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ABSTRACT

INTEGRATION OF ABDUCTIVE AND DEDUCTIVE INFERENCE 

DIAGNOSIS MODEL AND ITS APPLICATION 

IN INTELLIGENT TUTORING SYSTEM

Jingying Zhang 

Old Dominion University, 1991 

Director: Dr. Stewart N.T. Shen

This dissertation presents a  diagnosis model, Integration of Abductive and Deduc­

tive Inference diagnosis model (IADI), in the light of the cognitive processes of human 

diagnosticians. In contrast with other diagnosis models, that are based on enumerating, 

tracking and classifying approaches, the IA D I diagnosis model relies on different infer­

ences to  solve the diagnosis problems. Studies on a hum an diagnosticians’ process show 

that a  diagnosis process actually is a hypothesizing process followed by a verification 

process. The IA D I diagnosis model integrates abduction and deduction to sim ulate these 

processes. The abductive inference captures the plausible features of this hypothesizing 

process while the deductive inference presents the nature of the verification process. The 

IA D I diagnosis model combines the two inference mechanisms with a structure analysis 

to  form the three steps of diagnosis, m istake detection by structure analysis, misconcep­

tion hypothesizing by abductive inference, and misconception verification by deductive 

inference. An intelligent tutoring system, ’’Recursive Programm ing T ito r” (RPT), has 

been designed and developed to  teach students the basic concepts of recursive program ­

ming. The R PT  prototype illustrates the basic features of the IA D I diagnosis approach, 

and also shows a  hypertext-based tutoring environment and the tutoring strategies, such 

as concentrating diagnosis on the  key steps of problem  solving, organizing explanations 

by design plans and incorporating the process of tutoring into diagnosis.
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CHAPTER ONE

INTRODUCTION

Research on intelligent tutoring serves two goals. The first one is to develop sys­

tems for autom ating education, and second one is to  explore epistemological issues simi­

lar to  those studied by psychologists (Anderson 90).

Psychologists, educators, and  com puter scientists are concerned with the research 

on intelligent tutoring since 1970s, which has evolved from C om puter-A ssisted Instruc­

tion (CAI). I t has become one of the most active fields in Artificial Intelligence (Al) 

(Barr and Feigenbaum 82) (Clancey 87). Intelligent Tbtoring Systems are systems that 

teach people new knowledge with AI technologies. Why do people precede them with 

"intelligent"? W hat does it m ean to  teach intelligently? M any researchers in this field 

try to  give explanations to  this point (Clancey 87) (Siuru 89) (B arr and Feigenbaum 82) 

(Vanlehn 88) (Sleeman 82). Although there is no acknowledged definition for Intelligent 

Tbtoring Systems, contrasting with CAI, there is one characteristic shared by many ITSs, 

which is that ITSs refer to  a model o f the student’s current knowledge (Vanlehn 88) 

(Wallach 87). Based on this model, ITSs can not only transfer the predefined knowledge 

in selected material, bu t can also ferret out the student’s m isunderstandings and adapt 

the content of instruction to  the student’s level.

However, understanding students and focusing instructions on their understanding 

is not easy even for hum an beings. Psychologists and educationists have been studying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this process since ancient times. The famous Chinese ancient educationist H an Fei Tzu 

said in the section ”The Difficulties o f Persuasion” (H an 64):

On the whole, the difficult thing about persuading others is not that 

one lacks the knowledge needed to  state his case nor the audacity 

to  exercise his abilities to  the full. On the whole, the difficult thing 

about persuasion is to  know the mind o f the person one is trying to 

persuade and to  be able to  fit one’s words to  it (72-72).

Thus, in addition to  the subject m atter, there are two difficult tasks for the tutor. First, 

the tu tor m ust know what the student is really thinking; then he m ust find an individual­

ized instruction th a t fits the student’s needs.

H um ans now use com puters to  teach students automatically and individually. But 

these efforts m ust also confront the above two difficulties. With A I technology, one can 

build the student m odule to  represent the student’s current understanding. M odern com­

puter techniques provide many m ethods and tools that can be used to create a good 

tutoring and learning environment that alleviates these difficulties. ITSs are rising as one 

prom ising field to  solve these two difficult problems.

There are dozens o f ITSs scattered throughout the literature. These systems inte­

grate the intelligent tu to r with com puter-based technologies within the different subjects 

of expertise. A lthough researchers in this field m ade great efforts to  put forward a vari­

ety o f methods, and  have built som e systems to  m ake ITSs m ore intelligent, only a few 

systems provide the applications in the real world. This implies th a t constructing ITSs is 

still in a  prem ature stage. Thus it is necessary to  build m ore ITSs for exploration, and 

also for gathering universal knowledge about how to build practical ITSs (Poison and 

R ichardson 88).

This dissertation presents a  new diagnosis model, ’’Integration of Abductive and 

Deductive Inference” (IADI), to  diagnose the student’s current understanding. This mod-

2
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el is applied to student modeling problems of intelligent tutoring systems. A  detailed 

discussion about this diagnosis model is presented in chapter 3 which describes the 

design and implementation of the intelligent Recursive Programming Tbtor (RPT). which 

teaches students the basic understanding of recursive programming. In this system the 

pedagogical expertise in recursive programming was employed as domain knowledge, 

and the case induction method was adopted to  tutor students. To successfully achieve 

this goal, the hypertext based tu tor environment was created.

This chapter provides an introduction to  this research work. Section 1.1 outlines the 

existing Intelligent Tbtoring Systems (ITSs), section 1.2 reviews the background of the 

ITS, including the architecture o f  ITSs and the tutoring environment, section 1.3 briefly 

introduces the IA D I diagnosis model, and section 1.4 provides the dissertation overview.

1.1 Outline o f Intelligent Tbtoring Systems

Intelligent Tbtoring Systems and the traditional C om puter-Assisted Instruction sys­

tems both have representations o f the subject knowledge they teach. But the ITS is dis­

tinguished from its predecessor the CAI by the way in which it communicates with stu­

dents, tries to  understand students, and diagnoses the students’ misunderstandings. ITSs 

apply A I knowledge representations and inference mechanisms to  present and reason 

about the subject matters, the student understandings, and pedagogical principles.

W hen one thinks of an intelligent tutor, one generally imagines an anatomy like in 

Fig. 1, th a t provides a convenient classification of the research and direction of develop­

ment. The domain expert provides the domain knowledge and prepares to  reason on that 

domain. The tutorial expert offers strategies for students to  learn the domain knowledge. 

The diagnosis expert detects erroneous assum ptions that the student may have. The stu­

dent model represents the student’s learning background and the current state of knowl­

edge. T he instructional environment supports the  activities of students and tutors. The 

three experts, the domain expert, the diagnosis expert and the tutorial expert directly or

3
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Domain
Expert

Tutorial
expert

Diagnosis
expert

Student Model

Instructional
Environment

Student

Fig. 1. Com ponents o f an ITS

indirectly com municate with the student model in the tutoring process. Through the stu­

dent model and the diagnostic process, the system can identify what the student does 

and does not know about the subject m atter, and can then focus the tutoring effort on 

the individual pedagogical needs o f a  student.

The existing intelligent tutoring systems possess different features. Some of them 

focus on organization of subject knowledge (Clancey 82); some o f them  lay the particu­

lar em phasis on diagnosing the student’s current m isunderstanding (Johnson and Solo­

way 84) (Burton 82) (Bonar 88); some of them  are more involved with the instructions of 

various strategies o r pedagogies (Anderson 90) (Woolf and M cDonald 84); some of the 

systems concentrate their efforts on creating tu tor environments (Woolf 88) (Hollan 84).

4
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To construct an intelligent tutoring system, one m ust consider that the crucial work 

is in building the student model. There are several student model representations in 

existing ITSs, including production systems (Clancey 82), and procedural networks (Bur­

ton 82), fram e representations (Carbonell 70) (Laubsch 75), and genetic graphs (Gold­

stein 82). A fter a  representational scheme has been decided, the student’s understanding 

needs to  be detected. T hat is, for each of the student’s behaviors, the system should 

hypothesize the corresponding explanations. However, sometimes the student’s behaviors 

are incomplete o r ambiguous, and this makes the diagnostic process more complicated. 

Even so growing am ounts of research efforts have been thrown into the studies of stu­

dent modeling problem. Various knowledge representations coordinating distinct diag­

nostic approaches have emerged in different ITSs.

1.2 Background

The m ain components o f an ITS are the dom ain expert module, the student model­

ing module, including the diagnosis process based on a student model, and the tutorial 

expert module. These deal with the problem-solving expertise, students’ knowledge, and 

tutoring strategies respectively. The tutorial environment, which is also an im portant part 

o f the ITS, facilitates the interaction between students and the com puter tu tor (Poison 

and R ichardson 88). This section introduces the previous work according to  the architec­

ture o f ITSs ra ther than  proceeding chronologically.

1.2.1 Domain knowledge module

The dom ain expert module provides the knowledge to  be im parted to  the student, 

and a  standard  for evaluating the student’s performance. This module is classified in 

three approaches (Anderson 88). Each o f the three approaches moves toward a more 

cognitively faithful representation o f the content expertise.

5
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• Black box model

The first one is opaque and is called the black box model. It generates the correct 

input-output behaviors over a range o f tasks in the domain, and therefore can be used 

as a judge of correctness. The early systems such as SO PH IE  (SO PH isticated Instruc­

tional Environment) (Brown and Burton 75) and W EST (Burton and Brown 82) perform 

their calculations as a black box. SO PH IE attem pted to teach students to  troubleshoot 

faulty electronic circuits. It only checks the consistency of a studen t’s hypotheses about 

failed circuit elements. W EST works as a mathem atics game. The opaque expert per­

forms an exhaustive search for the possible moves in an electronic game board and 

determ ines the optimal move. In the black box approach the internal com putations and 

reasoning processes from  a given input to the conclusion are not available to users. 

Although this approach does not present the reasoning process, it provides the correct 

output as the information used to  recognize the differences between student and expert 

performances.

• Glass box model

The second approach is transparent and is called the glass box model or expert 

system methodology. Since a  m ajor component o f an  expert system is an articulate, hu­

m an-like representation of the underlying expertise in the  domain, it is natural to  use 

the expert system as the dom ain expert module of the tu to r to  avoid the time-consum ing 

knowledge acquisition process. The dom ain expert com ponent tries to  explain and in­

spect each problem-solving decision in term s that correspond (at some level o f abstrac­

tion) to those of a  hum an problem-solver. But it only allows for explanations of informa­

tion processes inherent in the rules o f its knowledge base which does not necessarily 

correspond to  the way a  hum an expert reasons. The tu tor G U ID O N  developed by Clan­

cey (Clancey 82) is based on the well-known expert system EMYCIN, whose domain of 

expertise is the diagnosis of bacterial infections.

6
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• Cognitive model

The third approach is the cognitive model which simulates the process of human 

problem -solving in a hum an-like manner. This approach simulates not only the domain 

knowledge, but also the way humans use that knowledge. This model is considered the 

m ost effective (Anderson 88). Although its implementation is time-consuming, there have 

been dram atic improvements over the past 10 years (Wenger 87). It is helpful to consider 

the types o f knowledge to  be taught, because that dictates the strategies of instruction. 

There are th ree types according to  Anderson: procedural knowledge, which is about how 

to perform  a task; declarative knowledge, which is in the form of a set of facts appropri­

ately organized; and causal knowledge, which allows hum ans to reason about behaviors 

by using causal understanding.

Procedural knowledge can usually be represented by production rules. This type of 

knowledge is applied in GEOM ETRY Tlitor, LISP TUtor (Anderson 90), DEBUGGY 

systems (Burton 82), and some other systems. One of the m ajor advantages of the p ro ­

duction rule is its modularity. Each production rule is an  independent piece of knowl­

edge which benefits the instruction. The declarative knowledge in SCHOLAR system 

(Carbonell 70), which is designed to teach South Am erican geography, is represented by 

a  sem antic network. In the network, the nodes stand for geographical objects and con­

cepts, which are organized in a partial hierarchy with relationships represented by links. 

Some simple inference can be made by propagation of inherited properties via these 

hierarchical links. However, in the W HY system, which also teaches geography (Stevens. 

Collins and Goldin 82), the declarative knowledge is represented by a schema consisting 

of action slots, factor slots, and fillers. The formalisms o f causal knowledge are not as 

m ature as rule-based or schema formalisms. This knowledge representation was explored 

in SO PH IE  (Brown and B urton 82) and in de Kleer’s work on causal propagation of the 

behavior of device construction (de Kleer and Brown 83).

7
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Actually the three kinds of knowledge are not isolated. In the cognitive process, 

hum ans represent static structure as declarative knowledge, and employ the procedural 

knowledge to dynamically reason about the behavior by utilizing causal interactions. A n­

derson’s LISP, GEOM ETRY and ALGEBRA tutors do the preliminary exploration by 

combining the different types of knowledge (Anderson 90).

1.2.2 S tudent modeling module

The knowledge structure that represents the student’s current understanding of the 

subject m atter is called the student model. The reasoning process, which detects the 

student’s m istakes by referring to  the student model, is called the diagnosis. The student 

model and diagnosis form the student modeling problem (Vanlehn 88) (Barr and Feigen- 

baun 82), setting in the student model and diagnosis expert in Fig.l.

Vanlehn expounds the essential problems of student modeling in ITSs (Vanlehn 88). 

According to  his suggestion, the student model can be classified th ree dimensions. The 

first dimension is the bandwidth, a  m easurem ent of the input of the student activity. The 

second dimension is the target knowledge type, and the th ird  dimension is the degree of 

difference between students and experts. These dimensions indicate the structural prop­

erties o f the student model. These classifications are designed to capture the differences 

in the student modeling problem, and help the tutoring module decide the different tutor 

strategies.

How m uch of the student’s activity is available to  the diagnostic procedure? The 

E rst dimension, the bandwidth, will give a measurement of the input information. Most 

systems only input the final state to  the diagnosis process, such as the student answers 

to  the question o f a  m athematics subtraction problem in the DEBUGGY system (Burton 

82). Some program s can give the interm ediate states, such as the SPADE system (Miller 

82), which will supply information at several observable stages about what the student is 

doing. The highest bandw idth is supposed to  be able to attain a  list of the approximate

8
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mental states as the student solves a problem. A  m etal model is a  coherent collection of 

knowledge held by a  person about some aspect, entity or concept of the world (G entner 

and Stevens 83). The LISP tu tor (Anderson 90) tries to  track the cognitive process as 

closely as possible to  the student's mental states. This tu tor uses a menu driven interface 

to  offer a student multiple problem solving paths. Assuming the paths can describe ev­

ery state of reasoning, the tu tor obtains a sequence of mental states.

T he second dimension is the target knowledge type which is categorized declarative 

knowledge and procedural knowledge, including flat and hierarchical. Hierarchical repre­

sentations allow subgoals; flat ones do not. In the ACM  diagnosis system (Langley and 

Ohlsson 84), the subtraction procedure is a  flat representation, but in the BUGGY sys­

tem it is a  hierarchical one (Brown and Burton 78). The inference in a hierarchical 

representation is more difficult because it takes more steps to  know the subgoals, while 

in the flat representation nothing is hidden. The declarative knowledge representations 

have been used for meteorology (Stevens, Collins and Goldin 82) and geography (Carbo- 

nell 70).

The difference between students and experts is the th ird  dimension. Knowing the 

differences is a  necessary step to  the diagnosing process. In m ost ITSs, the student m od­

el can be represented by the domain expert model plus a  list of missing conceptions. 

Such a  student model is called an  overlay model because the student model is just a 

proper subset of the domain expert model. The overlay model is the most common type 

of student model because it is easy to implement (Brown and Burton 78). However, it is 

o f limited value because o f the fact th a t students have misconceptions as well as missing 

conceptions. M ore complex studen t m odels rep resen t m isconceptions as well as the 

missed conceptions. They employ a  library to  organize the predefined bugs (the missing 

conceptions and the misconceptions). The bug library in the DEBUGGY system (Bur­

ton 82) is directed by the experimental analysis of several thousand m athem atics su b ­

traction tests. In diagnosis the system com pares the student’s behavior with the expert

9
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module and the bug libraiy to  form the student model. I t is possible that a student has 

several bugs and combinations of bugs. So the bug library has to  include a large num ber 

of com pound bugs. There is an  alternative to the bug library m ethod which only con­

tains bug parts, and it dynamically constructs com pound bugs from a libraiy of bug 

parts. It does not use the predefined bug libraiy. This m ethod is applied in the ACM 

system (Langley and Ohlsson 84).

The diagnosis m ethods vary in different systems. Some of them are listed in table 

1. The diagnosis problem will be presented in further detail in the next chapter.

1.2.3 Thtor module

The tu tor module communicates with students. A  tu tor bears responsibility for se­

lecting and sequencing the m aterial to  be taught, monitoring and criticizing the student’s 

performance, and providing assistance whenever the student needs it. Usually, a domain 

expert module is involved with formulating a  representation o f the material, and selecting 

and sequencing the particular concepts. The instruction process, which is delivering the 

curriculum to  the student, should be accomplished in the tu tor m odule (H alff 88). In 

order to  deliver the knowledge to  the  student, and reduce the differences between teach­

er and student as soon as possible, the tu tor m ust determ ine the corresponding pedagog­

ical strategies in addition to knowing the student’s current understanding. The following 

are some strategies used in the ITS.

