated scatterer two plots
were generated. First one quantifying the CTR as a function of αmax and N , and the
second quantifying the FWHM as a function of αmax and N . These images are used in
the Section E.2.4 to construct the objective space plots to optimize the two dependent
variables of maximum beam steered angle (αmax) and the number of emissions (N )
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(a) CTR computed as a function of αmax and N
for scatterer at 20 mm.

(b) FWHM as a function of αmax and N for scat-
terer at 20 mm.

(c) Pareto made by merging the CTR and FWHM
for scatterer at 20 mm.

Figure E.2: Optimization procedure demonstrated for the scatterer at 20 mm from the
surface of the transducer.



E.3. Results and discussion 177

E.2.4 Optimization of the setup
This section discusses the optimization performed to find the optimal setup for the SA
image quality in terms of αmax and N . The information regarding the CTR and FWHM
in two plots generated for each scatterer in Section E.2.3 were merged and and a Pareto
plot (scatterer plot of all possible setups) was generated for each scatterer. On the Pareto
plot, the Pareto front or all the optimal setups in terms of CTR and FWHM were computed,
whereby any improvement with respect to CTR comes at the expense of FWHM and
vice-versa. The Pareto front in a sense characterise the setups in which the FWHM and
CTR values are optimal. The optimal Pareto setups (Pareto fronts) for all scatterers were
then combined in one plot and the center of the gravity for all the optimal setups was
considered to be the optimal setup for the SA imaging.

E.2.5 Phantom measurements
Phantom measurements were made using the SARUS experimental ultrasound scan-
ner(Jensen, Holten-Lund, et al. 2013) driving a 192-element 4.1 MHz λ/2-pitch linear
transducer (8L2, BK Ultrasound). A synthetic aperture B-mode imaging sequence using
the virtual sources behind transducer was used to perform the imaging. Parameters used
in the imaging sequence are depicted in the Table E.1. First, A geometry wire phantom
including three wires was scanned. A multi purpose, multi-yissue phantom containing
three anechoic cysts located at 17 mm, 48 mm, and 75 mm (Model 040GSE, CIRS inc.,
Virgina, USA) with acoustic attenuation of 0.5 dB/(cm.MHz) was also scanned.

E.3 Results and discussion

The results of CTR, FWHM and Pareto optimizations for one of the scatterers located
20 mm underneath the transducer is shown in the Fig. E.2. Fig. E.3 also shows all the
optimal setups corresponding to the Pareto fronts of all 6 different scatterers combined in
one plot. The yellow diamond (αmax = 22◦ and N = 32 ) is the center of the gravity
of all points and the optimal setup for the SA. This optimal setup requires 32 emissions
and 22◦ maximum sweeping angle. The other observation was made in the Fig. E.4,
in which a point scatterer at 20 mm was simulated and the high resolution images of
the scatterer were reconstructed using three different number of emissions. The PSFs
for high-resolution images made of 32 and 256 emissions are quite identical. The same
observation was also made on the measured wire phantom using varying number of
emissions. Fig. E.5 shows the measured PSFs belonging to two point scatterers located
at 32.5 mm and 57.5 mm. Each PSF was reconstructed with 4, 32 and 256 emissions,
where the 32 emissions is the optimized sequence. The point PSFs reconstructed with 32
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Figure E.3: Combination of all the optimal setups (Pareto fronts) belonging to all scatterers
in one plot.

emissions are quite similar to the one reconstructed with 256 emissions. Fig. E.6 shows
two phantoms measured with N = 4 , the optimized sequence (αmax = 22◦ and N = 32

), and alsoN = 256. This set of measurements also indicated that the quality of the image
does not improve by increasing the emissions to more than 32. A set of this indicates that
for achieving a reasonably good image quality the number of emissions does not have to
be increased to more than the optimal value computed for the SA.

(a) Reconstructed from 4 emis-
sions.

(b) Reconstructed from 32 emis-
sions.

(c) Reconstructed from 256 emis-
sions.

Figure E.4: Comparison of the high-resolution image of the scatterer at 20mm recon-
structed from low, optimal and high number of emissions.
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(a) Reconstructed from 4 emissions.

(b) Reconstructed from 32 emissions.

(c) Reconstructed from 256 emissions.

Figure E.5: Comparison of the high-resolution image of the scatterer at 20mm recon-
structed from low, optimal and high number of emissions.

E.4 Conclusion

This paper presented a hierarchical method for characterising the optimal setup in SA
imaging. The results showed that with only αmax = 22◦ and N = 32 , the image quality
is reasonably good and comparable with high number of emissions. Improvements in
frame rate is also achievable by using less number of emissions. This can more highlighted
when high frame rate is needed for velocity estimation, and when the standard deviation of
the velocity estimates are related to the frame rate. The optimized sequence also enables
fast acuisition of SA images without degrading the quality. This is rather crucial when the
real-time automatic segmentation of vessels are performed.
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(a) Reconstructed from 8 emis-
sions.

(b) Reconstructed from 32 emis-
sions.

(c) Reconstructed from 256
emissions.

Figure E.6: Measured cyst phantom and reconstructed from low, optimal and high number
of emissions. All three images are shown in 60 dB dynamic range.
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Abstract

This paper presents a novel automatic method for detection of B-lines (comet-tail
artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for
analyzing the pulmonary edema. They appear as laser-like vertical beams, which
arise from the pleural line and spread down without fading to the edge of the screen.
An increase in their number is associated with presence of edema. All the scans
used in this study were acquired using a BK3000 ultrasound scanner (BK Ultrasound,
Denmark) driving a 192-element 5.5 MHz wide linear transducer (10L2W, BK

aCenter for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of
Denmark, 2800 Kgs. Lyngby, Denmark

bDept. of Radiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
cDept. of Thoracic anestesiologic, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
“F”urther author information: Send correspondence to Ramin Moshavegh E-mail: ramosh@elektro.dtu.dk

183



184 Paper F. B-line detection

Ultrasound). The dynamic received focus technique was employed to generate the
sequences. Six subjects, among those three patients after major surgery and three
normal subjects, were scanned once and Six ultrasound sequences each containing 50
frames were acquired. The proposed algorithm was applied to all 300 in-vivo lung
ultrasound images. The pleural line is first segmented on each image and then the
B-line artifacts spreading down from the pleural line are detected and overlayed on
the image. The resulting 300 images showed that the mean lateral distance between
B-lines detected on images acquired from patients decreased by 20% in compare with
that of normal subjects. Therefore, the method can be used as the basis of a method
of automatically and qualitatively characterizing the distribution of B-lines.

Keywords: B-lines, comet-tail artifacts, segmentation, lung disease, pulmonary edema,
ultrasound imaging

F.1 Introduction

In ultrasound an intimate mixture of air and water can characterize the lung. The change
in their balance can be the sign of the pulmonary diseases. Interactions of water and air in
lung ultrasound scans generate a variety of artifacts, and therefore, the lung ultrasound
of pulmonary disease is rather based on analyzing these artifacts than pure visualization
of the structures. B-lines are laser-like vertical artifacts, which start from the pleura
and spread down to the edge of the screen. B-line detection is an essential parameter
in the assessment of lung-edema in lung ultrasound imaging, which is often present in
patients with heart and lung problems as well as patients after major surgery (Volpicelli
et al. 2006; Gargani 2011; Lichtenstein 2014). B-line detection is also used in detection
of pneumothorax as B-lines disappear, when a pneumothorax is present. The condition
where air is found within the pleural cavity can result in collapsed lung, and if untreated
be fatal. In daily clinical practice, patients suspected for lung edema or pneumothorax are
imaged with X-ray, and often repeatedly imaged with short intervals to monitor the effect
of the applied treatment. Lung ultrasound is an emerging ultrasound modality, but is often
bypassed, as the medical staff handling these patients are not familiar with ultrasound.
If ultrasound is used for evaluation of the lungs, the common practice for diagnosing
pulmonary edema is based on visual analysis and interpretation of B-lines on still lung
ultrasound images. For the detection of pneumothorax, the detection of a single B-line
excludes pneumothorax in the imaged lung segment. Fig. F.1 illustrates how B-lines are
generated. They are reverberation artifacts that originate from water-thickened pulmonary
interlobular septa (Gargani 2011).

