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Abstract 

Hip replacement surgery has experienced a dramatic evolution in recent 

years supported by the latest developments in many areas of technology and surgical 

procedures. Unfortunately complications that follow hip replacement surgery 

remains the most challenging dilemma faced both by the patients and medical 

experts.  

The thesis presents a novel approach to segment the prosthesis of a THR 

surgical process by using an Active Contour Method (ACM) that is initiated via an 

automatically detected seed point within the enarthrosis region of the prosthesis. 

The circular area is detected via the use of a Fast, Randomized Circle Detection 

Algorithm. Experimental results are provided to compare the performance of the 

proposed ACM based approach to popular thresholding based approaches. Further 

an approach to automatically detect the Obturator Foramen using an ACM approach 

is also presented.  

Based on analysis of how medical experts carry out the detection of loosening 

and subsidence of a prosthesis and the presence of infections around the prosthesis 

area, this thesis presents novel computational analysis concepts to identify the key 

feature points of the prosthesis that are required to detect all of the above three 

types of complications. Initially key points along the prosthesis boundary are 

determined by measuring the curvature on the surface of the prosthesis. By 

traversing the edge pixels, starting from one end of the boundary of a detected 

prosthesis, the curvature values are determined and effectively used to determine 

key points of the prosthesis surface and their relative positioning. After the key-

points are detected, pixel value gradients across the boundary of the prosthesis are 

determined along the boundary of the prosthesis to determine the presence of 

subsidence, loosening and infections.  



 

v 

Experimental results and analysis are presented to show that the presence of 

subsidence is determined by the identification of dark pixels around the convex bend 

closest to the stem area of the prosthesis and away from it. The presence of loosening 

is determined by the additional presence of dark regions just outside the two straight 

line edges of the stem area of the prosthesis. The presence of infections is 

represented by the determination of dark areas around the tip of the stem of the 

prosthesis. All three complications are thus determined by a single process where 

the detailed analysis defer. The experimental results presented show the 

effectiveness of all proposed approaches which are also compared and validated 

against the ground truth recorded manually with expert user input.  

                               Najiba Al-Zadjali                                                                                                 
16th October 2017 
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Chapter 1.  
 

Introduction 

Developments of medical diagnostics tools that are based on image analysis, 

computer vision and image processing algorithms have shown great promise and 

holds ample scope for collaborative research between experts from various fields. 

Lesion diagnoses such bone fractures, wound ulcers, tumours and infectious or 

inflammatory disease are examples of the outcomes that can be expected of such 

collaborative research efforts. Designing such computer-aided detection systems is 

a complex procedure that requires an understanding of the biology of the lesion.  

Total Hip Replacement (THR) is an orthopaedic surgical procedure 

conducted to remove damaged hip joints and replace them with artificial joints, 

medically known as a ‘prosthesis’. The prosthesis used in THR consists of a ball 

component made of metal or ceramic and a socket, which has an insert or liner 

made of plastic, ceramic or metal[1]. The prosthesis is carefully fitted in the 

thighbone and acetabulum, allowing the joint to move smoothly in multiple 

directions, functioning as a normal hip joint.  

Unfortunately, replacing the hip joint with steel implant can cause serious 

complications, such as loosening, subsidence, infection, wear, dislocation and 

misalignment; common modalities such as ultrasound, CT and MRI generate images 

with high resolutions produce large number of image slices. This would create a 

difficultly in visualising complex structure without cutting away large portions of 

perhaps crucial information to medical diagnosis. Creating a computer-aided 

system that processes information of this diversity is complicated; though, the 
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motivation is that to have such a system for certain situations can provide valuable 

diagnostic support to those involved in medical diagnosis. Computers excel at 

keeping track of large amounts of data and at performing time-consuming and 

tedious tasks, effectively and quickly: a combination of a human interpreter and a 

computerised system can therefore improve diagnostic accuracy (Mitchell et al. 

[2]). It is apparent that radiologists’ performance in diagnosing medical dilemmas is 

improved significantly by the use of computer-aided systems. In the current 

practice of assessing THR complications, radiologists assess the prosthesis by 

looking for signs in the form of imperfections and comparing a number of standard 

x-ray images of the patient's hip taken over a long period of time.  

This research focuses on the use of image processing algorithms to 

automatically detect THR complications, which can significantly aid clinical experts 

and radiologists and minimise the possibility of human error, as well as significantly 

reducing the time needed for such diagnostics. In this thesis, a novel image analysis-

based technique is proposed that automatically detects most devastating clinical 

complications within Total Hip Replacement (THR) surgery, namely, loosening, 

subsidence and infection. Loosening refers to a condition in which the prosthesis 

becomes loose within the surgically created hollow area of the thigh bone due to the 

absence of cement layer around the prosthesis or the thinning of the bone around 

the un-cemented prosthesis. Subsidence refers to a condition in which the 

prosthesis unexpectedly subsides further into the bone. Infection is a condition 

wherein a clinical infection ripens on the boundary of the prosthesis or a sudden 

inflammatory syndrome without any initial signs. All these complications develop 

typically in the region that immediately surrounds the surface of the implanted 

prosthesis. Therefore, detecting these complications should commence by detection 

and the extraction of the boundary of the implanted steel ‘prosthesis’, followed by a 

surface contour analysis to determine the key points on the surface of the 

prosthesis that can be used as points of reference with respect to which the 

complications are referred to.  
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This is a crucial initial step in detecting THR complications automatically. By 

and large, detecting THR complications encompasses several distinct steps that 

mainly depend on finding region of interest on the prosthesis boundary and 

determining the pixel value variation across the prosthesis boundary.  

 

 

1.1. Research Motivation  

 

With the rapid increase of THR surgeries in orthopaedics that has resulted 

from the aging population of the world at present, medical experts are in need for 

automated or semi-automated processing tools that can provide accurate and 

robust image analysis to segment, track, recognize and detect various abnormalities 

related to THR surgery. Such diagnostic tools in the medical fields have proven 

increased diagnostics accuracy and speed of providing effective medical care 

improving the service provided to the patients and saving health service 

organisations substantial amount of funds. According to the British Orthopaedic 

Assocaiation [3] in England and Wales over 80,000 people had such operations in 

2011 and the number continues to rise. In the past, patients between 60 and 75 

years of age were considered to be the best candidates for THR. However, at 

present the average range has been extended to include more elderly patients as 

well as younger patients.  

Like in any other surgical procedure, complications may develop that will 

require post-surgery follow ups and careful monitoring to avoid revision surgery. 

Although the current modalities provide significant information about THR 

complications for medical interpretation; processing this information involves 

complicated techniques such familiarity of particular examination procedures and 
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the use of technical equipment, along with patient history based on which a 

common sense is formed to aid the diagnosis of THR complication.  

Computer aided diagnosis have became a major part of the routine clinical 

work for medical experts. They use the output of the computerized analysis 

tools/systems as a second opinion to make their final decision. The motivation is to 

investigate and devote computer vision and image processing techniques to create a 

computer assisted diagnostic tool that can interpret THR complications. To date, x-

ray images are still used as the most effective diagnostic modality for detecting THR 

failures. Interpretation of THR images relies on the accuracy of manual 

observations carried out by the medical experts to detect and identify THR failures, 

which can be too slow, inaccurate in some cases and put both clinicians and patients 

under mental and physical stress. Having a computer assisted tool that reads and 

marks the suspicious regions of THR x-ray image would assist the clinicians to focus 

on those regions and have an informed insight of the surgical condition of the 

patients. Moreover, it aids in identifying early evidence of any THR catastrophic 

failure, which can reduce the need for a revision surgery and can thus improve 

healthcare provision by reducing the patient’s bias as well as the clinician’s effort 

required. Identifying and detecting THR complications automatically is thus the key 

motivation to pursue the work conducted within the research context of this thesis.   

 

1.2. Research Gaps  
 

Although modem imaging devices provide an exceptional view of the human 

anatomy, the use of computers to quantify and analyze the embedded structures in 

the image with accuracy and efficiency is limited due to the sheer size of the images 

and the technologies used for processing the images. The existing literature review 

conducted within the research context revealed that up-to-date the diagnostic tool 
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for measuring total hip replacement complications is the manual interpretation of 

from the available imaging modalities. Hence, there is a lack of computer assisted 

techniques that could automatically detect and assess these complications.  The need 

of computer aided tool to mark suspicious region or reveal specific abnormalities 

within THR  may used to alert medical expert to these regions during image 

interpretation, improve clinical decisions and aid patients considered for revision 

surgery. The research presented within this thesis address the existing gap of an 

image analysis-based technique for the automatic detection of three of the most 

common complications within Total Hip Replacement (THR) surgery, namely 

Loosening, Subsidence and Infection.  

 

1.3. Aim and Objectives  

 

The aim of this research is to investigate and develop a robust computer 

assisted tool for automatically detecting the presence of surgical complications in 

THR images. The specific complications investigated include the detection of 

loosening, subsidence and infections. Following are the objectives of the proposed 

research that are aimed at delivering the above: 

• To develop a robust and efficient algorithm to extract prosthesis and  

obturator foramen automatically from THR x-ray images. 

• To develp a method to traverse the prosthesis boundary of a THR image, 

determining key-points on the boundary that are used as points of reference 

to automatcially detect loosening in THR x-ray images. 

• To develp an algorithm to automatically detect subsidence in THR x-ray 

images via computing the pixel value gradients of across the surface of the 

prosthesis around respective regions identified by the key-points. 
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• To develop an algorithm to automatically detect the presence of infections in 

THR x-ray images via computing the pixel value gradients of across the 

surface of the prosthesis around respective regions identified by the key-

points. 

 

 

1.4. Contribution of Research  

 The original contributions of the research conducted within the research context of 

this thesis has contributed state of art  number of noval ideas that provides practical 

solutions for the most devasting THR complications. These contributions are presented in 

detail in chapters 2 to 6. 

 

1. The literature review presented in Chapter 2, covers existing work on manual, semi-

automatic and automatic computer based approaches to the detection of THR 

complications. Alternative existing methods used to detect some of THR complication 

are also presented. It is noted that such a review of literature in the area of computer 

based detection of THR complications have not been presented in previous literature. 

Thus the literature review is a contribution to the current and future research 

community involved in this area of research.  

 

2. Two novel contribution were presented  in Chapter 3 that focus on methods that can be 

used to automatically segment two important objects of a THR image, the prosthesis 

and the obturator foramen. For the novel algorithms presented in Chapters 4-6 

requires the accurate detection of the boundary of the prosthesis and surgical 

complications that are to be detected are visible just outside the boundary of the 

prosthesis. An Active Contour Model (ACM) based approach is used to extract the 

prosthesis. In order to make the ACM approach fully automatic, a method to 

automatically select the seed point is proposed using circle detection algorithm 

wherein the centre of the circular area of the prosthesis is found. The literature review 

conducted within this thesis revealed that previous approaches proposed for the 
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detection of misalignment suffered from the need to manually annotate the boundary of 

the obturator foramen, proposes the effective use of an ACM based approach to 

automatically select it. The work presented in this chapter is novel and contributes to 

the current state-of-art in research in THR based imaging.    

 

3. A novel contribution is presented in chapter 4, that automatically detects the presence 

of loosening in THR x-ray images. The algorithm initially determines important key-

points on the contour of the prosthesis that are relevant to the identification of 

loosening. Subsequently in relation these key-points and points surrounding them, it 

carries out a calculation of pixel value gradients across the prosthesis boundary to 

determine the presence of loosening. The algorithm has been designed based on 

knowledge captured from expert radiographers and medical specialists and have been 

tested and evaluated on a sample set of images annotated by such specialists.   

 

 

4. A novel contribution is presented in Chapter 5, that automatically detects the presence 

of subsidence in THR x-ray images. The algorithm initially determines important key-

points on the contour of the prosthesis that are relevant to the identification of 

subsidence. Subsequently in relation these key-points and points surrounding them, it 

carries out a calculation of pixel value gradients across the prosthesis boundary to 

determine the presence of subsidence. This algorithm has been also  designed based on 

knowledge captured from expert radiographers and medical specialists and have been 

tested and evaluated on a sample set of images annotated by such specialists. 

 

5. A novel contribution is presented for the automatic detection of the presence of 

infections in THR x-ray images in Chapter 6. The algorithm has been designed based on 

knowledge gathered from medical experts having experience in THR image diagnostics. 

It is based on the calculation of pixel value gradient changes across cross sections 

around the end of the stem area of the prosthesis where infections are most likely to 

happen. The proposed algorithm is tested on a number of images which has been 

annotated by medical specialists to have and not to have infections.   
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1.5. Thesis Structure 

For clarity of presentation and ease of reference; in figure 1.2 below we present a 

procedural flow diagram that relates to the thesis structure. Additional experimental 

results presented in appendix as approparite.  

 

Figure 1. 1: The structure of the thesis 

A brief summary of the work presented in each chapter can be presented as follows: 

 

1. Background and Literature Review: Chapter 2 begins with a brief presentation of 

concepts and terminologies used within Total Hip Replacement surgical procedures 

and an introduction to the various surgical complications that can occur in THR. This is 
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followed by a comprehensive literature review that covers existing work on manual, 

semi-automatic and computer based automatic approaches to the detection of THR 

complications. The chapter ends with a presentation of a number of theoretical and 

mathematical concepts on which the contributory work of the thesis is based on.  

 

 

2. Automatic Prosthesis Extraction and Key Point localization: Chapter 3 focuses on 

methods that can be used to automatically segment two important objects of a THR 

image, the prosthesis and the obturator foramen. Initially the chapter presents a 

Thresholding based approach to the segmentation of the prosthesis. However this leads 

to a semi-automatic process that is not practically useful. Therefore an Active Contour 

Model (ACM) based approach is presented as the recommended approach to the 

extraction of the prosthesis automatically. The chapter finally proposes the effective 

use of an ACM based approach to automatically segment obturator foramen.     

 

 

3. Detection of Prosthetic Loosening in THR Images: Chapter 4 proposes a novel 

algorithm that automatically detects the presence of loosening in THR x-ray images. 

The algorithm initially determines important key-points on the contour of the 

prosthesis that are relevant to the identification of loosening. Pixel value gradients of 

those key points and the surrounded keypoints is calculated to determine the presence 

of loosening.   

 

 

 

4. Detection and Localization of Interest Point to Diagnoses Subsidence in THR 

Radiographs: Chapter 5 proposes a novel algorithm that automatically detects the 

presence of subsidence in THR x-ray images. The algorithm initially determines 

important key-point on the contour of the prosthesis that are relevant to the 

identification of subsidence. Subsequently in relation this key-point, the relevant region 

is segmented and calculation of pixel value gradients is calculated across the segmented 

region of prosthesis boundary to determine the presence of subsidence.  
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5. Detection of THR Infection in Radiographs: Chapter 6 proposes a novel algorithm for 

the automatic detection of the presence of infections. The algorithm is based on the 

calculation of pixel value gradient changes across cross sections around the end of the 

stem area of the prosthesis where infections are most likely to happen.  

 

 

6. Conclusion and Future Work: Chapter 7 finally concludes the thesis providing an 

insight into the possible future improvements and extensions of the novel algorithms 

presented in Chapters 3-6.   
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Chapter 2.  
 

 Background and Literature Review 

2.1. Introduction 
  

This chapter presents the process of Total Hip Replacement (THR) and 

describes THR complications and their clinical measurements and analysis that are 

performed by noting their positions and features. Many clinical and radiological 

methods used for the above process vary in degrees of accuracy of measurement of 

total hip replacement complications which are often limited to the clinical 

interpretation. Therefore, the presented literature review in this chapter is divided 

into three subsections in an attempt to thoroughly cover all related work within this 

domain. This clinical information is important in our attempt to propose computer 

vision based automated algorithms for the identification of THR complications.  

In addition to describing the clinical process around identification of THR 

complications, this chapter covers the theoretical background behind the very few 

attempts made to automatically process THR images proposed in literature and 

associated computing research.  

For clarity of presentation, this chapter is divided into several sections. 

Section 2.2; describes the clinical background of THR and its possible complications. 

Section 2.3; provides a detail literature review of computing based research 

proposed in the past for automated analysis of THR images. Section 2.4, presents 

the preliminary theories of image processing that are instrumental in the design of 
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the novel algorithms for the detection of THR complications proposed in this thesis. 

Finally section 2.5 briefly summarises and concludes the chapter.  

 

 

2.2. Clinical Background of THR and its Complications 

 

To fulfill the purpose of this study, we briefly present the medical 

terminologies related to THR and its complications that provide an understanding 

of their medical diagnosis. All THR medical diagnosis performed by medical experts 

support concepts that can be designed, implemented and integrated into their 

intelligent, automated computer based diagnosis as presented in chapters 4 to 6.  

  

 

2.2. 1 Total Hip Replacement 
 

Total Hip Replacement (also known as total hip arthroplasty) can be counted 

among the most spectacularly successful innovations of modern medicine. THR is a 

surgical procedure where the hip joint is replaced with an artificial joint called a 

prosthesis as illustrated in figure 2.1.  This consists of a ball component, made of 

metal or ceramic, and a socket, which has an insert or liner made of plastic, ceramic 

or metal [1].  The prosthesis is carefully fitted into the thighbone and acetabulum, 

allowing the joint to move smoothly in multiple directions, functioning as a normal 

hip, so the patient can get back to their usual life. However, this induces prominent 

changes internal to the human body. 
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Figure 2. 1: An artificial hip joint 

 

Implants, like any surgery do not come without risk or complications. A 

growing number of implant recipients have experienced implant failure and other 

severe complications associated with their hip replacements. The majority of the 

post-operative complications of THR are mechanical failures such as subsidence, 

dislocation, misalignment, loosening and deep infection as well as fractures. The 

specific causes of these complications include cup malrotation, trochanteric 

migration, and decreased femoral offset [81]. These complications often require 

revision. Hip revision surgery involves the removal of the former implant, the 

cement (if applicable), the surrounding tissues and any bone fractures. With over 

7,000 revision THRs per annum within the United Kingdom [4], this is an economic 

drain and more significantly distressing for the patients. Additionally, revisions 

show a higher rate of infection and poorer performance [5] as compared to the 

original surgical processes carried out. However more recently  the approaches to 

THR has changed substantially with the invention and use of newer fixation 

techniques and devices that have been introduced for both cemented and un-

cemented implants, significantly reducing the need of revisions in THR surgery. 
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Despite this the need for revisions still remains high has motivated the review of 

literature in this thesis.  

 

 

 

2.2. 2 Total Hip Replacement Complications 

 

THR surgery does not come without risk. In long term, THR surgery may 

induce complications. In this section we describe the most common THR 

complications and their potential clinical aspects of interpreting, identification and 

analysis.   

