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Abstract

Extraction of bone contours from x-ray images is an important first

step in computer analysis of medical images. It is more complex than

the segmentation of CT and MR images because the regions delineated by

bone contours are highly nonuniform in intensity and texture. Classical

segmentation algorithms based on homogeneity criteria are not applicable.

This thesis presents a model-based approach for either semi-automatically

or automatically extracting femur contours from hip x-ray images. The

semi-automatic method requires users to manually align the model to the

femur in the image while the automatic method works by first detecting

prominent features, followed by registration of the model to the x-ray image

according to these features. Then the model is refined using active contour

algorithm to get the accurate result. Experiments show that the semi-

automatic method can always accurately extract the femur contours and

the automatic method can extract the contours of the femurs with regular

shapes, despite variations in size, shape and orientation.
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Summary

Extraction of bone contours from x-ray images is an important first step in

computer analysis of medical images. It is more complex than the segmentation

of CT and MR images because the regions delineated by bone contours are highly

nonuniform in intensity and texture. Classical segmentation algorithms based on

homogeneity criteria are not applicable. This thesis presents a model-based ap-

proach for either semi-automatically or automatically extracting femur contours

from hip x-ray images. The semi-automatic method emphasizes reliability and ac-

curacy. It requires users to manually align the model femur to the femur contour

in the image. Then active contour is applied to accurately identify the femur con-

tour. The automatic method emphasizes automation without user initialization.

It works by first detecting prominent features. Then the model femur is registered

to the x-ray image according to these features. Finally, the model is refined using

active contour algorithm to get the accurate result. Experiments show that the

semi-automatic method can always accurately extract the femur contours and the

automatic method can extract the contours of the femurs with regular shapes,

despite variations in size, shape and orientation.

viii



Chapter 1

Introduction

1.1 Motivation

Imaging techniques are widely used in medical practice. It has become an impor-

tant tool in many areas, such as surgery planning and simulation, intra-operative

navigation, radiotherapy planning, and tracking of the progress of diseases, etc.

As a result, a lot of research work has been done in computer-aided medical image

analysis. For example, in the area of image-guided nero-intervention, MR images

are analyzed to plan treatments of brain aneurysms and image-guided delivery of

coils to the aneurysm. In the area of cancer imaging, x-ray, MR, and ultrasound

images are analyzed to provide early detection, monitoring and treatment assess-

ment of cancer. In the area of cardiac imaging, MR and ultrasound images are

analyzed to get the time-varying information for tissue perfusion assessment. In

such computer-aided analysis, the objects of interest must be isolated from the

images. So segmentation and contour extraction of the objects of interest is the
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first step in these applications.

Our project team is working with Singapore General Hospital to develop x-ray

image analysis systems. One of the system is for automated screening and detec-

tion of femur fractures. This system can help young doctors working in Emergency

department to detect subtle fractures that they may miss due to inexperienced

in reading x-ray images. It can also filter out those obviously healthy cases and

alarm doctors to possible fractured cases. Methods of femur fracture detection

with known contour have been developed [TCL+03, CYL+04, LXC+04]. Another

system is for bone fracture surgery. For example, when a fracture occurred at the

shaft part of a femur, there used to be some rotation between different broken

parts of the femur. The surgeons must recover the original relative pose between

different parts. Our system can help surgeons to estimate this relative pose by

registering a 3D femur model to the bone contours in x-ray images. Both of these

two systems require femur contours in x-ray images. So a method to extract femur

contour is very useful and important.

But these two systems require different characteristics for the contour extrac-

tion method. For the surgery system, the extracted contour must be very accu-

rate, otherwise the recovered 3D pose cannot be accurate. It is difficult to estimate

what level of accuracy of the contour extraction method is enough for this surgery

system, as it is expected that there will also be some errors from 3D registration

and it is difficult to identify which error is from which part. So we hope the con-

tour extraction method for the surgery system to be as accurate as possible. But

generally, an error level of around 1 to 3 pixels is almost the limit of commonly

2



used edge detection methods. More accurate edges can only be detected by ap-

plying sub-pixel edge detection. So it will be acceptable if the contour extraction

method produces an error level of 1 to 3 pixels. However, this surgery system

does not require the contour extraction method to be fully automatic because in

one surgery, only one patient’s x-ray image needs to be processed. It is possible

to get some user input to help the contour extraction.

On the contrary, the contour extraction method for fracture detection must

be fully automatic. Our screening system is expected to process a large batch of

x-ray images from many different patients. It will be too tedious to let doctors

give some input for each of these images. But the screening system does not

require so accurate extraction results as the surgery system does. This is because

the image features that are very near the contour normally do not give significant

information about fractures. However, a reasonable contour is still necessary. If

some loose bound, such as a bounding box, is used, too much noise from outside

of the actual contour will be included for fracture detection, which will overwhelm

the actual feature indicating fractures because this kind of features can be very

subtle, as shown in Figure 1.1.

So we want to find two contour extraction methods. One method is semi-

automatic and very accurate, which is for the surgery system. The other method

is fully automatic but less accurate, which is for the screening system.

3



Figure 1.1: An example of subtle fracture.

1.2 Research Goal

The objective of this research is to extract the contours of the left femur and the

right femur from a hip x-ray image. An example of the standard hip x-ray image

is shown in Figure 1.2. The position, size and orientation of the femurs in all

the input images are similar but not exactly the same. The ideal result will be

a curve, consisting of a series of points, which coincides with the contour of the

femur. An example of the desired result is shown in Figure 1.3.

In Figure 1.4, a typical example of the femur cropped from the hip x-ray image

is shown. It can be seen that the image is generally very noisy. A lot of edges

caused by the muscles or other bones can easily mislead the contour extraction

algorithm. For example, the femoral head overlaps the pelvic bone, which makes it

very difficult to get a clear contour of the head. The edge caused by the abdominal

muscle, which usually passes the femur, and the muscles around the shaft can also

mislead the algorithm. These extraneous edges and noise make fully automatic
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Figure 1.2: An example of the hip x-ray image.

