7,459 research outputs found

    State of the Art on Stylized Fabrication

    Get PDF
    © 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state-of-the-art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    Procedural Historic Building Information Modelling (HBIM) For Recording and Documenting European Classical Architecture

    Get PDF
    Procedural Historic Building Information Modelling (HBIM) is a new approach for modelling historic buildings which develops full building information models from remotely sensed data. HBIM consists of a novel library of reusable parametric objects, based on historic architectural data and a system for mapping these library objects to survey data. Using concepts from procedural modelling, a new set of rules and algorithms have been developed to automatically combine HBIM library objects and generate different building arrangements by altering parameters. This is a semi-automatic process where the required building structure and objects are first automatically generated and then refined to match survey data. The encoding of architectural rules and proportions into procedural modelling rules helps to reduce the amount of further manual editing that is required. The ability to transfer survey data such as building footprints or cut-sections directly into a procedural modelling rule also greatly reduces the amount of further editing required. These capabilities of procedural modelling enable a more automated and efficient overall workflow for reconstructing BIM geometry from point cloud data. This document outlines the research carried out to evaluate the suitability of a procedural modelling approach for improving the process of reconstructing building geometry from point clouds. To test this hypothesis, three procedural modelling prototypes were designed and implemented for BIM software. Quantitative accuracy testing and qualitative end-user scenario testing methods were used to evaluate the research hypothesis. The results obtained indicate that procedural modelling has potential for achieving more accurate, automated and easier generation of BIM geometry from point clouds

    Electrostatic measurement system

    Get PDF
    A system for and method of contact-electrifying a dielectric to determine its electrostatic properties is described. The dielectric is placed in contact with a contact plate means, and connected to a voltage source means to charge the contact plate and to contact-electrify the dielectric. The contact plate means is disconnected from the voltage source and a charge sensor means monitors the rate of decay of the charge on the dielectric. If a conductive path from the contact plate to ground is desired, a lead may be connected between the conductor and ground. Automatic timing and charge monitoring are preferred for maximum accuracy, especially where dielectrics treated with antistatic agents are tested

    Electronic prototyping

    Get PDF
    The potential benefits of automation in space are significant. The science base needed to support this automation not only will help control costs and reduce lead-time in the earth-based design and construction of space stations, but also will advance the nation's capability for computer design, simulation, testing, and debugging of sophisticated objects electronically. Progress in automation will require the ability to electronically represent, reason about, and manipulate objects. Discussed here is the development of representations, languages, editors, and model-driven simulation systems to support electronic prototyping. In particular, it identifies areas where basic research is needed before further progress can be made

    Automatic tolerance inspection through Reverse Engineering: a segmentation technique for plastic injection moulded parts

    Get PDF
    This work studies segmentations procedures to recognise features in a Reverse Engineering (RE) application that is oriented to computer-aided tolerance inspection of injection moulding die set-up, necessary to manufacture electromechanical components. It will discuss all steps of the procedures, from the initial acquisition to the final measure data management, but specific original developments will be focused on the RE post-processing method, that should solve the problem related to the automation of the surface recognition and then of the inspection process. As it will be explained in the first two Chapters, automation of the inspection process pertains, eminently, to feature recognition after the segmentation process. This work presents a voxel-based approach with the aim of reducing the computation efforts related to tessellation and curvature analysis, with or without filtering. In fact, a voxel structure approximates the shape through parallelepipeds that include small sub-set of points. In this sense, it represents a filter, since the number of voxels is less than the total number of points, but also a local approximation of the surface, if proper fitting models are applied. Through sensitivity analysis and industrial applications, limits and perspectives of the proposed algorithms are discussed and validated in terms of accuracy and save of time. Validation case-studies are taken from real applications made in ABB Sace S.p.A., that promoted this research. Plastic injection moulding of electromechanical components has a time-consuming die set-up. It is due to the necessity of providing dies with many cavities, which during the cooling phase may present different stamping conditions, thus defects that include lengths outside their dimensional tolerance, and geometrical errors. To increase the industrial efficiency, the automation of the inspection is not only due to the automatic recognition of features but also to a computer-aided inspection protocol (path planning and inspection data management). For this reason, also these steps will be faced, as the natural framework of the thesis research activity. The work structure concerns with six chapters. In Chapter 1, an introduction to the whole procedure is presented, focusing on reasons and utilities of the application of RE techniques in industrial engineering. Chapter 2 analyses acquisition issues and methods that are related to our application, describing: (a) selected hardware; (b) adopted strategy related to the cloud of point acquisition. In Chapter 3, the proposed RE post-processing is described together with a state of art about data segmentation and surface reconstruction. Chapter 4 discusses the proposed algorithms through sensitivity studies concerning thresholds and parameters utilised in segmentation phase and surface reconstruction. Chapter 5 explains briefly the inspection workflow, PDM requirements and solution, together with a preliminary assessing of measures and their reliability. These three chapters (3, 4 and 5) report final sections, called “Discussion”, in which specific considerations are given. Finally, Chapter 6 gives examples of the proposed segmentation technique in the framework of the industrial applications, through specific case studies

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft
    corecore