 

2.2.2.1 Loosening 

 

Loosening is clinically known as aseptic loosening. Loosening refers to 

harmful mechanical and biological events caused by osteolysis. It destroys the 

functionality of the implanted prosthesis and is associated with chronic pain and 

loss of motion. Osteolysis affects bone volume; the bone is continuously lost and 

replenished. As a matter of fact, the ration of bone resorption to bone formation 

controls the volume of bone at all times: at a younger age, the level of formation 

exceeds resorption, while in older people, the opposite is true. The condition of 

osteolysis causes bone resorption to exceed bone formation, causing a loss of bone 

volume, which leads to faster loosening around the prosthetic interface. There is no 

general definition of loosening in THR; however, in clinical practice, loosening is 

assessed indirectly by measuring radiolucent dark lines around the prosthesis and 

assessing the positional variances of the prosthesis relative to the bone. The 

radiolucent lines indicate the absence of a cement layer around the prosthesis as in 
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Figure. 2.2. As described earlier, the prosthesis is tightly fitted into the bone, but if 

the implant loosens, a widen region appears as a radiolucent zone between the 

prosthesis and bone. This can be seen in figure 2.2 (b), the x-ray image has 

radiolucent lines across the boundary of the prosthetic. Gruen [6] described seven 

sections around the femoral component figure 2.2(a) as “zones” in a system used for 

the evaluation of THR loosening. Cemented implant components generally show a 

tiny (1-2mm) radiolucent zone at the cement interface. Nevertheless, if these 

radiolucent lines progress over time to exceed 2mm at the cement-bone interface, 

then it becomes a lucent prosthetic, as shown in figure 2.2(b). However, clinical 

decisions on whether there is loosening or not vary from surgeon to surgeon with 

regards to radiolucent lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2: (a) Seven Gruen zones around the femoral component and (b) 

Radiolucency of the femoral stem 

 

 

 

 

 

  

(a) (b) 
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(a) (b) 

2.2.2.2     Subsidence 

 

Subsidence in THR is a gap between the convex of the prosthetic border and 

the cement. The prosthesis is placed into the hip either by pressing fit into the bone 

or cementing it into position, so it fits tightly and is perfectly aligned with the bone; 

this region can be described as “fixation of the THR” where the prosthesis is fitted 

into the bone or with cement. If there is any imperfection in the anatomical 

structure of prosthetic and bone, which may appear as a cavity within the 

prosthetic and bone, then this is logically described as subsidence of the prosthesis 

within the cement figure 2.3. This transverse gap between implant and bone can 

measure more than one or two millimeters. 

This is a phenomenon that applies to all femoral stems, regardless of the 

surface finish, type of prosthetic and presence of cement. Thus, subsidence refers to 

the condition in which the prosthesis unexpectedly subsides vertically further into 

the bone.  

 

 

 

 

 

 

 

 

 
 

Figure 2. 3: (a) Subsidence of a tapered femoral stem (within the cement) 

press-fit[74]; (B) An x-ray image of THR complication (Subsidence and also 

loosening)  
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One of main differences between subsidence and loosening is that with 

subsidence, the gap can is measured between the cement and the convex of the 

prosthesis, as shown in figure 2.3, while loosening is measured as radiolucent lines 

(or gap) around the broader part of the prosthesis, as shown in figure 2.2.  

 

 

2.2.2.3   Infection 

 

An infection after total hip replacement is another of the most devastating 

THR complications. Infection is a bacterial invasion of the hip joint [7]. It is also 

known as septic loosening. It is rare in orthopaedic surgeries; nevertheless, it is 

challenging to eradicate. The reason for this is that there is neither a standardised 

diagnosis nor treatment for it, despite the considerable progress that has been 

made in the medical field. Zimmerli [8] describes three categories of infection 

associated with prosthetic joints. According to Widmer [9], the first type involves 

early manifestation: the signs and symptoms appear during the first three months 

after surgery; some authors limit these surgical site infections to the first two to 

four weeks, as this is anticipated in surgery due to the potential for intraoperative 

contamination or healing disturbance during the perioperative period. The second 

type is a more delayed infection considered low-grade. The signs of this type of 

infection can appear between three months and two years after surgery, and 

usually also indicate an early sign of loosening. Lastly, late manifestation is defined 

by the appearance of the signs and symptoms of infection more than two years after 

the surgery. These infections appear either with a sudden systemic inflammatory 

response syndrome [10] or without any initial signs.  If, despite treatment for 

infection using antibiotics and other medications, the infection cannot be 

exterminated, the implant prosthetic has to be amputated and in the most extreme 

cases, the leg may also be surgically removed. It is a serious potential problem that 

occurs in the area of the wound that indiscriminately spreads, but doctors look for 
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(a) (b) 

the clinical signs around the implant in patients’ radiographs, as well as using 

laboratory investigation of infection parameters to identify whether there is an 

infection or not.  

Accordingly, one can technically diagnose infection from radiographs by 

looking for these clinical signs, as x-ray images have various intensity levels of grey, 

as a human eye can differentiate various organs and tissues. In normal x-rays of 

THR, the prosthetic appears as the brightest object that, perfectly aligns with the 

cement and the bone, as illustrated in figure 2.4(a).  

 

 

 

   

 

 

 

 

 

 

 

Figure 2. 4: X-ray image of (a) uninfected THR and (b) infected THR 

 

In abnormal x-rays, although the prosthetic appears as the brightest region, 

there is gap between the prosthetic and the cement. The element of perfection in 

the alignment of implant and cement is missing, as can be observed in figure 2.4(b). 

The highlighted region indicates dark pixels at the bottom of the implant and this 

might be diagnosed as an infection taking into account the shape of the dark pixel 

region. 
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2.2.2.4    Dislocation and Misalignment  

 

Dislocation of a total hip replacement is the second most common cause of 

revision after aseptic loosening [11]. Hip dislocation occurs when the prosthetic 

head (femoral component) is dislocated from the cup (acetabulum component) as 

in figure 2.5(a). This complication is a serious cause of morbidity in patients and a 

substantial burden on healthcare costs. The risk of dislocation is common in the 

first few months after surgery. It decreases once the first year is passed, when the 

tissue strength has recovered. However, beyond the first postoperative year, the 

cumulative risk of later dislocation continues to rise slowly over time, at a rate of 

1% every five years [12]. Dislocation leads to various posterior directions that 

clinically cause shortening of the leg, flexion and rotation of the internal implant 

components. This weakness may be accompanied by fractures of the acetabulum, 

soft tissue injuries or misalignment, which is barely visible in x-ray images. 

Improper alignment of the implant after hip replacement surgery can cause 

loosening of the hip, pain and hip wear. It may also cause post-operative hip 

dislocation of acetabular cup as illustrated in figure 2.5(b). Due to the lack of a 

definition of what constitutes a correct target of misalignment, we refer to 

misalignment as an inaccurate or misaligned position of obturator foramen. 

Obturator foramens refer to a large opening of the innominate in pelvic bone as 

shown in figure 2.5(b).  
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(a) (b) 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5: X-ray image of (a) dislocation THR and (b) misalignment THR 

 

 Although the vast majority of THR surgeries are successful; many patients 

experience minor side effects or serious and painful side effects especially in long 

run. It is necessary to monitor the level of the side effect to prevent further medical 

following falls.  

 
 

2.3. Literature Review  

 

Much of the literature related to the identification of total hip replacement 

complications is based on administered procedures that require manual assessment 

of radiographs, ranging from labour-intensive measurements of radiographs to 

semi-automated computer applications that employ image processing techniques. 

Due to the research context and the vast amount of literature that details manual or 

clinical radiographic interpretation of THR, we categorize the literature into three 

different subsections. Methods that automatically or semi-automatically assess THR 
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complications, which utilise image processing techniques are presented in 

subsection 2.3.1. Manual interpretation of THR complications is presented in 

subsection 2.3.2. Finally, prospective methods that deal with THR complications 

using alternative tools other than computer based applications is presented in 

subsection 2.3.3. However, for the purpose of this research; the first category of 

literature has been reviewed more widely.  

 

 

2.3.1 Automatic/Semi-automatic Assessment of THR    

Complications 

 

An initial unpublished study measures dislocation in total hip replacement 

used hough transform and filter back projection algorithm proposed by Otoum et 

al.[13] to identify whether the prosthetic head(femoral head)  is perfectly co-

centered within the cup (Acetabulum) or not. It quantifies key points of the 

prosthetic head and measures the distance between the centre points of the 

prosthetic head and the cup. It searches for two circles with two different radius 

values to locate the centre of circles as described above. This study also measures 

misalignment in THR by defining differences in length between two perpendiculars 

points on the tearbone by drawing straight a line from the centre of prosthetic head 

to a straight line that connects the two key predefined points on the teardrop bone. 

Otoum et al. [13] stated that measurements of both dislocations and misalignments 

are taken to compare with acceptable tolerances provided by the medical 

specialist’s in-order to define if the values are larger than the tolerances provided 

then cases are marked as positive. However, the experimental results presented are 

not correlated to measurement of the efficiency of this method.   
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Another publication by Komeno et al. [14] examines proper position of the 

cup and the stem of a THR system, after total hip arthroplasty. This method 

measures the cup and stem anteversion using computed tomography (CT). Cup 

anteversion is measured as an angle between the line connecting the anterior edge 

with the posterior edge of the cup and the vertical line against the line connecting 

the posterior portions of the pelvis in the slice passing through the centre of the 

cup. On the other hand, the stem ante-version is measured as an angle between the 

line connecting the posterior part of the femoral condyles and the axis of the stem 

superimposed sequentially. The sum of cup and stem ante-version in posterior 

dislocated hips is significantly lesser than that of the non-dislocated hips and the 

sum in anterior dislocated hips is significantly greater than that of the non-

dislocated hips. According to the results of this study, the implant should be placed 

approximately at a 50° angle of the sum of cup and stem anteversion. To prevent 

posterior dislocation, only the anteversion angle of the cup should be increased 

rather than that of the contralateral acetabulum. However, this method has not 

taken into account the impingement of the femoral head and osseous pelvis.  

As per the automatic/semi-automatic segmentation of the THR components 

from radiographs Oprea et al. [15] investigated the use of several classical adaptive 

region segmentation techniques, using either the initial pixel luminance space 

(adaptive histogram thresholding), or an extended feature space (Fuzzy C-Means) 

to automatically segment the x-ray   images into clinically relevant parts: prosthesis, 

bone (femur), soft tissue etc.  The segmentation quality was evaluated by using the 

standard detection error and ROC (Receiver Operating Characteristics) curves. This 

method reveals that FCM segmentation provides superior performance for the 

segmentation of all image components that can be used as image analysis methods 

for a computer-assisted diagnosis system.  

Later on, Florea et al. [16] created another method to extract objects from x-

ray images for automatic analysis. They presented a model of a femoral bone with a 
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set of three non-concentrically cylindrical shapes (the bone, the medullar and 

prosthesis). The initial step of the method is based on histogram segmentation of 

image components, and then a Canny edge operator was used to determine the 

edges followed by 3D modelling of the femoral bone. The prosthesis is measured to 

be fit inside the medullar bone. Then prosthetic-bone fit percentages were 

measured that were simultaneously carried-out on the prosthetic and medullar 

channel borders. This study indicated that the measurements are valid on the 

prosthesis fit inside the femoral bone and it determines the exact position of the 

composing parts (segment the x-ray images). However the measurements were 

limited to recognizing certain hip areas in the x-ray images. In [17] Smith et al. 

proposed a new segmentation technique that was described using a hierarchical 

method of three key structures from pelvic x-ray images: the ilium, and the left and 

right acetabulums. First, Directed Hough Transforms were used to detect the femur 

shafts and to correctly determine the patient’s horizontal position within the image. 

Then the Hough transform was combined with Active Shape Model (ASM) to detect 

the femur and in turn, the acetabulum. The position of the femurs is used to 

initialize ASM for pelvic ring detection, and the location of the pelvic ring. 

Subsequently direct Hough transform was used for the detection of the iliac crests. 

This method detects fracture of structures from initial patient x-ray s that may 

assist physicians in the diagnosis and advice for proper treatment.  

      Barker et al. [18] measured subsidence of the femoral components that 

relies on the implantation of two ball markers around the femoral stem. Stem 

dimensions were used to correct magnification and out-of-plane rotations resulting 

from radiographic positioning. To measure subsidence, the position of the hip 

implant surrounding the bone and the cement were determined via circular Hough 

transform based techniques. In conjunction with a Sobel edge operator the center 

(radius) of the femoral head components and location of the spherical markers 

were located manully. This technique has as advantage of minimizing the variation 

in landmark positions by incorporating image processing algorithms and measuring 
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the axial migration of the specific design of implant used in total hip replacement. 

However, to assess the subsidence; relevant implant dimensions are required.  

Downing  et al. [19] developed a method that automatically classify different 

sections of the THR model from standard clinical radiographs using three separate 

techniques. Reference axes are defined and a template is matched to magnify and 

correct femur extraction. Measurements compared within and between patients 

giving quantified measurements of bone thickness, cement radio-lucency and 

prosthesis positioning. They define lucency using image intensity profile and to 

aussre the accuracy of the method they will apply the method to a larger set of 

images. However, using the image intensity profile may lead to inaccurate results 

because the intensity of the image is highly affected by the light illumation of the 

device which the x-ray is taken. As it clearly indicated that more testing required to 

prove the effectiveness of the proposed method. 

Hardinge  et al. [20] developed a computer-based image analysis system for 

total hip replacement. This system enhances poor quality radiographs and takes 

multiple measurements from coronal plane radiographs. Measurement of stem 

subsidence, cup migration, cup wear, and stem loosening were obtained as well as 

reproducibility and accuracy were ± 0.01 mm and ± 0.5 mm computed respectively. 

The present application is in retrospective research, but prospective monitoring of 

radiographs is planned.  

A recent study conducted by Sahin et al. [ 21] proposed a new segmentation 

method to determine boundary of obturator foramen. Marker-Based Watershed 

segmentation method and Zernike moment feature descriptor were used to detect 

obturator foramen. The region of interest was first manually extracted and then a 

Marker-Based Watershed segmentation method is applied to the region of interest. 

Subsequently the Zernike moment feature descriptor is applied to segmented 

region of interest. Zernike moment feature descriptor is used to provide the 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hardinge%20K%5BAuthor%5D&cauthor=true&cauthor_uid=1894658
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hardinge%20K%5BAuthor%5D&cauthor=true&cauthor_uid=1894658
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required matching between the binary template image and the segmented binary 

image for final extraction of Obturator Foramens. Pelvic bone rotation rate is 

automatically measured for each hip radiograph to prevent having to choose 

processing images for further angle measurements, which are based on pelvic bone 

structure.   

A number of related publications of wear estimation in THR have been 

proposed in [22, 23, 24]. Kerrigan et al. [22] used active ellipses to measure the 

wear in THR. Radiographs are manually annotated and the boundary of the femoral 

head and acetabular rim are learned. Two ellipses are drawn on the radiograph, the 

first deformed around femoral head whereas the second is placed using the 

previously learned average shape of the acetabular rim. The distance between 

centres of two ellipses calculated and converted to mm is a measure of wear. This 

method quantifies displacement of centre of the femoral head is proportional to the 

centre of the acetabular rim. 

      Later on Kerrigan et al. [23] proposed a method that automatically 

localises displacement of femoral head and acetabular rim. A wire marker is 

attached to the acetabular component of the prosthetic where a projection of an 

ellipse is modelled. The centre of ellipse is used as a reference point to estimate 

wear. 3D poses of acetabular cups estimated from projected ellipse parameters that 

were also used to estimate the expected error values. The wear measurements to 

correct these errors were investigated using standard clinical anteroposterior 

radiographs and an automated ellipse fitting method.  Yet, Kerrigan et al. [24] 

assess the active ellipse method for latter wear cases and the distances measured 

revealed as very eccentric and inadequate. The fit functions were compared, 

including a geometric error of fit function, on both synthetic data and by using 

active ellipses on a set of test radiographs that has eccentric rims. Least squares 

were estimated using a geometric error function that provided most accurate 

presence of Gaussian noise. This method has a drawback that it is computationally 
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expensive and in applications where speed is important the foci bisector distance is 

recommended as an error of fit function.  
 

2.3.2 Manual Interpretation of THR Complications  
 

     Kaneuji et al. [25] clinically deliberated the relationship between stem 

subsidence and the improvement in the initial radiolucency at the bone cement 

interface in polished- and rough-surface stems in radiographs. The outcome of this 

study state that stem subsidence was seen in 34 of 42 hips (81.0%), and 

improvement in the initial radiolucency was seen in 15 hips (35.7%) in collarless 

polished tapered stems at 1 year after operation. The key indication of this study is 

radiolucent lines around the stem in THA is generally considered a sign of implant 

failure; this destruction is presumed as stem subsidence or a contrary sign  of 

loosening if the cement moves in the femoral canal. Similar radiological signs of 

subsidence were validate by Loudon et al. [26] the clinical outcome were compared 

with femoral subsidence and radiographic changes in 102 patients at 9 to 13 years 

after low friction arthroplasty. Loudon et al. [26] also measured radiological 

subsidence of a femoral prosthesis in relation to the femur after total hip 

arthroplasty using the ruling method on radiographs. This method measure the 

distance from the tip of the femoral prosthesis to a fixed point in the bone by 

placing the radiograph on a horizontal viewing box and two mid-points are 

measured on the distal (straight) part of the stem then marked on the film. A line is 

drawn to indicate the central axis of the stem between these marked points. 

However, Loudon et al. [26] addressed that it is difficult to quantify subsidence of 

the prosthesis as an a gap between the convex lateral surface of the upper part of 

the stem of the prosthesis and the adjacent cement due to the appearance of the 

prosthesis on radiographs.     Smith et al. [27] assessed the clinical and radiological 

signs of prosthetic loosening using the electronic picture archiving and 

communications system (PACS) to reduce the risk of pre-prosthetic fractures and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20TO%5BAuthor%5D&cauthor=true&cauthor_uid=21948040
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significant loss of bone. They used the three common radiological assessments of 

total hip arthroplasty (THA); Barrack, Gruen and Hodgkinson. The findings 

indicated that the Hodgkinson system is the most reliable in evaluating femoral and 

acetabular loosening. Massoud et al. [28] conduct a study on aseptic loosening of 

the femoral component in 76 patients with primary total hip replacement using the 

Capital prosthesis. The evaluated radiological criteria of femoral component 

radiological loosening are divided into two categories. Definite loosening is 

migration of the component as demonstrated by a change in alignment in figure 2.6 

or more than 2 mm of subsidence in figure 2.7. The potential loosening was defined 

as the appearance of a radiolucent line of up to 2 mm at the cement-prosthesis 

interface that had not been present on the postoperative radiograph in figure 2.6 & 

figure 2.7. 

 

 

 

 

Figure 2.6:Definite loosening with change in  

alignment at 30 months [28]. 

 

  

 

 

Figure 2.7:Definite loosening with cement 

fracture and subsidence at 22 months 

[28]. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20TO%5BAuthor%5D&cauthor=true&cauthor_uid=21948040
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Another publication of Kinov et al. [29] argued the controversy in diagnosing 

value of bone scintigraphy and laboratory tests in patients suspected to have 

loosening of the hip arthroplasty. Seventeen patients hip radiograph were 

examined with conventional radiography and three-phase bone scintigraphy. 