Figure 1.3: An example of the extracted femur contour.
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Figure 1.4: A typical femur x-ray image.

contour extraction very difficult.

A common way to avoid the noise is to initialize the model contour very near to

the true contour. In existing x-ray image analysis applications, there are generally

two initialization approaches. The first approach is manual initialization, which

requires the user to input the initial contour. For example, in [LZYZ04], the

system requires the user to provide the rough initial position of the target carpal

bone, which is then deformed to get the true contour of the carpal bone, as shown

in Figure 1.5. Generally, user input can make the problem easier to solve. But it

makes the system not fully automatic.

Another approach is to automatically find the initial contour by some heuristic

conditions. Normally, these heuristic conditions are obtained from prior knowledge
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of the target object, which is different for different object. For example, in [CJ04],

the system tries to detect the gap between neighboring teeth and the gum line

to form the initial contour of the tooth, as shown in Figure 1.6. In this way,

the system can be fully automatic, but the accuracy of the result will highly

depend on the detection result of the initial contour, which is affected by the

target object and the input image. Moreover, the heuristic conditions make the

system applicable only to specific body parts.

In general, fully automatic contour extraction of target objects with complex

shapes from noisy images is a very difficult problem. In the system presented in

this thesis, both approaches are implemented. The manual initialization approach

can be used in situations where reliability and accuracy are very important and

automation is not crucial. The automatic initialization approach can be used

where the process must be automatic and a small amount of error can be tolerated.

1.3 Thesis Overview

The general outline of this thesis is as follows: Chapter 2 will introduce some

related work. Chapter 3 will discuss the method of femur contour extraction with

some minimal manual initialization. Chapter 4 will discuss the method of fully

automatic femur contour extraction. And finally, Chapter 5 will discuss future

work and Chapter 6 will conclude this thesis.
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Figure 1.5: Carpal bone segmentation. (a) initial contour (b) final result (Figure

4 from [LZYZ04]).

Figure 1.6: Tooth contour initialization (Figure 4 from [CJ04]).
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Chapter 2

Related Work

Existing object contour extraction methods for medical images can be categorized

into four general categories: segmentation, contour following, deformable models

and atlas-based. These approaches are discussed in more details in the following

sections.

2.1 Classical Segmentation Approach

Image segmentation and contour extraction are related in the sense that if an ob-

ject is segmented from the image, then the contour of the object is available, and

vice versa. But there are still some differences between segmentation and contour

extraction under certain conditions. For example, classical image segmentation

algorithms assume that the regions to be segmented contain homogeneous fea-

tures so they attempt to segment an input image into regions based on feature

homogeneity criteria. But contour extraction algorithms attempt to extract the

contours of complete objects. If the target objects contain several regions with
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different features, the results of image segmentation and contour extraction will

be different.

Image segmentation has been studied from a wide variety of perspectives.

Lots of techniques have been proposed, including edge detection [Can86, Per80,

Pra80], thresholding [LHKU98, LKC+95, SSW88], region growing and splitting

[AB94, BJ88, DMS99, HS85], clustering [Cel90, Sch93, PB00, PHB99], water-

shed [GMA+04, RM00, Ser82], and classification [MFTM01, RM03, KGKW98,

WGKJ96] etc. These methods have been applied for segmenting medical images

into regions with homogeneous features such as brain [GDP+98, LHKU98] and

tumor [GBBH96, PPO+96, LKC+95] in MR [BHC93, KGKW98] or CT [LS92]

images.

However, these classical segmentation algorithms are not applicable to the

extraction of femur contours in x-ray images because the homogeneity criteria are

not satisfied for femurs in x-ray images. For instance, in a femur x-ray image, the

femoral head region contains nonuniform texture pattern due to the trabeculae

(Figure 2.1), and the femoral shaft region has nonuniform intensity due to the

hollow interior within solid bony walls (Figure 1.4). Moreover, the femoral head

overlaps with the pelvis bone (Figure 1.4). In this case, the extraction of femur

contours becomes a more complex problem than classical image segmentation

problem.
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Figure 2.1: Close-up view of femoral head.

2.2 Contour Following Approach

Contour following is the most direct and intuitive approach, which is widely used in

many applications [LNOK01, ZTMR01, LNY00, BC99, CHV+97]. The basic idea

is to select corners and local edge maxima as starting points, and then to follow

a contour to another corner or local edge maximum by selecting the strongest

edge in the following process. For example, Lourens et al. used this approach to

extract contours from color images [LNOK01]. First of all, the image contrast is

enhanced, and then the edge and corner points are detected. After that, a greedy

contour following process is started from the edge and corner points. At the corner

points, more than one contour can be followed. In the contour following process,

a contour is always passing through the local gradient maximum. But in this

approach, the contour following process can be easily misled by undesired edges.

As discussed in the previous chapter, the femur x-ray images are very noisy. It is

very difficult to control the contour following algorithm to always pick the right

edges.
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2.3 Deformable Model Approach

Deformable model approach is to let the model of the target object deform under

certain constraints and finally snap onto the contour of the target object. Some

commonly used methods in this approach include active contour, active shape and

level set method.

2.3.1 Active Contour

Active contour [KWT88, TPBF87, TWK88], or snake, method deforms the initial

contour by minimizing the total energy of the contour. Three kinds of energy

terms can be defined in active contour:

1. Internal energy, which constrains the stretching and bending of the contour.

2. Image force, which is the image feature such as image intensity or edges

attracting the contour.

3. External force, which constrains the deformation of the contour.

The external force can be absent, and then the deformation of the model is only

affected by the image features, which makes the model very sensitive to noise and

its initial configuration. An example of extraction of carpal bone contours using

active contour is shown in Figure 1.5.

A lot of improvements to the snake have been proposed. For example, Xu et

al. suggested using gradient vector flow (GVF) as the image force to make the

snake less sensitive to its initial configuration and capable of snapping to concave

object boundaries [XP97]. Some other methods incorporate geometric constraints
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in the snake. For example, Shen et al. [SHD01] embedded geometric information

as attribute vector into the snake. The attribute vector contains the areas of

triangles formed by each point on the snake and their two neighboring points.

