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ABSTRACT 

Procedural Historic Building Information Modelling (HBIM) is a new approach for 

modelling historic buildings which develops full building information models from 

remotely sensed data. HBIM consists of a novel library of reusable parametric objects, 

based on historic architectural data and a system for mapping these library objects to 

survey data. Using concepts from procedural modelling, a new set of rules and 

algorithms have been developed to automatically combine HBIM library objects and 

generate different building arrangements by altering parameters. This is a semi-

automatic process where the required building structure and objects are first 

automatically generated and then refined to match survey data.  

The encoding of architectural rules and proportions into procedural modelling rules 

helps to reduce the amount of further manual editing that is required. The ability to 

transfer survey data such as building footprints or cut-sections directly into a 

procedural modelling rule also greatly reduces the amount of further editing required. 

These capabilities of procedural modelling enable a more automated and efficient 

overall workflow for reconstructing BIM geometry from point cloud data. 

This document outlines the research carried out to evaluate the suitability of a 

procedural modelling approach for improving the process of reconstructing building 

geometry from point clouds. To test this hypothesis, three procedural modelling 

prototypes were designed and implemented for BIM software. Quantitative accuracy 

testing and qualitative end-user scenario testing methods were used to evaluate the 

research hypothesis. The results obtained indicate that procedural modelling has 

potential for achieving more accurate, automated and easier generation of BIM 

geometry from point clouds.  
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Part I Summary: 

Part I of this thesis contains two chapters which provide an introduction to the 

research. These two chapters include a description of the research problem, 

aims and objectives, scope of research, contributions of research, research 

methodology and a review of existing literature relating to the research.  
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1 Chapter One: Introduction 

1.1 Background, Motivation and Context   

“Architectural heritage is our legacy from the past, what we live with today, and what 

we pass on to future generations. Our architectural heritage is an irreplaceable source 

of life and inspiration” (UNESCO, 2011). It is crucial to record and document our 

architectural heritage for many reasons, one of the most important is to maintain and 

preserve history to create a record for current and future generations. Understanding the 

history and current condition of buildings and landscapes allows for an informed 

decision on conservation (Eppich et al., 2007). The International Committee for 

Heritage Documentation (CIPA, 2010) believe that a monument cannot be restored and 

protected until it has been fully measured and documented. 

The first step to preservation of our architectural heritage is documentation. Without 

understanding and knowing everything possible about a historic building, site or object 

it is impossible to develop a sound rational and effective plan for preserving it. A major 

problem with this is how to best construct and disseminate knowledge about heritage 

sites that can lead to the most effective methods of preservation.  

There is an increased demand for documenting existing buildings with digital 

information enhanced 3D models. Along with a building’s geometry, information 

enhanced models can also contain information about a buildings semantics, topology, 

relationships between components and attributes. The main motivation for documenting 

our built heritage with smart information enhanced models is the wide variety of 

applications that the information-rich models can be used for. This includes applications 

for documentation and management of buildings along with great capabilities for 

energy, structural and economic analysis of buildings.  
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In order to create an accurate representation of existing buildings, accurate and up-to-

date survey data is required. There are many surveying and photogrammetric techniques 

available for recording the information needed to create accurate 3D models of existing 

buildings. Laser scanning technology has become very popular for collecting 

information for generating accurate models of existing buildings. This is due to the 

speed at which it can capture data, the level-of-detail and accuracy in the resulting point 

cloud information. Other traditional survey technologies such as total stations cannot 

record the same level of detail at the speed possible with laser scanning. 

Photogrammetric techniques are also very well suited to capturing data for generating 

3D models of existing buildings. Photogrammetric techniques use images taken at 

different viewpoints to record the 3D geometry of a building or object. 

Photogrammetric techniques can produce similar results to laser scanning such as point 

clouds, mesh models and orthographic imagery.   

The generation of accurate 3D models of existing buildings can be divided into three 

main stages. This includes data acquisition, pre-processing of survey data and 3D 

modelling. The third stage of modelling is the longest stage in this process. This final 

modelling stage is a reverse engineering process where geometric components are 

created and mapped to the survey data to create the 3D model.  

Developments in CAD modelling have led to the introduction of a new concept called 

Building Information Modelling (BIM). Unlike previous CAD modelling, BIM 

incorporates object-oriented, parametric and feature-based modelling concepts 

combined with the addition of a dynamic 3D database for storing information relating to 

buildings. Due to its many benefits, BIM has received a lot of attention in both industry 

and academia. As BIM was designed for modelling and representing new and modern 

buildings the focus of this attention to date has mainly been on the use of BIM in the 
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planning, design and construction stages of a building (Volk et al., 2014). Recently 

however, there has been a shift in BIM related research from early life cycle stages to 

maintenance, refurbishment and management of buildings throughout their complete 

lifecycle (Volk et al., 2014). The benefits of BIM make it a very suitable solution for 

modelling and managing information relating to a building after the construction stages 

and throughout a building’s lifecycle. A BIM for an existing or historical building can 

be used as a documentation tool for conservation work, retrofitting, renovations or as a 

tool for performing building analysis. 

The concepts of an as-built or as-is BIM are relatively new concepts that are being used 

to describe the recording of existing buildings with BIM. As-built drawings or record 

drawings are typically submitted by a contractor after completion of a project. These 

drawings should reflect any deviations from the original design made during the 

construction process. Due to the benefits of BIM, as-built or record drawings are now 

being replaced by an as-built BIM. After the construction phase, 3D laser scanning or 

other survey data capture methods are used to collect data needed to generate an 

accurate and up-to-date as-built BIM.  

For many conservation or renovation projects, an accurate or up-to-date as-built BIM or 

drawings are not available. In these situations, an as-is BIM can be created from survey 

data. An as-is BIM reflects the true condition of a building at the time of survey. 

Another name given to the process of generating BIM geometry from laser scan data is 

‘Scan to BIM’. However, as stated by Thomson and Boehm (2015) the name ‘Scan to 

BIM’ is wrongly formed as the end result is not a BIM process, but a 3D parametric 

model that aids the process at its current level of development.   
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1.2 Research Problem 

Although BIM greatly improves the process of modelling and recording information 

relating to a building, there are still a number of problems with the use BIM for 

modelling existing buildings. Three main problems are identified:  

1. The current process for reconstructing BIM geometry from point clouds is very 

much a manual one. This manual process is recognised as being time-

consuming, tedious, subjective and costly (Thomson and Boehm, 2015, Volk et 

al., 2014, Tang et al., 2010). 

2. Current BIM software lack specific tools for modelling existing buildings: 

a. Current BIM software is not suitable for accurately representing non-

uniform and irregular geometries often occurring in existing buildings 

such as walls out of plumb.  

b. Current BIM software lacks pre-defined components suitable for existing 

buildings. Most native and 3
rd

 party BIM libraries are focused only on 

modern buildings. As a result, modelling existing and historic buildings 

often require many bespoke components to be created from scratch 

which can be a very time-consuming process.   

3. Due to the lack of tools for modelling existing buildings, more advanced 

workflows and software are required to accurately model buildings as they 

actually exist. This requires costly training and high levels of skill to be 

competent in these workflows and processes.  

The lack of automation and tools for accurately modelling existing buildings with BIM 

results in a time-consuming, complex and costly process. To overcome this, more 
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automated solutions need to be developed for BIM which are capable of accurately 

modelling existing and historical buildings from survey data. 

1.3 Research Question 

This research will assess if an automated modelling approach could be developed to 

improve the current problems with reconstructing BIM geometry from point clouds. 

Automating the scan to BIM process is a primary focus for a lot of researchers. Jung et 

al. (2014), Xiong et al. (2013) and Zhang and Zakhor (2014) have shown promising 

results for automatic object recognition and feature extraction from point clouds. 

Although progress has been made in this area, results are currently limited to automatic 

extraction of basic elements such as planes and openings. Automatic extraction of 

complex architectural elements of existing and historical buildings is still in its infancy. 

Another automated approach which has not been used for AEC and BIM applications is 

procedural modelling. A procedural modelling approach uses a sequence of generation 

instructions, rules or algorithms that can be repeated with varying characteristics to 

automatically generate varying 3D geometries (Kelly and Mccabe, 2006). Procedural 

modelling has many advantages such as automatic generation of geometry, great 

flexibility for variation and object hierarchy.  

Based on the current research problems and the potential of a procedural modelling 

approach, the main question this research is attempting to answer is: 

“Can procedural modelling techniques provide tools for more accurate, automated 

and easier generation of BIM geometry from point clouds?” 

A more accurate, automated and easier solution for converting point clouds to BIM 

geometry would facilitate more efficient generation of high quality heritage 
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documentation. This would facilitate better decision making for building rehabilitation 

and management of existing and historical buildings throughout a building lifecycle. 

1.4 Aim and Objectives of Research 

The aim of this research is to address the following research hypothesis; “Procedural 

modelling is a suitable solution for more accurate, automated and easier generation of 

BIM geometry from point clouds”.  The objectives of the research are: 

 To develop workflows and tools for combining captured survey data in a 

BIM environment. 

 To design a grammar of parametric shapes and objects that can be used to 

reconstruct building geometry from point clouds.  

 To design new procedural rules and algorithms for reconstructing façade and 

building geometry from point clouds. 

 To design efficient methods of interactive editing to alter procedurally 

generated geometry.  

 To implement the designed grammar of shapes, procedural rules and 

methods for interactive geometry editing as a prototype plug-in for existing 

BIM software. 

 To quantitatively evaluate the new procedural modelling tools with relevant 

case studies. 

 To design and implement end-user scenario testing for a qualitative 

evaluation of the suitability of the new procedural modelling tools. 

 To evaluate results of testing and redesign plug-in and process. 
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1.5 Scope of Research 

As the modelling of existing architecture can involve many research areas, it is 

necessary to define the scope of the research that is to follow.  

 The modelling of existing architecture from point clouds can be divided into 

three main stages. This includes data acquisition, pre-processing of survey data 

and 3D modelling. The focus of this research is on the final modelling stage.  

Extensive research has been previously carried out on data capture and pre-

processing techniques (Bryan et al., 2009, Boehler and Heinz, 1999, 

Grussenmeyer and Hanke, 2010).  

 The process of BIM involves managing many aspects of a building such as 

materials, characteristics, cost, scheduling, behavioural and energy properties. 

The focus of this research is on generating BIM geometry which also contains 

semantic and attribute data. This reconstructed BIM geometry can then be used 

to aid further BIM processes where additional building properties are added.  

 Depending on the application of a building information model, different levels 

of detail are required. The level of geometric and semantic detail in a model 

need to be decided based on the intended use. Construction and heritage 

applications tend to require precise geometric reconstructions while lower 

accuracy models containing geometric generalisations may be more suitable for 

applications such as simulation and operational management. The focus of this 

research is on generating models for construction and heritage applications so 

high levels of detail and accuracy are required. 

 There are many different approaches towards automation for modelling existing 

buildings. The focus of this research is on a procedural modelling approach. 
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Other automated approaches such as point cloud feature extraction are not 

explored in the scope of this research. 

 This research concentrates on accurately reconstructing historical architecture 

for further management and analysis with BIM. The focus of the library of 

architectural elements for building reconstructions is confined to the classical 

period in the 18
th

 and early 19
th

 centuries in Ireland. However, the procedural 

rules developed are applicable to many architectural styles and could be used in 

the future with library objects for other architectural styles.  

1.6 Contributions 

The new contributions to knowledge from this research include: 

 An extensive review of existing research into the reconstruction of BIM 

geometry from point clouds. 

 Novel tools for accurately importing survey datasets into a BIM environment. 

 New parametric shapes and objects for reconstructing BIM geometry from point 

clouds. 

 Novel procedural modelling rules and algorithms developed as plug-ins to 

existing BIM software. This includes procedural rules for: 

- Automatically generating standard vertical wall objects from floor plans. 

- Automatically generating non-vertical wall objects from multiple cut-

sections. 

- Automatically splitting linear and curved façades into floors and tiles. 

- Automatically generating and positioning architectural objects on 

façade/building tiles. 
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 Tools for interactive editing of computer-generated geometry. This includes 

efficient tools for smart editing of objects simultaneously in groups or 

individually.  

The procedural modelling rules and algorithms developed from this research enable the 

automatic generation of geometry containing detailed and complex objects. Previous 

procedural modelling implementations, which were not developed for BIM, are 

inefficient at generating detailed and complex geometry. As a result, previous 

procedural modelling implementations were limited to applications for visualisation for 

industries such as film and gaming. The development of procedural modelling rules 

which are capable of generating complex objects enable the tools to be used for new 

applications in the AEC and heritage sectors.  

1.7 Research Methodology 

The hypothesis of this research is that procedural modelling is a suitable solution for 

more accurate, automated and easier generation of BIM geometry from point clouds. In 

order to gather information to test this hypothesis, the methodology involved designing 

and developing new procedural modelling tools as plug-ins to existing BIM software. 

Testing was then carried out to test the hypothesis and to develop software plug-ins. The 

adopted methodology for testing the research hypothesis involved both quantitative and 

qualitative research methods. Data from real cases studies was used to quantitatively 

evaluate the accuracy capabilities of the new procedural modelling approach. A 

qualitative evaluation of the new procedural modelling approach was also achieved 

from end-user testing. The final part of the methodology involved analysing the results 

after testing.  This allowed the suitability of a procedural modelling approach to be 

evaluated. The prototypes could then be redesigned based on the results and feedback 

(Figure 1.1). 
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Figure 1.1: Workflow diagram for the research methodology.  
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Dore, C. and Murphy, M. 'Integration of Historic Building Information Modeling and 

3D GIS for Recording and Managing Cultural Heritage Sites'. 18
th

 International 

Conference on Virtual Systems and Multimedia: "Virtual Systems in the 

Information Society", Milan, Italy, 2-5 September 2012: IEEE, 369-376. 

 

 

 

 

 

https://www.academia.edu/2099497/Integration_of_HBIM_and_3D_GIS_for_Digital_Heritage_Modelling
https://www.academia.edu/2099497/Integration_of_HBIM_and_3D_GIS_for_Digital_Heritage_Modelling
https://www.academia.edu/2099497/Integration_of_HBIM_and_3D_GIS_for_Digital_Heritage_Modelling
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6365947&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dvsmm+C+dore
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6365947&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dvsmm+C+dore
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6365947&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dvsmm+C+dore
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6365947&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dvsmm+C+dore
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2013 

Dore, C. and Murphy, M. 'Laser Scan to BIM - A New Approach for Generating As-

Built Building Information Models from Point Cloud Data'. CITA BIM 

Gathering, Dublin, Ireland, 14th-15th November 2013. 

 

Dore, C. and Murphy, M. 'Semi-Automatic Modelling of Building Façades with Shape 

Grammars using Historic Building Information Modelling'. 3D-ARCH 2013 – 

3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, 

Italy, 25 -26 February 2013: ISPRS Archives, 57-64. 

 

Dore, C. and Murphy, M. 'Semi-Automatic Techniques for As-Built BIM Facade 

Modelling of Historic Buildings'. Digital Heritage International Congress 

(DigitalHeritage), 2013, Oct. 28 2013-Nov. 1 2013, 473-480. 

 

2014 

Dore, C. and Murphy, M. (2014a) 'Semi-Automatic Generation of As-Built BIM Facade 

Geometry from Laser and Image Data', Journal of Information Technology in 

Construction, 19, pp. 20-46. 

 

Dore, C. and Murphy, M. 'Semi-Automatic Techniques for Generating BIM Façade 

Models of Historic Buildings', Virtual Cultural Heritage in Ireland 2014, 

Dublin, 27th-28th February 2014. 

 

2015 

Dore, C. and Murphy, M. (2015) 'Historic Building Information Modelling (HBIM)', in 

Brusaporci, S. (ed.) Emerging Digital Tools for Architectural Surveying, 

Modeling, and Representation: IGI Global. 

 

Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C. and Dirix, E. (2015) 

'Structural Simulations and Conservation Analysis -Historic Building 

Information Model (HBIM)', Int. Arch. Photogramm. Remote Sens. Spatial Inf. 

Sci., XL-5/W4, pp. 351-357. 

 

1.9 Format of Document 

This dissertation contains ten chapters which are organised into four parts as described 

below.  

Part I: INTRODUCTION 

Part I of this thesis contains two chapters which provide an introduction to the research. 

These two chapters include the current chapter which describes the research problem, 

http://gathering.cita.ie/download/file/343/
http://gathering.cita.ie/download/file/343/
http://gathering.cita.ie/download/file/343/
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W1/57/2013/isprsarchives-XL-5-W1-57-2013.html
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W1/57/2013/isprsarchives-XL-5-W1-57-2013.html
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W1/57/2013/isprsarchives-XL-5-W1-57-2013.html
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W1/57/2013/isprsarchives-XL-5-W1-57-2013.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6743786
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6743786
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6743786
http://www.itcon.org/cgi-bin/works/Show?2014_2
http://www.itcon.org/cgi-bin/works/Show?2014_2
http://www.itcon.org/cgi-bin/works/Show?2014_2
http://vchireland.net/wp-content/uploads/2014/10/c-dore.pdf
http://vchireland.net/wp-content/uploads/2014/10/c-dore.pdf
http://vchireland.net/wp-content/uploads/2014/10/c-dore.pdf
http://www.igi-global.com/chapter/historic-building-information-modelling-hbim/133415
http://www.igi-global.com/chapter/historic-building-information-modelling-hbim/133415
http://www.igi-global.com/chapter/historic-building-information-modelling-hbim/133415
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/351/2015/isprsarchives-XL-5-W4-351-2015.html
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/351/2015/isprsarchives-XL-5-W4-351-2015.html
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/351/2015/isprsarchives-XL-5-W4-351-2015.html
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/351/2015/isprsarchives-XL-5-W4-351-2015.html
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aims and objectives, scope of research, contributions of research and research 

methodology. The second chapter in Part I, contains a review of existing literature 

relating to the research.  

Part II: CONCEPTUAL DESIGN AND INTIAL IMPLEMENTATION 

Part II of this thesis contains four chapters which describes the conceptual design and 

initial implementation of three new prototypes for procedural modelling with Historic 

Building Information Modelling (HBIM).  

Part III: EVALUATION AND TESTING 

Part III of this thesis contains two chapters which describe the methodology for testing 

and validating the new concepts of procedural HBIM. In the first chapter of Part III, two 

case studies are undertaken to fully implement and validate the procedural HBIM 

concepts using real world applications. The second chapter of Part III describes three 

tests undertaken for further validation of the procedural HBIM concepts and prototypes.    

Part IV: RESULTS AND CONCLUSIONS 

The final part of this thesis, Part IV, contains two chapters which describe the findings, 

analysis and conclusions of the research. 
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2 Chapter Two: Current State of the Art 

2.1 Introduction 

The research reviewed in this chapter shows the current state-of-the-art for generating 

BIM geometry from point clouds and provides a context for the research that is to 

follow. This review covers the following range of topics: 

1. Heritage Documentation Standards 

2. Data Collection and Pre-Processing Techniques 

3. 3D Modelling Concepts 

4. As-Built/As-Is BIM  

a. Parametric Libraries  

b. Automation for As-Built/As-Is BIM 

c. Quality Control for As-Built/As-Is BIM 

5. Procedural Modelling 

2.2 Heritage Documentation Standards 

“Heritage is the full range of our inherited traditions, monuments, objects, and 

culture. Most important, it is the range of contemporary activities, meanings, and 

behaviours that we draw from them” (UMass Amherst Center, 2017). 

The International Council on Monuments and Sites (ICOMOS), define cultural heritage 

as “an expression of the ways of living developed by a community and passed on from 

generation to generation, including customs, practices, places, objects, artistic 

expressions and values” (ICOMOS, 2012). Cultural heritage can include tangible 

elements of our built environment, natural environment and artefacts such books, 

documents, objects and pictures. Cultural heritage can also include intangible forms 
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such as values, traditions, oral history, traditional skills, technologies, religious 

ceremonies, performing arts and storytelling (Teijgeler, 2017). The focus of this 

research is on improving methods for documenting elements of our architectural 

heritage.  

Heritage documentation is the systematic collection and archiving of both tangible and 

intangible elements of historic structures and environments. The purpose of 

documentation is to supply accurate information that will enable correct conservation, 

monitoring and maintenance for the survival of an artefact (Eppich et al., 2007, Bryan et 

al., 2009). Standards have been developed for heritage documentation at regional, 

national and international levels.  

At an international level recording standards have been established by the International 

Council on Monuments and Sites (ICOMOS), which is a non-governmental 

organisation of professionals, committed to the conservation of the world's historic 

monuments and sites (ICOMOS, 2012). ICOMOS operates through national committees 

and scientific committees. One such committee is CIPA, the International Committee 

for Architectural Photogrammetry. CIPA was established in collaboration with the 

International Society of Photogrammetry and Remote Sensing (ISPRS). The main aim 

of CIPA is to improve methods for surveying cultural monuments and sites. The work 

of CIPA has been instrumental in developing new automated methods of digital 

recording and storage in addition to the standards required for accuracy of surveying 

and documentation of built heritage (CIPA, 2010). “RecorDIM” is a CIPA initiative in 

collaboration with other international heritage conservation organisations to improve 

and develop standards for the documentation of architectural heritage (Eppich et al., 

2007). 
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The United Nations Educational, Scientific and Cultural Organisation (UNESCO) also 

provide a directive for recording cultural heritage. This states that 

“documentation must factually represent the building or site; the tools used 

should be means for monitoring the condition through time; and that the record 

should be easily interpreted” (UNESCO, 2011). 

By achieving this objective heritage documentation can provide crucial information that 

is needed to assist with preservation and restoration of our cultural heritage.  

Examples of national standards for collecting and archiving information relating to 

historic structures are detailed in national guidelines such as the Historic American 

Building Surveys (HABS) and the English Heritage Metric Survey Practice 

(Balachowski, 2005, Bryan et al., 2009). Recently, the authors of the London Charter 

proposed a set of guidelines for the use of virtual reality for representation and 

presentation for cultural heritage (Beacham et al., 2009). The charter seeks to outline the 

requirements for computer visualisation and proposes that the process and product be 

valid and transparent.  

At the regional level, researchers at the Carleton Immersive Media Studio have carried 

out research on the development of standards for its use in heritage applications. A lot 

of effort is being made to establish standards for BIM within the AEC industry; 

however, this is even more challenging for heritage applications due to the complex and 

irregular nature of existing buildings. In an application of BIM for the documentation 

and management of the West Block of Canada’s Parliament Hill, Fai and Rafeiro (2014) 

have established an appropriate level of detail (LoD) for as-built/as-is BIM projects. For 

this project, Fai & Rafeiro (2014) suggest three levels of detail for effective long-term 

use which are based on the AEC Canada guidelines. 
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2.3 Data Collection and Pre-processing Techniques 

There are many surveying techniques available for acquiring data needed to generate 

accurate as-built and as-is Building Information Models. This includes the use of 

terrestrial laser scanning (TLS), photogrammetry and other traditional survey equipment 

such as total stations and GPS/GNSS equipment. A review of these techniques is 

outlined in this section.  

2.3.1 Terrestrial Laser Scanning 

Terrestrial laser scanning (TLS) is one of the most efficient methods of collecting data 

for accurate as-built/as-is modelling of buildings (Allen et al., 2003, Boehler and Heinz, 

1999, Grussenmeyer and Hanke, 2010, Bernardini and Rushmeier, 2002). TLS can 

automatically record millions of three-dimensional points on an object in near real time. 

TLS measures distances and angles from the sensor to an object being scanned with 

millimetre to centimetre accuracies possible. TLS operates on three different principals 

which are; triangulation, time of flight and phase comparison. All three types of laser 

scanners produce a 3D point cloud of the object. However, the range and accuracy 

capable from each method vary (Table 2.1). TLS provides an accurate, efficient and 

easy to use solution for acquiring 3D data required for as-built/as-is modelling of 

buildings. The main disadvantage of TLS for this application is the high cost of this 

technology. 

Table 2.1: Terrestrial laser scanning methods (Barber and Mills, 2007) 

 

 

 

 

 

Terrestrial Laser Scanning Methods 

TLS Method Range Accuracy Use 

Triangulation <3m <1mm Small Objects 

Time of Flight 2 – 200m <5mm Large Objects/Scenes 

Phase Comparison 2 – 100m 5 – 10mm Large Scenes 
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2.3.2 Photogrammetry 

Photogrammetry is the art and science of determining accurate measurements and three-

dimensional data from photographs (Matthews, 2008). Photogrammetric techniques use 

images taken at different viewpoints to record the 3D geometry of a building or object. 

Photogrammetric techniques are becoming very popular for recording existing 

buildings, especially for cultural heritage applications. Low-cost digital cameras, 

powerful computer processing and the greater availability of commercial and open 

source photogrammetric software are driving many new applications for this technology 

(Beraldin, 2004). One of the main advantages of photogrammetry over laser scanning is 

the addition of high-quality imagery and colour information to the resulting data. The 

principles of photogrammetry are similar for both aerial and close range (ground based) 

photogrammetry. The main principles of photogrammetry are based on triangulation 

where lines of sight (rays) from two different camera locations are joined to a common 

point on the object. The intersection of these rays determines the three-dimensional 

location of the point. Using this technique with two images is known as stereo 

photogrammetry. When more than two images are used a bundle adjustment is used to 

simultaneously calculate all the unknown parameters. Although these techniques can be 

carried out with low-cost digital cameras, the entire process required can be 

cumbersome with high processing times. The outputs from photogrammetric surveys 

are similar to the products obtained from laser scanning and include orthographic 

images, point clouds, triangulated surface models and also textured surface models. 

2.3.3 Other Survey Techniques 

Traditional survey equipment such as Total Stations and GPS/GNSS equipment can 

provide very accurate measurements but at a much slower rate than laser scanning and 

photogrammetric surveys. Unlike laser scanning and photogrammetric data which can 

be collected in near real time, traditional survey equipment such as Total Stations and 
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GPS/GNSS require each individual point to be manually recorded. These slower 

methods of data collection would not be economical for large as-built/as-is projects 

especially in the cultural heritage field where millions of points are often required to 

accurately record a complex building or structure. Although Total Station and 

GPS/GNSS methods may not always be appropriate as the main method of data 

collection, they are often still required in addition to laser scanning and photogrammetry 

to record accurate control points needed to process laser and image data.  

2.3.4 Pre-Processing Laser and Image Data 

Raw data acquired from terrestrial laser scanning (TLS) and close range 

photogrammetry (CRP) both require a number of pre-processing steps in order to 

generate products that can be used to create 3D CAD and BIM models. One of the main 

differences between TLS and CRP is that TLS automatically captures 3D point clouds 

directly while CRP requires pre-processing to generate 3D point clouds from images 

captured on site.  

Even though TLS captures 3D point clouds directly a number of pre-processing steps 

are still required. Because most objects cannot be scanned from one single scan 

position, individual scans must be accurately combined and referenced together. This 

stage is called “registration”. This requires common targets or points to be identified in 

different scans. Developments in laser scan processing software have led to increased 

levels of automation for this step which includes automatic and semi-automatic target 

detection in separate scans. Research is also being carried out on full automatic 

techniques for registering laser scan point clouds (Kima et al., 2016, Sun et al., 2016).  

Other pre-processing of TLS data include segmenting point clouds and filtering out 

unwanted data. Automatic triangulation of 3D points can also be carried out to create a 

mesh surface model from the 3D point cloud. This 3D mesh surface model can then be 
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used to generate orthographic images by combining the 3D surface model with 2D 

images. 3D mesh models can also be textured using referenced image data. 2D cut 

sections and 3D vectors can also be generated from the 3D point cloud or 3D surface 

model. 

Pre-processing for close range photogrammetry (CRP) varies depending on the number 

images. The main methods of processing include stereo processing and multi-

convergent processing (bundle adjustment). Common processing stages required for 

both methods include selecting common feature points between images, calculating 

camera positions, orientations, distortions and reconstructing 3D information by 

intersecting feature point locations (Klein et al., 2012). Developments in computer 

vision and image matching algorithms have allowed for many of these steps to be 

carried out automatically. An example of an automated approach can be seen in work by 

Barazzetti et al. (2010). Although developments have been made towards full automatic 

pre-processing for close range photogrammetry, the accuracy and quality of the results 

of most automatic techniques cannot yet match the results of manual or semi-automatic 

procedures (Gruen, 2012, Lynch et al., 2016). Using CRP for high accuracy as-built/as-

is modelling, requires human interaction in the pre-processing of image data.   

2.4 3D Modelling Concepts 

Advances in survey technology now allow for very fast and efficient data collection 

methods. Pre-processing of survey data is also becoming increasingly automated (Kima 

et al., 2016, Sun et al., 2016). 3D modelling from remote sensor data is still, however, a 

manual and long process with much demand for new automated solutions.  

Two important advancements in 3D CAD modelling introduced in the 1970s and 1980s 

were the concepts Constructive Solid Geometry (CSG) and Boundary Representation 
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(BREP) (Gomes and Teixeira 1991). CSG uses solid primitive shapes to represent 

objects. This approach is more powerful than previous wireframe approaches as solid 

objects can be used to calculate various physical properties such as volume, density, 

weight and mass. CSG also allows solid primitive shapes to be combined using Boolean 

operations such as union, subtract and intersect to create more complicated shapes. 

Alternatively, Boundary Representation (BREP) represents objects by describing their 

faces, edges, vertices and topology. BREP also includes operations such as extrude, 

sweep and revolve which can be used to create 3D shapes from 2D outlines. Many CAD 

software platforms incorporate both BREP and CSG modelling concepts to provide 

greater flexibility for modelling complex objects. 3D shapes represented with CSG and 

BREP methods exist only as graphic entities and do not have intelligence (Ibrahim and 

krawczyk, 2004).  

The next evolutionary stage in 3D modelling is the introduction of parametric and 

feature-based modelling which introduced a certain amount of intelligence into model 

elements (Shah and Mantyla, 1995). Feature-based modelling is an object orientated 

approach where in addition to geometry, objects contain information about the objects 

role (e.g. door, wall, window etc.) and how an object relates to other objects. Feature-

based modelling allows operations such as creating holes, fillets and chamfers to be 

associated with objects. This could include a window automatically cutting a hole when 

placed in a wall or intersecting walls connecting and joining correctly. Feature-based 

modelling enables objects to interact with other objects correctly and automatically in a 

spatial environment (Leeuwen and Wagter, 1997).  

Parametric modelling differs from standard 3D CAD modelling as objects such as 

primitive shapes are associated with parameters or variables that can instantly change 

the geometry or other properties of that object. Simple parameters of an object may 
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include the length, width, height, or radius of the object. Other more complex 

parametric objects may have parameters that can change the entire structure or geometry 

of an object depending on different conditions. Parameters of an object can also control 

the location of an object within a larger model. Parametric library objects (such as doors 

or windows) allow objects to be reused multiple times in a model or in many different 

models with varying parameters. This approach is very efficient for modelling elements 

that are repeated but may contain geometric variation between different instances (Baik 

et al., 2014).  

The more recent development of the concept Building Information Modelling (BIM) 

incorporates the main developments in 3D modelling including parametric and feature-

based modelling combined with a dynamic 3D database for storing information relating 

to buildings. The addition of a dynamic relational database for building elements 

(similar to a Geographic Information System) enables many new applications for 

managing and analysing building elements. BIM enables building elements to be 

documented with smart parametric reusable objects that contain rich information about 

the objects use, semantics, topology, relationships with other objects and further 

information stored as attributes. BIM can be defined as the assembling of parametric 

objects which represent building components within a virtual environment and which 

are used to create or represent an entire building (Murphy, 2012). Objects are described 

according to parameters some of which are user-defined and others, which relate to its 

position in a 3D environment relative to other shape objects. The visualisation of 

objects is achieved through viewing 2D and 3D features, plans, sections, elevations and 

3D views. BIM can be used to automatically create cut-sections, elevations, details and 

schedules in addition to orthographic projections and 3D models (wireframe or textured 

and animated). All of these views are linked to the 3D model and automatically update 

in real time, so if a change is made in one view, all other views are also updated. This 
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enables efficient generation of detailed documentation required in the AEC/FM and 

heritage industries. 

The open standard data format, Industry Foundation Classes (IFC) was developed by 

BuildingSMART International to facilitate interoperability between different BIM 

authoring software (BuildingSMART International, 2013). IFC is a vendor-neutral, 

open and standardised data model for the representation of complex building models. 

The IFC data model is based on STEP, the ISO standard for the exchange of product 

model data. STEP includes the specification of the data modelling language EXPRESS, 

which is employed for defining the IFC schema (BuildingSMART International, 2013).  

Another important BIM standard used for facility management is the Construction 

Operations Building Information Exchange (COBie). COBie is an information 

exchange specification for life-cycle capture and delivery of information required by 

facility managers (BuildingSMART Alliance, 2011). COBie is a model view definition 

(MVD), which is a subset of IFC for information relating to facility management.  

2.5 As-Built/As-Is BIM  

The benefits of BIM make it a very suitable solution for modelling and managing 

information relating to existing buildings. A BIM for an existing or historical building 

can be used as a documentation and management tool for conservation work, 

retrofitting, renovations and building analysis. The concepts of an as-built or as-is BIM 

are being used to describe the recording of existing buildings with BIM. An ‘as-built’ 

representation is the recording of a building after construction and an ‘as-is’ 

representation is the recording of a building at a particular moment in time. Both of 

these processes involves three main stages; data acquisition, pre-processing of survey 

data and a modelling stage.  
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Volk et al. (2014), Hichri et al. (2013), Tang et al. (2010), Liu et al. (2017) and Barbosa 

et al. (2016) provide excellent and comprehensive overviews on the current state-of-the-

art in the area of as-built/as-is BIM. The fundamental problems outlined in these 

reviews are the “high modelling/conversion effort” required for creating semantic BIMs 

from unstructured survey data, the difficulties in accurately representing the variety of 

complex and irregular objects occurring in existing buildings and the lack of standards 

for the representation of objects and information in existing buildings. 

A lot of developments for as-built/as-is BIM are emerging from the adoption of BIM 

from cultural heritage communities. Many authors have shown the benefits of using 

BIM for cultural heritage preservation (Fai et al., 2011, Oreni et al., 2014, Wu et al., 

2013, Boeykens et al., 2012, Pauwels et al., 2008, Quattrini et al., 2015, Barazzetti et 

al., 2015). Pauwels et al. (2008) describe an approach called Architectural Information 

Modelling which uses BIM to document geometric data along with appended historical 

information such as photographs, scanned documents or research material. Fai et al. 

(2011) adopt a similar approach which links heritage information to a BIM but also 

includes documentation related to tangible and intangible heritage. Boeykens et al. 

(2012) use BIM software to create a reconstruction of the Vinohrady Synagogue in 

Prague which was demolished in 1951. The authors of this paper note that the BIM 

software used was almost completely focussed on contemporary buildings and that 

more specific tools are needed for historical reconstructions. Another development 

emerging from the cultural heritage community is a plug-in to Autodesk Revit called 

“GreenSpider” (Garagnani and Manferdini, 2013). This plug-in improves the current 

process for importing unstructured datasets into BIM software by translating key points 

from the point cloud into native reference snaps in Revit. 
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2.5.1 Parametric Libraries  

Most BIM software packages have extensive libraries of pre-defined parametric objects 

that are used to create 3D building information models. This facilitates efficient 

modelling as 3D geometry does not have to be created from scratch. Instead existing 

information enhanced library objects can be used to model the main building elements 

such as walls, doors, windows, columns, beams, slabs, roofs etc. Parameters of these 

library objects are edited to match the required dimensions and settings of a project. 

These library objects are then combined to create a complete model. A major problem 

for as-built/as-is BIM is the lack of pre-defined parametric objects suitable for existing 

and historical buildings. Most native and 3
rd

 party BIM libraries are focused only on 

modern buildings. As a result, modelling existing and historic buildings often require 

many bespoke components to be created from scratch which can be a very time-

consuming process.   

This limitation of BIM for existing buildings has motivated research in the development 

of new parametric libraries that would be suitable for existing and historic buildings. 

Various projects (Baik et al., 2014, Chevrier et al., 2010, Fai and Rafeiro, 2014, Murphy 

et al., 2013, De Luca, 2012) have shown that the development of new reusable 

parametric library objects supports high levels of detail (LoD) while decreasing the time 

of modelling. The parametric objects created by Fai & Rafeiro (2014) were created for 

the Autodesk Revit BIM software and contain very useful objects representing gothic 

style architectural windows. The library created by Baik et al. (2014), also for Autodesk 

Revit BIM software, contains parametric objects for heritage projects in the Al-Balad 

district of Jeddah City. An extensive library of parametric objects was created by 

Chevrier et al. (2010). However, these objects are not suitable for BIM and were instead 

created with the MEL scripting language for Autodesk Maya software. 
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Work from Murphy et al. (2013) has led to the development of a new library of 

parametric objects for BIM software called Historic Building Information Modelling 

(HBIM) (Figure 2.1). These new library objects are designed for modelling classical 

architectural elements found in many existing buildings. The parametric architectural 

objects are designed from historic manuscripts and architectural pattern books and are 

implemented using an embedded programming language within the ArchiCAD BIM 

software called the Geometric Description Language (GDL). Also included with this 

library of objects is a system for mapping objects to survey data.  

 

 

 

 

 

 

 

Figure 2.1: Sample historic data and parametric library objects as part of HBIM. 

 

The research presented in the following chapters is a continuation of this work 

originally developed by Murphy et al. (2013) (Murphy, 2012) and Fai et al. (2011). The 

new research presented later further develops the HBIM library objects by using 

procedural modelling techniques to automatically combine and create 3D BIM content 

from a combination of the HBIM parametric library objects and new vocabulary shapes.  
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2.5.2 Automation for As-Built/As-As BIM 

Automated modelling of existing buildings from scan data is very desirable 

commercially to reduce time and therefore costs of as-built/as-is BIM projects 

(Thomson and Boehm, 2015). One area where progress is being made towards 

automated as-built/as-is BIM is in automated object recognition and feature extraction 

from point clouds (Jung et al., 2014, Xiong et al., 2013, Zhang and Zakhor, 2014). 

Object recognition is the problem of automatically labelling data points or segments of 

an image with a named object or object class (Tang et al., 2010), for example 

automatically detecting windows or doors from an image or point cloud. Once objects 

are automatically recognised from a dataset, primitives or planes can be automatically 

fitted to the recognised elements in the dataset. Much of the research in this area, 

however, is focused on indoor applications (Jung et al., 2014, Previtali et al., 2014, 

Zhang and Zakhor, 2014, Thomson and Boehm, 2015) and is currently restricted to 

automatic extraction of basic elements such as planes and openings. Automatic 

extraction of complex architectural elements that occur in existing and historical 

buildings is still in its infancy. 

