515 research outputs found

    Automatic knee joint space measurement from plain radiographs

    Get PDF
    Abstract. Knee osteoarthritis is a common joint disease and one of the leading causes of disability. The disease is characterized by loss of articular cartilage and bone remodeling. Tissue deformations eventually lead to joint space narrowing which can be detected from plain radiographs. Joint space narrowing is typically measured by an experienced radiologist manually, which can be time consuming and error prone process. The aim of this study was to develop and evaluate a fully automatic joint space width measurement method for bilateral knee radiographs. The knee joint was localized from the x-ray images using template matching and the joint space was delineated using active shape model (ASM). Two different automatic joint space measurement methods were tested and the results were validated against manual measurements performed by an experienced researcher. The first joint space width measurements were done by binarizing the joint space and measuring the local thickness of the binary mask using disk fitting. The second method classified bone pixels to tibia and femur. Classification was based on the ASM delineation. Nearest neighbors between femur and tibia were then used to find the joint space width. An automatic method for tibial region of interest (ROI) selection was also implemented. The algorithms used in this thesis were also made publicly available online. The automatically obtained joint space widths were in line with manual measurements. Higher accuracy was obtained using the disk fitting algorithm. Automatic Tibial ROI selection was accurate, although the orientation of the joint was ignored in this study. An open source software with a simple graphical user interface and visualization tools was also developed. Computationally efficient and easily explainable methods were utilized in order to improve accessibility and transparency of computer assisted diagnosis of knee osteoarthritis.Tiivistelmä. Polvinivelrikko on eräs yleisimpiä niveltauteja sekä yksi merkittävimmistä liikuntavammojen aiheuttajista. Nivelrikolle ominaisia piirteitä ovat nivelruston vaurioituminen ja muutokset nivelrustonalaisessa luussa. Kudosten muutokset ja vauriot johtavat lopulta niveltilan kaventumiseen, mikä voidaan havaita röntgenkuvista. Tavallisesti kokenut radiologi tekee niveltilan mittaukset manuaalisesti, mikä vaatii usein paljon aikaa ja on lisäksi virhealtis prosessi. Tämän tutkielman tavoitteena oli kehittää täysin automaattinen niveltilan mittausmenetelmä bilateraalisille polven röntgenkuville. Polvinivel paikallistettiin röntgenkuvista muotoon perustuvalla hahmontunnistuksella ja nivelväli rajattiin käyttämällä aktiivista muodon sovitusta (active shape model, ASM). Nivelvälin mittaukseen käytettiin kahta eri menetelmää, joita verrattiin kokeneen tutkijan tekemiin manuaalisiin mittauksiin. Ensimmäinen nivelvälin mittausmenetelmä sovitti ympyränmuotoisia maskeja niveltilasta tehtyyn binäärimaskiin. Toinen mittausmenetelmä luokitteli luuhun kuuluvat pikselit sääri- ja reisiluuhun. Luokittelu perustui aikaisemmin tehtyyn automaattiseen nivelvälin rajaukseen. Nivelvälin mittaukseen käytettiin lähimpiä naapuripikseleitä sääri- ja reisiluusta. Työssä kehitettiin myös menetelmä automaattiseen sääriluun mielenkiintoalueiden (region of interest, ROI) valintaan. Käytetyt algoritmit ovat julkisesti saatavilla verkossa. Automaattiset nivelväli mittaukset vastasivat manuaalisia mittauksia hyvin. Parempi tarkkuus saatiin käyttämällä ympyrän sovitusta hyödyntävää algoritmia nivelvälin mittaukseen. Sääriluun mielenkiintoalueet onnistuttiin määrittämään automaattisesti, tosin nivelen orientaatiota ei huomioitu tässä työssä. Lisäksi kehitettiin avoimen lähdekoodin ohjelmisto yksinkertaisella graafisella käyttöliittymällä ja visualisointityökaluilla. Työssä käytettiin laskennallisesti tehokkaita ja helposti selitettäviä menetelmiä, mikä edesauttaa tietokoneavusteisen menetelmien käyttöä polvinivelrikon tutkimuksessa

