91 research outputs found

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    Robotic Ultrasound Imaging: State-of-the-Art and Future Perspectives

    Full text link
    Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques.Comment: Accepted by Medical Image Analysi

    2-D Ultrasound Probe Complete Guidance by Visual Servoing Using Image Moments

    Full text link

    Robotic-assisted approaches for image-controlled ultrasound procedures

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2019A aquisição de imagens de ultrassons (US) é atualmente uma das modalidades de aquisição de imagem mais implementadas no meio médico por diversas razões. Quando comparada a outras modalidades como a tomografia computorizada (CT) e ressonância magnética (MRI), a combinação da sua portabilidade e baixo custo com a possibilidade de adquirir imagens em tempo real resulta numa enorme flexibilidade no que diz respeito às suas aplicações em medicina. Estas aplicações estendem-se desde o simples diagnóstico em ginecologia e obstetrícia, até tarefas que requerem alta precisão como cirurgia guiada por imagem ou mesmo em oncologia na área da braquiterapia. No entanto ao contrário das suas contrapartes devido à natureza do princípio físico da qual decorrem as imagens, a sua qualidade de imagem é altamente dependente da destreza do utilizador para colocar e orientar a sonda de US na região de interesse (ROI) correta, bem como, na sua capacidade de interpretar as imagens obtidas e localizar espacialmente as estruturas no corpo do paciente. De modo para tornar os procedimentos de diagnóstico menos propensos a erros, bem como os procedimentos guiados por imagem mais precisos, o acoplamento desta modalidade de imagem com uma abordagem robótica com controlo baseado na imagem adquirida é cada vez mais comum. Isto permite criar sistemas de diagnóstico e terapia semiautónomos, completamente autónomos ou cooperativos com o seu utilizador. Esta é uma tarefa que requer conhecimento e recursos de múltiplas áreas de conhecimento, incluindo de visão por computador, processamento de imagem e teoria de controlo. Em abordagens deste tipo a sonda de US vai agir como câmara para o interior do corpo do paciente e o processo de controlo vai basear-se em parâmetros tais como, as informações espaciais de uma certa estrutura-alvo presente na imagem adquirida. Estas informações que são extraídos através de vários estágios de processamento de imagem são utilizadas como realimentação no ciclo de controlo do sistema robótico em questão. A extração de informação espacial e controlo devem ser o mais autónomos e céleres possível, de modo a conseguir produzir-se um sistema com a capacidade de atuar em situações que requerem resposta em tempo real. Assim, o objetivo deste projeto foi desenvolver, implementar e validar, em MATLAB, as bases de uma abordagem para o controlo semiautónomo baseado em imagens de um sistema robótico de US e que possibilite o rastreio de estruturas-alvo e a automação de procedimentos de diagnóstico gerais com esta modalidade de imagem. De modo a atingir este objetivo foi assim implementada nesta plataforma, um programa semiautónomo com a capacidade de rastrear contornos em imagens US e capaz de produzir informação relativamente à sua posição e orientação na imagem. Este programa foi desenhado para ser compatível com uma abordagem em tempo real utilizando um sistema de aquisição SONOSITE TITAN, cuja velocidade de aquisição de imagem é de 25 fps. Este programa depende de fortemente de conceitos integrados na área de visão por computador, como computação de momentos e contornos ativos, sendo este último o motor principal da ferramenta de rastreamento. De um modo geral este programa pode ser descrito como uma implementação para rastreamento de contornos baseada em contornos ativos. Este tipo de contornos beneficia de um modelo físico subjacente que o permite ser atraído e convergir para determinadas características da imagem, como linhas, fronteiras, cantos ou regiões específicas, decorrente da minimização de um funcional de energia definido para a sua fronteira. De modo a simplificar e tornar mais célere a sua implementação este modelo dinâmico recorreu à parametrização dos contornos com funções harmónicas, pelo que as suas variáveis de sistema são descritoras de Fourier. Ao basear-se no princípio de menor energia o sistema pode ser encaixado na formulação da mecânica de Euler-Lagrange para sistemas físicos e a partir desta podem extrair-se sistemas de equações diferenciais que descrevem a evolução de um contorno ao longo do tempo. Esta evolução dependente não só da energia interna do contorno em sim, devido às forças de tensão e coesão entre pontos, mas também de forças externas que o vão guiar na imagem. Estas forças externas são determinadas de acordo com a finalidade do contorno e são geralmente derivadas de informação presente na imagem, como intensidades, gradientes e derivadas de ordem superior. Por fim, este sistema é implementado utilizando um método explícito de Euler que nos permite obter uma discretização do sistema em questão e nos proporciona uma expressão iterativa para a evolução do sistema de um estado prévio para um estado futuro que tem em conta os efeitos externos da imagem. Depois de ser implementado o desempenho do programa semiautomático de rastreamento foi validado. Esta validação concentrou-se em duas vertentes: na vertente da robustez