Microbiological examination results of joint aspiration and surgical specimens (9 

patients), plus, C-reactive protein level (CRP) and erythrocyte sedimentation rate 

(ESR) test, as well as clinical follow-ups were evaluated on the radiographs. Five 

hips had septic loosening (infection) and three hips had aseptic loosening. In the 

remaining twelve cases, neither loosening nor infection was confirmed. For 

diagnosing infection radiography and bone scintigraphy, respectively, sensitivity 

values were 62.5% and 87.5%; specificity - 80% and 91.6%; and accuracy 85% and 

90%. For ESR and CRP, respectively, sensitivity values were 60% and 100%; 

specificity - 100% and 70%; and accuracy - 86.7% and 75%. In a study population 

of patients suspected of having infected total hip replacements, three phase bone 

scintigraphy performed better than conventional radiography, ESR and CRP tests. 

Mulcahy et al.[30] carried out a systematic review on radiograph assessment of hip 

arthroplasty. He included different types of techniques, terminologies for prosthesis 

design, surgical techniques, initial and follow-up radiographic assessment etc. He 

proposed the measurement of leg discrepancy by drawing a line connecting the tips 

of both teardrops and drawing a vertical bisector from each teardrop. Superior 

aspect of the tip of lesser trochanter was marked followed be drawing a line joining 

both ischia tuberosity. The Teardrop lies in the inferomedial portion of the 

acetabulum, just above the obturator foramen. Vanrusselt  et al.[31] also provided 

an pictorial review with systematic guidelines for the radiographic evaluation of a 

prosthesis hip.  

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mulcahy%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22915395
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vanrusselt%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26487647
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mulcahy%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22915395
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2.3.3 Alternative Methods used in Assessment of THR 

Complications 
 

       Ruther et al. [32] investigated the use a passive sensor array that was 

based on the interaction between magnetic oscillators inside the implant and an 

excitation of coil outside the patient. The main concept is to excite several magnetic 

oscillators inside the THR to impinge and to produce a sound in the audible range.  

The excited oscillators create audio signals that vary according to the amount of 

loosening. After several experimental tests, the sensor array was optimized to 

guarantee reproducible and selective excitation of the sound emission.  To increase 

optimization of measuring system; a numerical simulation of boundary was 

designed using a cylindrical and C-shaped coil. The numerical simulation showed 

the behavior of coils during application and how the magnetic field characteristics 

are developed. According to these investigations, the passive sensor system reveals 

the potential of detection of implant loosening in THR.  

      A different concept was adopted by Valstar et al.[33]  that used roentgen 

stereophotogrammetic analysis  (RSA)  to obtain accurate 3D measurements of 

radiographs for measuring migration of the prosthesis. This technique involves 

insertion of tantalum markers where two x-ray sources placed at approximately 

1.6m above the film at a 20ο angle to the vertical [33]. The accuracy of RSA ranged 

between 0.05 and 0.5 mm for translations and between 0.15ο and 1.15ο for 

rotations.  The RSA method was tested on a small group of patients due to the 

changes in implant design and by measuring micromotion of a prosthetic in a short-

term (i.e. 2 years) clinical RSA study, a prediction can be made on the chance of 

long-term (i.e. 10 years) loosening of the prosthesis. This method has been used to 

screen new developments in prosthetic design as well as to prevent patients from 

being exposed to potentially inferior designs. Gergiou et al. [34] examined the 
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potential role of vibration testing as a non-invasive method of diagnosing loosening 

of total hip replacements in the clinical setting. A vibranting device is placed on the 

patient’s knee and ultrasound device is attached to the patient’s hip. The sound 

frequency generated by vibrating femur and hip is measured where, constant 

increase and decrease in frequencies show that the implant is still attached to the 

bone and if the frequencies are irregular then it indicates that the implant has 

loosened. A comparison study is carried out between the vibration testing and 

radiographs in patients with loosening of total hip replacement. Although the 

results were satisfactory, this technique has limitations: it is unsuitable for patients 

who cannot lie on their side or who experience pain induced by vibrator. In 

addition, the vibration testing was performed in the early stages of development of 

instability of total hip replacements. The study used a different approach to identify 

the loosening; radiographs remain the most popular and practical tools used in 

assessing THR complications in medical field.  

Kristanto et al.[35] adopted a Gradient Vector Flow snake (GVF) method to 

perform a semiautomatic planning for hip joint replacement surgery using a special 

medical image viewing software, ViewPro™. The preoperative planning is 

calibrating the hip x-ray   image to adjust the magnification factor by applying GVF 

snake algorithm to detect the reference object. Manual user interference has been 

reduced significantly, therefore, the process become more user-friendly. A study 

has been performed to compare the newly developed semiautomatic algorithm to 

the old manual calibration algorithm. The results show a close relation between the 

two algorithms  with less than 1% of average relative difference. It concluded that 

the developed semi-automated algorithm can be used as an alternative for 

performing the manual calibration. 

A divergent study describe an algorithm of infection detection in x-ray 

images of lung carried out by Habib et al.[36]. The proposed algorithm adjusts 

image intensity and converts it to grey scale as a pre-processing step. Then a 
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gaussian filter is used to remove any false structure in the x-rays. To extract the 

lung from the x-ray image, image thresholding is carried out followed by dilation 

and erosion morphological operations. A flood fill algorithm is applied to localize 

the infected area in x-ray images. This study used basic image processing 

techniques to define the infected region in lung in radiographs automatically. It 

aims to improve radiation treatment and increase survival rate via accurate 

diagnosing of the disease.  

 

 

2.4. Fundamental of Image processing Techniques 

Related to Research Problem 

 

This section introduces the fundamental theories of image processing that 

are core to building novel systems/applications for computer-assisted diagnostics 

of THR images as presented in this thesis from chapter 3-6. 

 

 

2.4.1 Image Segmentation and Enhancement  

 

Image segmentation has a broad range of applications in image processing, 

computer vision, object recognition and tracking. In all of these applications, the 

grey level information of an x-ray image can be ignored due to the bi-level 

information that creates a cluster of gray level pixels which may make it hard to 

classify an object because of intensity inhomogeneity. Segmentation is the step of 

dividing digital images into multiple segments or categories that correspond to 
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different objects or parts of objects so it is easier to use and more meaningful for 

any further analysis.  

 

2.4.2 Wiener Filter 

 
A significant number of image enhancement techniques are available in 

image processing; however, the Wiener is “2-D adaptive noise removal filter” is the 

most appropriate algorithm for enhancing the anatomical visualization of bone in x-

ray   images. It reduces the noise of images based on statistical estimation from the 

local neighborhood of each pixel [39]. It also known as the low pass filters of 

greyscale images, which are degraded by the constant power of additive noise. For 

example, to calculate the Wiener filter we assume that the filtering image is 

corrupted by signal-independent, zero-mean adaptive white Gaussian noise, as 

follow:     

  

                                                                    Y(i) = x(i) + n(i,j)                                                 
 
 
where, Y(i, j) is the noisy image, X(i) is the ground truth image and n(j,j) is additive 

Gaussian noise. In order is to remove noise n(i,j) and get a linear estimate �̂�(𝑖) of 

X(i) that minimises the mean squared error (MSE), the following equation is 

utilised: 

 

𝑀𝑆𝐸(�̂�) =
1

𝑁
∑ (�̂�(i) − X(i))

2𝑁,𝑀

𝑖=1
 

 

where N,M are pixels in an image of X(i). 

When X(i) and n(i, j) are stationary Gaussian processes, the Wiener filter is the 

optimal filter [40], especially when x(I, j) is likewise a white Gaussian process. The 

Wiener filter is estimated using (2.3):  

(2.1) 
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𝑋(𝑖, 𝑗) =
𝜎𝑥

2(𝑖,𝑗)

√𝜎𝑥
2(𝑖,𝑗)+𝜎𝑥

2(𝑖,𝑗)
2 [𝑌(𝑖, 𝑗) − 𝜇𝑥(𝑖, 𝑗)]   

 
where σ2, µ are variances and means respectively, and  if the noise variance is not 

given, the Wiener uses the average of all the local estimated variances. The adaptive 

noise removal filter provides the best restored signal with respect to square error 

averaged over the original signal and the noise among linear operators [40], where, 

if the variance is high, the filter performs little smoothing and if the variance is 

small, the filter performs more smoothing. This filter is adopted because it cleans 

out the noise that has corrupted the original signal. Design of the Wiener filter takes 

a statistical approach whose output will be as close to the original signal as possible. 

 
 

2.4.3 Morphological Operations  
 

Morphological operations are powerful non-linear image analysis tools used 

in image processing. They are based on pre-defined spatial structures, known as 

structuring elements (SE), used to input an image, creating an output image of the 

same size. The value of each pixel in the output image is based on comparison to its 

corresponding neighbor pixels in the input image [41]. The fundamental 

morphological operations are erosion and dilation. Morphological open images 

combine both morphological operations respectively. They eliminate all the pixels 

of the input image that are too small to contain the structuring element. This can be 

described as if the opening of the image f by SE b was set as the erosion by b 

followed by a dilation of the result with b: 

𝑓 𝜊 𝑏 = (𝑓 Ѳ 𝑏) ⊕ 𝑏 

Likewise, the closing of f by b is:  

𝑓 •  𝑏 = (𝑓 ⊕ 𝑏) Ѳ 𝑏 

(2.2) 

(2.3) 

(2.4) 



  

34 

The use of opening and closing images has a humble geometrical 

interpretation that may support the visualization of hidden geometry in an image. 

By adjusting the default parameters and reading the image as 3D, the 

representation of a pixel can have a different colour and this would not alter the 

actual intensity value.  Assuming that the image f(x, y) is displayed as a 3D surface, 

intensity values are seen as heights over the xy-plane. The opening of f by b can be 

seen as “pushing” b up from below against the base of f. At each location of b, the 

opening reaches its highest value by any part of b as it drives against the base of f. 

The whole opening process then covers all such values obtained by having b visit 

every (x, y) coordinate of f. In brief, a morphological operation is based on set 

theoretical concepts of shape. It looks at an object in an image as a structuring 

element (SE) in order to get information about it. This structure is useful in the 

representation and description of a region’s shape. Adapting open morphology 

decreases the size of small, bright details without changing the dark regions in an 

image. Morphological operations originally dealt with binary images only and were 

later extended to grey image processing [39].  

 

 

2.4.4 Thresholding   
 

The objective of image thresholding is to divide the image into regions, as it 

is known that in image processing applications the grey level value of the 

foreground or an object is different from the grey level value of the background. It is 

an effective way to make discrete the foreground and background. In medical 

imaging applications, it is more essential to clarify the distribution of tissues or 

organs within an image than the distribution of objects in a natural scene image. 

Given a single threshold (T) for a grey image, the binary image is created by 

designating pixels with less value than the given threshold as 0 and the rest of the 

pixels as 1. For example, if F is an image of size M x N in which i is the grey level, 
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ranged as [0,J-1] , J indicates maximum array level in the image. The brightest pixel 

is denoted with coordinates (x,y) by F(x,y) where (x,y) are points at grey level F(x,y). 

The threshold value (T) is also ranged as [0, J-1] and the thresholding technique to 

determine an optimum value of (T) is based on predefined measurements, as in 

(2.5): 

𝐺(𝑥, 𝑦) = {
1, 𝑓(𝑥, 𝑦) > 𝑇

0, 𝑓(𝑥, 𝑦) ≤ 𝑇
 

 

where 1 is object, 0 is background and G(x, y) is the binary image.  

The value of each pixel in the binary image is either 0 or 1, where 0 

represents black and 1 represents white. In this work, we are interested in bright 

objects that are represented as white on a dark background.  

 

2.4.5 Sobel Edge Detection 

 

Edge detection is the process of locating the edge of an image using a 

gradient operator to detect sharp intensity variations in the image. Sobel[42] is a 

common edge detection algorithm that typically corresponds to edges in the image 

where the gray value changes significantly from one pixel to the next. It represents 

regions in the image with strong intensity contrast by finding the approximate 

absolute gradient magnitude at each point of a greyscale image. It uses derivative 

approximation to find edges and returns those edges with high gradients. In other 

word, it performs 2D spatial gradient measurement on images, using two 3x3 

masks which are convolved with the original image to calculate approximations of 

the derivatives for horizontal and vertical changes.  

If A is the source image, Gx and Gy are two images which at each point contain the 

horizontal and vertical derivative approximations. The computations are as follow: 

(2.5) 
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𝐺𝑥 = [
+1 0 −1
+2 0 −2
+1 0 −1

] ∗ 𝐴  𝑎𝑛𝑑    𝐺𝑦 = [
+1 +2 +1
    0    0    0
−1 −2 −1

] ∗ 𝐴 

 

where   represents a two-dimensional convolution operation. 

The key point is to bring out the horizontal and vertical edges individually and then 

to put them together to detect the edge. The two filters 𝐺𝑥 and  𝐺𝑦 highlight areas of 

especially high frequency, which tend to define the edge of an object in an image.  

This is done by decomposing Sobel kernels as an averaging product, along with 

kernel differentiation; both filters compute the gradient with smoothing. For 

example, 𝐺𝑥  can be written as: 

 

[
+1 0 −1
+2 0 −2
+1 0 −1

] =  [
1
2
1

] [+1 0 −1] 

 

The x-coordinate is described as increasing in the "right" direction, and the y-

coordinate is described as increasing in the "down" direction. The approximate 

results of the gradient can be combined to give gradient magnitude at each point in 

the image using: 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2 

Using this information, we can calculate the gradient's direction as: 

𝜃 = 𝑡𝑎𝑛−1(𝐺𝑦/𝐺𝑥) 

where, for example, Θ is 0 for a vertical edge, which means it is darker on the right 

side. Sobel edge detection creates an image that emphasizes the edges and 

transitions that contain significant information about various organs and tissues in 

x-rays. It also reduces the amount of processed data and filters out information that 

may be considered less relevant, while preserving the important structural 

properties of the image. The detected edge of the prosthetic can be traced further.  

(

7) 

(

8) 

(2.6) 

(2.7) 

http://en.wikipedia.org/wiki/Convolution
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2.4.6 Edge Link Algorithm 

 

The edge link algorithm has previously been used in the area of lane 

detection [43]. It works well on edges obtained from the Sobel operator. It collates 

edge pixels in an image into an organized list. A flowchart of the algorithm is shown 

in figure 2.8(a).  

 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

                               (a) 

 
 
 
 
 
 
 
 
 

                                                                                                             (b) 
 

Figure 2.8: (a) Edge Link Orientation      
and (b) Diagram shows flow chart of edge link algorithm 

 

First, scanning is performed from the bottom of image to locate the starting 

point. Once the starting point is found, the edge tracing process starts to track all 

the edge pixels. The next added edge pixel added to the link is the one with the eight 

neighboring pixels connected to the previous edge pixel. From the starting point, 

edge pixels are tracked in one orientation, as illustrated in figure 2.8(b), and then 

stored in an edge link array by edge link number. This process continues until no 

more connected edge pixels are found; for more details, see [43].  
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2.4.7 Snake Algorithm 

 

Snake or active contours are used to define or segment particular object 

boundaries in an image. Snake was first introduced by Kass et al. [44] as an elastic 

contour extraction technique for boundary detection. The snake curve moves under 

influence of internal forces coming from within the curve itself and external forces 

computed from the image data [45].  The internal and external forces are defined so 

that the snake conform to an object boundary or any other desired features within 

an image. It called snake because of the way the contour moves while searching for 

an edge in image. Snakes are widely used in many applications, including edge 

detection [44], shape modeling [46], [47] and segmentation [48], [49], [50] and 

motion tracking [51]. There are two key difficulties in the implementation of 

parametric active contour algorithms. First, the initial contour must be close to the 

true boundary or else it will likely get the wrong result. Second, active contours 

have difficulty progressing into boundary concavities [52] and [3]. The snake active 

counter algorithm was further improved by Xu and Prince [54] and [55]; they 

developed a new external force, called gradient vector flow (GVF), which largely 

solves both problems. GVF is computed as a diffusion of the gradient vectors of a 

gray-level or binary edge map derived from the image. The result of GVF field has a 

large capture range, which means that the active contour can be set far away from 

the desired boundary. The GVF field also forces active contours into boundary 

concavities, where traditional snakes have poor convergence.  Initially, a snake is a 

curve defined inside an image that moves under influence of both internal forces 

within the snake itself as well as external forces derived from the image data. Those 

forces are defined in such way where it conform an object boundary. The traditional 

snake is defined as v(s) =[x(s), y(s)], where s ε [0, 1]. The snake moves through the 

spatial domain of an image to minimize the energy function: 

E = ∫ (Eint
1

0
(v(s)) + Eext(v(s)))  

 

(2.8) 

http://www.sciencedirect.com/science/article/pii/S0165168498001406#BIB1
http://www.sciencedirect.com/science/article/pii/S0165168498001406#BIB5
http://www.sciencedirect.com/science/article/pii/S0165168498001406#BIB15
http://www.sciencedirect.com/science/article/pii/S0165168498001406#BIB16
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The internal energy can be written as:  

Eint =  α(s)[vi(s)]
2

+  β (s)[vii(s)]
2

 

 

Where, α and β are weighting parameters that control the snake’s elasticity [44]. 

The traditional snake algorithm in gray-scale images uses gradient image gradient 

function to express the external energy as: 

 

Eext =  −|∇I(x, y)|2        

Where, I(x,y) is the image function and ∇ is its gradient. 

A snake that minimizes E in (2.8) must satisfy the Euler equation: 

 

αvii(s) +   βviiii (s) −  ∇Eext = 0 

 

To solve (2.11), the snake is made dynamic by treating v as a function of time as 

well as of s—i.e., v(s,t). The partial derivative of v with respect to t is set equal to the 

left-hand side of (2.12) as follows: 

 

vt(s, t) = αvii(s, t) +   βviiii (s, t) −  ∇Eext 

 

When the solution of v(s, t) stabilizes, the term vt disappears and the solution for 

(2.12) is achieved. Solution for (2.12) can be found by making the equation discrete 

and solving the discrete system iteratively [55]. 

 The snake algorithm is then developed and include gradient vector flow snake 

(GVF). GVF replace the external force term in equation (2.12), which is − ∇Eext .So, 

GVF is defined as a vector field g(x, y) = (u(x, y),v(x, y)). Thus, the energy function 

becomes: 

vt(s, t) = αvii(s, t) +   βviiii (s, t) + g 

 
(

14) 

(

12) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043919/#Equ4
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An edge map of the image (f(x, y)) is needed to make a GVF field. The edge map is 

derived from the image data and has larger values near the edges as it is known that 

gradient image are sufficient to map an edge. The GVF is a force field that minimizes 

the energy function [55].  

 

 

2.4.8 Curvature of a Planar Curve 

 

Edges in images are low-level features that can be recognized by human 

vision. Curvature is used to analyze the edges of low features in images. It is also 

known as the two-dimensional shape analysis technique in pattern recognition and 

image analysis applications. Curvature is defined as the rate of change in the 

direction of the edge. 

Mathematically, curvature is considered a parametric form of planar curve [56]. 