Pu & Vosselman (2009) is one example of object recognition applied to building 

applications. In this work a knowledge-based approach for object recognition is adopted 

which aims to automatically reconstruct building facades from terrestrial laser scan data. 

Point clouds obtained from terrestrial laser scanning are first automatically segmented 

into planar surfaces which are then automatically classified as semantic features such as 

walls, doors, windows and roofs using generic knowledge of building facades. This 

includes knowledge about a features size, position, orientation and topology. Next, an 

outline polygon is generated for each detected feature using least squares fitting, convex 

hull fitting or concave polygon fitting (Figure 2.2). Finally building knowledge is again 

used to make assumptions for missing or occluded areas. Results of this automatic 
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object recognition approach include a polygon model for detected building features 

(Figure 2.2). 

Much of the existing work for automated object recognition and feature detection show 

promising results but do not automate the complete process from point cloud to BIM 

(Hong et al., 2015, Jung et al., 2014, Xiong et al., 2013, Zhang and Zakhor, 2014, Wang 

et al., 2015). The results from these automatic approaches include surface models, 

planes, 3D vectors or a subset of the original point cloud, all of which still need to be 

converted into structured information enhanced and parametric BIM components which 

at present needs to be carried out manually (Volk et al., 2014, Thomson and Boehm, 

2015). The results from Hong et al. (2015) are regularised wireframe models which are 

automatically detected from point clouds for indoor building applications. These 

simplified wireframe models are then used for geometric modelling with BIM software 

instead of the original point cloud. Two case studies testing this approach showed that 

the efficiency of the as-built/as-is BIM creation process was improved by 15.4% and 

15.0% using the extracted wireframe models instead of the complete point cloud (Hong 

et al., 2015). 

 

 

 

 

 

 

 

Figure 2.2: Automatically segmented point cloud showing different planar regions in different colours 

(left). Results of reconstructed model with detected features outlined in black (right) (Pu & Vosselman 

2009). 
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Thomson and Boehm (2015) is one of the few examples of automated object detection 

and feature extraction from point clouds resulting in object-based IFC models, suitable 

for BIM. This approach utilises the open source Point Cloud Library (PCL) which 

provides a number of data handling and processing algorithms such as a RANSAC 

(RANdom SAmple Consensus) algorithm for automatic plane detection. The eXtensible 

Building Information Modelling (xBIM) toolkit, which is capable of reading and 

writing IFC compliant files, is used to create IFC content from detected features. While 

this work shows excellent progress for the automatic reconstruction of BIM geometry 

from point clouds, the work currently only deals with planar walls and is limited in 

terms of accuracy and reliability.  

In conjunction with these developments in academic research, commercial software is 

also emerging in recent years which attempts to automate and improve existing manual 

workflows for the generation of BIM geometry from point clouds. This includes plug-

ins to Autodesk Revit software, Trimble SketchUp software and standalone software 

such as Pointfuse from Arithmetica. Currently, none of these commercial software 

solutions are capable of fully automating the as-built/as-is BIM process but do offer 

various semi-automatic solutions and tools which improve the efficiency of certain 

stages of the process. ClearEdge3D offer a standalone software platform called 

EdgeWise Building in addition to a plug-in to Autodesk Revit BIM software. This 

software classifies a point cloud into surfaces that share coplanar points. The operator 

then picks floor and ceiling planes to constrain the search for extracting wall features. 

Once wall planes are detected the Revit plug-in creates the parametric object-based wall 

geometry. Another plug-in has been developed for Autodesk Revit software by 

IMAGINiT called Scan to BIM. This plug-in provides detection and fitting algorithms 

for planes and cylinders to create walls, pipes and column objects. With this approach, a 
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user picks three points to define a wall plane and a region growing algorithm detects the 

extents of the wall. The user then selects a tolerance and the type of parametric wall 

element to be used in the model (Thomson and Boehm, 2015).   

Kubit, now owned by Faro also provide a plug-in to Autodesk Revit that detects planes 

for creating wall objects along with providing tools that aid the manual process of 

tracing points in a point cloud. Pointfuse from Arithmetica provides standalone software 

which can automatically detect planes and edges from a point cloud and export these in 

standard CAD formats. Trimble also provides an extension for their SketchUp software 

that can detect planes with a semi-automatic process.  

These developments emerging from academic research and in commercial software 

platforms show progress towards automating the as-built/as-is BIM process. However, 

these automatic methods to date are limited to extracting simple planar features. Very 

little progress has been made at automatically reconstructing complex and non-planar 

geometry that often occurs in existing and historical buildings. Attempts at the 

automatic recognition of objects and feature detection are focused on indoor scenes and 

tend to work well only in simple and uncluttered environments. Other more complicated 

environments containing clutter and occlusion can result in less accurate and reliable 

results. Automatic object recognition and detection approaches can result in errors such 

as objects being incorrectly segmented and classified, objects not being classified or 

detected, incorrect object fitting and incorrect assumptions for occluded or missing data. 

Case studies from Pu & Vosselman (2009) and Thomson and Boehm (2015) show 

discrepancies in certain areas of ten centimetres or more between the automatically 

detected features and the scan data. Unfortunately, this is not currently at the level of 

accuracy (LoA) and reliability required for most documentation projects in the AEC and 
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heritage fields. Further work is needed to achieve higher accuracy results required for 

such applications. 

2.5.3 Quality Control for As-Built/As-Is BIM 

For many applications of as-built/as-is BIM, it is crucial that the model accurately 

represents the true condition of a building. This is particularly important when BIM is 

used to produce documentation for conservation work, restorations, retrofitting or 

performing different types of building analysis. The workflows for creating as-built/as-

is models also involves several steps that can be subjective in nature when carried out 

manually so errors can easily be introduced. Whether an as-built/as-is model is created 

manually or using automatic techniques it is very important that quality assurance (QA) 

is carried out to ensure the accuracy of the final model. Anil et al., 2011 and Anil et al., 

2013 proposea a new approach for QA of as-built/as-is BIM that analyses patterns of 

the geometric deviation between the model and the point cloud data. This research 

demonstrates that it is possible to identify the source, magnitude, and nature of errors by 

analysing the deviation patterns. This proposed deviation analysis involves computing 

the deviations by finding correspondences between a point cloud and model and then 

computing the distances between correspondences. Next, the deviations are visualised 

with colour-coded maps of the deviations. Finally, deviation maps are inspected and 

potential errors are identified and verified. In comparison to other QA approaches of 

using a sample of physical measurements or ground truths the deviation analysis 

method provides full coverage and can provide deterministic guarantees that a model 

completely represents the underlying data with a given accuracy specification. 

2.6 Procedural Modelling 

Another automated approach to 3D modelling is procedural modelling. Procedural 

modelling is an automated approach to generating 3D content based on a sequence of 
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generation instructions, rules or algorithms that can be repeated with varying 

characteristics (Kelly and Mccabe, 2006). Procedural modelling has traditionally been 

used in applications such as film and gaming where content can be randomly generated 

based on rules and algorithms. The use of shape grammars in procedural modelling has 

gained a lot of interest and is now being used to generate content for architectural 

modelling (Muller et al., 2006, Dylla et al., 2010, Hohmann et al., 2009, Becker and 

Haala, 2009, Becker et al., 2015). Shape grammars originally introduced by Stiny and 

Gips (1972) are derived from formal grammars and consist of a set of basic vocabulary 

shapes (terminals and non-terminals) and a set of production rules to transform these 

shapes to create 3D content. A shape grammar called CGA Shape (Muller et al. 2006) 

has been developed for the commercial software CityEngine from ESRI. This shape 

grammar is designed for procedural modelling of buildings and cities. CityEngine 

software provides users with tools to create 3D content from scripts using this shape 

grammar. With this software, it is possible to procedurally generate buildings from 2D 

footprints and other GIS datasets for modelling existing buildings and cities. While 

these models contain information about semantics and can be automatically generated, 

they lack the detail that would be required for applications in the AEC/FM and heritage 

communities. 

Most procedural modelling applications require users to code rules in a grammar to 

create a model. This text-based approach restricts users with little computer science 

background. Work by Lipp et al. (2008) has concentrated on creating an interactive 

visual editing tool for shape grammars to create rules from scratch without the need for 

text file editing. This makes automated approaches for generating 3D content much 

more accessible and does not require advanced users to create scripts to code rules.  
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Another approach (Müller et al., 2007) uses the CGA shape grammar for automatic 

modelling of existing building facades from a single rectified image. This method 

automatically detects a façade structure using mutual information and symmetry 

detection to divide a façade into floors and tiles. Further tile refinement is automatically 

carried out using edge detection to split tiles into smaller regions using a subdivision 

concept from procedural modelling which creates a hierarchy of elements. This is used 

to automatically detect window positions, ledges and window sills. 3D objects from a 

library of architectural elements are then matched to the subdivided façade to add 

windows and other architectural elements. Depth for different sections of the façade is 

added manually and the computed façade can be exported as shape grammar rules in the 

CGA Shape Grammar. This method shows how procedural modelling techniques can be 

applied to existing buildings. This method works well for urban environments where 

facades contain a lot of repetition and symmetry can be easily detected. However less 

repetitive facades with a lot of architectural detail may be problematic for this automatic 

method.  

Work by Hohmann et al. (2009) use shape grammars to automatically model building 

facades for automatic 3D city reconstruction. This project called “CityFit” aims to 

reconstruct 80% of the buildings in the city of Graz automatically. Their workflow uses 

roadside photographs and LiDAR point clouds as input data. Image based feature 

detection is carried out to detect and segment windows, arches and other decorative 

elements. Depth maps derived from the point cloud are also used to provide depth 

information. The results from these segmentations are matched against a set of shape 

grammar templates obtained by façade analysis and classification. The use of shape 

grammar templates in the modelling stage incorporates architectural knowledge to 

automate this stage. The shape grammars and shape grammar templates used are based 
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on the concepts of the CGA shape grammar but have been implemented using the 

Generative Modelling Language (GML). 

A procedural modelling approach with shape grammars has many advantages such as 

automatic generation, great flexibility for variation, object hierarchy, scalable geometric 

representation and data handling of large models. However, a disadvantage of these 

methods for AEC and heritage applications is that they are inefficient at generating 

smaller complex geometric detail. Muller et al. (2006), state that manual methods are 

used instead of procedural modelling techniques to create detailed elements such as roof 

bricks, capitals and window grills. Müller et al. (2007) state that the generated models 

are primarily for visualisation and the aim is to automatically create a geometric model 

that “looks like a plausible interpretation of the input image”. For AEC and heritage 

applications, a more precise and accurate model is required. Another shortcoming of 

existing software for procedural modelling is an inability to automate the production of 

engineering drawings, which is critical for most applications in the AEC and heritage 

sectors. 

This focus of this research is for modelling and documenting existing and historical 

buildings. Procedural modelling, however, can also be useful during the design and 

construction stages of a project. One of the benefits of procedural modelling is its 

flexibility for generating different building variations, arrangements and geometries. 

This would greatly facilitate exploring and analysing the implications of different 

building designs before a building is constructed. During the construction stage of a 

project, the original design may need to be altered due to unforeseen circumstances. In 

this scenario, a procedural BIM solution would also be of benefit to analyse the 

implications of design variations without adding major delays to a project schedule.  
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2.7 Comparison of Existing Approaches with Proposed Procedural HBIM 

Solution 

 Table 2.2 below compares features of existing automated approaches outlined in 

Section 2.5.2 and Section 2.6 with the proposed procedural HBIM solution. The 

existing automated approaches include plug-ins for scan-to-BIM modelling and existing 

procedural modelling applications. As seen from  Table 2.2, most of the existing plug-

ins and application do not contain libraries of detailed parametric objects that can be 

procedurally combined to generate complex and irregular building geometries.  

 

 Table 2.2: Comparison of existing automated modelling approaches with proposed Procedural HBIM 

approach. 

 

2.8 Conclusions of Review 

In this chapter, a critical review of existing work was carried out on the main topics 

involved in this research project. After carrying out an extensive review of existing 

literature a number of observations were made in relation to the current state-of-the-art 

and limitations of different approaches for recording and modelling existing buildings 

and environments: 
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1. Data collection and pre-processing techniques are becoming increasingly 

automated to allow for near real-time data capture and fast processing of this 

data for later modelling applications.  

2. Current BIM software is almost completely focused on new buildings and has 

very limited tools and pre-defined libraries for modelling existing and historic 

buildings.  

3. The development of reusable parametric library objects for existing and historic 

buildings supports modelling with high levels of detail while decreasing the 

modelling time. Mapping these parametric objects to survey data, however, is 

still a time-consuming task that requires further research. 

4. Promising developments have been made towards automatic object recognition 

and feature extraction from point clouds for as-built/as-is BIM. However, 

results are currently limited to simple and planar features. Further work is 

required for automatic accurate and reliable reconstruction of complex 

geometries from point cloud data. 

5. Procedural modelling can provide an automated solution for generating 3D 

geometries but lacks the detail and accuracy required for most as-built/as-is 

applications in AEC and heritage fields. The main applications of procedural 

modelling include visualisation for film or gaming. Existing procedural 

modelling implementations also do not automate the production of engineering 

drawings for construction or conservation documentation. 

 

A new solution is presented in the following chapters to further develop the existing 

methods reviewed in this chapter. The main gap identified from this review is the lack 

of automation and specialised tools for modelling existing buildings with BIM software. 

Other approaches such as procedural modelling have shown promising developments 
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but are currently not accurate or detailed enough for AEC and heritage applications. The 

research presented in the following chapters includes the development a new solution 

which incorporates the advantages of automated procedural modelling combined with 

the advantages of detailed parametric modelling using parametric libraries. This new 

approach differs from existing work (Thaller et al., 2011, Chevrier et al., 2010, Müller 

et al., 2007) as it implements procedural and parametric modelling techniques in BIM 

software that can generate both accurate and detailed models with a semi-automatic 

process. 
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Part II Summary: 

Part II of this thesis contains four chapters which describes the conceptual 

design and initial implementation of three new prototypes for procedural 

modelling with Historic Building Information Modelling (HBIM). 

 

 

 

 

 

Part II 

CONCEPTUAL DESIGN AND 

INITIAL IMPLEMENTATION 
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3 Chapter Three: Prototype I - Procedural Façade 

3.1 Introduction 

The hypothesis of this research is that procedural modelling is a suitable solution for 

more accurate, automated and easier generation of BIM geometry from point clouds. In 

order to test this hypothesis the methodology first involved designing and implementing 

new procedural modelling tools for generating BIM geometry from point clouds. These 

new procedural modelling tools have been designed and implemented as three separate 

prototype plug-ins to Graphisoft’s ArchiCAD BIM software (Figure 3.1).  

 

 

 

 

 

 

 

Figure 3.1: New prototypes for procedural modelling with ArchiCAD BIM software. 

 

These three new prototypes build on previous work from Murphy et al. (2013), which 

developed a new process for documenting historic structures called Historic Building 

Information Modelling (HBIM). HBIM is a novel prototype library of parametric 

objects, based on historic architectural data, in addition to a mapping system for plotting 

the library objects to remotely sensed data (Figure 2.1). This previous work greatly 
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improved the process of documenting historic structures; however, it still required 

library objects to be manually combined for larger arrangements and mapped to survey 

data. This current research further develops the HBIM process by using procedural 

modelling techniques to automatically combine and create BIM content from HBIM 

library objects and survey data. The new procedural modelling rules also provide tools 

for modelling deformation and irregular objects. Figure 3.2 shows the workflow for the 

new procedural HBIM approach. 

Figure 3.2: Workflow for new procedural HBIM approach. 

 

The two main components of the new procedural HBIM approach (Figure 3.2) are a set 

of parametric library objects and a set of procedural rules and algorithms which 

automatically combine library objects to generate different building arrangements. 

Architectural rules and proportions and survey data are used as input data for both 
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parametric library objects and procedural rules. Once a model is generated with 

procedural modelling rules, survey data is used again for further refinement of computer 

generated models (Figure 3.2).  

This chapter describes the design and initial implementation for the first of three 

procedural modelling prototypes developed for BIM software (Figure 3.1). This first 

prototype provides new procedural rules to generate building façade geometry. This 

chapter firstly contains an overview of the prototype followed by a description of the 

architectural rules used to assist with the reconstruction of façade geometry. The 

conceptual design framework for developing the procedural façade prototype is then 

described. Finally, the initial implementation and coding of this prototype is described. 

The application of the new prototypes with real case-studies is the full implementation 

which is later described in Chapter 7.  

3.2 Overview of Procedural Building Façade  

The procedural façade prototype enables building facades to be modelled from survey 

data with a semi-automatic process. Procedural rules are used to generate different 

building façade arrangements which are controlled by altering parameters such as the 

number of storeys, number of horizontal tiles and door position. A generated façade 

model acts as a template for modelling many building façades by adjusting parameters. 

Parametric library objects such as windows and ashlar block wall detail can be selected 

and automatically added to building façade tiles. When automatically generating façade 

objects, the initial position and size of elements are estimated using classical 

architectural rules and proportions. The inclusion of architectural rules and proportions 

in the reconstruction process reduces the amount of further editing required. After a 

façade is automatically generated, users can then interactively edit the position and size 

of façade elements to accurately refine objects to survey data.  
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3.3 Architectural Rules for Procedural Façade 

Similar to the design of the HBIM library objects in previous work (Murphy et al., 

2013), the procedural rules for generating façade geometry also use architectural 

knowledge to assist with the digital reconstruction process. Architectural rules and 

proportions outlined in pattern books relating to classical building façades are used 

(Roche 1999). The proportioning of a classical façade is determined by the size and 

position of window openings, which can be expressed by the relationship between 

circles of the same radius (Figure 3.3). The top windows are made up of a single circle, 

in the next set of windows intersecting circles, and finally in the lower set of windows 

the circles are placed one on top of each other. Using a parameter for the window width 

or circle diameter the height and position of windows can be calculated with these 

proportions.  

These proportions are evident in most classical buildings; however alterations to 

buildings can obscure or remove some of the original façade proportions. Alterations to 

a façade over time can include removal or enlarging of brick walls, window and door 

openings and parapets. After testing the classical proportions on a variety of surveyed 

façades (Figure 3.4) the most suitable proportions and parameters were adopted as seen 

in Figure 3.5. The parameter “A” represents window widths and the vertical distance 

between windows on the top floor and the floor below. The parameter “B” is used to 

represent horizontal and vertical window spacing on all other floors. 
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Figure 3.3: Proportions for façades and openings (Roche, 1999). 

 

 

Figure 3.4: Testing classical proportions using orthographic images from surveyed classical buildings. 
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Figure 3.5: Proportions and parameters used for design of parametric façade. 

 

3.4 Conceptual Design Framework 

The conceptual design framework for the procedural façade prototype is based on 

concepts from shape grammars. A shape grammar is a production system used in 

procedural modelling to automatically generate two or three-dimensional geometries 

from a basic vocabulary of shapes and a set of production rules. A conceptual design 

framework based on parametric design and shape grammar principles is described in 

this section. 

3.4.1 Parametric Design 

The first stage of design involved evaluating a set of key parameters that would allow a 

façade template to be modified to model many different building façade arrangements. 

Efficient methods for editing these parameters also had to be established. The standard 

method for editing parameters of a parametric object is to specify or edit parameters 

from a list in a dialogue box. This approach was adopted for modifying global 

parameters or parameters affecting the entire façade. Editing more specific parameters 

relating to an individual object such as a window opening would be very time-
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consuming and inefficient using this method as it would require a large number of 

parameters to be measured and entered into a dialogue box. To facilitate efficient 

parameter editing another method using graphical parameter editing was designed. This 

method allows users to select a specific part of the façade in 2D or 3D and interactively 

edit the objects parameters by moving the object graphically. This enables parameters of 

the façade to be modified while overlaying the model with survey data in 3D or 2D. 

This removes the need for taking measurements and entering measurements into a 

dialogue box, instead, parameters can be matched to survey data directly in 3D or 2D.  

Figure 3.6 shows an example of a dialogue box for editing parameters from a list (left) 

and also graphical editing where a parameter for the distance between two floors is 

being altered in 3D (right).   

 

 

 

 

 

 

 

 

Figure 3.6: Modifying parameters from a dialogue box (left) and modifying parameters graphically (right) 

 

The key parameters evaluated for modifying the façade template are shown in Table 

3.1, along with the parameter type and methods of editing. The first group of parameters 

are designed to generate procedurally the structure of a façade. Parameters for the 

“Number of Storeys”, “Number of Horizontal Tiles”, “Door Position” and “Wall 

Thickness” are included in this group. These parameters can be edited graphically or 
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from a dialogue box. The second group of parameters are designed to calculate and 

apply classical architectural proportions outlined in section 3.3. These parameters apply 

a global update to the entire façade and must be entered from a dialogue box. The third 

group of parameters are designed for graphical editing only and enable any specific 

object or element on a façade to be altered. This includes graphically editing window 

corners, distances between floors, split lines between tiles and the overall façade width 

and height. Further architectural elements such as windows have additional parameters 

which can be altered from a dialogue box or by graphically editing specific instances or 

groups of instances. 

Table 3.1: Key parameters designed for modifying the façade template 

 

3.4.2 Shape Grammars 

Concepts from shape grammars have been adapted to design and implement the 

procedural façade prototype. Shape grammars are a very suitable approach for 

architectural modelling as they allow models to be created from a vocabulary of basic 

shapes and set of replacement rules where a shape can be replaced or altered by 

PARAMETER EDITING METHOD PARMETER TYPE 

General Structure of Façade:  

Number of Storeys Dialogue Box & Graphical Integer 

Number of Horizontal Tiles Dialogue Box & Graphical Integer 

Door Position (windows to left of door) Dialogue Box & Graphical Integer 

Wall Thickness Dialogue Box & Graphical Real Number 

Parameters to Calculate Classical Proportions: 

Window Width (Global) Dialogue Box Real Number 

Distance Between Ground and First Floor Window Openings Dialogue Box Real Number 

Graphical Modifications Only: 

Distance Between Floors (Tile Coordinates) Graphical Real Number (Array) 

Distance Between Tiles (Tile Coordinates) Graphical Real Number (Array) 

Building Width/Height (Tile Coordinates) Graphical Real Number (Array) 

X,Y Coordinates of Individual Window Opening Corners Graphical Real Number (Array) 
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transformations, rules or algorithms. These principles facilitate the encoding of classical 

architectural rules and proportions which also use grammars or vocabularies for 

architectural elements and rules to combine these basic shapes. 

In the field of computing, a standard shape grammar introduced by Stiny et al. (1972) 

can be defined as {𝑁, ∑, 𝑃, 𝑆} where N and Σ represent a finite set of nonterminal and 

terminal shapes (the vocabulary), P are a set of production rules and S is a starting seed. 

Terminal shapes are the basic vocabulary elements and can be a collection of points, 

lines, planes, areas or solids. Non-terminal shapes are markers or boxes that are used to 

guide the terminal shapes during generation process and control the scope and position 

of shapes. The production process begins with nonterminal shapes which are replaced 

by terminal shapes when rules are applied. The production process terminates when no 

more rules can be applied and all nonterminal shapes have been removed. Production 

rules are applied in the form A→B where A and B are nonterminal and terminal shapes. 

When a rule is applied the shape on the left-hand side is replaced by a new shape on the 

right-hand side of the rule. 

Stiny (1977) also introduced the concept of a parametric shape grammar. This type of 

shape grammar differs from standard shape grammars in that it contains shape rules 

defined in terms of parameterized shapes. A parametric shape grammar can be defined 

as {𝑆, 𝐿, 𝑅, 𝐼, 𝑇} where S is a finite set of shapes, L is a finite set of labelled points, R is a 

finite set of shape rules, I is an initial shape and T is a set of transformations. The main 

difference to the standard shape grammar is that nonterminal shapes are replaced by 

labelled points or parameters that are associated with shapes. Euclidean transformations 

have also been added which can include translations, rotations, scale or mirror. Shape 

rules are applied to a shape with an assignment of real values to the parameters and with 

additional transformations as required. 
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The main concept from shape grammars that have been adopted for developing the 

procedural façade prototype is the use of a basic shape vocabulary and shape rules. The 

shape rules are used to transform the shape vocabularies to automatically generate 

parametric façade geometry. The design for these shape grammar concepts is described 

in sections 3.4.3 below. The initial implementation of these shape grammar techniques 

with the Geometric Description Language (GDL) is described in Section 3.5. 

3.4.3 Design of Parametric Shape Grammar Elements 

The shape grammar techniques adopted for the design of the procedural façade 

incorporate the five elements of Stiny’s Parametric Shape Grammar {𝑆, 𝐿, 𝑅, 𝐼, 𝑇} (Stiny, 

1977). The initial shape {𝐼} is made up of a labelled solid shape as seen in Figure 3.7. 

This shape contains four labelled points as parameters which control the size and shape 

of the object. An additional parameter also defines a thickness which converts the 2D 

shape into a 3D solid shape. 

 

 

 

 

Figure 3.7: Initial shape {𝐼} for parametric shape grammar design. 

 

The basic elements that make up the vocabulary of shapes {𝑆}  can be seen in Figure 

3.8. Shapes include two wall tiles; one wall tile TW which contains a window opening 

and surrounding wall. A second wall tile TD is used as a panel containing a door 

opening. Additional library objects relating to a door and door cases such as columns 

and pediments are linked with this shape TD. Other shapes include parametric library 

objects for windows (W) and a simple block (BL) that is used to create detail for ashlar 
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stone wall geometry. Additional library objects from previous work (Murphy et al. 

2013) are also used in conjunction with these basic shapes in Figure 3.8. 

 

 

 

 

Figure 3.8: Basic shape vocabulary elements {𝑆} for parametric shape grammar design. 

 

The shape rules {𝑅} used are shown in Table 3.2. Table 3.2 shows the initial shape on 

the left-hand side of each rule and the resulting shape on the right-hand side after the 

rule has been applied. Each rule is applied with an assignment of real values to 

parameters for shapes and transformations if required such as translations, rotations, 

scaling or mirroring. 

Rule 1: replaces the initial shape {𝐼} with the shape TW by adding an opening to the 

solid shape. The new shape TW has new parameters to define the coordinates of the 

opening. 

Rule 2: repeats a shape along the x-axis. Parameters are used to control the number of 

repetitions or a distance which specifies the number of repetitions.  

Rule 3: is similar to rule 2 but repeats shapes along the y-axis. 

Rule 4: splits a shape along the x-axis into smaller or separate shapes. Parameters 

control the positions and number of splits. 

Rule 5: is similar to rule 4 but splits shapes in the y-axis. 

Rule 6: splits a shape in the x-axis and removes one of the segments. 

Rule 7: splits a shape in the y-axis and removes one of the segments. 

Rule 8: conditional repeat (described below). 

Rule 9: replaces a window tile TW with a door tile TD. 
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Rule 10: adds a selected window W from the library to a window tile TW. 

 

Table 3.2: Shape rules {𝑅} for parametric shape grammar design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rule 8 is the main rule that creates a façade arrangement. This rule repeats the wall tile 

TW in both x and y directions based on various parameter settings and architectural 

rules. This method contrasts to the concepts adopted in the CGA shape grammar 

(Muller et al. 2006) where a façade is split into smaller tiles. This rule repeats the input 

shape in the y direction for the first column, and then moves to the second column and 

so on until all tiles have been placed for the specified parameters (Figure 3.9). 
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Parameters for each repeated instance of the shape TW are calculated based on 

architectural rules and the position of that instance in a façade arrangement. Parameters 

for the “number of floors” and “number of columns” control the number of repeated 

instances to be placed in each column and floor. The input for this rule is the shape TW 

and coordinates for this shape which are calculated and assigned as shapes parameters. 

 

 

 

 

 

 

Figure 3.9: Repeated wall tile resulting from the application of rule 8 to shape TW. 

 

Figure 3.10 shows the order and application of rules shown in Table 3.2 to create a 

basic façade arrangement. The application of rule 9 adds a door tile TD. The position of 

this is obtained from a user defined parameter “windows to left of door”. The 

application of rule 10 adds window objects to all window openings on the façade. 

Global parameters for window objects can be entered and set from the objects dialogue 

box. Specific parameters for a particular instance of a window object can be set using 

graphical parameter editing. Figure 3.11 shows another application of the rules in Table 

3.2 used to create a parametric ashlar block wall that can be automatically combined 

with the parametric wall façade. Parameters allow the user to add ashlar block wall 

detail to the ground floor or all floors of the façade. Parameters of the block wall enable 

the user to change the individual block size, mortar spacing and texture. 
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Figure 3.10: Application of shape rules specified in Table 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Another application of shape rules specified in Table 3.2 to create ashlar block wall detail. 
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3.5 Initial Implementation with the Geometric Description Language 

Various programs and languages have been used to implement shape grammars to 

generate shapes from a grammar. Examples include the CGA Shape grammar 

implemented in ESRI’s CityEngine software (Muller et al., 2006). Other shape 

grammars have been implemented using the Generative Modelling Language (GML) 

(Hohmann et al., 2009) (Thaller et al., 2011). The concepts of a parametric shape 

grammar described in the previous section have been implemented using the Geometric 

Description Language (GDL), a programming language used for creating parametric 

objects within the ArchiCAD BIM software. Thr syntax of this language is similar to 

that of the BASIC programming language. GDL provides a large number of functions 

for creating 3D parametric objects using primitive shapes such as blocks, spheres, cones 

and ellipses or by generating shapes from 2D outlines. GDL uses coordinate 

transformation commands stored in a stack to position multiple objects relative to each 

other. GDL allows for graphical editing of parameters, complex Boolean operations, 

various control statements and the use of mathematical functions in creating parametric 

objects. Also provided is the ability to script a specific user interface for objects and 

their parameters (Graphisoft, 2011). 

 Although designed for parametric modelling, because of its powerful capabilities GDL 

can also be used to generate shapes using shape rules and shape vocabularies similar to 

a shape grammar. To date, this language has not been used to implement shape 

grammars. Using the GDL language with shape grammars enables the advantages of 

automated procedural modelling to be incorporated within a BIM environment. 
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3.5.1 Suitability of GDL for Shape Grammar Techniques 

GDL structures content using executive scripts and subroutines. Parts of code can also 

be stored separately as macro objects which can be called from a script. This structure 

facilitates the implementation of a shape grammar as rules can be stored as individual 

macros which can be called from a script and applied to vocabulary shapes which are 

stored in individual subroutines. GDL also uses coordinate transformations stored in a 

stack to transform and position objects relative to each other. This includes the 

functions ADD, ROT and MUL which are used to apply translations, rotations and 

scaling. These transformations are very suitable for the Euclidean transformations 

which are part of the parametric shape grammar concept introduced by Stiny (1977). 

Many procedural modelling techniques apply variation using rules chosen randomly 

along with random parameter assignment within rules. This allows for the creation of 

large scenes to be procedurally generated with a lot of variation. Within GDL this 

concept can be replicated using the RND function to generate a random value between 

defined constraints. This can be used to assign random parameter values and also to 

choose rules (stored as macro objects) to be applied randomly. Figure 3.12 shows an 

example of this where a short piece of code can automatically generate 3D content for a 

large scene (Figure 3.13) using random parameters and transformations values. This is 

created from one vocabulary shape (block) and one rule applied to this shape. A user 

parameter can control the number of iterations or repetitions of this shape. 

3.5.2 Encoding Shape Grammar Techniques with GDL 

Coding with the Geometric Description Language (GDL) is carried out using different 

scripts for different parts of the parametric object being created. The 3D script is the 

main script used to build the parametric 3D object. A 2D script is used to program how 

the object will be represented in plan view. A master script is the first script that is 
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executed and is used for tasks such as reading in value lists, setting up parameters, 

checking user errors and defining materials. Information in the master script can be used 

in all other scripts including the 2D and 3D scripts.  

 

 

 

 

 

 

 

Figure 3.12: GDL code which randomly generates 3D content shown in Figure 3.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Automatically generated 3D content with GDL using random parameters and 

transformations. 
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A parameter table is used to define the parameters for the object. Various different 

parameter types are available for parameters including real numbers, integers, Boolean 

values and text. Parameters can also be stored in arrays. A separate parameter script is 

used to create drop-down value lists, set up ranges or constraints for parameters and 

locking or altering parameters. A property script is used to write components and 

descriptor commands if the object is to be used in a schedule. Finally, a user interface 

script enables a custom dialogue box to be created with custom text fields, images, user 

interface buttons and input fields. The different scripts used to create the parametric 

façade are described below. 

3.5.3 3D Script 

The main shape vocabulary objects and rules developed for the parametric façade have 

been coded in the 3D script. The 3D script is structured with subroutines and an 

executive script which is a controlling script used to call subroutines. Shape vocabulary 

objects are stored in individual subroutines and shape rules which are applied to shape 

vocabulary objects are coded in the executive script. The initial shape {𝐼} (Figure 3.7) 

used as part of the parametric shape grammar is coded using a GDL function cPRSIM 

and stored in a subroutine. This is coded by defining the shape using coordinates on the 

x-y plane and specifying a height or thickness. The shape can be rotated using the 

transformation command ROT to lift it off the x-y plane. The coordinates are input as 

parameters which can alter the shape and size of the object. This same command is used 

to create the vocabulary shapes TW, TD and BL (Figure 3.8) which are all stored in 

individual subroutines. Figure 3.14 shows the GDL code for the shape TW which is 

called when a rule is being applied to this shape. This code is similar to the code for the 

initial shape {𝐼} but includes coordinates for an opening which is used for window 

openings in the wall façade. 
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Figure 3.14: GDL code for vocabulary shape TW. 

 

Other shape vocabulary objects stored in subroutines include a parametric sash window. 

This parametric sash window is the default window for the parametric façade. The 

default sash window created for the parametric façade has parameters to alter the 

window width, height, width and thickness of the window frame, sash frame and 

glazing bars, reveal depth and the number of vertical and horizontal glass panes in each 

sash. Sample code for this vocabulary object can be seen in Figure 3.15. 

Along with the window object is a separate object for a window sill (Figure 3.16). 

Parameters for the sill include the sill front height, sill angle, sill back height, spacing 

between sill and wall, sill nosing and sill overhang at left and right. Another vocabulary 

object used in the parametric façade is an ashlar block wall (Figure 3.17). This is 

created from a basic block and the application of shape rules outlined in Figure 3.9. 

Using GDL these rules are coded using loops to repeat a block in the x-direction and 

then repeat this row in the y-direction. This is repeated for alternating rows. Geometry 

is also added for mortar between blocks. The GDL function cPRISM is used for this. 

Parameters for this vocabulary object include individual block length, height and 

Coordinates of tile as 

parameters 

Coordinates of window 

opening as parameters 

Thickness 

tx4, ty4 

 

tx3, ty3 

 

tx2, ty2 

 

tx1, ty1 
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thickness, block wall width and height and mortar spacing. Sample code for this object 

can be seen in Figure 3.17. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Sample script for parametric sash window stored as a vocabulary shape in a subroutine. 

 

 

 

 

 

 

 

 

 

Figure 3.16: Script for a parametric sill stored as a vocabulary shape in a subroutine. 

 

 

 

W 

S 



 59  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Sample script for ashlar block wall stored as a vocabulary shape in a subroutine. 

 

These various vocabulary shapes are combined and repeated using shape rules to create 

a parametric façade that can be used to automatically generate endless configurations of 

building façades. The shape rules described in section 3.4.3 are also coded in the 3D 

script but are located at the top of the 3D script in an executive script. When a rule is 

applied to a shape vocabulary object the required object is called from its subroutine and 

altered by the rule. 

Rules two and three (“Repeat x” and “Repeat y”) from Table 3.2 are implemented in 

GDL using loop commands to repeat shapes in a certain direction. The GDL functions 

CUTPLANE and CUTPOLY are used for rules four and five to split geometry into 

multiple components. Rules six and seven use Boolean operations in GDL such as 

SUBTRACT to remove segments after splitting. 

The main rule that is used to generate the structure of a façade is rule 8 (Table 3.2), 

which repeats the vocabulary shape TW in both x and y directions as outlined in section 

BW 
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3.4.3. This is coded in GDL with a loop command to repeat the shape TW. When a 

parametric shape is normally repeated in a loop the parameter values of the repeated 

instances will match that of the first instance. So if a parameter value is changed for the 

object it will also change in all repeated instances. This is not suitable for repeating the 

vocabulary shape TW for the parametric façade as repeated instances will require 

different parameter values on each iteration to allow for different parameter values such 

as window heights and widths throughout a façade. With GDL arrays are used to 

overcome this problem. Specifying a parameter as an array in the parameter table allows 

a single parameter to have multiple values stored in a table (Figure 3.18). When the 

shape TW is repeated in a loop with rule eight a different parameter value from an array 

are assigned to each repeated instance. This allows each repeated instance of the shape 

to have unique parameter assignments each time. 

 

 

 

 

 

Figure 3.18: Parameters as an array to allow multiple assignments for a parameter. 

 

While repeating the shape TW using a loop command, IF statements are used to control 

the number of repeated instances in a particular column and also the number of columns 

to be placed (Figure 3.9). The user parameters for “number of floors” and “number of 

horizontal tiles” are used to control this. Coordinate transformations are also used with 

this loop command to control where the next instance is to be placed. After the first 
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instance is placed a coordinate transformation is used to move to the next position for 

the second instance. After all instances have been placed on a particular column then a 

coordinate transformation moves to the bottom of the next column for the next instance 

and so on until all instances have been placed for the specified parameter settings. 

Sample code for these coordinate transformations embedded in a loop as part of rule 

eight can be seen in Figure 3.19. 

 

Figure 3.19: Sample code showing coordinate transformations embedded in a loop as part of rule eight 

(Table 3.2). 

 

Rule nine from Table 3.2 is used to place a door tile (TD) into the generated facade. The 

position of a door tile is obtained from the user defined parameter “Windows to left of 

Door”. Rule ten from Table 3.2 is used to add the vocabulary shape for a window object 

(W) to existing window tiles (TW) as shown in Figure 3.20. Parameters for the 

parametric window object are again stored in arrays to allow for different parameter 

assignments for each repeated instance. The width and height of each repeated window 

object are automatically calculated from the size of the window openings in each 

window tile and automatically entered into the relevant arrays for the window object. 
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When the window object is repeated throughout the façade the correct parameters for its 

width and height are automatically entered from the relevant arrays. 