do rastreio de contornos quando acoplado a uma sonda de US e na vertente da eficiência temporal do programa e da sua compatibilidade com sistemas de aquisição de imagem em tempo real. Antes de se proceder com a validação este sistema de aquisição foi primeiro calibrado espacialmente de forma simples, utilizando um fantoma de cabos em N contruído em acrílico capaz de produzir padrões reconhecíveis na imagem de ultrassons. Foram utilizados padrões verticais, horizontais e diagonais para calibrar a imagem, para os quais se consegue concluir que os dois primeiros produzem melhores valores para os espaçamentos reais entre pixéis da imagem de US. Finalmente a robustez do programa foi testada utilizando fantomas de 5%(m/m) de agar-agar incrustados com estruturas hipoecogénicas, simuladas por balões de água, construídos especialmente para este propósito. Para este tipo de montagem o programa consegue demonstrar uma estabilidade e robustez satisfatórias para diversos movimentos de translação e rotação da sonda US dentro do plano da imagem e mostrando também resultados promissores de resposta ao alongamento de estruturas, decorrentes de movimentos da sonda de US fora do plano da imagem. A validação da performance temporal do programa foi feita com este a funcionar a solo utilizando vídeos adquiridos na fase anterior para modelos de contornos ativos com diferentes níveis de detalhe. O tempo de computação do algoritmo em cada imagem do vídeo foi medido e a sua média foi calculada. Este valor encontra-se dentro dos níveis previstos, sendo facilmente compatível com a montagem da atual da sonda, cuja taxa de aquisição é 25 fps, atingindo a solo valores na gama entre 40 e 50 fps. Apesar demonstrar uma performance temporal e robustez promissoras esta abordagem possui ainda alguns limites para os quais a ainda não possui solução. Estes limites incluem: o suporte para um sistema rastreamento de contornos múltiplos e em simultâneo para estruturas-alvo mais complexas; a deteção e resolução de eventos topológicos dos contornos, como a fusão, separação e auto-interseção de contornos; a adaptabilidade automática dos parâmetros do sistema de equações para diferentes níveis de ruido da imagem e finalmente a especificidade dos potenciais da imagem para a convergência da abordagem em regiões da imagem que codifiquem tipo de tecidos específicos. Mesmo podendo beneficiar de algumas melhorias este projeto conseguiu atingir o objetivo a que se propôs, proporcionando uma implementação eficiente e robusta para um programa de rastreamento de contornos, permitindo lançar as bases nas quais vai ser futuramente possível trabalhar para finalmente atingir um sistema autónomo de diagnóstico em US. Além disso também demonstrou a utilidade de uma abordagem de contornos ativos para a construção de algoritmos de rastreamento robustos aos movimentos de estruturas-alvo no a imagem e com compatibilidade para abordagens em tempo-real.Ultrasound (US) systems are very popular in the medical field for several reasons. Compared to other imaging techniques such as CT or MRI, the combination of low-priced and portable hardware with realtime image acquisition enables great flexibility regarding medical applications, from simple diagnostics tasks to high precision ones, including those with robotic assistance. Unlike other techniques, the image quality and procedure accuracy are highly dependent on user skills for spatial ultrasound probe positioning and orientation around a region of interest (ROI) for inspection. To make diagnostics less prone to error and guided procedures more precise, and consequently safer, the US approach can be coupled to a robotic system. The probe acts as a camera to the patient body and relevant imaging information can be used to control a robotic arm, enabling the creation of semi-autonomous, cooperative and possibly fully autonomous diagnostics and therapeutics. In this project our aim is to develop a semi-autonomous tool for tracking defined structures of interest within US images, that outputs meaningful spatial information of a target structure (location of the centre of mass [CM], main orientation and elongation). Such tool must accomplish real-time requirements for future use in autonomous image-guided robotic systems. To this end, the concepts of moment-based visual servoing and active contours are fundamental. Active contours possess an underlying physical model allowing deformation according to image information, such as edges, image regions and specific image features. Additionally, the mathematical framework of vision-based control enables us to establish the types of necessary information for controlling a future autonomous system and how such information can be transformed to specify a desired task. Once implemented in MATLAB the tracking and temporal performance of this approach is tested in built agar-agar phantoms embedded with water-filled balloons, for stability demonstration, probe motion robustness in translational and rotational movements, as well as promising capability in responding to target structure deformations. The developed framework is also inside the expected levels, being compatible with a 25 frames per second image acquisition setup. The framework also has a standalone tool capable of dealing with 50 fps. Thus, this work lays the foundation for US guided procedures compatible with real-time approaches in moving and deforming targets