Based on the authors’ knowledge, there are no computerized and automated model for
characterizing the B-line artifacts in the literature. This paper proposes a novel algorithm
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Figure F.1: Illustration of how the comet-tail artifacts are generated. They are hyper-
echoic reverberation artifacts arising from the pleural line and spreading down towards
the lower edge of the screen.

as the first possible solution for monitoring of lung edema and detection of pneumothorax.
The remainder of this paper is organized as follows. Section G.2 introduces the proposed
algorithm. Section 3 presents the in-vivo results and discusses the findings. Finally section
4 is the conclusion and the perspectives.

F.2 Materials and methods

This paper introduces an automatic real-time method for detection of pleura and the
B-lines in lung ultrasound scans. The method first delineates the pleural line on the image
and then detects the B-lines, as they originate from the pleural line and extend to the edge
of the display. The proposed algorithm contains four distinct steps. First, the pleural line is
delineated using a random walks method (Grady 2006). Second, the upper-pleural region
is excluded from the scan, the Hilbert transform of the remaining region is computed, a
cumulative frequency histogram is generated, a zone of influence of strong signals in the
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image is calculated, and the B-line artifacts are identified on the scan plane. Third, an
alternate sequential filtering is applied to the results of step 2. Finally, the result of step 3
is top-hat filtered and the B-lines are extracted and overlaid on the B-mode scan. Four
main steps of the algorithm are discussed in detail in this section.

F.2.1 Step I. Confidence map estimation and delineation of the pleu-
ral line

The first step in detection of the B-lines is to delineate the pleural line on the lung scans.
For this purpose a graph based approach that computes a per-pixel uncertainty map based
on the information depicted by ultrasound image is used (Karamalis et al. 2012). This
rather specifically measures the uncertainty in attenuated and/or shadow regions. To
identify the map for each ultrasound frame, a random walks framework by taking into
account ultrasound specific constraints is used (Karamalis et al. 2012). The solution to
the random walks equilibrium problem is global and takes the entire content of the RF
data into account. The required starting points are automatically placed at the beginning
of each scan-line to represent the transducer elements. Thus, a problem is formulated by
computing the probability of a random walk starting from a pixel to reach the transducer
elements. The domain specific knowledge for ultrasound is integrated with a simple
modelling of the ultrasound image formation process. The ultrasound specific constraints
obtained from physics of acquired RF data by the transducer must be integrated to ensure
the accuracy of the confidence map. One of the fundamental properties of ultrasound
is the attenuation of the signal by increasing depth. The Beer–Lambert Law is used to
express the depth dependent attenuation, and the attenuated signal I could be given by
I = I0 exp (−αd), where I0 is the initial intensity, α the attenuation coefficient, and d
the distance from the source. This property is included into the confidence map in a way
that the further away a random walk starts from the transducer is, the more unlikely it
will be able to reach one of the transducer elements. The computed confidence map is
used to determine the upper-pleural region and exclude that from the Rf-data prior to
detecting the B-lines (see Fig. F.2). The pleural line is delineated on the confidence map
by thresholding the confidence map to be higher than the global threshold of the entire
map. The region with values higher than the threshold is considered the upper pleura, and
the rest is lower pleural region. In the next step the B-lines starting from the pleura and
appearing inside the lower pleural region are detected.

In the next step of the algorithm, after delineating the pleural line in each scan, the
B-lines are characterized from the Hilbert transform of the gradient of the RF-data.



F.2. Materials and methods 187

Figure F.2: Example of a confidence map computed for a human lung scan. This map is
then thresholded to delineate the pleural line.

F.2.2 Step II. B-line detection
The RF-data corresponding to the region above the pleural line are excluded, and only
the RF-data belonging to the lower pleural region is used for B-line detection. This is
performed knowing that the artifacts arise from the pleural line and spreads down in the
scan. The axial gradient of RF-data is then computed. The Hilbert transform of the axial
gradient components is calculated, the absolute value of the complex data is computed and
data is compressed by taking the logarithm transform. Finally, a binary mask including
the strong specular regions inside the compressed envelope data is computed. This binary
mask also outlines the most prominent B-lines in the envelope data (see Fig. F.3(a)). The
mask is later manipulated in the sections F.2.3 and F.2.4 to extract the position of the
B-lines.

F.2.3 Step III. Alternate sequential filtering
An alternate sequential filtering (ASF) procedure using a repeated sequential morpho-
logical opening and closing is applied to the mask and the ASF mask is generated (see
Fig. F.3(b)). The procedure is depicted in the Alg. 5. The structuring element used in this
process is considered to be an axial line-structuring element. The line structuring element
along the ultrasound beem is used to ensure that only elongated and axial information
(B-line artifacts) in the compressed data is preserved and highlighted.
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(a) Mask outlining the most prominent B-lines
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(b) Alternate sequential filtering applied to the
mask (a). B-lines are better identified.

Figure F.3: Illustration of how B-lines are detected from the RF-data.

Algorithm 5 Alternate sequential filtering
Input: Binary mask (Bin) outlining the most prominent edges computed in Section F.2.2,
and parameter N indicating the maximum size of the structuring element to be used in
ASF.
Output: Binary mask (BASF ) in which the strong axial B-lines are highlighted.

1: procedure ASF
2: BASF = Bin
3: for each i ∈ N do
4: Let Slin be a line structuring element of length N.
5: BASF = (BASF 	 Slin)⊕ Slin # performing the morphological opening.
6: BASF = (BASF ⊕ Slin)	 Slin # performing the morphological closing.
7: end for
8: end procedure

Note: ⊕ and 	 denote morphological dilation and erosion respectively.
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F.2.4 Step IV. Top-hat filtering
The generated mask in the previous step contains prominent axially elongated and adjacent
tails locating the B-lines. However, the tails can be laterally connected and that makes
the clean separation of them (B-lines) quite difficult. To separate and extract the B-lines
automatically, a top-hat filtering procedure is used. The top-hat transform originally
proposed by Mayer (Meyer 1977) is a mathematical morphology operator that uses
morphological opening or closing for extracting bright (respectively dark) objects from an
uneven background in a 2D grey-scale image. Top-hat transformation can be formulated
in two ways: White Top-hat (WTH) and Black Top-hat (BTH). White Top-hat can
also be used to identify prominent peaks in a 1D signal, and the BTH as the dual of the
WTH can be used to identify the prominent minima in a 1D signal. In this paper a White
Top-hat (WTH) with a flat disk structuring element is used to extract the very the B-lines.
The WTH transformation of a 1D signal f with a flat structuring element B is defined
as:

Twhite(f) = f − (f ◦B) (F.1)

First, A curve is generated by computing the axial summation of all pixel values inside
mask from Section F.2.2. The peaks of the resulting curve are corresponding to the tails
locating the B-lines in the mask (see Fig. F.4. To identify the peaks of the curve, the
Top-hat transform is applied using a flat structuring element (B) that is somewhat larger
than the size of the connected regions. The ◦ is the opening operator and is basically
a min operation that removes the regions smaller than the size of structuring element.
Subtracting this signal from the original signal produces a signal that only contains the
desired strong peaks. Fig. F.4 shows the B-lines detected after alternate sequential filtering
and top-hat filtering for a lung scan of a patient with lung edema. The B-lines are overlaid
on the corresponding B-mode image in Fig. F.5(a).