 

 

 

 

Figure 3.20: Shape rule 10 which adds a window object (W) to all existing window tiles (TW). 

 

Another rule is also used to add the vocabulary shape for a parametric ashlar block wall 

(Figure 3.17) to the generated façade. The parameters for the width and height of the 

ashlar block wall are automatically matched to the parameters of the parametric façade. 

Users can choose to add ashlar block wall detail to all storeys of the generated façade or 

just the ground floor. When the ashlar block wall is being added to the façade, Boolean 

operations are used to cut areas for window openings in the wall. Figure 3.21 shows an 

example of this vocabulary shape automatically added to the generated façade. 

Also included in the 3D script is code which defines how parts of the façade can be 

moved or graphically edited. This facilitates more efficient parameter editing as all 

objects don’t have to be modified by altering parameter values in a dialogue box. 

Instead, parameters can be altered by graphically editing the objects in 2D or 3D. In 

GDL graphical hotspots are used to control how parts of the object can be moved. 

Graphical editing points are defined in the script and shown on the model with purple 

markers as shown in Figure 3.22. Clicking on a marker allows a certain parameter to be 

edited by moving the marker to a new position as seen in Figure 3.22 where the width 

of the façade is being graphically edited. The coding of this in GDL requires the editing 
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point to be defined using coordinates along with a vector for movement and the 

parameter being edited by the hotspot (Figure 3.23).   

 

 

 

 

 

 

 

Figure 3.21: Parametric façade showing block wall detail automatically added. 

 

 

 

 

 

 

 

Figure 3.22: Graphical editing of the façade width. Graphical editing points shown with purple markers. 
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Figure 3.23: Sample GDL code for graphical parameter editing. 

3.5.4 Master Script 

A master script has been used to set up parameters, populate parameter arrays, define 

global parametric expressions and define material for objects. The classical proportions 

outlined in section 3.3 are set up and coded in the master script. These proportions 

provide an initial estimate for the position and size of elements on the façade which can 

be later edited to accurately match survey data. Theses proportions are calculated from 

two user defined parameters for “window width” and “distance between ground and 

first-floor windows”. A set of parametric expressions calculate the classical proportions 

from the two user defined parameters. Sample GDL code for these parametric 

expressions can be seen in Figure 3.24. After these proportions are calculated the 

coordinates of each tile and window opening are returned and stored in four arrays. 

When the shape TW is repeated with rule 8, the coordinates for the window tile (TW) in 

each iteration are obtained from these four arrays resulting in a façade with classically 

proportioned window openings as seen in Figure 3.21. 

Another feature of the developed parametric façade is the ability to graphically edit 

parameters for a group of objects simultaneously. This allows for very quick editing of 

elements on the façade. For example, it is possible to edit the height of all windows on a 

floor simultaneously along with separate editing of individual window heights. The 



 65  

coding to allow for editing groups of objects together is implemented in the master 

script. Normally graphically editing multiple parameters is not possible with GDL as 

coding an editable hotspot only allows one parameter to be edited at a time. To 

overcome this, a single parameter is used with a graphical hotspot which when altered 

applies a change to multiple other parameters. This allows one parameter to be 

graphically edited which updates multiple other parameters simultaneously in a group 

such as changing the height of all windows on a floor or the width of all windows in a 

column. Sample GDL code for this is shown in Figure 3.25. 

 

 

Figure 3.24: Sample GDL code showing parametric expressions used to define classical proportions. 

 

3.5.5 Other Scripts 

A parameter script has been used for the parametric façade to specify drop-down values 

for parameters, hiding parameters that are not required and also specifying parameter 

constraints and allowable ranges. Parameter constraints and ranges are used to restrict 

users from entering incorrect parameter values or graphically editing parameters that 

may cause the model to degenerate. For example, a parameter for a window width 
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should not be negative and should not be larger than the wall tile that the window is 

placed in.  

A 2D script is also used with the parametric façade to specify how the object will appear 

in 2D. This 2D representation can be coded to define a specific plan view or a command 

can be used to automatically generate lines for the 2D representation which is a 

projection of the object defined in the 3D script. This command has been used for the 

parametric façade to automatically project the plan view from the object created in the 

3D script. Figure 3.26 shows examples of various façade arrangements automatically 

generated with the new procedural façade rules. A video showing a demonstration of the 

new procedural façade prototype can also be seen from the link below. 

https://youtu.be/NujkDfN01Ig 

 

 

Figure 3.25: Sample GDL code used to alter groups of parameters for simultaneously editing. 

 

 

 

https://youtu.be/NujkDfN01Ig
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Figure 3.26: Various façade models automatically generated by altering parameters of the new procedural 

façade template. 

3.5.6 Non-Uniform and Irregular Geometries 

One of the main challenges involved with modelling existing buildings is accurately 

representing the current condition of a building which may include damage or 

deformation to a building or building parts caused over time. Damage caused by 

environmental conditions, settlement of the building on the ground or other causes may 

result in irregular or non-uniform geometries such as walls not intersecting exactly at 

90-degree angles or non-vertical walls. Creating an accurate ‘as-is’ representation of an 

existing building should include these irregularities to ensure an accurate representation 
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of the building. Most architectural modelling software (including BIM software) is 

focused on new building designs and as a result, has very limited tools for modelling 

irregular and non-uniform building elements. In order to accurately model existing 

buildings, the new procedural façade rules were developed with options to create non-

uniform and irregular geometries. This includes parameters to specify the inclination 

angle for non-vertical walls, options to specify exact corners for window openings 

which do not have to be perfect 90-degree rectangles. Windows automatically placed in 

these window openings are adjusted with irregular window frames to fit irregular wall 

openings. Newly developed parametric sash window objects also include options for 

specifying irregular grid positions for glazing bars.  

3.6 Summary 

This chapter has outlined the steps involved in designing and implementing a new 

procedural façade prototype as a plug-in for the ArchiCAD BIM software. Architectural 

knowledge is used to assist with the reconstruction process by providing an initial 

estimate for the position and size of façade elements. The conceptual design framework 

for this parametric façade incorporates techniques from shape grammars and parametric 

design. This conceptual design framework was implemented and coded with the 

Geometric Description Language (GDL), an embedded programming language within 

the ArchiCAD BIM software. This enabled the tools to be used in a BIM environment. 

The process for refining the generated façade geometry to survey data is described in 

more detail in Chapter 6. 

3.7 Limitations of Prototype 

The developed procedural façade prototype can greatly improve the efficiency of 

modelling existing building façades by automatically generating façade arrangements 
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and automatically generating objects on these façade arrangements. However, there are 

a number of limitations with the implementation of this initial prototype. Due to the 

design of the procedural façade rules, resulting models have limited scope for variation. 

For example façade models generated with these rules are limited to façades with two, 

three or four storeys while the range for horizontal tiles is limited between two and eight 

horizontal tiles. This is due to the design as transformations required for different 

arrangements are not extendable and instead coded for a limited number of different 

variations.  

While the Geometric Description Language (GDL) is very suitable for developing 

procedural rules it also has its limitations. Plug-ins created for ArchiCAD which are 

implemented with only GDL have limited capabilities for interacting with existing 

ArchiCAD tools and functionality. For example, models created from GDL scripts are 

standalone objects and cannot interact or be altered by other ArchiCAD objects. A user-

interface for a prototype implemented with GDL is also limited to the dialogue box for a 

GDL object. A plug-in containing a lot of functionality may require a more 

comprehensive user interface with toolbars, progress windows, unique dialogue boxes 

or integrated menu commands.  

A design and implementation for a new more comprehensive procedural modelling 

prototype is described in chapter 4 which overcomes the limitations of this first 

procedural modelling prototype. A better design is developed to avoid previous 

limitations with the scope of variation. Problems with the previous implementation are 

also overcome by utilising both GDL and C++ programming languages combined with 

an application programming interface (API) for ArchiCAD software. This enables better 

integration with existing tools and functionality of ArchiCAD along with an improved 

graphical user-interface. 
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4 Chapter Four: Prototype II – Procedural Building 

4.1 Introduction 

Two additional prototypes have been developed in order to overcome limitations of the 

first procedural façade prototype. These new prototypes provide more advanced 

capabilities for modelling historic buildings. These new prototypes enable more 

efficient modelling workflows as survey data can be used as input to the procedural 

rules for faster generation of building geometry. This chapter describes the conceptual 

design framework and initial implementation for Prototype II (Figure 4.1). This 

prototype further extends the concepts of the first procedural façade prototype by 

providing procedural modelling capabilities for all building faces and not just one 

façade. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Procedural Modelling Prototypes for generating building geometry. 

 

4.2 Overview of Prototype II: Procedural Building  

Similar to the first façade prototype, the second prototype enables modelling existing 

buildings with a semi-automatic process where the required geometry is first generated 
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and then manually refined to match to specific survey data.  Unlike the first prototype, 

this second prototype provides procedural rules for modelling all faces of a building and 

not just a single façade. This requires procedural rules capable of generating many types 

of building shapes. To achieve this, procedural rules are designed to interact with 

existing 2D building footprints which enables the automatic generation of any building 

shape. After the structure of a building is generated other procedural rules can then be 

applied to split a building face into tiles and automatically add building components. 

Generated geometry can then be manually refined to survey data. This prototype has 

again been implemented for the ArchiCAD BIM software using the Geometric 

Description Langauge (GDL). The C++ programming language has also been used for 

the implementation of this prototype with an Application Programming Interface (API) 

for the ArchiCAD software. This enabled the development of more advanced 

functionality that can interact with existing ArchiCAD tools. 

4.3 Prototype II: Rule and Algorithmic Design 

The conceptual design framework for the procedural building prototype is also based on 

concepts from shape grammars where a vocabulary of shapes is used with a set of rules 

and algorithms to automatically generate different building arrangements. Similar 

classical proportions described in the section 3.3 are used to provide an initial estimate 

for the position and size of building elements on a generated building (Figure 3.3). The 

design for the procedural building prototype incorporates similar vocabulary shapes as 

the previous procedural façade (Figure 3.8) but with additional new objects such as a 

floor slab with joists (Figure 4.32).  A new set of procedural rules and algorithms have 

been designed which are described in this section. Section 4.4 then describes the initial 

implementation of these new procedural rules. 
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4.3.1 Rule One: Procedural Extrusion 

The first procedural rule is used to extrude a building footprint (FP) or user drawn 2D 

polygon to create a mass model (MM) for a particular floor or building (Figure 4.2). 

This allows the procedural modelling techniques and rules developed to be applied to 

any building shapes. The volumetric mass model can be automatically generated from 

an existing building footprint or a user can define the footprint by drawing a new 2D 

polygon. This rule can be applied to any closed polygon which can contain both lines 

and arcs. The rule will automatically generate a volumetric mass model that can contain 

planar and curved surfaces. The height at which the building footprint is extruded to is a 

parameter of this rule. 

 

 

 

 

 

 

Figure 4.2: Rule One – Extrude a building footprint or user-drawn 2D polygon to create a mass model 

 

The input for this rule is 2D polygon data. Users can select a single building footprint or 

multiple building footprints (FP) to automatically generate any number of building 

models at once. The input data automatically extracted from selected polygons include 

the number of selected polygons, number of sides per polygon, x and y coordinates of 

polygon nodes, number of arcs in each polygon (if any), x and y coordinates of arc start 

and end points and arc angles in radians (Figure 4.3).  

 

Rule 1 – Extrude 

FP MM 



 73  

 

 

 

 

 

 

 

Figure 4.3: Inputs and outputs from procedural rule one – Procedural Extrusion 

 

Figure 4.4 shows a workflow diagram for the steps involved in this first procedural rule.  

If polygons contain arcs then a number of initial calculations are performed to acquire 

data relating to arcs for later operations. As all arc angles extracted from polygons are in 

radians, they first need to be converted to degrees using the formula in Equation 4.1. 

Creating building mass models with GDL requires the origin of arcs to be calculated. 

This is calculated from the arc start and end coordinates and arc angle using the steps in 

Table 4.1 and the formulae in Equation 4.2 to Equation 4.7. Next, the angles from the 

arc origins to arc start and end points are calculated using Equation 4.3. These angles 

are stored for later operations with subsequent procedural rules. The radii of arcs are 

also calculated using Equation 4.2 and stored for later operations.  

INPUT 

Number of Polygons 

Number of Sides per Polygon 

Polygon x and y Coordinates 

Number of Arcs in Polygon (if any) 

x and y Coordinates of Arc Start and End Points 

Arc Angles (radians) 

OUTPUT 

Arc Angles Converted into Degrees 

Arc Origin x and y Coordinates 

Arc Start and End Angles 

Arc Radii 

Polygon Centroid Coordinates 

Polygon Area 

Parametric Mass Building Model  
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Figure 4.4: Flow diagram showing steps for rule one – Procedural Extrusion 
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Table 4.1: Steps for calculating arc origins using arc start and end coordinates and arc angle (𝜃1) (Figure 

4.5). 

1) Calculate distance (L) between arc start and end points using Equation 4.2. 

2) Calculate angle of line between arc start and end points ( 𝛽) using Equation 4.3. 

3) Calculate remaining internal angles (𝜃2 & 𝜃3) of triangle between arc origin and arc start and 

end points (Equation 4.4). 

4) Calculate angle of line from arc start point to arc origin (𝛽 −  𝜃2). 

5) Calculate distance from the arc start point to the arc origin using sine rule with internal triangle 

angles (Equation 4.5). 

6) Calculate coordinates of arc origin using distance and angle from arc start point (Equation 4.6 

and Equation 4.7). 

 

 

 

 

 

 

 

Figure 4.5: Diagram showing solution for calculating arc origins using arc start and end points and arc 

angle (𝜃1). 

 

The next step of the workflow for this procedural rule involves calculating the area of 

polygons (Figure 4.4). This is required to establish if a polygon has its vertices ordered 

in a clockwise or counter-clockwise direction. A polygon with a clockwise direction 

will result in a negative area while a counter-clockwise direction will result in a positive 

area. For consistency, all mass models are generated in a clockwise direction so the 

order in which polygon coordinates are used in GDL scripts is dependent on the 

polygon direction. The formula for calculating the area of an irregular polygon is shown 

𝛽 

𝜃1 

𝜃3 

𝜃2 

Origin (𝑐𝑥 , 𝑐𝑦) 
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in Equation 4.8. For this formula, polygons are considered with “n” representing the 

number of vertices starting at 0 and ending at “n - 1” as the last vertex is assumed to be 

the same as the first for a closed polygon.  

Table 4.2: Equations used in rule one, Procedural Extrusion. 

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 × 
180

𝜋
 

Equation 4.1: Angle conversion from radians to degrees. 

 

𝐿 = √(𝑥2 − 𝑥1 )
2 + (𝑦2 − 𝑦1)2 

Equation 4.2: Formula for calculating the distance between two planar points. 

 

𝛽 =  tan−1 (
𝑦2 − 𝑦1

𝑥2 − 𝑥1

) 

Equation 4.3: Formula for calculating the angle of a line connecting two planar points. 

 

𝑎 =
(180 − 𝑎𝑟𝑐 𝑎𝑛𝑔𝑙𝑒)

2
 

Equation 4.4: Formula for calculating equal angles in an Isosceles triangle. 

 

𝑎

sin 𝐴
=

𝑏

sin 𝐵
=

𝑐

sin 𝐶
 

Equation 4.5: Sine Rule 

 

𝑎2 + 𝑏2 = 𝑐2 

Equation 4.6: Pythagoras Theorem.  

 

𝑥2 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × cos(𝑎𝑛𝑔𝑙𝑒) 

𝑦2 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × sin(𝑎𝑛𝑔𝑙𝑒) 

Equation 4.7: Formula for calculating the coordinates of an unknown point using a distance and angle from a known coordinate.  

 

𝐴𝑟𝑒𝑎 =  
1

2
(∑(𝑥𝑖. 𝑦𝑖+1 −  𝑥𝑖+1. 𝑦𝑖)

𝑛−1

𝑖=0

) 

Equation 4.8: Formula for calculating the area of an irregular polygon 

 

𝑐𝑥 = (∑ 𝑥𝑖

𝑛−1

𝑖=0

) (𝑛 − 1⁄ )   

𝑐𝑦 = (∑ 𝑦𝑖

𝑛−1

𝑖=0

) (𝑛⁄ − 1)   

Equation 4.9: Formula for calculating x and y coordinates of a polygon centroid. 
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The final calculation in the workflow for this procedural rule before generating a mass 

model involves computing the coordinates of the centroid of each polygon (Figure 4.4). 

This is also known as the centre of gravity or centre of mass. This centroid position is 

later used as a hotspot for interactive editing the parameter for the number of storeys in 

a building model. The formula for calculating this centroid position is shown in 

Equation 4.9. The centroid x coordinate is calculated by adding all x coordinates of 

vertices in a polygon and dividing by the number of vertices. Similarly, the centroid y 

coordinate is calculated by adding all y coordinates of vertices and dividing by the 

number of vertices. As with the area calculation, xn is assumed to be the same as x0 as 

the polygon is closed and has the same end and start vertices. The final step of this 

procedural rule involves generating the 3D geometry for a mass model using the 

retrieved and calculated 2D polygon data (Figure 4.4).  

4.3.2 Rule Two: Procedural Offset 

The second rule (Figure 4.6) converts a mass model into a higher level of detail (LoD) 

model which is represented by walls with a uniform thickness. Walls are created from 

the mass model by defining an opening in the mass model and leaving just the area 

contained by the walls. For this rule, an offset algorithm has been developed which 

offsets the 2D building footprint by a distance equal to the wall thickness. This new 

offset polygon is used to define the opening which is removed from the original mass 

model. The wall thickness which is the offset distance is a parameter for this rule and 

can be altered by a user. 
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Figure 4.6: Rule Two - Offset a building footprint to convert a mass model into walls with uniform 

thickness 

 

The inputs for this rule are the mass models generated with the previous rule and the 

accompanying polygon data (Figure 4.7). This includes polygon x and y coordinates, 

polygon area, arc start and end coordinates, arc angles, arc origin coordinates, arc start 

and end angles and arc radii. The outputs from this rule include coordinates defining a 

new offset polygon, coordinates for new offset arc start and end points, offset arc start 

and end angles, offset arc radii and new wall objects generated with a GDL cPRISM 

function. Figure 4.8 shows a workflow diagram for the steps involved in this procedural 

offset rule. This offset rule is applied if a user parameter for the level of detail (LoD) is 

set to two or more. Otherwise, the model will be displayed as a lower LoD mass model 

using rule one. 

 

 

 

 

Rule 2 – Offset 
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Figure 4.7: Inputs and outputs from procedural rule two – Procedural Offset 

 

The first part of the workflow for the offset algorithm involves calculating 

perpendicular directions for each building side (Figure 4.8). Using the cross product 

formula a perpendicular direction for a line can be calculated by swapping the x and y 

coordinates and changing the sign of the new x coordinate (Equation 4.10).  

 

(
∆𝑥𝑝𝑒𝑟𝑝

∆𝑦𝑝𝑒𝑟𝑝
) = (

−∆𝑦
∆𝑥

) = (
−(𝑦2 − 𝑦1)
(𝑥2 − 𝑥1)

)  

Equation 4.10: Formula for calculating a perpendicular direction for a line using the cross product 

formula. 

 

The second stage of the workflow for the offset algorithm involves calculating start and 

end coordinates of each offset parallel line and arc. For offset parallel lines this is 

achieved using the offset distance and perpendicular direction from the original line 

endpoints (Equation 4.7). If a polygon contains arcs, then the offset arcs are calculated 

by adding or subtracting the offset distance to the original arc radius.   

 

OUTPUT 

Offset Polygon Coordinates 

Offset Arc Start and End Coordinates  

Offset Arc Angles  

Offset Arc Start and End Angles  

Offset Arc Radii 

Parametric Wall Objects  

INPUT 

Parametric Mass Building Model  

Polygon x and y Coordinates 

Polygon Area 

x and y Coordinates of Arc Start and End Points 

Arc Angles (degrees) 

Arc Origin x and y Coordinates 

Arc Start and End Angles 

Arc Radii 
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Figure 4.8: Flow diagram showing steps for rule two – Procedural Offset 

 

As a result of being offset, the new lines and arcs are no longer connected. Individual 

lines and arcs are either intersecting or do not meet (Figure 4.9). To overcome this, the 

third stage of the offset algorithms requires the intersections between individual lines 

and arcs to be calculated. This involves calculating the intersection between two lines, 

the intersection between a line and an arc or the intersection between two arcs 
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depending on whether two adjacent sides are lines of arcs (Figure 4.9). Figure 4.10 

shows a workflow diagram for evaluating the required intersections.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Original polygon (left), unconnected offset lines and arcs (middle) and single connected offset 

polygon (right)  

 

The formula for calculating the intersection between two lines is shown in Equation 

4.11. This can be used for crossing lines and lines segments that do not meet (Figure 

4.11). If the denominator of this formula is zero, then the two lines are parallel and there 

is no unique point of intersection. This situation may arise for this offset algorithm if 

two adjacent polygon sides have the same direction or angle (one line divided into more 

than one vertex). In this case, no intersection needs to be calculated as the connection 

points are the original vertices between such adjacent lines.  
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Figure 4.10: Flow diagram showing steps for calculating the intersections of offset lines and arcs.  

 

𝑃𝑥 , 𝑃𝑦 = (
(𝑥1.𝑦2 − 𝑦1.𝑥2)(𝑥3 − 𝑥4) − (𝑥1 − 𝑥2)(𝑥3.𝑦4 − 𝑦3.𝑥4)

(𝑥1 − 𝑥2)(𝑦3 − 𝑦4) − (𝑦1 − 𝑦2)(𝑥3 − 𝑥4)
,

                    
(𝑥1.𝑦2 − 𝑦1.𝑥2)(𝑦3 − 𝑦4) − (𝑦1 − 𝑦2)(𝑥3.𝑦4 − 𝑦3.𝑥4)

(𝑥1 − 𝑥2)(𝑦3 − 𝑦4) − (𝑦1 − 𝑦2)(𝑥3 − 𝑥4)
)

 

Equation 4.11: Formula for calculating the intersection of two lines given two points on each line 

 

 

 

 

 

 

 

 

 

Figure 4.11: Intersection of two line using Equation 4.11. 
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The steps for calculating the intersection of a line and arc are shown in Table 4.3 and 

Equation 4.12 to Equation 4.16 (Watson, 2009). Intersection points are solved by 

connecting a triangle between the arc origin and the interesting line as shown in Figure 

4.12. Side h of this triangle is perpendicular to the line which intersects the arc. By 

solving the sides w and h of this triangle, the points of intersection are found. 

 

Table 4.3: Steps for calculating the intersection of a line and arc (Figure 4.12). 

1) Calculate distance of line (Equation 4.2). 

2) Calculate a unit direction vector for line (Equation 4.12). 

3) Calculate perpendicular direction for line (Equation 4.13).  

4) Calculate perpendicular distance (h) from line to arc origin (Equation 4.14).  

5) Calculate remaining side of triangle (w) using Pythagoras Theorem (Equation 4.15). 

6) Calculate two intersection points using distances and directions from the known origin 

coordinates (xc, yc) (Equation 4.16). 

7) Test if intersection points lie on line and arc segments by checking limits of arc and 

line segments. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Diagram showing solution for calculating the intersection of a line and arc (Table 4.3).  
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Table 4.4: Equations used to calculate the intersection points between a line and arc.  

�̂� = (
(𝑥2 − 𝑥1)/𝐿
𝑦2 − 𝑦1)/𝐿

) 

Equation 4.12: Formula for calculating a unit direction vector �̂� for a line where L is the total distance of the line. 

 

(
𝑣𝑥

𝑣𝑦
) = (

−�̂�𝑥

�̂�𝑦
) 

Equation 4.13: Formula for calculating a unit vector 𝑣 which is perpendicular to the unit direction vector �̂�. 

 

ℎ = 𝑝. 𝑣 ̂ =  (
𝑥1 − 𝑥𝑐

𝑦1 − 𝑦𝑐
) . (

−𝑢𝑦

𝑢𝑥
) 

ℎ = 𝑢𝑥(𝑦1 − 𝑦𝑐) −  𝑢𝑦(𝑥1 − 𝑥𝑐) 

Equation 4.14: Dot product formula used for calculating perpendicular distance (h) in Figure 4.12. Vector 𝑝 is the 

vector starting at the arc origin (xc, yc) and ending at line endpoint (x1, y1). 

 

𝑤 =  √𝑟2 − ℎ2 

Equation 4.15: Pythagoras Theorem used to calculate distance (w) in Figure 4.12. 

 

(
𝑥𝐿

𝑦𝐿
) = (

𝑥𝑐

𝑦𝑐
) + ℎ (

𝑣𝑥

𝑣𝑦
) − 𝑤 (

𝑢𝑥

𝑢𝑦
) 

(
𝑥𝑅

𝑦𝑅
) = (

𝑥𝑐

𝑦𝑐
) + ℎ (

𝑣𝑥

𝑣𝑦
) + 𝑤 (

𝑢𝑥

𝑢𝑦
) 

Equation 4.16: Formula for calculating two intersection points (left (L) and right (R)) using distances and directions 

from arc origin (xc, yc).   

 

If two adjacent sides of a polygon are arcs then an intersection between two arcs is 

calculated. Table 4.5 shows the steps for calculating the intersection of two arcs using 

Equation 4.17 to Equation 4.19 (Watson, 2009). Intersection points are solved by 

connecting triangles between both arc origins and intersection points (Figure 4.13). The 

cosine rule is then used to solve for angles 𝜃1and 𝜃2, which are used to calculate the 

intersection points.  
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Table 4.5: Steps for calculating the intersection of two arcs (Figure 4.13). 

1) Test if arcs are intersecting (Equation 4.17). 

2) Calculate angles ϴ1 and ϴ2 in Figure 4.13 using the cosine rule (Equation 4.18). 

3) Calculate a unit direction vector �̂� from (𝑥𝑐1, 𝑦𝑐1) to (𝑥𝑐2, 𝑦𝑐2) using Equation 4.12. 

4) Calculate a perpendicular direction vector 𝑣 which is perpendicular to �̂� (Equation 4.13). 

5) Calculate intersection points by expressing the intersection points as components of �̂� and 𝑣 

(Equation 4.19). 

6) Test if intersections fall within the arc segments by comparing the intersection points and the 

limits of each arc segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Diagram showing solution for calculating the intersection of two arcs (Table 4.5). 
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Table 4.6: Equations used to calculate the intersection points between two arcs 

 

√(𝑥𝑐1 − 𝑥𝑐2)2 + (𝑥𝑦𝑐1 − 𝑦𝑐2)2  ≤ (𝑅1 + 𝑅2) 

Equation 4.17: Formula to test if two arcs are intersecting by checking if the distance between the arc centres is less 

than the sum of the radii. 

 

𝜃1 = cos−1 (
𝑅1

2 + 𝐿2 − 𝑅2
2

2𝑅2𝐿
) 

𝜃2 = cos−1 (
𝑅2

2 + 𝐿2 − 𝑅1
2

2𝑅2𝐿
) 

Equation 4.18: Cosine Rule for calculating angles ϴ1 and ϴ2 in Figure 4.13. 

 

(
𝑥
𝑦) = (

𝑥𝑐1

𝑦𝑐1
) + 𝑅1 cos 𝜃1 (

𝑢𝑥

𝑢𝑦
) ± 𝑅1 sin 𝜃1 (

𝑣𝑥

𝑣𝑦
) 

Equation 4.19: Formula for calculating intersection points between two arcs by expressing the intersection points as 

components of unit direction vector �̂� and perpendicular vector 𝑣 (Figure 4.13). 

 

The final stage of the offset algorithm involves using the coordinates of the offset 

polygon to define a hole in the previous mass model (Figure 4.8). This enables the mass 

model to be represented in a higher level of detail model with wall components.  

4.3.3 Rule Three: Repeat  

The third procedural rule is a repeat rule that is used to repeat a wall instance for any 

number of floors specified by a user parameter (Figure 4.14). A loop is used to create 

new wall instances for each floor. By default new wall instances created have the same 

footprint as the ground floor but using rule one for extruding a building footprint it is 

also possible to create buildings with different footprints on each floor. When rule one 

(Procedural Extrusion) and rule three (Repeat) are applied the heights of each floor 

(extrusion height) are automatically calculated by applying the classical proportions and 

architectural rules shown in Figure 3.3. The inputs for this rule are the parametric wall 

objects created with previous rules, associated polygon data and architectural 

proportions which are used to setup initial floor heights with classical proportions 
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(Figure 4.15). The outputs from this rule include parametric wall objects for any number 

of floors with classically proportioned floor heights, in addition to capabilities for 

interactive editing the number of floors and floor heights (Figure 4.15). 

 

 

 

 

 

Figure 4.14: Rule Three – Repeat instances of a wall for any number of floors as set by a user. 

 

INPUT 

Parametric Wall Objects 

Polygon Data 

Architectural Proportions 

 

Figure 4.15: Inputs and outputs from procedural rule three – Repeat Rule 

 

Figure 4.16 shows a workflow diagram for the steps involved in this procedural rule. 

The first step involves calculating and applying classical proportions to determine the 

initial heights for each floor (Figure 4.16). Classical proportions outlined in Figure 3.3 

and Figure 3.5 are used to calculate the initial floor heights. These proportions are 

calculated with a series of parametric expressions where floor heights are expressed in 

relation to window heights and positions (Figure 3.5). After the initial floor heights are 

calculated and applied, the second stage of the workflow repeats the previously 

generated wall geometry for any number of floors.  

The final part of the workflow for this rule is a search algorithm to enable interactive 

editing for the number of floors. Interactive editing works by clicking and dragging 

hotspots on a model to change a parameter. This works well for dimension type 

OUTPUT 

Parametric Wall Objects for Any Number of Floors 

Expressions for Applying Classically Proportioned Floors 

Interactive Editing Capabilities for the Number of Floors 

Rule 3 – Repeat 
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parameters which are based on a linear distance from a defined base point. A parameter 

for the number of floors, however, is not a dimension parameter but an integer which 

cannot be interactively edited in the same way. To overcome this, a different parameter 

for the building height is instead edited interactively by a hotspot in the 3D window 

(Figure 4.17). The building height set by a user is then used to determine the number of 

floors. The building height set by a user is compared to the set of pre-determined floor 

heights. Each floor height added to the sum of the previous floor heights is compared to 

the new building height. When the correct floor is found based on the building height 

the new required geometry for that number of floors is generated. Figure 4.18 shows a 

flow diagram for this final stage of the repeat rule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Flow diagram showing steps for rule three – Repeat Rule. 
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Figure 4.17: Interactive editing the number of floors by clicking and dragging a hotspot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Flow diagram showing steps for calculating the number of floors after interactive editing. 
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4.3.4 Rule Four: Split Rule 

The fourth procedural rule is a split rule which is used to subdivide a façade or floor 

into any number of tiles which may contain openings (Figure 4.19). Unlike the previous 

procedural façade prototype where tiles are created by repeating tile instances, the 

procedural building prototype creates tile instances by subdividing existing wall 

geometry. Users can apply a split rule to a complete building, all floors on a particular 

building side or a specific floor on a building side. Different floors on a façade can also 

have different numbers of tiles. The number of tiles to be created is a parameter for this 

rule. 

 

 

 

 

 

 

Figure 4.19: Rule Four - Split all floors or a specific floor on a building side into any number of tiles set 

by a user  

 

The inputs for this rule are the parametric wall objects created with previous rules, 

associated polygon data and architectural data which is used to apply classical 

proportions to window openings (Figure 4.20). The outputs from this rule include 

coordinates of split lines which subdivide a planar or curved façade or floor, coordinates 

for tiles and openings on a subdivided planar or curved façade or floor, expressions for 

calculating and applying classical proportions for window openings and parametric 

building model geometry which contains walls and openings (Figure 4.20).  

 

Rule 4 – Split 
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INPUT 

Parametric Wall Objects 

Polygon Data 

Architectural Proportions 

  

 

Figure 4.20: Inputs and outputs from procedural rule four – Split Rule 

 

Figure 4.21 shows a workflow diagram for the steps involved in this procedural rule. 

When a split rule is applied the first step involves calculating the coordinates of each 

split line which divides a façade or floor into smaller tiles. These split line coordinates 

are used to populate tile lengths and tile coordinates. For a planar building side, split 

line coordinates are calculated by dividing the delta x and delta y of facade endpoints 

equally by the number of tiles as shown in Figure 4.22 and Equation 4.20. The steps for 

splitting a curved building face are shown in Figure 4.23 and Equation 4.21 and 

Equation 4.22. For a curved building façade, an arc angle is divided by the number of 

tiles. This relative arc angle is then used to calculate absolute angles of lines from an arc 

origin to split line points on the arc (Equation 4.21). The coordinates of split lines on an 

arc are then calculated using the split line angles and the arc radius from known arc 

origin coordinates (Equation 4.22).  

Next, the tile lengths are calculated and stored using the split line coordinates. The 

distance formula in Equation 4.2 is used to calculate the tile lengths between split lines. 

For curved building faces, a linear tile length distance is also calculated between split 

lines and stored (Figure 4.23). These linear tile lengths for curved building faces are 

later used to calculate window widths on curved surfaces.   

 

OUTPUT: 

Coordinates for split lines which subdivide a planar façade or floor. 

Coordinates for split lines which subdivide a curved façade or floor. 

Coordinates for tiles and tile openings on a subdivided planar façade or floor. 

Coordinates for tiles and tile openings on a subdivided curved façade or floor. 

Expressions for calculating & applying classical proportion for window openings.  

Parametric building model geometry which contains walls and openings. 
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Figure 4.21: Flow diagram showing steps for rule four – Split Rule. 

 

The third stage in this procedural rule involves calculating window opening coordinates 

on tiles. Initial window sizes and positions are calculated using classical proportions and 

rules shown in Figure 3.5. Depending on the position of a tile in a building, different 

opening sizes and positions are applied.  
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Figure 4.22: Diagram showing solution for calculating split line coordinates for subdividing a planar 

building façade (Equation 4.20). 

 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑥𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟 =  𝑥1 + ((
𝑥2 − 𝑥1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑖𝑙𝑒𝑠
) ∗ 𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟) 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑦𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟 =  𝑦1 + ((
𝑦2 − 𝑦1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑖𝑙𝑒𝑠
) ∗ 𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟) 

Equation 4.20: Formula to calculate split line x and y coordinates for subdividing a planar building façade 

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2)  represent façade endpoints. 

 

For a planar building side, tile openings are defined with coordinates relative to a local 

origin at the lower left-hand corner of a tile (Figure 4.24). X and Y axes of this 

coordinate system are rotated to be aligned to the plane of the tile (Figure 4.24). This 

allows openings with different sizes and positions to be defined in the same coordinate 

system and later aligned to any building façade using coordinate transformations. Tile 

corners and opening positions are defined as parameters. A set of parametric 

expressions define the initial coordinates for tiles and openings based on the classical 

proportions in Figure 3.5.  

 

(𝒙𝟏,𝒚𝟏) 

(𝒙𝟐,𝒚𝟐) 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑥1 𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑥2 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑦1 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑦2 

∆𝑥 

∆𝑦 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑖𝑙𝑒𝑠 = 3 



 94  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Diagram showing solution for calculating split line coordinates for subdividing a curved 

building face. 

 

Table 4.7: Equations for subdividing a curved building face. 

𝑆𝑝𝑙𝑖𝑡 𝐴𝑛𝑔𝑙𝑒𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑎𝑟𝑐 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑔𝑙𝑒 + ((
𝑎𝑟𝑐 𝑎𝑛𝑔𝑙𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑖𝑙𝑒𝑠
) ∗ 𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟) 

Equation 4.21: Formula to calculate split line angles from arc origin to each split line for subdividing a 

curved building face. 

 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑥𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟 =  𝑎𝑟𝑐 𝑜𝑟𝑖𝑔𝑖𝑛𝑥 + (𝑎𝑟𝑐 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ cos(𝑆𝑝𝑙𝑖𝑡 𝐴𝑛𝑔𝑙𝑒𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟)) 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑦𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟 =  𝑎𝑟𝑐 𝑜𝑟𝑖𝑔𝑖𝑛𝑦 + (𝑎𝑟𝑐 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ sin(𝑆𝑝𝑙𝑖𝑡 𝐴𝑛𝑔𝑙𝑒𝑙𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟)) 

Equation 4.22: Formula to calculate split line coordinates for subdividing a curved building face. 

 

Window openings on a curved building face are defined differently to planar openings. 

Instead of window openings being defined relative to a local origin, window openings 

(𝒙𝟏,𝒚𝟏) (𝒙𝟐,𝒚𝟐) 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑥1,𝑦1 

𝑨𝒓𝒄 𝑨𝒏𝒈𝒍𝒆 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑖𝑙𝑒𝑠 = 3 

𝑺𝒑𝒍𝒊𝒕 𝑨𝒏𝒈𝒍𝒆 

𝑺𝒑𝒍𝒊𝒕 𝑨𝒏𝒈𝒍𝒆 

𝑆𝑝𝑙𝑖𝑡 𝐿𝑖𝑛𝑒 𝑥2,𝑦2 
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on curved building faces are defined using absolute coordinates where x and y 

coordinates represent the opening positions in plan. 

 

 

 

 

 

 

 

Figure 4.24: Wall tile (TW) containing opening showing local origin and relative coordinate systems 

aligned to the plane of tile. 

 

The steps for calculating window opening positions in plan on curved building faces are 

shown in Table 4.8 and Figure 4.25 to Figure 4.29. Window positions are first 

calculated on linear tiles connecting split lines and then projected onto curved wall 

surfaces. 

Table 4.8: Steps for calculating window openings on curved building faces. 

1) Calculate distances to window points on planar tiles (Figure 4.25) using classical proportions. 

2) Calculate absolute coordinates of window opening points on planar tiles using Equation 4.7 

(Figure 4.26). For this equation, the distances to windows points on planar tiles and angles (tile 

angles) are used from known points (split line points) to calculate the coordinates. 

3) Calculate coordinates of perpendicular lines from window openings on planar tiles using 

Equation 4.10 (Figure 4.26). 

4) Calculate intersections of perpendicular lines and curved wall face (arc) using the steps in Table 

4.3 (Figure 4.27). 

5) Calculate the remaining two points on window openings by extending lines from the arc origin 

through the first two opening points on an arc. Equation 4.3 is used to calculate the angle of 

these lines while Equation 4.7 is used to calculate the remaining opening coordinates. For 

Equation 4.7 the radius of the offset arc is used as a distance and the line angles are used from a 

known arc origin point to calculate the unknown coordinates. 