During the snake’s evolution process, the areas of the triangles are constrained.

Foulonneau et al. [FCH03] includes Legendre moments in the snake to provide

global description of a reference shape.

Active contour method has been used for segmentation of brain in MR im-

ages [AM00], liver [GKK98, YF03] or heart [SHC94] in CT images, and blood

vessels [XSK+94] in HVEM images. In general, the active contour method is still

very sensitive to noise and requires good initialization. And snake cannot handle

topology change.

2.3.2 Active Shape

Basically, active shape model (ASM) [CHTH94] is a statistical model generated

from a set of training samples. A series of corresponding points, called landmark

points, are identified on the boundary of the target object in each training image.

Then the training samples are regarded as vectors and statistical parameters of

the vector distributions are computed using principal component analysis. By

changing the parameters, new shapes can be synthesized.

The contour extraction process using ASM is actually a process of synthesizing

an optimal shape that is most similar to the shape in the image. The statistical

difference between the synthesized shape and the original model can be calculated.

By restricting the difference to small values, the deformation can be limited to

13



Figure 2.2: Extraction of tibia contour using ASM. The labelled points 1, 2, 3 are

landmarks

an acceptable range. An example of extraction of tibia contour from ultrasound

images using ASM is shown in Figure 2.2.

ASM has been applied for segmentation of tibia bone in ultrasound images

[HZ01], heart in echocardiographic images [HG00] or MR images [OBHF03], and

vertebra in CT images [STA96]. ASM is more suitable for the situation where

the shape of the target object can be controlled by not too many parameters.

Otherwise it will be too difficult to synthesize the optimal shape. Moreover,

many training samples are needed to correctly compute compute the statistical

distribution.

2.3.3 Level Set

The level set method is proposed by Sethian et al. [Set96]. The idea of this method

is to handle the topology change problem in one higher dimension. Let Γ denote

a closed 2D curve. To deform Γ, a 3D function φ(x, y, t) is defined. This is called

14



Figure 2.3: Extraction of leukocyte using level set.

the level set function. The solution of φ(x, y, t = 0) = 0 is the initial contour.

This is called the zero level set. Deformation of Γ is achieved by moving the level

set function φ along the time axis t. Then, solution of φ = 0 at time t is the

desired contour. Let F denote the force that gives the speed of Γ in its normal

direction. Then, the change of φ over time t, φt, is given by the equations:

φt + F |∇φ| = 0, (2.1)

φ(x, y, t = 0) = Γ. (2.2)

An example of extraction of leukocyte contours using level set methods is shown

in Figure 2.3. As level set method can easily handle topological changes, multiple

leukocytes can be extracted with a single initial contour.

The level set method has been applied for brain segmentation in MR images

[Sur01, MA98], detection and track of leukocyte [MRA04] and extraction of pul-

monary vessels [ZBJ+98] from CT images. The level set method can easily handle

topological changes of the contour. But it generally does not preserve the shape

information.
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2.3.4 Summary

These deformable approaches are contour-based instead of region-based. So unlike

the classical segmentation methods, they have the potential of extracting contours

of body parts that do not contain homogeneous features. An important weakness

of these approaches is that they are typically sensitive to noise. So they usually

require good initialization to produce good results. Otherwise, these methods

can be easily affected by noise and extraneous edges in the image, resulting in

incorrect extraction of object contours.

2.4 Atlas-Based Approach

The atlas-based approach [PXP00] can solve the initialization problem of de-

formable model approach. This approach first constructs a spatial map called

atlas based on some prior knowledge. The prior knowledge can be the contour of

the surface of target objects, the spatial relationship between different objects in

input images, etc. The atlas can be constructed from a single sample. It can also

be constructed by finding the spatial distribution of objects from a set of training

samples, resulting in probabilistic atlas.

After construction, the atlas is aligned to the input image by some global

transformation. Then, local deformation of each part of the atlas is performed

to accurately extract the contours of the target objects. Local deformation can

be achieved using deformable model methods described in Section 2.3 or other

free-form deformable methods.
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Atlas approach has been applied for segmentation of brain CT images [AOB03],

brain MR images [ANWD99, SHD01] and abdominal CT images [PBM03]. Atlas-

based approach is typically application specific. Different objects or input images

normally contain different prior knowledge. So different atlas must be used. And

in our application, the atlas-based approach can still face difficulties because the

femurs in different images can be oriented differently due to variations in the

patients’ standing postures resulting from femur fractures. Incorporating articu-

lation of body parts in the atlas-based approach may help to solve the problem of

model initialization but it makes the atlas very complex and difficult to use.
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Chapter 3

Contour Extraction with Minimal

User Input

3.1 Overview

This chapter will describe the method for contour extraction with some user in-

puts. As discussed in Section 1.2, fully automatic contour extraction of the fe-

mur bone from noisy images is very difficult. And under certain situations, the

reliability and accuracy of the extraction algorithm is very important while its

automation is not so crucial. Then this semi-automatic method can be used. For

example, in the operation theater, the surgeons need to estimate the relative pose

of the broken parts of the femur bone. One way is to register the 3D femur model

to the bone contours in the fluoroscopic x-ray images (Figure 3.1). To do this,

the contour must be as accurately extracted as possible. But whether the method

is automatic is not so important as the target is just one image, not a batch of
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Figure 3.1: An example fluoroscopic x-ray image.

many images.

The overview of this system is shown in Figure 3.2. First of all, a model femur

contour is manually aligned with the femur contour in the image. Then the active

contour algorithm is applied to refine the aligned femur contour to accurately

identify the femur contour in the image.

3.2 Manual Alignment

As discussed in Section 1.2, a good initialization is very important to get an

accurate result. And user input is always a reliable source of initialization. But

some guidelines are still essential to help a user generate a good initialization and

to reduce the amount of work required from the user. So a simple GUI with an
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Figure 3.2: Overview of femur contour extraction with user inputs.

existing femur model is developed. The user can control some key features of

the femur shape and intuitively see how to deform the shape to produce a good

initialization. The user can easily drag, scale and rotate the model.