    Image analysis for extracapsular hip fracture surgery

    Get PDF
    PhD ThesisDuring the implant insertion phase of extracapsular hip fracture surgery, a surgeon visually inspects digital radiographs to infer the best position for the implant. The inference is made by “eye-balling”. This clearly leaves room for trial and error which is not ideal for the patient. This thesis presents an image analysis approach to estimating the ideal positioning for the implant using a variant of the deformable templates model known as the Constrained Local Model (CLM). The Model is a synthesis of shape and local appearance models learned from a set of annotated landmarks and their corresponding local patches extracted from digital femur x-rays. The CLM in this work highlights both Principal Component Analysis (PCA) and Probabilistic PCA as regularisation components; the PPCA variant being a novel adaptation of the CLM framework that accounts for landmark annotation error which the PCA version does not account for. Our CLM implementation is used to articulate 2 clinical metrics namely: the Tip-Apex Distance and Parker’s Ratio (routinely used by clinicians to assess the positioning of the surgical implant during hip fracture surgery) within the image analysis framework. With our model, we were able to automatically localise signi cant landmarks on the femur, which were subsequently used to measure Parker’s Ratio directly from digital radiographs and determine an optimal placement for the surgical implant in 87% of the instances; thereby, achieving fully automatic measurement of Parker’s Ratio as opposed to manual measurements currently performed in the surgical theatre during hip fracture surgery

    A total hip replacement toolbox : from CT-scan to patient-specific FE analysis

    Get PDF

    Model-Based Approach for Extracting Femur Contours in X-ray Images

    Get PDF
    Master'sMASTER OF SCIENC

    Benchmarking Encoder-Decoder Architectures for Biplanar X-ray to 3D Shape Reconstruction

    Full text link
    Various deep learning models have been proposed for 3D bone shape reconstruction from two orthogonal (biplanar) X-ray images. However, it is unclear how these models compare against each other since they are evaluated on different anatomy, cohort and (often privately held) datasets. Moreover, the impact of the commonly optimized image-based segmentation metrics such as dice score on the estimation of clinical parameters relevant in 2D-3D bone shape reconstruction is not well known. To move closer toward clinical translation, we propose a benchmarking framework that evaluates tasks relevant to real-world clinical scenarios, including reconstruction of fractured bones, bones with implants, robustness to population shift, and error in estimating clinical parameters. Our open-source platform provides reference implementations of 8 models (many of whose implementations were not publicly available), APIs to easily collect and preprocess 6 public datasets, and the implementation of automatic clinical parameter and landmark extraction methods. We present an extensive evaluation of 8 2D-3D models on equal footing using 6 public datasets comprising images for four different anatomies. Our results show that attention-based methods that capture global spatial relationships tend to perform better across all anatomies and datasets; performance on clinically relevant subgroups may be overestimated without disaggregated reporting; ribs are substantially more difficult to reconstruct compared to femur, hip and spine; and the dice score improvement does not always bring a corresponding improvement in the automatic estimation of clinically relevant parameters.Comment: accepted to NeurIPS 202

    A Hierarchical Method Based on Active Shape Models and Directed Hough Transform for Segmentation of Noisy Biomedical Images; Application in Segmentation of Pelvic X-ray Images

    Get PDF
    Background Traumatic pelvic injuries are often associated with severe, life-threatening hemorrhage, and immediate medical treatment is therefore vital. However, patient prognosis depends heavily on the type, location and severity of the bone fracture, and the complexity of the pelvic structure presents diagnostic challenges. Automated fracture detection from initial patient X-ray images can assist physicians in rapid diagnosis and treatment, and a first and crucial step of such a method is to segment key bone structures within the pelvis; these structures can then be analyzed for specific fracture characteristics. Active Shape Model has been applied for this task in other bone structures but requires manual initialization by the user. This paper describes a algorithm for automatic initialization and segmentation of key pelvic structures - the iliac crests, pelvic ring, left and right pubis and femurs - using a hierarchical approach that combines directed Hough transform and Active Shape Models. Results Performance of the automated algorithm is compared with results obtained via manual initialization. An error measures is calculated based on the shapes detected with each method and the gold standard shapes. ANOVA results on these error measures show that the automated algorithm performs at least as well as the manual method. Visual inspection by two radiologists and one trauma surgeon also indicates generally accurate performance. Conclusion The hierarchical algorithm described in this paper automatically detects and segments key structures from pelvic X-rays. Unlike various other x-ray segmentation methods, it does not require manual initialization or input. Moreover, it handles the inconsistencies between x-ray images in a clinical environment and performs successfully in the presence of fracture. This method and the segmentation results provide a valuable base for future work in fracture detection

