81 research outputs found

    Learner Modelled Environments

    Get PDF
    Learner modelled environments (LMEs) are digital environments that are capable of automatically detecting learner’s behaviours in relation to a specific knowledge domain, to reason about those behaviours in order to asses learner’s performance, skills, socio-emotional and cognitive needs, and to act accordingly in a pedagogically appropriate manner. Digital environments that possess such capabilities are typically referred to as Intelligent Learning Environments, or more traditionally – as Intelligent Tutoring Systems (ITSs)

    Interventions to Regulate Confusion during Learning

    Get PDF
    Confusion provides opportunities to learn at deeper levels. However, learners must put forth the necessary effort to resolve their confusion to convert this opportunity into actual learning gains. Learning occurs when learners engage in cognitive activities beneficial to learning (e.g., reflection, deliberation, problem solving) during the process of confusion resolution. Unfortunately, learners are not always able to resolve their confusion on their own. The inability to resolve confusion can be due to a lack of knowledge, motivation, or skills. The present dissertation explored methods to aid confusion resolution and ultimately promote learning through a multi-pronged approach. First, a survey revealed that learners prefer more information and feedback when confused and that they preferred different interventions for confusion compared to boredom and frustration. Second, expert human tutors were found to most frequently handle learner confusion by providing direct instruction and responded differently to learner confusion compared to anxiety, frustration, and happiness. Finally, two experiments were conducted to test the effectiveness of pedagogical and motivational confusion regulation interventions. Both types of interventions were investigated within a learning environment that experimentally induced confusion via the presentation of contradictory information by two animated agents (tutor and peer student agents). Results showed across both studies that learner effort during the confusion regulation task impacted confusion resolution and that learning occurred when the intervention provided the opportunity for learners to stop, think, and deliberate about the concept being discussed. Implications for building more effective affect-sensitive learning environments are discussed

    Supporting learning in intelligent tutoring systems with motivational strategies.

    Get PDF
    Motivation and affect detection are prominent yet challenging areas of research in the field of Intelligent Tutoring Systems (ITSs). Devising strategies to engage learners and motivate them to practice regularly are of great interest to researchers. In the learning and education domain, where students use ITSs regularly, motivating them to engage with the system effectively may lead to higher learning outcomes. Therefore, developing an ITS which provides a complete learning experience to students by catering to their cognitive, affective, metacognitive, and motivational needs is an ambitious yet promising area of research. This dissertation is the first step towards this goal in the context of SQL-Tutor, a mature ITS for tutoring SQL. In this research project, I have conducted a series of studies to detect and evaluate learners' affective states and employed various strategies for increasing motivation and engagement to improve learning from SQL-Tutor. Firstly, I established the reliability of iMotions to correctly identify learners' emotions and found that worked examples alleviated learners' frustration while solving problems with SQL-Tutor. Gamification is introduced as a motivational strategy to persuade learners to practice with the system. Gamification has emerged as a strong engagement and motivation strategy in learning environments for young learners. I evaluated the effects of gamified SQL-Tutor on undergraduate students and found that gamification indirectly improved learning by influencing learners’ time on task. It helped students by increasing their motivation which produce similar effects as intrinsically motivated students. Additionally, prior knowledge, gamification experience, and interest in the topic moderated the effects of gamification. Lastly, self-regulated learning support is presented as another strategy to affect learners’ internal motivation and skills. The support provided in the form of interventions improved students’ learning outcomes. Additionally, the learners' challenge-accepting behaviour, problem selection, goal setting, and self-reflection have improved with support without experiencing any negative emotions. This research project contributes to the latest trends of motivation and learning research in ITS

    Supporting students in the analysis of case studies for professional ethics education