Basically, the whole process is divided into five steps. In the first step, the user

moves and scales the whole model to align with femoral head (Figure 3.3). The

femoral head is chosen as the first femur part to be aligned because it is circularly

symmetric. So, only translation and scaling are required.

In each of the next four steps, a segment of the model femur contour is de-

formed and aligned to the femur contour in the image (Figure 3.4–3.7). Each

segment is defined by two fixed end points u1 and u2 and a movable feature point

v located between u1 and u2. As v is moved to a new position v′, the segment

undergoes a similarity transformation, which includes scaling and rotation. The
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subsegment from ui, i = 1, 2, to v′ is rotated about ui. So, the scaling factor si is

given by

si =
‖v′ − ui‖

‖v − ui‖
(3.1)

and the rotation matrix Ri can be obtained by solving the equation

v′ − ui = siRi(v − ui). (3.2)

Then any point p lying on the subsegment from ui to v is moved to the new point

p′ given by

p′ = siRi(p − ui) + ui. (3.3)

Sample results of these four steps are shown in Figure 3.4–3.7. In these figures,

the green dots are the fixed end points and the black dots are the movable feature

points. In the second step (Figure 3.4), the upper corner point of the greater

trochanter is the movable feature point. The contour from the joint between

femoral head and the upper boundary of the neck to the bottom of the right

boundary of the shaft is adjusted accordingly. In the third step (Figure 3.5),

the lower corner point of the greater trochanter is the movable feature point. The

contour from the upper corner of the greater trochanter to the bottom of the right

boundary of the shaft is adjusted accordingly. In the fourth step (Figure 3.6), the

midpoints of the line segment connecting the bottoms of the two boundaries of

the shaft is the movable feature point. The contour from the lower corner of the

greater trochanter to the joint between the femoral head and the lower boundary

of the neck is adjusted accordingly. In the fifth step (Figure 3.7), the midpoint of

the lesser trochanter is the movable feature point. The contour from the bottom
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Figure 3.3: Manual alignment: Step 1. This step involves global translation and

scaling of the whole model to fit the femoral head part.

of the left boundary of the shaft to the joint between the femoral head and the

lower boundary of the neck is adjusted accordingly.

The segments adjusted in two consecutive steps overlap each other. The reason

for this design is that each part of the femur contour normally is affected by two

feature points. And the overlapping parts are adjusted in the process of moving

the two corresponding feature points. The model femur contour is aligned better

in this way.
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Figure 3.4: Manual alignment: Step 2. This step adjusts the model to fit the

upper corner point of the greater trochanter. The green dots are the fixed end

points and the black dot is the movable feature point.
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Figure 3.5: Manual alignment: Step 3. This step adjusts the model to fit the

lower corner point of the great trochanter.
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Figure 3.6: Manual alignment: Step 4. This step fixes the orientation and width

of the shaft.
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Figure 3.7: Manual alignment: Step 5. This step fixes the position and size of the

lesser trochanter.
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3.3 Active Contour

The aligned femur model from the previous step is used as the initial configuration

of the active contour. And edges of the image are detected. From the edges, the

gradient vector flow (GVF) field is computed. Then it is used as the external

energy to attract the active contour to the correct femur contour.

3.3.1 Edge Detection

A modified Canny edge detector is applied here, which is proposed by Tian [Tia02].

The original Canny edge detector [Can86] works on gray scale images to find the

edges. It first smoothes the image using a Gaussian filter. Then it applies a 2D

first derivative filter on the smoothed image to calculate the gradient magnitude

and orientation. Next, it suppress those non-maximal pixels along the gradient

direction to find the local peaks. And finally, it links up the edges using double

thresholding.

But if Canny edge detector is directly applied on the femur images, it will

either produce too much noise, if a lower threshold is used, or lose some actual

edges at the femoral head (Figure 3.8). So Tian et al. proposed a modified Canny

edge detector to solve the problem [Tia02]. The idea is to preserve the edges

at the femoral head and remove the noise at the same time by looking at the

pixel intensity. Observation shows that the pixels on the bone region normally

have higher intensity values than the noise. So the modified Canny edge detector

first detects all edges using small smoothing effect and low threshold value, then

suppress those edge points with low intensity values, which is very likely to be
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(a) (b) (c)

Figure 3.8: Result of Canny edge detection. (a) Original femur images. (b) Canny

edges with low threshold values. (c) Canny edges with more smoothing and higher

threshold values (Figure 3.2 in [Tia02]).

noise. The result of the modified Canny edge detector is shown in Figure 3.9.

The percentage values determine the thresholds. For example, 20% means the

threshold is larger than the gradient magnitude of 20% of all the pixels. An

example of the edge detection result of fluoroscopic image is shown in Figure 3.10.

3.3.2 Active Contour and Gradient Vector Flow

Active contour, or snake, is applied in the method to refine the snake to better

match the femur contour in the image. This method is proposed by Kass et al

[KWT88], which is basically an energy minimization process. The total snake

28



(a) (b) (c) (d)

Figure 3.9: Modified Canny edge detection with various threshold values. (a)

20%, (b) 50%, (c) 70%, (d) 90% (Figure 3.3 in [Tia02]).

Figure 3.10: An example of edge detection result of a fluoroscopic image.
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energy is defined as :

Esnake =

∫

1

0

[Eint(v(s)) + Eimage(v(s))]ds (3.4)

where v(s) is the parametric curve representing the contour. Eint is the internal

energy, which is the sum of a first-order term and a second-order term, defined as

follows:

Eint =
1

2
[α(s)‖vs(s)‖

2 + β(s)‖vss(s)‖
2] (3.5)

and vs(s) and vss(s) are the first derivative and second derivative of v(s) re-

spectively. The first-order term represents the elasticity of the contour while the

second-order term represents rigidity. They are controlled by α(s) and β(s). The

larger the value of α(s) and β(s), the more the contour shrinks.