This is represented using the parametric form: 

v(t) = x(t)Ux + y(t)Uy 

where, x, y are coordinate points along a continuous curve, t is a parametric value 

between 0 and 1 and Ux=[1,0], Uy=[0,1] are unit vectors. It is intuitive that changes 

in this position vector can be calculated by the tangent vector function of v(t), which 

is:  

v̇(t) = ẋ(t)Ux + ẏ(t)Uy 

 

  

the (2.15) implies that, if a point is moving along the curve in time t, then the 

tangent vector defines its instantaneous motion. The direction of the point at any 

instant can be calculated as: 

φ(t) = tan−1(ẏ(t)/x(t)̇ ) (2.16) 

(2.14) 

(2.15) 
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The curvature at any point v(t) describes directional changes (t) with respect to 

changes in length of the arc of the given curve, that is: 

𝐾(t) =
dφ(t)

ds
 

Where, s is the length of the curve and  is the angle of the tangent to the curve at 

point t. For every pixel along the edge, a gradient direction value can be obtained 

that represents the normal direction at that point. The tangent is represented by an 

orthogonal vector and curvature is given with respect to arc length, because a curve 

parameterized by arc length retains a constant speed of motion. The direction of the 

tangent vector change at point v(t) can be calculated using (2.17):  

 

𝐾(t) =
ẋ(t)−ẏ(t)ẍ(t)

[ẋ2(t)+ẏ2(t)]3 2⁄  

 

There exists a very clear relationship between the derivative of a tangential vector 

and the normal vector. This can be deduced as follows. The tangential vector can be 

represented in polar form as follows: 

 

v̈(t) = |v̇(t)|(cos(φ(t)) + j sin(φ(t))) 

 

|�̇�(𝑡)| is a constant if the curve is parametrised by s. The parametric form of the 

curve can be represented by the parameter t (not necessarily the arc length 

parameter), which has two single-value functions: x=X (t) and y =Y(r). Since the 

formula to compute the curvature involves first- and second-order derivatives, it 

can be expressed as a tangent vector:     

v̈(t) = K(t) n(t) 

where, the derivative of a normal vector is given as:  

(

18) 

(2.20) 

(2.17) 

(2.18) 

(2.19) 
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ṅ(t) = −K(t)v̇(t) 

It is obvious that n(t) is normal to �̇�(𝑡). Hence, for each point in the curve, there 

exists a pair of orthogonal vectors v̇(t) and n(t) whose moduli are proportionally 

related by the curvature. This analysis provides a handy tool for evaluation detected 

edges. Clearly, for a straight edge, the second-order derivatives ẍ(t) and ÿ(t) are 

almost zero; hence the curvature function is zero. However, for a curve with radius 

r: 

ẋ(t) = r cos(t) and ẏ(t) = −r sin (t) 

ÿ(t) = −r cos, ẍ(t) = −r sin(t) and K(t) = 1 r⁄                

Curvature is used to detect low-level features where the image surface bends 

sharply; these features are computed then defined as maximum curvature points on 

the image. This technique can be applied to discrete data such as edges consisting of 

pixels where it can clearly indicate the amount of bending at each point along a path 

and ascertain whether lines bend very sharply with high curvature (r) or  (0) 

curvature, as in the case of straight lines.     

 

2.4.9 Affine Length Parametrization  

 

The affine approach is based on the distance between an invariant set of 

Legendre descriptors of the target and reference shapes[ 57].  

The affine-length τ between two points P1 and P2 is: 

 

𝜏 =  ∫ (�̇�(𝑡)�̈�(𝑡))  −  (�̈�(𝑡)�̇�(𝑡))
1/3

      𝑑𝑡
𝑃2

𝑃1
        

Which, is absolutely invariant to rotation, however, it relatively invariant to scale 

change [57], and to affine transformations. Calculating affine length 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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parameterization involves up to third order derivatives of x(t) and y(t) [57] using 

(2.17) and (2.24). The numerator of (1), which incurs higher order derivatives, 

equals to one in the case of affine-length parameterization as now by differentiating 

x(𝜏) and y(𝜏): 

 

�̇�(𝜏) =
ẋ(t)

(�̇�(𝑡)�̈�(𝑡)) − (�̈�(𝑡)�̇�(𝑡))
1/3 , �̇�(𝜏) =

ẏ(t)

(�̇�(𝑡)�̈�(𝑡)) − (�̈�(𝑡)�̇�(𝑡))
1/3 

 

 Again by differentiating  ẋ(τ) and ẏ(τ) we have: 

 

�̈�(𝜏) =
3�̈�(𝑡)(�̇�(𝑡)�̈�(𝑡) − �̈�(𝑡)�̇�(𝑡)  − �̇�(𝑡)𝑦(𝑡) − 𝑥(𝑡)�̇�(𝑡) ) 

3(�̇�(𝑡)�̈�(𝑡))  −  (�̈�(𝑡)�̇�(𝑡))
5/3

 

 

�̈�(𝜏) =
3ÿ(t)(�̇�(𝑡)�̈�(𝑡) − �̈�(𝑡)�̇�(𝑡)  − �̇�(𝑡)y⃛(𝑡) − 𝑥(𝑡)�̇�(𝑡) ) 

3(�̇�(𝑡)�̈�(𝑡))  −  (�̈�(𝑡)�̇�(𝑡))
5/3

 

Where,  𝑥(𝜏)  and 𝑦(𝜏) are third order derivatives. From (2.23) and (2.24) 

�̇�(τ)�̈�(τ)  −  �̈�(τ)ẏ(τ)   = 1 

Therefore, the curvature on the affine-length parameterized curve is given by 
according to (2.17) as: 
 

 

𝐾(𝜏, 𝜎) =
1

[�̇�2(𝜏, 𝜎) + �̇�2(𝜏, 𝜎)]3 2⁄
 

 
Where, according to the property of the Gaussian convolution 

 

�̇�(𝜏, 𝜎) =  𝑥(𝜏) ∗  �̇�(𝜏, 𝜎) 𝑎𝑛𝑑 �̇�(𝜏, 𝜎) =  𝑦(𝜏) ∗  �̇�(𝜏, 𝜎) 

 

(

25) 

(

26) 

(

27) 

(

29) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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The planar curves are parameterized using affine-length.  This can be exploited to 

extract corners with the same computational cost as the arc-length parameterized 

curvature [56]. 

 

2.4.10  Harris Corner Detection Algorithm 

 

The Harris corner detection algorithm is performed by calculating each 

pixel’s gradient.  Basically, the algorithm tells us whether the absolute gradient 

values in two directions are both great, in which case the pixel assumed to be a 

corner. The following equation is applied to determine if a point is a corner [58]:  

 

𝑅 = det(𝑀) − 𝑘𝑡𝑟2 (𝑀) 

where M is the evaluated matrix of gradient, ktr2 is the trace, det is determinants 

and R is response; R is positive for corners, negative for edges and small for flat 

regions (constant intensity).  Suppose M is defined as follows:  

 

𝑀(𝑥, 𝑦) =  [
𝐼𝑢

2(𝑥, 𝑦) 𝐼𝑢𝑣(𝑥, 𝑦)

𝐼𝑢𝑣(𝑥, 𝑦) 𝐼𝑣
2(𝑥, 𝑦)

] 

 

𝐼𝑢
2(𝑥, 𝑦) = 𝑋2 ⊕ ℎ(𝑥, 𝑦), 

𝐼𝑣
2(𝑥, 𝑦) = 𝑌2 ⊕ ℎ(𝑥, 𝑦), 

𝐼𝑢𝑣(𝑥, 𝑦) = 𝑋𝑌 ⊕ ℎ(𝑥, 𝑦),   

ℎ(𝑥, 𝑦) =
1

2𝜋 
 𝑒− 

𝑥2+𝑦2

2                                                                                                                                                                                    

where, in (2.31), Iu(x,y) and Iv(x,y) are the partial derivatives of the values in 

direction u and v at point (x,y). If f(x,y) is the second-order mixed partial derivative. 

The Gaussian filter (2.32) is h(x,y), where X and Y are the first-order directional 

   

(30) 

(2.32) 

(2.30) 

(2.29) 

(2.31) 
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differentials, which are calculated by convolving the grey values and their variance 

in directions u and v. The Gaussian filter is applied to reduce noise, because first-

order directional differentials are sensitive to noise. A Gaussian filter is a typical 2D 

linear filter that is widely used to de-noise images. The goal of using this 2D filter is 

to reduce high-frequency noise in an image while retaining the important image 

features, like edges and details, as much as possible. The linear filter convolves the 

image with a constant matrix to obtain a linear combination of neighborhood 

values, which are used to eliminate the noise in the presence of additive noise. 

However, this can create blurred and smoothed images.   

 

2.5. Conclusion 
 

This chapter has provided the reader with a medical and conceptual 

background of total hip replacement and its complications. It also summarizes state 

of art and most common approaches used for the interpretation of THR 

complications based on medical assessments, supported by image processing and 

by other technological means. Existing approaches to automated computer assisted 

analysis of some of the complications were also reviewed. Further related 

theoretical background behind fundamental computer vision and image processing 

algorithms were provided as this knowledge is essential in building novel, fully 

automated systems approaches to THR image analysis. 

From the literature review, it is obvious that there is a critical need of well-

informed analysis and interpretation of THR complications leading to accurate and 

timely clinical diagnosis by medical experts. However the tools that exist do not 

cover the detection of all types of faults and the approaches proposed to date 

requires automation. In Chapters 3-6 we proposes novel, fully automated 

approaches to prosthesis detection and detection of subsidence, loosency and 

infections.  
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Chapter 3.  
 

Automatic Prosthesis Extraction and Key Point 
localization 

3.1 Introduction 

 

Radiography is the standard imaging modality used for evaluating THR 

complications. The challenges of segmentation of objects of interest in such a 

modality are often associated with low contrast, presence of noise and other 

artefacts. In contrast to the use of some generic segmentation methods the use prior 

knowledge the structure of an object of interest, such shape models, relative 

orientation or texture, can often be effectively utilised. Providing an automatic and 

accurate image processing solution that extracts a prosthesis from within a THR 

radiograph is of a realistic significance towards designing and implementing a 

computer aided system that aims to minimise the post-processing cost of detecting 

and recognizing complications in THR surgery.  

During the initial stages of the proposed research image histogram 

thresholding was adopted as an image segmentation technique to extract the 

prosthesis of a THR image. The associated x-ray images were binarised as 

foreground objects and background where the prosthesis only was made clearly 

visible in order to enable subsequent detailed analysis of the associated THR image. 

However this work revealed the difficulty of using a fully automated approach to 

determine the optimal threshold value given the variabilities of image contrast and 

clarity often present in THR images (see Section 3.2). Thus, there was a need for an 
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adaptation of a more efficient approach where the image processing to be carried 

out is automatic and the results obtainable are more prominent. Therefore as a 

solution to the abovementioned challenge in using histogram thresholding, 

subsequently the use of active contour approaches to automatically extract the 

prosthesis was investigated. Due to its demonstrable success, its use in extracting 

the obturator foramina was subsequently investigated as a successful outcome can 

be used as a pre-processing approach to support the  detection of misalignment  in 

THR surgery [13].  

This chapter is primarily focused on introducing effective segmentation 

techniques for the extraction of the prosthesis and the obturator foramina that can 

lead to the capability to carry out more effective further processing of THR images 

aimed at automatically detecting surgical complications such loosening, subsidence 

and infection. For clarity of presentation the chapter is divided into three main 

sections introducing three segmentation methods including the result of each 

adopted appraoch: section 3.2 describes the extraction of prosthesis using 

histogram thresholding, section 3.3 demonstrates the automatic extraction of 

prosthesis using the active contour method and finally section 3.4 presents an 

approach to the segmentation of obturator foramen using an active contour based 

approach. 

 

3.2 Prosthesis Extraction Uing Histogram Thresholding 

  

In medical imaging applications the separation of regions of interest in often 

a mandatory procedure as it enables subsequent image analysis that uses the 

prosthesis as a reference.  

Histogram thresholding is one of the widely-used techniques in object 

segmentation. This method assumes that the images are composed of regions with 
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different intensity grey levels and each region corresponds to an object; where the 

intensity grey levels are similar or within a given range. An intenisty can separate 

an image into a number of regions represented by its peaks. The threshold value is 

selected as an intensity value within the valley between two adjacent peaks [36]. 

The approach generates two regions, the foreground that represent the brightest 

object/s (i.e. the prosthesis) and the background. This method was proposed by 

Oprea et al. [15] to segment the prosthesis stem components: prosthesis, bone 

(femur) and soft tissue regions from x-ray images and was then compared with 

other potential segmentation techniques. The extracted prosthesis was compared 

with the correct prosthesis component segmentation obtained by manual 

annotation. A further attempt on the same problem was made by Florea et al. [16]. 

Florea focused in the separation of bone and medullar channel that separate the 

bone from the prosthesis in order to determine the limits of both area. A histogram 

based segmentation method was used for segmenting the femoral parts and in 

order to achieve better results an expectation maximization (EM) algorithm and 

Canny Edge Operator were applied [16]. Moreover, a median filter was chosen to 

impose contour continuity. Both methods [15,16] concentrated on segmenting 

prosthesis components automatically into three parts considering that Oprea et al. 

[15]  used original x-ray images before the execution of any segmentation 

techniques and Florea et al. [16] enhanced the quality of x-ray images by adjusting 

the luminance of pixels prior to reduce the noise.  

At the initial stage of this work we adopted the method histogram 

thresholding  to extract the prosthesis from the x-ray image so that it can be used as 

a reference in further image analysis to identify THR complications. Histogram 

thresholding applied on the original THR x-ray images manually. Before applying 

histogram thresholding the images first were cropped so the surrounded area of the 

prosthesis stem is clearly visible. By this we limit the quantity of available spatial 

information within the image and perofrm simple computational solution for 
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determining the ultimate threshold value. (Note: as this is not an ideal practical 

solution; in section 3.3 we propose a solution to this problem].  

The histogram thresholding process divides the image into two regions 

representing the prosthesis and background. This method transform the input 

image, f, to a binary image, g, by clustering the pixels with similar intensities, i.e. 

pixels with higher pixel intensity than the threshold clustered into one class and the 

remaining pixels clustered into a second class. The threshold value (T) separates 

these two clusters into foreground and background and the value is chosen 

manually between two peaks of histogram [38]. The target background results are 

demonstrated in figure 3.1.  The histogram of sampled image is graphed as taller 

line shows intensity distribution from 0 to 255 and returns an output of binary 

image. The default threshold values can be adjusted as required by clicking with 

mouse on intensity distribution line.  

 

Figure 3. 1: Results of Histogram Thresholding in (a) & (b) 



  

50 

(d) (e) (f) 

Although this method is simple and effective for segmentation, it is often difficult to 

set an optimal threshold value precisely for all the sampled x-ray images, especially, 

in such cases when the images imbued with noise or two peaks are equal in height. 

The threshold values in this experiment ranged from 145 to 200 upon 

appropriateness to the x-ray image. This might be considered as a weakness for the 

adopted method as we were looking for an automated solution. Additionally, the 

segmented prosthesis is attached with extra white unwanted pixels/regions. In 

order to have clear prosthesis boundary; we used flood fill method [59], as a 

filtering step performed on binary image that clear the borders of prosthesis and 

remove weak edges around it.  This method estimates of a set of parameters that 

best fits the available data of the connected background pixels with (0’s) and 

foreground (1’s), stopping when it reaches prosthesis boundaries in the binary THR 

x-ray image. The results are shown in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: (a),(b) and (c) are segmented THR x-ray images  and (d), (e)  and (f) are 

corresponding threshold images  that shows clear prosthesis boundaries after 

clarifying the edge 
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In addition, this method failed to find a proper threshold for complex (blurry) THR 

x-ray images as shown in figure 3.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.3: Example of Threshold selection; (a) shows the default threshold value 

(196) and (b) when we raised the threshold value to (211), broken edge appears   

(b) 

(a) 
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Figure 3.3, illustrates a segmented prosthesis having weak edges around it. 

As shown in figure 3.3(a), if the threshold value is set at 196 over-segmentation 

results and if it is raised to the value to 211, broken edges appear as can be seen in 

figure 3.3(b). 

  Histogram thresholding is a quite effective technique in segmenting the 

prosthesis without dividing the prosthesis into varouis component as Oprea et al. 

[15]  and Florea et al. [16] applied. However, it does not provide an automated 

solution for prosthesis segmentation as well as it is not suitable to be used in 

extracting prostheses from THR x-ray images having weak edges. The presence of 

noise or weak image gradients and other artefacts deteriorate the performance 

resulting in either the approach failing to extract prostheses effectively or requiring 

pre-processing steps to obtain ideal results. Therefore, in the following section 

image processing techniques that fully automate prosthesis extraction and results 

in more accurate segmentation of prosthesis is sought.   

 

 

3.3 Automatic Prosthesis Extraction Using Active 

Contour Method 

 

One further possible image processing technique that has been used with 

regards to prostheses segmentation is template matching [60]. However, to define 

the boundary of a shape to be extracted using template matching; requires exact 

prior knowledge of that object. In THR imaging the prostheses to be extracted can 

be of a different shape depending of the manufacturer or the prostheses, choice of 

use and decisions made by the surgeons. Therefore this approach is considered to 

be less useful due to practical reasons.  
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To overcome possible difficulty caused by intensity inhomogeneity and 

possible concavity of boundaries in an object; active contour methods (snake) can 

be used to attain better segmentation accuracy as compared to the above 

mentioned and popularly used segmentation techniques in THR imaging. Active 

contours are a set of points that aims to extract the shape of an object. The points 

are expressed as energy minimization points that formulates under principal of 

functional energy. This energy function has the ability to evolve and capture curved 

objects based on image gradient information that identifies object boundaries. This 

approach is inspired from the work of [44],[54] & [63]. Although active contour 

approach is widely used in medical applications; no literature was found during the 

literature reviews conducted within the research context of this thesis that 

proposed the use of extracting the implant prostheses from THR x-ray images 

automatically. Therefore in the following sections our attempt to use a snake based 

approach [44] for automatic prosthesis extraction is presented. 

 

 

3.3.1 Proposed Approach   
 

For extracting the prosthesis automatically; it is proposed to use the active 

contour method as illustrated by the block diagram in figure 3.4: 
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Figure 3. 4: Diagram of Prosthesis Extraction from THR X-ray Images 
 

To ensure that the ACM operates similarly on various THR x-ray images; 

histogram equalization [70] was initially applied to normalize the x-ray images, so 

that the edges become more evident. Enhancing the edges is necessary as the aim is 

to segment the prosthesis from the entire THR x-ray images automatically, for less 

computational cost and accurately capturing the target in the region of interest.  

The Active Contour Method requires the selection of a seed point from 

within the prosthesis to start the process of clarifying the pixels belonging to the 
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prosthesis automatically. To locate the seed point, we consider the prosthesis cup 

as a circular shape which has a centre point as C within a given radius r, so the 

location of C as (h, k) in the image can be determined using subsequent predefined 

measurements of height as h and width as w (where h > w); we crop the image to 

include the prosthesis as in figure 3.5.  

Figure 3.5: (a) and (b)sample THR x-ray images and corresponding segmented 

images are (c) ,(d) and (e) respectivly 

This solved the problem of the segmenting the required region from the entire THR 

x-ray image. More details of centre point detection approach is explained in 

subsection 3.3.2.  
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3.3.2  Key Point Initialization 
 

A requirement of automatic extraction of the prosthesis shape using an 

active contour method is that the initial contour has to be placed near the 

prosthesis boundary in an image inorder to limit the capturing range within the 

prosthesis edge. The prosthesis cup is circular in shape; so we used a fast 

randomized circle detection algorithm [61] to determine the center and the radius 

of the prosthesis cup. This algorithm is widly used to detect location of circulaur 

objects in an image. The principle of  fast randomized circle detection is depend on 

gradient vector of an edge pixel points at the center of the circle. A line is defined, 

which is coincident with the gradient vector of the edge pixel in which pixels are 

passesing through. The gradient lines of all the edge pixels are lying on the edge of a 

circle that intersect at the center of the circle. The radius of the circle is determined 

by computing the distances between the edge pixels and the center [61]. 

