2,760 research outputs found

    A decision support system for corporations cyber security risk management

    Get PDF
    This thesis presents a decision aiding system named C3-SEC (Contex-aware Corporative Cyber Security), developed in the context of a master program at Polytechnic Institute of Leiria, Portugal. The research dimension and the corresponding software development process that followed are presented and validated with an application scenario and case study performed at Universidad de las Fuerzas Armadas ESPE – Ecuador. C3-SEC is a decision aiding software intended to support cyber risks and cyber threats analysis of a corporative information and communications technological infrastructure. The resulting software product will help corporations Chief Information Security Officers (CISO) on cyber security risk analysis, decision-making and prevention measures for the infrastructure and information assets protection. The work is initially focused on the evaluation of the most popular and relevant tools available for risk assessment and decision making in the cyber security domain. Their properties, metrics and strategies are studied and their support for cyber security risk analysis, decision-making and prevention is assessed for the protection of organization's information assets. A contribution for cyber security experts decision support is then proposed by the means of reuse and integration of existing tools and C3-SEC software. C3-SEC extends existing tools features from the data collection and data analysis (perception) level to a full context-ware reference model. The software developed makes use of semantic level, ontology-based knowledge representation and inference supported by widely adopted standards, as well as cyber security standards (CVE, CPE, CVSS, etc.) and cyber security information data sources made available by international authorities, to share and exchange information in this domain. C3-SEC development follows a context-aware systems reference model addressing the perception, comprehension, projection and decision/action layers to create corporative scale cyber security situation awareness

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Proceedings of the 4th Workshop of the MPM4CPS COST Action

    Get PDF
    Proceedings of the 4th Workshop of the MPM4CPS COST Action with the presentations delivered during the workshop and papers with extended versions of some of them

    Owl ontology quality assessment and optimization in the cybersecurity domain

    Get PDF
    The purpose of this dissertation is to assess the quality of ontologies in patterns perceived by cybersecurity context. A content analysis between ontologies indicated that there were more pronounced differences in OWL ontologies in the cybersecurity field. Results showed an increase of relevance from expressivity to variability. Additionally, no differences were found in strategies used in most of the incidents. The ontology background needs to be emphasized to understand the quality of the phenomena. In addition, ontologies are a means of representing an area of knowledge through their semantic structure. The search of information and integration of data from different origins provides a common base that guarantees the coherence of the data. This can be categorized and described in a normative way. The unification of information with the world that surrounds us allows to create synergies between entities and relationships. However, the area of cybersecurity is one of the real-world domains where knowledge is uncertain. It is therefore necessary to analyze the challenges of choosing the appropriate representation of un-structured information. Vulnerabilities are identified, but incident response is not an automatic mechanism for understanding and processing unstructured text found on the web.O objetivo desta dissertação foi avaliar a qualidade das ontologias, em padrões percebidos pelo contexto de cibersegurança. Uma análise de conteúdo entre ontologias indicou que havia diferenças mais pronunciadas por ontologias OWL no campo da cibersegurança. Os resultados mostram um aumento da relevância de expressividade para a variabilidade. Além disso, não foram encontradas diferenças em estratégias utilizadas na maioria dos incidentes. O conhecimento das ontologias precisa de ser enfatizado para se entender os fenómenos de qualidade. Além disso, as ontologias são um meio de representar uma área de conhecimento através da sua estrutura semântica e facilita a pesquisa de informações e a integração de dados de diferentes origens, pois fornecem uma base comum que garante a coerência dos dados, categorizados e descritos, de forma normativa. A unificação da informação com o mundo que nos rodeia permite criar sinergias entre entidades e relacionamentos. No entanto, a área de cibersegurança é um dos domínios do mundo real em que o conhecimento é incerto e é fundamental analisar os desafios de escolher a representação apropriada de informações não estruturadas. As vulnerabilidades são identificadas, mas a resposta a incidentes não é um mecanismo automático para se entender e processar textos não estruturados encontrados na web

    Using Semantic Web Services for AI-Based Research in Industry 4.0

    Full text link
    The transition to Industry 4.0 requires smart manufacturing systems that are easily configurable and provide a high level of flexibility during manufacturing in order to achieve mass customization or to support cloud manufacturing. To realize this, Cyber-Physical Systems (CPSs) combined with Artificial Intelligence (AI) methods find their way into manufacturing shop floors. For using AI methods in the context of Industry 4.0, semantic web services are indispensable to provide a reasonable abstraction of the underlying manufacturing capabilities. In this paper, we present semantic web services for AI-based research in Industry 4.0. Therefore, we developed more than 300 semantic web services for a physical simulation factory based on Web Ontology Language for Web Services (OWL-S) and Web Service Modeling Ontology (WSMO) and linked them to an already existing domain ontology for intelligent manufacturing control. Suitable for the requirements of CPS environments, our pre- and postconditions are verified in near real-time by invoking other semantic web services in contrast to complex reasoning within the knowledge base. Finally, we evaluate our implementation by executing a cyber-physical workflow composed of semantic web services using a workflow management system.Comment: Submitted to ISWC 202