F.3 Results and discussion

The proposed algorithm was applied to in-vivo lung scans. Three healthy subjects and
three patients with different levels of lung edema were scanned after having major open-
chest surgery. A total of 6 lung sequences each containing 50 frames were acquired. The
study was approved by the Danish National Committee on Biomedical Research Ethics
and the local Ethics Committee, and the volunteers were included into the study after
informed consent. Anatomical locations included in the dataset have been analysed first
to make sure B-lines exist. The beamformed RF data were acquired using a BK3000
ultrasound scanner (BK Medical, Denmark). A research interface connected to the scanner
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Figure F.4: Alternate sequential filtering and the result of the top-hat filtering.

simultaneously recorded the real-time beamformed RF data from the scanner (Hemmsen
et al. 2012). The proposed B-line detection algorithm was applied to the acquired image
sequences in MATLAB (2015b). Fig. F.5 shows two examples of the detected pleura
and B-lines on lung scans of a patient and a normal subject, respectively. The mean
lateral distance between neighbouring B-lines in the 150 images belonging to the patient
is (0.93 cm) which is decreased by 20% in compared with that of 150 images belonging
normal subjects (1.17 cm).

F.4 Conclusion

This paper presented a novel advanced B-line detection algorithm. The novely of the
algorithm stems from proposing the first automatic real-time technique for characteriza-
tion of the B-lines (comet tail artifacts) in lung ultrasound scans as a crucial measure for
diagnosing pulmonary edema. The results showed a 20% decrease in the mean lateral
distance between B-lines in patients with lung edema in compare with the normal sub-
jects. Therefore, the proposed method enables the automatic quantitative estimation of
edema and have a tremendous clinical impact. The algorithm can also be an aid for the
sonographer and a tool for making a quantitative estimation of lung edema and detection
of pneumothorax. Furthermore, the algorithm can be an aid for the untrained personnel
performing the ultrasound scan, as well as providing a quantitative measure for B-lines
presence.
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(a) The pleural line outlined and B-lines are overlaid on the lung scan of a patient after surgery.

(b) The pleural line outlined and B-lines are overlaid on the lung scan of a normal subject.

Figure F.5: Two examples of ultrasound lung scans, on top of which the pleural lines are
outlined and B-lines overlaid.
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Abstract

Vector Flow Imaging (VFI) has received an increasing attention in the scientific
field of ultrasound, as it enables angle independent visualization of blood flow. VFI
can be used in volume flow estimation, but a vessel segmentation is needed to make
it fully automatic. A novel vessel segmentation procedure is crucial for wall-to-
wall visualization, automation of adjustments, and quantification of flow in state-of-
the-art ultrasound scanners. We propose and discuss a method for accurate vessel
segmentation that fuses VFI data and B-mode for robustly detecting and delineating
vessels. The proposed method implements automated VFI flow measures such as peak
systolic velocity (PSV) and volume flow. An evaluation of the performance of the
segmentation algorithm relative to expert manual segmentation of 60 frames randomly
chosen from 6 ultrasound sequences (10 frame randomly chosen from each sequence)
is also presented. Dice coefficient denoting the similarity between segmentations is
used for the evaluation. The coefficient ranges between 0 and 1, where 1 indicates
perfect agreement and 0 indicates no agreement. The Dice coefficient was 0.91
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indicating to a very agreement between automated and manual expert segmentations.
The flowrig results also demonstrated that the PSVs measured from VFI had a mean
relative error of 14.5% in comparison with the actual PSVs. The error for the PSVs
measured from spectral Doppler was 29.5%, indicating that VFI is 15% more precise
than spectral Doppler in PSV measurement.

G.1 Introduction

Accurate delineation of vessels is crucial for visualization and quantification of flow
in state-of-the-art ultrasound scanners. Available segmentation procedures are mainly
based on either B-mode images or flow estimates only. However, the main challenge
in devising an accurate vessel segmentation procedure is to incorporate both B-mode
image and flow data for better identifying the vessels. This paper presents a hybrid
segmentation algorithm that fuses B-mode and vector velocity estimations (VFI) for
robustly detecting and segmenting vessels in ultrasound images. VFI enables angle
independent visualization of blood flow, and allows doctors to see and estimate the
direction and velocity of blood flow in all directions and at any angle. This provides an
angle independent visualization of blood hemodynamics for the cardiovascular system in
real time (Pedersen et al. 2012). Today’s commercial ultrasound scanners are not able
to present a perfect wall-to-wall delineation of vessels, while displaying the VFI images.
Of particular interest is the extraction of new features that can express several desired
properties of a vessel (i.e. constriction in carotid artery) in a single feature such as peak
systolic velocity (PSV) (Grant et al. 2003; Reutern et al. 2012) using VFI. The volume
flow is also a very interesting measure when inspecting the VFI, which quantifies the
flow and characterizes the vessel (Hansen, Heerwagen, et al. 2013; Hansen, Olesen, et al.
2014; Jensen, Olesen, Hansen, et al. 2014; Brandt et al. 2016). However, this measure is
very susceptible to the vessel diameter, which makes the accurate delineation of the vessel
very essential (Jensen, Olesen, Hansen, et al. 2014; Jensen, Olesen, Stuart, et al. 2016).
The proposed method delineates the vessel walls and enables the correct estimation of the
volume flow. In the current implementation of VFI in ultrasound scanners, the correct
volume flow estimation is not possible. The reason is that the VFI does not perfectly
attach to the vessel walls, and therefore the VFI data is not available for regions very
close to the vessel walls. This paper proposes a novel hybrid vessel segmentation in
ultrasound that also enables the automated flow quantification. The proposed method
delineates the vessels in ultrasound scans and enables a better visualization of flow inside
the vessel, as well as providing the firm ground for quantitative flow measures for VFI
such as PSV and volume flow. These are done without manual adjustments by users and
without compromising on the accuracy of VFI. The remainder of this paper is organized
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as follows. Section G.2 introduces the algorithm. Section G.3 presents the measurement
setup. Section G.4 presents the results and discusses the findings. Finally section G.5 is
the conclusion.

G.2 Materials and methods

The method has two distinct steps. First, it automatically segments the vessel boundaries
using a combination of VFI data and B-mode. Second, it automates the VFI flow measures
such as PSV, and volume flow.

G.2.1 Novel hybrid segmentation of vessels
The segmentation has four distinct steps. First, a marker image is generated from both VFI
data and B-mode. An example of a marker image computed for a carotid phantom scan
with bifurcation is shown in Fig. G.1(f). Second, the marker image is used in a subsequent
marker-controlled region growing procedure to delineate the vessel boundaries. The third
step implements artifact rejection based on size, shape, and amount of flow to ensure
that only vessels are retained. Fourth step implements an inter-frame co-registration of
consequent segmented frames to make sure that vessels segmented in each frame are
in correspondence with the same vessels segmented in the neighboring frames of the
sequence.

G.2.1.1 Generating the marker image

Extraction of inner-markers: Detection of inner markers are achieved by skeletoniza-
tion that extracts the center-line of the VFI data. The absolute value of VFI estimates
were used in segmentation procedure. The process extracted the center-line of the flow
data that also indicated the locations inside the vessel boundary. The skeletonization
started by computing the distance transform of the inverted binary mask of VFI data (see
Fig. G.1(b) and G.1(c)). Then the ridge lines on the distance transform are considered as
the center-line of the flow data (see Fig. G.1(d)).