 

Opening widths on curved wall faces are not uniform as they follow the shape of the arc 

that defines the curve. The window widths calculated from classical proportions are 

X Direction 

Y Direction 

Local Origin  
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maintained and are used as the minimum window width on a curved wall surface. The 

final window positions calculated with the steps in Table 4.8 are shown in Figure 4.29. 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: Diagram for step one in Table 4.8 to calculate distance to window points on planar tiles 

(lines shown in red).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: Diagram for step two in Table 4.8 to calculate absolute coordinates of window points on 

linear tiles (points shown in blue).  
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Figure 4.27: Diagram for step four in Table 4.8 to calculate intersection points shown in red. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28: Diagram for step five in Table 4.8 to calculate remaining window opening points shown with 

blue points. 
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Figure 4.29: Final window plan positions calculated after applying steps in Table 4.8. 

 

Z coordinates for window openings on curved wall faces are next calculated using 

formation levels and window heights as defined by classical proportions (Figure 3.5). A 

set of parametric expressions are again used to define these proportions as parameters. 

After all opening and tile coordinates are calculated, the final stage of the split rule 

involves generating the geometry for tiles and openings (Figure 4.21). Tiles lengths are 

shown graphically on a building by placing 3D lines using the split line coordinates 

(Figure 4.30). Boolean operations are used with opening coordinates to cut window 

openings from wall geometry. Figure 4.30 shows an example of the procedural split rule 

applied to curved and planar building faces. Openings and tiles are generated initially 

with classical proportions. However, once created users can graphically edit the tile 

distances and openings to accurately map geometry to specific survey data.   
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Figure 4.30: Procedural rules applied to curved geometry. 

 

When a tile is created with a split rule, attributes describing the semantic position of that 

tile on the building are also stored with the tile. These attributes include the tile number 

on a particular floor, the floor number and the building side number (Figure 4.31). By 

dividing a building into tiles referenced with their semantic position it allows any part 

of the building to be easily and quickly identified and accessed by the program. This 

also allows changes to be applied to semantic groups such as editing a group of objects 

that are referenced to the particular floor or building side. 

 

 

 

 

 

 

 

 

Figure 4.31: Tiles referenced by their semantic position on a building. Tiles are numbered left to right on 

each floor. In this image, the first tile on each floor is highlighted in blue and additional tiles are 

highlighted in green. 



 100  

4.3.5 Rule Five: Replacement Rule 

Once a building structure has been created with rules one to four, then additional 

parametric library objects and shapes can be automatically added to the building. The 

fifth rule, a replacement rule, is used to replace existing geometry with new shapes or 

add new shapes to existing geometry. The referencing and semantic information 

attached to tiles allows additional detail and objects to be easily placed anywhere on the 

building. Objects can be added to a specific tile or groups of tiles with semantic 

attributes. When an object is placed on a tile the semantic attributes describing the 

position of the tile are also associated with the instance of the object placed on that tile.  

An example of an application of the replacement rule can be seen in Figure 4.32 where 

a wall tile (TW) is replaced by a wall tile containing and parametric sash window (TW + 

W).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: Rule Five – Replacement rule to add new parametric library objects or shapes and replace 

existing geometry.  
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When adding new objects and shapes with the replacement rule, the positions are not 

limited to tiles but can be placed anywhere on a building. A parametric floor slab with 

joists (FS) can be automatically generated between floors using the 2D polygon data 

representing a building footprint (Figure 4.32, Figure 4.33).   

 

 

Figure 4.33: Replacement rule to automatically add objects such as a parametric floor slab between floors.   

 

4.4 Prototype II: Initial Implementation of Procedural Rules 

The new procedural rules and algorithms in addition to the parametric vocabulary 

shapes for prototype II have been implemented as a plug-in for the ArchiCAD BIM 

software. Similar to the procedural façade prototype the Geometric Description 

Language (GDL) has again been used to code rules and algorithms described in the 

previous section. The C++ programming language has also been used to implement 

additional rules combined with an Application Programming Interface (API) from 

Graphisoft that can be used to extend the existing functionality of the ArchiCAD BIM 

software. The basic vocabulary shapes which incorporate the parametric HBIM library 

objects are all coded with GDL. The rules and algorithms for combining and 

procedurally generating geometry from the vocabulary shapes are coded with both GDL 

and C++ using the Graphisoft API. The GDL files and rules coded in C++ are packaged 
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as a Dynamic Link Library (DLL) that enables it to be added as a plug-in to the 

ArchiCAD BIM software. 

The first extrude rule (Figure 4.2) described in the previous section was implemented 

using C++ with the Graphisoft API and GDL. In order to implement this rule, direct 

integration with existing ArchiCAD functionality was required which cannot be 

achieved using GDL on its own. The implementation of this procedural extrusion rule 

allows the coordinates from polygons representing building footprints to be retrieved 

and inputted into a GDL script that performs further calculations and creates the 

required geometry. Microsoft Visual C++ 2010 Express was used to write and compile 

code using C++. Table 4.9 shows the C++ functions which were implemented for this 

prototype to retrieve polygon data within the ArchiCAD environment. Functions one to 

three were written specifically for this prototype while functions four to seven are 

required functions for any plug-in to ArchiCAD. The steps for the main functions 

“Do_editLibraryObject” and “Do_editLibraryObject_UserInput” are shown in Table 

4.10 and Table 4.11. 

Table 4.9: C++ Functions for implementing rule one – Procedural Extrusion 

 

 

 

 

 

Table 4.10: Steps for function one “Do_editLibraryObject” shown in Table 4.9. 

1) Retrieve and store selected polygon data by calling function three “GetSelectedElementPolygon”. 

2) Retrieve the global unique identifier (GUID) for the library part resource which is to be edited. 

3) Change the default parameters of the library part resource. This updates parameters of the GDL 

file with parameters of the selected polygon. 

4) Create an instance of the library object in the database and place on floorplan. 

 

 

Function 1: Do_editLibraryObject(); 

Function 2: Do_editLibraryObject_UserInput(); 

Function 3: GetSelectedElementPolygon(); 

Function 4: CheckEnvironment(); 

Function 5: RegisterInterface(); 

Function 6: Initialize(); 

Function 7: FreeData(); 
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Table 4.11: Steps for function two “Do_editLibraryObject_UserInput” shown in Table 4.9. 

1) Create a polygon with user input and store results. 

2) Retrieve the global unique identifier (GUID) for the library part resource which is to be edited. 

3) Change the default parameters of the library part resource. This updates parameters of the GDL 

file with parameters of the created polygon. 

4) Create an instance of the library object in the database and place on floorplan. 

 

Within ArchiCAD, these two functions are accessed from a new HBIM menu (Figure 

4.34, Figure 4.35). The remaining steps in the procedural extrusion rule (Figure 4.4) are 

implemented with GDL after the polygon data is retrieved and passed to the GDL script. 

The retrieved polygon data is stored in arrays in the GDL script and used in subsequent 

steps. All remaining calculations for this rule are implemented in a master script which 

is the first GDL script to be executed. This includes converting arc angles from radians 

to degrees, calculating arc origins, arc start and end angles, arc radii, polygon area and 

polygon centroid coordinates. Finally, a mass model (MM) which is a vocabulary shape 

is generated using a GDL function which creates a 3D shape from a 2D polygon 

definition. This is coded in the 3D script with the vocabulary shape stored in a 

subroutine (Figure 4.37) that is called from an executive script at the start of the 3D 

script (Figure 4.36). 

The offset algorithm for the second extrude rule (Figure 4.8) is implemented in the GDL 

master script. This involves calculating perpendicular directions for each building side, 

calculating offset lines and arcs and calculating intersections between offset lines and 

arcs. The results of the offset algorithm are the coordinates of the offset polygon which 

are stored in two arrays. These coordinates are then used to create an opening in the 

original mass model. The cPRSIM function which is used to create a mass model 

supports a hole definition so the offset polygon coordinates can be directly inputted into 

the same cPRISM function to create the opening. A parameter for the level of detail 

(LoD) is used to apply this rule (Figure 4.36). 
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Figure 4.34: New HBIM menu to access functions of prototype plug-in (top). A selected 2D footprint 

(bottom left) is used to generate a building model (bottom right). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35: New HBIM menu to access functions of prototype plug-in (top). A building footprint is 

drawn by a user (bottom left) which automatically generates a building model (bottom right). 
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Figure 4.36: Sample GDL code showing an executive script (located at the top of a 3D script) used to call 

subroutines for generating block models or wall models.  

 

The repeat rule (Figure 4.14) is implemented in GDL using loop commands to repeat 

instances of the wall or mass model created with the previous rules. A user parameter 

for the “Number of Storeys” controls the number of iterations for this loop. The heights 

of each floor are first automatically calculated with classical proportions in the master 

script. These heights can subsequently be edited by a user in a dialogue box or 

graphically in 2D or 3D windows. The final stage of the repeat rule (Figure 4.18) is also 

executed in the GDL master script where the number of floors is calculated based on the 

updated building height during interactive editing (Figure 4.38).  
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Figure 4.37: Sample GDL code showing a subroutine which generates geometry for a mass model 

vocabulary shape (MM) using a cPRSIM function. 
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Figure 4.38: GDL code to calculate the new number of floors when a building height has been graphically 

edited by a user. 
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The fourth procedural rule, a split rule is also implemented using GDL. One of the main 

challenges with implementing the split rule for this prototype is in the storage of 

parameters. Each object that is repeated or created during a split rule requires a new set 

of parameter values to enable individual object editing. In order for the procedural rules 

to be applied to many building arrangements, it requires parameters for tiles and tile 

objects to be extensible for any number of tiles on a floor, any number or floors and any 

number of building sides. This poses a number of challenges with regard to storing 

undefined numbers of variables. Tile and tile object parameters also need to be 

referenced to the building side, floor and tile that they are positioned on. Completely 

new tile and tile object parameters also cannot be created by a GDL script as hotspot 

editing requires parameters to be manually placed in the parameter dialogue.  

A parameter with an undefined number of values, however, can be achieved with GDL 

using arrays. Using arrays it is possible to store multiple values for a single parameter in 

a table structure with specific parameter values referenced by the row and column 

position in that array. A one-dimensional array uses only one column with any number 

of rows while a two-dimensional array may use any number of rows and columns. 

Using two-dimensional arrays it is possible to allow parameter values to be extended 

based on two scenarios by storing new parameter values in new columns and rows.  

In the first procedural façade prototype, this was used to store multiple parameter values 

for tile parameters. Table 4.12 shows an example of this where multiple values are 

stored in a two-dimensional array for a window width parameter. The row number 

relates to the tile that the window width represents while the column relates to the floor 

that the window width represents (Table 4.12). This allows parameters to be created and 

stored for any number of tiles and floors on a façade as any additional number of rows 

and columns can be added to the array. A specific window width is referenced in this 
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array by including the row number and column number after the parameter, e.g. 

Window_Width(2)(3) references the window width in row two (tile two) and column 

three (floor three) which is 1.35 in Table 4.12.  

Table 4.12: Example of a two-dimensional array for storing multiple values of a window width parameter.  

Window_Width (Row = Tile Number, Column = Floor Number)  

 Column 1 
(Floor 1) 

Column 2 
(Floor 2) 

Column 3 
(Floor 3) 

Column 4 
(Floor 4) 

Row 1 (Tile 1) 1.3 1.2 1.6  

Row 2 (Tile 2) 1.29 1.3 1.35  

Row 3 (Tile 3) 1.25 1.25 1.3  

Row 4 (Tile 4) 1.31  1.3  

 

This method of storing an undefined number of parameter values works well for the 

first procedural façade prototype which contains a single façade. Prototype II, on the 

other hand, can have any number of building sides so parameters also need to be 

extensible for this third scenario. To overcome this, a new method of storing parameter 

values is adopted for the split rule with this prototype. Instead of just using column and 

row numbers to reference the location of an object, additional reference parameters 

values are stored with a tile or tile object parameter value. For example, when a window 

width parameter value is stored, two additional parameter values will also be stored in 

that array to reference the floor and building side that the window width relates to 

(Table 4.13). The tile position for each window parameter value is referenced by the 

row in the array (Table 4.13). With this method, three columns are used for each floor 

on a particular building side. This new storage method enables the number of tiles on a 

floor to be extensible using new rows and the floor and the building sides are both 

extensible using new columns.  

When a split rule is applied to a particular floor, the relevant array table for storing the 

new parameters is first checked to see if any three columns have already been assigned 

to that floor. If they have, then the new set of parameters will replace the previous 
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parameters as a new number of tiles are being generated for that floor. If three columns 

in an array have not been previously assigned to that floor then the next three available 

empty columns are used.  For each tile that is being created on a particular floor, three 

parameter values are stored, the building side, the floor number and the window width 

values for that tile (Table 4.13) (Figure 4.39).  

Table 4.13: Example of new method for storing extensible parameter values in arrays for implementing 

procedural rule four-Split Rule. 

Window_Width 

Tile 

(Row) 

Side Floor Window 

width 

Side Floor Window 

width 

Side Floor Window 

width 

1 2 3 4 5 6 7 8 9 

1 1 1 1.3 1 2 1.28 3 1 1.35 

2 1 1 1.25 1 2 1.22 3 1 1.22 

3 1 1 1.35 1 2 1.33 3 1 1.31 

4 1 1 1.28 1 2 1.24 3 1 1.29 

5       3 1 1.5 

6          

 

When accessing parameters from this table it is possible to find any required parameter 

value by searching columns based on the reference parameters for the building side and 

floor. However, to avoid unnecessary searches, every time a floor is split and three new 

columns are assigned to a floor, a reference to the column position in the array is stored 

as a completely separate parameter. This is like a pointer which points to the location of 

a value in an array. For example in Table 4.13, when the second floor of building side 

one is split, the parameters are stored in columns four, five and six. After these 

parameter values are created a completely separate array parameter also stores the 

location of the first column for this floor and building side. For this example the new 

parameter for the reference location would be  Window_Width_Column(1)(2) = 4 

where the row one (1) references building side one and column two (2) references floor 

two and the value four represents the location column in the Window_Width array. This 
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greatly speeds up the process of accessing parameters for this procedural rule and 

avoids unnecessary searches. 

 

 

 

 

Figure 4.39: Example of an extensible two-dimensional array in ArchiCAD for storing splitLine_y 

coordinates. 

 

All arrays for the storage of parameters for this rule are setup in a master script with 

GDL. Calculations for this procedural rule (Figure 4.21) are also implemented in the 

master script. This includes calculating coordinates of split lines which divide a floor 

into tiles, calculating tile lengths and calculating window opening coordinates on tiles. 

Finally, the geometry required for this rule is implemented in the 3D script. Tiles are 

shown graphically by placing 3D lines using split line coordinates with a GDL LIN_ 

function. Window openings are cut from wall instances using Boolean operations. A 

GDL cPRISM function is used to define the position of openings which are then 

subtracted from wall instances. 3D lines showing tile splits and geometry used to cut 

window openings are stored in subroutines in the 3D script. An executive script at the 

top of the 3D script is used to call subroutines and includes relevant transformations for 

placing geometry.  

The fifth rule, a replacement rule is implemented using the GDL master script and 3D 

script. Vocabulary shapes such as floor slabs or windows are stored in individual 

subroutines in the 3D script and called from an executive script at the top of the 3D 
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script.  The master script is used to match parameters of a vocabulary shape to the tile or 

floor that they will be placed on. For example, the shape and size of a floor slab are 

automatically determined from the 2D polygon data and parameters for a window size 

are automatically populated based on window openings in a wall.  

When a building model is generated with this prototype from a 2D building footprint all 

the rules are automatically executed in a sequence and do not require user interaction at 

each stage. Once a model is automatically generated users can then alter parameters to 

change the building structure or library objects as required. An example of different 

building models automatically generated with the procedural building prototype can be 

seen in Figure 4.40. Different numbers of floors and openings on a floor are generated 

by altering parameters.  

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.40: Various building models automatically generated with the rules and algorithms for the 

procedural building prototype II. 
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Procedural rules can also be applied to multiple building footprints at once. Figure 4.41 

to Figure 4.43 show an example of this where building footprints for an area of Dublin 

city centre are used to automatically generate building models. An Ordnance Survey 

Ireland (OSI) dataset comprising of 3,610 building footprints were imported into the 

ArchiCAD software and the procedural modelling rules were applied to automatically 

generate building geometry from these footprints. The building footprints covered an 

area roughly 1.7 km in length and 1.4 km in width. Using 3D GIS software it is possible 

to extrude building footprints to create mass models but it is not possible to 

automatically generate more detailed parametric models containing walls, opening, 

floors etc. With the procedural building prototype, any parametric building can be 

altered to generate different numbers of floors and any tile arrangements with openings 

and objects. If required this generated geometry can be precisely mapped to survey data 

such as orthographic images of point clouds. Figure 4.43 shows building geometry 

exported in the standard Industry Foundation Class (IFC) format.  

Figure 4.41: Parametric building models automatically generated from 2D building footprints for an area 

of Dublin city centre. 
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Figure 4.42: Parametric building models automatically generated from 2D building footprints for an area 

of Dublin city centre. 
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Figure 4.43: IFC building models automatically generated from 2D building footprints for an area of 

Dublin city centre. 
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A video showing a demonstration of the new procedural building prototype can be seen 

from the link below. 

https://youtu.be/WJzxR5qm8xc 

4.5 Prototype II: Summary 

The procedural building prototype II further developed concepts from the first 

procedural façade prototype by providing capabilities for procedurally modelling all 

faces of a building and not just a single façade. With the procedural building prototype, 

any building shape can be generated from 2D building footprints. A new set of rules and 

algorithms have been designed and implemented to:  

1. Generate mass models from 2D building footprints. 

2. Convert mass models to higher level of detail models containing walls. 

3. Repeat walls for any number of storeys. 

4. Split a floor, façade or building into tiles containing openings. 

5. Replace and add new vocabulary shapes to previously generated geometry. 

Classical architectural rules and proportions also assist with the generation process by 

providing an initial estimate for the size and positioning of objects on a façade. These 

new rules and algorithms have been implemented as a plug-in to the ArchiCAD BIM 

software using the Geometric Descriptive Language (GDL) and the C++ programming 

language with an Application Programming Interface (API) for the ArchiCAD software. 

These new rules and algorithms for the procedural building prototype enable the 

modelling of existing buildings with a semi-automatic process where the required 

geometry is first generated and then manually refined to match to specific survey data. 

The mapping of generated geometry to survey data is described in Chapter 6.   

https://youtu.be/WJzxR5qm8xc
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4.6 Prototype II: Limitations 

The developed procedural building prototype can greatly improve the efficiency of 

modelling existing buildings by automatically generating building geometry and 

automatically combining and positioning objects on this building geometry. A limitation 

of this prototype, however, is that it has limited capabilities for modelling irregular 

geometries caused by deformation. Historical buildings often contain irregular 

geometries caused by damage and environmental conditions over time. This may 

include non-orthogonal walls that do not intersect at 90-degree angles or walls that are 

not perfectly vertical. The procedural building prototype provides limited capabilities 

for representing the true condition of a building by enabling the modelling of non-

orthogonal walls that do not intersect at perfect 90-degree angles. Non-uniform objects 

and openings can also be generated, for example, exact corners of window openings can 

be specified which do not have to be perfect 90-degree rectangles.  

This prototype, however, cannot create walls that are off plumb or not perfectly vertical. 

With the first procedural façade prototype, an inclination angle could be set to model 

non-vertical walls. This is relatively straightforward for a single planar surface. The 

generation of non-vertical connected planar and curved building faces is considerably 

more complex. As the recording of historical buildings often requires such deformations 

to be documented, a new prototype has been developed to provide tools for more 

accurate generation of irregular building geometry containing deformation. This new 

prototype is described in Chapter 5. 
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5 Chapter Five: Prototype III – Irregular Procedural Building 

5.1 Introduction 

In order to overcome limitations of the previous procedural building prototype, a third 

prototype has been developed to procedurally generate irregular building geometry 

which contains deformation. Current BIM software has very limited tools for accurately 

modelling irregular building geometry that is often found in existing and historical 

buildings. For this reason, there is a great need for new software tools that are capable 

of achieving these results. This third prototype provides capabilities for modelling non-

vertical walls using multiple cut-sections from survey data. This chapter describes the 

conceptual design framework and initial implementation for Prototype III (Figure 5.1). 

 

 

 

 

 

 

 

 

 

Figure 5.1: Prototype III for generating irregular building geometry containing deformation. 

 

5.2 Overview of Prototype III: Irregular Procedural Building  

Existing tools within BIM authoring software enable the modelling of non-vertical 

planar walls using a parameter for an inclination angle but do not provide tools for 

modelling non-vertical circular walls. The third procedural modelling prototype focuses 
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on procedurally generating non-vertical circular walls. Similar to the previous two 

prototypes, the third prototype also enables modelling buildings with a semi-automatic 

process where building geometry is first generated and then refined to match to survey 

data. This prototype has again been implemented for the ArchiCAD BIM software using 

the Geometric Description Language (GDL) and C++ with an Application 

Programming Interface (API) for ArchiCAD software. 

5.3 Prototype III: Rule and Algorithmic Design 

The design and conceptual framework for the Irregular Procedural Building prototype is 

also based on concepts from shape grammars where a vocabulary of shapes is used with 

a set of rules and algorithms to automatically generate different building arrangements. 

The design for the Irregular Procedural Building prototype incorporates similar 

vocabulary shapes as the previous prototypes (Figure 3.8) but with additional new 

objects such as arch-top niches, rectangular niches and columns (Figure 5.25).  A new 

set of procedural rules and algorithms have been designed which are described in this 

section. Section 5.4 then describes the initial implementation of these new procedural 

rules. 

5.3.1 Rule One: Procedural Surface Generation from Cut-Sections 

Rule one is a procedural surface generation from cut-sections (Figure 5.2). This rule is 

used for accurate and efficient modelling of curved wall geometry that contains 

deformation. This rule could be applied to a complete circular wall such as a cylindrical 

drum supporting a dome or to a particular side of a building footprint that contains 

curved wall geometry. As a result of deformation, such walls may not be perfectly 

vertical and may contain warping or deviation at different heights and locations. Unlike 

the previous prototype where a single footprint was used to generate a wall object, the 
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conceptual design for this prototype involves using multiple cut-sections at different 

heights to generate wall objects representing their true condition (Figure 5.3).  

 

 

 

 

 

Figure 5.2: Rule One – Procedural surface generation from any number of horizontal cut-sections. 

 

 

 

 

Figure 5.3: Multiple cut-sections through a point cloud used to model irregular and non-vertical wall 

geometry. 

 

Creating a surface from cut-sections through a wall at different heights allows the 

variances of the surface to be accurately represented. This new procedural rule allows 

users to select any number of horizontal cut-sections which are then used to 

automatically generate an irregular wall surface. The non-vertical wall is created by 

generating a surface between each horizontal cut-section. This rule results in 

automatically generated geometry for a circular wall which represents the true condition 

of the wall with deformation based on scan data. 

Rule 1 – Procedural 

Surface Generation  
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ArchiCAD and also ArchiCAD’s scripting language GDL, have no direct functions that 

are capable of generating a non-vertical curved surface from multiple cut-sections. A 

GDL RULED function, however, does enable a shape to be created from two polygon 

definitions at different heights (Figure 5.4). The two polygons can have different 

outlines but must have the same number of nodes. Connected nodes are defined by the 

order of nodes. This enables non-vertical planar faces to be generated but it does not 

allow for arcs in a polygon definition so it cannot directly generate non-vertical curved 

surfaces (Figure 5.4).    

 

 

 

 

 

Figure 5.4: GDL RULED function which creates a shape that connects two polygons at different heights 

with the same number of nodes. 

 

The design for this procedural rule is based on the GDL RULED function (Figure 5.4). 

Circular geometry is used with this function by estimating an arc in a 2D polygon by 

dividing it into a series of straight line segments. The number of straight line segments 

used to estimate a curve is defined by a parameter for the resolution. This enables non-

vertical circular geometry to be created from polygon sections at different heights. 

Figure 5.5 shows an example of a GDL RULED function used to create non-vertical 

circular geometry by connecting two polygon definitions with the same number of 

nodes. Circular geometry is created with this RULED function by estimating a 2D arc or 

circle with a series of straight line segments.  
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Figure 5.5: GDL RULED function used to create non-vertical circular geometry between two polygon 

definitions. Circular geometry created by estimating a 2D arc or circle with straight line segments.  

 

The input for this rule is a set of horizontal cut-sections which are created from the point 

cloud. For this rule, the cut-sections need to be represented as closed polygons made up 

of any number of arcs. The conversion of a point cloud section into a closed polygon 

containing arcs can be automatically calculated in separate software. For example, the 

AutoCAD Civil 3D software from Autodesk can automatically calculate best-fit arcs 

from a series of points. Figure 5.6 shows a point cloud section through a circular wall 

(blue) and best-fit arcs (red) that were automatically fitted to the points using AutoCAD 

Civil 3D. In classical architecture, a circular wall such as a drum supporting a dome will 

be designed with a uniform diameter. In a historical building, however, the circle may 

no longer be a perfect circle as designed due to deformation or warping. For this reason, 

to represent the true condition of a wall each section is usually made up many separate 

connected arcs as opposed to one circle. In Figure 5.6 sixteen arc segments were fitted 

to the point cloud to accurately represent the shape of this section. Each of these arcs 

may have different centre points, radii and arc lengths.  
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Figure 5.6: Point cloud section through a circular wall (left) and same point cloud section converted to a 

polygon containing sixteen arcs (right) 

 

Figure 5.7 shows the inputs and outputs for this procedural rule. With this rule, users 

can select any number of polygon cut-sections to automatically generate a surface. The 

input data automatically extracted from selected polygon sections include the number of 

sections, height of sections, number of arcs per section, arc start and end coordinates 

and arc angles (Figure 5.7).  

 

 

 

 

 

 

 

 

Figure 5.7: Inputs and outputs for rule one – Procedural Surface Generation 

 

 

OUTPUT 

Arc Angles Converted into Degrees 

Arc Origin x and y Coordinates 

Arc Start and End Angles 

Arc Radii 

Average Arc Origin 

Polygon Area 

Standardised Section Nodes  

Geometric Model for Non-Vertical Circular Wall Surface 

INPUT 

Number of Sections 

Height of Each Section 

Number of Arcs per Section 

Arc Start and End Point Coordinates 

Arc Angles 
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Figure 5.8 shows a workflow diagram for the steps involved in this procedural rule. A 

number of arc operations are initially performed to extract further data from arcs in 

sections. This includes converting arc angles from radians to degrees (Equation 4.1), 

calculating arc origins (Table 4.1), calculating arc start and end angles (Equation 4.3) 

and calculating arc radii (Equation 4.2). An average arc origin is also calculated 

between all arcs on all arc sections which is required for later calculations (Equation 

5.1). The area of each polygon is also calculated to determine the polygon direction for 

each section (Equation 4.8).  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8:  Flow diagram showing steps for rule one – Procedural Surface Generation 
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𝑎𝑣𝑔𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑥[𝑠𝑒𝑐𝑡𝑖𝑜𝑛] = ( ∑ 𝑎𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑥[𝑎𝑟𝑐𝑁𝑢𝑚𝑏𝑒𝑟]

𝑛𝐴𝑟𝑐𝑠[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]

𝑎𝑟𝑐𝑁𝑢𝑚𝑏𝑒𝑟=1

[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]) 𝑛𝐴𝑟𝑐𝑠[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]⁄  

𝑎𝑣𝑔𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑦[𝑠𝑒𝑐𝑡𝑖𝑜𝑛] = ( ∑ 𝑎𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑦[𝑎𝑟𝑐𝑁𝑢𝑚𝑏𝑒𝑟]

𝑛𝐴𝑟𝑐𝑠[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]

𝑎𝑟𝑐𝑁𝑢𝑚𝑏𝑒𝑟=1

[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]) 𝑛𝐴𝑟𝑐𝑠[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]⁄  

𝑎𝑣𝑔𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝐴𝑙𝑙𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑥 =  ( ∑ 𝑎𝑣𝑔𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛_𝑥[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]

𝑛𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑡𝑖𝑜𝑛=1

) 𝑛𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠⁄  

𝑎𝑣𝑔𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝐴𝑙𝑙𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑦 =  ( ∑ 𝑎𝑣𝑔𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛_𝑥[𝑠𝑒𝑐𝑡𝑖𝑜𝑛]

𝑛𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑡𝑖𝑜𝑛=1

) 𝑛𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠⁄  

Equation 5.1: Equations for calculating the average arc origin x and y coordinates for all arcs on all sections. 

 

The main challenge involved with this procedural rule is in determining how points in 

one cut-section correspond and relate to points in the next cut-section above and below 

it. As all cut-sections will vary there are no common points between each section. There 

can also be a different number of arcs in each horizontal section. A GDL RULED 

command requires the same number of nodes in each section along with the nodes 

ordered to indicate connecting points. To overcome this problem a standardisation 

algorithm has been developed to regularise different sections with the same number of 

nodes and also to determine how points should connect between sections.  

Figure 5.9 shows a diagram for the steps involved in this standardisation algorithm. The 

first part of this algorithm involves creating a framework of standard lines between each 

section. This framework is used to identify relating points between sections and also to 

calculate an equal number of coordinates along each section at regular intervals. This 

framework is created by defining radial lines from the average origin between all arcs in 

all sections (Equation 5.1) (Figure 5.10). The number of radial lines is dictated by a user 

parameter for the resolution. The resolution parameter can be any integer greater than 

four. A circular wall is split into a number of radial lines equal to the resolution integer. 

For example, if the resolution is set to 100 then 100 lines will be created for the 
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framework. A higher number of radial lines will result in a more accurate estimation of 

a curve and also a more detailed geometric model. This is because the standard radial 

lines are used to estimate a curved surface by calculating nodes at the intersection of 

these lines and the curved surface. The angles between these radial lines are calculated 

by dividing 360 (for a circular wall) by the resolution (Equation 5.2). Figure 5.11 shows 

another example of a standard framework created for a section comprising of four arcs. 

For illustrative purposes, four noticeable different arcs are shown in this figure to better 

differentiate between each arc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Flow diagram showing steps for the standardisation algorithm.  

 

𝑛𝑁𝑜𝑑𝑒𝑠[𝑠𝑒𝑐𝑡𝑖𝑜𝑛] = 𝑐𝑖𝑟𝑐𝑙𝑒𝑅𝑒𝑠𝑜𝑙 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐴𝑛𝑔𝑙𝑒 = 360 𝑐𝑖𝑟𝑐𝑙𝑒𝑅𝑒𝑠𝑜𝑙⁄  

Equation 5.2: Equation for calculating the angles between radial framework lines. 
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Figure 5.10: Diagram showing a framework of standard radial lines between four horizontal cut-sections. 

 

After the framework of standard lines is set up, the next part of the workflow for this 

algorithm involves finding the arcs that intersect each standard line for each section. 

This is required for the final part of the workflow to calculate the intersection points 

between these arcs and standard lines. The arc that intersects a standard line is found by 

comparing angles of a standard line with the angles from the average arc origin to each 

arc start and end point (Figure 5.12). If the angle of a standard line falls within the 

angles from the average arc origin to an arcs start and end points then that arc intersect 

the line. Clauses also need to be added if an arc crosses 360 or 0 degrees. In this case, 

depending on the polygon direction, 360 degrees are added to angles from the average 

arc origin to either the start or end points. Once the number of the arc that intersects 

each standard line has been found, the final step involves calculating the intersection 

points between these arcs and standard lines. The intersection points between standard 

lines and arcs in each section are calculated using the steps in Table 5.1 as shown 

graphically in Figure 5.13.  
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Table 5.1: Steps for calculating the intersection points between standard radial lines and arcs in each 

section (Figure 5.13). 

1) Calculate internal angle marked “A” of the triangle in Figure 5.13 by subtracting the angle of the 

standard line from the angle of the line between origins. 

2) Calculate the second angle marked “B” of the triangle in Figure 5.13 using the sine rule 

(Equation 5.3). 

3) Calculate the final angle marked “C” of the triangle in Figure 5.13 by subtracting previous 

angles from 180. 

4) Calculate the distance to the intersection point from the average arc origin using the sine rule 
(Equation 5.4). 

5) Calculate the coordinates of the intersection point using the calculated distance and angle from 

the average arc origin (Equation 4.7).  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Diagram showing framework of standard radial lines created for a section comprising of four 

arcs.  

With this solution, a clause is required if the angle of the standard radial line has the 

same angle as the line between an arc origin and average arc origin. In this case, the 

distance to an intersection point is calculated by adding the distance between the 

average arc origin and an arc origin to the radius distance of that arc. This distance 
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Arc Origin 
 

Section 1 
Number of Arcs = 4 
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along with the angle of the standard line is then used to calculate the intersection 

coordinates using Equation 4.7.  

The intersection points are calculated for each standard line on each section. Sections at 

different heights are connected by joining intersection points between different sections 

on the same standard line (Figure 5.10). This is because a line from the average arc 

origin to a point on a section is an estimate for the average normal direction of curvature 

between sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Diagram showing the solution for finding which arcs intersect with each standard radial line.  

 

The final step in the workflow for this procedural rule involves generating the geometry 

for a non-vertical circular wall surface. Instead of using retrieved arc data to create 

geometry, the standardised nodes are instead used which estimate the curves originally 

defined using arcs (Figure 5.14). These standardised nodes enable the GDL RULED 
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command to be used to create a surface which connects each section. The GDL RULED 

command can be used as all sections now have the same number of nodes and are 

ordered by the nodes which connect different sections (Figure 5.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Diagram showing solution for calculating the intersection points between standard radial 

lines and arcs in each section. 

 

𝐵 =  sin−1 (
(sin 𝐴 × (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑠))

𝑎𝑟𝑐 𝑟𝑎𝑑𝑖𝑢𝑠
) 

Equation 5.3: Sine rule used to calculate angle B in Figure 5.13. 
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 = (
(sin 𝐶 × 𝑎𝑟𝑐 𝑟𝑎𝑑𝑖𝑢𝑠)

sin 𝐴
) 

Equation 5.4: Sine rule used to calculate the distance from the average arc origin to the intersection point 

in Figure 5.13. 

 

 

Figure 5.14: Diagrams showing a low-resolution estimate of 2D arcs by straight line segments which 

connect standardised nodes. 

 

5.3.2 Rule Two: Offset Rule 

The second procedural rule for this prototype is an offset rule. This is used to generate a 

higher level of detail model that contains both internal and external wall surfaces. Users 

can create an internal wall surface in two ways. For high accuracy results, users can 

reapply the first procedural rule to generate the internal wall surface from cut-sections. 

Boolean operations are then used to subtract the new internal wall surface from the 

external wall surface leaving just the area contained by the wall. This results in the true 

condition of both internal and external wall surfaces showing any deformation or 

deviations as surveyed from scan data.   
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Alternatively, if cut-sections are not available for the internal wall surface or if the wall 

thickness is believed to be uniform, a user can apply the second procedural rule which 

offsets the irregular external wall surface by a uniform thickness. The offset distance or 

wall thickness is a parameter for this rule. Unlike the previous prototype, the offsetting 

of a wall surface with this prototype is less complex and does not require a lot of 

calculations. This is due to the fact that the retrieved arc data for each section has 

previously been regularised with a regular interval of nodes between all sections that are 

created from a common average arc origin point.   

 

 

 

 

 

Figure 5.15: Rule Two – Offset an irregular external wall surface by a uniform distance to create a higher 

level of detail model containing both internal and external wall surfaces.  

 

In order to offset the external building surface, a new polygon is created for each cut-

section. The previously created framework of standard radial lines is used to calculate 

distances from the average arc origin to nodes representing the internal wall surface. 

This distance is calculated for each standard line on each section using Equation 5.5. 

Coordinates for the internal points on a wall surface are then calculated using this 

distance and the angle of each standard line (Equation 5.6). Figure 5.16 shows an 

example of polygons created for internal wall surfaces using a framework of standard 

radial lines. For illustrative purposes, Figure 5.16 shows a section made up of four 

completely different arc segments (top of Figure 5.16) along with a section showing a 

more realistic shape of a cylindrical drum wall containing deformation (bottom of 

Figure 5.16). In Figure 5.16 a low resolution of sixteen radial lines is also used for 

Rule 2 – Offset 
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illustrative purposes. A much higher number of standard radial lines are used for a more 

accurate estimation of curves.  

 

 

Figure 5.16: Polygon definition for external and internal wall surfaces using a low resolution (16 line 

segments) to estimate the true arcs. 

  

Finally, the geometry is generated for an internal wall surface by connecting up nodes in 

different sections using a GDL RULED command. Boolean operations are then used to 

subtract the internal surface from the external surface leaving just the area contained by 

the wall (Figure 5.15). 
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 − 𝑤𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

Equation 5.5: Equation to calculate the distance from the average arc origin to an internal node for a standard radial 

line.  

 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑁𝑜𝑑𝑒𝑥 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑁𝑜𝑑𝑒 × cos(𝑙𝑖𝑛𝑒𝐴𝑛𝑔𝑙𝑒) 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑁𝑜𝑑𝑒𝑦 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑟𝑐𝑂𝑟𝑖𝑔𝑖𝑛 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑁𝑜𝑑𝑒 × sin(𝐿𝑖𝑛𝑒𝐴𝑛𝑔𝑙𝑒) 

Equation 5.6: Equations to calculate the coordinates of an internal node using a distance and angle from a known 

coordinate.  

 

5.3.3 Rule Three: Split Rule 

The third procedural rule is a split rule which is used to subdivide a previously created 

wall surface to create openings. This split rule is used to split a wall surface into both 

floors and also tiles. This is different to the previous prototype where a repeat rule was 

used to create different floors. With this prototype, cut-sections are used to define a wall 

surface for the complete height of a building so a split rule is used instead of a repeat 

rule to create different floors. The number of floors and tiles on a floor are parameters 

for this rule.  

 

 

 

 

Figure 5.17: Rule Three – Split rule to subdivide an irregular wall surface into floors and tiles containing 

openings. 

The workflow for creating tiles and openings for this prototype is similar to the 

workflow for the split rule with the previous prototype (Figure 4.21) but involves a 

number of additional steps and calculations. This is due to the fact that splitting curved 

wall geometry with the previous prototype involved subdividing a single arc to create 

tiles and openings. With this prototype, however, a curved surfaced is defined by 

multiple arcs contained in multiple sections. 