Subsequently, those point were used in deriving a key/seed point of the active 

contour approach as seen in  figure 3.6. 

 

 

 

 

 

 

 

Figure 3.6: Center point of circle and radius 

Suppose pixle of an image is represented as f(x,y). We compute gradients of 

f(x,y) by applying the Guassain smoothing filter. Then we create an edge map using  

Sobel edge detector [62] to define the pixels that belongs to edges of the image. The 
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(a) (b) (c) 

edge pixels are grouped into segment according to their connectivity with their 

neighbour using connected component approach. We used 8-adjacent connected 

pixel that construct the edge curve set of V, and Nov indicates number of pixels in V. 

By assuming that Nov indicates the number of pixels in V , if Nov >T,  where T is 

threshold to determine whether a point belong to the curve as it set 0.5  and 0.6. 

Then each point of the curve is picked up by the homogeneous distribution and 

gradient line of the point is computed. The point through which the most lines 

passed is yielded as the intersection point, i.e. as C, as we assumed it as the centre of 

the potentially circular shape. The accumulation of point C is indicated as Cnum. If   

Cnum > Tnum, the point C is then indicated as a center of a circle. We compute the 

radious by averging the distance between C and the edge point. The result of the 

proposed approach illustrated in figure 3.7, the  circular cup region of the 

prosthesis is clearly detected on the sampled THR x-ray images. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 7: Detected circular cup region of the prosthesis 

 

After locating the centre C and radius r of the prosthesis cup, we can define seeds 

point of the active contour method. As we know that all the points on the circle 
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must be within distance of r from C (x, y), we can find all the point on such as (x, y) 

using either of the following coordinates:    
 

   For the right most point: (x+r, y),       

For the left most point: (x-r, y), 

For the top most point: (x, y+r), 

       For the bottom most point: (x, y-r),  

Since the x-coordinate is added to r to get the most right point and y-

coordinate is added to get the top most point. The same is performed for the left 

most point and bottom most point. In our experiment we used the right most point 

as the seed point for the ACM to avoid detection of any weak edges. Also this point 

lies within the cup of the prosthesis that is closest to the boundary. More details 

about seeds point in the next section. 

 
 

3.3.3 Active Contour Method 
  

Our interest is to separate the prosthesis from the surrounded region in x-

ray image automatically. A robust and accurate deformable snake based 

segmentation approach is used. The approach starts with a predefined set of seeds 

point as described in subsection 3.3.1. These points include the initial contour parts 

of the interested object which is the cup of the prosthesis. It starts deforming from 

these seeds by appending nearby nonzero pixel points based on an energy 

minimization method. If a line is parametrized through a variable v that goes from 0 

to 1, then two functions of this variable define the coordinates of the snake point 

along the line which are v(x) and v(y). It can be defined as a vector v= (x (v), y (v)). 

Since snakes are often implemented as closed contours it enforces setting v (0) =v 

(1). The energy function that is used to define as: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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E = ∫1
0 

(Eint.(v(s)) + Eext.(v(s))) 

Eint. is an internal energy defined within the curve (or line), designed to keep 

the snake curve smooth during deformation process while Eext.  is an external 

energy defined by image properties such image gradient, it moves the snake curve 

toward the edge of an object as the inverse of image gradient magnitude represents 

low energies at the edges and higher energies elsewhere on the image. Due to this 

property the snake is pushed into a directional attraction within the boundary 

concavities. However, the property of energy function is controlled by set of 

predefined parameters ,β and α to have an appropriate convergence condition on 

the images. Those points are isolated and guided by a Partial Derivative Equation 

(PDE) [64] where it causes the energy forces to be defined in such a way as to 

provide a sufficiently large range for the forces to evolve the relevant structure of 

the prosthesis boundary.  The PDE runs in an iteration scheme of energy forces for 

each point as in figure 3.8 (a) and (b), that is then incorporated into a level set 

formulation with a level set regularization term, for more details see [65]. The level 

set preserves stability of accurate computation to properly evolve the contour in 

order to fit the boundary as without it the contour becomes much slower and can 

even stop before it reaches the desired object boundary. In case if the desired 

boundary is not evolved properly then the initialization key point is reset.  

 

3.3.4  Prosthesis Extraction 
 

Although ACM display an intermediate output of a closed contour of the 

prosthesis, the final segmentation results have nothing much to do with the initial 

contour initialization, since the active contour method is contingent on level set in 

developing the contour. The level set maintains [65] a real mask of initial state of 

the active contour. Therefore, once the iteration stops, a mask is generated of the 

(3.5) 
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same size as the input image, where the object or ROI is highlighted. The final 

contour extraction is performed by a threshold to distinguish the prosthesis from 

the background as a binary image where the object boundary is white (logical true) 

and the background is black (logical false). The extracted binary image gives us a 

better approximated shape of prosthesis as a closed contour. The extracted 

prosthesis boundary and featured points on this boundary plays an important role 

as reference points in the research that will be presented in chapters 4-6.  

 

 

3.3.5 Results of Application of ACM to Automatic      

Prosthesis  Extraction  

 

This approach deforms an initial curve based that is based on seed points 

that are defined via a circle detection of the prosthesis cup in THR x-ray images. It 

continuous to converge toward the edge of prosthesis with fixed parameters with 

energy forces are at their minimum. For consistency in this experiment, the 

influential parameters for all sampled images are kept constant. The weights of 

smoothing the contour are set to: λ=1, β = 0.2 and α = 2. In addition, we tuned the 

adopted method of ACM in an attempt to capture the prosthesis at a radius of r = 45 

in pixels, based on prior knowledge of the image sizes we processed. This method 

successfully outlines the desired boundary with high accuracy as seen in figure 3.8, 

figure 3.9 and figure 3.10. In the illustrated figures, we show the initialization of the 

seeds point first and then the deformation process till it converge the prosthesis 

boundary completely with 2100 iteration. 
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Figure 3. 8: An Illustration of Active Contour Method deformation process 

 

 

Figure 3. 9: Another example of Active Contour Method deformation process 
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Figure 3. 10: Another example of Active Contour Method deformation process 

 

As can be noted by the above results the curve starts to first converge to the 

rightmost point of the prosthesis cup (as the seed point was selected to be closest to 

the rightmost edge of the prosthesis as described in section 3.3.2) and subsequently 

converge towards the prosthesis boundary after number of iteration. As implanted 

prostheses are not the same in shape in all experimented THR x-ray images and to 

ensure the proposed method evolve the anticipated shape of prosthesis; the 

iteration were set to 2500. It takes on average up to t=0.76 seconds to complete the 

converging process to the prosthesis boundary with the original THR x-ray images 

resized by a factor of 0.5. The prosthesis extraction was tested on 35 THR x-ray 

images and the ACM execution was set to terminate once the iteration process is 

completed. The results indicated that the approach outlines the prosthesis 

boundary accurately and generates segmented binary masked images as illustrated 

in figure 3.11.  
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Figure 3.11: Final ACM prosthsis segmentation results in (d),(e)&(f) of image (a),(b) 

&(c) 

 

Figure 3.12:More results of final ACM prosthesis segmentation in (d), (e ) & (f) of 
image (a),(b) &(c) 

 

Figure 3.12, illustrate the generated binary masked images of the prosthesis 

extracted via ACM of figure 3.8, figure 3.9 and figure 3.10 respectively. The 

extracted prosthesis.  
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A further experiment is performed to demonstrate the effect of choosing 

different ACM parameters in capturing the prosthesis boundaries in particular from 

images containing extreme amounts of background details and clutter. The 

converging boundary range and the convergence speed when extracting different 

implanted prosthesis was analysed. Results showed that with the careful selection 

on ACM parameters, it is possible to extract the prosthesis even from blurry and 

complex  THR x-ray images as seen in figure 3.13 (a), (b) and (c). The prosthesis 

conuntor is clearly extracted. 

 

 

 

Figure 3. 13: ACM results of blurry and complex THR x-ray images in (a),(b) &(c) 
crrosponds final prosthsis segemtation in (d),(e) &(f) 

Conversely, the extraction processes were much slower than the extraction 

of prostheses from segmented THR x-ray images; it took up to t=.97 seconds with 

(d) (e) (f) 

(a) (b) (c) 
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same iteration number for images (a) and (b) of figure 3.13. Thus we recommend 

that the prosthesis region is pre-extracted from a whole THR x-ray image before 

ACM is used for the extraction of prosthesis and boundary detection. Henceforth, 

we adopt this approach as a base of the coming chapters.  

 

 

3.4 Segmentation of Obturator Foramen 
 

 

According to the clinical background presented in subsection 2.2.2.4, the obturator 

foramen plays an essential role as a reference to measure misalignment or leg 

discrepancy after total hip replacement. The outline of bone structure of the 

obturator foramen is more visible and circular than the alternative, the ischia spine 

which is often obscured. Referring back to the literature review in subsection 2.3.1, 

either obturator foramen or ischia spine can be used to define misalignment or leg 

discrepancy. ACM is also applied to detect obturature foramen in THR x-ray images 

automatically. We increase the capture range so that the initialization seeds points 

are close to the boundary of obturator foramen. This was done by adjusting the 

parameters of the key point location of circle detection. However, it failed to detect 

the hole of obturator foramen. This is due to homogeneous regions within obturator 

foramen, besides the noise and poor contrast of x-ray images. Thus, we manually 

selected predefined initialization seed points close to obturator foramen at the 

inner edge of obturator foramen. Prior applying ACM, we enhanced the contrast of 

THR x-ray images, so the edges are more prominent. We used adaptive histogram 

equalization specified by the ‘Distribution’ parameter of 0.05. The method is able to 

iteratively fine tune the initial contour toward the final boundary detection. It 

extracts obturator from the other parts of the pelvic bone in THR image as can be 

seen in figure 3.14. 
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Figure 3. 14: Segmentation of obturator foramen using ACM 
(a) Initial curve , (b) &(c) curve deformation , (d) final results of ACM  and (e) 

segmentation results 

 
 

In figure 3.14, we demonstrate the deformation process of ACM. As can be seen the 

obturator foramen is perfectly extracted. The influential smoothing parameter are 

set as λ=1, β = 0.2 and α = 0.2. More results of obturator foramen segmentation are 

in figure 3.15. 

 

(a) (b) 

(c) 

(e) 

(d) 
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Figure 3.15: Segmentation of obturator foramen using ACM in 

(a) , (c) &(e)  and final results in (b),(d), (f)  
 

However, the ACM detects spurious regions/edge in some of the test images 

as illustrated in figure 3.15 in (e). This is due to homogeneous distribution of grey 

level intensity that has similar contrast in other regions. Such segmentation results 

can be can be improved by removing the extra detected object by applying further 

image processing techniques, such as ignoring small regions and ignoring regions 

which do not have a twin like object mirrored elsewhere on the image. In addition, 

some intermediate results of the contour evolution require different numbers of 

iterations; e.g., the number of iterations varied from 800 to 1200 base on the x-ray 

image quality. We also experiment the algorithm on various THR x-ray image as in 
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figure 3.16, however, the convergence time was longer when compared the 

convergence time of a partially segmented image. 

 

 

Figure 3.16: Segmentation of obturator foramen using ACM, (a) enhanced 

image and (b) Segmentation result as binary image 

 

A recent study of [20] presents segmentation of obturator foramen using 

marker-controlled watershed segmentation and zernike moments. However, they 

applied  marker-controlled watershed on region of interest that is drawn by hand to 

create a template obturator foramen. Our experimental results demonstrate 

effectiveness of active contour method in segmenting obturator foramen semi-

automatically. This can be readily used as a template for further applications such 

defining misalignment after total hip replacement.  
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3.5 Conclusion 
 

The aim of this work is to develop an accurate and efficient delineation tool 

for prosthesis detection in THR x-ray images. Often noise and low contrast 

undermines the automatic outlining of the prosthesis in THR x-ray images using the 

histogram thresholding. To overcome this difficulty; the active contour method 

were utilised in this chapter which  automatically segment the prosthesis boundary 

from THR x-ray images accuratley. In addition, we implement the active contour 

method for the extraction of the obturator foramina in THR x-ray images.  It 

perfectly segments the obturator foramina which can provide key points for the 

clinical identification of leg discrepancy / misalignment.    

Having extracted the prosthesis it is now possible to identify certain featured 

points on the boundary of a prosthesis that can be used as reference/key points for 

the detection and analysis of THR complications (see Chapters 4, 5 and 6) as will be 

experimented and evaluated.  
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Chapter 4.  
 

Detection of Prosthetic Loosening in THR Images 

4. 1 Introduction 

 

In this chapter a novel approach to automatic identification of prosthetic 

loosening in THR x-ray images is proposed. The proposed approach first measures 

the curvature along the boundary of the prosthesis to identify key points on the 

boundary around which loosening is likely to happen. By inspecting the pixel value 

gradients across the boundary of the prosthesis at these points and points 

surrounding these points that lie of the boundary of the prosthesis, it is shown that 

loosening can be identified if it exists.  

For clarity of presentation this chapter is divided into several subsections. 

Apart from this section which provides an overview to the work to be presented in 

this chapter, section 4.2, introduces the proposed approach to identifying loosening 

in THR x-ray images. Section 4.3, summarises the prosthesis extraction approach 

presented in chapter-3 as it is used as a pre-processing step to identify the 

prosthesis boundary pixels followed by a description of generating and tracing the 

prosthesis edge map in section 4.4. Section 4.5, presents calculation of curvature at 

each of the prosthesis boundary points which is used to identify points of interest in 

a typical prosthesis boundary. Section 4.6, presents calculation of pixel value 

gradients across the prosthesis boundary, at the key points and those points on the 

prosthesis that surrounds them. Subsequently the results are presented in section 

4.7. Finally, the chapter ends with a conclusion in section 4.8. 
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4. 2 Proposed Approach of Defining Loosening 

 

Loosening can be identified from the boundary around the inserted steel 

‘prosthesis’. As stated in subsection 2.2.2.1, loosening refers to a condition which 

results in a radiolucent line/narrow region to be clearly visible just outside the 

implanted cemented prosthesis where loosening may have happened. For example, 

in figure 2.3, this line is visible around implant’s femoral stem. A close inspection of 

THR images where the presence of loosening has been identified and confirmed by 

medical specialists showed that a narrow dark intensity region exists outside the 

prosthesis near points of loosening.  

In figure 4.2, points of interest (POIs) are marked on the surface of the 

prosthesis as A, B, C, D, E, F, G and H respectively; it is clearly seen that the 

curvature at these key points vary significantly along the boundary. In general, for a 

2D curve, curvature is defined as the reciprocal of the radius of a circle that is 

tangent to the given curve at a particular point as illustrated in figure 4.1. Note that 

the anticlinal features are assigned to a positive value while synclinal features has a 

negative value [66]. 

 

Figure 4. 1: An example of 2D curvature of a line, anticlinal features have 
positive curvature, synclinal features have negative curvature and planar features 

(horizontal or vertical) have zero curvature. 

For the two prosthesis illustrated in figure 4.2, at points between points A 

and B, the direction of the tangent vector would not change indicating a region of 

http://csegrecorder.com/assets/images/articles/2007-11-seismic-curvature-fig01.jpg
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(a) 

zero curvature points. From point B to C, the direction of the tangent vector changes 

sharply and we would expect the curvature to be inscribed in a circle tangent to the 

curve where the radius of curvature fluctuates in its absolute value. The same 

applies from point C to D, where at points in particular closer to D and slightly 

beyond the tangent changes in direction to what it was at point C. Similar 

explanations can be given for points on the prosthesis boundary between points E 

to H. When carefully inspecting the prosthesis of both images in figure 4.2 and any 

other design of a prosthesis it is seen that curvature of points between A to B 

(approximately) remains as 0, increases, peaks and decrease to a very low value 

between B to C, keeps low and again increases to a significant value at D which is 

the point where the circular cup area begins. Similarly the curvature at points 

between E to F remains close to zero, increases and decreases to a low value from F 

to G, continues to be low until very close to H and then increases significantly at H 

which is the start of the circular cup area. 

 

 

 

 

 

 

 

Figure 4. 2: POI identified within X-ray images (a) with loosening  and (b) 

without loosening  

In figure4.2 (a) and (b), illustrates two THR images with loosening indicated 

in figure 4.2 (a) and a perfectly cemented prosthesis indicated in figure 4.2 (b). The 

(b) 
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design of prosthesis is such that when properly sealed within the cement placed 

within the hole/shaft drilled in the bone, all points between A-C, E-F and especially 

the point with the highest curvature between B and C are securely placed within the 

cement. If this is the case the pixel value variation from within the prosthesis to the 

outside, will change from the pixel value of the bone to the pixel value of the 

cemented areas. This can be clearly understood by analyzing pixel values inside and 

outside the prosthesis boundary, between points A-C and E-D of figure 4.2 (b). As 

long as the cement is secure and secures the prosthesis within the bone the pixel 

value gradients in the above regions remain similar and low. 

However in the presence of loosening, the pixel value variation across the 

boundary of the prosthesis from inside to outside, changes between points A-C and 

E-D, showing higher variations at points that indicate possible loosening or 

breakage of the cement bonds. The gradients will increase at these points. This is 

illustrated by figure 4.2 (a) that shows a prosthesis that indicates loosening in the 

region E-F-G. The pixels just outside the bone are not from a cemented area but 

much darker background pixels of the area where the cement has disintegrated. It is 

also common that where ever severe loosening occurs subsidence is also present. 

This is also illustrated by the example in figure 4.2 (a). The point with the highest 

curvature between points B and C and at point C, the pixel value variation is now 

different changing from the pixel value within the prosthesis to a pixel value of a 

non-cemented/background area, i.e. a rather smaller pixel value. Hence the pixel 

value gradient increases beyond point B in the presence of subsidence due to 

loosening. It is noted that in severe cases of loosency, subsidence is often present.  

In the sections that follow, the above observations are used in the analysis of 

THR images in search for the presence of loosening. Even though the approach used 

in this chapter can also identify subsidence, in chapter-5 we study subsidence and 

its detection in more detail as there is possibility to conduct a more detailed 

analysis when subsidence is present in the absence of loosening.  
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4. 3 Block Diagram of Pre-processing Steps  

 

 In Chapter-3 it was mentioned that the precise extraction of prosthesis edge 

is vital in subsequent identification and recognition of loosening in THR images. The 

concept presented in section 4.2 revealed in more detail the possible use of the 

prosthesis boundary points and pixel value variations across the prosthesis 

boundary at selected key-points can lead to effective detection of loosening. The 

block diagram in figure 4.3 shows the pre-processing stages used for the 

segmentation and boundary detection of the prosthesis. 