    Get PDF
    Intelligent tutoring systems and computer-supported collaborative environments have been designed to enhance human learning in various domains. While a number of solid techniques have been developed in the Artificial Intelligence in Education (AIED) field to foster human learning in fundamental science domains, there is still a lack of evidence about how to support learning in so-called ill-defined domains that are characterized by the absence of formal domain theories, uncertainty about best solution strategies and teaching practices, and learners' answers represented through text and argumentation. This dissertation investigates how to support students' learning in the ill-defined domain of professional ethics through a computer-based learning system. More specifically, it examines how to support students in the analysis of case studies, which is a common pedagogical practice in the ethics domain. This dissertation describes our design considerations and a resulting system called Umka. In Umka learners analyze case studies individually and collaboratively that pose some ethical or professional dilemmas. Umka provides various types of support to learners in the analysis task. In the individual analysis it provides various kinds of feedback to arguments of learners based on predefined system knowledge. In the collaborative analysis Umka fosters learners' interactions and self-reflection through system suggestions and a specifically designed visualization. The system suggestions offer learners the chance to consider certain helpful arguments of their peers, or to interact with certain helpful peers. The visualization highlights similarities and differences between the learners' positions, and illustrates the learners' level of acceptance of each other's positions. This dissertation reports on a series of experiments in which we evaluated the effectiveness of Umka's support features, and suggests several research contributions. Through this work, it is shown that despite the ill-definedness of the ethics domain, and the consequent complications of text processing and domain modelling, it is possible to build effective tutoring systems for supporting students' learning in this domain. Moreover, the techniques developed through this research for the ethics domain can be readily expanded to other ill-defined domains, where argument, qualitative analysis, metacognition and interaction over case studies are key pedagogical practices

    A Health eLearning Ontology and Procedural Reasoning Approach for Developing Personalized Courses to Teach Patients about Their Medical Condition and Treatment

    Get PDF
    We propose a methodological framework to support the development of personalized courses that improve patients’ understanding of their condition and prescribed treatment. Inspired by Intelligent Tutoring Systems (ITSs), the framework uses an eLearning ontology to express domain and learner models and to create a course. We combine the ontology with a procedural reasoning approach and precompiled plans to operationalize a design across disease conditions. The resulting courses generated by the framework are personalized across four patient axes—condition and treatment, comprehension level, learning style based on the VARK (Visual, Aural, Read/write, Kinesthetic) presentation model, and the level of understanding of specific course content according to Bloom’s taxonomy. Customizing educational materials along these learning axes stimulates and sustains patients’ attention when learning about their conditions or treatment options. Our proposed framework creates a personalized course that prepares patients for their meetings with specialists and educates them about their prescribed treatment. We posit that the improvement in patients’ understanding of prescribed care will result in better outcomes and we validate that the constructs of our framework are appropriate for representing content and deriving personalized courses for two use cases: anticoagulation treatment of an atrial fibrillation patient and lower back pain management to treat a lumbar degenerative disc condition. We conduct a mostly qualitative study supported by a quantitative questionnaire to investigate the acceptability of the framework among the target patient population and medical practitioners

    Integration of Abductive and Deductive Inference Diagnosis Model and Its Application in Intelligent Tutoring System

    Get PDF
    This dissertation presents a diagnosis model, Integration of Abductive and Deductive Inference diagnosis model (IADI), in the light of the cognitive processes of human diagnosticians. In contrast with other diagnosis models, that are based on enumerating, tracking and classifying approaches, the IADI diagnosis model relies on different inferences to solve the diagnosis problems. Studies on a human diagnosticians\u27 process show that a diagnosis process actually is a hypothesizing process followed by a verification process. The IADI diagnosis model integrates abduction and deduction to simulate these processes. The abductive inference captures the plausible features of this hypothesizing process while the deductive inference presents the nature of the verification process. The IADI diagnosis model combines the two inference mechanisms with a structure analysis to form the three steps of diagnosis, mistake detection by structure analysis, misconception hypothesizing by abductive inference, and misconception verification by deductive inference. An intelligent tutoring system, Recursive Programming Tutor (RPT), has been designed and developed to teach students the basic concepts of recursive programming. The RPT prototype illustrates the basic features of the IADI diagnosis approach, and also shows a hypertext-based tutoring environment and the tutoring strategies, such as concentrating diagnosis on the key steps of problem solving, organizing explanations by design plans and incorporating the process of tutoring into diagnosis

    identifying archaeological knowledge using multi dimensional scaling and multiple constraint satisfaction