Eimage is the image feature which the snake is expected to snap to. In the

case of contour extraction, it should be the edges. But the snake as defined above

cannot snap well to the concave parts of the contour as shown in Figure 3.11. To

overcome this shortcoming, gradient vector flow (GVF) is proposed by Xu et al.

[XP97]. GVF field is a vector field g(x, y) = (u(x, y), v(x, y)) that minimizes the

energy functional

E =

∫∫

µ(u2

x + u2

y + v2

x + v2

y) + ‖∇E‖2‖g −∇E‖2dx dy (3.6)

where µ is a constant that is set according to the amount of noise present, and

ux, uy, vx, and vy are the partial derivatives of u and v with respect to x and y.

∇E is the gradient vector normal to the edge E derived from the image. Using

variational calculus, it can be shown that the GVF field can be computed by
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Figure 3.11: (a) Convergence of snake. (b) Traditional potential force. (c) Close-

up at concavity: no force to attract the snake towards the bottom of the concavity

(taken from [XP97]).

solving the following Euler equations:

µ∇2u − (u − Ex)(E
2
x + E2

y) = 0

µ∇2v − (v − Ey)(E
2
x + E2

y) = 0

(3.7)

where Ex and Ey are the partial derivatives of E with respect to x and y.

Basically, GVF is derived from the diffusion of the gradient vectors of the edge

map. The forces pointing to the concave edge will be diffused out so that the snake

can be attracted to the edge, as shown in Figure 3.12. The small arrows stand

for the direction of the image force. By comparing Figure 3.11 and Figure 3.12,

it can be seen that in the traditional force field, there is no force at the top of

the concavity to attract the snake to the bottom of the concavity. So the snake

cannot converge to the bottom of the concavity. In the GVF field, there are such

forces. Therefore, the snake can snap onto the desired contour with concave parts

by minimizing the total energy Esnake.
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Figure 3.12: (a) Convergence of snake. (b) GVF external force. (c) Close-up at

concavity: forces exist to attract the snake towards the bottom of the concavity

(taken from [XP97]).

After manual initialization of the model femur contour described in Section 3.2,

the GVF snake is applied to deform the model femur contour to align accurately

with the target femur contour in the image. In current implementation, uniform

α and β values are used. Since the snake is well initialized by manual alignment

of the model femur contour, the snake can accurately snap onto the target femur

contour. And the snake converges very fast.

3.4 Experiments and Discussion

A testing set of 4 fluoroscopic x-ray images and 30 normal femur images cropped

from standard hip x-ray images were used to test the contour extraction method

with manual model alignment. The size of fluoroscopic x-ray images was 490×490.

The size of the normal femur images was 297 × 348. The error of an extracted

contour is measured in terms of the mean error between the points on the ex-
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tracted contour and their closest points on the manually marked contour, which

is regarded as the ground truth.

The method successfully extracted the femur contours in all testing samples.

For the fluoroscopic x-ray images, the mean and the standard derivation of the

error are 0.239 pixel and 0.123 pixel (Figure 3.13). For the normal femur im-

ages, mean and the standard deviation of the error are 1.32 pixels and 0.30 pixel

(Figure 3.14).

The method accurately extracted the femur contours in all testing images

despite variations in size, shape and orientation. The errors of the extracted

contours are very small. They are no more than 2.06 pixels, which are only 0.6%

of the image size. This shows that the manual initialization approach is very

reliable and accurate.

The accuracy of the results reply on the initialization and image nature. An

example of different extraction results from the same image with different initial-

ization is shown in Figure 3.15. It is shown that at some parts where there are

many edges from other bones, e.g. femoral head (Figure 3.15(b)) and neck (Fig-

ure 3.15(c)), the contour can be easily distracted if the initialization is not close

enough to the desired edges, while at those parts where the image is very clear,

e.g. femoral shaft (Figure 3.15(d)), even if the initialization is quite far away from

the desired edge, the contour can still snap onto the desired edge.
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(a) (b)

(c) (d)

Figure 3.13: Test results of fluoroscopic x-ray images. The errors are (a) 0.299

pixel, (b) 0.150 pixel, (c) 0.126 pixel and (d) 0.384 pixel.
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(a) (b)

(c) (d)

Figure 3.14: Test results of normal x-ray images. The errors are (a) 2.06 pixels,

(b) 1.10 pixels, (c) 1.68 pixels and (d) 1.82 pixels.
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(a) (b)

(c) (d)

Figure 3.15: Sensitivity of snake initialization (green curves) on the extracted

results (red curves). (a) An optimal result. (b–d) Results affected by extraneous

edges in the image.
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Chapter 4

Automatic Contour Extraction

4.1 Overview

As discussed in Section 3.1, semi-automatic contour extraction with minimal user

inputs is suitable when reliability and accuracy are more important than automa-

tion. But in some applications, the situation is reversed. For example, when many

x-ray images need to be screened, a fully automatic method is more efficient than

a semi-automatic one. In current clinical practice, x-ray images are visually in-

spected by doctors. But this work is very tedious and when the doctors get tired,

errors can happen. So some algorithms are developed to help the doctors to au-

tomatically screen the x-ray images [TCL+03, CYL+04, LXC+04]. In this case,

automation is very crucial. The system cannot reduce the doctors’ workload if

it still requires users’ inputs in segmenting each input image. However, a small

amount of errors in contour extraction can be tolerated because the fracture de-

tection algorithms work according to the image feature inside the femur contour.
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The features that are very near to the femur contour do not affect the classification

result significantly.

This chapter describes the fully automatic femur contour extraction method.

The method takes a standard hip x-ray image (Figure 4.2) as the input. It consists

of three main stages as shown in Figure 4.1.

1. Delineation of the regions that contain the left and the right femurs.

2. Registration of a 2D model femur contour to femur regions in the image.

3. Application of the active contour algorithm with shape constraints to refine

the femur model to accurately identify the femur contour in the image.