    Ontology in Information Security

    Get PDF
    The past several years we have witnessed that information has become the most precious asset, while protection and security of information is becoming an ever greater challenge due to the large amount of knowledge necessary for organizations to successfully withstand external threats and attacks. This knowledge collected from the domain of information security can be formally described by security ontologies. A large number of researchers during the last decade have dealt with this issue, and in this paper we have tried to identify, analyze and systematize the relevant papers published in scientific journals indexed in selected scientific databases, in period from 2004 to 2014. This paper gives a review of literature in the field of information security ontology and identifies a total of 52 papers systematized in three groups: general security ontologies (12 papers), specific security ontologies (32 papers) and theoretical works (8 papers). The papers were of different quality and level of detail and varied from presentations of simple conceptual ideas to sophisticated frameworks based on ontology

    Cyber-Physical Systems: a multi-criteria assessment for Internet-of-Things (IoT) systems

    Get PDF
    This research work was partially supported by funds provided by the European Commission in the scope of FoF/H2020-636909 C2NET, FoF/H2020-723710 vf-OS and ICT/H2020-825631 ZDMP.This article addresses a multi-criteria decision problem regarding the more suitable device (system) to perform a task for cyber-physical systems. New embedded systems provided everyday makes engineers’ decision very difficult. Components are proposed to formally describe solutions, criteria, constraints and priorities, taking into account users’ specific aspects. To materialise all formal descriptions, a model-driven approach is followed, allowing the design of enablers for interoperability with standards. It is enabled the use of different software languages and decision methods. Proposed framework enables a better Internet-of-Things system selection, and therefore stakeholders can perform a more suitable design of their cyber-physical enterprise systems.authorsversioninpres

    Definition and Verification of Security Configurations of Cyber-Physical Systems

    Get PDF
    The proliferation of Cyber-Physical Systems (CPSs) is rais ing serious security challenges. These are complex systems, integrating physical elements into automated networked systems, often containing a variety of devices, such as sensors and actuators, and requiring complex management and data storage. This makes the construction of secure CPSs a challenge, requiring not only an adequate specification of secu rity requirements and needs related to the business domain but also an adaptation and concretion of these requirements to define a security configuration of the CPS where all its components are related. Derived from the complexity of the CPS, their configurations can be incorrect according to the requirements, and must be verified. In this paper, we propose a grammar for specifying business domain security requirements based on the CPS components. This will allow the definition of security requirements that, through a defined security feature model, will result in a configuration of services and security properties of the CPS, whose correctness can be verified. For this last stage, we have created a cata logue of feature models supported by a tool that allows the automatic verification of security configurations. To illustrate the results, the pro posal has been applied to automated verification of requirements in a hydroponic system scenario.Ministerio de Ciencia y Tecnología RTI2018-094283-B-C33 (ECLIPSE)Junta de Andalucía METAMORFOSIS (US-1381375)Junta de Castilla.La Mancha SBPLY-17-180501-000202 (GENESIS

    Ontology-Based Data Integration in Multi-Disciplinary Engineering Environments: A Review

    Get PDF
    Today's industrial production plants are complex mechatronic systems. In the course of the production plant lifecycle, engineers from a variety of disciplines (e.g., mechanics, electronics, automation) need to collaborate in multi-disciplinary settings that are characterized by heterogeneity in terminology, methods, and tools. This collaboration yields a variety of engineering artifacts that need to be linked and integrated, which on the technical level is reflected in the need to integrate heterogeneous data. Semantic Web technologies, in particular ontologybased data integration (OBDI), are promising to tackle this challenge that has attracted strong interest from the engineering research community. This interest has resulted in a growing body of literature that is dispersed across the Semantic Web and Automation System Engineering research communities and has not been systematically reviewed so far. We address this gap with a survey reflecting on OBDI applications in the context of Multi-Disciplinary Engineering Environment (MDEE). To this end, we analyze and compare 23 OBDI applications from both the Semantic Web and the Automation System Engineering research communities. Based on this analysis, we (i) categorize OBDI variants used in MDEE, (ii) identify key problem context characteristics, (iii) compare strengths and limitations of OBDI variants as a function of problem context, and (iv) provide recommendation guidelines for the selection of OBDI variants and technologies for OBDI in MDEE
    corecore