Extraction of outer-marker mask: The detection of outer markers are achieved using
the B-mode image. Strong specular regions are extracted from the B-mode and used
as an indication of regions outside the vessels. For this purpose, the envelope of the
acquired scan is first computed. A cumulative histogram of the intensity values is then
generated. The intensity values less than half of the maximum intensities in the envelope
are disregarded, and a mask of strong signal regions is generated. The mask is then
multiplied to a dilated version of the VFI mask and yielded the outer marker mask as
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(a) Absolute value of VFI over-
laid on B-mode.
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(b) Binary mask of VFI data.
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(c) Distance transform of in-
verted mask in (b).
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(d) Center-line of image in (c)
(inner markers).
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(e) Outer markers generated
from B-mode.
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(f) Marker image –combination
of (d) and (e).
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(g) Result of watershed segmen-
tation.
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(h) Artifacts rejected from image
(g).
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(i) Inter-frame co-registration
and refinement.

Figure G.1: Illustration of segmentation performed on a sequence from a carotid phantom
with a bifurcation.
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shown in Fig. G.1(e). The inner and outer markers are combined in one marker-image
binary mask (see Fig. G.1(f)), and used to initialize the region growing algorithm on the
B-mode image.

(a) Carotid artery segmented on carotid phan-
tom.

(b) Carotid artery segmentation In-Vivo.

Figure G.2: Results of carotid segmentations performed on phantom and In-Vivo scans.

G.2.1.2 Marker-controlled region growing

Marker-controlled watershed is used to delineate the boundaries of the vessel-like
structures bracketed by the marker image. The B-mode image is median filtered, and a
watershed segmentation of this filtered image with respect to the Marker image yielded
the segmentation of the vessel-like structures (see Fig. G.1(g)). However, segmentation
results contain non-vessel structures that should be excluded.

G.2.1.3 Artifact rejection

The region growing resulted in over-segmented regions, which are not vessels. This
step implements artifact rejection based on size, shape and amount of flow to ensure that
only the vessels are retained(see Fig.G.1(h)). Basically, elongated objects containing flow
data are kept in segmentation results and the rest are excluded. Even though, the retained
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structures in this step are vessel-like objects, the boundaries of the vessels might have
some discrepancies with respect to the actual vessel boundaries.

G.2.1.4 Inter-frame co-registration of segmentations

To refine the segmentation, so that it follows the exact vessel boundaries, an inter-
frame co-registration of segmentations is performed. To deform parts of the segmentation
that does not follow the actual vessel boundaries, 10 to 25 frames (according to the frame
rate) neighboring in time are considered. Segmentations performed on all the neighboring
frames are co-registered and regions matching in at least 80% of the frames are considered
to be the actual vessels (See Fig. G.1(i)).

G.2.2 Enabling VFI automated measures
In this section the possibility of automating the two crucial flow measures such as PSV
and volume flow using VFI are introduced.

G.2.2.1 Automated Peak systolic velocity (PSV) measurement
using VFI

Using the proposed method, the vessel walls are accurately delineated. Fig. G.5 shows
an example of segmentation of a human carotid. The red lines indicate the location of the
vessel walls delineated by the proposed method. Two points are set across the vessel on
the delineated vessel boundaries. Then, PSV along the line connecting the two points,
through the vessel, across a cardiac cycle is calculated (see Fig. G.5). The red horizontal
line indicates the position as well as the average peak velocity angle throughout the cycle.
The green horizontal line indicates the center and the circular cross section found inside
the vessel for measuring the volume flow.

G.2.2.2 Automated volume flow measurement using VFI

First, the vessel walls are automatically delineated, and VFI is refined so that it covers
the whole vessel region. This enables the correct estimation of volume flow. Second,
the volume flow can be computed without user manual intervention of a user. This is
performed by automatically selecting vessel cross-sections between the segmented walls
for computing the volume flow in VFI (see yellow circular cross section in Fig. G.5). The
volume flow is implemented using the method proposed in (Jensen, Olesen, Stuart, et al.
2016).
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G.3 Measurement setup

The proposed segmentation algorithm was applied to 5 carotid artery sequences. Five
healthy subjects were scanned, and a total of 5 carotid artery sequences each containing
500 frames were acquired. Also a phantom including a carotid with a bifurcation was
scanned and used in this study. The beamformed RF data were acquired using a BK3000
scanner (BK Ultrasound, Denmark) connected to a 192-element 4.1 MHz linear array
transducer (9032, BK Ultrasound). The beamformed RF data were simultaneously
recorded by a research interface on the scanner, and processed with the proposed algorithm
off-line. For in-vitro flowrig validation of VFI, a flow system (CompuFlow 1000, Shelley
Medical Imaging Technologies, Toronto, Canada) circulating a blood-mimicking fluid
(BMF-US, Shelley Medical Imaging Technologies, Toronto, Canada) in a closed loop
circuit was used. The linear transducer was fixed at a distance of 1.5 cm from the vessel
of 12 mm in diameter with a beam-to-flow angle of 60 degrees. For increasing constant
flowrig peak velocities of 5-60 cm/s, Spectral Doppler and VFI data were recorded. For
precision analysis, each velocity setting was recorded twice.

All the measures are implemented in a in-house application specialized for VFI
visualization and quantitative flow measures. All the PSV and volume flow measurements
are performed using this application. The distribution of peak velocity amplitudes and
angles during one cardiac cycle are also automatically computed and reported in the tool.

G.4 Results and discussion

Automated segmentation results were compared with manual segmentations performed
by an experienced user on 60 frames (10 frame randomly chosen from each sequence).
Dice coefficient denoting the similarity between segmentations was then computed. The
coefficient ranges between 0 and 1. A value of 1 indicates perfect agreement and a value of
0 indicates no agreement. The Dice coefficient was 0.91, indicating that vessel boundaries
obtained using the algorithm are highly accurate and consistent with the experts’ visual
perception of vessel boundaries. Two examples of segmentations performed by the
proposed hybrid method on scans acquired from a carotid phantom with a bifurcation and
carotid of a normal male subject are shown in Figs. G.2(a) and G.2(b) respectively.

Fig. G.3 shows the results of in-vitro flowrig validation of VFI for measuring PSV.
Relative errors of the PSVs measured from VFI and spectral Doppler comparing to the
actual PSVs were 14.5% and 29.5% respectively (see Fig. G.4). The figure shows that VFI
offers a more precise and reliable alternative for velocity estimation of PSV in comparison
with the current clinical standard using spectral Doppler. Fig. G.5 shows a screen shot of
the CFU visualization application, in which a carotid artery belonging to a 29 years old
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Figure G.3: Comparison of flowrig PSV measured by VFI and spectral Doppler.

0 2 4 6 8 10 12

Meaurements

0

5

10

15

20

25

30

35

40

R
el

at
iv

e 
M

ea
u

re
m

en
t 

er
ro

r 
[%

]

Relative errors of PSV meaurement using VFI [%]

Relative errors of PSV meaurement using Spectral Doppler [%]

Mean relative error from VFI

Mean relative error from Spectral Doppler

Figure G.4: Relative errors of measurements with VFI and spectral Doppler.



G.5. Conclusion 201

healthy male subject is segmented and VFI is visualized. The PSV and volume flow are
also measured using the application and reported. PSV was 52.66 cm/s and the volume
flow was 9 cm3/s. The distribution of angle during one cardiac cycle was 89.54± 1.46

degrees.

← PSV = 52.66 [cm/s]

    PV angle distribution = 89.54 ± 1.46 degree

    Volume flow =  9.00 [cm
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/s]
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Figure G.5: Carotid artery segmented, The VFI is visualized, and a cross-section is
automatically selected to compute the PSV and volume flow.

