66,145 research outputs found

    The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.

    Get PDF
    The TASTE tool-set results from spin-off studies of the ASSERT project, which started in 2004 with the objective to propose innovative and pragmatic solutions to develop real-time software. One of the primary targets was satellite flight software, but it appeared quickly that their characteristics were shared among various embedded systems. The solutions that we developed now comprise a process and several tools ; the development process is based on the idea that real-time, embedded systems are heterogeneous by nature and that a unique UML-like language was not helping neither their construction, nor their validation. Rather than inventing yet another "ultimate" language, TASTE makes the link between existing and mature technologies such as Simulink, SDL, ASN.1, C, Ada, and generates complete, homogeneous software-based systems that one can straightforwardly download and execute on a physical target. Our current prototype is moving toward a marketed product, and sequel studies are already in place to support, among others, FPGA systems

    Design and evaluation of acceleration strategies for speeding up the development of dialog applications

    Get PDF
    In this paper, we describe a complete development platform that features different innovative acceleration strategies, not included in any other current platform, that simplify and speed up the definition of the different elements required to design a spoken dialog service. The proposed accelerations are mainly based on using the information from the backend database schema and contents, as well as cumulative information produced throughout the different steps in the design. Thanks to these accelerations, the interaction between the designer and the platform is improved, and in most cases the design is reduced to simple confirmations of the “proposals” that the platform dynamically provides at each step. In addition, the platform provides several other accelerations such as configurable templates that can be used to define the different tasks in the service or the dialogs to obtain or show information to the user, automatic proposals for the best way to request slot contents from the user (i.e. using mixed-initiative forms or directed forms), an assistant that offers the set of more probable actions required to complete the definition of the different tasks in the application, or another assistant for solving specific modality details such as confirmations of user answers or how to present them the lists of retrieved results after querying the backend database. Additionally, the platform also allows the creation of speech grammars and prompts, database access functions, and the possibility of using mixed initiative and over-answering dialogs. In the paper we also describe in detail each assistant in the platform, emphasizing the different kind of methodologies followed to facilitate the design process at each one. Finally, we describe the results obtained in both a subjective and an objective evaluation with different designers that confirm the viability, usefulness, and functionality of the proposed accelerations. Thanks to the accelerations, the design time is reduced in more than 56% and the number of keystrokes by 84%

    gCSP: A Graphical Tool for Designing CSP systems

    Get PDF
    For broad acceptance of an engineering paradigm, a graphical notation and a supporting design tool seem necessary. This paper discusses certain issues of developing a design environment for building systems based on CSP. Some of the issues discussed depend specifically on the underlying theory of CSP, while a number of them are common for any graphical notation and supporting tools, such as provisions for complexity management and design overview

    Freeform User Interfaces for Graphical Computing

    Get PDF
    栱摊ç•Șć·: ç”Č15222 ; ć­ŠäœæŽˆäžŽćčŽæœˆæ—„: 2000-03-29 ; ć­Šäœăźçšźćˆ„: èȘČçš‹ćšćŁ« ; ć­ŠäœăźçšźéĄž: ćšćŁ«(ć·„ć­Š) ; ć­Šäœèš˜ç•Șć·: ćšć·„çŹŹ4717ć· ; ç ”ç©¶ç§‘ăƒ»ć°‚æ”»: ć·„ć­Šçł»ç ”ç©¶ç§‘æƒ…ć ±ć·„ć­Šć°‚

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced
    • 

    corecore