• Socratic method

The Socratic m ethod o r presentation method is one way to  present m aterial by 

dialogue (Collins and Stevens 82). The dialogue elaborates in different ways for the dif­

ferent instructional objects. Teaching facts and concepts is done by explaining the m ate­

rial. Teaching rules and functional relationships usually involves inducing the student to  

consider the relevant data  and to  formulate the rule. Skills for deriving rules are taught

10
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System Subject
M atter

Student
Module

Diagnosis
M ethod Reference

ACM Subtraction
Library of 
Bug Parts

Condition
Induction

Langley & 
Ohlsson 84

APROPO S2 Programming 
in PRO LOG

Library of 
Bug

Plan Re­
cognition Looi 88

BIP Programming 
in BASIC

Overlay Plan Re­
cognition B arr 76

Bridge Programming 
in PASCAL

Libraiy of 
Bug

Plan Re­
cognition

Bonar 88

BUGGY Subtraction Library of 
Bug

Decision
Tree

Brown & 
Button 78

DEBUGG Y Subtraction Libraiy of 
Bug Parts

Generate 
& Test

Burton 82

Geometry Geometry Libraiy of 
Bug Parts

Model
H a tin g Anderson 90

LISP Programming 
in Lisp

Libraiy of 
Bug Parts

Model
H a tin g

Anderson 90

G U ID O N Infectious
diseases

Overlay Diagnosis
rules

Clancey 82

M ENO
Programming 
in PASCAL

Libraiy of 
Bug

Plan Re­
cognition

Woolf & 
M cDonald 84

PR O U ST Programming 
in PASCAL

Library of 
Bug

Plan Re­
cognition

Soloway 83

Scholar Geography Overlay Diagnosis
rules

Carbornell 70

SO PH IE
Electronic
TCouble-
shonting

Overlay
Issue
Analyzing Brown 82

SPADE Programming 
in LO G O

Library of 
Bug Parts

Plan Re­
cognition

Miller 82

Steam er Steamship
Propulsion Overlay Issue

Analyzing
Hollan 84

W EST Arithmetic
Expressions Overlay

Issue
Analyzing

Brown & 
Button 82

W HY Cause o f 
Rainfall

Library of 
Bug

Diagnosis
rules

Stevens 82

W USOR Logical
Relations Overlay Issue

Analyzing
Goldstein 82

Table 1. ITSs and Their Diagnosis M ethods
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as procedures. These procedures are broken down into their components. This method 

involves questioning the student in a way that will encourage him to reason about what 

he knows whereupon the system can modify his conceptions. SCHOLAR (Carbonell 70) 

was the first system that used the Socratic style of tutoring. The original system was 

developed for teaching South American geography. It first diagnoses the underlying mis­

conceptions in the student’s knowledge; it then poses a problem that will guide the stu­

dent to  discover his errors. The W HY system is a follow-up o f SCHOLAR (Stevens and 

Collins 77). It uses a  set of tutorial rules to  construct an experimental Socratic tutoring 

system. This method leads the student to  find errors or contradictions by entrapping 

him in the consequences of his own conclusions.

* Case presentation

Case presentation is one m ethod that presents the target skill by using worked 

examples and guided exercises. These skills m ust be presented to  the student in a m an­

ner that dem onstrates how the expert makes the decision a t each step in the case and 

what strategies he uses. I t  is also an apprenticeship style of learning. The SO PH IE sys­

tem is a  good example o f case presentation (Brown, Burton and de Kleer 82). Faults can 

be inserted into the system to  m ake a  case, and the student is instructed to offer a 

hypothesis as to  what might be wrong. The student then makes a m easurem ent of the 

circuit to  evaluate the hypothesis. Before each m easurem ent the expert explains why it is 

required. A fter each measurement, it explains w hat it can conclude from it. T hat is, the 

system tells the student not whether the hypothesis is a correct identification o f the fault, 

bu t whether it is logically consistent with the inform ation from the m easurem ents. This 

m ethod makes explicit the strategies a  domain expert uses, thereby giving the student an 

example to  follow.

• Coaching

12
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This m ethod attem pts to  m aintain control of the tutorial situation in order to pro­

tect the student from inappropriate or incorrect learning, and to  keep the student from 

exploring paths that are not instructionally useful. By coordinating the model tracing or 

issue-based analyzing diagnosis technique (Anderson 90) (Burton and Brown 82), the 

tu tor can trace the student’s behavior, and  match it to  one of the paths that should be 

the correct or optim al problem-solving solution. When the match fails, the tu tor inter­

venes with advice and suggestions to  guide the student to a successful path. There are 

several coaching systems such as W EST (Brown and Burton 82), W USOR (Goldstein 82) 

and LISP tutor (Anderson 89).

1.2.4 Instructional environment

The instructional environment refers to the part of an ITS that specifies or sup­

ports the student’s activities and provides the tools for convenience learning. The envi­

ronm ent should be designed to  allow students understand concepts efficiently. The fol­

lowing are systems which have the effective environments.

• Visualization of multiple concepts

The Envisioning M achine (Woolf 88) presents a visualization of the concepts of 

physics. O n the screen, the student can grab a  ball, drop it o r throw it in any direction, 

and watch the trajectory of the object. A t the sam e tim e there is a  force diagram matic 

view o f objects in motion. 'Rvo vectors in the diagram  represent respectively the velocity 

and acceleration of the object. In the past, acceleration and velocity have been difficult 

to dem onstrate because they only can be illustrated through still pictures. The environ­

m ent gives the viewer multiple perspectives o f concepts: motion trajectory, velocity and 

acceleration of an object, and  parallel displays of physical motion. The student can ad­

just his conceptions from  his observations.

13
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•  Visual reasoning

An efficacious environment should make explicit o r manifest an originally implicit 

property o f the contents, therefore aid the learner to  accept and understand knowledge 

effectively. The GEOM ETRY tutor (Anderson 90) is a  good example o f an environment 

that provides a new form o f visual reasoning for the student, and brings out implicit 

properties in the task. This system builds a logical chain from the premise to the conclu­

sion, and the system presents the process as a tree on the screen. Every node in the tree 

is a statem ent, and a step  o f the proof derived from inference rules or geometry theo­

rems. The system shows the relationship o f the steps and how they are arranged on a 

path to  the proof. The system provides the proof which can be derived from either the 

bottom  upward, using forward inference, o r top downward, using backward reasoning.

• Icon provided

The STEA M ER system provides simulation in a  graphical display of a steam  plant 

(Hollan, H utchins and Weitzman 84). In  the graph, it supplies the icons to depict the 

mechanism o f a steam  plant. When the simulation (the flow of fluid through the plant) is 

running, motion in the pipes is anim ated to  indicate the causal connections between 

different parts  of the plant. There are many o ther kinds of icon displays such as dials 

that give the pressure a t  various points in the plant, and curve the graph of pressure as 

it changes through time, and indicates the rate o f change. These displays m ake visible 

som e aspec ts  of au tom atic  control system s th a t are  d ifficult to  see w ith trad itional 

gauges. Also these graphic displays can depict a steam  plant in the different levels, from 

the scheme o f the entire plant to  the separate part of the plant.

• Dialogue

M ost ITSs use dialogue for the instructional environm ent since hum ans naturally 

use language as the  m ain communication tool. M EN O  (Woolf and M cDonald 84) uses

14
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dialogue in an  attem pt to understand a  student’s programming bug and help resolve his 

misconceptions. The system detects the errors in simple Pascal program s by the Bug 

Finder, and passes the messages about the location of the error to the tutor. The tutor 

then analyses the errors by communicating with the student in a  dialogue. The student 

answers the questions asked by the tu tor in a simple way, such as a ”yes/no” choice of 

response. The tu tor gives the suggestions to correct the program. There are correspond­

ing discourses for each different misconceptions. The LISP tutor (Anderson 90) also uses 

dialogue, and it applies a m enu-driven method. By menu choices, it imposes a structure 

on w hat the student is allowed to  do. The LISP tutor walks the student through the 

creation o f a LISP function, and corrects the student whenever he deviates from the 

correct path. SCHOLAR, W HY and G U ID O N  use dialogue too.

13  IADI Diagnosis Model

This dissertation proposes a new diagnosis model, the Integration of Abductive and 

D eductive Inference diagnosis model (IADI), to  diagnose students’ mistakes and miscon­

ceptions in an intelligent tutoring system. An intelligent tutoring system prototype, the 

’’Recursive Programming Tbtor”, has been designed and developed to  teach students to 

understand the basic concepts of recursive programming, and to illustrate this diagnosis 

approach (Shen and Zhang 91) (Shen and Zhang 89b).

The IA D I diagnosis model is based on the understanding of the cognitive process 

o f hum an diagnosticians. Usually a  hum an diagnostician does not make a final decision 

im mediately after seeing a  few symptoms. In  view of the initial evidence, a  doctor can 

hypothesize about some possible diseases, bu t he does not make a decision a t this mo­

ment. H e collects m ore information and uses these information to  verify and modify the 

obtained hypotheses, and then he makes the differential diagnosis. This process may go 

several cycles.

The IA D I diagnosis model mainly uses two inference mechanisms, abduction and
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deduction. In the diagnosis process this model also accompanies a structure analysis. 

Thus the LADI diagnosis approach involves three m ajor processes.

The first one is the structure analysis. It detects a student’s mistakes which arc 

present in the program a t the start of the IA D I diagnosis process.

The second process is the abductive inference which infers a  set of plausible candi­

date hypotheses from the student’s dem onstrated mistakes. Each hypothesis in this set 

represents just one candidate for explaining why the corresponding manifestation existed. 

I t is possible that a hypothesis in this set is not the true cause for the student’s mistake, 

and som e other hypothesis may be the true cause instead. Therefore, it is necessary to 

further diagnose and decide which misconceptions in this set are m ore likely to  be the 

true causes.

The third step, the deductive process, is the misconception verification. It verifies 

the focused hypotheses in the set of candidates by further checking the related manifes­

tations, and also tries to  decide if the unexposed m istakes exist or not. In the IADI 

diagnostic knowledge base, for each misconception there is a  corresponding list which is 

a  menu list to allow the system to interactively investigate the students’ possible mis­

takes.

In the inference processes the plausibility measures are used to  evaluate the possi­

bilities o f each m isconception candidate. Finally a list o f misconceptions ranked in de­

creasing order of plausibilities is given as the diagnostic result.

This model shows a  nondeterministic diagnosis. It combines the features of abduc­

tion and deduction, detects both mistakes and misconceptions, emphasizes tutoring on 

students’ misconceptions, and incorporates the process of instruction into the diagnosis 

process.

1,4 Dissertation Overview

This dissertation contains seven chapters. C hapter 2 surveys related work in intelii-
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gent tutoring systems. The survey concentrate on the ITSs which teach com puter pro­

gramming and the diagnostic approaches in student modeling problems, and then sum ­

marizes three diagnosis models and presents the state of the a rt in student modeling 

problems. C hapter 3 presents the outline of the IA D I diagnosis model including the 

characteristics of the proposed diagnosis model, the diagnostic knowledge representa­

tions, and the three main processes, structure analysis, abductive inference and deduc­

tive inference. C hapter 4 illustrates the application of the IADI diagnosis model in a 

recursive programming tutor. This chapter gives details on how to organize the diagnosis 

knowledge, how the three steps of the IAD I diagnosis approach work, and how to mea­

sure the misconceptions using plausibility values. Chapter 5 describes the tutoring envi­

ronm ent o f the Recursive Programm ing Tlitor, including the diagnosis environment and 

instruction environment. It is built on a hypertext model also combining other features. 

The tu to r’s perform ances are evaluated in C hapter 6. The evaluations are m ade from 

students’ empirical tests. The last chapter summarizes this research work, followed by a 

brief discussion of future research direction.

17
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CHAPTER TWO 

RELATED WORK

Intelligent tutoring systems have been developed for many domains such as arith­

m etic (Brown 82), algebra (Anderson 90), geography (Carbonell 70), geometry (Anderson 

90), indefinite integration (Chan 90), medical diagnosis (Clancey 82), electronic trouble­

shooting (Brown, Burton and de Kleer 82) and com puter programming (Soloway, Rubin, 

Woolf, Bonar and Johnson 83). Different systems have their own emphases. This chapter 

surveys the related work in intelligent tutoring systems which teach com puter program ­

ming, and the work in diagnosis approaches in student modeling problems. Then it sum ­

marizes the three different diagnosis models which can be classified and the state of the 

art.

2.1 ITSs in  Program m ing Tbtoring

Programming tutors have been explored for tutoring programming language BASIC 

(B arr & Beard 76), PASCAL (Johnson 84) (Soloway 83) (Woolf 84) (Bonar 88), LO GO  

(Miller 82), FORTRAN (Adam 80), LISP (Anderson 90) and PRO LO G (Looi 88). The 

traditional programming tutor, such as BIP (which teaches the BASIC), can not diagnose 

the students’ program  when it was developed at beginning in 1975. With the pace of 

evolving from CAI to  ITS, it added the diagnosis capability to improve the system’s 

tu tor ability (Barr and Beard 76). The m ost program ming tutors are only able to  work 

on a  small problem  dom ain with narrow programming language problem. The PASCAL 

program ming tutors (Johnson 84) (Soloway 83) (Woolf 84) (Bonar 88) intend to work on
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a rainfall assignm ent with tutoring of the knowledge about how to use the loop structure 

and  the related variables. The PRO LOG tutor (Looi 88) is targeted for the list reversion 

and list element num ber counting only. The LO GO (Miller 82) itself is an elementary 

program m ing language. Even so, the efforts provided in these researches made signifi­

can t studies from various perspectives, especially in the AI technical development and 

cognitive process.

In this section, several tutoring systems th a t involve programming teaching will be 

reviewed. M EN O -II, PRO U ST M ENO TUtor and BRID G E come from M ENO project, 

which started  in the late seventies. This project attem pts to build an intelligent tu tor for 

novice Pascal program mers. Its goals were to  diagnose nonsyntactic errors in programs, 

to  connect these bugs to underlying misconceptions and to tutor the student with respect 

to these misconceptions. A fter the first system M E N O -II (Soloway, Rubin, Woolf, Bonar 

and Johnson 83), developed a t University of M assachusetts, the project branched into at 

least th ree directions leading to  different doctoral dissertations. Johnson and Soloway 

moved to  Yale University and developed PRO U ST system to study the bug diagnosis 

from  a  new angle (Johnson and Soloway 84); Woolf and M cDonald developed system 

M EN O  TUtor by utilizing a discourse management network (Woolf and M cDonald 84); 

Bonar developed system BRID G E with an  interm ediate representation to give students 

specific m ental models to support their problem  solving process (Bonar 88).

T he LISP tutor, which has been developed over 8 years at Cam age-M ellon Univer­

sity by John  A nderson and his colleague, is a good vehicle to teach student LISP pro­

gramm ing with cognitive model.

The A PR O PO S2 was developed in the departm ent of AI, University o f Edinburgh. 

The bug analysis of a  PRO LO G program  in APROPO S2 has been divided a t three 

levels of abstraction, which gives a  clear top-dow n structure.

2.1.1 M E N O -II
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M E N O -II is a diagnostic system that specializes in the analysis of loop structures and 

related variables in Pascal program  (Soloway 83). It consists of two major components: 

the B ug-Finder and the Tlitor. The B ug-Finder parses a student’s program into a parse 

tree tha t is m atched against a  simple description of the solution. This is done with the 

help of specialized knowledge about types of loops and corresponding plans, as well as a 

library of known bug types. In the bug finding process, there are four stages. In the first 

stage, the student’s program is parsed into a parse tree. The second step is to  annotate 

the parse tree with useful information about the various nodes. D uring the third stage of 

the process, the B ug-Finder searches for instances of the various programming plans. 

Finally, the B ug-Finder searches the Bug Catalogue in the bug library for matches. If a 

bug is discovered, the tu to r then analyzes it by a  set of specific inference routines that 

suggest possible underlying misconceptions.

M E N O -II detects the bug inefficiently because it analyzes bugs locally in a con­

text-independent fashion by m eans of simple tem plate matches, M EN O -II can not cope 

with the complexity of the programming process and with the extraordinary variability in 

program s.

2.1.2 PROUST

PRO U ST ( PRO gram  U nderstander STbdents ) system tries to  identify the nonsyn­

tactic bugs in students’ Pascal program s (Johnson and Soloway 84) (Wenger 87). PR O ­

U ST is an  expert a t finding bugs in program of the rainfall assignment written by the 

students. This assignment is to  calculate the num ber of rainy days, find the maximum 

rainfall on any one day in the period, and average rainfall from an input stream  of 

rainfall values.

Johnson and Soloway believe that diagnostic methods, tha t look for bugs in pro­

grams, merely by inspecting the code can not cope with the variability in novices’ pro­

gramming. They propose an  intention-based diagnosis approach which is to construct a

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



coherent model o f what the program m er’s intentions were and how they were realized in 

the program, and to identify errors in these intentions or in their realization based on 

this intention. To analyze a student’s program, PRO U ST builds goals to  understand 

problem  specifications which provide a  starting point for identifying the student’s inten­

tions, and uses a knowledge base o f plans which might be selected by students to  realize 

those goals. For novices, they may not have a  clear concept about w hat kind o f plan can 

be used to  reach the goal; they only have an intention to  satisfy a  goal. Hence, the theme 

in PRO U ST is to  analyze the intention o f a student from the goal th a t is the problem 

specification and the solution that is subm itted by the student. For example, the main 

goal of the rainfall assignment is to  average the rainfall. PRO U ST recognizes that an 

iterative looping plan is required to  achieve the subgoal of the m ain goal. The loop must 

collect the rainfall values, sum  them to  calculate the running total and  count the num ber 

of days. A fter that, the running total m ust be divided by the counter to  obtain the 

average. PRO U ST thus sets up an agenda o f goals and attem pts to  m atch each o f them 

to the student’s code. W hen all the goals on the agenda have been successfully matched 

with the student’s code, PR O U ST has understood the student’s program  because it 

knows how the student achieved, o r failed to  achieve, each of the subgoals. Each o f the 

failures is understood by PRO U ST as a  bug. Thus, according to  the design stages men­

tioned above, the  diagnosis process works on three layers. The top one consists o f the 

various possible specifications decomposed into goals and subgoals, then the plans that 

could be selected as implementation m ethods for each goals o r subgoals, and finally the 

different realizations in which plans can m atch the code.

PRO U ST system is an off-line tu to r that has access only to  a  final product or state 

on which to  base its diagnosis o f student errors. The complete student program s are 

subm itted to  PROUST, which provides a  printout o f the diagnosis results and corre­

sponding explanations. The designers o f PR O U ST feel that there is a  lack of the sophis­

ticated pedagogical expertise; they are remedying it with using the  information about
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each student’s errors to  guide the presentation of course material. The real tutor will 

appear in another system BERTIE (Johnson 86).

2.13 MENO Thtor

M EN O  Tutor tries to  capture the discourse strategies observed in human tutors. It 

works on two domains, rainfall study and Pascal programs. In Pascal program, it just 

works for Pascal looping concepts (Woolf and M cDonald 84).

Besides providing Bug-Finder for detecting the semantic errors, M ENO Thtor de­

velops a general framework: D iscourse M anagem ent Network (DMN), which is a kind of 

augmented transition network. It also provides a good interface to  communicate with 

students. Fig.2. shows a dialogue in M EN O  Thtor for a buggy program . The buggy p ro­

gram  is for averaging problem, which is in left o f the figure.