G.5 Conclusion

This paper presented a novel hybrid segmentation algorithm that combines VFI and
B-mode to delineate the vessel boundaries. The algorithm also implemented PSV and
volume flow for VFI. The empirical results showed a dice coefficient of 0.91, indicating
a good match between segmentation performed by the algorithm and the expert. The
results of the flowrig measurements also showed that VFI was 15% more precise than
spectral Doppler for PSV measurement. Therefore, the proposed method enables a better
visualization of VFI as well as the automatic quantitative flow measures using vector
velocities. The algorithm can also be used in daily clinical practice as an alternative tool
for making a quantitative flow measures.
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A.1 Technical Field

The following generally relates to ultrasound (US) imaging and more particularly to
segmenting a vessel, wall-to-wall, in an ultrasound B-mode image/volume using a com-
bination of 2-D/3-D velocity flow imaging (VFI) data and the ultrasound B-mode im-
age/volume.

A.2 Background

Velocity flow imaging enables angle independent visualization of blood flow, allowing
clinicians to visualize and estimate direction and velocity of blood flow in all directions
and at any angle. However, today’s commercial ultrasound scanners are not able to
produce a wall-to-wall delineation of a vessel and present it simultaneously with VFI data
superimposed within the entire vessel. FIGURE 1 shows a prior art example in which
VFI data 102 (the region approximately between dotted straight lines) for a region of
interest 104 does not extend to the true walls 106 and 108 (approximated through the
dashed straight lines) of a sub-portion 110 of a vessel 112 represented in a B-mode image
114. In this example, regions 116 and 118 between the dashed and dotted lines represent
regions in the vessel sub-portion 110 without VFI data.

205
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Furthermore, to obtain the full view of the velocities in the cardiac cycle, clinicians
have to manually change parameters such as the pulse repetition frequency (PRF) when
examining different magnitudes of velocities. For example, during systole, when higher
velocities are present, a higher PRF is needed in order to estimate the right velocities. If
the PRF is set too low, aliasing will occur as the blood scatterers are moving too fast to
be detected. Unfortunately, it can be a troublesome maneuver to change back and forth
between different PRF’s at least since the full velocity range cannot be displayed simulta-
neously. As a consequence, clinicians typically select a static range. However, blood flow
outside of the range can contain artifact and/or not even be detected. Unfortunately, this
can lead to a misdiagnosis.

Furthermore, the clinician has to manually approximate, e.g., through visual inspection
of the B-mode image 114, the location of the vessel walls to place a flow measurement line
120 along a cross-section of the vessel sub-portion 110 from one wall to the other wall for
velocity flow measurements. However, this process can be tedious at least since the vessel
walls 106 and 108 of the vessel sub-portion 110 are not clearly defined in the B-mode
image 114. As a result, the velocity flow measurements may be taken using a part of the
vessel sub-portion 110, where no VFI data is present (e.g., regions 116 and/or 118), and/or
part of the anatomy outside of the vessel sub-portion 110 (e.g., non-vessel anatomy).
Unfortunately, this may lead to erroneous and/or inaccurate flow measurements.

A.3 Summay

Aspects of the application address the above matters, and others. In one aspect, an
ultrasound imaging system includes an image processor configured to process beamformed
ultrasound data representing structure flowing through a tubular object and generate an
image indicative of the tubular object based thereon. The ultrasound imaging system
further includes a velocity processor configured to process the beamformed ultrasound
data and generate vector flow imaging data indicative of the structure flowing through
the tubular object based thereon. The vector flow imaging data includes at least an axial
velocity component signal and one or more transverse velocity components indicating a
direction and a speed of the structure flowing through the tubular object. The ultrasound
imaging system further includes a segmentation processor configured to segment the
tubular object from the image based on a combination of both the vector flow imaging
data and the image, wherein a resulting segmentation extends from wall-to-wall of the
tubular object. The ultrasound imaging system further includes a display configured to
display the image with the segmentation and the vector flow imaging data superimposed
thereover, with the vector flow imaging data extending from wall-to-wall within the
tubular object. In another aspect, a method includes generating an image indicative of a
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tubular object from beamformed ultrasound data representing structure flowing through
the tubular object. The method further includes generating vector flow imaging data
indicative of the structure flowing through the tubular object from beamformed ultrasound.
The vector flow imaging data includes at least an axial velocity component signal and one
or more transverse velocity components indicating a direction and a speed of the structure
flowing through the tubular object. The method further includes generating a wall-to-wall
segmentation of the tubular object from the image with a combination of the vector flow
imaging data and the image. The method further includes visually presenting the image
with the segmentation and the vector flow imaging data superimposed thereover, with
the vector flow imaging data extending from wall-to-wall within the tubular object. In
another aspect, a computer readable storage medium is encoded with computer readable
instructions. The computer readable instructions, when executed by a processor, causes
the processor to: construct an image indicative of a tubular object from beamformed
ultrasound data representing structure flowing through the tubular object, estimate vector
flow imaging data indicative of the structure flowing through the tubular object from
beamformed ultrasound, wherein the vector flow imaging data includes at least an axial
velocity component signal and one or more transverse velocity components indicating
a direction and a speed of the structure flowing through the tubular object, compute a
wall-to-wall segmentation of the tubular object from the image with a combination of the
vector flow imaging data and the image, and display the image with the segmentation
and the vector flow imaging data superimposed thereover, with the vector flow imaging
data extending from wall-to-wall within the tubular object. Those skilled in the art will
recognize still other aspects of the present application upon reading and understanding
the attached description.

A.4 Brief Description of the Drawings

The application is illustrated by way of example and not limited by the figures of the
accompanying drawings, in which like references indicate similar elements and in which:

FIGURE 1 illustrates an example prior art B-mode image with VFI data superimposed
thereover;

FIGURE 2 schematically illustrates an example ultrasound imaging system in accor-
dance with an embodiment described herein;

FIGURE 3 illustrates an example B-mode image with segmented vessel walls, wall-
to-wall, (segmented based on a combination VFI data and the B-mode image) and VFI
data superimposed thereover;

FIGURE 4 illustrates another example B-mode image with segmented vessel walls,
wall-to-wall, (segmented based on a combination VFI data and the B-mode image)
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superimposed thereover;
FIGURE 5 illustrates another example B-mode with segmented vessel walls, wall-to-

wall, (segmented based on a combination VFI data and the B-mode image) superimposed
thereover;

FIGURE 6 illustrates an example segmentation algorithm based on a combination
VFI data and a B-mode image;

FIGURES 7-10 illustrate examples of the segmentation for a first step of the segmen-
tation algorithm of FIGURE 6;

FIGURES 11 and 12 illustrate examples of the segmentation for a second step of the
segmentation algorithm of FIGURE 6;

FIGURE 13 illustrates an example of the segmentation for a third step of the segmen-
tation algorithm of FIGURE 6; and

FIGURE 14 illustrates an example segmentation method in accordance with an
embodiment described herein.

A.5 Detailed Description

The following describes an approach that combines VFI data and B-mode imaging to cre-
ate a wall-to-wall segmentation of walls of a blood vessel represented in a B-mode image
or volume. The segmentation can be utilized at least for adaptively adjusting/optimizing a
PRF and/or echo cancelling during imaging based on the flow rate determined with the
VFI data and the wall-to-wall segmentation and/or determine flow measurements such as
peak systolic velocity (PSV), a largest vessel diameter (Dmax), volume flow, etc. based
on the VFI data and the wall-to-wall segmentation. For sake of brevity and clarity, the
terms “image” and “region” also encompasses the term “volume” herein.

Figure 2 schematically illustrates an example ultrasound imaging system 200. A trans-
ducer array 202 includes one or more transducer elements 204, which are configured to
transmit ultrasound signals. The one or more transducer elements 204 are also configured
to receive echo signals and generate electrical signals indicative thereof. The echo signals
are produced in response to an interaction between the ultrasound signals and the structure
(e.g., flowing blood cells, organ cells, etc.).