Rule 3 – Split 
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Figure 5.18 shows a workflow diagram for the steps involved in the split rule for this 

prototype. Firstly the wall surface is divided into planar tiles by dividing the angle for 

the complete wall surface (360 degrees in this case) by the number of tiles (Equation 

5.7). These angles (split angles) are then used to calculate split line coordinates on the 

wall surface. The split line coordinates define the start and end points for planar tiles 

(Figure 5.19). The split line coordinates along with tile opening coordinates are 

calculated using a single polygon cut-section. If there are only two cut-sections then the 

lowest section is used, otherwise, a middle section is chosen to calculate tiles and 

openings.   

For this prototype when calculating the split line coordinates, first the arc number that 

intersects a split line needs to be found as a section can contain multiple arcs (Figure 

5.19). The arc is found using the process shown in Figure 5.12 with the previous rule 

where split angles are compared to the angles to each arc start and end point. Once the 

arc is found, the intersection is then calculated between this arc and the line from the 

average arc origin defined by the split angle (Figure 5.19). This intersection between a 

line and an arc is calculated using the steps outlined in Table 4.3. After split line 

coordinates are calculated then planar tile lengths and angle are calculated using 

Equation 4.2 and Equation 4.3. Next the absolute x and y coordinates for window 

openings are calculated on a circular wall using the steps in Table 5.2.  
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Figure 5.18: Flow diagram showing the steps for rule three –Split Rule. 
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𝑆𝑝𝑙𝑖𝑡 𝐴𝑛𝑔𝑙𝑒 =
360

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑖𝑙𝑒𝑠
 

Equation 5.7: Formula to calculate split angles for subdividing a circular wall surface face. 

 

Table 5.2: Steps to calculate the x and y coordinates for window openings on an irregular circular wall. 

1) Calculate absolute coordinates of window opening points on planar tiles using Equation 4.7. 

Windows are centred on a planar tile to ensure resulting window openings will be equally spaced 

on a circular wall (Figure 5.19).  

2) Calculate coordinates of perpendicular lines from window openings on planar tiles using 

Equation 4.10 (Figure 5.20). 

3) Calculate intersections of perpendicular lines and curved wall face (arcs) using the steps in Table 

4.3. If split line coordinates for the current tile are on different arcs then the arc intersecting each 

perpendicular line first needs to be found using the process outlined in Figure 5.12 (Figure 5.20). 

4) Calculate the remaining two points on window opening by extending lines from the average arc 

origin through the first two opening points on an arc (Figure 5.21). Equation 4.3 is used to 

calculate the angle of these lines. Intersection points between the lines and arcs are then used to 
calculate the opening coordinates (Table 4.3). 

 

After the x and y coordinates are calculated for openings, next the z coordinates are 

calculated for window openings. If a wall is split into multiple floors then the heights of 

each floor are also calculated. The opening formation levels, opening heights and floor 

heights are all calculated using classical proportions (Figure 3.5) with a set of 

parametric expression defining parameters. These parametric expressions set the initial 

values for parameters which can later be graphically edited by a user. After all opening 

coordinates are calculated then the geometry for these openings can be generated. 

Boolean operations are again used with opening coordinates to cut window openings 

from wall geometry. 

When a user is interactively editing a window opening in a circular wall, the opening 

position is edited by changing the start or end angles of the opening from the average 

arc origin to rotate the opening around the curve (Figure 5.22). The steps previously 

described for generating a window position, however, are based on a calculation using 

the linear window width and not the start and end angles of a window. These start and 

end angles are instead calculated after a window has been created. This means, using the 

previously described steps to calculate an opening position, it will not be possible to 
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change a window position based on an opening start or end angles. This requires 

another method for calculating new window positions for interactive editing. The 

solution for this involves first finding the arc that intersects the line from the average arc 

origin with the new start or end angle. Then the intersections are calculated between the 

arc and line to calculate new openings based on the start or end angles. After the new 

opening positions are calculated a new window width is also calculated using a distance 

formula between the inner opening points (Equation 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Diagram showing the subdivision of a wall surface using split angles to calculate split line x 

and y coordinates.   
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Figure 5.20: Diagram showing solution for calculating the first two window opening points on a 

subdivided circular wall surface. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Diagram showing solution for calculating the remaining two window opening points on a 

subdivided circular wall surface. 
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Figure 5.22: Diagram showing current (red) and new position (blue) of window opening after editing a 

parameter for the window opening start angle. 

 

5.3.4 Rule Four: Replacement Rule 

The fourth rule for this prototype is a replacement rule that is used to add additional 

parametric shapes and objects to the generated building model (Figure 5.23).  

 

 

 

 

Figure 5.23: Rule Four – Replacement Rule to add new parametric library objects or shapes and replace 

existing shapes.  
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The referencing and semantic information attached to tiles allows additional detail and 

objects to be easily placed anywhere on the generated building or wall structure. Objects 

can be added to a specific tile, groups of tiles or all tiles using semantic attributes. 

Figure 5.24 shows an example of parametric windows automatically added to existing 

wall openings. In this case, a parameter is set to add window objects to all tiles on the 

generated model. The width, height and location parameters of the window object are 

automatically matched to the opening parameters that they are placed in. Other 

parameters of window objects can be set from a dialogue box or by interactive editing in 

the 2D or 3D windows.   

 

 

 

 

 

 

 

 

 

Figure 5.24: Replacement rule used to add parametric windows (W) to existing circular wall tiles (TW).  

 

Figure 5.25 shows two additional objects added to a procedurally generated model, an 

arch-top niche and a rectangular niche. Similar to the previous window object, these 

objects can be added to individual tiles, groups of tiles or all tiles by setting parameters 

in a dialogue box. With this replacement rule, tiles can also have more than one object 

placed in them as seen in Figure 5.25, where a rectangular niche is placed in the same 

tile above window objects and arch-top niches. Tile objects can also be placed by 

alternating different objects on a floor. Alternating objects are specified in a dialogue 

TW TW + W 
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box and the resulting arrangement is generated for the number of tiles set on that floor 

(Figure 5.25).  

 

 

Figure 5.25: Replacement rule used to add additional parametric objects to a generated wall or building 

model. Arch-top niches, rectangular niches and windows are added using this replacement rule.  

 

Arch-top niche objects are created using a cylinder and sphere primitive shapes which 

are then cut from a wall using Boolean operations (Figure 5.26). User parameters for an 

arch-top niche include the start and end angles (used to calculate the width of a niche), 

niche depth, height and formation level. Rectangular niche objects are created from a 

2D polygon outline, positioned at a formation level and extruded to a height of the 

rectangular niche (Figure 5.27). Boolean operations are again used to cut rectangular 

niches from a wall surface. Rectangular niches have the same parameters as arch-top 
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niches, start and end angles (used to calculate the width of a niche), niche depth, height 

and formation level.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Primitive shapes used create arch-top niche objects which are cut from a wall using Boolean 

Operations. 

 

 

Figure 5.27: Polygon outline used to define a rectangular niche object which is cut from a wall surface 

using Boolean operations. 
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The position of niche objects on a wall surface is calculated using the same methods as 

described previously for calculating a tile opening position (Table 5.2). Niche widths 

are first calculated on a planar tile and then projected onto the curved wall surface 

(Figure 5.29). Once the coordinates required for a particular niche object are calculated 

then the object is placed. When placing an arch-top niche, the centre and radius of the 

cylinder and sphere are calculated from the coordinates of three points on the arc (niche 

start and end points and a midpoint defined by the niche depth). This is calculated by 

finding the intersection of the perpendicular bisectors through chords joining the three 

points (Figure 5.28). The radius of the sphere and cylinder are then calculated using the 

distance formula (Equation 4.2). When a rectangular niche is placed the back surface of 

the niche is defined by the arc of the curved wall surface that it is placed in (Figure 

5.29). This requires the arc data defining a curved wall surface to be inputted into the 

object to assist in the generation of this object. This enables accurate modelling of 

rectangular niche objects which may contain deformation as dictated by the wall surface 

that it is placed in.  

 

 

 

 

 

 

 

 

 

 

Figure 5.28: Diagram showing solution for calculating an arc centre point using three points on the arc. 
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Figure 5.29: Diagram showing the solution for calculating coordinates for window, arch-top niche and 

rectangular niche objects on an irregular circular wall surface. 

 

Columns can also be added to existing geometry with a replacement rule or alternatively 

with the first procedural rule for this prototype, “surface generation from cut-sections”. 

Using a replacement rule, standard column shafts from the HBIM library of objects can 

be placed around a circular wall surface. Arc data defining a curved wall surface is 

offset to define the path for the columns which are equally positioned around this offset 

curve. These columns are based on architectural data and represent ideal columns as 

originally designed. The second approach allows for modelling column shafts in their 

true condition which may contain deformation or non-vertical objects. This involves 

using horizontal cut-sections through a column shaft to define the surface for the 
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columns (Figure 5.30). Procedural rule one from this prototype is used to generate the 

surface for a column shaft which connects each cut-section (Figure 5.2). Using this rule 

the column shafts represent their true condition and are also automatically positioned in 

their correct position based on the cut-sections provided from survey data. Figure 5.30 

shows twenty-four column shafts automatically generated from cut-sections with this 

rule along with ideal columns positioned with the replacement rule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30: Library objects for a column shaft automatically generated from survey data (cut-sections) 

with procedural rule one (top) or alternatively ideal columns created from architectural data, added to 

existing geometry with a replacement rule (bottom).   
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5.4 Prototype III: Implementation of Procedural Rules 

The procedural rules for prototype III have again been implemented as a plug-in to the 

ArchiCAD BIM software using the Geometric Descriptive Language (GDL) and the 

C++ programming language. With GDL, the new procedural rules used to calculate 

parameters are implemented in a master script, which is executed before any other 

scripts. The vocabulary shapes or library objects are coded in a 3D script and stored in 

separate subroutines. An executive script at the top of the 3D script is used to call 

subroutines and apply coordinate transformations as required.  

The first procedural rule for this prototype is implemented with both GDL and C++ to 

retrieve selected polygon sections within the ArchiCAD environment. This polygon 

section data is then passed to the GDL object for use with subsequent procedural 

modelling rules. The C++ functions used to for this prototype are shown in Table 5.3. 

The main function “Do_editLibraryObjectSection” is used to retrieve the polygon data 

for each section and modify the GDL object based on these parameters (Table 5.4). 

Within ArchiCAD, this function is accessed from the new HBIM menu (Figure 5.31). 

Using GDL, the remaining calculations for the first rule are coded in a master script and 

the geometry is then generated in the 3D script using a RULED command (Figure 5.32). 

 

Table 5.3: C++ Functions for implementing rule one – Procedural Surface Generation from Cut-Sections 

 

 

 

 

 

 

 

Function 1: Do_editLibraryObjectSection(); 

Function 2: GetSelectedElementPolygon(); 

Function 3: CheckEnvironment(); 

Function 4: RegisterInterface(); 

Function 5: Initialize(); 

Function 6: FreeData(); 
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Table 5.4: Steps for function one “Do_editLibraryObjectSection” shown in Table 5.3. 

1) Retrieve and store selected polygon section data by calling function three 

“GetSelectedElementPolygon”. 

2) Retrieve the global unique identifier (GUID) for the library part resource which is to be 

edited. 

3) Change the default parameters of the library part resource. This updates parameters of the 

GDL file with parameters of the selected polygon sections. 

4) Create an instance of the library object in the database and place on floorplan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31: New HBIM menu to access functions of prototype plug-in (top). Nine polygon sections are 

selected (bottom left) which are used to generate the non-vertical wall containing deformation (bottom 

right). 

 

The subsequent rules which include the offset rule, split rule and replacement rule are 

implemented in a similar way, with procedural rules that perform calculations 

implemented in a master script and geometry generated from a 3D script.  
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Figure 5.32: Sample GDL code from the 3D script where a RULED command is used to generate the 

geometry for an external wall surface from any number of sections.  

 

Methods for optimising the speed of this prototype have also been implemented. Due to 

the large number of calculations that are required for different rules, it is crucial that 

only the required calculations are carried out when a script or rule is executed. This is 

especially important while a model is being updated during interactive editing. When 

interactively editing a model, users expect a model to be fully responsive and update 

instantly. In some cases, however, many calculations need to be performed to calculate 

new parameters after an edit has been made. To ensure fast editing, the main 

calculations are initially run in sequence when a model is first generated from section 

data and a minimal amount of calculations are performed as required when an edit is 

being made.  

With GDL the complete master script and 3D script are executed when a parameter is 

edited. For this reason, it is important to control when different parts of these scripts 

need to be executed. Using a global parameter in GDL, “GLOB_MODPAR_NAME”, it 

is possible to identify what parameter is being edited when a change is made to a model. 
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This is very useful to control and limit calculations based on what parameters are being 

edited. Unlike the previous two prototypes, when performing edits with this prototype 

on objects such as windows or niche objects, a lot of calculations need to be performed. 

This is because editing the width of an object cannot be carried out directly on a curved 

surface. Instead, the start or end angles of an object are edited which then calculate the 

new coordinates on the curved surface and the new width. As wall surfaces with this 

prototype can contain multiple arcs in a section, calculations involve first finding the arc 

that the new endpoints of an object will intersect and then finding the intersection points 

to calculate the new coordinates and width of the object.  

With this prototype, it is possible to edit all objects in a procedurally generated model 

simultaneously. This requires many calculations so it results in slightly longer times to 

update. Editing an individual object, however, should be capable of updating instantly. 

To achieve this, the global GDL parameter, “GLOB_MODPAR_NAME” is used to 

identify which object type is being edited (window, arch-top niche or rectangular niche) 

and only apply the calculations to tiles containing these objects. A limitation of this 

“GLOB_MODPAR_NAME” function, however, is that it can only return the parameter 

name that is being edited and not a specific variable in an array. This means that if one 

window object is being edited the calculations will need to be performed on all tiles 

containing window objects in a model, as opposed the individual tile being edited. This 

is because an array stores the results of a parameter for all instances of that objects in 

the one array and the specific window being edited cannot be identified within the array 

despite the referencing.  

In order to enable faster editing, a solution was developed to overcome this problem and 

to enable a specific tile object to be identified when edited. This requires storing a copy 

of the values of certain parameters in arrays every time a change is made to a specific 
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tile object. By comparing the values in the copied and main arrays it is possible to 

identify which value has changed as only the value of the object being edited will be 

different in both the main array and copied array. This enables the specific tile object 

being edited to be identified from all instances stored in an array. When a specific tile 

object such as a specific window start angle is being edited, it is then possible to 

identify that instance within an array and limit the calculations required for that specific 

tile on that specific floor. For large models with many tiles and floors, this will result in 

much faster and more responsive editing. 

Figure 5.33 shows an example of different models generated with the procedural rules 

for this prototype. Any arrangement of objects can be generated for any number of 

floors. Each object is also highly parametric and can be altered in groups or individually 

to enable efficient mapping to survey data. The process for mapping generated 

geometry to survey data is discussed in chapter 6.  

 

 

 

Figure 5.33: Various models automatically generated from cut-sections with the rules and algorithms for 

the Irregular Procedural Building prototype III. 
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Figure 5.34 shows an example of highly irregular surfaces generated from cut-sections 

using the surface generation rule. This shows the capabilities of the prototype for 

generating non-vertical wall surfaces. The accuracy of a surface generated with this 

prototype is evaluated in chapter 8. An example of this prototype used in a real case 

study is also shown in chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34: Various surfaces automatically generated from cut-sections with the surface generation rule 

for the Irregular Procedural Building prototype III. 

 



 153  

A video showing a demonstration of the new irregular procedural building prototype 

can be seen from the link below. 

https://youtu.be/vgla9Aqz0j0 

5.5 Prototype III: Summary 

The irregular procedural building prototype III further developed concepts from the first 

two prototypes by providing capabilities for accurately modelling deformation in 

building geometry. With this procedural building prototype, non-vertical circular wall 

geometry can be generated from any number of horizontal cut-sections. A new set of 

rules and algorithms have been designed and implemented to: 

1. Generate non-vertical surfaces from cut-sections. 

2. Offset an irregular surface to convert it to a higher level-of-detail model 

represented by walls with a uniform thickness. 

3. Split a floor or building model into tiles containing openings. 

4. Replace and add new vocabulary shapes to previously generated geometry. 

Classical architectural rules and proportions also assist with the generation process by 

providing an initial estimate for the size and positioning of objects. These new rules and 

algorithms have been implemented as a plug-in to the ArchiCAD BIM software using 

the Geometric Descriptive Language (GDL) and the C++ programming language with 

an Application Programming Interface (API). These new rules and algorithms for the 

irregular procedural building prototype enable the modelling of existing building 

geometry with a semi-automatic process where the required geometry is first generated 

and then manually refined to match to specific survey data. The mapping of generated 

geometry to survey data is described in Chapter 6.   

 

 

https://youtu.be/vgla9Aqz0j0
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6 Chapter Six: Procedural HBIM – Mapping to Survey Data 

6.1 Introduction 

This chapter outlines the process of using the developed procedural modelling 

prototypes with survey data to model existing buildings. Firstly the steps and issues 

involved with integrating survey data into a BIM environment are explained. Most BIM 

software has limited tools for accurately importing and integrating different survey 

datasets. For this reason, new tools have been developed to enable survey datasets to be 

precisely positioned in a BIM environment using a common coordinate reference 

system (CRS). These new tools are described in Section 6.2.1 and Section 6.2.2. Once 

all survey data is integrated and correctly positioned within BIM software the newly 

developed prototypes can be used to accurately model building geometry with a semi-

automatic procedure. This semi-automatic process is described in section 6.3.  

6.2 Integration of Survey Data in a BIM Environment 

As discussed in Section 2.3, point clouds obtained from laser scanning or 

photogrammetry can be used to generate accurate building information models of 

existing buildings. However, modelling directly to large point clouds can be difficult as 

large point clouds can be very processor intensive and BIM software is not always 

capable of handling such large datasets. There can also be accuracy issues when 

modelling directly to large point clouds in 3D space as it can be difficult to locate the 

exact position of an object within a dense 3D point cloud. Instead of modelling directly 

to a complete point cloud, segmented point clouds, orthographic images in elevation 

and plan, and 2D sections through a point cloud can be used to generate as-built/as-is 

BIM models.  
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When metric data is transferred from pre-processing survey software to BIM software, 

it is crucial that there is no loss in accuracy. One of the biggest sources of errors when 

integrating different survey datasets in a BIM environment is due to misalignment of 

different survey datasets. This is caused when survey data is not correctly positioned 

relative to each other, such as a misalignment between an orthographic image and 

segmented point cloud. It is crucial that all datasets have been accurately surveyed or 

aligned into a common coordinate reference system to ensure that there is no loss in 

accuracy when combining different datasets. This allows different datasets to be 

precisely positioned in BIM software using this common coordinate reference system as 

opposed to manually aligning datasets using common points or measurements between 

points.  

As BIM is used primarily for new buildings, there are limited tools in most software for 

accurately importing survey data using source coordinate reference system. In the 

ArchiCAD BIM software, for example, there are currently no tools for importing geo-

referenced orthographic images in their correct 3D position. A geo-referenced image is 

an image that is defined in 3D space by the x, y and z coordinates of the image corners. 

A geo-referenced image contains two files, the image and an accompanying text file 

with the image coordinates and other metadata. When an orthographic image is 

imported into the ArchiCAD BIM software it is positioned in an arbitrary 2D position in 

plan or elevation. This makes it very difficult to precisely position the image relative to 

other survey data. To overcome this problem a new tool has been developed for the 

ArchiCAD BIM software to allow geo-referenced orthographic images to be correctly 

positioned in their correct 3D space using the datasets source coordinates (Figure 6.1).   

A new tool has also been developed to overcome this issue and enable 3D points to be 

accurately imported into any version of ArchiCAD. These new tools for accurately 
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importing orthographic images and 3D points are described in Section 6.2.1 and Section 

6.2.2. 

6.2.1 New Tool for Importing Orthographic Images to ArchiCAD BIM Software 

In order to import geo-referenced orthographic imagery into their correct 3D position, a 

new tool was created using the Geometric Description Language (GDL). Using this 

embedded programming language for the ArchiCAD BIM software, a parametric 3D 

plane was developed to enable the precise positioning of orthographic images in 3D. 

This new tool allows users to enter the x, y and z coordinates for the four image corners 

as parameters to generate a 3D plane for the image in its true position. A user can then 

select the image from a file which is automatically mapped to the 3D plane as texture. 

Using correctly positioned 3D orthographic images ensures objects mapped to multiple 

images will be in their correct relative and absolute positions (Figure 6.1). Sample GDL 

code for this new tool can be seen in Figure 6.2. 

 

 

 

 

 

 

Figure 6.1: Geo-referenced orthographic images imported into ArchiCAD BIM software in their correct 

3D position. 
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Figure 6.2: Sample GDL code for new tool to import geo-referenced orthographic imagery. 

 

6.2.2 New Tool for Importing 3D Points to ArchiCAD BIM Software 

The second new tool has been developed to accurately import 3D points into ArchiCAD 

which was previously not possible before ArchiCAD version 19. This new tool was 

again developed with the Geometric Description Language (GDL). A 3D point can be 

defined with GDL using a HOTSPOT command which displays a point based on an x, y 

and z coordinate. However, after testing this command with a segmented point cloud, it 

was found to be unsuitable for displaying a large number of points. This is because 

hotpots firstly only display when an object is selected. This means that a segmented 

point cloud or cut-section will not display in the 3D or 2D window until it is selected, 

which makes it unsuitable for its intended use. Secondly, the display size of a hotspot 

point is quite large and cannot be changed. This means it is very difficult to see 

individual points that are close together within a large point file. A better method of 

displaying a large number of 3D points involved representing each point by a very small 

line segment. Unlike 3D hotspots, line segments display without being selected. The 

size of a very small line segment is also smaller than the size of a 3D hotspot which 
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makes it easier to display a lot of points that are close together. Within GDL, a line 

segment is defined in 3D by an x, y and z coordinate of each line endpoint. In order to 

represent 3D points with line segments, two coordinates are created for each 3D point. 

One of the new coordinate points is created by adding a millimetre to each original 3D 

point and the second new point is created by subtracting a millimetre from each original 

3D point. These new coordinate points are then used to define a line segment with the 

actual 3D point located at the centre of each line. This results in 3D points being 

represented by very small line segments around 2mm in length (Figure 6.3). An option 

is also available for a user to display hotspots at the centre of each line segment to 

enable accurate snapping to original 3D points. Figure 6.4 shows an example of cut-

sections and segmented point clouds imported into ArchiCAD with this new tool. 

Similar to the procedural modelling prototypes, the new tools for importing survey data 

are also accessed from a new HBIM menu as shown in Figure 6.5.    

 

 

 

 

 

 

 

Figure 6.3: 3D points represented with GDL using very small line segments. 

 

 



 159  

 

 

 

 

 

 

 

 

Figure 6.4: Cut-sections and segmented point clouds imported to ArchiCAD BIM software in correct 3D 

position. 

 

 

 

 

 

Figure 6.5: Menu command for accessing new tools to accurately import survey data into ArchiCAD BIM 

software.   

 

6.3 Mapping to Survey Data – Prototype I 

After all survey data is imported and correctly positioned in BIM software the newly 

developed procedural modelling prototypes can be used for fast and efficient modelling 

of existing buildings. When a façade is generated with the first procedural façade 

prototype, it is first positioned in plan relative to survey data such as segmented point 
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clouds or orthographic imagery in plan (created from a point cloud) (Figure 6.6). The 

initial configuration of a procedurally generated façade has two floors and two 

horizontal tiles as seen in Figure 6.7. This initial configuration contains a door tile (TD) 

and window tile (TW) on the ground floor and two window tiles on the first floor. The 

first stage of mapping this procedural façade template to survey data is to apply the 

classical proportions to the façade model which provides an initial estimate for the 

position and size of façade elements. In order to apply these classical proportions, two 

measurements need to be taken from the survey data and entered into the façade model 

as parameters (Figure 6.8). After these parameters are entered into the façade model, the 

size and position of all elements are immediately updated to reflect these classical 

proportions. When modelling classical historical buildings having these proportions 

already applied significantly reduces the amount of further editing to be carried out. 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Orthographic image showing a plan view of a building façade and entrance created from laser 

scan survey data. 
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Figure 6.7: Initial configuration of a procedurally generated façade. 

 

 

Figure 6.8: Measurements taken from survey date (left) and entered as parameters into dialogue box for 

procedural façade model. 

 

The next stage involves specifying the façade structure. This is carried out by altering 

parameters for the structure of the façade either in a dialogue box or graphically in the 

2D or 3D window by selecting and moving hotspots on the model. A user must specify 
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the number of storeys for the façade, the number of horizontal tiles and the position of 

the door on the ground floor. By altering these parameters the façade structure is 

procedurally generated (Figure 6.9 & Figure 6.10). Once the structure of the façade has 

been generated the façade model can then be overlaid with survey data and the initial 

estimates for objects provided by applying classical proportions can be assessed. 

The final stage involves graphically editing objects on the procedural façade to 

accurately position elements relative to survey data. This is carried out in 2D or 3D 

while overlaying the model with survey data such as orthographic imagery as seen in 

Figure 6.11. In order to enable efficient editing, editable hotspot points can move 

multiple objects at once. This simultaneous editing allows users to quickly alter the 

heights of all windows on a floor simultaneously, the width of all windows above each 

other in a column simultaneously and also the position of all windows in a column or 

floor simultaneously. The distance between floors and columns can also be modified 

graphically to move multiple objects at once. Along with this editing with groups of 

objects, individual editing of objects is also possible to achieve high levels of accuracy 

relative to the survey data. Individual window corners can be modified by simply 

selecting a hotspot at the window corner and moving it to the desired new position 

(Figure 6.12).  

As an element on a façade is modified all linked elements are also automatically 

updated as seen in Figure 6.13 where graphically editing a window opening 

automatically updates the combined ashlar block wall detail which calculates the 

required subtractions or additions using Boolean operations. 
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Figure 6.9: Graphical parameter editing to procedurally generate the structure of a façade. Parameter for 

the number of storeys edited (top) and the number of horizontal tiles edited (bottom). 

 

 

 

 

 

 

 

 

Figure 6.10: Graphical parameter editing to modify door position by moving a hotspot in the 2D window. 
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Figure 6.11: Orthographic image overlaid with procedural façade model for graphical editing of façade 

elements. 

 

 

Figure 6.12: Graphical editing of objects on the procedural façade model. Editing of individual window 

(top left), editing of all window heights on a floor simultaneously (top right) and editing façade corner 

(bottom). 
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Figure 6.13: Graphically editing window opening which automatically updates linked elements such as 

ashlar block wall detail. 

 

6.4 Mapping to Survey Data – Prototype II 

Similar techniques are adopted for mapping the second procedural building prototype to 

survey data. Procedural building models are first created by selecting one or multiple 

building footprints and then selecting the “Generate Building from Footprint” command 

from the new HBIM menu in the menu bar. Alternatively, users can select a “Draw 

Footprint and Generate Building” command from the same HBIM menu. This second 

command allows a user to draw a new polygon with user input that will be used to 

automatically generate the building model. These commands will automatically 

generate the walls for the building by applying the first three rules described in Section 

4.3. 

Next, a user can apply classical proportions to the building model by entering two 

measurements similar to the previous procedural façade prototype. Applying these 

classical proportions will update the heights of all floors and the position and size of all 

openings on each building side. Next users can adjust parameters to alter the building 

structure as required. This involves altering the number of storeys (Figure 6.14) and also 
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applying splits to automatically create the required number of openings on each 

building side. Users can then add objects to the building model by altering parameters 

from the dialogue box.  

The final stage involves overlaying the generated building model with survey data such 

as orthographic imagery, segmented point clouds or cut sections. Users can then refine 

openings, floor heights or other objects by graphically editing hotspots in 3D or 2D 

windows (Figure 6.15). Hotspots can be used to edit groups of objects at once or 

individual objects on their own. Objects on the building can be accurately refined and 

positioned to specific survey data very quickly using this method. Hotspots are also 

included at the base of the building to change the building footprint (Figure 6.14). When 

a building footprint is changed all linked objects are instantly updated as seen in Figure 

6.14. 

 

 

 

 

 

 

 

 

Figure 6.14: Graphical editing the “number of storeys” (left) and the building footprint (right) by clicking 

and dragging hotspots. 
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Figure 6.15: Graphically editing an individual window opening in the 3D window by clicking and 

dragging a window hotspot to a new position. 

 

6.5 Mapping to Survey Data – Prototype III 

For the third prototype, a non-vertical circular wall is first automatically generated from 

two or more cut-sections through a point cloud. This generates a true wall surface using 

polygon sections from a point cloud. Next users can apply classical proportions by 

again entering two measurements into a dialogue box similar to the first procedural 

façade prototype. Applying these classical proportions will set the heights of all floors 

and the size of all openings and objects that will be generated. Next users can adjust 

parameters to alter the building structure as required. This involves altering the number 

of storeys and also applying a split rule to divide a complete model or floor into any 

number of tiles. Users can then add objects to the procedural model by selecting objects 

in a dialogue box and choosing which tiles to place them on. Objects can be generated 

on all tiles in a model, all tiles on a floor or specific tiles. Specific arrangements of 

objects can also be generated such as alternating object on a floor. 
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Once the required geometry is generated on a wall structure then the position and sizes 

of objects can be refined to more accurately match survey data. Cut-sections, segmented 

point clouds or complete point clouds can be used to refine procedurally generated 

objects on a circular wall surface (Figure 6.16). Orthographic images which were used 

for previous prototypes are not suitable for the third prototype as the generated 

geometry is not planar.   

First, the positions of objects are refined in a plan view (Figure 6.17). Refining objects 

on an irregular circular wall surface is based on editing angles instead of distances. New 

object positions are calculated based on angles from an average arc origin for the 

circular wall surface. To move a single object requires changing the angles from the 

average arc origin to both start and end angles of the object. Changing the width of an 

object involves changing either the start or end angle of an object from the average arc 

origin (Figure 5.22). Using these start and end angles to each object, simultaneous 

editing can also be carried out by changing all objects start and end angles at once 

which will move all objects simultaneously around a wall structure (Figure 6.18 & 

Figure 6.19). Once the start or end angles of an object are changed the new positions 

and widths of objects are calculated using the procedural rules described in Chapter 4.  

When refining objects in a 2D plan view, all objects can first be edited simultaneously 

to roughly align all objects to survey data (Figure 6.17 & Figure 6.18). Next individual 

objects can be moved (Figure 6.20) or the width of a single object can be altered (Figure 

6.21). After the positions of objects are refined, next the formation levels (Figure 6.22) 

and heights (Figure 6.23) can be edited with hotspots from 2D section windows or a 3D 

window. Graphical hotspots enable the heights and formation levels of all objects on a 

floor to be edited simultaneously or individually as required. Using graphical hotspots 
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to interactively refine objects simultaneously or individually enables very efficient 

editing and mapping of generated geometry to specific survey data.     

 

 

 

 

 

 

 

 

 

Figure 6.16: Cut-sections from a point cloud used to refine procedurally generated geometry (3D 

window). 

 

 

 

Figure 6.17: Cut-sections from a point cloud used for refining procedurally generated objects in a 2D 

(plan) window. 
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Figure 6.18: Simultaneous editing of all procedurally generated objects in a model based on angles from 

an average arc origin. An angle based editable hotspot is used to rotate all objects around the irregular 

wall structure (2D plan window).  

 

Figure 6.19: Simultaneous editing of all procedurally generated objects in a model based on angles from 

an average arc origin. An angle based editable hotspot is used to rotate all objects around the irregular 

wall structure (3D window). 

 

 

 

 

 

 

 

 

Figure 6.20: A hotspot located in the middle of an object used to move a single object at once. This alters 

an individual objects start and end angles to move the object around a circular wall structure.  
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Figure 6.21: An angle type hotspot at either side of an object is used edit the width of an individual 

object. The width is calculated based on a new start or end angle of the object.  

 

 

Figure 6.22: A hotspot located at the bottom of an object is used to change the formation level of an 

object. 

 

 

 

Figure 6.23: A hotspot located at the top of an object is used to change the height of an individual object.  
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6.6 Conclusion 

This chapter outlined the process of mapping the procedural modelling prototypes to 

specific survey data for modelling existing buildings. To overcome limitations of BIM 

software, new tools have been developed to enable survey data to be accurately 

imported in its true position using a common coordinate reference system. Once survey 

data is imported and accurately positioned in BIM software then the procedural 

modelling prototypes can be used for fast, efficient and accurate modelling from survey 

data. The process involved in each prototype is a semi-automatic process where 

geometry for a required building arrangement is first automatically generated and then 

manually refined to specific survey data. Prototypes II and III also enable further 

automation by using 2D building footprints and cut-sections to generate wall surfaces.  

When using procedural modelling to generate objects in a model, architectural rules are 

used to estimate the position and size of objects. This greatly reduces the amount of 

further editing required for classical architecture. When manually refining objects on a 

procedural model, editable hotspots are used to interactively edit parameters of objects 

directly from the model by clicking and dragging hotspots. Objects can be edited in 

groups for efficient and fast editing. Objects can also be edited individually for high 

accuracy results.  
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Part III Summary: 

Part III of this thesis contains two chapters which describe the methodology for testing 

and validating the new concepts of procedural HBIM. In the first chapter of Part III, two 

case studies are undertaken to fully implement and validate the procedural HBIM 

concepts using real world applications. The second chapter of Part III describes three 

tests undertaken for further validation of the procedural HBIM concepts and prototypes.    
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7 Chapter Seven: Case Studies  

7.1 Introduction 

This chapter describes two case studies which were undertaken to test the newly 

developed procedural modelling prototypes. This validation with real world applications 

is the final implementation of the developed prototypes. The first case study undertaken 

involved documenting the buildings on Henrietta Street, one of the earliest Georgian 

streets in Dublin. The second case study undertaken was a restoration project of 

Ireland’s main courts building, the Four Courts, which is also located in Dublin. For this 

second case study, the third procedural modelling prototype was used to produce fast 

and accurate documentation that would form a basis for a proposed conservation 

intervention.   

7.2 Case Study 1 - Henrietta Street Dublin 

7.2.1 Introduction and Background to Case Study 

Henrietta Street is an 18th century Georgian Street located in Dublin, Ireland. Henrietta 

Street is one of the earliest Georgian streets in Dublin and is of great historical 

significance. The street was developed by Luke Gardiner and constructed between 1730 

and 1820. The buildings on Henrietta Street are great examples of classical style 

architecture and were originally seen as city palaces. During the 19th and 20th century 

the street fell into disrepair and despite recent restoration work, there are still a number 

of buildings that need urgent attention. 

7.2.2 Data Collection and Pre-Processing 

The entire street was recorded using laser scanning and image acquisition methods. 

Eight scans were carried out with 10mm resolution using a Trimble GS200 terrestrial 

laser scanner as seen in Figure 7.1. Common targets were surveyed at a higher 
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resolution (2mm) in common areas between scans for registration of scans. Five to eight 

common targets were surveyed between scans to ensure accurate registration results 

during processing.  

A number of pre-processing steps were carried out on the scan data before modelling 

with BIM software. These pre-processing steps included registration, segmentation, 

filtering, triangulation, texturing, orthographic image creation and the generation of cut-

sections. All processing of scan data was carried out using Trimble Realworks software. 

Figure 7.2 shows the final point cloud recorded for Henrietta Street. 

 

 

 

 

 

 

 

Figure 7.1: Trimble GS200 laser scan used to record data for generating an as-is BIM of Henrietta Street. 

 

Figure 7.2: Henrietta Street, Dublin (left) and point cloud of street coloured by intensity (right). 
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7.2.3 Generation of BIM Geometry with the Procedural Façade Prototype 

Next data from the survey including segmented point clouds, orthographic images and 

cut-sections were imported into the ArchiCAD BIM software for modelling. The newly 

developed tools for importing geo-referenced orthographic imagery and cut-sections 

were used to accurately position all survey data within the BIM software (Figure 6.1). 

The procedural façade prototype along with additional HBIM parametric library objects 

(Murphy et al., 2013), were then used to generate accurate building information models 

from the survey data. Manual modelling of each individual façade on this street would 

be a very time-consuming task and would involve measuring, positioning and adjusting 

hundreds of objects to reconstruct the street. Instead, each façade structure was 

automatically generated with the procedural façade prototype. Parameters were adjusted 

for each façade to automatically generate the correct building arrangement with the 

correct number of storeys, number of openings, door position and types of objects. Once 

each façade was automatically generated, the position of façade elements were quickly 

refined using efficient simultaneous editing or individual editing as required.  

Additional HBIM parametric library objects (Murphy et al., 2013) were also added to 

complete models as required (Figure 7.3). These HBIM parametric library objects were 

manually mapped to survey data and façade models. Figure 7.3 shows the building 

information model generated with the procedural façade prototype and HBIM library 

objects. A video of the captured point cloud and reconstructed HBIM can also be seen 

from the link below. 

https://youtu.be/81EJCnxUcQo 

7.2.4 Documentation and Further Applications of Data 

A model generated with the procedural façade prototype and HBIM parametric library 

objects can be used for more than just visualisation. Along with the geometric 

representation, the generated HBIM also contains further information regarding 

https://youtu.be/81EJCnxUcQo
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relationships, semantics and attributes of building components. This additional 

information facilitates further analysis and enables the model to be used as a 

management tool for building operations and maintenance. Numeric data, lists of 

objects, components and their attributes along with bills of quantities can be 

automatically generated from a HBIM to facilitate economic and valuation analysis. 

Figure 7.4 shows an example of lists of objects, components and a bill of quantities 

automatically generated from the HBIM for Henrietta Street. This data includes 

information about objects such as area, volume, length, thickness, quantities and 

position within a model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Building information model created using the procedural façade prototype and HBIM library 

objects for Henrietta Street, Dublin. 
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Figure 7.4: Lists of objects, components and bill of quantities generated from the HBIM of Henrietta 

Street. 

 

Where conservation or restoration work is to be carried out on an object or structure, 

conventional orthographic or 3D survey engineering drawings are required. Once a 

HBIM has been generated and precisely mapped to survey data, 2D and 3D 

documentation can be automatically generated from the 3D model. This includes plans, 

elevation drawings, sections and 3D perspectives as shown in Figure 7.5 and Figure 7.6. 