The m ost im portant contribution m ade by M EN O  Thtor is the DM N net. The 

DM N is a set o f decision units organized into three planning levels that successively 

refine the actions of the tutor. The nodes or states correspond to tutorial actions and 

these nodes are organized hierarchically. The highest level is pedagogic states. In this 

level a  specific tutoring approach will be determ ined, such as the diagnosis of student's 

knowledge or introduction o f a  new topic. A t the second level, strategic states, the peda­

gogy is refined into a strategy, specifying the approach to  be used. At the lowest level, a 

tactic is selected to  implement the strategy.

When the system is in the tutoring mode a t the pedagogical level, and an incorrect 

answer from the student has triggered the strategic action, such as teaching her some 

pieces o f data, many actions at the tactical level can then be chosen to  accomplish this, 

such as giving a  corrective statem ent for her answer, making a  general statem ent about 

some relevant facts, or questioning the causal dependencies underlying her assertion. 

T he pa th  in  the hierarchical structures is  default path . M EN O  Thtor provides m eta-rules 

to  create preem ption path, which occurs in the same level. The preem ption path can
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Student’s Program
1. program  average (input, output);
2. var Sum, Count, Data: integer;
3. Avg: real;
4. begin
5. Sum : =  0;
6. Count: =  0;
7. read (Data);
8. while D ata  < >  99999 do
9. begin
10. Sum: = Sum +  D ata;
11. Count: =  Count +  1;
12. D a ta :=  D ata +  1;
13. end;
14. Avg: =  Sum/Count;
15. writeln (T h e  average is Avg); 
16 end.

TUton

Student
Tlnor:

Student:
Ttiton

Student:
Tilton

Student:
Tliton

Do you know that Data in line 8 is a con­
trol variable for the while loop?
:Ycs.
Docs that mean that Data should be

a) Initiated before the loop?
b) Added into Sum within the loop?
c) Modified within the loop?
d) Both a) and c).

: c.
You seem to understand about the control 
variable of the while loop. Now let us talk 
about some other command statements.
What do you think read (Data) in line 7 
docs with the value of Data?

a) Reads all the values of Data at onetime.
b) Reads in a single value of Data.
c) Assigns several new input values to Data. 

: a.
Then do you think that Data: Data + 1
updates the next of those values?
: Yes.
There is your misconception. Adding one is a 
common way to step through a range of va­
lues. But it cannot apply here because your 
read instruction in line 7 retrieves only a 
single value. You should replace line 12 by a 
second call to read (Data).

Fig.2 The Buggy Program and A  Dialogue O n It

obviously provide more in keeping student history or discourse history.

2.1.4 BRIDGE

B R ID G E  system intends to  build a  bridge between novice to  experienced program ­

mer. Bridge tries to  find natural evolving stages in the development of plans when stu­

dents design, implement and  test their program, and to  articulate each stage explicitly by 

providing interm ediate representations. The interm ediate representations allow a stu­

dents to  directly represent design and partial complete programs (Bonar 88).

B R ID G E consists three phases. Phase I provides informal English description for
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the program . It displays a English Phrase Menu and the submenus for each phrase. The 

student user chooses the phrases to  construct their natural language ’’program ” which is 

very much like the sudocode. This solution will be shown on the ’’English Step-by-step 

Solution” window. The phase II is to  refine the informal description of phase I into a 

series of sem i-form al programming plans. In this stage, the English phrases become 

explicit plans, represented by icon, and displayed in a ’’Visual Solution” window. Bonar 

argues that since plans represent high-level programming objects, it is sensible to  depict 

them  as icons that suggest their function. The phase III is to  translate the plan-based 

description into actual Pascal code. The student’s task is to match each visual plan icon 

to one o r more Pascal statements. A fter one icon and a  Pascal language construct are 

selected from the ’’Visual Solution” window and from the pop-up  menu separately, the 

corresponding statem ent will be shown in a ’’Pascal Solution” window.

In the phase I and phase II, B RID G E tries to understand the student’s partial 

work and diagnoses this work. The basic diagnostic strategy is m atching student’s plan 

to a  particular student model. The English phrases in the solution from phase I are 

m apped to  the catalog of programming plans. In BRIDGE, there are  four student mod­

els corresponding to  four different looping strategies. These models are specified a t four 

different levels. The students’ performances will be m atched with one of the models, then 

com pared with a  list of requirem ents for a  correct solution to the problem. For the 

incorrect solution, B RID G E will give hints and suggestions.

B R ID G E shows its method by solving the ’’Ending Value Averaging” problem, 

w hich is a p rob lem  of read in g  d a ta  an d  ca lcu la ting  th e ir  average by using loop. 

B R ID G E  was used by approximately 40 students. They suggest that B RID G E is helpful.

2.1.5 LISP tutor

LISP tu to r is built for testing A nderson’s cognitive model ACT* (Adaptive Control 

of Thought), a successor o f A CT ACT* theory has many assumptions, two of them are

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



very im portant to  our ITS. The first one is that cognitive functions can be represented as 

sets of production rules. The second one concerns the mechanisms of the learning mod­

el. The learning model consists of a set o f assumptions about how the student’s knowl­

edge state changes in each step during a  problem-solving phase. This model is employed 

in model tracing diagnosis approach in LISP tutor (Anderson, Boyle, C orbett and Lewis 

90).

The declarative knowledge and the procedural knowledge are well organized in the 

tu tor system. The declarative knowledge is what is deposited in human memory when 

someone is told something as in instruction or reading a text. The declarative knowledge 

is organized in schema-like structures, the PUPS structures (Penultim ate Production 

System). The procedural knowledge is represented by a set of production rules that de­

fine the skill how to solve a problem. The idea is that knowledge is first acquired declar- 

atively through instruction, and  that it has to  be converted and  reorganized into proce­

dures through experience. Only then can it be usefully reflected in behavior. The tu tor’s 

task is to  help students to  acquire the production rules which would be possessed by the 

com petent problem  solver.

LISP tu tor can help students to  write basic LISP code to  solve the problem s that 

appear in an introductory LISP textbook. The LISP tu tor presents the ideal program ­

m er’s knowledge and novice’s knowledge in the form of production rules, the ideal rule 

and buggy rule respectively. The system gives the student the instructions in LISP and 

tries to  bring the student into specific problem solving situation. The tu to r provides 

assistance to  student essentially by running the model in synchrony with the student, 

com paring the student’s response a t each step to  the relevant ideal and bug rules and 

responding accordingly. This is the model tracing diagnosis technique. A  salient feature 

of LISP tu tor is to  get the student to  mimic the steps of an ideal production model. 

Every time the student enters one new line of code, the tu tor comes back with a re­

sponse. Once the student makes an error, or the student choses a suboptim al strategy,
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the system attem pts to  diagnose and give a  hint as to  the correct and  optimal solution 

so that he can change his solution immediately.

The LISP tu tor has been in use in an introductory Lisp course at Carnegie-M ellon 

University since the fall o f 1984 (C orbett et al. 1990). It has been tested by the students 

in classroom and the results are very encouraging. TWo groups of 10 students were given 

the sam e lectures, bu t only one group used the tutor.The tutored students spent 30%less 

tim e on the problem s than those working on their own, but scored 43% better on the 

test.

2.1.6 APROPOS2

APRO PO S2 stands for Analyser o f PROlog Programs O f Students. It is a program 

analyser for a PRO LO G  programming teaching system. APRO PO S2 detects and cor­

rects nonsyntactic errors in student PRO LO G  programs written to  do simple bu t nontri­

vial list and num ber manipulation tasks (such as list reversion and  count o f the atom 

num ber in a  list) (Loot 88).

The bug analysis in APROPO S2 has been done a t three levels o f abstraction: the 

algorithm level, the predicate definition level and the code level. The analysis at the 

algorithm level checks the different kinds of design for the task solution. In APROPOS2, 

for example, three algorithms for list reversion can be recognized. The student’s PRO ­

LO G  program  is m atched against a  library o f task algorithm. The analysis at the predi­

cate definition level detects the different types of bugs in the predicate definition of the 

chosen algorithm, such as missing, extra and incorrect predicate definition. The work at 

the th ird  level, the implementation level, is checking the code that implements each pred­

icate definition. The bug analysis is done from the top level, the algorithm  level to  the 

down level, the code in students’ solution. A fter the analysis, the system will give a re­

po rt for the result such as which statem ents are correct, and which might be wrong and 

the relevant reason.
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A P R 0 P 0 S 2  uses a  heuristic best-first search strategy to  m ap the student’s pro­

gram  to  a  prechosen algorithm, a  set of predicate definitions and the code of the pro­

gram. A PRO PO S2 combines the dynamic and static analysis as its debugging approach. 

The static analysis works on the code. The result in this analysis is finding the common 

bug and suggesting corrections before dynamic analysis is invoked. The dynamic analysis 

here m eans to  examine the running of the program to get solutions both for student’s 

program  and  the correct program . The student can com pare these solutions and gain 

some hints.

APR O PO S2 has been work on a t least 95 students’ programs. The result shows 

that it can correctly detect m ost bugs, up to  80% (looi 88). Only very few program can it 

not give the correct answer, since it is possible that there are some disguise in the 

clauses o f programs.

2.2 Diagnosis Approaches

The diagnosis has been one o f the m ajor subjects of research in Artificial Intelli­

gence in both the theoretical and the practical area. The diagnostic problem was dis­

posed in many different dom ains, from trouble shooting in electronic appliances and 

circuits, to  diagnosis o f complex mechanical or physical system, to medical diagnosis. 

The diagnosis process in Intelligent TUtoring refers to  collecting the inform ation about 

the student’s activities and inferring his understandings. It is m ore difficult to  deal with 

than diagnosis in many o ther expert systems in general, such as device diagnosis, be­

cause the object o f diagnosis in an ITS is a  series o f the  student’s abstract mental states. 

Since this task  often involves the construction o f a  student model, these activities have 

also been called student modeling problem. The student modeling problem is raising up 

to  a prom inent position. Diagnostic approaches in the existing ITSs are varied with dif­

ferent perspectives in different systems. Plan recognition, model tracing, issue analyzing, 

condition induction, generate and test, and decision tree have been received much atten-
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tion. In this subsection these diagnostic approaches are briefly reviewed. In next subsec­

tion, these approaches are further compared and summarized into three different mod­

els.

2.2.1 Model tracing

The model tracing approach attem pts to  track  the student’s performance across 

problem  at every mental step. The model tracing is based on the psychological assum p­

tion that human cognitive behavior can be modeled as a production system. The produc­

tion rules are viewed as the description of the unit of skill or the prediction o f the steps 

the students will take (Anderson 90).

W hen a student is working on a  problem the tu tor generates all the possible next 

steps, both correct and incorrect. The tutor will display a  menu and let student choose 

one item, which is one step corresponding the student’s next action. The tu to r assumes 

that the student use the relative production rule to generate the next particular mental 

state. After com paring the student’s response to the internal expert model and the pres­

tored erroneous actions, the tu tor is able to  recognize whether the student is on the 

correct solution path or not, and gives the necessary interpretation for student’s activi­

ties. The tu tor monitors the student’s responses essentially on a  symbol-by-symbol basis. 

If  the student’s half typed code seemly can match one of the templates provided by the 

system, the system will allow the student to  continue without interruption (Corbett, et al. 

1990).

T he model tracing method intends to  create a close correspondence between units 

o f the internal model built by the professional program m er and steps obtained from the 

student behaviors. This approach has its advantages. Anderson uses this technique in 

LISP, ALGEBRA and GEOM ETRY tu tor and call it model tracing to express the fact 

th a t the student is m ade to  follow the system’s model quite closely and the student will 

know how to correct the mistake when the student behavior deviates from the ideal path.
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U nder this model the student never strays far from a correct solution. So, the model 

tracing approach is good for both diagnosis and guidance.

The model tracing m ethod is based on the goal-restricted production system archi­

tecture. The straightforward scheme in LISP tutor restricts the student’s activities into a 

local area and may not fit the need for m ore complex program  analysis. The explanation 

during the interm ediate stage is useful sometimes, especially for reminding the students 

who are in the early learning stages. But in the programming setting, im portant errors 

are usually revealed only after an  unsuccessful execution occurs, and  only when the stu­

dent see this result, he can get a deep impression.

2.2.2 Condition induction

T he model tracing approach rests on an assum ption that for any two consecutive 

m ental states in the student’s problem  solving there is a rule in its model to connect 

these two states. ACM  system (Automated Cognitive Modeler) uses condition induction 

approach to  construct a rule from  one state to the other between two consecutive states 

instead o f storing all the rules in advance (Langley and Ohlsson 84).

The ACM system works on the subtraction domain. The system constructs a set of 

production rules from the description o f the problem states (condition) and the behavior 

of a  student (operator). The operator converts one state to  another; the condition in the 

sam e rule should be consistent with the applicability of the operator. The conditions and 

operators are stored in two libraries respectively. For a  given problem , there is a ’’prob­

lem behavior graph” (actually it is a search tree) in which each node is a state  yielded 

by one operator. This tree includes all possible states either by correct performances or 

incorrect performances. ACM  intends to  decide which path can m atch student’s behav­

ior. Given a  student’s answers on a  se t of problems, ACM  starts with a set o f produc­

tion rules and then uses a  discrim ination process to  determ ine which sequences of oper­

ators have led to  the student answers. For a  particular problem, the states lying on the
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student’s solution path corresponding the positive instances of the rule, and the states 

are set one step off the path corresponding the negative instances. In order to  distin­

guish the positive instances from the negative ones, therefore lead the path  to match the 

observed behavior, ACM  infers additional conditions (beyond the original ones) from a 

list of tests. ACM  provides ten potentially relevant tests such as whether one num ber 

was greater than another, whether one row was above another. Once inferred and se­

lected the best m atched tests adds them as the appropriate conditions to each of these 

rules then recombines the more specific rules into a  final model. This model simulates 

the student’s subtraction strategy and explains the student’s behavior since the rules in 

this model can reproduce these sequences on the  same problems.

2.23 Issue analysis

The model tracing is based on the assum ption that all of the student’s significant 

m ental states are available to the diagnostic program. If the bandwidth is not high 

enough, the model tracing can not be used. Issue analyzing is based on analyzing a set 

of issues ra ther than considering accurate psychological stage of a student.

T he o n -lin e  coach system  W EST (B urton and  Brown 82) uses issue analyzing 

m ethod for elem entaiy m athematics study. It teaches the students arithm etic in an envi­

ronm ent of a  m athem atics game in which the student tries to  move to  the goal position 

as fast as possible. The num ber of moves will be indicated by the value of the arithm etic 

expression. The plus, minus, times, divide operations, and using parentheses in the ex­

pression and o ther game skills are presented as issues. W EST analyzes these issues em ­

bodied in both the students’ move and the expert’s move. In the game the student orga­

nizes three num bers given by the spinners into an arithm etic expression to  determ ine the 

num ber o f a  movement. The expert generates an  ordered list of all possible moves in the 

sam e circum stances, that is for the same three random  num bers and the same starting 

position. If the student’s expression does not produce the expert’s optimal move, W EST
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starts to  diagnose what issues the student is weak to  handle. W EST uses issue recogniz­

ers to  analyze the student’s moves and to  identify which issues have been used. The 

issue recognizers also analyzes the expert’s moves to select combinations of given num­

bers and the issues which are better than student’s, and to provide a  list of issues the 

student did not apply. From the list, W EST summarizes the issue which are being con­

sidered as the weakness of the student. Then the coach provides a  prestored text to 

explain expert’s strategies and also gives an example to  show the expert’s intelligent 

move.

In the issue analyzing approach, the diagnosis process concentrates on the issue 

analysis. If a student writes an  expression 2*4 +  1, then the system will analyze the 

times issue and plus issue and  check whether they are appropriate in the context of the 

moves. Issue analyzing approach ignores the choices w hat the student was trying to  do 

before he decided to  m ake th a t move, while those choices might be the stages which be 

fully considered in the model tracing approach. For the issues in WEST, there is no 

concept of error issues. They are  only identified by the differences how often each issue 

was used properly and how often it was overlooked. The differences are recorded in two 

counters, used and  missed, o f each issue. Later on the system can find the student’s 

weak issues based on com parison o f the two counters. The diagnosis in W EST is based 

upon the analysis o f the separated  issues. It does not deal with the relations of multiple 

interactive issues.

2.2.4 Plan recognition

Plan recognition uses plans as models to  capture the experts’ decision and follow 

the students’ attem pts in problem-solving. This approach formalizes the hum an tutor's 

insight using the plan, the essential ingredients of program  design experience. The sys­

tem s SPADE (Miller 82), B RID G E (Bonar 88), PRO U ST (Johnson and Soloway 84) and 

MACSYM A ADV ISO R (Genesereth 82) use the plan recognition diagnosis method.
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The early work on plan recognition was done in SPADE (Structured Planning And 

DEbugging) project which built a programming tu to r for interpreting simple picture p ro ­

gram s in LOGO and presented a  theory of planning and debugging. This theory explores 

a t least three hypotheses. The first one is that the problem-solving behaviors can be 

described by a series of plans. The second is tha t bugs can be represented by the conse­

quence of incorrect plans under incomplete knowledge and limited resources. And the 

third one is th a t articulating the plans (one’s problem  solving strategies) facilitates learn­

ing. This is the A I contribution to  the diagnosis (Miller 82). The plans in SPADE sim u­

late the hum an tu tor’s design choices and are classified by a  taxonomy o f concepts of 

program  design (Fig. 3). SPADE models planning strategies into three categories a t the

Plan

Identify

Decompose

Reformulate

Primitive

Previously Designed Procedure

( Sequential
f Decomposition 

Nonlinear ^
1 Composition

( Iteration 

Recursion

( Regroup

Generic Explicit

( Specialize 

Generalize 

Analogy

Repetition

Equivalence

Simplify

Fig. 3. Taxonomy O f Plans In LOGO

m ost general level: identification with previously solved problems; decomposition into 

sim pler sub-problem s; and reformulation o f the problem  descriptions. For each strategy, 

the system provides more details (refer Fig. 3). The design choices are indicated by the
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plans in the hierarchical representations. A nd the hierarchical structure forms a plan 

tree. The student’s developmental plan o f the program  code are edited by the system 

according the plan tree. Diagnosis process in this model is depicted by the search in the 

plan tree. The root node in the tree is the overall goal, nonleaf nodes are the subgoals. 

The diagnosis task is to  infer an incorrect design choice when it is given the student’s 

action as the leave node of the tree. Using plan to  m ake the decision process explicit 

would encourage a good design strategy. Although SPADE only implemented at the 

stage of plan-oriented programming editor, its idea of using plans shows basic step 

towards to building a  good tutor.