    Image moments-based ultrasound visual servoing

    Get PDF
    International audienceA new visual servoing method based on B-mode ultrasound images is proposed to automatically control the motion of a 2D ultrasound probe held by a medical robot in order to reach a desired B-scan image of an object of interest. In this approach, combinations of image moments extracted from the current observed object cross-section are used as feedback visual features. The analytical form of the interaction matrix, relating the time variation of these visual features to the probe velocity, is derived and used in the control law. Simulations performed with a static ultrasound volume containing an egg-shaped object, and in-vitro experiments using a robotized ultrasound probe that interacts with a rabbit heart immersed in water, show the validity of this new approach and its robustness with respect to modeling and measurements errors

    Intensity-Based Ultrasound Visual Servoing: Modeling and Validation With 2-D and 3-D Probes

    Full text link

    Improving ultrasound intensity-based visual servoing: tracking and positioning tasks with 2D and bi-plane probes

    Get PDF
    International audienceReal time and non invasive, the ultrasound imag- ing modality can easily be used in minimally invasive surgery or needle insertion procedures to visualize an organ or a tumor to reach. However the manual stabilization of the ultrasound image while the organ moves with patient breathing or heart beating can be very tricky. In this paper, we present an intensity-based approach to control both in-plane and out- of-plane motions of an ultrasound probe held by a robotic arm in order to reach and follow one organ cross section. Two methods are proposed to improve the accuracy of this intensity-based approach, by estimating on-line the 3D image gradient required in the control law and by considering a bi-plane sensor. Robotic experiments are performed with two different ultrasound sensors on a realistic abdominal phantom and validate this visual servoing approach

    Image-Guided Robot-Assisted Techniques with Applications in Minimally Invasive Therapy and Cell Biology

    Get PDF
    There are several situations where tasks can be performed better robotically rather than manually. Among these are situations (a) where high accuracy and robustness are required, (b) where difficult or hazardous working conditions exist, and (c) where very large or very small motions or forces are involved. Recent advances in technology have resulted in smaller size robots with higher accuracy and reliability. As a result, robotics is fi nding more and more applications in Biomedical Engineering. Medical Robotics and Cell Micro-Manipulation are two of these applications involving interaction with delicate living organs at very di fferent scales.Availability of a wide range of imaging modalities from ultrasound and X-ray fluoroscopy to high magni cation optical microscopes, makes it possible to use imaging as a powerful means to guide and control robot manipulators. This thesis includes three parts focusing on three applications of Image-Guided Robotics in biomedical engineering, including: Vascular Catheterization: a robotic system was developed to insert a catheter through the vasculature and guide it to a desired point via visual servoing. The system provides shared control with the operator to perform a task semi-automatically or through master-slave control. The system provides control of a catheter tip with high accuracy while reducing X-ray exposure to the clinicians and providing a more ergonomic situation for the cardiologists. Cardiac Catheterization: a master-slave robotic system was developed to perform accurate control of a steerable catheter to touch and ablate faulty regions on the inner walls of a beating heart in order to treat arrhythmia. The system facilitates touching and making contact with a target point in a beating heart chamber through master-slave control with coordinated visual feedback. Live Neuron Micro-Manipulation: a microscope image-guided robotic system was developed to provide shared control over multiple micro-manipulators to touch cell membranes in order to perform patch clamp electrophysiology. Image-guided robot-assisted techniques with master-slave control were implemented for each case to provide shared control between a human operator and a robot. The results show increased accuracy and reduced operation time in all three cases
    corecore