 

Figure 4. 3: Diagram illustrating the pre-processing steps of detecting the 

prosthesis 
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In an x-ray image, the steel prosthesis appears as the brightest object. Thus, 

the initial step is to segment the region with the brightest pixels in the x-ray image, 

which has been performed in subsection 3.3 in chapter 3. The prosthesis has been 

segmented automatically using ACM and a binary image is generated that is used to 

create an edge map. The edge map is traced using edge link algorithm; more details 

of which is presented in the following subsection. 

 

 

4. 4 Generate and Trace Edge Map 

 

To compute curvature information of an edge; we need to generate an edge 

map. For this purpose we employ Sobel edge detection [62]. The result of edge 

detection is an edge map of the prosthesis which contains pixel values of all pixels 

that lie on the prosthesis boundary. However, typical edge detection methods like 

sobel have a major drawback that the edges detected may not be continuous as 

noise and/or lack of contrast will often result in breakages. The edge detectors are 

tuned to detect step edges, as illustrated in figure 4.4(b).  

 

 

 

 

Figure 4. 4: Detected edge (a) using Sobel operator and (b) step edge 

 Further, the proposed work requires tracing the edge pixel information in 

sequence, thus, a further step is carried out to trace the detected edge using an edge 

link algorithm. The edge link algorithm ensures the connectivity of the edge contour 
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and sorts the pixels as a sequence of points (x, y) that represent the shape of the 

boundary. The algorithms start scanning the image and locate the edge pixels 

precisely from the points detected by Sobel edge detector. We define the start point 

of scanning for edges as the bottom-left point of the image. All the traced pixel 

points are stored in a list. Although this step is necessary to accurately sort the 

pixels into a proper list for further processing, it does not solve the issue of step 

edges of figure 4.4(b). To deal with this problem, the detected step edge was 

smoothened further using an Average Filter [67], see  figure 4.5. 

 

 

 

 

 

 

 

Figure 4. 5: (a) Smoothed edge map and (b) smoothed edge 

Subsequent to obtaining a smooth and connected edge map of prosthesis 

following the procedures described above, we can compute the curvature for each 

point, traversing along the contour as explained in the following section. 

 

4. 5 Curvature Calculation at Each Point on the Contour   

 

The goal of finding the curvature K of a point on the prosthesis contour is to 

discriminate linear features either straight or curved along the outer line of the 
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contour. Considering that the prosthesis contour is defined as a continuous curve of 

a set of points having position vectors of (x, y) that are the coordinates; then any 

changes in position vector is specified by its tangent slope. To describe the rate of 

curvature change along the boundary points; let’s set Pt= (xt, yt) to be a coordinate 

of the edge as mentioned earlier in the edge list. The k(t) is a direction vector 

between points that  k edges apart and it is calculated using : 

𝑘(𝑡) =
𝑑𝜑(𝑡)    

𝑑𝑠
    

 The left k-slope is direction from Pk-t to Pt and the right k is slope direction 

from Pk+t to Pt, then k(t) is the difference between left and right k-slop.  

According to the obtained k(t) each consecutive point is distinguish 

immediately and filter out as an new vector; therefore we validate if k(t)=0 which 

means that there is no change in the curve’s direction at that particular point and 

the tangent is straight; conversely, if k(t) >0 , then there is a positive change at that 

particular point  and if k(t) <0 then there is a negative change at that particular 

point. Regardless of positive and negative sign of k(t), there is a slope tangent at the 

particular point if k(t) not 0.  Since, k(t) values are similar over a series of 

consecutive points for a small region within the edge, the set of points obtained 

finally would also include the varying levels of slope details present on the edge. We 

illustrate the output of the first derivatives along the x and y directions in figure4.6 

(a) and (b) respectively. As the curvature is denoted by k, which depends on the 

calculation of the second derivative, this is illustrated  in figure 4.6 (c).  

 

(4.1) 
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Figure 4. 6: (a) First derivative of prosthesis contour along x-direction, (b) 

First derivative of prosthesis contour along y-direction (c) Second derivative of 

prosthesis contour 

 

 

4. 6  Computation of Pixel Gradient 

 

The Pixel Gradient can be referred to a direction of greatest intensity change 

in neighborhood of a pixel of an image. The edge point that has maximum gradient 

vector variation as can be seen in figure 4.7; mainly varies at few pixels at a 

transitional area of the pixel intensity homogeneity, especially between an object 

and background.  To define the extreme rate of change between each pixel and its 

neighbors, we compute gradient vector with respect to edge directions along the x-

direction and the y-direction around each pixel.  

 

(c) (b) (a) 
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Figure 4. 7: Transitional area between prosthesis and background 

 

This type of computation involves smoothing an image. A 1-D Gaussian filter, with a 

0.5 standard deveiation is applied to get a normalized gradient image of figure 4.2 

(a). Considering the x and y components of a gradient vector at point A(x,y) are : 

),1(),1(),( yxAyxAyxGx −−+  and )1,)1,(),( −−+ yAxyxAyxGy  

The magnitude of the gradient vector is computed using the standard formulas as 
follow:  

 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐺(𝑥, 𝑦) = √𝐺𝑥2 + 𝐺𝑦2  

And the gradient rate of change in the direction of the gradient vector, Gx, Gy; is 

given by the angle measured with respect to the x-axis using:  

𝜃 = 𝑡𝑎𝑛−1(𝐺𝑦/𝐺𝑥) 

The gradient orientation of an edge at a G(x,y), is perpendicular to the direction  𝜃 

ofthe gradient vector at the pixel point[68],where it orient along the direction of 

maximum rate of increase of the grey level of A(x,y). The gradient vector at the edge 

pixel can be seen in figure 4.8, that shows the direction of maximal rate from 

black(or dark gray) A(x,y)=0 to white A(x,y)=255.  

(4.2) 

(4.3) 
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Although the gradient vectors point out uniformly within the transitional 

area in figure 4.8, we can visualize it. The reason of visualizing the gradient 

direction is to see clearly how it alter with the associated region of the bone and the 

prosthesis.  

 

 

  

 

 

 

 

 

 

 

      

Figure 4. 8: The direction of  Gradient vector of THR x-ray image 

 

The edge map of prosthesis has already being obtained via the use of a Sobel 

Edge Detector in figure 4.4. Subsequently we refine the gradient computation on the 

generated edge map image; as the gradient at a point on the edge map has vectors 

pointing toward the edges, which are normal to the edges at the edge level. 

Moreover, these vectors generally have large magnitudes only in the immediate 
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transitional area at the edges which we present them in the result section see figure 

4.13(a).  

 

 

 

 

 

 

 

 Figure 4. 9: Corner detected using Harris algorithm on gradient image 

 

For detailed analysis of loosening, two important points D & G marked in red 

in figure 4.9 of the prosthesis are defined as end points of calculating gradient, 

because beyond these points we can not define the presence of loosency. We use 

Harris Corner Detector [58] to recognize these points.  

 

4. 7 Results Analysis  

 

To investigate the performance of the proposed in terms of reliability and 

robustness in automatically identifying loosening in THR x-ray images, we tested it 

on normal and abnormal x-ray images of THR.  Given a THR image the first step 

therefore is to extract the prosthesis and subsequently obtain edge map of the 

prosthesis. Pixels along the edge are numbered starting from the bottom left-most 

point on the prosthesis as pixel, 0 (point denoted by A in figure 4.10). Point E is the 
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bottom right-most point on the prosthesis. Figure 4.10, illustrates the curvature 

value plot for all pixels on the boundary of the prosthesis of figure 4.2(a), note: this 

is an image indicating loosening. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 10: Curvature graph of figure 4.2(a) showing loosening 

 

 
 

In reference to figure 4.2(a), point A and B indicates start and end of the 

straight line area of the prosthesis boundary on the left side of the stem of the 

prosthesis. Both points show a zero values curvature. Point C that is indicated by a 

positive peak in figure 4.10, refers to the point where the prosthesis bends sharp. 

The point D with a negative peak illustrates the point on the prosthesis that bends 

to the right in figure 4.2 (a), just before the start of the circular cup part. The two 

peaks between Peaks marked as D and H in figure 4.10, reveal the start and end of 

the circular prosthesis cup. These two points of a less importance in determining as 

points on the cup part are within the movable parts of the prosthesis and thus will 

be not cemented to any fixed bone of the human body for loosening to happen. 

Starting from point E which is the right-most bottom point of the prosthesis a 

Pixel Number 
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similar explanation can be given about the curvature values obtained for points E, F, 

G and H as marked in figure 4.10.  

 

 

 
 

 

 

Figure 4.11, illustrates the Gradient graph of the left side of the prosthesis of  

 

 

 

 

 

 

 

 

 

Figure 4. 11:Gradient graph of figure 4.1(a) from point A to point D showing 

loosening 

 

figure 4.2 (a). It is noted here that this THR image shows signs of loosening 

as indicated by the slightly dark textured areas just outside the edge AB of the 

prosthesis and even darker areas outside the prosthesis closer to point C which 

should have been embedded within securely cemented (i.e. bright) areas. The pixel 

gradients across the boundary of all points between A and B are somewhat larger 

(above 200) indicating the presence of disintegrated cement bonds. The gradient at 

C is significantly high indicating that in the immediate vicinity of the point there is 

no cement present, which leads to determining the presence of loosency. 

 

 
 

 

Pixel Number 
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Figure 4. 12: Gradient graph of figure 4.2(a) from point E to point G with 

loosening   

Figure 4.12, illustrates the Gradient graph of the right side of the prosthesis 

of figure 4.2 (a). It is noted here that this THR image shows signs of loosening as 

indicated by the slightly dark textured areas just outside the edge EF. The gradient 

values which are in excess of -300 is beyond the gradient value that will be obtained 

if the cement was intact just outside the prosthesis boundary in this area.  

 

Figure 4.13, provides an illustration of gradient direction at two points of the 

prosthesis boundary in its left side. The two example of (b) and (c) points out the 

direction of maximal gradient where in (b) the gradient vector appear as intense 

dark blue colour represent higher values of gradient which obviously, indicate a 

region of gap between bone and prosthesis. Whereas in (b) the gradient vector 

appear as light blue colour represent lower values of gradient which clearly 

indicates a homogeneous region between the bone the prosthsis. 
 

Pixel Number 
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Figure 4. 13: (a) Gradient vector of figure 4.2(a), (b) Gradient vector at the curved 

level of the edge contour and (c) Gradient vector at the straight level of the edge 

contour 

Another example of a loosened THR x-ray image is presented in figure 4.14. 

The POI along the contour, A-D and E-H, are marked using a procedure similar to 

that described above. 

 

 

 

 

 

 

 

 

 

 

                Figure 4.14: Another example of loosening in THR 
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Figure 4.15: An illustration of the gradient vectors                                                            

of the prosthesis of figure 4.14 

 

Figure 4.15, illustrates a visualization of the gradient vector variation of the 

prosthesis of figure 4.15 at along the contour points. The variations indicate the 

presence of loosening on both sides of the prosthesis and subsidence starting from 

B to the mid-way point between C&D. Note that the edge contours have been 

smoothened and this has resulted in a gradual variation of gradients. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Curvature graph of figure 4.14 showing loosening 
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The presented curvature graph in figure 4.16; shows zero-curvature values 

at all points between A and B as well as all points between E and F. These areas 

correspond to the straight edges of the prosthesis stem see figure 4.14 and hence 

the reason for zero curvature. The readings of curvature values between points B 

and C differ from that of figure 4.10; which can be attributed towards the shape 

differences between the prosthesis. However, from point B the curvature values 

decrease and then increases followed by sharp decrease at point D, which 

corresponds to the edge point near to the circular area of the prosthesis  of figure 

4.14. The points between F-H have similar curvature rate change patterns that can 

be attributed to the shape in figure 4.14 of the prosthesis. The above attributions 

lead to the identification of the precise location of key points along the prosthesis 

boundary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Gradient graph of figure 4.15 between points A (bottom of 

prosthesis) to D, as also (marked in red) in figure4.14 showing loosening 
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As can be seen from the gradient graph of figure 4.17 the gradient values 

remains high (negative) and stable from point A-B indicating the presence of 

loosening and increases further beyond point B and C. It is noted that the presence 

of subsidence in soon after point C and towards point D. Given the fact that all steel 

implants will appear as similar in brightness a gradient value beyond 150 in 

magnitude indicates the presence of loosening for most types of cement used for 

bonding.   

 

 

 

 

 

 

 

 

 

Figure 4.18: False corner point is detected 

 

It is noted that not all the steel implants are the same in shape. Therefore, 

the prosthesis edge contours differ as observed in figure 4.18; point G is detected as 

corner point which is incorrect. False corner points can be detected at both sides of 

prosthesis edge. However, by testing five different implant shapes and with the 

edge contour smoothened; it was found that the smoothing results in detecting the 

ideal corner as an end point, especially, on the left side of the edge (from E to H), 

where, the detected corner points might become two. This was simply resolved by 

considering the last maximum detected corner point as H as can be shown in figure 

4.19. 

 

 

False corner 
point  
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Figure 4.19: The desired corner point is detected as an end point 

 

 

 

 

 

 

 

 

  

Figure 4.20: Gradient graph of figure 4.15 between points E (bottom of 

prosthesis) to H (marked in red) in figure 4.14 showing loosening 

 

Thus, the reading of gradients at points E-H is presented in figure 4.19; the 

gradient values increase slowly starting from about -350, indicating the presence of 

loosening, and is followed by a slightly stable maintenance of gradient between -

500 to -600 between points F-G. Beyond point G the gradient increases further and 

sharply. By comparing the gradient graphs obtained for the prosthesis illustrated in 

both figure 4.2 (a) and figure 4.15, we can see the general trend of pixel gradient 

value variation is similar from points A-D and from points E-H.   

Correct 
corner point  

Pixel Number 
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The above observations of variation of gradient vectors in figure 4.15, along 

the boundary can be compared with the same of prostheses that do not show the 

presence of either subsidence or loosening see figure 4.2(b). The same key-points 

were detected along the boundary by analyzing curvature value changes along the 

boundary of the prosthesis see figure 4.21. When comparing figure 4.10 with figure 

4.16, it is obvious that the curvature values are quite different. This can be 

attributed to the difference in shape of the prostheses. 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: Curvature graph of figure 4.2(b), without loosening   

 

Between A-B and E-F the curvature values are maintained at zero indicating 

that the two sides of the stem area are straight. The curvature value of the left side 

of the prosthesis increases to a maximum at point C as expected, which is followed 

by a straight line area just beyond C. At point D the curvature begins to peak. A 

similar explanation can be given to the curvature value changes on the right side of 

the prosthesis from E to H.  
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Figure 4.22: Gradient graph figure 4.2(b), between points A to D, without 

loosening 

Similarly, the gradient graph in figure 4.22; also, appears to be quite 

different from the gradient graph depicted in figure 4.11. As can be seen, the 

gradient values in figure 4.22 between points A to B remains constant and low 

around -200 and steadily increases after B and C. When inspecting figure 4.2 (b) it is 

revealed that this is a THR image where in the surgical proses, bonding cement has 

not been used. Instead the steal part has been pushed in tight inside the bone. As 

the bone is slightly darker in colour than the cement our previous threshold value, -

150, to check whether loosening happens, now need to be increased substantially in 

magnitude. As there is no loosening apparent between A & B one thing we are 

certain is that the threshold now needs to be increased at least just above -200.  

Figure 4.23, illustrates the gradient value changes on the right side of the 

prosthesis. Again the gradient values remain largely constant from E to F and 

subsequently increases after F and after G in magnitude. Given that we are aware 

that this prosthesis binding does not involve the use of a cemented bond, the 

Pixel Number 
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threshold value requires to be set over about -370 if this THR is to be classified as 

not indicating loosency.  

 

 

 

 

 

 

 

 

 

Figure 4.23: Gradient graph figure 4.2(b), between points E to G without 

loosening 

 

The above experimental results reveal that setting the appropriate threshold 

is important in order to come to the correct diagnostics. Especially it should be 

checked whether the bonding is done as tight or as a cemented bond.  
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Figure 4.24: (a) Gradient vector of figure 4.2(b) straight and curved level                          

of the edge contour along the sampled POI 

Figure 4.24, visualises the gradient value change around the contour of the 

prosthesis of figure 4.2(b) in which loosening or subsidence do not appear. Very 

low and constant gradient values in the regions A-C and E-G indicates that there is 

no loosening. Some early sings of subsidence is however demonstrated when 

considering the slightly increased gradient value to the points immediately to the 

left of point C. 

As the presence of loosening is demonstrated by the presence of dark 

regions just outside the straight edges of the stem area of the prosthesis, when 

loosening is present in these regions, if the magnitude of gradient values increased 

beyond, 150 for a cemented bond and 350 for a non-cemented (bone to 

metal/steel) bond. It was shown that the detection of the presence of loosening can 

be carried out accurately by a comprehensive analysis of gradients as explained 

above which can provide the medical expert a clue whether there is loosening or 

not. Results in relation to carrying out the search for the potential present of 

loosening was demonstrated using two THR images that demonstrated loosening 

figure 4.2 (a) , figure 4.14 and one that did not indicate loosening in figure 4.2 (b). 
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Further results are provided in the appendix-A of this thesis is support of the 

results already presented within the chapter.  

 

4. 8 Conclusion  

 

This chapter has presented a scientific approach that can be followed to 

detect the presence of loosening in THR images. After following the steps proposed 

in Chapter-3 for the extraction of the prosthesis, the boundary pixels of the 

prosthesis were located and numbered for traversal. Subsequently a curvature 

analysis along the boundary was conducted to determine a number of key feature 

points present in any prosthesis. In relation to these extracted key-points, pixel 

gradient changes across the boundary of the prosthesis were calculated.  

The experiments conducted in this chapter also revealed that often when 

sever levels of loosening is present, there is an indication that subsidence will also 

be present. However there will be cases where subsidence is present in the absence 

of loosening. Chapter-5 will present a more refined and detailed approach to the 

analysis of presence of subsidence.  
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Chapter 5.  
 

Detection and Localization of Interest Point to 
Diagnoses Subsidence in THR Radiographs 

5. 1 Introduction 

 

Prediction of implant stem subsidence in x-ray images of THR is a challenge 

due to the discrepancy between the cavity at the end of the implant, a possibly 

sinking prosthetic in the bone along with other common THR defects such as 

loosening. Number of studies indicated that cemented femoral components that 

subside greater than 1 mm run an increased risk of loosening as early as four to 

seven years after implantation [71, 72, 73].  Therefore there is a need to develop a 

reliable technique to automatically assess any evidence of early subsidence in order 

to reduce the impact of subsidence on the prosthesis and hence the patient. The 

determination of subsidence can be used as means for predicting possibilities of 

fracture, identifying loosening of the femoral component, determining implant 

component instability and a need for revision surgery.  

 

This chapter proposes a novel approach to automatically detect subsidence 

in THR x-ray images which is initially based on the detection of some key interest 

points. This chapter starts with section 5.2 that describes the proposed concept of 

subsidence detection from a clinical point of view, literature review and how it 

differs from loosening (chapter 4) because both dilemmas are related.  Section 5.3 
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presents the experimental results and a comparison between THR x-ray images 

with and without subsidence. Finally section 5.4 concludes the work presented in 

this chapter.  