    Get PDF
    In this thesis, I look at the current state of research in two fields: the cognitive psychology of learning and expertise & the development of Intelligent Tutoring Systems, especially their methods of modelling the users knowledge state. Within these areas I proceed to examine the way that these theories have overlapped in the past and consider their recent divergence, suggesting that this parting of the ways is premature. I then consider other relevent research so as to suggest a hypothesis where a symbolic connectionist approach to the modelling of knowledge states could be a solution to previous difficulties in the field of Intelligent Tutoring. This hypothesis is then used to construct a method for its examination and also a computer program to analyse the collected data. I then undertake experimental work to validate my hypothesis, and compare my results and methods with a pre-established technique for interpreting the data, that of multi-dimensional scaling. Finally the method now shown to be feasible is discussed to indicate the its success and highlight its shortcomings. Further suggestions are also made as to further research avenues

    Paradigms for the design of multimedia learning environments in engineering

    Get PDF
    The starting point for this research was the belief that interactive multimedia learning environments represent a significant evolution in computer based learning and therefore their design requires a re-examination of the underlying principles of learning and knowledge representation. Current multimedia learning environments (MLEs) can be seen as descendants of the earlier technologies of computer-aided learning (CAL), intelligent tutoring systems (ITS) and videodisc-based learning systems. As such they can benefit from much of the wisdom which emerged from those technologies. However, multimedia can be distinguished from earlier technologies by its much greater facility in bringing to the learner high levels of interaction with and control over still and moving image, animation, sound and graphics. Our intuition tells us that this facility has the potential to create learning environments which are not merely substitutes for "live" teaching, but which are capable of elucidating complex conceptual knowledge in ways which have not previously been possible. If the potential of interactive multimedia for learning is to be properly exploited then it needs to be better understood. MLEs should not just be regarded as a slicker version of CAL, ITS or videodisc but a new technology requiring a reinterpretation of the existing theories of learning and knowledge representation. The work described in this thesis aims to contribute to a better understanding of the ways in which MLEs can aid learning. A knowledge engineering approach was taken to the design of a MLE for civil engineers. This involved analysing in detail the knowledge content of the learning domain in terms of different paradigms of human learning and knowledge representation. From this basis, a design strategy was developed which matched the nature of the domain knowledge to the most appropriate delivery techniques. The Cognitive Apprenticeship Model (CAM) was shown to be able to support the integration and presentation of the different categories of knowledge in a coherent instructional framework. It is concluded that this approach is helpful in enabling designers of multimedia systems both to capture and to present a rich picture of the domain. The focus of the thesis is concentrated on the domain of Civil Engineering and the learning of concepts and design skills within that domain. However, much of it could be extended to other highly visual domains such as mechanical engineering. Many of the points can also be seen to be much more widely relevant to the design of any MLE.Engineering and Physical Sciences Research Counci

    Explicit Feedback Within Game-based Training: Examining The Influence Of Source Modality Effects On Interaction