A model created with the procedural HBIM prototypes and library objects can also be 

used for energy analysis. Using the EcoDesigner STAR extension for ArchiCAD BIM 

software it is possible to perform energy analysis with HBIM data. A HBIM must first 

be converted to a Building Energy Model (BEM) by enhancing the HBIM with 

information relating to energy evaluation. A workflow from a HBIM to BEM requires 

three steps. Firstly spaces within a HBIM need to be organised into thermal blocks. This 
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is carried out by defining different zones within the HBIM. Next physical properties are 

assigned to building material and their thermal properties need to be checked. Finally, 

environmental properties are defined such as the location, orientation, climate data, 

energy factors and prices. The accuracy of the energy evaluation depends on the 

accuracy and completeness of the input data.  Figure 7.7 shows results obtained from 

performing energy analysis with HBIM data for Henrietta Street. Results include 

evaluations on the net heating energy, net cooling energy, energy consumption, fuel 

consumption, CO2 emissions, emitted energy per month and environmental impact. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Automated 2D and 3D documentation produced from HBIM. 
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Figure 7.6: Automated 2D documentation from BIM model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Energy analysis performed on HBIM data for Henrietta Street using EcoDesigner STAR 

extension for ArchiCAD BIM software. 
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7.2.5 Review of Case Study 

This case study of Henrietta Street showed the capabilities and flexibility of the first 

procedural façade prototype. The prototype was capable of generating the required 

building arrangements for all the fourteen buildings on the street. Graphical editing 

allowed for all generated objects to be quickly and accurately refined using correctly 

positioned orthographic images. Applying classical proportions also resulted in faster 

editing as the amount of editing required was reduced. Using this procedural façade 

prototype it was also possible to represent non-uniform objects such as window 

openings. Using existing software tools and library objects within ArchiCAD, it was not 

possible to accurately model all window objects. This is due to deformation as some 

openings on the street do not have perfect 90-degree rectangular openings. Some sash 

windows also had an irregular number of panes that could not be represented with 

existing ArchiCAD library objects. The new prototype enabled these irregular openings 

to be accurately modelled and the window objects generated by the prototype could also 

accommodate for irregular numbers or sash panes. An inclination angle could also be 

set for facades that were not perfectly vertical. Overall the procedural façade prototype 

enabled more efficient and accurate modelling of the building façades on Henrietta 

Street when compared to existing manual methods within the ArchiCAD software.  

 A limitation of the current procedural façade prototype for this case study was that not 

all required objects on a façade could be generated by the prototype. Additional 

parametric HBIM objects needed to be manually added to complete façade models. 

Other sides of buildings, roofs and street furniture were also manually created. A 

solution to this would be to extend the façade prototype with more parametric objects to 

enable a more efficient modelling process. Subsequent procedural modelling prototypes 

provide a greater number of objects such as niches, columns and floor slabs. The case 

study also showed the capabilities for different types of analysis after a building 
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information model is created with this prototype. This includes automatic lists of 

objects, components and bill of quantities for economic analysis. Plans, sections, 

elevations and 3D views can be automatically generated for documentation and 

conservation analysis. Energy analysis can also be performed to estimate net heating 

energy, net cooling energy, energy consumption, fuel consumption, CO2 emissions, 

emitted energy per month and environmental impact. 

7.3 Case Study 2 - The Four Courts Dublin 

7.3.1 Introduction and Background to Case Study 

A restoration project of Ireland’s main courts building, The Four Courts, was used as a 

second case study to test the new procedural HBIM developments. The Four Courts is a 

late 18
th
-century classical building located in Dublin, Ireland. The Four Courts was 

designed by architect James Gandon and constructed between 1786 and 1802. The 

building was partially destroyed by fire in 1922 during the Civil War in Ireland which 

occurred during the early establishment of the Republic (Figure 7.8). During this time 

the original dome which was supported by timber collapsed (Figure 7.9).  

 

 

Figure 7.8: War damage to the Four Courts (left) (Cashman, 1922a)  and 18th-century section drawing of 

the Four Courts by architect James Gandon (right) (Gandon, 1700s).  
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Figure 7.9: Damage to the Four Courts after the bombardment by the Free State Army, during the Civil 

War on 30 June 1922 (Cashman, 1922b).  

 

7.3.2 Previous Restoration Works 

The dome was rebuilt in the late 1920s. This new dome was constructed using 

reinforced concrete which was poured over a period of thirty-six hours. Despite being 

damaged in the Civil War, the stone capitals from the original building were saved and 

reincorporated in the new dome. Twenty-four columns support the dome, all of which 

are slightly different due to weathering and fire damage. When the dome was being 

rebuilt, the original capitals were rotated so that the exposed or damaged sides faced 

inwards. This was possible as the capitals had been carved on all sides. Subsequent 

renovations were also carried out in the 1940s when structural problems resurfaced. A 

ring of steel inserted in the 1920s when the dome was rebuilt had rusted and concrete 

was used to cover it up.  

The effects of the Civil War damage to the building are once again a threat to the 

structural stability of parts of the building. In 2011, a large section of one of the capitals 

that top each of the Corinthian columns supporting the dome broke away and fell onto a 

roof below (Byrne, 2015). Investigations showed that this collapse was caused by 

further rusting of the steel ring encircling the concrete dome (Figure 7.10). This resulted 
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in the weight of the dome bearing down on the capitals below causing the delicate, 

carved Portland stone to crack (Figure 7.10). 

 

 

 

 

 

Figure 7.10: Part of a damaged Corinthian capital that broke away and fell onto the roof below (top left). 

Damaged Corinthian capital (top right) and rusted steel ring encircling the dome (bottom).  

 

7.3.3 Current Restoration Work 

The current restoration work required dealing with all structural issues before moving 

on to finer issues such as the capitals themselves. Conservation and restoration work to 

the capitals would require both mortar repairs and new stone carving. The concrete on 

the inside of the dome also required resurfacing. The first stage of the work involved 

erecting scaffolding to assess and measure the extent of the damage (Figure 7.11). A 

laser scan survey was commissioned to provide accurate measurements for 

documentation. In order to produce engineering drawings and to carry out further 

analysis, it was decided that parts of the laser scan survey would be converted into a 
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Building Information Model. The next sections describe the laser scan survey and the 

use of the procedural HBIM prototypes to generate an accurate building information 

model. The aim of this part of the project was to use HBIM to illustrate virtually the 

current extent of the damage/decay. This information would then be used as a basis for 

the proposed conservation interventions.  

Figure 7.11: Exterior view of the Four Courts Dublin where the dome is undergoing major restoration 

(Byrne, 2015). 

 

7.3.4 Laser Scan Survey & Pre-Processing 

A complete laser scan was carried out on the internal and external structure using a 

Leica HDS C10 scanner. Separate laser scan surveys were carried out, before and after 

scaffolding was erected around the dome. This allowed the drum and columns to be 

surveyed before the scaffolding was put in place along with detailed scans of the 

capitals and upper dome after scaffolding was in place. Both laser scan surveys carried 

out were registered together in pre-processing using common targets that were set-up on 

site. Along with registering separate scans, other pre-processing steps involved filtering 
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and segmenting point clouds and generating orthographic images and cut-sections. All 

pre-processing of scan data was carried out using Leica Cyclone software. Results of 

this laser scan survey are shown in Figure 7.12 to Figure 7.14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: Point cloud of The Four Courts showing points coloured by their intensity values.  
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Figure 7.13: Complete registered point cloud of the Four Courts and surrounding buildings coloured by 

intensity values. 

 

Figure 7.14: Point cloud showing detailed scans of capitals and the upper dome after scaffolding was put 

in place. 
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7.3.5 Generation of BIM Geometry with the Irregular Procedural Building 

Prototype 

For this case study, the accuracy of the resulting HBIM was crucial in order to perform 

structural analysis on the damaged dome and drum. This required the irregular circular 

walls of the drum which supports the dome to be modelled representing its true 

condition in order to show up any areas of deformation or warping. This was possible 

with the third Irregular Procedural Building prototype.  

A series of horizontal cut-sections at different heights were taken from the point cloud 

of the drum and used as input data for the HBIM procedural rules (Figure 7.15). The 

HBIM procedural rules for prototype III were then used to automatically generate the 

irregular BIM wall geometry which connects each horizontal cut-section. This allowed 

the non-vertical circular walls to be accurately and automatically modelled representing 

its true condition. It would not be possible to model this wall as accurately with existing 

ArchiCAD BIM tools as it is not possible to model non-vertical circular walls within 

this software. Cut-sections were also used to generate the internal wall surface with the 

first procedural rule to ensure that both internal and external wall surfaces were 

accurately represented (Figure 7.16).  

Figure 7.15: Cut-sections taken through the point cloud for the Four Courts dome and drum. Polygon 

sections shown are in red.  
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Figure 7.16: Irregular non-vertical circular walls automatically generated from polygon cut-sections. 

 

Once the walls were generated further parameters were then adjusted to automatically 

generate the required arrangement of objects. Parameters were set to create one floor, 

split into twenty-four tiles with alternating arch-top niche and window objects. 

Rectangular niche objects were also automatically generated in each tile (Figure 7.17).  

The positions and size of these objects were then graphically refined in a group and also 

individually as required. Objects were first positioned in plan and then heights were 

matched to point cloud data in a 3D view.  

Additional objects such as floors and the internal concrete dome surface were 

automatically generated as triangulated mesh objects from sampled and segmented point 

clouds (Figure 7.17). Other components including column shafts and beams being 

supported by columns were also automatically generated from cut-sections using the 

first rule, “procedural surface generation from cut-sections” (Figure 7.18 & Figure 

7.19). Standard column library objects and beams could also have been used but this 

would not show the true condition of each object which contains deformation due to 

weathering and fire damage from the Civil War. The capabilities of the procedural rules 
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to model the drum, columns and beams from cut-sections showed the versatility of the 

new procedural rules. As column shafts and beams were automatically generated from 

cut-section, the resulting geometry is positioned in its true position and doesn’t require 

further manual editing. Figure 7.20 shows the combined components of the Historic 

Building Information Model (HBIM) generated for the Four Courts comprising of the 

drum, internal dome surface, floor surface, column shafts and beams encircling the 

dome.  

 

 

Figure 7.17: Non-vertical wall generated with 24 tiles containing alternating niche and window objects 

(left). Internal dome surface and floor surface automatically generated as mesh surfaces from segmented 

point clouds (right).  

 

 

 

 

 

 

 

Figure 7.18: True condition of column shafts automatically generated from cut-sections. 
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Figure 7.19: True condition of beam encircling dome automatically generated from cut-sections. 

 

 

Figure 7.20: Historic Building Information Model (HBIM) components for the Four Courts automatically 

generated using the new HBIM procedural rules. 

 

The Corinthian capitals can be represented in BIM software with standard library 

objects from the HBIM library of objects. With these library objects, however, it is 
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difficult to show deformation that is unique to a particular capital. An alternative 

solution was tested which involved importing triangulated mesh models for each 

Corinthian capital which is created directly from the point cloud or alternatively using 

photogrammetric techniques (Figure 7.21). These mesh models show the true condition 

of each capital but can contain a very large number of surfaces to represent the object. 

In order to enable the triangulated mesh models to be imported into ArchiCAD, each 

mesh model was resampled to reduce the number of surfaces to a more manageable 

size. Figure 7.22 shows an example of a mesh model representing the true condition of a 

capital combined with the previously generated HBIM for the Four Courts. The 

methodology for testing and validating the accuracy of different BIM components 

generated for this case study with the procedural rules is discussed in Chapter 8. The 

results of these accuracy tests are analysed in Chapter 9. 

 

 

 

 

 

 

 

 

Figure 7.21: Triangulated mesh models of a Corinthian capital from the Four Courts which was captured 

using photogrammetry. A photo textured mesh is shown on the left and an un-textured mesh model is 

shown on the right. 
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Figure 7.22: HBIM of the Four Courts with imported triangulated mesh model for a Corinthian capital 

representing its true condition. 

 

7.3.6 Documentation Results & Analysis  

The final HBIM for the Four Courts was used to produce various 2D and 3D 

documentation such as plans, section and elevations (Figure 7.23 to Figure 7.28). Figure 

7.23 shows a plan vector drawing automatically generated from the 3D model. From 

this plan view it is possible to identify the verticality of walls, columns and beams and 

identify areas where walls, columns or beams are leaning (Figure 7.24). Figure 7.25 to 

Figure 7.27 shows vertical sections through the drum and dome. From vertical sections, 

it is possible to precisely measure the extent of a leaning wall at any point in the model. 

Figure 7.27 shows the variance between vertical wall lines (red dashed lines) and the 

true condition of the wall. A horizontal distance measured from the top of the actual 
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wall to the vertical wall line is 90mm at this particular location (Figure 7.27). Figure 

7.28 shows a coloured elevation vector drawing also automatically generated from the 

3D model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.23: 2D plan vector drawing automatically generated from the 3D model for the Four Courts, 

Dublin. 

 

 

 

North Direction 
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Figure 7.24: 2D plan vector drawing showing a column that is leaning (left). Documentation shows 

vertical walls (left) and areas of the wall and beam that are leaning (right). 

 

 

Figure 7.25: Section through the Four Courts drum and dome automatically generated from the 3D model.   
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Figure 7.26: Section through the Four Courts drum automatically generated from the 3D model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.27: Section showing the true condition of walls which contains deformation (vertical wall lines 

shown by dashed red lines).  
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Figure 7.28: Vector elevation drawing automatically generated from the 3D model for the Four Courts, 

Dublin. 

 

After analysing all the documentation produced it was clear that the area of the Four 

Courts drum that was most affected by deformation was the side facing south onto the 

front of the building and the street and river below. This is also consistent with the 

capitals as the capitals containing the most damage and decay are also in the same area 

facing south to the front of the building. This side would have also been most exposed 

during the bombardment in the Civil War.  

Figure 7.29 shows graphically the extent of the deformation to the drum with areas of 

the drum that are leaning shown in green. Cloud Compare software was used for this 

analysis which compared a model representing an ideal vertical drum with the actual 

condition of the drum (Figure 7.29).    
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Figure 7.29: Variation between an ideal vertical drum and the actual drum which contains deformation. 

Areas coloured green have the highest variation while areas coloured blue have a low variation. 

 

Other useful forms of documentation were also produced directly from scan data. This 

included a high definition orthographic image for the reflected internal plaster dome as 

viewed from the rotunda below (Figure 7.30). This can be used to identify and 

document the decorative plaster ceiling allowing any measurements to be taken from the 

orthographic image (Figure 7.30). This orthographic image of the reflected internal 

dome ceiling was also used for further documentation. This included marking the 

positions of the steel trusses used to support this internal plaster dome (Figure 7.31). 

Figure 7.32 shows another orthographic image for a Corinthian capital that was used to 

manually create a vector drawing. 

7.3.7 Adopted Conservation Methods 

Laser scanning and subsequent documentation generated from the HBIM showed the 

extent of the damage and decay to the Four Courts dome and drum. From this 

documentation, it was possible to identify the areas most affected by deformation along 

with identifying where steel inside the concrete dome was corroding and damaging the 
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concrete. Instead of trying to remove the steel, which may have required substantial 

demolition and reconstruction of the dome, the chosen conservation method involved 

installing a system known as cathodic protection. This involves inserting “sacrificial” 

zinc plugs into the concrete that then attract the corrosion away from the steel. As part 

of the conservation works, the concrete on the inside of the top dome was also 

resurfaced (Figure 7.34). Once all structural issues have been dealt with the 

conservation work required for the Corinthian capitals will also begin Figure 7.33 & 

Figure 7.35.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.30: Reflected internal plaster dome of the Four Courts Rotunda viewed from below. Photo 

containing distortion (left) and true to scale orthographic image generated from point cloud (right). 
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Figure 7.31: Location of steel trusses supporting the internal plaster dome is marked on the orthographic 

image (left). Cut-sections of same steel trusses from the point cloud are shown on the right.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.32: Orthographic image of a Corinthian capital from the Four Courts Dome (right). Vector 

documentation manually created from orthographic image is shown on the left. 
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Figure 7.33: Current renovation work to the Four Courts dome, drum and capitals (Byrne, 2015). 

 

 

Figure 7.34: Scaffolding put in place in the top dome for resurfacing the internal concrete surface (Byrne, 

2015). 
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Figure 7.35: Current renovation work to the Four Courts dome, drum and capitals (Byrne, 2015). 

 

7.3.8 Review of Case Study 

This case study showed the capabilities of the third Irregular Procedural Building 

Prototype for quickly generating accurate documentation to analyse a damaged 

structure. Using this prototype it was possible to procedurally generate irregular BIM 

geometry that accurately represented the drum, columns and beams. The irregular 

surfaces were automatically generated from cut-sections extracted from point cloud 

data. Once the drum wall surface was generated, the required arrangement of objects 

was automatically generated and then manually refined. Methods for fast and efficient 

graphical editing also enabled all objects to be edited simultaneously in groups or 

individually as required.  

From the documentation produced, it was possible to identify the extent of the damage 

and the areas most affected by deformation. The HBIM can also be used in other 

dedicated software for further structural analysis such as Finite Element Modelling 

(FEM) software.  
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7.4 Conclusion 

This chapter described two case studies which showed the potential use of the newly 

developed HBIM procedural modelling prototypes. The first case study of Henrietta 

Street showed the benefits of using the procedural façade prototype for more efficient 

and accurate generation of façade models when compared to existing manual 

approaches. This case study also showed the potential for further applications and 

analysis of HBIM data which included, conservation, economic and energy analysis. 

The second case study of the Four Courts showed the use for the third Irregular 

Procedural Building prototype on a real conservation project. Without this prototype, it 

would not have been possible to generate accurate BIM geometry for the irregular dome 

and drum which contains a high level of deformation. The next chapter describes the 

methodology for further validation and testing used to evaluate the newly developed 

HBIM procedural modelling prototypes.  
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8 Chapter Eight: Validation and Testing  

8.1 Introduction 

This chapter describes the methodology undertaken to further validate and test the 

research hypothesis, that procedural modelling is a suitable solution for more accurate, 

automated and easier generation of BIM geometry from point clouds. The findings and 

analysis of the validation and testing are presented in Chapter 9. 

In order to test the hypothesis three different tests were undertaken which included both 

qualitative and quantitative testing. These three tests were designed to address the three 

parts of the hypothesis by testing the accuracy, usability and the level of automation. 

The accuracy of a procedurally generated model is very important so that a model 

accurately depicts the as-is condition. A quantitative test was designed and implemented 

to validate the accuracy capabilities of the developed prototypes. This involved 

comparing models generated with the new prototypes to different sets of reference 

measurements. The deviations between a procedurally generated model and a set of 

reference measurements were used to quantify the accuracy capabilities of the 

prototypes. 

The second type of testing implemented was end-user-scenario testing. The aim of this 

qualitative testing was to acquire feedback from end-users in industry and academia to 

evaluate the usefulness, efficiency, usability and accuracy capabilities of the developed 

prototypes.  

The third type of testing involved quantifying the level of automation achieved from the 

developed prototypes when compared to a manual approach. This test involved 

measuring the time taken to generate a model with existing manual methods and the 

time taken to generate a similar model with the developed prototypes. The difference in 
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time or time-saving that is achieved from using the new approach is used to quantify the 

level of automation.  

8.2 Accuracy Testing 

8.2.1 Accuracy Tests with Case Studies 

Two types of tests were carried out to validate the accuracy capabilities of the 

developed prototypes. This included a physical measurement method and a deviation 

analysis method (Anil et al., 2011, Anil et al., 2013). The first method, a physical 

measurement method involved capturing an independent set of reference measurements 

on a building and comparing these to virtual measurements in a procedurally generated 

building information model. The second test, a deviation analysis method involved 

analysing the patterns in the differences between a laser scan point cloud and a 

procedurally generated building information model. Building information models 

generated as part of the case studies in Chapter 7 were used for both types of accuracy 

test. 

Data from the Henrietta Street case study was used for the first physical measurement 

accuracy test. This test involved capturing a set of independent reference measurements 

on the façade of number three Henrietta Street using a Leica TPS 1202 Total Station. 

This instrument has a horizontal and vertical angular accuracy of 3 seconds and a linear 

accuracy of 2mm + 2 parts per million (ppm) (Leica Geosystems 2009). With this type 

of test, it is not feasible to physically measure every possible location so only a sample 

of measurements are captured and used. A random sample of defined points on the 

building façade were measured remotely with the Total Station using a reflectorless 

mode (Figure 8.1). This sample included 28 points in total which were recorded from 

two positions to ensure accurate results. This resulted in a set of x, y and z coordinates 

for each measured point (Figure 8.1). These reference points were then compared to a 
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building information model for the same façade which was generated with the first 

Procedural Façade plug-in. The same set of points measured using a Total Station were 

measured on the generated virtual building information model (Figure 8.2). Statistical 

analysis could then be carried out to assess the differences between the physical and 

virtual measurements.  

 

 

 

Figure 8.1: Total Station used to capture reference measurements (left), measurements viewed in 

AutoCAD software (middle) and coordinates viewed in excel (right). 

 

 

 

 

 

 

 

 

Figure 8.2: Measuring coordinates from a procedurally generated virtual façade model within the 

ArchiCAD software. 
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A limitation of the physical measurement methodology for this accuracy assessment 

was that the recorded Total Station measurements were not in the same coordinate 

reference system as the procedurally generated façade model. This was due to the fact 

that the façade model was generated from a laser scan point cloud which was defined in 

a different coordinate reference system to the Total Station survey. This required a 

further processing step of aligning the total station points to the same coordinate 

reference system as the building information model. A best-fit alignment was carried 

out for this using AutoCAD software. Once both datasets were in the same coordinate 

reference system it was possible to compare and analyse the results. The average error, 

standard deviation and root-mean-squared error were used to analyse the deviations 

between both datasets (Equation 8.1). The mean error indicates the most common or 

median deviation. The standard deviation is an important indicator of the quality of the 

results as it shows how much the individual deviations differ from the mean. The root 

mean square error is another measure to show the spread of the deviations. This is 

calculated by squaring the residuals, averaging the squares and calculating the square 

root. 

Equation 8.1: Mean error formula, standard deviation formula and root mean square error formula. 

 

With this first accuracy test, the discrepancy between the physical Total Station 

coordinates and virtual façade model coordinates contained multiple possible sources 

for error. This included errors in total station measurements, laser scan measurements, 

best-fit data alignment errors along with modelling errors. A disadvantage of the 

physical measurement method is that the modelling errors cannot be separated from data 

capture and alignment errors. Only modelling errors were required for this research as 
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the assessment of data capture and data alignment errors were outside of the defined 

scope. Another disadvantage of the physical measurement method is that it only 

analyses the accuracy using a sample of reference points. The results, therefore, might 

not be a true indication of model accuracy as critical errors may be missed if they are 

not measured.   

Due to these limitations of the physical measurement method, a second accuracy test 

was undertaken using a deviation analysis method. This deviation analysis method has a 

number of advantages over a physical measurement method. This includes the ability to 

isolate modelling errors. This is achieved by using a point cloud that a model is created 

from as a reference for testing. The deviation analysis method also uses a full set of 

laser scan points to test the accuracy instead of just a sample of points. This allows the 

accuracy of every surface and component in a building to be analysed.  

For this accuracy test, a deviation analysis method was performed using the open source 

Cloud Compare software. This software provides functionality for point cloud 

processing and includes a deviation analysis method for quality assurance. With this 

software, it is possible to compare two point clouds or compare a point cloud to a 

model. Point cloud data and procedurally generated models from the Four Courts case 

study were used for the deviation analysis accuracy test.  

An advantage of using Cloud Compare software for deviation analysis is that the 

process is fully automated. The software automatically finds correspondences between a 

point cloud and model and then computes the distances between these correspondences. 

Statistical analysis is then automatically performed. Outputs from the statistical analysis 

include the mean error and the standard deviation between corresponding points.  
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Results of the deviation analysis method can also be visualised graphically by colouring 

a point cloud with a colour scale based on the deviations. Results can be visualised 

using signed or unsigned deviation values. A signed visualisation colours points 

according to their signed deviation values so that the direction of the deviation with 

respect to the surface normal can be observed. This can be used to tell if a non-flat 

surface is bowed inward or outward (Anil et al., 2011). An unsigned visualisation 

colours points according to their absolute values of the deviations. A graphical 

representation of the deviations is particularly useful for identifying specific locations 

where errors are present along with identifying the type of error. Modelling errors can 

include: 

 missing model components  

 an incorrect component type 

 a component modelled in the wrong location 

 a component modelled with incorrect geometry (e.g. wrong sizes, scale or 

orientation) 

A visual assessment of the results from a deviation analysis method allows the different 

types of errors listed above to be identified and located.  

8.3 End-User Scenario Testing 

End-user scenario testing involves creating test scenarios which replicate a typical end users 

usage of a software tool. This type of scenario testing evaluates the entire workflow of a 

program and can be used to return valuable feedback to validate a program. Scenario-based 

testing is a conventional method used in software testing to identify problems and potential for 

improvement with a programme (Carroll, 2000). By replicating a typical end-users usage, 

scenario-based testing  can validate a proposed systems behaviour in relation to real world usage 

(Borenstein, 1998).  
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Heesom (2004) reports that providing academics and industry practitioner’s access to prototype 

systems during its development stage is of much benefit. However, Boloix and Robillard, 

(1995) and Borenstein (1998) agree that a post-implementation user evaluation can provide 

more useful evidence on the overall worth of a software system and allows the overall 

confidence in a system to be determined. According to Boloix (1997), an end-user evaluation 

should test the following three aspects from a user’s perspective: 

1. The level with which the software complies with its requirements 

2. The usability and ease of use of the software tool 

3. The contribution and potential benefits afforded by the tool 

A post-implementation end-user evaluation was developed for testing the HBIM procedural 

modelling prototypes with academic and industry practitioners. The specific objectives of this 

testing were to evaluate the usefulness, efficiency, usability and accuracy capabilities of 

developed prototypes. Similar approaches for software testing have been adopted by Moore 

(2013) and Murphy (2012). 

8.3.1 Participants for End-User Test 

Suitable participants for the end-user tests were chosen from industry and academia 

using a judgmental, purposive sampling method. This is a type of non-probability 

sampling where subjects are targeted based on their experience and expertise.  

In quantitative research testing, probability sampling methods are generally preferred 

over non-probability sampling methods. A probability sampling method involves 

participants being chosen based on a randomised selection process. However, this 

method of sampling is not possible for all types of research. In qualitative research, a 

non-probability sampling method is adopted when there are a limited number of people 

that have expertise in the area being researched. This involves a researcher targeting 
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specific participants based on their expertise and experience in the area being 

researched.  

For this research, the intended end-users of the developed procedural modelling 

prototypes are architecture, engineering, construction and heritage professionals who 

require 3D models of existing buildings from 3D point clouds or other survey datasets. 

A non-probability sampling method was required in selecting participants for this end-

user testing due to the limited number of subjects with expertise and experience in this 

area.  

8.3.2 User-Evaluation Sessions 

The user-evaluation sessions comprised of four different stages. In the first stage, a 

short presentation was made to participants to explain the background to the project and 

the test procedure. During this stage users were provided with the information sheet in 

Appendix A. Included in this information sheet was the project background, a 

description of the end-user test, a confidentiality statement and contact details for the 

principal investigator, project supervisor and the Dublin Institute of Technology’s 

Research Ethics Committee. Participants were also asked to sign the consent form in 

Appendix B before taking part in the end-user evaluation.  

A demonstration of the new software tools was provided to participants in the second 

stage of the user-evaluation session. This involved showing participants an example of 

the newly implemented software prototypes for procedural modelling within the 

ArchiCAD BIM software.  

In the third stage of the user-evaluation session participants were given the opportunity 

to try and test the new software tools to carry out a typical end-user scenario of the 

software. For this participants were provided with survey data from the two case studies 
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described in Chapter 7. Orthographic images from the Henrietta Street case study were 

provided to reconstruct façade models with the first procedural façade prototype. Cut-

sections from The Four Courts cases study were also provided to reconstruct models 

with the second and third procedural building prototypes. Basic instructions were also 

provided to participants on how to use the new procedural modelling prototypes. After 

participants generated a model they were shown how automated documentation could 

be produced from these models using the ArchiCAD BIM software. Participants were 

also made aware of the accuracy capabilities of the procedural modelling prototypes. 

This included a description of the accuracy tests outlined in Section 8.2 and the results 

achieved from these tests which are described in Chapter 9.  

In the final stage of the user-evaluation, participants were asked to complete an online 

questionnaire to provide feedback and to evaluate the newly developed software tools. 

8.3.3 Design of the User-Evaluation Questionnaire 

Three different types of questionnaires were established depending on the type of user 

that was participating in the user-evaluation session. The three questionnaires can be 

seen in Appendix C, Appendix D and Appendix E. Different types of users were 

profiled to acquire feedback on different areas of the developed prototypes. The three 

types of users profiled included: 

1. Expert BIM users with Scan to BIM experience. 

2. Users with expertise in general 3D modelling of existing architecture. 

3. Conservation Architects with expert knowledge in the requirements for 

conservation documentation.  

The first two types of users profiled would provide valuable feedback on the usefulness, 

efficiency, usability and accuracy capabilities of developed prototypes. The third type of 
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user profiled would provide feedback on the results and outputs from the developed 

prototypes to assess if they meet the requirements for conservation documentation.  

A web-based questionnaire was designed and implemented for the three types of users 

using a Google Drive Form. A web-based questionnaire facilitates easy distribution and 

provides greater flexibility to respondents. This helps respondents to provide the highest 

standard of feedback at a convenient time which is not restricted to the user-evaluation 

session.    

All three questionnaire types were designed using a common structure with different 

specific questions targeting the different types of user and the desired areas of feedback. 

The first section of each questionnaire included questions to determine the background 

of the participant and their level of experience and expertise in their area. In this section, 

questionnaires one and two also included questions on participant’s preferred software 

and survey data for modelling existing buildings. This section also included questions 

about the typical accuracy requirements for projects undertaken by the participant. 

These questions were important to assess the current requirements of end-users in 

different professions. Specific multiple choice answers were provided for questions in 

this section with an option for adding alternative answers that were not already listed. 

The second section of each questionnaire was used to assess the participant’s 

satisfaction with current software tools for modelling or documenting existing 

buildings. These questions were important to identify if there is a current need in 

industry or academia for new solutions to model or document existing buildings. For 

this part of the questionnaire, a five category balanced Likert scale was used to measure 

the level of agreement or disagreement with a statement or question (Moore, 2013). 

Using a rating scale such as the Likert scale enables respondent’s to express the strength 

of their opinion on a particular topic or question (Moore, 2013).  
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The final section of each questionnaire was used to gain specific feedback on the new 

procedural modelling prototypes. In questionnaires one and two the questions were 

focused on the usability, efficiency, usefulness and accuracy capabilities of the 

prototypes. In questionnaire three this section was focused on assessing the usefulness 

of deliverables from the prototypes. This was very important to establish if the results 

from the prototypes are suitable for their intended purpose in providing accurate 

conservation documentation for existing buildings. Again, a five category balanced 

Likert scale was used to measure the level of agreement or disagreement with a statement 

or question in this section.  

All three questionnaires also included a final section for participants to provide further 

feedback in a textbox. This section was optional but allowed participants to provide 

further details in relation to limitations or suggestions for ways to improve the current 

procedural modelling prototypes. This enabled participants to provide feedback that is 

not restricted by the questions asked in the questionnaire.  

8.4 Level of Automation 

The final test used to validate the research hypothesis involved quantifying the level of 

automation achieved from the HBIM procedural modelling prototypes. 

8.4.1 Automated Stages in Workflow 

A complete scan to BIM workflow involves the following stages: 

1. Data capture 

2. Point cloud processing 

3. Geometric modelling: 

a. Generation of individual components 

b. Combining individual components to create a larger model 
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c. Refining components to specific survey data 

 

With the development of terrestrial laser scanning equipment and point cloud 

processing software, the first two stages of a scan to BIM workflow have become highly 

automated. However, the final stage of geometric modelling is still predominantly a 

manual process. The use of procedural modelling in a scan to BIM workflow has the 

potential to automate parts of the final geometric modelling stage.  

The HBIM procedural modelling prototypes designed for this research allow individual 

parametric components to be automatically generated and automatically combined to 

create many different building arrangements. This greatly speeds up the manual process 

of generating and combining individual model components to create a building 

information model. Procedural modelling does not automate the complete modelling 

process though as parameters of a procedurally generated model still need to be refined 

to specific survey data. The encoding of architectural rules and proportions into 

procedural modelling rules helps to reduce the amount of further manual editing that is 

required. The ability to transfer survey data such as building footprints or cut-sections 

directly into a procedural modelling rule also greatly reduces the amount of further 

editing required. 

In order to quantify how much of the geometric modelling stage can be automated with 

procedural modelling, a test was undertaken using the newly developed prototypes. This 

test compared the time taken for the geometric modelling stage with both a manual 

workflow and a procedural modelling workflow.  

8.4.2 Test Scenario 

In order to carry out the test, a scenario was developed which involved recreating a 

building information model from survey data. Survey data from the Four Courts case 
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study was used for this test scenario. The test scenario involved modelling the drum 

walls, windows and niches of the Four Courts from a series of cut-sections through the 

point cloud. This test scenario was completed with both a manual workflow and a 

procedural modelling workflow. The time taken for each workflow was recorded and 

then compared.  

The test scenario was first completed using the third “Irregular Procedural Building” 

prototype. With this prototype, the polygon cut-sections for the drum were selected and 

the procedural modelling prototype was used to automatically generate the irregular 

wall object. Next, parameters of the procedural model were altered to automatically 

generate the required objects on the wall. This included altering parameters to generate 

a single floor with alternating window and niche objects. To generate these objects the 

number of tiles on the floor was set to twenty-four and the two types of alternating tile 

objects were selected from a list of available objects. The procedural modelling rules 

then automatically generated each object which was equally positioned around the 

circular wall. After the required geometry was generated the final stage involved 

refining the geometry based on the survey data. With the procedural modelling 

prototype, it was possible to simultaneously rotate all objects into position in plan view 

based on the cut-sections from the point cloud.  

Next, the test scenario was repeated to generate a similar model using a manual 

workflow with the existing tools available in the ArchiCAD BIM software. First, the 

wall objects were placed based on survey data. The wall objects were placed at once 

using the ArchiCAD magic wand tool which creates a wall from a selected polygon 

outline. A limitation of the existing ArchiCAD tools is that it is not possible to generate 

a non-vertical circular wall object. For this reason, the wall had to be represented as a 

perfectly vertical wall even though the actual wall contains deformation and warping at 
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different locations. In contrast, the procedural modelling workflow enabled the true 

condition of the wall to be generated based on cut-sections at different heights. The final 

part of the manual workflow involved adding library objects for the windows and 

niches. The inbuilt ArchiCAD library already has the required window and niche 

objects. In contrast to the procedural modelling workflow, the manual workflow 

required each object to be manually added to the wall object and positioned based on 

survey data. This included manually adding twelve window objects, twelve arch-top 

niche objects and twenty-four rectangular niche objects which are positioned above 

each window and arch-top niche.  

8.4.3 Quantifying the Improved Efficiency 

After the test scenario was completed for both the procedural and manual workflows, it 

was then possible to compare and analyse the time taken to generate both models. In 

order to quantify the improved efficiency, the time saved using the procedural 

modelling prototype was expressed as a percentage of the time taken using an existing 

manual workflow (Equation 8.2).   

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑇𝑖𝑚𝑒 =  
(𝑡𝑖𝑚𝑒𝑚𝑎𝑛𝑢𝑎𝑙 −  𝑡𝑖𝑚𝑒𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 )

𝑡𝑖𝑚𝑒𝑚𝑎𝑛𝑢𝑎𝑙
× 100 

Equation 8.2: Formula to calculate time-saving expressed as a percentage of the original time.  

 

Using the formula in Equation 8.2 it was possible to calculate the percentage that a 

procedural modelling workflow is faster than a manual modelling workflow. The 

percentage change between two numbers depends on whether there is a reduction in 

value or an increase. A reduction in value will always result in a higher percentage 

change than an increase. That's because the higher the base, the lower the percentage for 

any given change. 
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Along with comparing the difference in time between both workflows, the accuracy of 

the two resulting models was also assessed. This was important to establish if the 

resulting models were comparable. The methodology for a deviation analysis test 

described in Section 8.2.1 was used to validate the accuracy of the models produced by 

manual and procedural modelling workflows. To quantify the difference in accuracy 

between both models, the accuracy of the procedurally generated model was expressed 

as a percentage of the accuracy of the manually generated model (Equation 8.3).  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑎𝑛𝑢𝑎𝑙− 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑎𝑛𝑢𝑎𝑙
× 100  

Equation 8.3: Formula to calculate percentage difference in accuracy between both workflows 

 

Using the formula in Equation 8.3 it was possible to calculate the percentage difference 

in accuracy between a procedural modelling workflow and a manual workflow. 

The complete test scenario to quantify the level of automation has been recorded using 

Camtasia screen recording software and can be viewed from the following link. 

https://youtu.be/_MyJ-c2ceTQ 

 For display purposes, the speed of the video has been increased to show both the 

manual and procedural modelling workflows. The results of this test for the level of 

automation are presented and discussed in Chapter 9.  

8.5 Conclusion 

This chapter presented a methodology for validating the research hypothesis using three 

different tests. This included an accuracy test, an end-user scenario test and a test to 

quantify the level of automation.  

The methodology for validating the accuracy capabilities of the prototypes involved two 

separate tests. This included a physical measurement method and a deviation analysis 

https://youtu.be/_MyJ-c2ceTQ
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method. The benefits and limitations of both methods were presented and it was 

established that a deviation analysis test was the optimal method for testing the accuracy 

capabilities of the prototypes. 

A methodology was developed for an end-user scenario test in order to acquire feedback 

from academic and industry practitioners. This feedback was used to evaluate the 

usefulness, efficiency, usability and accuracy capabilities of developed prototypes. The 

end-user test was also used to assess if the deliverables from the prototypes were fit for 

purpose in producing conservation documentation. A user-evaluation session was 

designed to allow participants to test the new software tools and then provide feedback 

by completing a web-based questionnaire. Three specific questionnaires were designed 

which targeted different types of users. This included expert BIM users, users with 

general experience in 3D modelling and conservation architects who could provide 

feedback on the quality and suitability of the resulting models and documentation.  