4.2 Delineation of Femur Regions

This stage is straightforward because the pose of the patients are similar when the

hip x-ray images are taken. The femurs always fall in the left and right bottom

corners of the images. Based of 50 training samples, it is determined that the

femur region falls within a bounding box of size 990 × 1160 pixels (Figure 4.2).

The delineated regions are cropped out and used as inputs to the following stages.

All the images of right femurs are reflected so that they can be analyzed using the

same algorithm as for left femurs.
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Figure 4.1: Overview of automatic femur contour extraction method.
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Figure 4.2: Cropping the left and right femurs from the hip x-ray image.

4.3 Registration of Femur Model

This stage applies prior knowledge about the femur to register a model of the

femur contour to the one in the image. It consists of four main steps:

1. Detection of candidate femoral shafts represented by pairs of parallel lines.

2. Detection of candidate femoral heads represented by circles.

3. Detection of candidate turning points near the base of the greater trochanter.

4. Piecewise registration of model femur contour.
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4.3.1 Detection of Candidate Femoral Shafts

The outer contours of the femoral shaft consists of two approximately parallel

straight lines. These two lines always start from the bottom of the image. They

are the most consistent features in all the images. So, the natural way to start

is to detect femoral shaft by finding a pair of long parallel straight lines at the

bottom of the image.

Femoral shaft detection is performed as follows. First, up to 8 points near the

bottom of the image with the largest horizontal intensity gradient components

are identified (Figure 4.3). These are good candidate feature points because the

points on the shaft contours have very large intensity gradients. The directions of

the intensity gradients at these points should not be larger than 30◦ because the

shafts are roughly vertical in the images.

Next, contour following method is applied to identify approximately straight

lines starting at the points detected above. The points along a line should have

roughly the same intensity gradient direction, and fit well onto a straight line.

After identifying all candidate lines, they are paired up to form candidate

femoral shaft contours. The lines are paired based on the following criteria:

• The width wi between a pair i of lines should fall within an acceptable range.

From 200 training samples of femur images, it is found that the width has a

unimodal distribution which can be modeled by a Gaussian Gs with a mean

µs of 44.64 pixels and a standard deviation σs of 4.67 (Figure 4.4). So, given

the width wi, the probability that the pair of lines is the shaft contour is

given by Gs(wi|µs, σs).
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Figure 4.3: Candidate shaft starting points.

• The lines in a pair i have the correct intensity gradient directions. Specifi-

cally, the intensity gradient of the line on the left of the femur should change

from dark to bright along the positive x-axis, and that of the line of the right

of the femur should change in the opposite direction (Figure 4.5). Moreover,

they should also have large intensity gradient magnitudes Mi, which is com-

puted as the mean of the intensity gradient magnitudes of the points along

the lines.

• Thus, the probability Pi that a pair i of lines is indeed the shaft contour is

proportional to the product MiGs(wi|µs, σs), assuming the intensity gradi-

ent magnitude and the shaft width are independent factors. The intensity
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Figure 4.4: Femoral shaft width distribution obtained from 200 training samples.

The width ranges from 31.82 pixels to 57.84 pixels. This range is equally divided

into 10 bins. The y-axis is the number of samples falling in each bin.

gradient magnitude is based on x-ray absorption whereas the shaft width is

based on the patient’s body size. These two factors are thus independent.

So, each candidate femoral shaft i is associated with a probability measure Pi.

The top candidates, at most three, with the largest probability measures are kept.

Figure 4.6 illustrates an example with two candidate femoral shaft contours.

4.3.2 Detection of Candidate Femoral Heads

The femoral head is approximately circular. Usually, the contour of the femoral

head is not very distinctive. On the other hand, the femur socket of the hip bone
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Figure 4.5: Gradient directions of shaft lines.

Figure 4.6: Candidate femoral shafts. The red pair is the first option and the

green one is the second.
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Figure 4.7: Strong edge points around the femoral head. The red and green dots

have large horizontal and vertical intensity gradient components respectively.

appears as strong edges in x-ray images, and the points on these strong edges have

very large horizontal or vertical intensity gradient components. So, such points

are detected at the top left corner of the femur region in the image. Next, circles

are fitted over these points using circular Hough transform.

For a particular patient, the size of the femoral head is positively related to

that of the femoral shaft. From 200 training samples of femur images, it is found

that the ratio of the radius of the femoral head to the width of the femoral shaft

has a unimodal distribution which can be modeled by a Gaussian Gh with a mean

µh of 0.91 and a standard deviation σh of 0.11 (Figure 4.8). Given a fitted circle

i with radius ri and a candidate shaft with width wi, the probability that circle
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Figure 4.8: Distribution of the ratio of head radius to shaft width obtained from

200 training samples. The ratio ranges from 0.63 pixel to 1,39 pixels. This range

is equally divided into 9 bins. The y-axis is the number of samples falling in each

bin.

i falls onto the femoral head is given by Gh(ri/wi|µh, σh). For each candidate

shaft found in the previous step, the top femoral head candidates, at most three,

with the largest probabilities are kept. This produces at most nine shaft-head

combinations. Fig. 4.9 illustrates an example with 3 candidate femoral heads.
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Figure 4.9: Candidate femoral heads.

4.3.3 Detection of Candidate Turning Points

In addition to the candidate femoral shafts and heads, an important feature point

which we call the “turning point” is also extracted (Fig. 4.10). This feature point

is located near the base of the greater trochanter, where the femur contour turns

from concave to convex. It is obtained as follows:

• For each candidate femoral shaft, the line on the right side of the parallel

pair is extended upward using contour following method with the straight

line condition relaxed. So, the line now traces a curve that goes along the

boundary of the greater trochanter.

• Next the second derivatives of the points along the curve is computed. The

locations of the zero crossings of the second derivatives are identified.
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Figure 4.10: Turning point at great trochanter. The red dot denotes the turning

point.

• For each shaft-head combination, the candidate turning points along the

shaft and below the center of the head are identified.