 

5. 2 Subsidence Detection 

 

In clinical practice, subsidence of the prosthesis is assessed manually and 

indirectly after several attempts of the radiographer measuring changes in the 

relative positions of the prosthetic convex and cement interface or bone interface in 

the THR x-ray image as shown in figure 5.1 (b). In other words, it is the gap at the 

convex of the prosthesis that seen in figure 5.1 (b) between the two positions, A and 

B. From the ideas presented in literature reviewed a straight, distally tapered 

implant femoral stem is usually not a sign of loosening as the graft compaction 

around hip stems provides a stronger predictor of subsidence than the stem design 

[74]. Loosening as defined in chapter 4 is the radiolucent dark lines around the 

prosthesis. As known to clinical practitioners the measurement of any expansion of 

radiolucent lines around prosthesis at some later stage of  THR subsidence can be 

considered as a loosened prosthesis due to the instability of the prosthesis at this 

stage. Therefore, there is a clear relationship and also a similarity in the ideas being 

proposed in this thesis for detecting the two THR complications, loosency and 

subsidence. Identifying the dark pixel intensity areas just outside the prosthesis, in 

the vicinity of the most convex point of the prosthesis means the presence of 

subsidence and around the prosthesis stem means the presence of loosening. Thus 

the difference between these two THR complications is the region of interest 

where the dark pixels (hence higher pixel gradients) are found. Consequently, the 

proposed method of detecting both THR complications is based upon the accurate 

identification of each region of interest in THR x-ray images. Further, the 



  

97 

subsidence detection is executed accurately based on the theoretical and clinical 

aspects that were discussed in detail in chapter 2, subsection 2.2.2.2. As indicated, 

subsidence refers to a condition in which the prosthesis unexpectedly subsides 

further into the cement or bone; if this happens, an area of darker intensity is 

clearly visible (for example, in figure 5.1 (a), this is visible just above the convex 

bend near the top of the prosthesis). In figure 5.1 (a), region of interest is marked 

on the prosthesis as A and B; the points in between A & B that lie on the boundary of 

the prosthesis represent the convex part of the prosthesis. 

 

Figure 5.1: ROI identified within X-ray images (a) with subsidence and (b) 

without subsidence 

In the proposed approach for subsidence detection the main key point is 

detected as the point with the highest curvature on the convex side of the 

prosthesis stem. Once the point is identified it can be used as a reference point to 

segment the surrounding region for further analysis whereby, points on the 

prosthesis boundary showing, brighter pixel intensity neighbours just outside the 

prosthesis signify a perfect fit; and darker pixel intensity pixels signify abnormality 
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or the absence of the cement bonds. The automatic detection of the above key-point 

requires a corner detector. 

Although the notion of a corner according to figure 5.1, seems intuitively 

unclear, according to Guru et al. [75] a corner is defined as the intersection of two 

adjacent relatively straight curve-segments. Thus the corner point is found at a 

location where the direction of the curve changes abruptly and this also might 

include T-junctions as well as locations of significant texture variations. Conversely, 

state that information of a curve where the points are dominants have a high 

curvature regardless of whether the contour shape is either a close contour or an 

open contour. Several algorithms have been proposed with this regard [76] [77] 

[78]& [79].  A reliable method that is used to compute the curvature extreme points 

on a curve is curvature scale-space (CSS) [80]. This method is used widely as a 

corner detector on an edge contour for object matching, shape analysis and pattern 

recognition [124]. Similarly, our proposed method is based first obtaining planar 

curves using edge detection algorithms and computing curvature maxima points 

along the extracted contour. Yet, the corners are determined by comparing the 

curvature maxima points on the contour. The diagram in figure 5.2, describes the 

proposed approach of interest point detection and segmenting the surrounded 

region. 
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Figure 5. 2:Diagram illustrate subsidence detection;(a) automatic prosthesis                                                                                                     
detection from chapter 3 and (b) the proposed approach to detect subsidence 

 

  The proposed approach includes serval stages; as illustrated in figure 5.2. 

The part (a) was implemented in chapter 3, where the prosthesis is extracted 

automatically using ACM and then a sobel edge detection algorithm is applied to 

detect the prosthesis edge as described in chapter 4. However, within the research 
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context of this chapter further steps were carried out to detect the interest point, i.e. 

the ‘corner’ automatically as described in the following subsections in detail. 

 

5.2.1 Edge Parameterization and Corner Detection 

 

After detecting and tracing the edge, we parametrized the selected edges 

using an affine length [80] based approach. The affine length is invariant to 

geometric curve transformation; that derived from images when it is weighted at 

smoothing different scales. This eliminates spurious details and extract edge feature 

as “scale space” that are more stable for curvature estimation and provide more 

accurate corner detection performance. The curve is smoothed prior corner 

localization in order to differentiate curvature extreme points from other curve 

points thereafter. Each coordinate of the parameterized edge T(τ) is convolved with 

a Gaussian function gσ of width σ, which is also known as the standard deviation of 

the Gaussian distribution as in equation : 

 

X(τ,σ) = x(τ) * gσ  and  Y(τ,σ) = y(τ) * gσ, 

 

where * represents the convolution. 

Following the equation (5.1), each parametrized edge is smoothed using 

smoothing scales determined based on the number ns of sample points on it. The 

smoothing scale set at σ=3, 4, 5 for entire closed contour as if we set σ small false 

corner are detected and if  σ  is large important curve details smoothed out. The 

edge curvature-threshold value, TK is set to 0.02. The edge parametrization is 

defined by ns ≤40, ns >100 respectively. Since we have parametrized and smoothed 

(5.1) 
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edge T (τ, σ) =(X(τ,σ), Y(τ,σ)),  the derivatives of a convolved function can be 

computed using: 

Ẋ (τ,σ) = x(τ) * ġ σ and Ẏ (τ,σ) = y(τ) * ġ σ ,      

As the exact form of ġ σ is identified, to detect the desired corner we look for 

curvature extreme points that are calculated at each point of the smoothed affine 

parametrized curve using equation: 

𝐊(𝛕, 𝛔) =
𝟏

[Ẋ𝟐(𝛕,𝛔)+ Ẏ𝟐(𝛕,𝛔)]
𝟑/𝟐 

The absolute curvature values represents strong corners [80] or peaks. Yet, 

the curvature localization of these point usually prominent because either there is 

an actual corner or there is a significant change in slope (or convex) along the 

prosthetic edge. All the true corners are detected as can braly seen in figure 5.4 (a), 

however, we point out  some  detected corners along edge contour.   

Figure 5.3:  Detected corners  (a) and  (b) 

To detect the corner within the ROI between A and B, we subsequently, 

refined the true corners and eliminate unwanted corners using a threshold. The 

(5.3) 

(5.2) 
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corner were initially, set where if curvature value is lower than TK  then the corner 

is removed. Any false corners are removed by comparing with its two neighbor 

minima on the same edge and if the curvature value of corner is not least twice that 

of its neighbor minima then it removed from the corner set as well as the very close 

corners. The corners on T (τ) are tracked and T-corner is added without using any 

threshold. As a result, only the position of the tracked corners change not the 

number of detected corners [80].  

 

5.2.2 Interest point Localization and Local Gradients 

 

Once the interest point is determined; an ROI (the red dashed box)  is used 

to surround in center point enclosing the point of interest as illustrated in figure 5.5 

counting about 100 pixels (50 pixels to each side) surrounding the interest point 

and segments the region accordingly. 

 

 

 

 

 

 

 

 

Figure 5. 4:  A THR x-ray image with subsidence; interst point  is marked in 

white surrounded with red dashed box 
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Interest point localization is followed by defining a spatial gradient as the 

edge gradient information depends on the derivative of the pixel intensity, which is 

more resistant to illumination variations than the normal gray level(color) of an 

image. The gradient is calculated using equation:    

                                     𝐺 = √𝐺𝑥2 + 𝐺𝑦2     

 

𝜃 = 𝑡𝑎𝑛−1(𝐺𝑦/𝐺𝑥) 

where Gσ(x, y) and Gσ(x, y) are values of the directional derivative  of both 

horizontal and vertical directions respectively at point (x,y) for scale σ. The 

gradient is computed using multi-scale derivatives of Gaussian kernels to adapt the 

spatial scale of edges in THR image as seen in figure 5.5 (a).  

 

Figure 5. 5:  (a) Sample of Segmented ROI of THR x-ray image of  figure 5.4 and 

(b) edge image of ROI 

To ensure that only the prosthesis edge contour gradient is mapped but not 

the entire ROI; we matched with the edge image as in figure 5.5 (b) with gradient 

ROI, so, the gradient of edge contour is mapped graphically as is discussed in the 

next section. 

(

7) 

(5.3) 

(5.4) 
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5. 3 Experimental Results and Comparison 

 

Experiments were conducted on THR images that have been annotated by 

medical experts to indicate subsidence and those THR images that do not indicate 

subsidence. For each image the key-point is extracted and around the key-point, 50 

points along either side of the prosthesis boundary is considered for analysis. With 

the pixels on the boundary with the key-point numbered as pixel-50, numbered 

from 1-100, pixel value gradient at each point across the boundary is measured 

using the presented in section 5.2.2. What follows is a presentation of the results 

and the corresponding discussions/analysis for each THR image experimented.  

 

 

Figure 5.6:  Gradient of ROI of figure 5.5 

Figure 5.6, illustrates the pixel value gradients across the prosthesis 

boundary for the pixels within the ROI of the THR image of figure 5.5. The red line 

shows the smoothened graph. Recognizing that  the THR image of figure 5.5 

indicates subsidence, this is indicated in figure 5.6 by the continues rise of gradient 

value after the key-point moving towards the cup area of the prosthesis. As this 

image also demonstrates loosency, pixls before the key-point also indicates higher 

Pixel Number 
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gradient values. This indicates the presence of significant amount of subsidence as 

the cement bond seems to have disintegrated on both sides of the key-point. Similar 

observations can be made when inspecting figure 5.7 that represent gradient  

  

 

 

 

 

 

 

 

 

Figure 5. 7:  Gradient of ROI of figure 5.8 

Pixel Number 

Figure 5. 8:  Sample x-ray image with subsdience, ROI 

is highlight in red 
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plot of the ROI of the THR image illustrated in figure 5.8. The ROI is highlighted with 

a red rectangular area. As can be observed in figure 5.7, the pixel value gradient 

increases from the start of the pixels within the ROI, goes down slightly after the 

key-point and increases after. The presence of peaks on either side of the key-point 

illustrates subsidence as this is due to darker regions that are a part of the bone’s 

shaft.  

A further example of gradient plot for pixels within an ROI is illustrated in 

figure 5.9, where figure 5.10 shows the THR image which indicates presence of 

subsidence. Once again the increased pixel value gradients at points on either side 

of the key-point illustrates the lack of a solid bonding between the prosthesis and 

the bone structure.  

 

 

Figure 5. 9:  Gradient of ROI of figure 5.10  

Pixel Number 
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Figure 5. 10:  Sample x-ray image with subsdience, ROI is highlight in red 

 

Figure 5.11, illustrates a pixel value gradient graph of pixels within the ROI 

of  the THR image illustrated in figure 5.12. Note that this THR image does not 

indicate the presence of subsidence. The bonding at the pixels before and soon after 

the key-point appears to be solid and this is represented by the fact that the 

gradient graph remaining at a constant low value until and after the key-point. In 

other words the key-point is embedded within a region that has been solidly 

bonded, that is the prosthesis is well ponded by cement. The trends indicated by the 

gradient graph therefore corresponds to a THR image with no subsidence.   
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Figure 5. 11:  Gradient of ROI of figure 5.12  

 

Figure 5. 12:  Sample x-ray image without subsdience, ROI is highlight in red 

Similar observation of a pixel gradient value trend within the ROI of a THR 

image with no subsidence figure 5.14 is illustrated in figure 5.13. The inclusion of 

Pixel Number 
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the key-point within a solidly bonded area is illustrated by the fact that the gradient 

values remain at a constantly low value until and after the key-point.  

 

Figure 5. 13:  Gradient of ROI of figure 5.14 

The figure 5.13 represent ROI of figure 5.14 that as well highlighted with red 

rectangle box. 

 

Figure 5. 14:  Sample x-ray image without subsdience, ROI is highlight in red 

Pixel Number 
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A somewhat similar observation can be made when inspecting the gradient 

value changes illustrated in figure 5.15 that shows the gradient plot of pixels within 

the ROI of the THR image of figure 5.16. It is noted that in this specific case the pixel 

gradient value starts increasing immediately after the key-point. However the key-

point seems to be well embedded within a solidly bonded area. Therefore it can be 

argued that this THR image does not indicate the presence of subsidence.   

 

 

Figure 5. 15:  Gradient of ROI of figure 5.16  

 

 

Pixel Number 
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Figure 5. 16:  Sample x-ray image without subsdience, ROI is highlight in red 

 

A further example is illustrated by figure 5.17 which is the gradient plot of 

pixels within the ROI of the THR image illustrated in figure 5.18. This THR image 

also does not indicate the presence of subsidence. 

  

Figure 5. 17:  Gradient of ROI of figure 5. 18 

 

Pixel Number 
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Figure 5. 18:  Sample x-ray image without subsdience, ROI is highlight in red 

 

The above experiments indicates that by studying the pixel value gradient 

across the prosthesis boundary of pixels within an ROI that centres the key-point 

can lead us to an approach that can effectively be used to determine the presence of 

subsidence. If on either side of the key-point, there are pixels of higher gradient 

value, this means that the on both sides of the keypoint there is either the bone 

shaft or broken cement bonds. The key-point is thus not secured and there is every 

chance that subsidence is present as in an ideal THR surgical procedure the key-

point will well be fully embedded within a securely bonded area to both sides on 

the key-point, as illustrated when analyzing THR images with no evidence of 

subsidence.  

Further experimental results for a number of other THR images showing the 

presence or absence of subsidence is presented in Appendix-B. The results are in 

comparison with the results presented above, leading to consistent justifications.  
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Figure 5. 19: A false corner detected; (a) and (b) shows the segmented  ROI 

Figure 5.19, illustrates a prosthesis with a rare shape where a wrong corner 

point is detected due to the presence of two corner points. The odd shape of the 

prosthesis has resulted in the above. Since the algorithms implemented picks up the 

first corner point that appears when traversing from the tip of the prosthesis stem, 

the wrong point was identified. In situations like this the algorithms needs to be 

modified to find the corner point with the highest curvature. If this was done, the 

correct point would have been picked up as the key-point. As such an irregular 

shape of prosthesis is rare, the algorithm presented initially will be valied for most 

prosthesis shapes.  
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5. 4  Conclusion  

 

In this chapter we proposed a novel approach to automatically detect 

subsidence in THR x-ray images. A smoothed prosthetic edge contour is extracted 

followed by edge parametrization and corner detection. Based on this information 

we define the interest point on convex part of the prosthesis edge and a region of 

interest is segmented for further analysis. It was shown that by studying the 

gradient variations within prosthesis edge pixels within the ROI it is possible to 

detect the presence of subsidence. If the key-point is well embedded within a region 

of constant low gradient, this indicates a solid bonding of the prosthesis to the bone, 

hence no subsidence.  
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Chapter 6.  
 

Detection of THR Infection in Radiographs 

6. 1 Introduction  

 

Infections after THR surgery occurs in a small percentage of patients that 

may lead to the need of prolonged antibiotics therapy or the ultimate removal of 

prosthesis. Studies [8],[9] and [10] show that relaying on pure eye observation of 

medical expert to detect infection can be challenging and inaccurate in some cases. 

Using computer aided diagnosis solutions improves medical expert’s interpretation 

and may reduce number of errors. This chapter aims to introduce a simple coherent 

approach that identifies the presence of infection in THR x-ray images. The 

proposed method scans a THR image in cross sections and mark suspicious regions 

via calculating local maxima and local minima of the absolute pixel value gradient 

magnitude.  

For clarity of presentation this chapter is divided into several subsections. 

Section 6.2, introduces the proposed technique to identify infection from THR x-ray 

images. Section 6.3, describes the methods used to enhance THR x-ray image 

appearance prior to processing for infection detection. Details of calculation of pixel 

value gradient magnitude across cross sections is explained in section 6.4; followed 

by section 6.5 of results, analysis and discussion. The chapter ends with a 

conclusion in section 6.7. 
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6. 2 Proposed Technique 

 

In x-ray images of bones have a high x-ray attenuation compared to the 

surrounding tissues that have different gray level intensity values. A grey level of a 

pixel is described in the context of visual spatial distribution of pixel value over a 

relatively small area. One of the discriminative properties of infection in THR x-ray 

images is their grey level values of pixels around the prosthetic, which are 

significantly different from those within the prosthetic, cement bond (if used) or the 

bones. This information can be analyzed and extracted via calculating the gradient 

magnitude of pixel values across the edges of the prosthesis. It is noted that in 

general “the points that have local maxima in gradient values are considered edge 

points” [69].   

When conducting the proposed research, x-ray images of patients who suffer 

from infection in THR were examined with the expert opinion of medical specialists 

before conducting any experiment to ensure correctness of the proposed concept, 

as well as defining the suspicious region in x-ray images for investigation. Pre-

processing steps were carried out to segment and enhance these images prior to 

computing the absolute gradient magnitudes.   

Figure 6.1 provides an overview of the proposed technique to identify 

infection from THR x-ray images. 
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Figure 6.1: Proposed technique to detect infection in THR x-rays 

 

The main idea that is being proposed is to take each cross section of the 

segmented THR image that centers the prosthesis region and across each cross 

section calculate the gradient values at each pixels. In the presence of a solid bond 

between the prosthesis and the cement / bonding material or the bone, the gradient 

value change pattern across the cross section will be different to what can be 

observed in the presence of an infection. The reason being the infected regions 
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being significantly darker than any other pixel belonging to the prosthesis, bonding 

material or the bone. It is also noted that one needs to discriminate the infections 

from loosency as loosency can also demonstrate similar trends in the gradient 

values across a cross section. However the two cases are distinguishable as 

loosency regions tends to be longer and have a linear boundary whereas the 

infection regions are relatively shorter and mostly present closer to the tip of the 

stem of the prosthesis having irregular boundaries. 

 

6. 3 Image Enhancement  

 

 Medical images suffer from a wide variety of imperfections that may cause 

interpreting the abnormalities due to THR complications in x-ray images more 

complex. Therefore, we propose to improve the appearance of THR x-ray images by 

using a winner filter to reduce noise and an open morphological operation that 

sharpens faint but important details of x-ray images.  

For the purpose of this research we use 22 THR x-ray images manually 

annotated and diagnosed by medical experts. An imperfection is defined around the 

bottom edge of the prosthesis in particular, between the cement/bone and 

prosthesis surface that appears as a dark region as shown in figure 6.2. Thus, first 

we localize ROI by cropping all test THR images as shown in figure 6.2. The reason 

of localizing this region only is due to various intensity levels in other unwanted 

regions that may mislead infection identification process if the whole hip bone has 

been delineated thereby end up with similar magnitude values or patterns. Two-

dimensional Wiener filter is employed to remove noise and enhance the anatomical 

visualization. The Wiener filter degrades greyness by the constant power of 

additive Gaussian noise [40]. Then a low-pass filter is used to determine the least 

square mean and the variance around each pixel. This suppresses the inversion of 
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noise. A blurring filter is subsequently used for scaling it down using statistics from 

neighboring pixels. Logically, it cannot use a pure pixel basis, because there is no 

separation of signal and noise in each pixel. However, it decomposes the image into 

a smoothed background image and then takes deviations from this by estimating 

signal power plus noise power.  The output of the filter is shown in figure 6.2(b).  