The transducer array 202 can be a one or two-dimensional (1-D or 2-D) array. Exam-
ples of 1-D arrays include arrays with 8, 16, 32, 64, 96, 128, 512, and/or other number
of elements. Examples of 2-D arrays include square, rectangular, circular, row-column,
irregular, and/or other arrays. The transducer array 202 can be linear, curved, phased,
and/or other array. The transducer array 202 can be fully populated or sparse and/or a
combination thereof.
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Transmit circuitry 206 generates a set of pulses that are conveyed to the transducer
array 202. The set of pulses excites a set of the transducer elements 204, which causes the
elements 204 to emit ultrasound signals, optionally with an adaptively determined PRF,
which is estimated from a wall-to-wall segmentation of a vessel. Receive circuitry 208
receives the electrical signals. The receive circuitry 208 may amplify, filter, convert analog
signals to digital signals, etc. The transducer array 202 may have separate transmit and
receive elements, and/or a switch may switch between the transmit and receive circuitry
206 and 208.

A beamformer 210 beamforms the signals by applying time delays to signals, weight-
ing signals, summing delayed and weighted signals, and/or otherwise beamforming
received signals, creating a beam of RF data. For VFI, the beamformer 210 produces
ultrasound data to estimate an axial velocity component, which extends along a direction
of a propagating beam, and at least one transverse velocity component, which extends
transverse to the axial velocity component. This may include applying echo cancelation
to the beamformed data, where the echo cancelation is optionally optimized based on a
wall-to-wall segmentation of a vessel.

An image processor 212 processes the beamformed data and generates an image/vol-
ume. For B-mode imaging, this may include, e.g., envelope detection, log-compression,
and/or other processing. The image processor 210 may also process scan-lines to lower
speckle and/or improve specular reflector delineation, and/or perform other processing
such as FIR and/or IIR filtering, etc.

A velocity processor 214 processes the pre-processed data and generates VFI data.
This includes generating the axial and the one or more transverse velocity components.
These velocity components indicate a direction and a speed of flowing structure. Example
of determining such components are described in U.S. 6,859,659 B1, filed on November
9, 2001, and entitled “Estimation of Vector Velocity,” and application serial number
14/350,500, publication number US 2014/0257103 A1, filed on April 8, 2014, and entitled
“Three Dimensional (3D) Transverse Oscillation Vector Velocity Ultrasound Imaging,”
both of which are incorporated herein by reference in their entireties. Other approaches
are also contemplated herein.

A segmentation processor 216 receives both the VFI data and B-mode image/volume.
The segmentation processor 216 creates an accurate wall-to-wall segmentation of walls of
a blood vessel represented in the B-mode image/volume. As described in greater detail
below, this includes generating a marker image/volume from 2-D/3-D VFI information, us-
ing the marker image/volume with a marker-controlled region/volume growing algorithm
to delineate the vessel boundaries in the B-mode image/volume, rejecting non-vessel
structure, and implementing an inter-frame co-registration of segmentations to make
sure that vessels segmented in each frame are in correspondence with the same vessels
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segmented in neighboring frames in the sequence.
Briefly turning to FIGURE 3, a B-mode image 302 with a user identified region of

interest 304 within which VFI data 306 is superimposed over a sub-portion 308 of a vessel
310, within the sub-portion 308 between vessel walls 312 and 314, is illustrated. Using
the segmentation approach described herein, the vessel walls 312 and 314 are accurately
segmented, wall-to-wall, based on the combination of the VFI data and B-mode image. In
the prior art approach in FIGURE 1, without the wall-to-wall delineation described herein,
the user has to visually estimate where the vessel walls are, and the superimposed VFI
data does not track well to the actual vessel walls 106 and 108 and thus is not available
for regions close to the vessel walls for measurement purposes such that velocities are not
displayed for those regions.

Returning to FIGURE 2, an operating parameter processor 218 receives the segmented
vessel walls as an input. In one instance, the operating parameter processor 218 estimates
a PRF based on the segmented vessel walls. The operating PRF can then be adaptively
adjusted to the estimated PRF for further imaging. In general, the operating PRF is
adapted based on the vessel delineation without need for manual adjustment by the user,
although the user can manually adjust the PRF if desired. The auto adjustment includes a
PRF optimized for full visualization of the velocities in the cardiac cycle. For example,
the estimated PRF ensures that during systole, when higher velocities are present, a higher
PRF is utilized, and during diastole, a lower PRF is utilized. By using the estimated PRF,
the generated VFI mask (discussed below) will have the closest boundaries relative to
the automated segmentation. In another instance, echo cancelling can be automatically
tuned so that it yields the biggest correlation with the segmentation. The optimal echo
cancelling occurs when the VFI mask is the closest match to the mask generated from the
segmentation procedure.

A measurement processor 220 also receives the segmented vessel walls as an input.
The measurement processor 220 processes the segmented vessel walls to extract certain
features, and then determines one or more measurements from these features. For an
automated PSV measurement, the measurement processor 220 determines PSV along a
line along a cross section of the vessel based on the delineated vessel of the segmentation.
In FIGURE 3, with the accurate identification of the vessel walls 310 and 312, the
measurement processor 220 can identify a path 316 from wall to wall, perpendicular to
each wall, and compute a PSV 318 along the path 316. In FIGURE 1, without the vessel
delineation from the segmentation, the user has to manually place the path 120 without
the segmentation, which may lead to a less accurate PSV measurement.

Returning to FIGURE 2, for an automated largest vessel diameter measurement for
abdominal aortic aneurysms assessment, the measurement processor 220 computes a
maximum diameter of the vessel during a cardiac cycle using the accurate vessel wall
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delineation of the segmentation. For example, in FIGURE 3, the measurement processor
220 can determine a diameter for the wall-to-wall path 316 by a length of the path 316. In
one instance, this enables clinicians to use VFI to automatically diagnose the aneurysms
while scanning the vessel, without performing manual measurement on the scans. For
abdominal aortic aneurysms assessment, a focal dilatation in an artery, with at least a
50% increase of its normal diameter, is defined as an aneurysm. An enlargement larger
than three centimeters (3 cm) of the abdominal aorta, even if asymptomatic, has been
considered in the literature to be an abdominal aortic aneurysm.

Returning to FIGURE 2, the measurement processor 220 is also configured to estimate
volume flow using the vessel wall delineation of the segmentation by automatically
selecting vessel cross-sections (316, 320, 322, etc.) between the segmented walls for
computing the volume flow in VFI. Volume flow quantifies the flow and characterizes the
vessel, and the reliability of this measure depends on the estimated vessel diameter. In
FIGURE 3, with the accurate identification of the vessel walls 310 and 312, the VFI data
extends from wall-to-wall (the entire vessel region), and velocities can be computed for
the entire vessel sub-portion 308. As such, the approach described herein enables correct
estimation of the volume flow, and computes volume flow without manual intervention of
user.

Returning to FIGURE 2, a rendering engine 222 receives the B-mode image/volume,
the VFI data, the segmentation, and, if take, the measurement(s) and displays, via a
display 324 and/or other display, one or more of the B-mode image/volume, the VFI data,
the segmentation, and/or the measurement(s). For example, the rendering engine 120
can display only the B-mode image/volume, the B-mode image/volume with the VFI
data superimposed thereover, the B-mode image/volume with the segmented vessel wall
superimposed thereover the B-mode image/volume with the VFI data and segmented
vessel wall superimposed thereover, the B-mode image/volume with the VFI data, seg-
mented vessel wall, and measurement superimposed thereover, etc. FIGURES 4 and 5
show examples of B-mode images 402 and 502 with wall-to-wall segmentation of vessels
404 and 504 superimposed thereover.