The plan recognition in PRO UST is as an  interm ediate stage in the diagnosis pro­

cess. Johnson m ade the claim: programmers use program ming plans not only in under­

standing program s, bu t also in writing programs. W hen program mer write programs, 

they need to  determ ine what goals m ust be satisfied, and then select plans which satisfy 

those goals, although sometimes they choose incorrect plans (Johnson 86). PRO U ST’s 

m ain analytic task  is to  locate in the student’s code the plans for each of the goals in the 

problem  specification. PRO U ST has a list of plans related with the goals they achieve. 

Plans in the list include the expert plans, buggy plans and some information about mis­

application o f correct plans. Each plan is represented by a fram e which contains a set of 

slots. T he m ost im portant part o f a  plan is described by the Template slot which gives 

the structure o f the plan template. The basic building blocks of plan tem plates consist of 

one Pascal statem ent o r a  set of Pascal statem ents because each statem ent usually can 

represent a primitive unit of action. The other slots provide various additional facts and 

assertions abou t the plan. In the rainfall assignment, for example, accum ulating the 

counter and  running the total are necessary to  calculate the average. So the program  will 

include corresponding plans, ’’counter plan” tha t consists o f statem ents ’’Count :=  0" 

and ’’C o u n t : =  Count +  1”, and ’’running to tal plan” th a t consists of statem ents ’’Sum 

:=  0” and ’’Sum :=  Sum +  New” ( refer Fig.2 and Fig. 4). Plans are used in PRO UST
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Counter Plan

Running 
Total Plan

C o u n t: = 0;

S u m : =  0;

N ew : =  0;

while New <  >  9999 do 

begin
read (New); 
if New <  >  9999 then 

begin

Sentinel read-pro- 
cess while plan

S u m : =  Sum +  New;

C o u n t: =  Count +  1;

end;

end;

Fig.4 Plans In  Program Code

in following way. From  program  specifications, PRO UST selects a goal to  be analyzed. It 

retrieves a  set of plans from the plan list, each of which might be used by novices to 

im plement the goal. PRO U ST then matches each plan against the program  as much as 

possible. The matching process from  goal to  code can describe the student behaviors, 

either correct or incorrect. If we consider the plans in SPADE play a role for the pro­

gram  editor to  help student to  make a  good program design, then plans in PRO UST 

would play a role o f diagnosis to  help tu tor to  find the error.

The plan in B RID G E (Bonar 88) is presented in an explicit environment during the 

period when students solve their problem s in three phases as described in section 2.1.4. 

Bonar asserts that plans play central role while a student constructs his program  from 

informal description o f natural language to  the formal statem ents o f com puter program 

and the plan be viewed as a  m ental m odel and can be presented by visual icons. From 

m acroscopic point of view the plans are  used in different way in B RID G E and PRO ­

UST B R ID G E  uses plans to  m ap the student’s intended goal into code to  help student 

with writing code while PRO U ST to m ap the  code back into the student’s original goal 

to  infer the student’s design process and give the interpretations.
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2.2.5 Decision tree

The decision tree technique is working in a determ inistic m anner and targeted for 

accurate diagnoses in the problem with low bandwidth. BUGGY system uses this tech­

nique to  diagnose the student’s subtraction errors after the student’s answers to a set of 

test problem s are given. It attem pts to  determ ine what internalized set o f incorrect in­

structions or rules gives the student’s solutions rather than only judge whether the an­

swer is incorrect (Brown and Burton 78).

In  the BUGGY system a  set o f subtraction tests that will be given to  students are 

selected in advance. BUGGY preanalyzes these subtraction test and constructs a deci­

sion tree. BUGGY also terms this decision tree as a procedural network that represents 

the application of the possible skills o f  subtraction and connects elementary subskills 

into a network. The top  node of the tree corresponds to  the first subtraction problem. 

The answers to  the problem, which are m ade by eveiy possible bug as well as the cor­

rect subskills, form the child nodes. Each node is associated with one o f the bugs o r the 

correct subskill which produce the sam e answer. From all o f these nodes, the next test 

problem  and  corresponding answers under the possible bugs and the correct subskill will 

form  next level of nodes. A  diagnostic process based on this decision tree technique 

contains all the necessary subskills for the global skill, as well as all the possible bugs of 

each subskill. Each leaf node corresponds to  one diagnosis and each diagnosis process 

may correspond to  several paths from  a  root to  a  leaf. Thus the decision tree can pro­

vide the explanations for the student’s incorrect behaviors with a set o f exact internalized 

errors which are translated by the subskills. BUGGY system views the com pound bug as 

one bug. This is too expensive when the com binatorial situations of primitivrebugs aod 

considered.

2.2.6 Generate and test
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It is necessary to  consider that the student has several bugs at the same time. In 

the decision tree method, only the single bugs and possible pairs of bugs are considered. 

Even then, for 55 bugs, there already have been 552 (3025) possible bug pairs. Thus the 

decision tree will be a huge tree. DEBUGGY system uses generate and test diagnostic 

method to  generate compound bugs dynamically instead prestore all possible bugs and 

their com binations into a  tree. It can deal with up to four or five multiple co-occurring 

bugs (Burton 82).

DEBUG G Y  system generates an initial se t of bugs by testing the student on the 

set of given problems. Every bug in this set replaces a  subprocedure in the correct m od­

el and predicts an  answer for each given problem, which will be tested against the stu­

dent’s answer. If  any one of those answers can m atch one of the student’s answers, then 

it explains a t least one of the student’s wrong answers. Usually, there are several bugs 

can be generated from the student’s answers to  the initial given problems. Then the 

system tries to  decide which one will be chosen as the candidate o f the com pound bug 

and which one is not necessarily to stay in the set of single bugs. DEBUGGY removes 

the bugs that are completed subsumed by other single bugs in order to  reduce the size 

of the set of single bugs. DEBUGGY then combines these single bugs to  form the com ­

pound bugs. The system predicts the answer for those compound bugs and com pares 

them  with the student’s answers. Finally, it tests all of the bugs and selects the ones that 

best m atch the student’s answer. Choosing the compound bugs which can explain more 

answers than its parts can do is also considered. This method needs to test a large sets 

o f data  to  get the accurate or complete diagnostic result.

D EBU G G Y  and BUGGY work with a  predefined subtraction test and the stu­

dent’s answers to  it. IDEBUGGY provides an interactive environment (Burton 82). After 

obtaining a set of diagnoses from the student’s answers, it generates some new subtrac­

tion problem s by using problem generators. T he generators are designed to produce 

problem s th a t are m ade to  meet certain conditions, such as requiring borrowing, having
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zero on the top. These problems will be expected to split the bugs in the current set of 

diagnoses. Then it will find the more accurate diagnosis as the result. In this process 

IDEBUGGY yields fewer test problems than DEBUGGY and BUGGY do to achieve 

the same accuracy.

23  Summary on the State of the Art

A  considerable am ount of research has been devoted to  ITS with respectable re­

sults. These systems can vary greatly in the type of pedagogical approach they imple­

m ent and even in the technology they adopt. M ost systems built so far ju st show labora­

tory experiments primarily intended to  dem onstrate feasibility; only a  few of them have 

been pu t in to  applications like LISP tu to r (A nderson 89), G U ID O N  (Clancey 82), 

STEAM ER (Hollan 84). It is obviously that research on ITS is still very young. It has a 

long way to  go to  produce actual intelligent systems for helping people acquire various 

forms of knowledge. It needs to  explore more methods from different prospectives so 

that people can com pare and  choose the most reasonable and realistic one.

In ITS research m ost significant effort has been devoted to  the student modeling 

problem. By virtue of student model and diagnostic process, intelligent tutoring pro­

gram s can represent what a  student does and does not know about the subject m atter 

and can focus teaching and tutoring on the specific needs of an individual student. In 

this process many fundamental cognitive science issues have to  be addressed also, other­

wise the teaching and learning can not go further to deeper stage. The student model is 

very im portant so th a t some researchers think that an ITS simply contains a  student 

model and three experts, the domain expert, tutoring expert and diagnostic expert. All of 

the three experts communicate with student model (Wallach 87).

Although the existing diagnostic approaches in current student modeling problems 

are based on different formalisms for knowledge representation and different scheme for 

diagnosis process, they fall roughly into three models according to  their diagnosis styles:
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the enum erating model, the tracking model and the classifying model. All of these m od­

els have both reasonable sides and weak sides.

• Enum erating model

The diagnostic techniques such as decision tree (Brown and Burton 78), and gener­

ate and test (Burton 82) belong to  the enum erating model and they are used for diagnos­

tic problem s with low input bandwidth (Vanlehn 88) like a  final state o r interm ediate 

states. In these approaches the definite answers to  a given problem, such as the result of 

a numerical subtraction, can be obtained from both the student and the domain expert. 

For every possible incorrect answer given by a  student, the system attem pts enum erate 

all possible bugs in an enumerating model. This model can work well when the problem 

dom ain is veiy simple, but it is not suitable for tutoring complex problems that require 

the diagnosis of abstract m ental states. The mistakes in complex problems are not neces­

sary enumerable. They are from students’ cognitive activities, and usually they are not 

definite as the answers for certain simple m athem atics problems.

• Tracking model

The diagnosis techniques such as model tracing (Anderson 90) and condition in­

duction (Langley and Ohlsson 84) belong to  the tracking model. They try to  track stu­

dents’ behaviors a t every mental step to  deal with the diagnosis in more complex prob­

lems. This approach has an inherent problem. The hum an mental activities are not 

always discernible, and it is very difficult to  accurately seize a student’s m isunderstand­

ing a t each step of a  problem  solving process. In  problems a t higher levels, obtaining the 

accurate m ental states is simply not feasible, even though it can be very desirable. On 

the other hand, the tracking model only allows a  student to follow the steps given by the 

system’s model and forces the student to  solve the problem  in the m anner that the tutor 

uses. Therefore the student has no chance to  explore and evaluate alternative designs.
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• Classifying model

The issue analysis (Burton and Brown 82) and plan recognition (Johnson and Solo­

way 84) can be categorized as classifying models. The techniques under this model char­

acterize significant issues, plans, goals and strategies, and then try to  recognize them 

according to  predefined expectations during the student's problem solving process. Based 

on this classification, the system can interpret the student’s behavior m ost plausibly on 

the cognitive level. In contrast with the m ethods under tracking model, these methods 

encourage student understand the design process on the high level of m ental activities, 

give students the chance not only for response to  the states on sentence by sentence 

basis which is a  quit weak view of student problem-solving. Although these approaches 

under this model seem to  be more realistic, there are some problem s which need to be 

solved, such as how to choose the p roper issues when there exist complex relationships 

am ong issues and how to choose an accurate plan when several plans can be used to 

serve the sam e goal.

There exist other views about building and using student models among research­

ers. They take a  sceptical attitude to  bo th  the need for detailed student models and the 

practical possibility o f constructing them . The difficulties to  build such complex student 

models and the preconceptions about the potential roles of student model make them 

doubt whether the cost o f building runnable and m aintainable student models is worth­

while in term s o f the gain in teaching efficiency (Sandberg 87).

Self restates the im portance for student models in intelligent tutoring systems and 

presents the possibility o f actually constructing them  (Self 88). H e states that it is not 

essential for ITSs to  possess precise student models and contain detailed representations 

of all the components. Self suggests changes in philosophical approaches, such as having 

the student tell the system what the system needs to  know instead guessing, and not 

diagnosing what the system can not treat. H e claims that solutions for some aspects of
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the student modelling problem are practically attainable and useful if we back off from 

the grand vision and adopt more realistic aims.

Based on analyzing the current diagnosis models in ITSs, we can see all of these 

models are not adequate, they need to  be improved. A  new diagnostic model, Integration 

of Abductive and Deductive Inference (IADI) has been explored. This model intends to 

step forward the hum an diagnostician’s inside, to  simulate the hum an’s reasoning ways, 

therefore avoid disadvantages o f existing diagnosis techniques in intelligent tutoring sys­

tem and synthesize their advantages.
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CHAPTER THREE 

GENERAL MODEL 

OF

INTEGRATION O F 

ABDUCTIVE AND DEDUCTIVE INFERENCE DIAGNOSIS

In light o f the  cognitive processes of hum an diagnosticians, a  new diagnosis model. 

Integration o f Abductive and Deductive Inference (IAD I) model, is derived. In contrast 

with the other three models summarized in last chapter, that based on enumerating, 

tracking and classifying approaches, the IAD I diagnosis model is an inferencing model 

because it relies on different inferences to  solve the diagnosis problem.

Ju s t as Pople indicated in 1973 (Pople 73), ’T h e  principal deficiency of existing 

systems is their reliance on a single form o f logical inference -deduction - which, though 

essential, is inadequate for many types of problem  solving activity.” Different mecha­

nisms of inference can be complementary to  each other when they are combined appro­

priately, so that the capability to  solve a  problem  can be greatly improved. Thus inte­

g ra ting  d ifferen t types o f reasoning is becom ing one o f the  m ain characteristics of 

second generation expert systems (Tbrasso and Console 89). T he IA D I diagnosis model 

combines abductive inference and deductive inference to  sim ulate the hum an diagnosti­

cian’s cognition in diagnosis problem  solving. The IA D I diagnosis model as a  general 

diagnosis approach was proposed and applied in a  prototype of the recursive program ­

ming tutoring system. This chapter describes the basic concept of abductive inference 

and deductive inference, and presents the outlines o f the IA D I diagnosis model includ-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ing its basic features, the diagnosis knowledge representation, and three steps in the 

IA D I diagnosis process. The next chapter explains how to apply the IAD I diagnosis 

model to solving a  real problem.

3.1 Abductive and  Deductive Logic Reasoning

Philosophers have considered abduction as a distinct type of reasoning from the 

two traditionally recognized types, deduction and induction (Fann 70), (Pople 73), (Char- 

niak and M cDerm ott 85). The various forms of logical inference can be characterized as 

following different models.

•  induction Given { P( a  ) =  q, P( b ) =  q, ... } (1)

Infer ( vx ) P( x ) =  q. x e  { a, b , ... }

• deduction Given { ( vx ) P( x ) — ► Q( x ) , P( a  ) } (2)

Infer Q( a ).

• abduction Given { ( vx ) P( x ) — ► Q( x ) ,  Q( a  ) } (3)

Infer P( a ) as possible explanation.

Deductive inference is to  infer the result for a  specific case after being given the 

general rule (general knowledge) and a specific case (conditional evidence). If the general 

rule and the conditions are true, then the result, a  logical consequence o f the given data, 

is definitely true. In the deductive reasoning process there are two different control s tra t­

egies: the forward chaining reasoning process and the backward chaining reasoning pro­

cess. IRIS is one system th a t works in forward chaining style. It applies the given data  to 

check the conditions of a  rule to  determ ine whether the consequence can be drawn or 

not (Trigoboff and Kulikowski 77). Some systems, such as M YCIN which is based on 

deductive reasoning, work in a  backward chaining fashion. This mechanism builds sub-
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goals to  prove. It checks the condition part o f a rule. This process might go several 

levels deep. T hat is, p roof for a subgoal may involve several rules. If one of the subgoals 

turns out to  be fail, then the result is false. W hen deductive reasoning is applied to 

diagnosis problem solving, the uncertainty measures are usually connected (Shortliffe 76) 

because diagnosis features require plausibility. Actually this kind o f reasoning already 

deviates from purely deductive reasoning.

A bduction or abductive inference is to  infer the best o r m ost plausible explana­

tions for a given set o f facts (Pople 73). This reasoning can be characterized as non­

m onotonic reasoning (Bundy 90) (Geffner 89). O ne o f the im portant features of abduc­

tive reasoning is that abductive reasoning is plausible reasoning. A fter being given the 

general rule and a  specific case (observed facts) like Q (a) in above (3), abductive infer­

ence infers another specific case such as P(a) in (3) as one possible hypothesis or expla­

nation for the given case. The inferred explanation may not be definitely true because we 

can not conclude tha t P(a) is certainly true from  the given data  in the above formula. 

From  other rules, if any, it may infer other hypotheses th a t would also explain the ob­

served facts. In o ther words, abductive reasoning is a  process which infers a set of the 

m ost plausible hypotheses for the given evidences.

Although the term  ’’abduction” was first introduced into the AI literature around 

1973, abductive inference has not received much attention from the A I field even though 

abduction logic reasoning is m ore suitable for use w ith many AI systems than other 

kinds o f logic reasoning. Not until very recently d id  researchers realize that abduction is 

valuable and  can be applied to  many areas such as m achine vision, natural language 

processing, legal reasoning and plan interpretation, and  especially diagnosis problem 

solving because hum an diagnostic inference naturally falls into the category of abduction 

(C ham iak and M cD erm ott 85) (Peng and Reggia 90).

Reggia and his colleagues proposed the Parsim onious Covering Theory which is 

based on the Set Covering model, for diagnostic problem  solving in the abductive expert
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system (Reggia et al. 85 a, b, c) (Peng and Reggia 90). Their research is an attem pt to 

build a formal model of abductive inference in a mathematically rigorous fashion for 

diagnosis problem solving. This model infers the minimal set of hypotheses as the diag­

nostic result which can cover the given manifestations (symptoms). Although this model 

captures some desirable features of diagnostic problem  solving, it is not necessarily ap­

propriate to have the minimal cover as the diagnostic result. There are some situations 

where a minimal cover would not be the most plausible explanation for a set of manifes­

tations. For example, there are two sets of plausible explanations in a  medical diagnosis, 

both of them can account for all of the given symptoms. One set contains two common 

diseases, another contains one rare disease. A  physician would rather choose two com­

mon diseases as the differential diagnosis than choose the minimal cover which is the 

rare  disease. Hence, having the minimal cover of the given symptoms as the diagnosis 

result may not be appropriate, especially when we consider the learning process as a 

cognitive process. On the other hand, this theoiy treats the hypotheses in the minimal 

cover with equal weight. It seems th a t there always are a  few, and only a  few, hypotheses 

in the minimal cover which are critical. Hum an experts usually weight the critical hy­

pothesis more than the less critical ones. Hence, it is worth the study on which one is 

better, choosing the minimal cover for the given manifestations, or choosing the critical 

ones as the explanations.

3.2 A View of the IADI Diagnosis Model

Due to the nature of the real hum an cognitive process in diagnosis problem solv­

ing, it is suitable to  use abduction as the first reasoning step to hypothesize misconcep­

tions from mistakes, and then use deduction to  verify these hypothesized misconceptions. 

Thus the two processes form an integrated inference process which works a t detecting 

on two levels.