• The lowest candidate turning points, at most three, are kept for each shaft-

head combination. This produces at most 27 shaft-head-turning point com-

binations. The reason for keeping the lowest three candidates is that the

bottom part of the image contains the shaft, which is quit straight. It is less

likely to have many misleading candidates there.
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4.3.4 Piecewise Registration of Femur Model

Figure 4.11(a) shows the model femur contour. For the automatic method the

model contour does not contain the lesser trochanter because it does not contain

important feature for fracture detection. As discussed in Section 4.1, the most

important application of the automatic method is fracture detection. Including

the lesser trochanter in the model is not useful for this purpose. Moreover, in-

cluding the lesser trochanter will make the algorithm more complicated because

it is not easy to detect it.

The model femur contour is divided by five feature points into five segments.

The corresponding features points in the image are obtained as follows. The two

feature points on the head contour are obtained from the top-most and left-most

points of a candidate femoral head. The two feature points at the bottom of the

shaft contour are obtained from a candidate femoral shaft. The last feature point

is a candidate turning point.

The model femur contour is placed onto the image by piecewise registration

of the segments based on each of the 27 possible shaft-head-turning point combi-

nations. Each segment of the model femur contour is registered as follows. Let

ui and ui+1 be two neighboring feature points in the image. Let u′

i and u′

i+1 be

their corresponding feature points in the model femur contour respectively. Let

v = ui+1 − ui and v′ = u′

i+1 − u′

i. The scaling factor s is given by

s =
‖v‖

‖v′‖
(4.1)
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(a) (b)

Figure 4.11: Piecewise registration of femur model. (a) Model femur contour is

divided by 5 feature points (red dots) into 5 segments. (b) Piecewise registered

femur model used as the initial configuration of the snake algorithm.

and the rotation matrix R can be obtained by solving the equation

v = sRv′. (4.2)

Then for any point p′ on the segment between u′

i and u′

i+1, its registered position

in the image, p, can be computed as:

p = sR(p′ − u′

i) + ui. (4.3)

Figure 4.11(b) illustrates a model femur contour that is registered onto the

image and to be used as the initial configuration of the active contour algorithm.
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4.4 Active Contour with Curvature Constraints

In the semi-automatic method, the normal snake can accurately extract the femur

contour because users already initialize the snake very close to the true femur

contour. But in the automatic method, the piecewise registration results are

not as close to the true femur contour as the users inputs. So there must be

some shape constraints to guide the snake to snap to the true femur contour.

As proposed by Ee et al. [Ee04], the shape of a snake can be constrained by

constraining its curvature. The curvature of a contour is proportional to the

rate of change of the tangent of the contour, which is a second derivative of the

contour point. So, the curvature can be represented by the second derivative

vector v′′(s) = (x′′(s), y′′(s)).

To constrain the curvature, a spring force is introduced. It is proportional to

the difference between the actual curvature v′′(s) of the snake and the reference

curvature ω(s) of the model. Then, the spring energy Ec(v(s)) is given by

Ec(v(s)) =
ξ

2
‖v′′(s) − ω(s)‖2 (4.4)

where ξ is a constant parameter that controls the stiffness of the snake. The larger

the ξ, the more stiff is the snake, and thus, the better is the snake in preserving

its reference shape encoded by the reference curvature ω(s).

The snake’s total energy Esnake changes from Equation 3.4 to

Esnake =

∫

[Eint(v(s)) + Ec(v(s)) + Eimage(v(s))] ds . (4.5)

When Esnake is minimized, v(s) satisfies the following Euler-Lagrange equation,
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which can be obtained using variational calculus:

−(αv′(s))′ + (βv′′(s))′′ + (ξv′′(s) − ξω(s))′′ + ∇E(v(s)) = 0 . (4.6)

Denote the vectors ∇E = F = (Fx, Fy) and ω = (ωx, ωy). Discretizing Eq. 4.6

and rewriting in matrix form yields

Ax x + Fx = 0

Ay y + Fy = 0 .

(4.7)

Let the snake be a closed contour with n points such that v(n+1) = v(1). Then,

the matrix Ax is given by

Ax =

































c1 d1 e1 0 · · · 0 a1 b1 f1

b2 c2 d2 e2 0 · · · 0 a2 f2

...
...

...
...

...
...

...
...

...

dn en 0 · · · 0 an bn cn fn

0 0 0 0 · · · 0 0 0 1

































(4.8)

where

ai = ei = β + ξ

bi = di = −α − 4β − 4ξ

ci = 2α + 6β + 6ξ

fi = ξ(−ωx,i−1 + 2ωx,i − ωx,i+1) .

(4.9)

Compared to the original snake, Ax has an additional column of constants fi that

capture the second derivatives of the reference curvature at points v(i). Moreover,

an extra row of n zeros followed by a 1 is added to make the matrix square and

invertible. The matrix Ay is the same as Ax except ωx in fi is replaced by ωy.
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Equation 4.7 can be solved iteratively by regarding x and y as functions of

time t:

Ax x(t) + Fx(t − 1) = −γ(x(t) − x(t − 1))

Ay y(t) + Fy(t − 1) = −γ(y(t) − y(t − 1))

(4.10)

where γ is a small constant time step. Rearranging the terms yields the iterative

update equations:

x(t) = (Ax + γI)−1(γx(t − 1) − Fx(t − 1))

y(t) = (Ay + γI)−1(γy(t − 1) − Fy(t − 1)) .

(4.11)

The constrained snake algorithm is applied onto each of the candidate shaft-

head-turning point combinations. After the snake algorithm has converged, the

shape difference Esh between the candidate resultant snake and the reference

model is computed in terms of the mean squared error of rigid registration between

them. As most femurs, especially those without severe shape distortion, are quite

similar, a good extraction result should be quite similar to the model femur, which

means minimizing Esh. The mean Mg of the intensity gradient magnitudes of all

the points along the candidate result contour is also computed. As most of the

true femur contours are relative strong edges in x-ray images, a good extraction

result should maximize this Mg. So the candidate result with the smallest Esh/Mg

is regarded as the extracted femur contour.