Returning to FIGURE 2, a user interface 226 includes one or more input devices (e.g.,
a button, a knob, a slider, a touch pad, a mouse, a trackball, a touch screen, etc.) and/or
one or more output devices (e.g., a display screen, a light, an audio generator, etc.), which
allow for interaction between a user and the ultrasound imaging system 200. A controller
228 controls one or more of the components 102-122, e.g., based on one or more modes
of operation (e.g., VFI + B-mode, measurement mode, auto PRF, echo cancelation, etc.).
In one instance, this includes adjusting the operating PRF based on the PRF estimated
by the operating parameter processor 218 and/or a signal from the user interface 226
adjusting the PRF, optimizing echo cancelling based on the segmentation, etc.
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One or more of the beamformer 210, the image processor 212, the velocity processor
214, the segmentation processor 216, the operating parameter processor 218, the mea-
surement processor 220 and/or other component(s) can be implemented via one or more
processors (e.g., a central processing unit CPU, a microprocessor, a controller, a graphics
processing unit GPU, etc.) executing one or more computer readable instructions encoded
or embedded on computer readable storage medium (which excludes transitory medium)
such as physical memory or other non-transitory medium. Additionally or alternatively, at
least one of the instructions can be carried by a carrier wave, a signal, or other transitory
medium.

It is to be understood that the ultrasound imaging system 200 can be part of a portable
system on a stand with wheels, a system residing on a tabletop, and/or other system
in which the transducer array 202 is housed and mechanically supported in a probe or
the like and one or more of the other components (e.g., one or more of the components
206-230) are housed and mechanically supported in a console, which is separate from
the probe. The display 224 may or may not be part of the console. In another instance,
the transducer array 202 and one or more of the other components are housed and/or
mechanically supported within a single enclosure hand-held ultrasound scanning device.

In a variation, at least one of the operating parameter processor 218 or the measurement
processor 220 is omitted.

As briefly discussed above, the segmentation processor 216 processes the VFI flow
data and the B-mode image/volume and creates a wall-to-wall segmentation for a blood
vessel. FIGURE 6 illustrates an example segmentation algorithm in connection with 2-D
VFI data and a 2-D B-mode image. However, it is to be understood that one skilled in the
art would know how to adjust the algorithm without undue experimentation for 3-D VFI
data and a 3-D B-mode volume to generate a marker volume and use this maker volume
in a volume growing algorithm with respect to the B-mode volume to delineate vessel
boundaries in 3-D. Generally, the segmentation of FIGURE 6 can be divided into the
below described four distinct steps.

1) Step I (602): Generating a marker-image. With reference to FIGURES 2 and
6-10, the segmentation processor 216 detects inner markers and outer markers. The
segmentation processor 216 detects inner markers using gray scale skeletonization of the
VFI data. In one instance, the flow data are absolute velocities of VFI estimates. The
skeletonization process extracts a center-line of the flow data that also indicates locations
inside the vessel boundary. The skeletonization starts by computing a distance transform
800 (FIGURE 8) of an inverted binary mask of VFI data 700 (FIGURE 7). Ridge lines 900
on the distance transform 80 are extracted as a centerline 902 of the flow data (FIGURE
9). The centerline 902 is the inner marker

The segmentation processor 216 detects outer markers using the B-mode image.
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Strong specular regions are extracted from the B-mode image and used as an indication
of regions outside the vessels. For this purpose, the envelope of the acquired scan is first
computed. A cumulative histogram of the intensity values is then generated. The intensity
values less than half of the maximum intensities in the envelope are disregarded, and
a mask of strong signal regions is generated. The mask is then multiplied to a dilated
version of the VFI mask and yields an outer marker mask 1000 (FIGURE 10). FIGURE
11 shows a marker-image 1100 including the outer marker mask 1000 with the centerline
902.

2) Step II (604): Marker-controlled region growing. With reference to FIGURES 2,
6, 11, and 12, the segmentation processor 216 employs a marker-controlled watershed
image processing approach to delineate or segment boundaries of vessel-like structures
bracketed by the marker-image 1100. The B-mode image is median filtered, and a
watershed segmentation of this filtered image with respect to the marker-image yields a
segmentation 1200 of the vessel-like structures. (FIGURE 12)

3) Step III (606): Artifact rejection. With reference to FIGURES 2, 6 and 13,
the segmentation processor 216 reduces over-segmented regions (resulting from the
region growing), which do not belong to the vessel regions. For this, in one instance,
the segmentation processor 216 employs artifact rejection based on size, shape and/or
vascularity (e.g., using a vesselness filter such as a Frangi filter or the like to ensure that
only vessels are retained). Basically elongated objects containing flow data are kept in
segmentation results and the rest are excluded. Even though, the retained structures in
this step are vessel-like objects, the boundaries of vessels might have some discrepancies
to the actual vessel boundaries. FIGURE 13 shows an example image 1300 in which in
which artifacts are rejected and vessel-like structures are retained.

4) Step IV (608): Inter-frame co-registration of segmentations. Returning to FIGURE
2, the segmentation processor 216 corrects the segmentation so that it follows the vessel
boundaries using an inter-frame co-registration of the segmentations. To refine parts of the
segmentation that does not follow the actual vessel boundaries, a few neighboring frames
in time are considered. Segmentations of those frames are co-registered and regions
matching in at least a sub-portion (e.g., 50% to 100%, such as 80%, 85%, etc.) of frames
are considered to be the actual vessel.

Figure 14 illustrates an example method.
It is to be understood that the following acts are provided for explanatory purposes

and are not limiting. As such, one or more of the acts may be omitted, one or more acts
may be added, one or more acts may occur in a different order (including simultaneously
with another act), etc.

At 1402, VFI + B-mode imaging is activated for the system 200.
At 1404, the transducer 202 is employed to scan a subject and acquire ultrasound data
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of a blood vessel(s) of interest.
At 1406, VFI data is generated with the acquired ultrasound data.
At 1408, a B-mode image is generated with the acquired ultrasound data.
At 1410, a sub-portion of a blood vessel(s) in a region of interest is segmented wall-

to-wall using a combination of the VFI data and the B-mode image, as described herein
and/or otherwise.

At 1412, the B-mode image is displayed with the segmentation and the VFI data
superimposed thereover within the entirety of the sub-portion of the blood vessel between
the walls.

At 1414, at least one of the PRF or echo cancellation is optimized based on the
wall-to-wall vessel segmentation, as described herein and/or otherwise.

At 1416, at least one measurement it made based on the wall-to-wall vessel segmenta-
tion, as described herein and/or otherwise.

In a variation, at least one of act 1414 or 1416 is omitted.
The methods described herein may be implemented via one or more processors ex-

ecuting one or more computer readable instructions encoded or embodied on computer
readable storage medium such as physical memory, which causes the one or more pro-
cessors to carry out the various acts and/or other functions and/or acts. Additionally or
alternatively, the one or more processors can execute instructions carried by transitory
medium such as a signal or carrier wave.

The application has been described with reference to various embodiments. Modifica-
tions and alterations will occur to others upon reading the application. It is intended that
the invention be construed as including all such modifications and alterations, including
insofar as they come within the scope of the appended claims and the equivalents thereof.

A.6 Claims

What is claimed is:

1. An ultrasound system, comprising: an image processor configured to process
beamformed ultrasound data representing structure flowing through a tubular object
and generate an image indicative of the tubular object based thereon; a velocity
processor configured to process the beamformed ultrasound data and generate
vector flow imaging data indicative of the structure flowing through the tubular
object based thereon, wherein the vector flow imaging data includes at least an
axial velocity component signal and one or more transverse velocity components
indicating a direction and a speed of the structure flowing through the tubular
object; a segmentation processor configured to segment the tubular object from
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the image based on a combination of both the vector flow imaging data and the
image, wherein a resulting segmentation extends from wall-to-wall of the tubular
object; and a display configured to display the image with the segmentation and
the vector flow imaging data superimposed thereover, with the vector flow imaging
data extending from wall-to-wall within the tubular object.