This section represents the basic characteristics of the IA D I diagnosis model which
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include the two-level detection, the integrated inference mechanism, the rules distinction, 

the nondeterm inistic feature, and the three diagnosis steps in the IADI diagnosis pro­

cess. A  detailed description of the three diagnostic steps and their applied knowledge 

will be given in the following sections. How the IA D I diagnosis model works in real 

systems will be described in next chapter.

3.2.1 Detection at two levels

The purpose in diagnosis problem solving is to  find the disorders or mistakes in 

order to  provide a foundation for the system to remedy or correct anomalies in one way 

or another. In a tutoring system, besides detecting the student’s actions to  provide a 

starting point for a  tutor to give instruction, the diagnosis process should also be able to 

detect a student’s knowledge of a certain subject. A n understanding or a m isunderstand­

ing is viewed as a  mental activity that is used to  in terpret people’s behaviors. Therefore, 

knowing the student’s knowledge will enable the tu to r to give more rational explanations. 

Thus, it seems to  be necessary to diagnose at two levels, action and understanding.

In a tutoring system a  mistake is a  student’s incorrect action which is usually dem ­

onstrated when he performs in a problem-solving process, while a misconception is a 

student’s m isunderstanding a t the conceptual level. Usually the m isunderstanding of a 

concept about the subject material is the reason th a t students make mistakes. So a mis­

take is viewed as a defect a t the surface level from a  cognitive point of view. But a 

misconception is viewed as a  defect a t the deep level. Actually, both m istake detection 

and m isconception detection are important. Reporting m istakes can help students to 

realize w hat is wrong. Pointing out misconceptions can help students to  understand why 

it is wrong. If only the mistakes are identified without an explanation of the underlying 

conceptual knowledge, then the mistakes will be repeated under the different circum ­

stances. If  only the misconceptions are listed without showing where the corresponding 

m istakes are and w hat the mistakes look like, then it seems to  be too far and too deep
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to be understood by students, especially novice students who are in a course of learning 

completely new material.

3.2.2 Integrated inferences and applied rules in IADI model

Studies on a hum an diagnosticians’ process show that a diagnosis process actually 

is a hypothesizing process and followed by a  verification process. For example, a  human 

diagnostician only makes conjectures after seeing some symptoms; he does not im medi­

ately m ake the decision for the diagnosis a t this time. H e needs more inform ation to 

verify these conjectures. For example, a  doctor usually first hypothesizes one or more 

possible diseases based on initial evidences. Then he collects more information from lab 

tests, conversation with the patient, investigating the treatm ent history, and so on. Finally 

he makes the differential diagnosis. Abductive inference captures the plausible features 

of this hypothesizing process while deductive inference presents the nature of the verifi­

cation process. Thus the reasoning process using the combination of abduction and de­

duction to  sim ulate the hypothesizing and verification processes is much closer to  the 

process o f hum an cognition in the real world. Besides integrating abductive inference 

and deductive inference, the IA D I diagnosis model also incorporates the structure analy­

sis to  find the dem onstrated mistakes.

Both abduction and deduction need the cause-effect relationship to  support the 

reasoning. In  order to  represent the causal relationship in a diagnosis problem  solving, 

the rule in the following form is applied in the IA D I model:

If  the misconception (disorder) exists

then a  certain m istake (m anifestation) can be caused.

It presents the cause-effect relationships between the antecedent and the consequent in 

a rule, and supports the abductive reasoning and the deductive reasoning more readily.

M ost existing diagnostic systems only use deductive inference. They use rules typi­

cally in the form:
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If conjunction of m istakes (manifestations) exists 

then disorder (misconception) can be decided.

This kind o f rules are target for constructing chains o f deductive reasoning (Barr and 

Feigenbaum 82). Such reasoning proceeds from the principle o f m odus ponens. If there 

is a  rule in the database and its antecedent is satisfied, then the consequent is definitely 

true. H ere the consequent is the diagnostic result. This process may involve several rules 

in order to  prove one result. Although the reasoning process based on such a form is 

theoretically correct, it is not practical for many types o f real world diagnostic problems. 

In such a  rule, the m anifestations together form a  sufficient condition for the conse­

quent. But in the real world, this condition is difficult to  be satisfied because a disorder 

does not always necessarily cause all o f the m anifestations simultaneously in m ost cases. 

Thus it is unnecessary for all o f the m anifestations to  be able to  appear at the same 

time. H ence it is difficult for some rules to  be fired, typically when these rules have 

several o r many m anifestations in the conjunction part.

The rules in the first form are easily fired since each rule only needs one manifes­

tation as the fuse; the corresponding misconception can be derived as one candidate 

hypothesis to  explain the  existence o f the m anifestation. The rules in this form naturally 

support the abductive process to  infer m ultiple plausible hypotheses from  the given m an­

ifestations because usually there are several rules which can be related to  each one of 

the given m anifestations in an  abductive knowledge base. The result a t this inference 

step establishes the basis for further selecting the m ost plausible hypotheses in the next 

step of the verification process.

T he rules in the second form are aim ed a t heuristic matching while the rules in the 

first form  are aim ed a t causal reasoning. In a  tutoring system the rules in the first form 

indicate the causal relationships between m istakes m ade by a  student and the miscon­

ceptions the student m ay have. Causal relationships can be effectively used to  describe
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interconnections of the students’ behaviors and their understanding from a surface level 

to a deep level in a precise way. This definite representation o f cause-effect relationships 

is more im portant in a tutoring process than in other systems. Based on this clear repre­

sentation, a  tu tor can readily conclude the cause from manifestations, and therefore can 

give instructions in a more reasonable manner. In the verification inference process of 

the IA D I diagnosis model, this rule form provides a causal path for questioning students 

in order to  verify their misconceptions, and instructing on a conception.

3.23 Nondeterministic representation of diagnosis

T he diagnostic results from the diagnostic process are not ’’certain” in most cases, 

especially when incorporated with a tutoring process. In a cognitive process such as 

learning o r tutoring, it is veiy difficult to indicate one or several misconceptions as the 

final diagnostic result. The reason is that the student’s misconceptions are usually asso­

ciated. I t is difficult to distinguish which particular misconception caused the existing 

incorrect behaviors because sometimes the effects of misconceptions are intercrossing or 

overlapping. Sometimes even the students’ behaviors themselves are incomplete o r am ­

biguous. This situation happens frequently, especially when someone is in the course of 

learning new knowledge, such as a  novice’s programming technique learning. So provid­

ing a  list o f  possible misconceptions and arranging them  by their plausibilities becomes 

realistic.

In o rder to m easure the ’’uncertainty” o f the selected hypotheses, different models 

can be used. Among these models, probability theory is the m ost classical theory and is 

relatively m ature. Some diagnostic systems even use this model to infer or decide hy­

potheses, no t ju s t to m easure them  as an attachm ent. The knowledge in these kinds of 

models is represented as prior probabilities o f disorders and conditional probabilities of 

disorders for given symptoms (Cham iak and M cD erm ott 85) (Pearl 88). This model re­

quires data  independence assumptions in a  practical system which are not always valid.
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Furtherm ore, this model can work only when all present manifestations are given in 

advance, and it does not attem pt to  obtain further information for verifying hypotheses 

as required in a diagnosis process. In  the IADI diagnosis model, uncertainty measure is 

delined in an intuitive way and can  be easily calculated. A nd this m easure is used to 

help rank the proposed hypotheses as a complementary of abductive and deductive in­

ference processes.

3.2.4 Three steps in IADI diagnosis process

Considering the necessity of detection of both mistakes and misconceptions in a 

tutoring system, the diagnosis process in the IAD I diagnosis model consists of the fol­

lowing three steps:

• M istake detection by structure analysis;

• M isconception hypothesizing by abductive inference;

• M isconception verification by deductive inference.

The three-step  cycle can continue until the mistakes do not occur any more. Fig. 5 

shows an overview of the IA D I diagnosis process.

Diagnosis in a  modeled system requires finding m istakes first, then it can further 

analyze these m istakes so tha t misconceptions can be infered and verified. Mistake de­

tection is the first manipulation after a problem  is given. In a  program ming tutoring 

system the mistake detection process attem pts to  find program  errors (or program bugs) 

by using the program  structure analysis. The program  errors will be the input data for 

the abductive and deductive inferences.

Thking the mistakes obtained from the  first step, the diagnosis system infers a set 

of plausible candidate hypotheses by an abductive inference process, and assigns a plau­

sibility m easure for each hypothesis. In a tutoring system these candidate hypotheses are 

the student’s misconceptions for a  particular problem. But every hypothesis in this set is 

just one candidate for explaining why the mistake existed. There might be other hypothe-
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ses th a t can also account for the mistake. In order to  verify which hypotheses are the 

m ore precise representations of the m isconceptions that truly cause the m istakes made 

by the student, the system needs a  verification process.
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In the third step the diagnosis system verifies the proposed candidate hypotheses 

based on a deductive inference process. The system checks the existence of undemon­

strated  mistakes and revises the plausibility measure. In  this step the system provides an 

interactive process with the student to  get more information. Finally it produces a list of 

ranked hypotheses as the result of differential diagnosis.

3 3  Knowledge Representation in IADI Diagnosis Model

In the IA D I diagnosis model, the knowledge about a  diagnosis problem  is collected 

in a diagnosis knowledge base. The IA D I diagnostic knowledge base contains structure 

knowledge, student’s m istakes and misconceptions for a particular problem , and check­

ing list.

33.1 Structure pattern

A  structure is a representation of the basic organization o f a substance and the 

m anner of construction. It is the fundamental basis with which to  do reasoning (Reiter 

87). For example the structure in a com puter program  is a syntactic structure o f a pro­

gram which can be viewed as a pattern o r a template. It consists of specific statem ents, 

such as if ... then ... else ...; while ... do ...; case ... which represent the selection structure, 

repetition structure, and multialtem ative structure respectively (Leestm a and Nyhoff 84). 

Analysis on the structures can be used to  identify the possible m istakes in a  program. To 

avoid an excessively detailed analysis, a  structure analysis usually grasps the key words 

in a  structure such as ’if-then-else’, ’while-do’, and ’case’, and ju s t recognizes these key 

words in a  structure analysis.

33 .2  Hypothesizing rules

A  diagnosis process detects the mistakes first by the structure analysis; then it
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further analyzes these mistakes, infers and verifies misconceptions. Mistakes and miscon­

ceptions are organized in a triple (M, C, R), where

M represents a finite set of all identifiable mistakes. In an ITS, these mistakes 

are the possible incorrect performances of students. In a programming tu­

toring system, the mistakes are the manifested program errors o r program 

bugs.

C represents a finite set of all possible candidate hypotheses that are the 

potential causes of mistakes in M. These candidate hypotheses are the 

misconceptions that the students may have in the learning process.

R  represents a  finite set of production rules which indicate the causal relation­

ships between elements in C and M. If there is a rule c, — ► mj in the 

set R, where Cj e  C, mj e  M, that means the misconception q  can cause 

the mistake mj under certain circumstances. This rule is also called a hy­

pothesizing rule or a  misconception-mistake rule.

For given sets C and M, the following facts exist:

For one Cj, there might be multiple mistakes. That means one misconception can 

cause a student to  make several mistakes. For example, in recursive programming if the 

student m isunderstands the recursive relationship he might incorrectly give a smaller 

instance in a recursive procedure call, and he also might miswrite the condition in a 

condition statem ent which may cause the recursive procedure to  be called. That is, we 

have

cj : Confusion on the recursive relationship;

m j : miswriting the condition in one condition statement;

mk : misgiving the smaller instance in a  recursive procedure call;

and Cj mj, 

q — ► m k.

O n the o ther hand, for one mj( there  m ight be m ultiple m isconceptions. T hat
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means one mistake can be caused by several misconceptions. For example, besides con­

fusion on the recursive relationship, m isunderstanding the term ination condition might 

also make the student miswrite the condition in the conditional statem ent for a recursive 

procedure calling statem ent. Thus we have:

C] : m isunderstanding the termination condition; 

and Cj mj; 

c i — ► mj.

Consequently we can define following sets:

man( C j) indicates all possible manifested mistakes which are caused by c;, and 

can( mj ) indicates all possible candidate hypotheses which can cause mj.

T hat is

m an( C j) =  { mj [ (c j— ► mj) e  R  }

can( m j ) =  { Cj | (c; — ► mj) e  R  } where Cj e  C, mj e  M.

A n IA D I diagnosis problem  can be defined as a five tuple 

{ M, C, R, Mp> Cp }

where

M, C, R  are defined as before, and they are precollected in the IA D I knowledge

base;

Mp =  { m i, m2, ... mj }, Mp C  M, is obtained from the m istake detection on a 

student’s performance;

Cp c  C has different values a t different steps:

Before misconception hypothesizing, Cp =  <J>;

A fter misconception hypothesizing, Cp =  C r which is the candidate hypotheses 

set for the intermediary IA D I diagnosis;

A fter the misconception verification, Cp =  Cf which is the final IADI diagno­

sis.
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3.3.3 Checking list

For each misconception in C, the system sets up a checking list. The checking lists 

consist of items. Those items are related with the manifestations which can be caused by 

this misconception. These items are represented as questions and choices, and they are 

organized by the cause-effect relationship and design plans. The detailed description is 

in section 4.5.1.

3.4 S tru c tu re  Analysis Process

Structure analysis is the initial process for the IAD I diagnosis model. It detects a 

set o f mistakes Mp =  {m i, m2 , ... mi}, Mp c  M, and provides the Mp as the input of 

the abductive inference process.

In programming, although there are many intentions or interm ediate processes be­

fore a student m akes his program  and runs it, if possible, usually only the subm itted 

program  o r the final solution is visible. One can consider the final program  code or final 

execution result as the final solution. So the program  error analysis techniques can be 

basically classified into an  analysis o f program structures and an analysis of program 

behaviors. T he program  structure analysis com pares the structures in a student’s pro­

gram and the structures in a instructor’s program. The program  behavior analysis works 

on the output of a  program  or the output of the program ’s components to  detect the 

program  bugs from the incorrect execution results.

In som e program m ing problems, the structures are simple such as the structures in 

a recursive program. Usually, a recursive program  has a succinct program  structure, 

although it could contain things difficult for a novice program m er to  understand. Never­

theless, it is this feature of the succinct program  structure that makes the structure 

analysis o f a mistake detection feasible. Given a recursive problem, usually there are 

only a lim ited num ber of ways to  solve it, therefore a  limited num ber of code patterns 

for a  particular problem  solving. In o ther programming solving problems, it is common
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to have a longer and m ore complex program. Thus, the structure analysis may be much 

more com plicated due to  the greater num ber o f possible patterns. In that case the struc­

ture analysis has to be supplem ented by other methods.

By observing student problem  solving behavior, we found that m ost students begin 

to learn recursive program m ing by making an analogy of structures between the given 

problem and a known program. Research on recursive problem  solving of novice pro­

gram m ers shows that 80% of students’ program s are accomplished by structural analo­

gies of earlier program s since relatively simple program  patterns usually provide these 

opportunities. Even expert program mers still use the provided tem plates or a chuck to 

solve a  problem  if it is similar to  a  problem which has been previously solved. Only 

when the problem becomes complicated, will a  more sophisticated analysis be applied. 

Researchers have found that abstracting the structural features of recursion and simply 

imitating them is sufficient for beginners to solve routine recursive problems, although 

its effect decreases when the problem  is novel or difficult (Bhuiyan, G reer and McCalla 

91) (W iedenbeck 89). T hat m ay be the reason that the LISP tu to r basically asks students 

to  use recursion tem plates to  fill in to  arrive a t a final program  when a novice comes to 

learn recursion (Anderson, Boyle, C orbett and lewis 90).

In the IA D I diagnosis model, the structure representation of a  modeled system is 

an abstraction of the key features about a program  as well as a  syntactic template. In 

most cases of com puter programming, incorrect program  structures are the m ain reason 

that results in failure of expected functions perform ed by a  program . So the knowledge 

about program  structure is a  kind o f causal knowledge. I t can be viewed as a kind of 

deep knowledge. This deep knowledge can be  used not only for detecting program  mis­

takes, b u t also for providing the reason for explaining the program  errors.

T he IA D I diagnosis approach first collects possible correct structures and possible 

incorrect structures in  the diagnosis knowledge base. Structure analysis then attem pts to  

find the mismatches between the actual structure and the expected structures. If  there is
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a mismatch, it is very likely there is a mistake m;. Then the system includes the mj in 

M p.

3.5 Abductive Inference Process

The IA D I diagnosis model uses abductive inference to hypothesize possible mis­

conceptions after a  student’s dem onstrated m istakes are available. This is the first step 

of diagnosis at the conception level.

The abductive inference process infers a  set of plausible candidate hypotheses from 

the set Mp which is obtained from the mistake detection process, and also from the 

hypothesizing rules prestored in the diagnosis knowledge base. That is, given an initial 

IA D I diagnostic problem {M, C, R, Mp}, for each mj e  Mp (where 1 < j < 1), this 

process will infer can(mj) by applying the hypothesizing rules. The can(mj) is a  set of all 

the possible candidate hypotheses of misconceptions that may cause mj. The union of 

can(mj), 1 <  j < 1, becomes the selected candidate hypotheses set, called Cs. Every hy­

pothesis in can(mj) represents just one candidate for explaining why the mistake mj ex­

isted unless |can(m j)| = 1  in which case the can(mj) is the definite cause for mj because 

there is no other alternative misconception for the mj. If  |can(nij)| >1 , it is possible that 

a hypothesis in can(mj) is not the true cause the student m ade the mistake mj and some 

other hypothesis in can(mj), which is generated from other hypothesizing rules, may be 

the true cause instead, as was the case discussed in subsection 3.3. Hence, there is a 

need for the verification process to  further verify and determ ine which misconceptions in 

the set Cs are more likely to  be the student’s true misconceptions.

In the abductive inference process, the system calculates the Plausibility M easure 

(PM) for each candidate hypothesis in Cs. The Plausibility M easure PM (q) is defined as 

a numerical value to  be assigned to  the hypothesis q  to  represent its plausibility for a 

diagnosis problem. T he PM  values, calculated in the abductive inference process, are 

called Initial PM (IPM ) values. These values are decided by the num ber of initially dem-
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onstrated m istakes and the information in the knowledge base. The system then yields 

the initial ranking o f the candidate hypotheses in Cs according to  the descending order 

of their IPM  values. The ranked set Cs is called Cr.

A t the end o f the abduction process, the interm ediary IADI diagnostic problem 

{M, C, R, Mp, Cr} is produced. The C r will be sent to  the next process, the deductive 

inference process.