The final test described in this chapter was a test to quantify the level of automation 

achieved from the HBIM procedural modelling prototypes. A test scenario was 

designed for this test which involved creating a Building Information Model from 

survey data using both a manual and a procedural modelling workflow. After the test 

scenario was completed for both workflows, the time taken to create both models was 

analysed and compared. The accuracy of both models was also compared to establish 

the quality of both models. After collecting and analysing the data for this test it was 

possible to determine the percentage time difference and the percentage accuracy 

difference from both manual and procedural modelling workflows. The next chapter in 

Part IV of this dissertation describes the results and analysis of the three tests described 

in this chapter.  
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Part IV Summary: 

The final part of this thesis, Part IV, contains two chapters which describe the 

findings, analysis and conclusions of the research. 
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9 Chapter Nine: Research Findings and Analysis 

9.1 Introduction 

The previous sections, Part II and Part III, described the methodology for designing, 

implementing and testing three new prototypes that provide procedural modelling tools 

for reconstructing BIM geometry from point clouds. This section, Part IV includes two 

chapters that describe the research findings, analysis and conclusions of the research.  

In this first chapter of Part IV, the research findings and analysis from the three tests 

described in Chapter 8 are presented. This includes the findings and analysis of the 

accuracy tests, end-user testing and level of automation testing.  

9.2 Findings of Accuracy Tests 

This section presents the findings of the two accuracy tests described in Chapter 8. The 

accuracy tests were used to validate the accuracy capabilities of the new procedural 

modelling prototypes. The results of the physical measurement method are presented in 

Section 9.2.1 and the results of the deviation analysis method are presented in Section 

9.2.2.  

9.2.1 Physical Measurement Method 

The physical measurement method described in Chapter 8 involved comparing a set of 

physical measurements captured with a total station to a set of virtual measurements 

taken on a procedurally generated building façade model for number three Henrietta 

Street. This façade model was generated using the first procedural modelling prototype. 

The full results from the comparison of total station and BIM measurements can be seen 

in Appendix F. A summary of the results of this comparison can be seen in Table 9.1. 

The resulting average error, standard deviation and root mean squared error for x-
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coordinates and y-coordinates are all within 0.015 metres (Table 9.1). The resulting 

average error, standard deviation and root mean squared error for z-coordinates show a 

larger error of up to 0.035 metres (Table 9.1).  

 

Table 9.1: Deviations between total station measurements and a procedurally generated building façade 

model for number 3 Henrietta Street.  

 Total Station & BIM Deviations 

 x y z 

Average Difference (m) -0.015 -0.013 -0.035 

Standard Deviation (m) 0.012 0.012 0.028 

RMSE (m) 0.015 0.013 0.035 
 

 

As mentioned in Chapter 8, a limitation of the physical measurement method is that it is 

not possible to determine the cause of errors between physical and virtual 

measurements. This is due to the fact that there are multiple potential causes for error 

which include errors in total station measurements, laser scan measurements, best-fit 

data alignment errors along with modelling errors. It was suspected that the large error 

found in z-coordinate deviations may have been as a result of data capture or alignment 

errors as opposed to modelling errors. To verify this, the total station measurements 

were compared to the laser scan point cloud measurements. A summary of the results of 

this comparison is shown in Table 9.2. The full set of results of deviations between total 

station and point cloud measurements can be seen in Appendix G.  

Table 9.2: Deviations between total station measurements and laser scan point cloud measurements.  

Total Station & Point Cloud Deviations 

 x y z 

Average Difference (m) -0.015 -0.013 -0.036 

Standard Deviation (m) 0.017 0.018 0.026 

RMSE (m) 0.015 0.013 0.036 
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The comparison between total station and point cloud measurements showed a similar 

pattern of error between z-coordinates (Table 9.2). This highlights a potential error in 

either total station measurements, laser scan measurements or best-fit alignment of total 

station to laser scan measurements. To further clarify this, the sample of measurements 

from the procedurally generated BIM façade model were compared to the sample of 

laser scan measurements. Table 9.3 shows a summary of these results. The full 

comparison between the point cloud measurements and BIM façade model 

measurements can be seen in Appendix H. The results of this comparison did not show 

the same pattern of errors between z-coordinates. The average deviations between the 

point cloud and BIM façade model were all within 0.012m for x, y and z-coordinates 

(Table 9.3). The largest standard deviation error was 0.017m for y-coordinates while the 

standard deviation for x and z-coordinates were 0.013m and 0.006m (Table 9.3).  

Table 9.3: Deviations between laser scan point cloud and a procedurally generated building façade model 

for number 3 Henrietta Street.  

Point Cloud & BIM Deviations 

 x y z 

Average Difference (m) 0.010 0.012 0.005 

Standard Deviation (m) 0.013 0.017 0.006 

RMSE (m) 0.010 0.012 0.005 
 

 

These results in Table 9.3 showed that the previous large error in z-coordinates between 

the total station measurements and BIM façade model measurements were not caused 

by modelling errors. The resulting deviations between the point cloud and procedurally 

generated façade model are an indication of the high accuracy capabilities that are 

possible with the first procedural façade prototype. This test is however only based on a 

sample of measurements. The next section presents the results from a more 

comprehensive accuracy test using a deviation analysis method. 
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9.2.2 Deviation Analysis Method 

The deviation analysis methodology which was described in Chapter 8 involved 

comparing the deviations between a complete point cloud and a procedurally generated 

Building Information Model. Cloud Compare software was used for performing 

deviation analysis with reference data from the Four Courts case study. The Building 

Information Model used in this test was generated with the third “Irregular Procedural 

Building” prototype.  

Segmented point clouds for the parts of the Four Courts that were modelled were first 

imported into Cloud Compare in e57 format. These would be used as reference datasets 

for the accuracy test. Next, the procedurally generated BIM model was imported into 

Cloud Compare. Cloud Compare cannot directly import IFC files so the BIM model 

was first converted into an OBJ format using ArchiCAD. Figure 9.1 shows the point 

cloud and model used for this accuracy test.  

 

Figure 9.1: Laser scan point cloud used as a reference for accuracy test (left) and procedurally generated 

BIM model converted to OBJ format (right). 
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The deviation analysis was performed for the complete model along with individual 

model components in order to better track and isolate any potential errors. Deviation 

analysis was first performed on the drum wall which contained windows, arch-top 

niches and rectangular niches. A signed and absolute deviation analysis was performed 

to compare the procedurally generated model and point cloud. A signed deviation 

analysis calculates and displays the deviations as positive or negative deviations using 

the normal direction of model components. This can be used to assess if a non-flat 

surface is bowed inward or outward (Anil et al., 2011). An absolute or unsigned 

deviation analysis does not take into account the direction of the deviation. Instead, it 

calculates the absolute values of the deviations. A signed deviation analysis is better 

suited for visual assessments of deviations as it highlights the location and direction of 

deviations. An unsigned deviation analysis is better suited for statistical analysis as it 

provides a better indication of the mean error. This is due to the fact that a signed 

deviation analysis can have very low mean errors due to positive and negative 

deviations cancelling each other out.  

Figure 9.2 shows the statistical and graphical results from an absolute deviation analysis 

performed on the drum walls. The resulting mean error between all points in the 

reference point cloud and procedurally generated model was 0.006m. The resulting 

standard deviation was 0.013m. These low deviation results indicate a high level of 

accuracy in the procedurally generated model. The mean error shows the average error 

at each point and the standard deviation indicates the spread of errors in relation to the 

mean.  

The graphical results of the absolute deviation analysis showed in Figure 9.2 can be 

used to identify the location and type of modelling errors. Points coloured blue indicate 

areas of little or no deviations while points coloured green, yellow and red show areas 
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of larger deviations. The extent of these deviations in relation to the colour scale is 

identified using the key which references deviation values in metres. Points coloured 

red indicate the location for the largest errors of up to 0.367m. This highlights missing 

model components such as a stringcourse on the external drum wall and internal drain 

pipes. Areas coloured green indicate the location of deviations of around 0.030m due to 

components modelled with incorrect geometry (e.g. wrong size, scale or orientation). 

This can be seen on a number of arches on arch-top niches. This may indicate irregular 

arches that differ to the arches defined in the parametric arch-top niche object.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: Graphical and statistical results from an absolute deviation analysis between drum wall point 

cloud and procedurally generated model.  
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Figure 9.3 shows statistical and graphical results from a signed deviation analysis of the 

drum point cloud and procedurally generated model. The resulting mean signed error 

for all points in the reference point cloud was 0.000044m and the resulting standard 

deviation was 0.014m. The graphical results in Figure 9.3 show similar results to the 

absolute deviation analysis except that it shows the direction of the deviations with 

respect to the surface normal from the procedural model. Deviations coloured blue such 

as the missing internal drain pipes show negative deviations with respect to the wall 

object while points coloured red such as the missing external string course show 

positive deviations with respect to the wall object.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3: Graphical and statistical results from a signed deviation analysis between drum wall point 

cloud and procedurally generated model.   
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The next model component used in a deviation analysis was a beam encircling the drum 

wall (Figure 9.4). This component was generated from sections using the third 

“Irregular Procedural Building” prototype.  

Figure 9.4: Photo (left) and procedurally generated model component for a beam encircling the drum 

wall. 

 

 

Figure 9.5 shows the graphical and statistical results from an absolute deviation analysis 

between the reference point cloud and procedurally generated model component. The 

resulting mean deviation between all points was 0.005m. The resulting standard 

deviation was 0.009m. This indicates a high accuracy for this procedurally modelled 

component with a low level of deviation between the reference point cloud. The 

graphical results show the location of deviations coloured green. This highlights areas 

where there is a large amount of damage and deformation to stonework which was not 

included in the procedural model. Additional cut-sections could be used as input data to 

the procedural rules to more accurately model these damaged areas. Figure 9.6 shows 

results of a signed deviation analysis for the same beam. The resulting signed mean 

deviation value was 0.002m. The resulting standard deviation for the signed deviation 

analysis was 0.010m. The graphical results of this signed deviation show a similar 

pattern to the absolute results but include the direction of deviations with respect to the 

normal direction of the procedural model component.  
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Figure 9.5: Graphical and statistical results from an absolute deviation analysis between a reference point 

cloud and procedurally generated model of the beam encircling the drum wall.  

 

Deviation analysis was next performed to assess the accuracy of procedurally generated 

columns that surround the drum wall. Figure 9.7 shows the results from an absolute 

deviation analysis between the reference point cloud and procedurally generated column 

components. The resulting mean deviation between all points in the point cloud and 

procedural model was 0.003m. The resulting standard deviation was 0.005m. This 
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indicates a high accuracy for the procedurally modelled column components with a low 

level of deviation between the reference point cloud. The graphical results show the 

column point cloud coloured blue indicating little or no deviation between reference 

point cloud and procedural model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.6: 

Graphical and statistical results of a signed deviation analysis between a reference point cloud and 

procedurally generated model of the beam encircling the drum wall.  
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Figure 9.8 shows results from a signed deviation analysis for column components. The 

resulting mean error between the reference point cloud and procedurally generated 

column components was 0.001m and the standard deviation was 0.006m. Similar to the 

absolute deviation analysis, the signed deviation analysis results also showed a high 

level of accuracy between the reference point cloud and procedurally generated column 

components.  

Finally, deviation analysis was performed on the complete model which included all 

procedurally modelled components. Figure 9.9 shows results from an absolute deviation 

analysis between the complete procedural model and reference point cloud. The 

resulting mean error between all points in the point cloud and the procedural model was 

0.006 and the standard deviation was 0.013m. These results indicate a high level of 

accuracy between the complete procedural model and reference point cloud. Figure 9.10 

shows the results from a signed deviation analysis between the complete procedural 

model and reference point cloud. Similar high results can be seen in this signed 

deviation analysis with a resulting mean error of 0.002 and standard deviation of 

0.014m. 



 232  

 

 

 

 

 

 

 

 

 

 

Figure 9.7: Graphical and statistical results of an absolute deviation analysis between a reference point 

cloud and procedurally generated model of the columns surrounding the drum wall. 
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Figure 9.8: Graphical and statistical results of a signed deviation analysis between a reference point cloud 

and procedurally generated model of the columns surrounding the drum wall. 
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Figure 9.9: Graphical and statistical results of an absolute deviation analysis between a reference point 

cloud and all procedurally generated components. 
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Figure 9.10: Graphical and statistical results of a signed deviation analysis between a reference point 

cloud and all procedurally generated components.  
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As an additional check on the accuracy of the procedurally generated model, cut-

sections were generated from the combined point cloud and procedurally generated 

model. This enabled a visual assessment to be carried out on the accuracy of the 

procedurally generated model at sampled locations in the x, y and z-axis. Figure 9.11 

shows the combined point cloud and procedurally generated BIM model used for 

extracting cut-sections. Figure 9.12 and Figure 9.13 show extracted cut-sections which 

include the procedurally generated model geometry coloured blue and the reference 

point cloud coloured by intensity values (yellow and orange). A visual inspection of 

these cut-sections indicated a good correlation between the procedurally generated 

model and reference point cloud.  

 

 

 

 

 

 

 

 

 

Figure 9.11: Combined point cloud and procedurally generated BIM model used for accuracy testing. 
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Figure 9.12: Cut-sections through point cloud (coloured yellow and orange) and generated BIM geometry 

(coloured blue) used for a visual accuracy assessment.  
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Figure 9.13: Cut-sections through point cloud (coloured yellow and orange) and generated BIM geometry 

(coloured blue) used for a visual accuracy assessment.  
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9.3 Findings of End-User Scenario Testing  

This section presents the results of the end-user scenario tests described in Chapter 8. 

The aim of this end-user test was to obtain feedback from academic and industry 

practitioners to evaluate the usefulness, efficiency, usability and accuracy capabilities of 

developed procedural HBIM prototypes. As described in Chapter 8, three different 

questionnaires were developed targeting different types of users. This included 

experienced BIM users, users with experience in general 3D modelling and 

conservation architects with expert knowledge in the requirements for conservation 

documentation. The results from these three questionnaire types are organised and 

presented in the sections below.  

Section 9.3.1 presents the results from the first part of each questionnaire which 

included questions to determine the background of the participant and their level of 

experience in the areas relevant to this research. This section also included questions to 

assess end-user requirements. Section 9.3.2 presents the results of the second part of 

each questionnaire which was used to assess the participant’s satisfaction with current 

software tools for modelling and documenting existing buildings. Section 9.3.3 presents 

the results from the final part of each questionnaire which was used to gain specific 

feedback on the new procedural HBIM prototypes. 

9.3.1 Participant Characteristics and End-User Requirements 

Six industry practitioners and six academic participants took part in the end-user test. 

The industry participants included three senior conservation architects working for the 

Office of Public Work (OPW), two senior engineers working for Headcount 

Engineering/BIM & Scan and one surveyor working for Survey Instrument Services 

(SIS). The academic participants included one full-time postdoctoral research scientist 

at the University College Dublin (UCD) and five full-time undergraduate students at the 
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Dublin Institute of Technology (DIT). The focus of the postdoctoral research scientist’s 

work is on automatic building and object reconstruction from aerial and terrestrial laser 

scan data. The five undergraduate students were fourth-year students studying for a 

Bachelor of Science Degree in Construction Management. As part of their studies, these 

undergraduate students had completed modules and were experienced in 3D CAD, 

BIM, surveying and building maintenance and conservation.  

The first question in this part of the questionnaire asked participants to identify the core 

activity of their organisation. The responses from participants showed a range of 

activities including architecture, engineering, surveying, conservation, construction 

management and academia (Figure 9.14). Figure 9.15 shows additional information 

about the test participants which include participant’s organisations and the percentage 

of industry and academic participants.  

 

 

 

 

 

 

 

 

 

 

Figure 9.14: Results of end-user scenario testing - “Participants Area of Work”.  
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Figure 9.15: Results of end-user scenario testing - “Participants Organisation” and “Participants in 

Academia and Industry”. 

 

Next participants were asked about their experience in the areas relevant to this 

research. Questionnaires one and two were focused on users who would create models 

with the new software plug-ins while questionnaire three focused on users who work 

with the results from the new software plug-ins. For this reason, questionnaires one and 

two asked participants how much experience they had modelling existing buildings 

while questionnaire three asked participants about their experience with conservation 

projects. The overall results are shown in Figure 9.16. 50% of participants had moderate 

experience (3 projects or more), 30% had some experience (1 – 2 projects) and 20% had 

frequent experience (large number of projects). These results show that the majority of 

the participants had a high level of experience in the specific areas required for 

assessing the new procedural HBIM software plug-ins.  

Next participants were asked what software and what source data they mostly used for 

modelling existing buildings. This information was important for assessing a user’s 

software and data requirements. The responses from these questions are shown in 

Figure 9.17.  The main software used by participants for modelling existing buildings 

was AutoCAD (42%), ArchiCAD (25%) and Revit (17%). Other software (2%) 
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included Cyclone, Bentley and AllPlan. The preferred source data for modelling 

existing buildings was laser scan data (42%), combination of methods (33%), 

photogrammetry (8%) and existing 2D documentation (8%). Other source data 

mentioned included commissioned total station and GNSS surveys (8%). 

 

 

Figure 9.16: Results of end-user scenario testing – “Experience with Modelling Existing 

Building/Conservation Projects”. 

 

Figure 9.17: Results of end-user scenario testing – “Main Modelling Software Used” and “Preferred 

Source Data for Modelling Existing Buildings”. 
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The final question in this first section of each questionnaire was used to assess the 

typical accuracy requirements for projects undertaken by the participant. This was 

important to assess current end-user requirements. The results of this can be seen in 

Figure 9.18. 36% of participants required accuracies less than 1cm, 27% required 

accuracies less than 5mm, 18% required accuracies less than 2cm, 9% required 

accuracies less than 5cm and 9% stated accuracy was not important. These responses 

show that the majority of projects undertaken by participants require a high level of 

accuracy.  

 

 

Figure 9.18: Results of end-user scenario testing – “End-User Accuracy Requirements”. 

 

9.3.2 Evaluation of Current BIM software and Workflows 

In the second section of each questionnaire, participants were asked to evaluate current 

software and workflows for modelling existing buildings. First participants were asked 

if current modelling software provides sufficient tools for modelling existing buildings. 

56% of participants stated that the tools in current software are somewhat sufficient for 

modelling existing buildings. 45% of participants stated that the tools in current 

software are insufficient for modelling existing buildings (Figure 9.19).  
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Figure 9.19: Results of end-user scenario testing – “Adequacy of” Current Software Tools for Modelling 

Existing Buildings”. 

 

Next participants were asked about the efficiency of current software tools for 

modelling existing buildings. 40% of participants stated that current software is 

somewhat sufficient, 40% stated that current software is inefficient and 20% stated that 

current software is efficient for modelling existing buildings (Figure 9.20).  

 

Figure 9.20: Results of end-user scenario testing – “Efficiency of” Current Software Tools for Modelling 

Existing Buildings”. 

 

Participants were then asked what they find to be the greatest challenge when modelling 

existing buildings. 36% stated it was the difficulties in modelling the true condition of 
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buildings, 36% stated it was the manual creation of custom objects, 18% stated it was 

the lack of library objects for existing buildings and 9% stated it was working with 

survey data in modelling software (Figure 9.21).  

 

 

 

 

 

 

 

 

 

 

Figure 9.21: Results of end-user scenario testing – “Greatest Challenge when Modelling Existing 

Buildings”. 

 

Participants were next asked if they currently use any automation in their workflows for 

modelling existing buildings. Participants were then asked if they think there is a need 

for more automation in workflows for modelling existing buildings. Figure 9.22 shows 

the responses from these two questions. 80% of participants currently do not use any 

automation in their modelling workflows and 20% stated that they currently do use 

automation in their modelling workflows. The types of automation used includes the use 

of algorithms for generating rectangular doors and windows without any architectural 

detail and the use of software plug-ins like Edgewise for cylindrical and planar surface 

detection. When asked if there is a need for more automated modelling workflows, 50% 

strongly agreed that there is a need for more automated workflows, 20% agreed that 

there is a need for more automation, 20% were neutral and 10% strongly disagreed that 

there is a need for more automation (Figure 9.22).   
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Figure 9.22: Results of end-user scenario testing – “Automation Used” and “Need for Automation”. 

  

The final question in this section asked participants to comment on the usefulness of a 

procedural modelling approach for modelling existing buildings. 45% of participants 

stated that a procedural modelling approach would be very useful, 27% stated 

procedural modelling would be useful and 27% stated procedural modelling would be 

somewhat useful (Figure 9.23). 

 

 

 

 

 

 

 

Figure 9.23: Results of end-user scenario testing – “Usefulness of Procedural Modelling for Modelling 

Existing Buildings”. 
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The responses from this second part of the questionnaire indicate that current modelling 

software does not have fully sufficient tools for accurately and efficiently modelling 

existing buildings. The majority of participants stated that there is a need for more 

automated workflows with better tools for accurately modelling existing buildings.   

9.3.3 Evaluation of New Procedural HBIM Approach 

In the final part of each questionnaire, participants were asked to evaluate the new 

procedural HBIM prototypes. Participants were first asked to rate the usefulness of the 

new procedural HBIM prototypes for modelling existing buildings. 73% of participants 

rated the new prototypes to be very useful, 9% useful, 9% somewhat useful and 9% not 

very useful (Figure 9.24). 

 

Figure 9.24: Results of end-user scenario testing – “Usefulness of New Procedural HBIM Prototypes for 

Modelling Existing Buildings”. 

 

Next participants were asked what aspects of the new prototypes (if any) would they 

find most useful. 60% of participants responded that the automatic generation of non-

vertical wall objects from sections was the most useful. 30% responded that the 

automatic generation of library objects on buildings was the most useful. 10% 

responded that group and individual graphical editing of objects was the most useful 

(Figure 9.25). 
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Figure 9.25: Results of end-user scenario testing – “Most Useful Feature of New Procedural HBIM 

Prototypes”. 

 

Next participants were asked to rate the efficiency of modelling with the new procedural 

HBIM prototypes when compared to current modelling methods. 50% of respondents 

stated that the new procedural HBIM prototypes are much more efficient than current 

methods and 50% stated that the new procedural HBIM prototypes are more efficient 

than current methods (Figure 9.26). 

 

 

 

 

 

 

 

 

Figure 9.26: Results of end-user scenario testing – “Efficiency of New Procedural HBIM Prototypes”. 
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Participants were then asked to comment on the usability of the new prototypes 

compared to current modelling methods. 50% of respondents stated that modelling with 

the new prototypes is easier than current modelling methods, 40% stated that modelling 

with the new prototypes is much easier than current modelling methods and 10% stated 

that modelling with the new prototypes is equally as difficult/easy as current modelling 

methods (Figure 9.27).  

 

Figure 9.27: Results of end-user scenario testing – “Usability of New Procedural HBIM Prototypes”. 

 

Participants were then asked if they find the accuracies achieved from the initial case 

studies with the procedural HBIM prototypes to be acceptable. 58% of respondents 

found the accuracy to be acceptable, 33% found the accuracy very acceptable and 8% 

found the accuracy somewhat acceptable (Figure 9.28). 

In the third questionnaire, two additional questions were included to acquire feedback 

on the quality of the data and deliverables generated from the procedural HBIM 

prototypes. First participants were asked to comment on the suitability of HBIM 

deliverables for typical conservation projects. 67% of respondents found the 

deliverables to be somewhat suitable and 33% found the deliverables to be very suitable 
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(Figure 9.29). Finally, participants were asked what deliverables they found most useful 

for conservation projects. 100% of respondents stated that 2D documentation was the 

most useful deliverable for conservation projects (Figure 9.30). For this question, one of 

the respondents stated that when their organisation has resources available for BIM they 

would then find BIM to be more beneficial than current 2D deliverables.  

 

 

 

 

 

 

 

 

Figure 9.28: Results of end-user scenario testing – “Accuracy of New Procedural HBIM Prototypes”. 

 

 

 

 

 

 

 

 

 

 

Figure 9.29: Results of end-user scenario testing – “Suitability of HBIM Deliverables for Conservation 

Projects”. 
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Figure 9.30: Results of end-user scenario testing – “Most Suitable Deliverables for Conservation 

Projects”. 

 

At the end of each questionnaire, participants were given the opportunity to provide 

additional feedback. This additional feedback was optional and did not have to be 

answered by participants. The further feedback received from this question is shown in 

Table 9.4.  

Table 9.4: Additional feed on procedural HBIM prototypes. 

Additional Feedback on Procedural HBIM Prototypes 

Participant 1 “Share via open source if possible” 

Participant 2 “Better user-interface with graphical toolbar” 

Participant 3  “It would be wise to combine this ArchiCAD add-on philosophy with 

other novel approaches currently underway, e.g. surface based object 

recognition, RFID and TLS, TLS to IFC.” 

 

The responses from this final part of the each questionnaire indicate that the procedural 

HBIM prototypes would be very useful in both industry and academia. Responses from 

participants suggest that the workflows with the procedural HBIM prototypes are more 

efficient and more usable than current manual modelling workflows. The majority of 

respondents were also satisfied with the accuracy capabilities of the procedural HBIM 
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prototypes.  Additional comments from participants indicate the future prototypes could 

be improved with a better user-interface with a graphical toolbar. Another participant 

suggested that these procedural modelling concepts could be combined with other 

automated approaches such as surface based object recognition.     

9.4 Level of Automation Findings 

This section presents the findings of the level of automation test described in Chapter 8. 

The aim of this test was to quantify the level of automation achieved from using the 

HBIM procedural modelling prototypes. A test scenario was developed for this test 

which involved generating a building information model from survey data for a section 

of the Four Courts case study. This test scenario was completed with both a manual 

workflow and a procedural modelling workflow using the third “Irregular Procedural 

Building” prototype. After the test scenario was completed for both the procedural and 

manual workflows, it was then possible to compare and analyse the time taken to 

generate both models. The accuracy of both generated models was also validated 

against the reference point cloud. 

Screen recording software was used to record the complete test scenario which can be 

viewed from the following link: 

https://youtu.be/_MyJ-c2ceTQ 

The speed of the video has been increased for display purposes to show both the manual 

and procedural modelling workflows. A summary of the results from this test can be 

seen in Table 9.5 and Table 9.6. The formula in Equation 8.2 and Equation 8.3 were 

used to quantify the time saving and percentage difference in accuracy (Table 9.6).  

 

 

 

https://youtu.be/_MyJ-c2ceTQ
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Table 9.5: Results from Level of Automation Testing. 

 

Table 9.6: Results from Level of Automation Testing - Time saving and percentage difference in 

accuracy. 

Procedural Workflow Time Saving 76% Faster than manual method 

Procedural Workflow Accuracy Difference 37% improvement in accuracy 

 

The time taken to generate the model for the test scenario using a manual workflow was 

8 minutes 7 seconds. The time taken to generate a similar model using the procedural 

workflow was 1 minute 55 seconds (Table 9.5). For this test scenario, the procedural 

modelling workflow was 76 % faster than the manual method (Table 9.6). This time 

saving is calculated by expressing the time difference as a percentage of the manual 

time.  

The accuracy of the model generated with a manual workflow in its recorded time was 

19mm mean error and 21mm standard deviation. The accuracy of the procedural model 

generated in its recorded time was 12mm mean error and 18mm standard deviation. For 

this test scenario using the procedural workflow resulted in a 37% improvement in 

accuracy. This accuracy difference was calculated by expressing the difference in 

accuracy as a percentage of the accuracy of the manual workflow. One reason for the 

improved accuracy in the procedural modelling approach was that the manual approach 

could only model the walls as a perfectly vertical surface. Alternatively, the procedural 

modelling approach was capable of generating the true condition of the wall using 

multiple cut-sections.  

 Manual Workflow Procedural Workflow  

Time Taken to Generate Model 08:07.533 (minutes: seconds) 01:55.6 (minutes: seconds) 

Accuracy of Generated Model 19mm Mean Error 

21mm Standard Deviation 

12mm Mean Error 

18mm  Standard Deviation 
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“Procedural modelling is a suitable solution for more ACCURATE, automated 

and easier generation of BIM geometry from point clouds”. 

 

9.5 Discussion 

The hypothesis of this research is that “Procedural modelling is a suitable solution for 

more accurate, automated and easier generation of BIM geometry from point clouds”.  

In this section, the findings of the research are discussed and analysed to assess this 

research hypothesis.   

9.5.1 Accuracy of Procedural HBIM Techniques  

The accuracy of the new procedural HBIM techniques was evaluated using a 

quantitative deviation analysis test and by acquiring qualitative feedback from academic 

and industry practitioners. Feedback from participants of the end-user test indicated that 

a high level of accuracy is required for generating geometric building information 

models of existing buildings (36% required less than 1cm mean error and 27% required 

less than 5mm mean error). However, accuracy requirements are not the same for all 

projects and will vary depending on the type of project and application of the data. 

When participants were asked to comment on the accuracy results obtained from the 

Four Courts case study, 58% found the results to be acceptable and 33% found the 

results to be very acceptable.  

The Royal Institute of Chartered Surveyors (RICS), a professional body established in 

the UK, provide guidelines and standard specifications for measured building surveys 

and BIM. The recommended accuracy requirements set out in these guidelines for 

measured building surveys are ± 4–25mm depending on job specification (RICS, 2014). 

However, these guidelines are intended for modern architecture and not historic 

structures. A more relevant guide for accuracy requirements for historic buildings can 
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“Procedural modelling is a suitable solution for more accurate, AUTOMATED 

and easier generation of BIM geometry from point clouds”. 

be found in the English Heritage guidelines (Bryan et al., 2009) which state that a 

precision of 15mm should be achieved for small structures (20m x 30m) and 25mm for 

large structures (40m x 60m). The procedurally generated building information model 

for the Four Courts case study had an overall mean error of 6mm with a standard 

deviation of 13mm. This tolerance is within the 15mm tolerance recommended by the 

English Heritage for structures of this size.  

In addition to meeting this recommended accuracy requirement, the use of a procedural 

modelling workflow also enabled more accurate modelling than previous manual 

methods. The main BIM authoring software packages currently do not provide 

sufficient functionality for accurately modelling irregular geometry. The manual 

modelling of non-vertical circular walls in ArchiCAD, for example, is currently not 

possible with existing tools. These limitations of current BIM software result in lower 

accuracy models that may not accurately represent the true condition of a building. This 

was evident in the level of automation test results (Section 9.4) where the manually 

generated model with current software tools had a higher mean error (19mm) than the 

procedurally generated model (12mm mean error). This was due to the limited tools for 

modelling non-vertical circular walls in ArchiCAD. In contrast, the new procedural 

HBIM rules allow this type of irregular wall geometry to be accurately generated from 

cut-sections.  

9.5.2 Efficiency of Procedural HBIM Techniques  

 

The efficiency of the procedural HBIM techniques was evaluated using a combination 

of end-user scenario testing and a separate level of automation test scenario. During the 
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“Procedural modelling is a suitable solution for more accurate, automated and 

EASIER generation of BIM geometry from point clouds”. 

end-user scenario testing, users who already had experience with existing modelling 

approaches tested the new procedural HBIM modelling workflow. 50% of respondents 

stated that the new procedural HBIM workflow was much more efficient than their 

previous workflow while the other 50% of respondents stated that the new procedural 

HBIM workflow was more efficient than their previous workflow. The results from the 

level of automation test also indicated that a procedural modelling workflow was 76% 

faster than the manual workflow to create the same level of detail model.    

These results indicate that the use of pre-defined procedural modelling rules can speed 

up the modelling process by automatically combining separate library objects to 

generate different parametrically controlled building arrangements. The re-use of 

different library objects and different parameters in procedural rules allow for very high 

levels of variation in the resulting models. The encoding of architectural rules and 

proportions into procedural modelling rules also helps to reduce the amount of further 

manual editing that is required. The ability to transfer survey data such as building 

footprints or cut-sections directly into a procedural modelling rule also greatly reduces 

the amount of further editing required. These capabilities of procedural modelling 

enable a more automated and efficient overall workflow. 

9.5.3 Usability of Procedural HBIM Techniques  

 

The usability of the procedural HBIM techniques was evaluated as part of the end-user 

scenario test. After testing the procedural HBIM workflow, participants were asked to 

provide feedback on the usability of this approach compared to current modelling 

workflows. 50% of the respondents found the procedural HBIM workflow to be easier 
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than current modelling methods and 40% found the procedural HBIM workflow to be 

much easier than current modelling methods. These results indicate that a procedural 

modelling workflow is an easier and more usable approach to generating complex 

building geometry compared to a completely manual approach. A set of procedural 

rules and library objects that can be altered by parameters, enables models to be easily 

generated without the need for advanced 3D modelling experience.  

9.6 Conclusion 

This chapter presented the findings and analysis of the validation and testing 

methodology described in Chapter 8. The results of an accuracy test, end-user scenario 

test and a level of automation test were presented and discussed in this chapter.  

Results were presented from two accuracy tests, a physical measurement test and a 

deviation analysis test. The physical measurement test was carried out using the first 

procedural façade prototype. The results from this test which compared a generated 

build façade model with sampled points from a point cloud were 10mm mean error in x-

coordinates, 12mm mean error in y-coordinates and 5mm mean error in z-coordinates 

(Table 9.3). The result from a more comprehensive deviation analysis accuracy test was 

6mm (overall mean error) with a standard deviation of 13mm. This test compared all 

points in a reference point cloud to a procedurally generated model from the third 

procedural HBIM prototype. Both of these test results were within recommended 

accuracy guidelines from the English Heritage for buildings of this size.  

The results from an end-user scenario test with academic and industry practitioners 

highlighted that there is a need for more accurate and automated tools for modelling 

existing buildings using BIM software. The responses from this end-user test also 

indicated that a procedural modelling workflow for generating BIM geometry from 
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point clouds would be of great benefit in industry and academia. Responses from 

participants suggest that the workflows with the procedural HBIM prototypes are more 

efficient and more usable than current manual modelling workflows. Respondents were 

also satisfied with the accuracy capabilities of the procedural HBIM prototypes.   

Results were also presented in this chapter from a level of automation test. The results 

of this test showed that a procedural workflow was 76% faster than a manual workflow 

to generate a similar level of detail model. The test also showed a 37% improvement in 

accuracy with a procedural modelling workflow compared to a manual workflow with 

existing software tools.  

When compared to current BIM modelling workflows, the new procedural HBIM 

workflow facilitated more accurate, automated and easier generation of BIM geometry 

from point clouds. These results showed that the research hypothesis is true and that 

procedural modelling is a suitable solution for improved modelling of existing buildings 

from point clouds.   
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10 Chapter Ten: Conclusions and Future Work 

10.1 Introduction 

In this chapter, the conclusions of the research are summarised and presented. The aim 

and objectives are presented next to review the success of the research in achieving 

these. The contributions to knowledge made by this research are then discussed 

followed by a review of limitations and recommendations for future work to further 

develop research in this area.  

10.2 Conclusions 

The aim of this research was to assess if procedural modelling is a suitable solution for 

more accurate, automated and easier generation of BIM geometry from point clouds. In 

order to test the research hypothesis, new procedural modelling prototypes were 

designed, implemented and tested for reconstructing BIM geometry from point clouds. 

The results of an accuracy test, end-user scenario test and level of automation test 

proved that procedural modelling is a suitable solution for more accurate, automated 

and easier generation of BIM geometry from point clouds.  

The main conclusions reached after designing, implementing and testing the procedural 

modelling prototypes for BIM software are presented below. 

1. Procedural modelling can improve the efficiency, accuracy and usability of 

modelling existing buildings from point cloud data. 

2. Architectural rules can be encoded into procedural modelling rules to speed up 

the reconstruction process. 

3. Survey data can be transferred directly into procedural modelling rules as 

parameters to reduce the amount of further editing required. 
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4. Procedural modelling can be used for accurate modelling of irregular and 

complex geometries. 

5. Procedural modelling rules can be combined with libraries of detailed parametric 

objects. 

6. Parameters of procedural modelling rules can be interactively edited to instantly 

update the geometry of a model. 

7. Procedural modelling rules can be used to control parameters of multiple library 

objects simultaneously.  

8. Parametric scripting languages such as the Geometric Descriptive Language 

(GDL) can be used to implement procedural modelling rules. 

 

The main objectives set out at the start of this research have all been met. These 

objectives are presented below. 

 Workflows and tools were developed for combining captured survey data in a 

BIM environment (Section 6.2). 

 A library of reusable parametric shapes and objects were designed for 

reconstructing building geometry from point clouds (Section 3.4.3).  

 New procedural rules were designed for reconstructing building geometry from 

point clouds (Section 3.4, Section 4.3 and Section 5.3). 

 New methods were designed for interactive editing of procedural models 

(Chapter 6). 

 The conceptual design for a new library of shapes, procedural rules and methods 

for interactive editing were implemented as prototype plug-ins to existing BIM 

software (Section 3.5, Section 4.4 and Section 5.4). 
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 The developed prototypes were further implemented with real case studies 

(Chapter 7). 

 Methods for testing and validating the developed prototypes were designed and 

implemented (Chapter 8). 

 Results of testing and validation were analysed and used to further develop the 

prototype plug-ins (Chapter 9). 

Based on the above analysis, the specified aim and objectives have been fulfilled by the 

work outlined in this thesis and the implemented software prototypes. 

10.3 Summary of Contributions 

Throughout the work undertaken for this research, several contributions to knowledge 

have been made in the area of virtual building reconstruction from unstructured reality 

capture data. These contributions to knowledge include: 

1. An extensive review of existing research into the reconstruction of BIM 

geometry from point clouds. 

2. New tools for accurately importing survey datasets into a BIM environment. 

3. New parametric shapes and objects for reconstructing BIM geometry from point 

clouds. 

4. New procedural modelling rules and algorithms developed as plug-ins to 

existing BIM software. This includes procedural rules for: 

a) Automatically generating standard vertical wall objects from floor plans. 

b) Automatically generating non-vertical wall objects from multiple cut-

sections. 

c) Automatically splitting linear and curved façades and walls into floors 

and tiles. 
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- Automatically generating and positioning architectural objects on 

façade/building tiles. 

5. Tools for interactive editing of computer-generated geometry. This includes 

efficient tools for smart editing of objects simultaneously in groups or 

individually.  

10.4 Limitations and Recommendations for Further Research 

This section highlights a number of limitations with the current implementation of 

procedural modelling prototypes along with recommended solutions for future 

development. Other areas for future work relevant to this research are also presented. 

10.4.1 Software Prototype Limitations & Recommended Solutions 

One limitation of using the Geometric Description Language for implementing 

procedural rules with multiple library objects is that a single GDL script can have only 

one semantic IFC classification. If more than one object is coded in a single script then 

they must have the same semantic class. It is possible to store library objects in separate 

scripts that have different semantic classes but if these are called as macro objects from 

another script then the semantic class of the calling script is assigned to all called macro 

scripts. This results in an incorrect semantic classification of individual library parts.  