4.5 Experiments and Discussion

A training set of 200 femur images with manually extracted contours were used to

determine the shaft width model and the femoral head radius model. A different
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set of 172 femur images were used to test the contour extraction method. The size

of all training and testing images was 297×348. A simple model femur is used by

the algorithm to extract the femur contours in the test images. The error of an

extracted contour is measured in terms of the mean error between the points on

the extracted contour and their closest points on the manually marked contour.

Success rate is the fraction of testing samples whose femur contours are extracted

accurately. A femur contour is considered successfully extracted if the error is less

than 8 pixels, which is only 2% of the image size.

Of the 172 testing samples, 81.4% of the femur contours were successfully

extracted. The mean and standard deviation of the error of the successful samples

are 3.88 pixels and 1.50 pixels. Some successful results are shown in Figure 4.12.

Among the failed cases, 31.3% are such that at least one of the candidate solu-

tion is an acceptable solution but not the top ranking solution (e.g., Figure 4.13a).

If we consider these cases (5.8% of total testing cases) as successful cases as well,

then the success rate becomes 87.2%.

The other 68.7% of the failed cases do not have acceptable results among the

candidate results. Failed samples are either fracture cases such as Figure 4.13(b)

(5.8% of total testing cases) or healthy femurs with odd shapes such as Fig-

ure 4.13(c) (4% of total testing cases) or images that contain artifacts such as

extraneous straight lines caused by analogue imaging process (Figure 4.13d) (3%

of total testing cases). Healthy femurs with odd shape have very short neck or

shaft or both, due to the unusual standing postures of the patients with fractures

on the other femurs.
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(a) (b)

(c) (d)

Figure 4.12: Sample test results. Despite the significant variations in the shapes,

sizes, and orientations of the femurs in the images, correct femur contours are

extracted. The errors are (a) 0.98 pixel, (b) 3.27 pixels, (c) 3.92 pixels and (d)

1.61 pixels.
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(a) (b)

(c) (d)

Figure 4.13: Sample failed cases. (a) One of the candidate solution is acceptable

but not ranked at the top. (b) Fractured femur with severe shape distortion. (c)

Healthy femur with an odd shape. There is almost no neck or shaft. (d) Image

with extraneous straight line caused by analogue imaging process.
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The comparison between the semi-automatic and automatic results shows that

for some successful cases whose automatic extraction is accurate, their automatic

results can be very close to the semi-automatic results (Figure 4.14(a, b)), while

for some other cases whose automatic extraction is not so accurate, the errors

of the automatic extraction are larger than that of the semi-automatic extrac-

tion (Figure 4.14(c, d)). Large errors occur at the femoral head and the lesser

trochanter. The edges caused by the sockets on the pelvic bones for the femoral

heads are usually stronger than the actual edges caused by the femoral heads. So

the contours at this part can be easily distracted by the socket. And as discussed

in 4.3.4, the lesser trochanter is omitted in the model femur contour for automatic

extraction. So, it cannot be detected by the automatic extraction method.
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(a) (b)

(c) (d)

Figure 4.14: Comparison between semi-automatic results and automatic results.

The red contours are the semi-automatic results and the green ones are the au-

tomatic results. The errors are (semi/auto): (a) 1.20/1.29 pixels, (b) 0.96/1.31

pixels, (c) 1.96/3.82 pixels, (d) 1.15/6.14 pixels.
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Chapter 5

Future work

The automatic method fails mostly when the shapes of the femurs in the input

images are very different from that of the model. To solve this problem, the model

must be able to handle more shape variations. A possible solution is to incorporate

some typical variations such as length of neck into the model. Another alternative

solution is using more than one model. For each input image, every model can

be used to extract the contour and the best result among the candidate solutions

obtained from different models can be chosen.

But for severely fractured case, these two solutions cannot work. There is no

way to get shape constraints for fractured cases because there are too many kinds

of fractures. And due to the same reason, there is no way to build a model for

fractured femurs. Automatic contour extraction of severely fractured femurs is

very difficult to solve. However, if the contour extraction method can successfully

handle all other shape variations except the variation caused by fractures, failing

to extract the femur contour can imply that this femur is fractured. This failure
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can still solve the problem of fracture detection.

Another possible improvement is to use an atlas including the whole hip to

guide the initialization. The atlas can provide the spatial relationship between

the femur and other bones, which will make the initialization less sensitive to the

extraneous edges caused by the muscles and bones. But as discussed in Section 2.4,

the femur can be oriented differently due to the patients’ standing posture. So the

atlas must be able to handle articulation, which will make the atlas very complex

and difficult to use.

This research work on contour extraction can also be extended to other body

parts with long bones such as knees, ankles, wrists, etc. A general contour ex-

traction method is very useful for medical image analysis applications.
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Chapter 6

Conclusion

This thesis presented two methods for extracting femur contours from x-ray im-

ages. The semi-automatic method is useful when reliability and accuracy is more

important. With this method, users inputs are used to align a model femur con-

tour with the femur contour in x-ray image. Then, the active contour algorithm

is applied to accurately identify the femur contour. The automatic method is

needed when automation is more important. The method detects the position of

the femoral shaft by finding pairs of roughly parallel straight lines at the bottom

of the image. Then the method detects the position of the femoral head by best

fitting the strong edge points with a circle. After that, the method detects the

position of the turning point by locating the zero crossings of second derivatives

along the right boundary of the shaft. According to these detected features, a

model femur contour is registered piecewise to the x-ray image. Finally, active

contour with shape constraints is applied to accurately identify the femur contour.

Experiments show that the semi-automatic method can always extract the
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femur contours very accurately. The automatic method can successfully extract

the contours of femurs with regular shapes, despite the variations in size, shape and

orientation. The accuracy of the successfully extracted contours from automatic

method is good enough for fracture detection. The automatic method fails for

severely fractured femurs, healthy femurs that appear to have odd shapes due to

the patients’ standing posture and images with artifacts due to analogue imaging

process.
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