    Computer-aided diagnosis of complications of total hip replacement X-ray images

    Get PDF
    Hip replacement surgery has experienced a dramatic evolution in recent years supported by the latest developments in many areas of technology and surgical procedures. Unfortunately complications that follow hip replacement surgery remains the most challenging dilemma faced both by the patients and medical experts. The thesis presents a novel approach to segment the prosthesis of a THR surgical process by using an Active Contour Model (ACM) that is initiated via an automatically detected seed point within the enarthrosis region of the prosthesis. The circular area is detected via the use of a Fast, Randomized Circle Detection Algorithm. Experimental results are provided to compare the performance of the proposed ACM based approach to popular thresholding based approaches. Further an approach to automatically detect the Obturator Foramen using an ACM approach is also presented. Based on analysis of how medical experts carry out the detection of loosening and subsidence of a prosthesis and the presence of infections around the prosthesis area, this thesis presents novel computational analysis concepts to identify the key feature points of the prosthesis that are required to detect all of the above three types of complications. Initially key points along the prosthesis boundary are determined by measuring the curvature on the surface of the prosthesis. By traversing the edge pixels, starting from one end of the boundary of a detected prosthesis, the curvature values are determined and effectively used to determine key points of the prosthesis surface and their relative positioning. After the key-points are detected, pixel value gradients across the boundary of the prosthesis are determined along the boundary of the prosthesis to determine the presence of subsidence, loosening and infections. Experimental results and analysis are presented to show that the presence of subsidence is determined by the identification of dark pixels around the convex bend closest to the stem area of the prosthesis and away from it. The presence of loosening is determined by the additional presence of dark regions just outside the two straight line edges of the stem area of the prosthesis. The presence of infections is represented by the determination of dark areas around the tip of the stem of the prosthesis. All three complications are thus determined by a single process where the detailed analysis defer. The experimental results presented show the effectiveness of all proposed approaches which are also compared and validated against the ground truth recorded manually with expert user input

    Applying machine learning methods to enable automatic customisation of knee replacement implants from CT data

    Get PDF
    The aim of this study was to develop an automated pipeline capable of designing custom total knee replacement implants from CT scans. The developed pipeline firstly utilised a series of machine learning methods including classification, object detection, and image segmentation models, to extract geometrical information from inputted DICOM files. Statistical shape models then used the information to create femur and tibia 3D surface model predictions which were ultimately used by computer aided design scripts to generate customised implant designs. The developed pipeline was trained and tested using CT scan images, along with segmented 3D models, obtained for 98 Korean Asian subjects. The performance of the pipeline was tested computationally by virtually fitting outputted implant designs with ‘ground truth’ 3D models for each test subject’s bones. This demonstrated the pipeline was capable of repeatably producing highly accurate designs, and its performance was not impacted by subject sex, height, age, or knee side. In conclusion, a robust, accurate and automatic, CT-based total knee replacement customisation pipeline was shown to be feasible and could afford significant time and cost advantages over conventional methods. The pipeline framework could also be adapted to enable customisation of other medical implants

    Reconstruction of Patient-Specific Bone Models from X-Ray Radiography

    Get PDF
    The availability of a patient‐specific bone model has become an increasingly invaluable addition to orthopedic case evaluation and planning [1]. Utilized within a wide range of specialized visualization and analysis tools, such models provide unprecedented wealth of bone shape information previously unattainable using traditional radiographic imaging [2]. In this work, a novel bone reconstruction method from two or more x‐ray images is described. This method is superior to previous attempts in terms of accuracy and repeatability. The new technique accurately models the radiological scene in a way that eliminates the need for expensive multi‐planar radiographic imaging systems. It is also flexible enough to allow for both short and long film imaging using standard radiological protocols, which makes the technology easily utilized in standard clinical setups
    corecore