3.6 Deductive Inference Process

Given the interm ediary IA D I diagnostic problem {M, C, R, M p, Cr}, the deductive 

inference process investigates the hypothesized candidates in C r, further refines their 

plausibility measures, and then arranges a final list of the hypotheses as the diagnosis 

result.

The deductive inference process tries to  verify each c, in Cr in a  backward chaining 

fashion. There is a  difference from the traditional deductive inference in a backward 

chaining control structure. In the traditional deductive inference, the backward reasoning 

starts with the target that is usually the consequence o f a rule, then it retrieves all the 

rules that can m ake the target and determines if there is a rule for which the condition, 

that is the prem ise in a rule, has been met. If the condition is satisfied, the assumed 

target can be deduced as true. In the IAD I diagnosis model, the inference rules have 

different form s (refer to  section 3.2.2 and 3.3). Hence, even though the backward reason­

ing has the sam e fashion from back to front in rules, the meaning is fundamentally 

different. The deductive backward reasoning in the IA D I diagnosis model takes the can­

didate hypotheses and invokes the related rules to  collect their m istakes which are in the 

consequent parts of those rules. Then it checks whether a student has these mistakes or 

not, and therefore determines whether the student really has this misconception or not, 

and then puts the corresponding candidate hypothesis on the right place in the final list 

of diagnosis results.
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In the deductive inference process, the system sets up a  checking list for each 

misconception in C. The checking list contains some items and some questions. Those 

items and questions are associated with the mistakes that appear on the right hand side 

o f the rules which have sam e m isconception as the left hand side. The checking list is 

used to  allow the system to  check on a  student’s unexposed mistakes to further verify the 

misconception.

By analyzing the internal relationships between the misconception and its mistakes, 

we find that there is another relationship besides the cause-effect relationship which is 

presented in m isconception-m istake rules. T hat is the design plan. W hen a student is 

learning a new concept o r a new technique, or when he wants to im plement a concept in 

programming, he m ust follow certain design plans. Plans are the detailed steps to reach 

a goal. If one design plan deviates from the correct path, it would not be able to  imple­

m ent the correct concept, and a relative m istake is very likely to  be presented instead. 

Obviously, mistakes and design plans are inevitably associated. Solving problems by de­

sign plans shows the ability to  divide a given problem into smaller ones and synthesize 

the corresponding solutions into a  global solution for the original problem. Therefore it 

can be viewed as a  m ental model which can show the coherent knowledge including both 

structural and functional properties. Combining this mental model into a diagnosis and 

tutoring process will raise the diagnostic precision and pedagogical effectiveness. Thus 

the items and questions in a  checking list are considered to  be organized according to 

the associated design plans as well as the cause-effect facts. When students interact with 

a  system by using the checking list, the questions and the corresponding explanations 

displayed in this process will encompass the structure analysis, the cause-effect rational­

ization, and design plan development. This synthesized knowledge will help detect and 

verify the corresponding misconception, and also teach how to solve a problem  step by 

step.

According to  the student’s actions, the system will assess the plausibilities of the
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misconceptions and revise the plausibility measure. These PM values, calculated in the 

deductive process, are called the Final PM  (FPM ) values. Each FPM (q) value is decided 

in an interactive environment when a student answers the questions or makes a choice in 

a  checking list.

A fter reranking the hypotheses in Cr according to FPM s, the system concludes the 

reranked list Cf as the final IADI diagnosis. The IADI approach provides a list of 

ranked diagnostic results, Cf, in the form of nondeterm inistic diagnosis.

3.7 Overall IADI Diagnosis Process Description

From  the above description, we see that there are three steps in the IA D I diagno­

sis process. In the first step, the m istake detection process, the system detects a set of 

mistakes, Mp, which are the mistakes initially dem onstrated by the student. In the sec­

ond step, the abductive inference process, the system works on the mistakes in Mp. That

is, the system is given M p, it infers Q , calculates the IPMs, and ranks Cs into Cr. In the

third step, the deductive inference process, it works on the hypotheses in Cr obtained 

from the abduction process. It uses the checking lists corresponding to  the hypotheses in 

Cr, and collects more information through interactions with the student to  refine the 

plausibility measures, and finally obtains the reranked Cf as the final diagnosis.

To summarize, for a  given problem  subm itted by a student, the overall process for 

the IA D I diagnosis process can be described as follows:

1). For a  given problem, detect a  set o f mistakes M p =  { m i, m 2 , . . . ,  m j }

2). For every mj in Mp ( 1 <  j <  1), infer can(mj);

3). Calculate the initial plausibility m easure P M  for each m isconception in Cs:

1

4) c< - —  U  can (mj):
r  S ; - i
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(Cs is the set o f selected candidate hypotheses)

5). Rank the hypotheses in Q  according to their IPM s from high to  low to obtain Cr

6). C t —  <t>; ( C t is a temporary set of Hypotheses )

Repeat

7). Get c; from C r;

8). Display its checking list CL(cj);

9). Get the student’s choices of items in CL(Cj);

10), Give the explanations to  each item selected by the student;

11). Calculate the final plausibility measure FPM  for cj;

12). Cr Cr -  { q  };

13). C, "* Cj +  { c j }; 

until Cr =

13). Rerank the hypotheses in C t according to  their FPM s, to form the final 

diagnosis Cf..
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CHAPTER FOUR 

IADI DIAGNOSIS MODEL 

IN

RECURSIVE PROGRAMMING TUTOR

The general model o f the IA D I diagnosis approach can be extended in various 

ways to  accom m odate different diagnostic problems. This chapter illustrates the IADI 

diagnosis model in a Recursive Programming Thtor (RPT), R PT has been designed and 

developed to  teach students to understand the basics of programming in recursion. This 

system is implemented in C and Sunview languages at the Sun workstation. A t present, 

the R PT  is a  prototype of the recursive programming tutor. This chapter describes the 

diagnosis process in R PT  The hypermedia environment o f R PT  will be described in next 

chapter.

4.1 RPT Domain

The objective o f diagnosis in R PT  is to  find the run time errors o r bugs in a 

program  which contains recursive algorithms, and then to  conjecture the students’ mis­

conceptions based on the detected program bugs.

4.1.1 Why choose recursion

The concept o f recursion is chosen as the tutoring subject because this concept is 

very useful as is evidenced in expressing various algorithms in com puter science. A  p ro­

cess is said to  be recursive if it partially consists o f or is defined in term s of itself
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[Wirth 76]. The concept is encountered in many im portant applications, such as search 

algorithms, sorting algorithms, and even gram m ar definitions of the syntax in natural 

language. The power of recursion is obviously owing to  the possibility of defining an 

infinite process by the finite statem ents. This feature makes the recursive program code 

very terse, and also makes it difficult to  be understood when a student encounters it for 

the first time. This problem  rises partially from a  succinct program  structure on the 

surface but with an underlying a complicated process in the recursive program. Thus, 

the recursive conception is a  challenging subject to  teach.

Recursion is also a quite interesting topic to  study. Many students claim to experi­

ence a significant cognitive change as they gain understanding o f the recursive concep­

tion (Bhuiyan, G reer and M cCalla 91). Usually it is in Pascal that students first encoun­

ter the  recursion  concept, so  the  recursive program m ing in Pascal is chosen as the 

problem  domain. Thus we can teach students the recursive concept a t the point where 

they are just beginning to  learn it.

Sometimes people use induction to  help design recursive algorithms since there are 

some similarities between them. From a theoretical point of view, we can see that all 

recursive algorithms can be proved by induction. On the practical point o f view, both of 

them  try to  reduce a problem to several smaller problem s, and generally speaking the 

methods for reduction are the same (M anber 88). This strategy of reducing a  problem 

into smaller problem s is used in the R PT  system, but proving a recursive algorithm is 

not addressed here.

The R PT  system provides the mechanism to allow a  dom ain expert to  add pro­

grams for either problem s of instruction or problem s o f diagnosis into the tutoring sys­

tem. As a  prototype of RPT, the system selects the inorder traversal program  as the 

instruction material, and the issue of inserting nodes into a  binary search tree as the 

representative example to  be analyzed in th e  diagnosis process. This chapter illustrates 

how the IA D I diagnosis model works in the recursive program ming tu tor for insertion
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problem  solving. How to give instructions for recursive algorithms will be presented in 

the next chapter.

4.1.2 Insertion problem  description

W hen we consider which m aterials o r cases to  work on, we need to  consider 

whether they are significant in the sense that they evolve gradually from simple to  com­

plex in order to  allow the student to obtain the knowledge from subskills to  the required 

com plete skills. The insertion problem is chosen because it is a typical example used in 

alm ost all algorithm introduction text books and it fully illustrates the use of recursion.

The insertion o f recursive algorithms involves insert one node a t a  time into a 

Binary Search Tfee (BST). There are two kinds of cases: one is to  insert a node into an 

empty BST and the other one is to  insert a node into a nonem pty BST The first case, 

inserting a node into an empty tree, can be easily done by making the new node become 

the root o f the em pty tree in a pointer-linked tree structure. In  the second case, the 

algorithm com pares the node to be inserted with the one in the root of the BST to 

decide into which subtree the node should be inserted. If it is less than the root node, 

then the new node m ust be inserted into the left subtree; if it is greater, then it m ust be 

inserted into the right subtree. T hat is, the algorithm requires that the properties of a 

binary search tree are still preserved.

Tb solve the insertion problem, a  correct version is given in Fig. 6. It includes the 

related specifications, the insertion procedure, and  other associated procedures which 

show how the insertion procedure is called and how the results are  prin ted  out.

4.13 Analysis on recursive algorithm

The procedure ’’insert” in Fig. 6 is recursive. A  recursive algorithm solves a prob­

lem by solving one o r m ore smaller problem s o f the  sam e type with the  sam e strategies. 

The smaller problem  refers to  either a  numeric param eter o r the size of the data  struc-
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program printBST (input, output); 

type
nodeptr =  ^  node; 

node =  record

item : integer;

Lchild, Rchild : nodeptr 

end;
table =  nodeptr; 
var T : table;

procedure create (var T : table); 

begin

T  =  nil

end;

procedure insert (var T  ; table; newitem : integer);
{Insert one node into BST at one time}
begin

i f T  =  nil then 

begin 

new(T);

T ~ .  item :=  newitem;

T " \  Lchild :=  nil;

T ^ .  Rchild :=  nil 

end

else if newitem <  T ^ .  item then

in se rt(T ^ . Lchild, newitem) 
else in se rt(T ^ . Rchild, newitem)

end;

procedure buildtree(var T  : table);

{Insert n nodes to  build a BST}

var n, i, k ; integer;

begin

writeln(’Please input the num ber o f node ’); 

read(n);

writeln(’Please input the node ’);
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for i: = 1 to n do 

begin 

read(k); 

insert(T,k) 

end;

end;

procedure printnode(var T  : table);

{Print the nodes in the BST}

begin

if T  <  >  nil then 

begin

p rin tn o d e(T ^ . Lchild); 

writeln (T ~ . item); 
p rin tn o d e(T ''\ Rchild);

end

end;

begin

create(T);

biIdtree(T);

printnode(T);

end.

Fig. 6 A  Correct Version O f Insertion Program

ture tha t is being m anipulated. The size of smaller problem s should be decreased at 

each recursive call. Finally the algorithm reaches a  base case. Thus a  recursive algorithm 

m ust include the base case and the recursive case. The base case, or the degenerate 

case, is a case in which the problem size is sufficiently small so that the problem  can be 

solved directly. The recursive case, or the general case, is a  case in which the solution is 

expressed in  term s of a  smaller instance of itself (Helman and Veroff 86). Usually jobs in 

different cases are different. In the insertion problem, the job  in a  recursive case is 

searching for a place; the job in a base case is to  insert the new node in the selected
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place. In some problem s such as the inorder traversal problem, the job  in a  base case is 

doing nothing. Even so, remaining a  recognition of base case is needed because it ensur­

es that the algorithm will be able to  return successfully. The recursive process starts with 

a general situation and checks whether there is a  degenerate case. If that case occurs, 

the recursive process terminates. Ensuring th a t a base case can be reached in a finite 

num ber of steps is very im portant because it is expected to term inate a potentially infi­

nite sequence of recursive calls. Otherwise the algorithm will keep issuing recursive calls 

until all available memory has been used.

4.2 RPT System Outline

The R PT  system design emphasizes the diagnosis process. It also provides a hyper­

media environment for instruction as well as diagnosis. The system fram e is depicted in 

Fig. 7. The dom ain knowledge comes from diagnosis experts and tutoring experts. The 

IA D I diagnosis knowledge base contains program  structures for a particular problem of 

programming, and the possible mistakes and misconceptions on that programming prob­

lem. The R PT  instruction knowledge base contains specific instructions for selected tu­

toring lessons, and specific representations for instructions on those lessons. The envi­

ro n m en ts  fo r b o th  d iag n o sis  an d  in s tru c tio n  are  c rea ted  on th e  hypertex t m odel. 

S tudents interact with the environment to  com m unicate with the R PT system. Based on 

the student’s activities, RPT builds a  student’s model for the system to work on.

Fig. 8 shows the main p a rt of the R PT  system, the diagnosis process in the interac­

tion between the student model and the diagnosis knowledge base, which is the represen­

tative o f the diagnosis expert. How the IA D I diagnosis knowledge base is generated and 

applied, how the three diagnosis subprocesses work together, and  what the student m od­

el is a t corresponding stages will be described in following subsections o f this chapter.

43  Mistake Detection
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Fig. 7. R P T  System Fram e

M istake detection is the first step in the IA D I diagnosis process. It finds mistakes 

from a student’s subm itted program. This m istake detection process is completed by 

program  structure analysis. The detected mistakes {mi, m2 , ... mj}, which is Mp c  M, 

are subm itted to  the misconception hypothesizing process.
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Fig. 8. Diagnosis Process In IA D I Model

43.1 The organization of program structures

Program  structures are organized in the IA D I diagnosis knowledge base. There are
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two categories o f structures which are usually used in diagnosis systems: incorrect struc­

tures and correct structures. If a piece o f code matches with a correct structure, the 

system can assume that some requirements have been satisfied and the program  is cor­

rect on this part. If a piece o f code m atches with an incorrect structure, the diagnosis 

system will claim that an error has been identified. But if a  diagnosis knowledge base 

only contains incorrect structures, the system can not find the bug such as a correct 

structure missing. Obviously missing a correct structure for a necessary function in a 

problem  is also an  error. O n the other hand, if a  diagnosis knowledge base only contains 

correct structures, the system will claim there is an error when a correct structure is 

missing or a  piece o f code does not m atch with any correct structure. However it can 

not provide more information about the bugs such as the bug category, bug features, 

bug location; therefore it does not benefit tutoring greatly.

The IA D I diagnosis knowledge base contains both correct and incorrect program 

structures for a  particular problem. Thus it provides a  wide range of program structures 

to be analyzed in proper situations.

Due to  the variability in program implementations, the program  structures can also 

be very different. For erro r recognition purposes, the system needs to have the knowl­

edge o f all possible syntactic structures o f program s including correct program  structure 

and incorrect program structure. For example, in order to  com pare two num bers n i and 

n2 , and decide to  do or t2 , the structure patterns can be the following: 

if n j  <  n2  then t j  else t2  

o r if n i >  n2  then t2  else ti

o r if n i <  n2  then t2  else t j

o r if n2  <  n i then t i  else t2

T he num ber of possible combinations of the three syntax elements in one statement: one 

from n j o r n2, sign o f inequality and one from t i  or t2 , is 23. Some of them are correct.
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but some of them  are not. Some students may even use other structures such as while- 

do to  substitute for the if-then selection structure. In some cases the while-do structure 

is a wrong structure, while in other cases the substitution of a repetition structure for 

selection structure may be proper. In order to make a correct diagnosis, theoretically the 

diagnosis knowledge base should contain all o f the possible correct alternative structures 

and all o f possible incorrect structures for a particular problem. Practically, however, it 

is impossible to  obtain all of this information even for a trivial problem  in programming. 

It is limited by experts’ experience, and also by the obtainability of novices’ behaviors. 

So in the IA D I diagnosis knowledge base the correct structures are only their main 

alternatives, and the incorrect structures are those which frequently appear in students’ 

programs.

4.3.2 Program structure analysis

From the above analysis of the features o f recursion, it is easy to  see that recogniz­

ing the base case and the recursive case should be used as the cornerstone o f structure 

analysis of a  program  which uses a recursive algorithm. Selecting one of these two cases 

needs to use a  condition, tha t is called the term ination condition. The next problem is 

deciding what the term ination condition in the insertion algorithm  is. The insertion algo­

rithm  first tries to  find a place for a  new node to  insert. Once the place is located, the 

node can be inserted. The algorithm searches the location recursively. So the termination 

condition is actually used to  end the searching process. W hen a tree o r a subtree is 

empty, the condition is reached, that is a place to  insert the node is found. Thus the 

term ination condition is when a tree o r a  subtree is empty.

U sually a  selection structure , which has the if-th en -e lse  pattern , is applied  to 

branch between the two cases. Although other structures can be used in some problems 

such as generating perm utations problems (Kruse 87), in m ost problems like recursive 

algorithms in introductory courses, the repetition structure can not be used for the rec-
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ognition purpose because it usually goes into an infinite loop. The repetition structure 

should not be used in insertion algorithm either. If a  repetition structure, such as while- 

do, needs to be used, it should not contain a  recursive call (Dale and Weems 87). But in 

a novice’s program, the loop structure comes into existence when a novice tries to  under­

stand and explain recursion in term s of prior knowledge of iteration. Some researchers 

have investigated and proved that students’ knowledge about iteration dom inates their 

knowledge about recursion in the early stages of learning recursion, and students try to 

draw analogies o f recursion to  loops or interative structures (Bhuiyan, G reer and McCal- 

la 91). So the repetition structure should be recognized as a incorrect structure. In the 

m istake detection process, a mistake is announced whenever the repetition structure is 

found to  include a  recursive call in the insertion algorithm.

In order to  recognize the term ination condition in a recursive program , the if-then- 

else selection structure is usually needed to  include the term ination condition, base case 

call and recursive case call. In the selection structure, between the key words if and then, 

there should be an expression as the term ination condition to  choose one case to  ex­

ecute. This expression consists of two simple expressions of operands and one of the 

relational operators such as = ,  <  > ,  < ,  > ... (Kruse 87). These syntax structures pro­

vide the basis for program  erro r detection. In the insertion algorithm described in sec­

tion 4.1.2, a tree structure is required by the problem nature, and the tree o r the subtree 

is indicated by a  pointer. The objects to  be com pared, o r the two operands on the two 

sides of the operator are the roots o f two subtrees. One o f them  is the empty tree since 

this expression is used to  recognize a  term ination condition. For an empty tree, the 

indicated pointer is represented by a nil pointer. Thus, the structure ” =  nil" o r ” <  > 

nil” can be used to  decide whether a  term ination condition exists in a student insertion 

algorithm.