A solution to this for future development would be to only implement the library objects 

using the Geometric Descriptive Language (GDL) and use another language for 

implementing the procedural rules which combine individual library objects. As a plug-

in to the ArchiCAD BIM software, all procedural rules could be implemented using 

C++ and the software API which would call individual library objects stored as separate 

GDL objects. This approach would ensure that the intended semantic classes of library 

objects are maintained.  
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Another limitation of the current implementation of procedural HBIM prototypes is that 

library objects are not easily interchangeable by a user. The ideal solution would be to 

have procedural rules completely independent of the library objects. This would enable 

the procedural rules to be used with many different libraries of objects that could be 

extended at any time. The current implementation of the prototypes does not facilitate 

interchangeable library objects. This is due to the fact that the current implementation of 

procedural rules requires library objects to be set up with parameters for multiple 

instances. This implementation would require custom objects to be built specifically for 

use with the developed procedural rules.  

It is recommended for future implementations that a standardised set of parameters are 

used for all library objects and procedural rules. Having clearly defined standard input 

and output parameters for procedural rules would enable better interoperability of 

procedural rules with library objects. If library objects do not contain the same 

parameter names as required by a procedural rule, then the software should facilitate a 

mapping of library object parameters to rules parameters. This would facilitate the use 

of procedural rules with new custom library objects not defined in the software plug-in. 

Interchangeable library objects would also require library objects to be separate from 

the procedural rules. A new implementation design using C++ and the software API for 

all procedural rules and GDL for library objects would facilitate the use of 

interchangeable objects.  

A final limitation of the current implementation of procedural modelling prototypes is 

that the large number of calculations involved in the procedural rules can lead to slow 

model generation and editing times. This issue of performance is only evident in the 

third procedural modelling prototype when a large number of cut-sections are used as 

inputs into the procedural rules. A number of efforts have been made to improve 
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performance issues such as optimising the algorithms to avoid all unnecessary 

calculations when altering or generating geometry. Further optimisation is 

recommended for future development to enable fast geometry generation and instant 

graphical editing.  

10.4.2 Recommendations for Further Research 

Future research work for advancing the newly developed concept of Procedural HBIM 

is proposed in the following areas: 

1. Improved Software Implementations: 

a) Improved implementation for a plug-in to ArchiCAD software to enable 

correct semantic classification of objects, interchangeable libraries of 

parametric objects, better optimisation of algorithms and a more user-

friendly graphical user-interface. 

b)  Implement the conceptual design of procedural HBIM as plug-ins to 

other BIM and CAD authoring software platforms.  

c) Implement the conceptual design of Procedural HBIM as a standalone 

desktop platform that communicates to other BIM authoring platforms 

via relevant software API’s. The connection to other BIM software 

platforms should be a live connection to allow real-time update of model 

changes in both software packages. This standalone software platform 

should support point cloud imports and the export of generated models in 

IFC format.    

d)  Implement the conceptual design of Procedural HBIM as a web-based 

solution built on the open source BIMserver platform (van Berlo et al., 

2016). The open source BIMserver is an object-relational database for 

IFC data with graphical user interfaces for accessing IFC data via a web-

browser. The concepts of Procedural HBIM could be developed as a 
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plug-in to current BIMserver applications or alternatively, as a web-

service that performs functions and communicates with BIMserver 

applications.     

2. Develop solutions for automatic feature detection from point clouds that could 

be integrated with the developed procedural HBIM approach. The combination 

of automatic point cloud feature detection and procedural modelling has 

potential for achieving full automation of building reconstructions from point 

clouds. Successful automatic feature detection from point clouds would reduce 

the need for refinement of procedural models. The addition of procedural 

modelling would enable basic extracted elements to be automatically converted 

into parametric, complex and information-rich model geometry.   

3. Investigate the integration of procedural HBIM concepts with 3D geographic 

information systems (GIS) for developing HBIM in the wider city modelling 

domain. 

4. Investigate more interoperable methods of sharing parametric content between 

different software platforms that maintain parametric behaviour. One possible 

solution is with the use of BIMscript (BIMobject, 2016). BIMscript is an open 

scripting language which can be combined with a BIM object authoring software 

for converting scripted parametric content into native formats for various BIM 

authoring software such as ArchiCAD, Revit and SketchUp.  

5. Develop new libraries of parametric objects for other architectural styles (e.g. 

gothic architecture) for use with existing procedural modelling rules.  

This research has furthered the knowledge in the area of automatic building 

reconstruction from unstructured reality capture data. It has shown the benefit and 

importance that a procedural modelling approach has for improving the process of 

reconstructing historical building geometry from point clouds.   
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APPENDIX A 

 

Appendix A: Information Sheet for Participants of End-User Scenario Test 

 

Information Sheet for Participants 

1. Project Details: 

The main aim of this research is to develop a more automated and efficient solution for 

generating accurate digital 3D Building Information Models of existing buildings from 

survey data. A prototype plug-in to existing Building Information Modelling (BIM) 

software has been developed for semi-automatic modelling of existing buildings from 

survey data. This end-user scenario test attempts to collect information in order to assess 

the usability, efficiency and quality of the new software plug-in. 

 

2. End-User Test: 

Participants taking part in the end-user test will first be given a short presentation to 

explain the project and the test procedure. Next a demonstration of the new software 

tools will be made to participants. After this participants will be given an opportunity to 

try and test the new software tools to carry out a typical end-use scenario of the 

software. Finally participants will be asked to complete an online questionnaire to 

provide feedback and to evaluate the newly developed software tools. The total amount 

of time required to take part in this end-user test is roughly thirty minutes. This includes 

a ten minutes for the initial presentation, five minutes for a demonstration of the 

software, ten minutes to try and test the software and five minutes for completing an 

online questionnaire. 

3. Confidentiality Statement: 

All data obtained from participants will be kept confidential and will only be reported or 

published in aggregate format (by reporting only combined results and never reporting 

individual ones). All questionnaires will be concealed and no one other than the primary 

investigator will have access to them. The data gathered will be stored on a password 

protected DIT encrypted computer and backed up on a password protected DIT Google 

Drive account. All survey data collected will be deleted after the project has been 

completed.  

Please note: 

 Participation in this study is completely voluntary. 

 Participants have the right to withdraw at any time or refuse to participate entirely. 

 Participants do not have to give a reason for withdrawing from the test. 
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4. Contact Details 

If further information is required regarding this study please contact the principal 

investigator or the project supervisor using the contact details provided below. 

 

Please note that this study has been approved by the DIT Research Ethics Committee. 

Any queries regarding ethics can also be made to the DIT Research Ethics Committee 

using their contact details below. 

 

 

 

 

 

 

 

 

 

 

DIT Research Ethics Committee: 

Conor McCague, 

Graduate Research School Office, 

Dublin Institute of Technology, 

Kevin Street, 

Dublin 8 

Phone: 01-4027920 

Email: conor.mccague@dit.ie 

 

 

 

 

 

 

 

 

 

 

 

 

Principal Investigator: 

Conor Dore, 

Postgraduate Research Student, 

Dublin Institute of Technology, 

Bolton Street, Dublin 1, Ireland 

Phone: 01-4022978 

Email: conor.dore@mydit.ie 

Project Supervisor: 

Maurice Murphy, 

Lecturer and Researcher, 

Dublin Institute of Technology, 

Bolton Street, Dublin 1, Ireland 

Email: Maurice.Murphy@dit.ie 
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APPENDIX B 

Appendix B: Consent Form for End-User Scenario Test 

Researcher’s Name:  CONOR DORE 

(use block capitals) 
Title:   MR 

Faculty/School/Department:   

College of Engineering and Built Environment.  

School of Surveying and Construction Management. 
Title of Study:   

“Procedural Generation of Digital 3-Dimensional Building Information Models from Survey Data.” 

 

To be completed by the: 

subject/patient/volunteer/informant/interviewee/parent/guardian (delete as necessary) 

 

3.1 Have you been fully informed/read the information sheet about this study?                YES/NO 

 

3.2 Have you had an opportunity to ask questions and discuss this study?                        YES/NO 

 

3.3. Have you received satisfactory answers to all your questions?                                    YES/NO 

 

3.4 Have you received enough information about this study and any associated health and safety 

implications if applicable?                                                                                   YES/NO 

 

3.5 Do you understand that you are free to withdraw from this study? 

 

 at any time 

 without giving a reason for withdrawing 

 without affecting your future relationship with the Institute                                         YES/NO 

 

3.6 Do you agree to take part in this study the results of which are likely to be published? 

                                                                                                                                                YES/NO 

 

3.7 Have you been informed that this consent form shall be kept in the confidence of the researcher?                                                                                                            

YES/NO 

                                                                                              

 

Signed_____________________                        Date __________________ 

 

Name in Block Letters __________________________________________________________ 

 

Signature of Researcher  ______________________     Date __________________ 

 

 

 

 



 276  

 

 

APPENDIX C 

Appendix C: End-User Scenario Questionnaire 1 

 

Building Information Modelling (BIM) for Existing 

Buildings  Questionnaire 
 
Dear colleague, thank you for taking the time to complete this online questionnaire. 
 
It will take approximately 5 minutes to complete. Your participation in this study is 
completely voluntary. There are no risks to you, or further commitments from you, as 

a result of taking part in this questionnaire. All data obtained from participants will be 
kept confidential and will only be reported or published in aggregate format (by 

reporting only combined results and never reporting individual ones). You have the 
right to withdraw at any time or refuse to participate entirely. 
 
Your views are very important to this research so your help will be greatly 
appreciated. 
 
If you have any queries at any time while completing the questionnaire please do not 

hesitate to contact the principle investigator Conor Dore at 0872125573 or by email 

to conor.dore@mydit.ie. 
 

 

1. Please identify the core business activity of your organisation.  
Mark only one oval. 

 
Surveying 

 
Architecture 

 
Engineering 

 
Construction Management 

 
3D Modelling/Visualisation 

 
Academia 

 
Other: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:conor.dore@mydit.ie
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2. How much experience do you/your company have with generating Building 

Information Models (BIMs) for existing buildings?  
Mark only one oval. 

 
None 

 
Some (1  2 projects) 

 
Moderate (3 projects or more) 

 
Frequent (large number of projects) 
 

3. Which of the following software do you/your company mostly use for modelling 

existing buildings?  
Mark only one oval. 

 
Revit (Autodesk) 

 
ArchiCAD (Graphisoft) 

 
Bentley Architecture (Bentley) 

 
Allplan Architecture (Nemetschek) 

 
SketchUp (Trimble) 

 
3D Studio Max (Autodesk) 

 
AutoCAD/AutoCAD Civil 3D (Autodesk) 

 
Other: 

 
 

4. Which methods do you/your company mostly use for collecting data to 

model existing buildings?  
Mark only one oval. 

 
Laser scanning 

 
Photogrammetry 

 
Total station surveys 

 
Combination of methods 

 
Existing 2D documentation (plans, elevations, sections, historical 
documents etc.) 

 
Other: 
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5. What would be the typical accuracy requirements for BIM projects undertaken 

by you/your company?  
(accuracy of final BIM)  
Mark only one oval. 

 
Less than 5cm mean error 

 
Less than 2cm mean error 

 
Less than 1cm mean error 

 
Less than 5mm mean error 

 
Other: 

 

 

Assessment of Current BIM Software: 
 

 

6. Do you think current BIM software provides sufficient tools for accurately 

modelling existing buildings? (E.g. modelling deformation, irregular geometries 

etc.)  
Mark only one oval. 

 
Very insufficient tools for modelling existing buildings 

 
Insufficient tools for modelling existing buildings 

 
Somewhat sufficient tools for modelling existing buildings 

 
Sufficient tools for modelling existing buildings 

 
Very sufficient tools for modelling existing buildings 

 

7. How efficient are the current software tools that you/your company use for 

modelling existing buildings?  
Mark only one oval. 

 
Very inefficient 

 
Inefficient 

 
Somewhat efficient 

 
Efficient 

 
Very efficient 
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8. What do you/your company find to be the greatest challenge when 

modelling existing buildings with BIM?  
Mark only one oval. 

 
Working with point clouds within BIM software 

 
Lack of suitable parametric library objects/Revit families for existing 
buildings 

 
Manual creation of custom parametric objects/Revit families 

 
Modelling true condition of buildings (e.g. modelling deformation, irregular 
objects) 

 
Lack of tools for checking accuracy/quality control 

 
Other: 

 
 

9. Do you/your company currently use any automation in your workflow for 

modelling existing buildings?  
Mark only one oval. 

 
Yes 

 
No 

 
 

10.If answered yes to previous question please specify the type of 

automation used (e.g automatic detection of planes, features etc.) and 

software used for automation. 
 
 
 
 
 
 
 
 
 
 
 

11. Please indicate if you think there is a need for more automation in the current 

workflows for modelling existing buildings from point clouds.  
Mark only one oval. 

 
Strongly disagree 

 
Disagree 

 
Neutral 

 
Agree 

 
Strongly agree 
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12.Please rate the usefulness of a procedural modelling approach for BIM (different 

geometric arrangements automatically generated from predefined rules and 

parametric library objects).  
Mark only one oval. 

 
Not at all useful 

 
Not very useful 

 
Somewhat useful 

 
Useful 

 
Very useful 

 

 

Assessment of New HBIM Prototype Plugin for ArchiCAD BIM 

Software: 

 

13.Please rate the usefulness of the new HBIM prototype for modelling existing 

buildings with BIM. 

 
Mark only one oval. 

 
Not at all useful 

 
Not very useful 

 
Somewhat useful 

 
Useful 

 
Very useful 

 
 

14.Which aspects of the new prototype (if any) would you find most useful?  
Mark only one oval. 

 
Automatic generation of nonvertical wall objects from sections 

 
Automatic generation of regular wall objects from floorplans 

 
Automatic splitting of buildings into floors/tiles 

 
Automatic generation of library objects on buildings 

 
Group and individual graphical editing of objects 

 
None 
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15.Please rate the efficiency of modelling with the new HBIM prototype when 

compared to current modelling methods.  
Mark only one oval. 

 
Much less efficient than current modelling methods 

 
Less efficient than current modelling methods 

 
Equally as efficient as current modelling methods 

 
More efficient than current modelling methods 

 
Much more efficient than current modelling methods 

 
 

16.Based on the demo, how easy/difficult to use do you think the new HBIM prototype is when 

compared to current modelling methods?  
Mark only one oval. 

 
Much more difficult than current modelling methods 

 
More difficult than current modelling methods 

 
Equally as difficult/easy as current modelling methods 

 
Easier than current modelling methods 

 
Much easier than current modelling methods 

 
 

17.Do you find the accuracies achieved from the initial case studies with the HBIM prototype 

plugin to be acceptable?  
Mark only one oval. 

 
Very unacceptable accuracy 

 
Unacceptable accuracy 

 
Somewhat acceptable accuracy 

 
Acceptable accuracy 

 
Very acceptable accuracy 

 
 

18.Further feedback on HBIM prototype (Optional)  
Limitations, suggestions etc. 
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APPENDIX D 

Appendix D: End-User Scenario Questionnaire 2 

 

Modelling Existing Buildings  Questionnaire 
 

Dear colleague, thank you for taking the time to complete this online questionnaire. 
 

It will take approximately 5 minutes to complete. Your participation in this study is completely 

voluntary. There are no risks to you, or further commitments from you, as a result of taking part 
in this questionnaire. All data obtained from participants will be kept confidential and will only be 

reported or published in aggregate format (by reporting only combined results and never 
reporting individual ones). You have the right to withdraw at any time or refuse to participate 

entirely. 
 

Your views are very important to this research so your help will be greatly appreciated. 
 

If you have any queries at any time while completing the questionnaire please do not hesitate to 

contact the principle investigator Conor Dore at 0872125573 or by email to 

conor.dore@mydit.ie. 
 

 

2. Please identify the core activity of your organisation.  
Mark only one oval. 

 
3D Modelling/Visualisation 

 
Academia 

 
Virtual/Augmented Reality 

 
Surveying 

 
Architecture 

 
Engineering 

 
Construction Management 

 
Other: 

 
 

3. How much experience do you/your company have with generating digital models of existing 

buildings?  
Mark only one oval. 

 
None 

 
Some (1  2 projects) 

 
Moderate (3 projects or more) 

 
Frequent (Large number of projects) 
 

mailto:conor.dore@mydit.ie
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4. Which of the following software do you/your company mostly use for modelling 

existing buildings?  
Mark only one oval. 

 
ArchiCAD (Graphisoft) 

 
Revit (Autodesk) 

 
SketchUp (Trimble) 

 
AutoCAD/AutoCAD Civil 3D (Autodesk) 

 
3D Studio Max (Autodesk) 

 
Cinema 4D (MAXON Computer GmbH) 

 
Bentley Architecture (Bentley) 

 
Other: 

 
 

5. Which methods do you/your company mostly use for collecting data to model 

existing buildings?  
Mark only one oval. 

 
Laser scanning 

Photogrammetry  

Total station surveys 
 

Combination of methods 
 

Existing 2D documentation (plans, elevations, sections, historical 

documents etc.) Other: 

 
6. What would be the typical accuracy requirements for modelling projects 

undertaken by you/your company?  
Mark only one oval. 

 
Accuracy not important 

 
Less than 10cm mean error 

 
Less than 5cm mean error 

 
Less than 2cm mean error 

 
Less than 1cm mean error 

 
Other: 

 

 

 

 

 

 



 284  

 

 

 

 

 

Assessment of Current Modelling Software: 
 

 
 

7. Do you think current modelling software provides sufficient tools for 

modelling existing buildings? (E.g. modelling deformation, irregular 

geometries etc.)  
Mark only one oval. 

 
Very insufficient tools for modelling existing buildings 

 
Insufficient tools for modelling existing buildings 

 
Somewhat sufficient tools for modelling existing buildings 

 
Sufficient tools for modelling existing buildings 

 
Very sufficient tools for modelling existing buildings 

 
 

8. How efficient are the current software tools that you/your company use for 

modelling existing buildings?  
Mark only one oval. 

 
Very inefficient 

 
Inefficient 

 
Somewhat efficient 

 
Efficient 

 
Very efficient 

 
 

9. What do you/your company find to be the greatest challenge when 

modelling existing buildings?  
Mark only one oval. 

 
Working with survey data within modelling software 

 
Lack of suitable library objects for existing buildings 

 
Manual creation of custom objects for existing buildings 

 
Modelling true condition of buildings (e.g. modelling deformation, irregular 
objects) 

 
Lack of tools for checking accuracy/quality control 

 
Other: 
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10. Do you/your company currently use any automation in your workflow for 

modelling existing buildings?  
Mark only one oval. 

 
Yes 

 
No 

 
 

11.If answered yes to previous question please specify the type of 

automation used (e.g automatic detection of planes, features etc.) and 

software used for automation. 

 
 
 
 
 
 
 
 
 
 
 
 

12. Please indicate if you think there is a need for more automation in the current 

workflows for modelling existing buildings from survey data.  
Mark only one oval. 

 
Strongly disagree 

 
Disagree 

 
Neutral 

 
Agree 

 
Strongly agree 

 
 

13.Please rate the usefulness of a procedural modelling approach for modelling 

existing buildings (different geometric arrangements automatically generated from 

predefined rules and parametric library objects).  
Mark only one oval. 

 
Not at all useful 

 
Not very useful 

 
Somewhat useful 

 
Useful 

 
Very useful 
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Assessment of New HBIM Prototype Plugin for ArchiCAD BIM 

Software: 

 

14.Please rate the usefulness of the new HBIM prototype for modelling existing 

buildings with BIM. 

 
Mark only one oval. 

 
Not at all useful 

 
Not very useful 

 
Somewhat useful 

 
Useful 

 
Very useful 

 
 

15.Which aspects of the new prototype (if any) would you find most useful?  
Mark only one oval. 

 
Automatic generation of nonvertical wall objects from sections 

 
Automatic generation of regular wall objects from floorplans 

 
Automatic splitting of buildings into floors/tiles 

 
Automatic generation of library objects on buildings 

 
Group and individual graphical editing of objects 

 
None 
 

 
16.Please rate the efficiency of modelling with the new HBIM prototype when 

compared to current modelling methods.  
Mark only one oval. 

 
Much less efficient than current modelling methods 

 
Less efficient than current modelling methods 

 
Equally as efficient as current modelling methods 

 
More efficient than current modelling methods 

 
Much more efficient than current modelling methods 
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17.Based on the demo, how easy/difficult to use do you think the new HBIM 

prototype is when compared to current modelling methods?  
Mark only one oval. 

 
Much more difficult than current modelling methods 

 
More difficult than current modelling methods 

 
Equally as difficult/easy as current modelling methods 

 
Easier than current modelling methods 

 
Much easier than current modelling methods 

 
 

18.Do you find the accuracies achieved from the initial case studies with the HBIM 

prototype plugin to be acceptable?  
Mark only one oval. 

 
Very unacceptable accuracy 

 
Unacceptable accuracy 

 
Somewhat acceptable accuracy 

 
Acceptable accuracy 

 
Very acceptable accuracy 

 
 

19.Further feedback on HBIM prototype (Optional)  
Limitations, suggestions etc. 
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APPENDIX E 

 

Appendix E: End-User Scenario Questionnaire 3 

 

 

Procedural HBIM Prototype  Questionnaire 
 

Dear colleague, thank you for taking the time to complete this online questionnaire. 
 

It will take approximately 5 minutes to complete. Your participation in this study is 
completely voluntary. There are no risks to you, or further commitments from you, as 

a result of taking part in this questionnaire. All data obtained from participants will be 
kept confidential and will only be reported or published in aggregate format (by 

reporting only combined results and never reporting individual ones). You have the 
right to withdraw at any time or refuse to participate entirely. 

 
Your views are very important to this research so your help will be greatly 
appreciated. 

 
If you have any queries at any time while completing the questionnaire please do not 

hesitate to contact the principle investigator Conor Dore at 0872125573 or by email 

to conor.dore@mydit.ie. 
 

 

3. Please identify the core activity of your organisation.  
Mark only one oval. 

 
Architecture 

 
Surveying 

 
Engineering 

 
Conservation 

 
Construction Management 

 
Academia 

 
3D Modelling/Visualisation 

 
Virtual/Augmented Reality 

 
Other: 

 
 
 
 
 
 
 
 
 
 
 
 

mailto:conor.dore@mydit.ie
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4. How much experience do you/your company have with generating digital models 

of existing buildings?  
Mark only one oval. 

 
None 

 
Some (1  2 projects) 

 
Moderate (3 projects or more) 

 
Frequent (Large number of projects) 
 

 
5. Which of the following software do you/your company mostly use for modelling 

existing buildings?  
Mark only one oval. 

 
ArchiCAD (Graphisoft) 

 
Revit (Autodesk) 

 
SketchUp (Trimble) 

 
AutoCAD/AutoCAD Civil 3D (Autodesk) 

 
3D Studio Max (Autodesk) 

 
Cinema 4D (MAXON Computer GmbH) 

 
Bentley Architecture (Bentley) 

 
Other: 

 
 

6. Which methods do you/your company mostly use for collecting data to model 

existing buildings?  
Mark only one oval. 

 
Laser scanning 

Photogrammetry  

Total station surveys 
 

Combination of methods 
 

Existing 2D documentation (plans, elevations, sections, historical 

documents etc.) Other: 
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7. What would be the typical accuracy requirements for modelling projects 

undertaken by you/your company?  
Mark only one oval. 

 
Accuracy not important 

 
Less than 10cm mean error 

 
Less than 5cm mean error 

 
Less than 2cm mean error 

 
Less than 1cm mean error 

 
Other: 

 

 

Assessment of Current Modelling software: 
 

8. Do you think current modelling software provides sufficient tools for 

modelling existing buildings? (E.g. modelling deformation, irregular 

geometries etc.)  
Mark only one oval. 

 
Very insufficient tools for modelling existing buildings 

 
Insufficient tools for modelling existing buildings 

 
Somewhat sufficient tools for modelling existing buildings 

 
Sufficient tools for modelling existing buildings 

 
Very sufficient tools for modelling existing buildings 

 
 

9. How efficient are the current software tools that you/your company use for 

modelling existing buildings?  
Mark only one oval. 

 
Very inefficient 

 
Inefficient 

 
Somewhat efficient 

 
Efficient 

 
Very efficient 
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10. What do you/your company find to be the greatest challenge when 

modelling existing buildings?  
Mark only one oval. 

 
Working with survey data within modelling software 

 
Lack of suitable library objects for existing buildings 

 
Manual creation of custom objects for existing buildings 

 
Modelling true condition of buildings (e.g. modelling deformation, irregular 
objects) 

 
Lack of tools for checking accuracy/quality control 

 
Other: 

 
 

11. Do you/your company currently use any automation in your workflow for 

modelling existing buildings?  
Mark only one oval. 

 
Yes 

 
No 

 
 

12.If answered yes to previous question please specify the type of 

automation used (e.g. automatic detection of planes, features etc.) and 

software used for automation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

13. Please indicate if you think there is a need for more automation in the current workflows for 

modelling existing buildings from survey data.  
Mark only one oval. 

 
Strongly disagree 

 
Disagree 

 
Neutral 

 
Agree 

 
Strongly agree 
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14.Please rate the usefulness of a procedural modelling approach for modelling existing 

buildings (different geometric arrangements automatically generated from predefined rules 

and parametric library objects).  
Mark only one oval. 

 
Not at all useful 

 
Not very useful 

 
Somewhat useful 

 
Useful 

 
Very useful 

 

 

Assessment of New HBIM Prototype Plugin for ArchiCAD BIM Software: 

 

15.Please rate the usefulness of the new HBIM prototype for modelling existing buildings with 

BIM. 

 
Mark only one oval. 

 
Not at all useful 

 
Not very useful 

 
Somewhat useful 

 
Useful 

 
Very useful 

 
 

16.Which aspects of the new prototype (if any) would you find most useful?  
Mark only one oval. 

 
Automatic generation of nonvertical wall objects from sections 

 
Automatic generation of regular wall objects from floorplans 

 
Automatic splitting of buildings into floors/tiles 

 
Automatic generation of library objects on buildings 

 
Group and individual graphical editing of objects 

 
None 
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17.Please rate the efficiency of modelling with the new HBIM 

prototype when compared to current modelling methods.  
Mark only one oval. 

 
Much less efficient than current modelling methods 

 
Less efficient than current modelling methods 

 
Equally as efficient as current modelling methods 

 
More efficient than current modelling methods 

 
Much more efficient than current modelling methods 

 
 

18.How easy/difficult to use is the new HBIM prototype when 

compared to current modelling methods?  
Mark only one oval. 

 
Much more difficult than current modelling methods 

 
More difficult than current modelling methods 

 
Equally as difficult/easy as current modelling methods 

 
Easier than current modelling methods 

 
Much easier than current modelling methods 

 
 

19.Do you find the accuracies achieved from the initial case studies 

with the HBIM prototype plugin to be acceptable?  
Mark only one oval. 

 
Very unacceptable accuracy 

 
Unacceptable accuracy 

 
Somewhat acceptable accuracy 

 
Acceptable accuracy 

 
Very acceptable accuracy 

 
 

20.How suitable are the HBIM deliverables for typical conservation 
projects?  
Mark only one oval. 

 
Very unsuitable deliverables 

 
Unsuitable deliverables 

 
Somewhat suitable deliverables 

 
Suitable deliverables 

 
Very suitable deliverables 
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19.What deliverables do you find most useful?  
Mark only one oval. 

 
3D Point Clouds 

 
3D Building Information Models 

 
2D Documentation (plans, sections, elevations etc.) 
 

 
 

20.Further feedback on HBIM prototype or deliverables (Optional)  
Limitations, suggestions etc. 
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Appendix F 

Appendix F: Results of physical measurement accuracy test showing deviations between total station 

measurements and a procedurally generated building façade model for number 3 Henrietta Street. 

 

Point Total Station BIM Difference BIM & TS 

ID x y z x y z x y z 

1 2.8075 10.1753 3.2913 2.81 10.169 3.292 0.002 -0.006 0.001 

2 3.4243 9.023 3.3001 3.429 9.007 3.295 0.005 -0.016 -0.005 

3 2.8565 10.1972 7.9984 2.851 10.19 7.962 -0.006 -0.007 -0.036 

4 3.4758 9.0387 8.0077 3.464 9.039 7.972 -0.012 0.000 -0.036 

5 2.8728 10.2504 12.1848 2.876 10.23 12.128 0.003 -0.020 -0.057 

6 3.5063 9.0714 12.1994 3.496 9.065 12.141 -0.010 -0.006 -0.058 

7 2.892 10.2662 15.2158 2.895 10.258 15.142 0.003 -0.008 -0.074 

8 3.5261 9.0835 15.2139 3.512 9.098 15.135 -0.014 0.015 -0.079 

9 4.4362 7.1419 3.3084 4.427 7.132 3.315 -0.009 -0.010 0.007 

10 5.0617 5.9972 3.3161 5.047 5.968 3.324 -0.015 -0.029 0.008 

11 4.4784 7.169 8.0137 4.466 7.156 7.99 -0.012 -0.013 -0.024 

12 5.1054 6.0054 8.0182 5.085 5.995 7.996 -0.020 -0.010 -0.022 

13 4.5121 7.2156 12.2036 4.487 7.204 12.156 -0.025 -0.012 -0.048 

14 5.1273 6.0437 12.2244 5.117 6.022 12.177 -0.010 -0.022 -0.047 

15 4.5267 7.2322 15.2178 4.51 7.224 15.175 -0.017 -0.008 -0.043 

16 5.1674 6.0556 15.2229 5.131 6.057 15.145 -0.036 0.001 -0.078 

17 6.2408 3.8826 8.0245 6.225 3.853 8.015 -0.016 -0.030 -0.009 

18 6.8654 2.7123 8.032 6.837 2.703 8.013 -0.028 -0.009 -0.019 

19 6.2757 3.899 12.2307 6.258 3.879 12.196 -0.018 -0.020 -0.035 

20 6.8865 2.7316 12.2318 6.874 2.721 12.191 -0.013 -0.011 -0.041 

21 6.3046 3.9341 15.2264 6.279 3.902 15.15 -0.026 -0.032 -0.076 

22 6.9159 2.7486 15.2101 6.9 2.735 15.136 -0.016 -0.014 -0.074 

23 7.8698 0.76 3.329 7.831 0.739 3.346 -0.039 -0.021 0.017 

24 8.4595 -0.4142 3.3516 8.434 -0.394 3.349 -0.026 0.020 -0.003 

25 7.9044 0.7769 8.037 7.877 0.75 8.018 -0.027 -0.027 -0.019 

26 8.5189 -0.4161 8.0451 8.512 -0.443 8.026 -0.007 -0.027 -0.019 

27 7.9362 0.7759 12.2205 7.918 0.761 12.183 -0.018 -0.015 -0.037 

28 8.578 -0.3931 12.2428 8.549 -0.425 12.202 -0.029 -0.032 -0.041 

29 7.941 0.7994 15.21 7.938 0.786 15.153 -0.003 -0.013 -0.057 

30 8.5641 -0.3886 15.2156 8.567 -0.397 15.159 0.003 -0.008 -0.057 

 

Average 

Difference -0.015 -0.013 -0.035 

Standard 

Deviation 0.012 0.012 0.028 

RMSE: 0.015 0.013 0.035 
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Appendix G 

Appendix G: Additional check for physical measurement accuracy test to verify deviations between total 

station measurements and laser scan point cloud measurements. 

 

Point Total Station (TS) Point Cloud (PC) Difference TS & PC 

ID x y z x y z x y z 

1 2.8075 10.1753 3.2913 2.81 10.173 3.291 0.002 -0.002 0.000 

2 3.4243 9.023 3.3001 3.431 9.003 3.299 0.007 -0.020 -0.001 

3 2.8565 10.1972 7.9984 2.855 10.199 7.963 -0.002 0.002 -0.035 

4 3.4758 9.0387 8.0077 3.479 9.038 7.966 0.003 -0.001 -0.042 

5 2.8728 10.2504 12.1848 2.891 10.248 12.13 0.018 -0.002 -0.055 

6 3.5063 9.0714 12.1994 3.512 9.075 12.142 0.006 0.004 -0.057 

7 2.892 10.2662 15.2158 2.903 10.277 15.145 0.011 0.011 -0.071 

8 3.5261 9.0835 15.2139 3.527 9.105 15.148 0.001 0.021 -0.066 

9 4.4362 7.1419 3.3084 4.431 7.139 3.316 -0.005 -0.003 0.008 

10 5.0617 5.9972 3.3161 5.055 5.97 3.321 -0.007 -0.027 0.005 

11 4.4784 7.169 8.0137 4.468 7.166 7.983 -0.010 -0.003 -0.031 

12 5.1054 6.0054 8.0182 5.094 5.995 7.999 -0.011 -0.010 -0.019 

13 4.5121 7.2156 12.2036 4.505 7.216 12.146 -0.007 0.000 -0.058 

14 5.1273 6.0437 12.2244 5.122 6.03 12.179 -0.005 -0.014 -0.045 

15 4.5267 7.2322 15.2178 4.517 7.25 15.173 -0.010 0.018 -0.045 

16 5.1674 6.0556 15.2229 5.15 6.064 15.155 -0.017 0.008 -0.068 

17 6.2408 3.8826 8.0245 6.22 3.86 8.005 -0.021 -0.023 -0.019 

18 6.8654 2.7123 8.032 6.84 2.705 8.008 -0.025 -0.007 -0.024 

19 6.2757 3.899 12.2307 6.254 3.877 12.195 -0.022 -0.022 -0.036 

20 6.8865 2.7316 12.2318 6.863 2.707 12.188 -0.023 -0.025 -0.044 

21 6.3046 3.9341 15.2264 6.274 3.913 15.149 -0.031 -0.021 -0.077 

22 6.9159 2.7486 15.2101 6.896 2.716 15.138 -0.020 -0.033 -0.072 

23 7.8698 0.76 3.329 7.83 0.744 3.341 -0.040 -0.016 0.012 

24 8.4595 -0.4142 3.3516 8.421 -0.451 3.353 -0.039 -0.037 0.001 

25 7.9044 0.7769 8.037 7.856 0.769 8.001 -0.048 -0.008 -0.036 

26 8.5189 -0.4161 8.0451 8.492 -0.464 8.028 -0.027 -0.048 -0.017 

27 7.9362 0.7759 12.2205 7.9 0.753 12.179 -0.036 -0.023 -0.041 

28 8.578 -0.3931 12.2428 8.537 -0.439 12.205 -0.041 -0.046 -0.038 

29 7.941 0.7994 15.21 7.909 0.783 15.157 -0.032 -0.016 -0.053 

30 8.5641 -0.3886 15.2156 8.552 -0.434 15.17 -0.012 -0.045 -0.046 

 

Average 

Difference -0.015 -0.013 -0.036 

Standard 

Deviation 0.017 0.018 0.026 

RMSE: 0.015 0.013 0.036 
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Appendix H 

Appendix H: Additional check for physical measurement accuracy test to verify deviations between laser 

scan point cloud and a procedurally generated building façade model for number 3 Henrietta Street. 

 

Point Point Cloud (PC) BIM Difference PC & BIM 

ID x x x x y z x y z 

1 2.8075 10.1753 3.2913 2.810 10.169 3.292 0.000 0.004 -0.001 

2 3.4243 9.023 3.3001 3.429 9.007 3.295 0.002 -0.004 0.004 

3 2.8565 10.1972 7.9984 2.851 10.190 7.962 0.004 0.009 0.001 

4 3.4758 9.0387 8.0077 3.464 9.039 7.972 0.015 -0.001 -0.006 

5 2.8728 10.2504 12.1848 2.876 10.230 12.128 0.015 0.018 0.002 

6 3.5063 9.0714 12.1994 3.496 9.065 12.141 0.016 0.010 0.001 

7 2.892 10.2662 15.2158 2.895 10.258 15.142 0.008 0.019 0.003 

8 3.5261 9.0835 15.2139 3.512 9.098 15.135 0.015 0.007 0.013 

9 4.4362 7.1419 3.3084 4.427 7.132 3.315 0.004 0.007 0.001 

10 5.0617 5.9972 3.3161 5.047 5.968 3.324 0.008 0.002 -0.003 

11 4.4784 7.169 8.0137 4.466 7.156 7.990 0.002 0.010 -0.007 

12 5.1054 6.0054 8.0182 5.085 5.995 7.996 0.009 0.000 0.003 

13 4.5121 7.2156 12.2036 4.487 7.204 12.156 0.018 0.012 -0.010 

14 5.1273 6.0437 12.2244 5.117 6.022 12.177 0.005 0.008 0.002 

15 4.5267 7.2322 15.2178 4.510 7.224 15.175 0.007 0.026 -0.002 

16 5.1674 6.0556 15.2229 5.131 6.057 15.145 0.019 0.007 0.010 

17 6.2408 3.8826 8.0245 6.225 3.853 8.015 -0.005 0.007 -0.010 

18 6.8654 2.7123 8.032 6.837 2.703 8.013 0.003 0.002 -0.005 

19 6.2757 3.899 12.2307 6.258 3.879 12.196 -0.004 -0.002 -0.001 

20 6.8865 2.7316 12.2318 6.874 2.721 12.191 -0.011 -0.014 -0.003 

21 6.3046 3.9341 15.2264 6.279 3.902 15.150 -0.005 0.011 -0.001 

22 6.9159 2.7486 15.2101 6.900 2.735 15.136 -0.004 -0.019 0.002 

23 7.8698 0.76 3.329 7.831 0.739 3.346 -0.001 0.005 -0.005 

24 8.4595 -0.4142 3.3516 8.434 -0.394 3.349 -0.013 -0.057 0.004 

25 7.9044 0.7769 8.037 7.877 0.750 8.018 -0.021 0.019 -0.017 

26 8.5189 -0.4161 8.0451 8.512 -0.443 8.026 -0.020 -0.021 0.002 

27 7.9362 0.7759 12.2205 7.918 0.761 12.183 -0.018 -0.008 -0.004 

28 8.578 -0.3931 12.2428 8.549 -0.425 12.202 -0.012 -0.014 0.003 

29 7.941 0.7994 15.21 7.938 0.786 15.153 -0.029 -0.003 0.004 

30 8.5641 -0.3886 15.2156 8.567 -0.397 15.159 -0.015 -0.037 0.011 

 

Average 

Difference 0.010 0.012 0.005 

Standard 

Deviation 0.013 0.017 0.006 

RMSE: 0.010 0.012 0.005 
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Appendix I 

Contents of Accompanying CD: 

1) GDL source code for Procedural HBIM prototypes 

2) C++ source code for Procedural HBIM prototypes 
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