2. The system of claim 1, wherein the segmentation processor segments the tubular
object by: generating a marker image from velocity flow data and the image; using
the marker image with a marker-controlled region growing algorithm to delineate
tubular object boundaries in the image; rejecting non-tubular object structure; and
employing an inter-frame co-registration of segmentations across to ensure a tubular
object segmented in each frame are in correspondence with a same tubular object
segmented in neighboring frames in a sequence, wherein tubular objects matching
in all frames are considered to be the actual tubular structure.

3. The system of claim 2, wherein the segmentation processor determines an inner
marker from the vector flow imaging data, an outer marker from only the image and
the vector flow imaging data, and combines the inner and outer markers to produce
the marker image.

4. The system of claim 3, wherein the segmentation processor determines the inner
marker by employing a gray scale skeletonization of the vector flow imaging data,
wherein the skeletonization includes extracting a center line of the vector flow
imaging data, which indicates locations inside the tubular object boundary.

5. The system of claim 4, wherein the segmentation processor extracts the center
line by generating a distance map of an inverse of a velocity flow imaging binary
mask, determining ridge lines on the distance map as an initial skeleton of the
velocity flow imaging mask, and generating a final skeleton using only velocity flow
imaging data pixels lying inside the initial skeleton and larger than a predetermined
percent of the velocity flow imaging data.

6. The system of claim 3, wherein the segmentation processor determines the outer
marker by extracting strong specular regions from the image, which are considered
outside of the tubular structure.

7. The system of claim 2, wherein the segmentation processor employs a marker-
controlled watershed image processing approach, using the marker image, to seg-
ment boundaries of tubular-like structures located by the marker image.
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8. The system of claim 7, wherein the segmentation processor generates a binary mask
containing strong specular regions, and multiplies the binary mask by an inverted
and dilated version of a velocity flow information mask, which generates an outer
marker mask that highlights the strong specular regions and ensures the mask does
not cover an area with flow.

9. The system of claim 2, wherein the segmentation processor rejects non-tubular
object structure based on at least one of a size, a shape, an amount of flow, and/or a
vascularity to ensure only tubular structure is retained.

10. The system of claim 1, further comprising: an operating system processor config-
ured to adaptively adjust a pulse repetition frequency during imaging based on the
wall-to-wall segmentation.

11. The system of claim 1, further comprising: an operating parameter processor config-
ured to tune echo cancelling during imaging based on the wall-to-wall segmentation.

12. The system of claim 1, further comprising: a measurement processor configured to
estimate a peak systolic velocity based on the wall-to-wall segmentation.

13. The system of claim 1, further comprising: a measurement processor configured to
estimate a largest vessel diameter based on the wall-to-wall segmentation.

14. The system of claim 1, further comprising: a measurement processor configured to
estimate a volume flow based on the wall-to-wall segmentation.

15. A method, comprising: generating an image indicative of a tubular object from
beamformed ultrasound data representing structure flowing through the tubular
object; generating vector flow imaging data indicative of the structure flowing
through the tubular object from beamformed ultrasound, wherein the vector flow
imaging data includes at least an axial velocity component signal and one or more
transverse velocity components indicating a direction and a speed of the structure
flowing through the tubular object; generating a wall-to-wall segmentation of the
tubular object from the image with a combination of the vector flow imaging data
and the image; and visually presenting the image with the segmentation and the
vector flow imaging data superimposed thereover, with the vector flow imaging
data extending from wall-to-wall within the tubular object.

16. The method of claim 15, wherein generating a wall-to-wall segmentation includes:
generating a marker image from velocity flow data and the image; using the marker
image with a marker-controlled region growing algorithm to delineate tubular object
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boundaries in the image; rejecting non-tubular object structure; and employing
an inter-frame co-registration of segmentations across to make sure that a tubular
object segmented in each frame are in correspondence with a same tubular object
segmented in neighboring frames in a sequence.

17. The method of claim 16, wherein the generating the marker image includes: deter-
mining an inner marker by employing gray scale skeletonization of the velocity flow
imaging data, which extracts a center-line of flow data, which indicates locations
inside the tubular object boundary; determining an outer marker by extracting
strong specular regions from the image, which are considered outside of the tubular
structure; and combining the inner and outer markers to produce the marker image.

18. The method of claim 17, wherein using the marker image with a marker-controlled
region growing algorithm includes: generating a binary mask containing strong
specular regions; and multiplying the binary mask by an inverted and dilated version
of a velocity flow information mask, which generates an outer marker mask that
highlights the strong specular regions and ensures the mask does not cover an area
with flow.

19. The method of claim 18, wherein non-tubular object structure is rejected based on
at least one of a size, a shape, an amount of flow, and/or a vascularity to ensure only
tubular structure is retained.

20. The method of claim 19, wherein employing the inter-frame co-registration includes
identifying only regions matching in at least 80

21. The method of claim 16, further comprising: at least one of adaptively adjusting
a pulse repetition frequency during imaging based on the segmentation or tuning
echo cancelling during imaging based on the segmentation.

22. The method of claim 16, further comprising: at least one of estimating a peak
systolic velocity based on the segmentation, estimating a largest vessel diameter
based on the segmentation, or estimating a volume flow based on the segmentation.

23. A computer readable storage medium encoded with computer readable instructions,
which, when executed by a processer, causes the processor to: construct an image
indicative of a tubular object from beamformed ultrasound data representing struc-
ture flowing through the tubular object; estimate vector flow imaging data indicative
of the structure flowing through the tubular object from beamformed ultrasound,
wherein the vector flow imaging data includes at least an axial velocity component
signal and one or more transverse velocity components indicating a direction and a
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speed of the structure flowing through the tubular object; compute a wall-to-wall
segmentation of the tubular object from the image with a combination of the vector
flow imaging data and the image; and display the image with the segmentation and
the vector flow imaging data superimposed thereover, with the vector flow imaging
data extending from wall-to-wall within the tubular object.

A.7 Abstract

An ultrasound imaging system includes an image processor and a velocity processor
configured to process beamformed ultrasound data representing structure flowing through
a tubular object and generate, respectively, an image indicative of the tubular object and
vector flow imaging data indicative of the structure flowing through the tubular object.
The system further includes a segmentation processor configured to segment the tubular
object from the image based on a combination of both the vector flow imaging data and
the image, wherein a resulting segmentation extends from wall-to-wall of the tubular
object. The system further includes a display configured to display the image with the
segmentation and the vector flow imaging data superimposed thereover, with the vector
flow imaging data extending from wall-to-wall within the tubular object. The system
further includes the automatic computation of largest vessel diameter (Dmax), and/or
quantitative flow measures such as Peak systolic velocity (PSV) and/or volume flow.

A.8 Drawings
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L. Lönn, and M. B. Nielsen (2016). “Surveillance for Hemodialysis Access Stenosis:
Usefulness of Ultrasound Vector Volume Flow”. In: J. Vascul. Access. Accepted for
publication (cit. on p. 82).

Jensen, J. A. (2016). “Quantitative Measurements using Ultrasound Vector Flow Imaging”.
In: Proc. IEEE Ultrason. Symp. Pp. 1–4 (cit. on p. 83).

Jensen, J., J. B. Olesen, M. B. Stuart, P. M. Hansen, M. B. Nielsen, and J. A. Jensen
(2016). “Vector velocity volume flow estimation: Sources of error and corrections
applied for arteriovenous fistulas”. In: Ultrasonics 70, pp. 136–146. DOI: http:
//dx.doi.org/10.1016/j.ultras.2016.04.023 (cit. on pp. 83, 84).

References from Chapter 6

Meyer, F. (1977). “Contrast features extraction, Special Issues of Practical Metallography”.
In: Quant. Anal. Microstruct. Mat. Sc. Bio. Med. Vol. 8 (cit. on p. 102).
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