After the base case and  the recursive case have been discrim inated, the  next prob­

lem is to  decide what should be done in different cases. W hen a  tree is not empty, the
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algorithm falls into a  recursive case. In a recursive case, the algorithm is trying to locate 

a place for the new node. The basic strategy is to  com pare the data in the new node 

with the data  in the root of the current subtree. The comparison result is used to decide 

in which subtree the further search will be, that is to  decide whether a recursive call 

occurs on a left subtree or on a right subtree. Since the recursive call is a  procedure call, 

that is a  call to  itself within the procedure, the system can identify the recursive call 

statem ent by com paring the procedure call statem ent and the procedure name in the 

procedure heading. The recursive call m ade from within the procedure passes a subtree 

of the previous tree through the param eter. The param eter should be within a pair of 

parentheses following the procedure name in the procedure heading. Because the pointer 

is used to  indicate a tree, there m ust be a mark in a subtree representation. This 

syntax inform ation can help the structure analysis. Some students do not write subtree 

representations in param eters directly. They first assign the subtree to a  variable in as­

signment statem ents before a recursive call statement, and then include the variable in 

the param eters of the recursive call. In  this case the system also uses those syntax struc­

tures to  recognize whether a subtree has been passed.

Some students do not use the correct action in a  recursive case. By comparing the 

given data  and  the root of current subtree, they try to  find a  node in the binary search 

tree instead of finding a  place for inserting the node. In this case they usually use an 

equality relational operator ’= ’ o r an inequality relational operator ’<  > ’ instead of use 

a com parison relational operator ’ < ’ or ’ >  ’ in a selection structure under a nonterm ina­

tion condition (if there is a  term ination condition to  identify this case in the program). 

For example, they may use ’if newitem =  T " \i te m  then,’ instead o f ’if newitem < 

T ^ .i te m  then’ as in the version of Fig. 6.

The new data, which is used for comparison when determining the necessity of a 

further search, can be obtained from the passed param eter. Then the structure analysis 

can get inform ation about the data from the param eters. But there may be alternative
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ways to  pass the data. In some programs the new data is not passed by the param eter 

directly. The new d ata  is contained in a  node which is set by another procedure, and it 

is the entire node that is passed from the param eter. It makes the structure analysis 

slightly different. This version is showed in Fig. 9.

Procedure insert (var T : table; le a f : nodeptr);
begin

i f T  =  nil

then T  : =  leaf 

else

if l e a f i t e m  < T ^ . i te m  

then insert ( T ^ .  Lchild, leaf) 

else insert ( T ^ .  Rchild, leaf)
end;

Fig. 9. Another Version O f The Insertion Procedure

The operation in the base case of version 2 is different from the operation in the 

previous version. The recursive process in the insertion problem is a search process that 

is looking for a  proper position by checking whether the current tree is empty or not. 

When the empty tree eventually arrives (that is, the base case is reached), the search is 

term inated and another kind of job should be done. In the base case the new data or 

the new node will be inserted. Thus the operations in the base case are to apply a  new 

node and  assign a  value for the data  and  the pointers for the node as shown in Fig. 6. 

or to  insert the node passed from the param eter as in another version presented in Fig. 

9. To determ ine if these operations are correct o r not, the system can check to  see the 

key word like ’new’ (for applying the new node) exists or not in version 1, or com pare 

the variable in the base case with the pointer variables in the declaration part to  make 

sure the node is inserted in version 2.
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4 3 3  Program structure summary

From the description of the insertion problem, and the analysis of recursive algo­

rithm s and insertion program  structures in previous sections, the program  structures for 

insertion problem solving recursively can be summarized. The different structures are 

called different structure elements. The basic structure elements in the IA D I diagnosis 

knowledge base are presented bellow:

1. D ata-holding structure elements :

• Record as a  formal param eter

The new node to  be inserted as an entire record is passed from the formal param ­

eter of the procedure heading.

• Integer as a formal param eter

The new data which will be a part o f new node is passed from the formal param e­

ter o f the procedure heading.

Recognition of these two different structure elements is used to  check whether the 

correct action is applied in base case.

2. Selection structure elements :

• i f ... <  > nil then ... else

• i f ... =  nil then ... else

These structure elements are used to determ ine whether the term ination condition 

exists.

3. Iteration structure elements :

• w h ile ... do

• for

• repeat

These three structure elements are used to  check whether the loop structure is 

used. If one o f them  is used, a  m istake is indicated since an infinite loop will be caused 

by the loop structure in the insertion algorithm.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. Position-checking structure elements

• new (...); i f ... <  >  nil then ... else

• new (...); i f ... =  nil then ... else

• if ... <  >  nil then new (...) else

• if ... =  nil then new (...) else

The above four structure elements are used to determ ine whether the action of 

applying the new node exists and whether it occurs in the right place whenever it is 

needed.

5. Subset structure element

• D ot 7  in actual param eters of recursive call statem ents

• Dot 7  in the right hand side of an  assignment and the assigned variable appears 

in recursive call statem ent

The system determ ines if one o f actual param eters in a  recursive call statem ent is 

in the form of a  subtree by identifying the existence of the syntax representation of a dot 

either in a recursive call statem ent or in an assignment statem ent before the recursive 

call. If  this m ark is missing, the recursive call statem ent does not give the small instance 

of a  subtree to  work on and the procedure can not arrive a t the ending point.

6 . Com parison structure elements

• i f ... <  ~ . then ... else

• i f ... >  then ... else

• if <  ... then ... else

• if ~ . >  ... then ... else

These four structure elements are used to  com pare the new data with the data  in 

the root o f the curren t subtree and decide which subtree will be searched further.

7. V PD  (Variable Param eter Definition) structure element

« var

It is used to  determ ine if a formal param eter is a  variable param eter.
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Besides checking the existence of the element structures, the system also checks the 

relationships or relative operations among the element structures. The procedure in 

Fig. 10 is an erroneous procedure about insertion. The system com pares the structures in

Procedure insert (var T: table; newitem: integer); 
begin

new(T); 

if T =  nil then 

begin

T 'L  item :=  newitem;

T ~ .  Lchild : =  nil;
T ~ .  Rchild :=  nil;

end
else

if newitem <  T 'L item

then insert (T ~ . Lchild, newitem); 
else insert (T 'L  Rchild, newitem);

end;

Fig. 10. An Erroneous Procedure.

the procedure with the correct and incorrect structures in the IAD I diagnosis knowledge 

base. Since one o f the if .. <  >  nil then ... structure elements and the if ... =  nil then ... 

s tructure elements appeared, the systems can determine if the necessary term ination con­

dition in this recursive procedure exists. But the operation o f applying a  new node is 

m isplaced, which should be pu t under the term ination condition. The system checks the 

relative position o f the element structures ’new’ and ’if ... =  nil then’ as well as their 

existence, and recognizes that the m istake o f misplacing the operation o f getting a new 

node had been made.

4.3.4 M istake types
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The program structure analysis serves for mistake detection, The IADI diagnosis 

process attem pts to concentrate its efforts on the mistakes which are related to the cru­

cial concepts. It refers to the m ajor concepts in the key steps of a correct recursive 

problem solving and other basic programming concepts. It also refers the possible mis­

conceptions about these concepts drawn from the students’ experience. These m ajor con­

cepts include (the details will be introduced in next sec tio n ):

• There must be a term ination condition to  stop the recursion.

• The actions in base case.

• The actions in recursive case.

• The smaller instance for each recursive call which represents the recursive rela­

tionship between a problem and its subproblems.

• Formal param eter definitions.

• Binary Search Tree definition.

• Necessity of applying a new node to  hold the data to  be inserted.

From  the analysis of program  structure elements in the insertion problem, the sys­

tem  can detect the related mistakes. Different mistakes are called different types such as 

type m i, type m2  ... The mistake types in the IA D I diagnosis knowledge base form the 

set M which is defined in section 3.3. The mistake types are listed in table 2.

One example that contains some of these mistake types is shown in Fig, 11. The

R PT  system interface is shown in Fig.12. The system checks the program made by a

student that is in the text window of the right column of a  diagnosis interface (the entire 

interface is described in the next chapter). Initially the tty window, which is on the left 

column o f the interface, is empty. A fter the command ’’diagnose” is invoked, the system 

picks up the recursive procedure from the student’s program, and displays it in the tty 

window. The system further analyzes the structures of this procedure and finds that the 

expected term ination structure elements and the subset structure element do not appear. 

It identifies the possible mistake types and begins a dialogue with the student in the tty
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Types Mistakes

m i Missing the term ination condition.

m 2 M isplace the operation o f inserting new node.

m3 M isuse a loop structure.

1TI4 Lacking param eter in recursive call statem ent.

m 5 D id not provide the smaller instance.

m 6 M iswrite the term ination condition.

1TI7 M issing key word which defines the variable param eter in the 

formal param eter definition.

m 8 M isorder the data  in left subtree and right subtree.

mg Not apply a new node to  hold the new item.

m l0 Apply too many new nodes for inserting one new item.

m u Tfy to  find nodes in a binary search tree instead finding a  place 

to  insert a  node.

m 12 C reate a  new node after using it.

mi3 Not apply a new node, but try to  assign data  to  it.

Thble 2. M istake Types

window. In this example there are two m istake types th a t are missing term ination condi­

tions and do not provide the smaller instances which are highlighted in Fig. 12. Thus the 

corresponding m istake types m i and ms are detected, and the set Mp =  {m !t ms} is 

formed. The initial IA D I diagnosis problem { M, C, R, Mp } will be subm itted in the 

next diagnosis step, the misconception hypothesis process.
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Procedure insert (var T: table; newitem: integer); 
begin

new(T);
T ~ .  item :=  newitem;

T ~ .  Lchild :=  nil;
T ~ .  Rchild :=  nil;

insert (X newitem);
end;

Fig. 11. An Erroneous Procedure.

4.4 M isconception Hypothesizing

The m isconception hypothesizing process starts from the initial IA D I diagnosis 

problem  {M, C, R, Mp}, where Mp is a set o f dem onstrated mistakes {mi, m2  ... mj}; it 

infers a se t o f plausible candidate misconceptions to yield the interm ediary IADI diag­

nosis problem  { M, C, R, Mp, C r }. This misconception hypothesizing is done by abduc- 

tive inference.

4,4.1 M isconception types

M isconceptions are the reason that students m ake mistakes under certain circum­

stances. The misconceptions in the IA D I knowledge base are established by deviating 

from  the required concepts identified by experts for the tutoring subjects. T he insertion 

problem  solving requires many concepts. Some o f them  are im portant, for example, the 

concept abou t the binary search tree, the concept about the term ination condition when 

inserting a  node into a binary search tree, the concept about the sm aller instance to 

represent the recursive relationship in this problem, and other basic program  knowledge 

such as how to define the variable param eter, when and how to apply a new node ... In 

the IA D I diagnosis knowledge base different m isconceptions are called different miscon­

ception types such as misconception type ci, C2  ... These misconception types for the
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D yn iM c I n s tr u c t io n i t x t u s l  in s t r u c t io n  

2S iv  J^~Cp»pMi H E n sc u ts l  Olegnoem thm f i ts .
DUgnose ][  H IsU kaT ypes ]I  M isconceptions] H l«  n*»e: e rro r /IH itls b is e .f i

tcrn idoX  tr r o r /1 l4 e 1 s b « B t  
P t e is e  Input th e  rw tb er  o f  nodes 
1
M s it s  Input th e  nods 
M 4 5  12 9  
’S sg m sn titto n  f a u l t  
to rn a d o ! d ia g n o s is

P le t s e  g i v e  th e  p i t h  n*m# o f  th o  U W  you want to  d la g n o ts :  
jrror / 11dm 1 t b i  a s . p
/our r e c u r s iv e  p r a c sd u r ss  a r t  In th e  f t  I t s  

' I n s e r t ' ,
' I n o r d o r ' ,  

you may nood t o  chock  th n n .

P l a n s  ty p s  tb s  r s c u r s t v s  p ro csd u rs  nams w h ich  
you T ike t o  ch eck : tn a s r t

P la ta #  ch ock  your r s c u r s t v s  procad u rs b e llo w ;

 ̂ proced u re in aarlC  var T: t a b t s ;  newt torn: I n te g e r ) ;
M iss in g  b a s s .  S in c e  t h i s  p roced u re  w a n ts  t o  I n s s r t  

x n o d e , a p p ly  now nods f i r s t *  And n o t p r o v id in g  th s  
f i l l e r  I n s t in c s .  * /
*ug1n

nou{T>;
T ^ .U srt := naullom ; 
l-.UhUd is Ml;
T * .R c h ild  :2  n i l ;  
ln s # r t { T , n eu ltem )

•ndj
Thar# n a y  bo sums m ls t ik u #  In your r e c u r i lv #  p r o c sd u r s . 
M lsta k fll:  H is s in g  lb s  t o r n in i l i o n  c o n d i t io n .
H ls U k sS ;  Old n o t  p r o v td s  th o  m i l l e r  I n s la n c s .
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r e c u r s io n ,  Do you  th in k  I t  I s  n o c o o o iry  tt» s o t  th e  term ina­
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end;

proced u re ln s e r t (  var T: t a b le ;  newitem : I n te g e r ) ;
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w a l l e r  I n s ta n c e . • /  
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T - . U h l l d  : s  n i l ;
T“ .R c h ild  : 2  n i l ;  
ln s o r t{T , n o w litn )

end;

p roced u re b u l1 d tr # e (v » r  T: t a b le ) ;
v a r  n ,1 fk : In teg e r ;
b eg in

w r l t e ln ( 'P 1 e a s e  Input th e  nupbor o f  nodes ' ) ;  
r e a d (n );
w r H e ) n ( 'F U a s t  Input th e  node ' ) ;  
fo r  I : :  1 to  n do  
b e g in  

r e a d (k );
1 n s tr l (T ,k )

end;
end;

proced u re 1nordor(var T: t a b le ) ;  
bogtn

I f  T O  n i l  than  
;  b o q ln

îrT.rTT.r.rTT

Fig. 12. An Example O f E rror Program 
and  Detected Mistakes.

insertion problem  are listed in table 3 .

A studen t m ay know that there is a need for term ination condition in a recursive 

program  when reading a text book or listening to an instructor. But when they begin to 

program  on a recursive algorithm, it is not easy for them  to rem em ber this point espe­

cially when there is nothing to do in a base case like in the inorder traversal algorithm. 

M issing the term ination condition reflects that the student does not quite understand
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Types Misconceptions

ci Not having the correct concept of term ination for a recursion.

c 2 Confusion on the recursive relationship.

c3 Incorrect concept about the definition of a Binary Search Tree.

C4 M isunderstanding the definition of variable param eter of a

procedure.

C5 Confusion on the concepts o f building a Binary Search Tree (BST)

and searching a node in a  BST.

c 6 No concept how to hold a new item in a tree structure.

C7 M isunderstanding when to  apply new node to hold the new item.

T^ble 3. M isconception Types

that a recursion needs a  condition to suspend issuing recursive calls and that it must 

return to  the previous call after the recursion has ended. Sometimes students do not 

forget to  put the condition, but they may put the wrong condition or put it in a wrong 

place. In the insertion problem, the algorithm needs to  find a place to  insert the new 

node and it proceeds recursively. When an empty subtree is found, the searching process 

should stop and a  new node should be inserted. Some students simply think that since 

the insertion definitely requires the application of a  new node to hold the new data, they 

apply the new node at the beginning of the procedure, and pu t the term ination condition 

after applying the new node, such as the procedure in  Fig 10. M isplacing the term ination 

condition reflects that the student does not understand exactly why there should be a 

term ination condition, and what should be done when the case occurs. The misconcep­

tion types Ci and C7  in table 3 describe these erroneous concepts.

The strategy for solving a problem in recursion is defining the problem  in term s of
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a sm aller problem of the sam e type. The smaller problem has the sam e nature as the 

original problem, but is of a smaller size. Thus in a  recursive case, there must be a 

relational representation between the each smaller problem and the original problem 

which represents how the size of the problem  is being reduced in a  series of recursive 

calls. This relational representation is called a  recursive relationship. This relationship 

should guarantee th a t the subproblem s generated are closer to  the anticipated base case 

than the original one. The smaller size o f original problem is usually given in the actual 

param eter o f a recursive call statem ent, and it defines a smaller problem  that is current­

ly working. T hat is, the recursive relation is passed by the param eter. For the insertion 

problem, the smaller problem is in subtree size. Sometimes students do not reduce the 

size of the problem  when they make a  recursive call, o r they simply forget to put the size 

which needs to pass to  the procedure. The misconception type 2  in table 3 summarizes 

these errors.

Some students do not have a clear concept of the definition o f a  Binary Search 

Tree (BST). They ignore the defining property of a BST that requires that the data  value 

in the BST follow a  certain order, th a t is for any node, the data  in it is greater than the 

data  in its left subtree and less than the d ata  in the right subtree (Dale and Weems 8 6 ). 

This m isconception about the definition o f BST is presented in m isconception type 3. 

A nother misconception about the BST is a  concern of the concept of building a BST. 

Some students confuse building a  BST by inserting node one by one with searching a 

node in a  BST. This is related to  w hat action should be taken in a  BST. The insertion 

procedure should be targeted for searching for an appropriate place to  enter the new 

data. The purpose is no t to  look for a  node which has a  data  value equal to  the new 

data. This incorrect concept is addressed in misconception type cs.

O ther misconceptions are related with the basic program  knowledge. For example, 

some students may not have a  clear concept about the differences between the  variable 

param eter and the value param eter. Therefore, they do not know that it is necessary to
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enter a  key word ”var” in front of the variable when they want to define a variable 

param eter to  bring the changed value m ade in the called procedure back to the calling 

procedure. Tb insert a node into a  tree, a new node must be created first, and then 

linked the node into the BST In Pascal the predefined procedure ’’new” is responsible 

for creating a  new memory cell. Students may not realize that there is a need to allocate 

the dynam ic memory cell. These misconceptions are presented in misconception C4  and 

C5  separately.

4.4.2 M ultiple relationships between m istakes and misconceptions

A  tu to r’s m ain purpose is to  help students get r id  o f confusion a t the conception 

level. However, it is not always easy to  identify these misconceptions in a complicated 

problem  solving such as in com puter programming, because one misconception can be 

m anifested in several m istakes and several misconceptions may cause one same mistake. 