    Get PDF
    This research aims to enhance Simulation-Based Training (SBT) applications to support training events in the absence of live instruction. The overarching purpose is to explore available tools for integrating intelligent tutoring communications in game-based learning platforms and to examine theory-based techniques for delivering explicit feedback in such environments. The primary tool influencing the design of this research was the Generalized Intelligent Framework for Tutoring (GIFT), a modular domain-independent architecture that provides the tools and methods to author, deliver, and evaluate intelligent tutoring technologies within any training platform. Influenced by research surrounding Social Cognitive Theory and Cognitive Load Theory, the resulting experiment tested varying approaches for utilizing an Embodied Pedagogical Agent (EPA) to function as a tutor during interaction in a game-based environment. Conditions were authored to assess the tradeoffs between embedding an EPA directly in a game, embedding an EPA in GIFT’s browser-based Tutor-User Interface (TUI), or using audio prompts alone with no social grounding. The resulting data supports the application of using an EPA embedded in GIFT’s TUI to provide explicit feedback during a game-based learning event. Analyses revealed conditions with an EPA situated in the TUI to be as effective as embedding the agent directly in the game environment. This inference is based on evidence showing reliable differences across conditions on the metrics of performance and self-reported mental demand and feedback usefulness items. This research provides source modality tradeoffs linked to tactics for relaying training relevant explicit information to a user based on real-time performance in a game

    MENON : automating a Socratic teaching model for mathematical proofs

    Get PDF
    This thesis presents an approach to adaptive pedagogical feedback for arbitrary domains as an alternative to resource-intensive pre-compiled feedback, which represents the state-of-the-art in intelligent tutoring systems today. A consequence of automatic adaptive feedback is that the number of tasks with pedagogical feedback that can be offered to the student increases, and with it the opportunity for practice. We focus on automating different aspects of teaching that together are primarily responsible for learning and can be integrated in a unified natural-language output. The automatic production and natural-language generation of feedback enables its personalisation both at the pedagogical and the natural-language dialogue level. We propose a method for automating the production of domain-independent adaptive feedback. The proof- of-concept implementation of the tutorial manager Menon is carried out for the domain of set-theory proofs. More specifically, we define a pedagogical model that abides by schema and cognitive load theory, and by the synergistic approach to learning. We implement this model in a Socratic teaching strategy whose basic units of feedback are dialogue moves. We use empirical data from two domains to derive a taxonomy of tutorial-dialogue moves, and define the most central and sophisticated move hint. The formalisation of the cognitive content of hints is inspired by schema theory and is facilitated by a domain ontology.Die vorliegende Arbeit präsentiert eine Annäherung an adaptives pädagogisches Feedback für beliebige Domäne. Diese Herangehensweise bietet eine Alternative zu ressource-intensivem, vorübersetztem Feedback, dass das heutige "state-of-the-art'; in intelligenten tutoriellen Systemen ist. Als Folge können zahlreiche Aufgaben mit pädagogischem Feedback für die Praxis angeboten werden. Der Schwerpunkt der Arbeit liegt auf der Automatisierung verschiedener Aspekte des Lehrprozesses, die in ihrer Gesamtheit wesentlich den Lernprozess beeinflussen, und in einer einheitlichen Systemausgabe Natürlicher Sprache integriert werden können. Die automatische Produktion und die Systemgenerierung von Feedback in Natürlicher Sprache ermöglichen eine Individualisierung des Feedback auf zwei Ebenen: einer pädagogischen und einer dialogischen Ebene. Dazu schlagen wir eine Methode vor, durch die adaptives Feedback automatisiert werden kann, und implementieren den tutoriellen Manager Menon als "proof-of-concept'; beispielhaft für die Domäne von Beweisen in der Mengentheorie. Konkret definieren wir ein pädagogisches Modell, das sich auf Schema- und Kognitionstheorie sowie auf die synergetische Herangehensweise an Lernen stützt. Dieses Modell wird in einer Sokratischen Lehrmethode implementiert, deren basale Feedback-Elemente aus Dialogakten bestehen. Zur Bestimmung einer Taxonomie Tutorielle-Dialogakte sowie des zentralen und komplexen Dialogakts hint (Hinweis) wenden wir empirische Daten aus zwei Domänen an. Die Formalisierung des kognitiven Inhaltes von Hinweisen folgt der Schematheorie und basiert auf einer Domänenontologie
    corecore