 

 

Figure 6. 2: (a) ROI of THR Image & (b) filtered ROI 

 

Since we want to compute the pixel value gradient magnitudes on an images 

that consists of noise, a morphological operation was further applied to reduce the 

structuring element of the noise present. In morphology, objects in an image are 

considered as sets of points that have special structuring elements (SE). Obviously, 

SEs play an important role in extracting the features or objects of a given shape in 

an image. This step refines the filtered image without changing the image intensity. 

It aims to eliminate irrelevant details that may add extra difficulties in outlining the 

boundaries of the prosthesis and the surrounding area. Thus, the open 
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morphological technique used performed grey level erosion process, followed by a 

grey level dilation process, by applying the same structuring pixels for both 

operations. This removes small objects from the images while preserving the shape 

and size of larger objects in the images. Further it opens up dark gaps between 

bright features in x-ray images whereas it clearly demonstrates the variation of 

color of the prosthetic and the surrounding area. 

 

6. 4 Gradient Magnitude  

 

 The image gradient is defined as a directional change in intensity or color of 

an image. Sobel operator [42] manipulates image intensity to obtain the gradient 

features that assist to determine and separate objects from the background of an 

image. We choose Sobel operator to compute the gradient magnitude because it 

detects the edges where the gradient magnitude is high, with low computational 

cost.  The gradient has a direction and a magnitude, this information is encoded in a 

vector. The gradient may be different at every point in an image. Therefore it is 

presented with a different vector at every location in the image; calculating the 

length of this vector provides the magnitude value, while its direction gives the 

gradient direction of that particular location in the image. Thus, if the gradient 

image is defined as a vector G= [Gx Gy], the absolute gradient magnitude at each 

point in an image can be computed by combining the gradient approximations, 

using: 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2 

 

(6.1) 
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Edges are demarcated clearly by the large gradient magnitudes that 

determine the boundary of the prosthetic and the bone, as shown in (Figure6.3), 

where the surrounding region has a lower gradient magnitudes.  

 

 

Figure 6. 3: An image shows gradient magnitude of figure 6.2(b) 

 

However, it is difficult to synthesize any assumptions about gradient 

magnitude variations from the gradient image illustrated in figure 6.3. In-order to 

visualize intrinsic variance of the changing gradient magnitude values the output 

gradient image is sampled by taking image cross sections and plotted as a graph, 

where it used to validate the gradient magnitude at each point within target region 

described in detail in the section 6.5. This avail in assessing the changes of gradient 

magnitude values at each adjacent pixel or regions in the THR image.  

 

 

GradImage 
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6. 5 Results and Discussion 

 

The proposed technique discussed above was tested on various THR x-ray 

images. To provide a vigorous evaluation of tested results a comparison was 

conducted between normal and abnormal THR x-ray images. Comparison in such 

cases aids in ensuring the effectiveness of the proposed method with limited THR x-

ray images that were available for this research. Each image were sampled, i.e. cross 

sectioned, at equal intervals.  To have a proper verification of results, let us first 

observe the test images illustrated in figure 6.4 (a) and (b). Here the images were 

purposely scaled to envisage the axes as x-axis and y-axis. 

 

 

 

 

 

 

 

Figure 6. 4: Detecting local maxima and minima in (a) normal THR x-ray 

image (b) infected THR x-ray image 

 

The reason for showing scale is to sight the target region and the sampled 

intervals as well as to deliberate the similarities and differences between compared 

images that may provide a sign of suspicious region in the THR image. The gradient 

magnitude is “sampled” at equal intervals across the target region in the gradient 
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image. As shown in (Figure6.4), the “sampled” intervals are carried between lines 

250 and 350. For every line sampled, gradient values were plotted. The pixels along 

each line that exhibited the largest changes in gradient values are depicted as  and 

• respectively. These values indicate the edges of the surrounding tissue, bone and 

the prosthesis and are referred to as local maxima and local minima. They are 

depicted as (+) and (O) respectively in figure 6.4. The graphs were slightly 

smoothed using a Gaussian filter as .05. The magnitude values can verify the 

correlation between the prosthetic and the surrounding region and as a fact is that 

edge pixels are at local maxima of gradient magnitude [69]; thus, defining those 

points is essential. To define periodic local maxima and local minima across the 

magnitude values a threshold of 0.5 and -0.5 were set respectively. 
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Figure 6.5: Gradient magnitudes obtained from a normal THR X-ray of figure 6.4 (a) 

 

It should be noted that the gradient magnitude graphs in figure 6.5 

correspond to the uninfected THR image in figure 6.4 (a). For instance, Graph 1 

illustrates the gradient magnitude on line 250. The blue curve denotes the actual 

magnitude graph, which was smoothed using a Gaussian filter in order to have a 

better visualization of the magnitude values. This is represented as a red curve 

within the same graph.  

Furthermore, the green highlighted area represents the edges of the bone, 

and the arrows represent the edges of the prosthesis.  This has been defined as a 

target region to spot the gradient magnitudes behavior across these two edges. As 

can be seen in Graphs 1-4, there are two local maxima and two local minima. 

However, moving towards the bottom of the image, in a normal THR x-ray image, 

there is only one local maxima and one local minima, which correspond to the edges 

of the bone. This fact can be corroborated by looking at sample line 330 and 350 in 

figure 6.4 (a) that demonstrated in Graphs 5 and 6.  The gradient magnitude 

graphs for the infected THR x-ray image of figure 6.4 (b) are depicted in figure 6.6. 

It is clear that, unlike the graphs for the normal THR images, there exists an 

alternation between local maxima and minima within the region of prosthetic 

edges. 
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Figure 6. 6: Gradient magnitudes obtained from an infected THR X-ray figure 6.4 (b) 
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Graph 2: Magnitude at line 270 
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Graph 3: Magnitude at line 290 Graph 4: Magnitude at line 310 

Graph 5: Magnitude at line  330 Graph 6: Magnitude at line  350 
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(a) (b) 

By observing the same region of the bone and the prosthesis in figure 6.6, 

the total number of peaks of both maxima and minima is usually more than four; 

while the case for a normal THR image is two local maxima and two local minima. 

Such an occurrence can be observed in all graphs. Similar anticipation of gradient 

magnitude is noted in figure 6.8 that represents another sample of normal THR x-

ray image in figure 6.7 (a).   

 

 

Figure 6. 7: Detecting local maxima and minima in (a) normal THR x-ray image (b) 
infected THR x-ray image 

 

It should be clear that calculation of gradient magnitude is performed exactly 

the same as in figure 6.5 & figure 6.6. Likewise, the sampled intervals are performed 

between lines 250 and 350. 
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Figure 6. 8: Gradient magnitudes of figure 6.7(a) 
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As shown from graph 1 and 2, that there are two local maxima and two local 

minima that affirm the edges of the bone and the edges of the prosthetic as 

described for a normal case of THR image. Conversely, there is only one local 

maxima and one local minima which correspond edges of the bone as exemplified 

earlier about bottom of a THR image that is can be seen at sample line at 310 - 350 

of figure 6.6 from graphs 4 – 6. Considering the fact of alternation between local 

maxima and local minima within the region of prosthetic edges is clearly visible in 

figure 6.9 that conform infected THR image in figure 6. 7 (b). 
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To provide an evident clarification of gradient magnitude behavior across 

sample intervals; this approach was tested on another normal and abnormal THR 

image.  Similarly, the sampled gradient magnitudes were evaluated across the 

target region from line 250 - 350 as in figure 6.11, that conform to a normal THR 

image in figure 6.10 (e). 

 

 

 

 

 

 

 

Graph 5: Magnitude at line 330 Graph 6: Magnitude at line 350 
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Figure 6. 9: Gradient magnitudes of figure 6.7 (b) 
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Figure 6. 10: Detecting local maxima and minima in (a) normal THR 

x-ray image (b) infected THR x-ray image 
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Figure 6. 11: Gradient magnitudes of figure 6.10 (a) 

 

 

 

 

 

 

 

 

 

 

 

By looking at gradient magnitude of graph 1, that correspond line 250 in 

figure 6.10 (a); there are two local maxima that manifest the bone and the 

prosthetic edge for a normal THR image whereas three local minima however, the 

third local minima is out of the specified rang of defining the infected region in THR 

images. The graph 4-6, shows gradient magnitude of the bottom of THR image 

where it has to be one local maxima and one local minima that represents bone 

edge. As far for these graphs the number both local maxima and local minima varies 
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due the THR image illumination whereby this variation concur close to the bone 

edge that is again as stated earlier as a point out of the target region zone. On the 

other hand, looking at figure 6.11 that correspond infected THR image in figure 6.10 

(b), both number local maxima and local minima exceed within target region. 

Merely, this clearly oppose the typical number of local maxima and local minima in 

a normal THR image. Yet, the only difference is in graph 4 whereby, there is an local 

minima spotted before the start point of the bone edge as this is indicated as well 

out of the target region. 
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Figure 6. 12: Gradient magnitudes of figure 6.10 (b) 

 

 

 

 

 

 

 

 

 

Despite the variation in gradient magnitude as noted in some of the graphs 

which is because of the x-ray image illumination; the commonalities of gradient 

magnitude values near the edge of the prosthesis ”target region” is clearly visible 

for both cases normal and infected THR x-rays.  The rapid fluctuation of values near 

this region is a clear indication of an anomaly, most commonly an infection. 

Additionally, towards the bottom of the image as shown in figure 6.6, figure 6.9, 

figure 6.12 and more results are presented in appendix B, there are more than four 

peaks in an infected THR image, in contrast to the two found in a normal THR 

image. Thereby, all of these observations combined together serve as a powerful 

indicator for diagnosing the existence of infection within a THR x-ray image. This 

gives an obvious insight that gradient magnitude information, may use as an 

indicator to identify the fluctuations in intensity values close to the edge of the 

prosthesis, can in turn be used to identify the presence of infections within THR x-

ray images. In addition, for calarification purpose sampling the entire cropped THR 

image automatically results in too many figures that have similar readings of 

gradient magnitudes. Since the number of the tested images is limited to 22, it was 
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adequate to illustrate the gradient magnitude along the target region as specified 

above in this section.  

 

6. 6 Conclusion 

 

This chapter proposed an automated technique to identify infection in THR 

x-ray images. Per-processing steps were carried on the THR x-ray images to 

enhance the appearance of the images and make certain details of closely adjacent 

regions in the image more evident. Gradient magnitude values of the target region 

were obtained and sampled at equal interval across this region. Number of existing 

local maxima and local minima were used as a feature for an indication if there is an 

anomaly in the tested THR x-ray image. A rapid alteration in number of local 

maxima and local minima within the target region in THR x-ray image is assumed a 

clear sign of infection. However, the proposed approach needs to be evaluated and 

that would be performed as a future work to support the accuracy and robustness 

of the technique on large set of THR data including any odd cases. 
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Chapter 7.  
 

Conclusion and Future Work 

The aim of the work carried out within the research context of this thesis 

was to design, implement and test computer vision based algorithms for the 

automatic detection of complications that can arise after THR surgical procedures. 

In achieving this aim an Active Contour Method (ACM) based approach was 

presented for the automatic extraction of the prosthesis. Subsequently a curvature 

measurement based approach was presented for the extraction of key-points on the 

boundary of the prosthesis contour, that are often used by medical experts as 

reference points in analysing THR images for the presence of complications. 

Subsequently pixel value gradient variation analysis based approaches were 

presented for the automatic detection of three main complications of THR surgical 

operations, namely, the presence of loosency, subsidence and infections. In addition 

to the above to help automate existing approaches for the detection of prosthesis 

misalignment, an ACM based approach was also presented for the automatic 

detection and segmentation of the Obturator Foramen, often used to provide 

reference points in quantifying misalignment.  

Following sections provide the thesis conclusions and possible future work. 
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7. 1 Conclusion  

 

A novel approach to extracting the prosthesis automatically was presented 

in chapter 3. In fact, two different approaches were implemented for the purpose of 

extracting prosthesis automatically. This chapter starts presenting the first 

approach which used histogram thresholding to extract prosthesis. Histogram 

thresholding generates a binary image wherein the foreground is separated from 

the background. It was shown that histogram thresholding has a drawback; it’s 

accuracy significantly varied between different test THR images due to image 

quality, pixel value saturation and prosthesis location differences that are often 

present.  It only produced accurate extractions on good quality images with very 

clear prosthesis boundaries. The second approach proposed was using active 

contour methods. The novelty of this approach is we automatically allocate the start 

points of this algorithm and based on these points it continues to deform the 

prosthesis contour until the contour reaches the prosthesis boundary. As we 

showed in chapter 3, as the prosthesis cup is circular in shape, we applied a circle 

detection algorithm to detect the prosthesis cup and locate its centre point 

automatically. By having this information, we determined the most right prosthesis 

cup edge pixels points. These parameters were passed to active contour method 

where it starts converging the prosthesis contour. We have demonstrated the 

ability of proposed approach in extracting the prosthesis of various different test 

THR x-ray images. Additionally, we extended the use of active contour method to 

segment obturator foramen. By segmenting obturator foramen; we can determine 

misalignment or leg discrepancy after total hip replacement. This this work was 

concluded to be useful in contributing towards the semi-automated approaches 

presented in literature for the detection of misalignment. 

A novel algorithm was designed and implemented in chapter 4 to detect THR 

prosthesis loosening. With this approach, any dark region within radiolucent zone 
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or line at the prosthesis is detected via evaluating the gradient values at the 

prosthesis contour level. To allocate the radiolucent zones we defined straight and 

curved edge of the prosthesis contour by computing the curvature rate. Then the 

associated gradient values computed. We showed how the straight regions of 

radiolucent zone discriminate from the curved regions along with a demonstration 

of gradient pixels values of those regions. We showed the efficiency of this 

algorithm by comparing THR x-ray images with and without loosening as shown in 

the result and appendix-A. Another novel algorithm is presented in chapter 5 which 

automatically detect subsidence in THR x-ray images. After extracting the 

prosthesis edge, a key point is automatically detected on the convex of the 

prosthesis using corner detection that depends on computing curvature scale space. 

We showed how this approach is different from detecting loosening. As such the 

surrounded region of the key point is segmented to evaluate the consistency of grey 

scale pixels which is performed again by computing gradient pixel value. We 

showed that there is a clear pattern in the results with THR x-ray images with 

subsidence which is used to discriminate from THR x-ray images with no 

subsidence. Last but not least, a novel algorithm is presented in chapter 6 to detect 

THR infection.  To detect the infection suspicious region within THR x-ray images is 

segmented; we showed that these region are surrounded the prosthesis particularly 

at the bottom edge. The segmented images are enhanced and the absolute gradient 

magnitude is computed at equal intervals across the images.  We find local maxima 

and local minima of each interval. We showed that number of existing local maxima 

and local minima in normal THR image is limited to local edges within the image 

and we also showed in infected THR images that there is a variation in number of 

local maxima and local minima within the same THR image region; this an 

indication of an anomaly which is probably a sign of infection.  
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7. 2 Future Work 

 

The ACM based approaches presented for the automatic segmentation of the 

prosthesis and the obturator foramen were proven to be very effective and help 

automate the subsequent THR complication detection algorithms presented both 

within this thesis and the methods proposed by other researchers. In order to 

ensure their universal effectiveness in extracting the relevant object areas, some 

fine tuning of the algorithms will have to be done depending on the shapes of the 

objects to be detected, noise levels of the images etc.  

Further the algorithm proposed for the use in the detection of the circular 

area of the prosthesis can also be used to determine the circular plastic/steal cup 

that is often fixed to the thigh bone to hold the circular part of the prosthesis within. 

By detecting the centres of the two circles one will also be able to determine the 

presence of dislocations and even to quantify dislocation. 

The algorithms presented to detect the presence of loosensy, subsidence and 

infections can be extended to quantify the relevant complication. For example once 

subsidence is detected in the THR images illustrated in figure 7.1 if the dark area 

around the subsidence region can be quantified via counting the dark pixels, this 

will provide a means for the quantification. Such additional knowledge of the 

measure of the complication can help medical specialists who may want to closely 

monitor escalation of the complication to determine when corrective surgery will 

have to be performed or to advise patients.  Similarly approaches to quantifying 

loosency and infections can also be derived based on counting the dark pixels of the 

ROIs on normalised images.  
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In the tested THR x-ray images within this thesis the infection is viewed at 

the bottom edge of prosthesis. However, the prosthesis is a bizarre object in the 

body; thus, infection can occur anywhere around the prosthesis, this work also can 

be extended to include the prosthesis cup region.  

Another evident for measuring two common THR anomalies loosening and 

infection is measuring the bone density. With x-ray manifestation of bone; this two 

destructive lesions are surrounded by bright rim of density that represent 

prosthesis edge ‘steel’. In term of measuring the density loosening seems as an 

extensive reaming that are deeper than the prosthesis edge creating a loosening rim 

around the prosthesis. Depending on the density of the bone the infection appears 

as punched holes surrounded the prosthesis that are darker then the bone and the 

prosthesis.  

Loosening often results in the prosthesis having the freedom to move within 

the bone and with prolonged period of loosening due to the prosthesis ‘hitting’ the 

Figure7. 1: The distance between prosthesis and bone 

marked with red arrow 
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wall of the bone at frequent intervals there could be evidence of ‘bone thining’ and 

‘bittleness’. Such severe cases of loosening can be identified by processing the bone 

and the pixel value variations within the bone close to the prosthesis. 

It was mentioned that infections often is indicated by irregular edges. The 

proposed approach for the detection of infections can be extended to check whether 

the boundary is irregular. However for this purpose the image should be cross-

sectioned at very close intervals that will need more processing power. 

Further it is important for any research conducted within medical imaging 

field to present the false positive and false negatives of the approaches proposed for 

computer based image analysis. Due to the acute shortage of test images that were 

mainly due to patient confidentiality related issues, we were only able to test the 

algorithms on a relatively modest set of data. However as these datasets were 

selected by medical experts who were involved in the annotation of the 

complications and validation of our methods based on the small dataset, we are 

confident that the proposed approaches are a good proof of concept level idea. In 

the future with more data being available, the experiments could be extended. Such 

larger datasets will also allow validation and further analysis leading to possible 

further enhancement of the algorithms. 
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Appendix A.  

A sample THR x-ray image with loosening 
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A sample THR x-ray image without loosening-1 
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A sample THR x-ray image without loosening-2 
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A sample THR x-ray image without loosening-3 
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Appendix B.  

A sample THR x-ray image without Subsidence (note that the size 

of the segmented region is 120 pixel) – Image 1 

 

 

 

 

 

 

A sample THR x-ray image without Subsidenc- Image 2 
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A sample THR x-ray image without Subsidenc- Image 3 

 

 

 

 

 

 

A sample THR x-ray image without Subsidenc- Image 4 
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Appendix C.   Sample of Infected THR x-ray Images  

No. Infected THR Image Gradient Magnitude Graphs 
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