T he IA D I diagnosis model uses the abductive inference process to  hypothesize the mis­

conceptions from  dem onstrated mistakes, as the first s tep  of diagnosis a t the conception 

level.

The abductive inference applies a se t o f  hypothesizing rules. These hypothesizing 

rules describe the cause and effect relationships between m isconceptions and mistakes. 

From  the analysis of section 4.3.4 and section 4.4.1, w e can sum m arize these rules and 

include them  in the IA D I diagnosis knowledge base. For each possible misconception 

there may be several related rules. For example, the rules related with misconception Ci 

are:

Ci — ► m i, c i  — ► m2, c i  — ► m3, c i  — ► m s, c i  — ► mg.

T hat is, not haring the correct concept o f term ination for a  recursion could cause five 

possible mistakes: missing the term ination condition; misplacing the  operation o f insert­

ing the  new node; using a  loop structure; no t providing smaller instances and miswriting 

the term ination condition. But in one student’s program, there is usually only one or
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several of them appeared under this misconception.

O n the other hand, for each possible mistake, there may also be several related 

rules. The IA D I diagnosis model uses the rules to  infer the plausible explanations and 

present their relationship. For example, if there is a m istake ms: not providing a smaller 

instance when a recursive call occurs, then the possible causes for it can be drawn from 

following two rules:

c i — ► ms, c2 — ► m 5.

They hypothesize th a t not having a correct concept of term ination to a recursion or 

confusion about the recursive relationship, o r both can cause the m istake ms. We can 

not elim inate any misconceptions neither favor any particular one at this point. We have 

to  collect them  all in a  set and  m ake further analysis. U nder different circumstances, a 

student may make different m istakes form one misconception or the student may only 

dem onstrate one mistake, bu t it is related to  different misconceptions. These practical 

existences form an intricate relationship net between misconceptions and mistakes. The 

cause and effect representation can make this relationship easier to  understand and 

m ake the corresponding explanation more eloquent.

4.4.3 Abductive hypothesis

In the m isconception hypothesizing process, the system works on the mistakes in 

Mp which are initially dem onstrated in the student program  and offered by the mistake 

detection process.

F or each mistake m, in Mp, the system checks the rules in the IA D I knowledge 

base. The rules in the IA D I diagnosis knowledge base are grouped by misconceptions. 

T hat is, for each misconception, there is a  group of rules that m atch the sam e miscon­

ception on the left hand side. The system works on the rules in each group. It searches 

this group to  check whether there is a  rule which right hand sides m atches with the m;. 

If  so, the m isconception on the  left hand sides of this rule is m arked. Since one m; can
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be caused by several misconceptions, the system searches each group and finds all rules 

which right hand side matches with mj. The corresponding misconceptions form a set of 

candidate hypotheses can(mj). These misconceptions are considered to  be the possible 

causes o f the m istake mj. After the system hypothesizes all the candidate hypothesis sets 

fo r all th e  m istakes in  Mp, it concludes th e  co n ju n ctio n  o f th ese  se ts, the  union

i
U  can( m j ), as Cs.
/-i

In the erroneous procedure displayed in F ig .ll, there are two dem onstrated mis­

take types m i and ms. The system finds the related rules:

c i — ► mi, C7  — ► mi,

ci — ► ms, C2  — ► ms

and form s can(m i) =  {ci, C7} and  can(ms) =  {ci, C2 }. The union o f can(m i) and 

cam(m 5) is {cl, C2, C7}. The misconceptions in the union become the selected candidate 

hypotheses set Cs. Any q  in Q  is one possible explanation to  one o r several mistakes. 

Then the system hypothesizes the following misconceptions as the candidate hypotheses 

for th a t particular problem: not having the correct concept o f term ination to  a  recursion: 

confusion about the recursive relationship and m isunderstanding when to apply a  new 

node to  hold the new data. These candidate hypotheses are the basis to  give the explana­

tions to  the dem onstrated mistakes, missing the term ination condition and not providing 

the smaller instances. A s for how to chose the best explanation, it will be addressed in 

section 4.5.

4.4.4 Misconception ranking

Each hypothesized misconception in Q  can explain a t least one dem onstrated mis­

take. The more a  hypothesis can explain, the m ore plausible the hypothesis is. In order 

to  measure the plausibility of one hypothesized misconception, the IA D I diagnosis sys­

tem  builds a measurement, the Plausibility M easure (PM), which is defined in section
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3.5. The PM values, calculated in the misconception hypothesizing process, are the Initial 

Plausibility M easure (IPM). IPM is used to  provide the comparisons among the hypothe­

sized m isconceptions. IPM(Cj) is calculated by dividing the num ber o f m istakes in 

man(cj) which are also in Mp by the num ber o f mistakes only in man(cj), that is:

I {mj I m i e M n  and m; c  m an(q)} I
IPM(cj) =  J - 1-------2--------- ^ ------   ■

I m an(q) |

For example, if (man(cj)j =  4, and only one of the mistakes in m an(q) appears in Mp, 

then IPM for q  is 1/4.

For every candidate hypothesis q  in Cs> the system will calculate a value IPM (q) 

for it. Thus, if the majority of m istakes which are related to  Cj appear in M p, then 

IPM (q) has a  greater value which shows that this misconception is dem onstrated from 

wider aspects, and therefore it is more likely that the student has this misconception. 

Conversely, if no m istake in Mp is related with c;, then its IPM (q) value is zero which 

shows that this misconception does not cause any mistakes in the current programming, 

and that the student does not appear to have this misconception C j . According to their 

IPM  values, the system ranks these misconceptions in Cs in descending order of their 

IPM  values, and forms the ranked candidate misconception set Cr.

T he IA D I diagnosis system sets up counters to  record the num ber of mistakes. For 

each misconception q , which is in the set C, there is a counter ipm (q). In the miscon­

ception hypothesizing process, the system checks the m istakes in Mp. If the mistake 

matches the right hand side o f a  rule, the system finds the corresponding misconception 

Cj on the left hand side and increases the counter ipm (q) by 1 while adding the Cj into 

Cs. A t the end o f the hypothesizing process, the counter ipm (q) records the num ber of 

mistakes which are  in Mp and also in m an(q). There is also a  unit for each misconcep­

tion to  record the sum  o f the related mistakes. Thus the IPM (q) can be calculated by 

dividing ipm (q) by man(q).

The candidate hypotheses set Q  for erroneous procedures in F ig .l l  contains three
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misconceptions, c^  C2 and C7. Since there are 6  possible mistakes in m an(ci) and only 

two of them are dem onstrated in Mp, the IPM  value for c i is 2/6. For the other two 

misconceptions C2 and C7, the system checks the diagnosis knowledge base and gets 

man(c2 ) = 3  and man(c7) = 4 , and obtains the values IPM(c2) = l / 3  and IPM(c7) = l / 4  re­

spectively. So the misconceptions in C r are ranked in the order Ci, C2 , C7 .

The IPM  measure is just a rough measurement. It is not as strict as the probability 

theory is, and it is not used as the basis for inferring the hypotheses. In the IADI 

diagnosis system, inferring the candidate hypotheses relies on the abductive inference. 

The m ain purpose o f calculating the plausibilities in the hypothesizing process is to  pro­

vide a ranked list of misconceptions to  the verification process. Thus the verification 

process to  the hypothesized misconceptions can work in a  more efficient way because 

this discrim ination by descending order provides an opportunity for the user to  work on 

the m isconceptions which have high IPM  values, and ignore those misconceptions which 

have very low IPM  values or zero value. In another words, this m easurem ent just targets 

for helping the tu to r to  select misconceptions which are the individual problems for a 

particular student, and focus the instruction on these specific concepts instead going 

through the whole set o f misconceptions.

4.5 Misconception Verification

Given the interm ediary IA D I diagnosis problem {M, C, R, M p, Cr}, the system 

begins a m isconception verification process. This process is based on deductive infer­

ence. I t  interacts with the student to  obtain m ore inform ation for verifying the hypothe­

sized misconceptions in Cr. D uring this process, an instruction is also provided which is 

based on design plans. Finally a  list of ranked misconceptions in Cf is provided as the 

final diagnostic result.

4.5.1 Checking list
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The m isconception verification process is based on deductive inference in an inter­

active environment. This environment is shown through a set o f checking lists.

In the IA D I diagnostic knowledge base, for each cj in C, there is a group of rules 

whose left hand sides are cj. Mistakes on the right hand sides o f these rules are consid­

ered  to  be m anifestations caused  by the Cj. T hese m anifesta tions com pose the set 

man(cj). For each cj, the  system  estab lishes a  checking list, CL(cj). T he item in the 

checking list CL(cj) can be a  choice or a question which is related to the m istake in 

man(cj).

Fig. 13 shows a  checking list for m isconception C2, confusion on the recursive rela­

tionship. Since there are three rules in the IA D I knowledge base which are related with 

the m isconception Cj,

c2 — ► m4 , C2 — ► ms, C2 — ► m 6  

there are  three possible mistakes. The checking list CL(c2) includes these manifestations 

and  organizes them  in a way that the item s can be related with these m anifestations and 

therefore to  the misconception C2 . Since the corresponding m istakes are lacking a pa­

ram eter in a  recursive call statem ent, not providing the sm aller instances and miswriting 

the term ination condition, the problem s are listed in the CL(c2) in the form o f a ques­

tion o r m ultiple choice. A fter a  student gives the answer o r makes a  choice on an item 

the system judges the answer or choice, and gives an appropriate explanation or instruc­

tion interactively. In  the real system, the items in one checking list are separated by the 

student’s answer and the system’s explanation and instruction. The corresponding expla­

nations for each item in the checking list CL(c2)  are shown in Fig.14. A  real example in 

the system interface will be shown in the section 4.6.

From  above descriptions, we can see that checking lists actually serve two func­

tions. O ne is for further detection o f a  student’s unexposed mistakes. In order to  verify 

the  m isconception a  student has, the  system creates an environm ent in  which all the 

questions and possible choices are associated with th a t concept. Com pared to  the initial-
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1. In a  recursive relationship, the recursion is expressed in terms 

of a  smaller instance of itself. Did you express this relation­

ship in the m anner that the problem is identical in nature bu t 

smaller in size? (yes/no)

2. Since we know the recursive relationship will be represented 

in term s of a smaller instance of itself, and this smaller in­

stance can be a  smaller value or a  smaller size of the data 

structure, what is the smaller instance in this insertion p rob ­

lem? Please choose one num ber from the following choices:

1. The smaller value in a  node for each recursive call;

2. The empty tree;

3. The left subtree or the right subtree.

3. W hen you decide the recursive relationship in a recursive 

problem, do you need to  guarantee that the reduced size will 

eventually become the degenerate case? (yes/no)

Fig. 13. A  Checking List For C2

ly dem onstrated mistakes which are m ade without any external condition, the student’s 

confusion on a certain concept can be further exposed in this environment. From the 

student’s choices to  the items and the student’s answers to  the related questions, the 

system can evaluate the degree to  which the student suffers from the misconception.

A nother function of checking lists is for instruction. W hen a  student dem onstrates 

any m anifestations in the lists, the system will give the corresponding explanations to the 

student based on the cause-effect relationships and also the program  design plan which 

will be addressed in the next subsection. The im prom ptu instructions help students to 

get rid of the confusion about the misconception.
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Explanation for item 1 (if the student’s answer is ’no’):

A  recursive algorithm m ust include a recursive case for which the 

algorithm is expressed in terms o f itself, and in this case the problem 

size m ust be diminished a t each recursive call. You need to  express 

this relationship in a sm aller problem of itself.

Explanation for item 2 (if the student’s answer is choice 1):

Only choice num ber three is correct. You chose num ber 1 which is 

no t correct. This procedure is to  insert data  into a binary search tree 

which is a tree structure, not a single value. So you need to find 

relationships between the original structure and a  smaller structure.

Explanation for item 2 (if the student’s answer is choice 2):

Only choice num ber three is correct. You tried to find an empty 

tree as the recursive relationship, bu t that is not correct. Actually, 

the final target is to  find the empty subtree, but it may need several 

recursive calls to  reach it. So you need to  represent this relationship 

between the tree and the left subtree and the right subtree.

Explanation for item 2 (if the student’s answer is choice 3):

You have a  correct choice.

Explanation for item 3 (if the student’s answer is ’no’):

We should ensure that the way that the problem size diminishes 

m akes the degenerate case finally be reached. A t this point, the prob­

lem is sufficiently small that it can be solved directly and the recur­

sive calls will be ended. Otherwise the process may not stop  and goes 

to  stack overflow.

Fig. 14. The Explanations For The Different Choices 
In  Items O f CL(c2)

4.5.2 Programming design plan

From  the  discussion in  section 3.6, w e know th a t the system organizes the items in

a checking list according to the design plan as well as the cause-effect relationship. The
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design plans describe the sequence of programming steps which directs a program task 

or subtask to be com pleted or directs a  programming concept to  be fully understood by 

the student if considered from the angle o f programming tutoring. For example, when a 

student wants to  find a  term ination condition for the insertion problem, the termination 

condition is viewed as a program ming concept as well as a program  goal (or subgoal) for 

accomplishing the insertion o f a node into a binary search tree. W hen the student wants 

to  implement the term ination condition, he must have a series of design plans in mind. 

If  the student does not follow a  correct design plan for the program ming problem, there 

will be a mistake. Therefore the analysis of mistakes and m isconceptions is inevitably 

involved in the analysis o f design plans. A nd the design plan analysis can provide effec­

tive inform ation for misconception diagnosis. U nder this consideration, when the system 

collects the item s related to  one misconception into a checking list, the system arranges 

these item s according to  the design plans. Thus, the system connects the design plans to 

a  certain concept while the system analyzes the related misconception by the cause-ef- 

fect relationship. A nd the design plans are considered the inform ation at a  high level of 

a  conception.

Related with the term ination condition concept in the insertion problem, the design 

plans can be the following:

• M otivate to  set up  a term ination condition;

• F ind  a  case as the condition;

• Check whether the condition can definitely be reached;

• Consider what to  do under this condition;

• Deliberate the operations under the term ination condition;

• Think over w hat kind o f structure can be used for building the term ination con­

dition.

In  the  system, these plans are posed as questions, such as Why there is a  need for 

a  term ination condition? W hat is that condition? W hat kind of structure should be used
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for building the condition? How can you guarantee that the condition will eventually 

arrive? W hat operation should be done if the condition is m et? A fter the student gives 

an answer, the system judges this answer and gives explanations for it. Raising questions 

to and receiving answers from the student allows the system to be able to obtain more 

inform ation to  verify the misconception acquired from  the misconception hypothesizing 

step. On the o ther hand, providing solutions to  these problem s makes the design plan 

explicit, and it will help students to make a  correct design plan to set up the term ination 

condition. H ere the solutions provided by the system are the explanations to the stu­

dent's answers. The explanations com bined with the design plans offer the background 

knowledge for a  concept and the program ming steps; therefore they can help students to 

understand the whole programming process.

In the IA D I diagnosis process the system arranges these plans into a checking list 

as items either by questions or by a  m ultiple-choice problem. Fig. 15 shows the design 

plans for the term ination condition concept in the checking list CL(ci).:

4.5.3 Misconception verifying process

The purpose o f the IA D I diagnosis process is to  find the m ost likely misconcep­

tions related to  m istakes in a  student’s programming. Since the misconceptions in C r are 

only candidates for explaining why the corresponding m istakes exist, it is possible that 

some m isconceptions in Cr are not the reason o r m ain reason for those mistakes. Thus, 

after the m isconceptions are hypothesized from the abductive process, the system still 

needs a  process to  verify which misconceptions a re  the true causes. The misconception 

verification process is based on deductive inference.

For each candidate m isconception q  in Cr which is obtained from the misconcep­

tion hypothesizing process, the deductive inference process perform s a verification pro­

cess in  the following m anner. F irst the system displays its checking list CLfyj) to  a  s tu ­

dent. From  the previous discussion, we know that a  checking list contains information
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1. D o you think it is necessary to  set the term ination condition in 

your recursive procedure? (yes/no)

2. Since we need the term ination condition to  end the recursive calls, 

we should consider a  case as the condition. Then what is the con­

dition? Please choose one from the followings:

1.) W hen the inserted data  is equal to  certain value;

2.) W hen a  Binary Search Tree (BST) becomes empty;

3.) W hen the root has a  value which is equal to  certain value;

4.) W hen a  tree is not empty.

3. The term ination condition is when the BST becomes empty, how 

can you guarantee the condition will eventually arrive? Please 

choose one from  the following:

1.) Provide a smaller value through a  param eter in the 

recursive call statement;

2.) Provide a smaller structure, such as a subtree, through 

a param eter in the recursive call statement;

3.) Check whether the subtree in a ’if’ statem ent is empty or 

not without providing a smaller instance in the recursive 

call statement.

4. The next problem  is to  decide what to  do when the term ination 

condition is satisfactory. Please choose one num ber from  the fol­

lowing choices:

1.) Insert the new data;

2 .) Com pare the inserted d ata  with the value o f the root and 

then make a  recursive call again;

3.) D o nothing.

5. U nder the term ination condition, you need to  apply a  new node 

and fill it with the necessary data, the problem  is where these op­

erations should be entered? Please choose one num ber from  bel­

low:
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1.) A t the very beginning of the procedure even before the 

base case;

2.) When the base case is reached.

6 . In this insertion problem, what kind of structure will you use?

1.) U se a loop structure for control of inserting n  nodes in 

this procedure;

2.) Use a branch structure to  decide to  go to  the base case 

o r the general case.

Fig. 15. Checking List A rranged By Design Plans

about the manifestations which can be caused by Cj and the design plans which are used 

to realize the corresponding concept in a program. So the C L(q) has a dual function; it 

can be used to  determ ine if the student has unexposed m istakes and if he follows design 

plans.

The basic form o f an item in a  checking list is a question. Following the display of 

a question, the student gives answers by typing yes o r no, or by typing a num ber to 

choose an item.

From  answers and  choices, the system then analyzes the student’s understanding to 

a particular problem  and  evaluates how much the student suffers from this misconcep­

tion, and how far he departs from the correct design plans. In this interactive environ­

ment the system checks to  see if the student is vulnerable to  m^ (m^ e man(cj)) under 

some circumstances. For each answer and choice, the system gives explanations that are 

a part of the  instruction on the tutoring material.

The system will display all the checking lists for the misconceptions in C r. The 

displays of Checking Lists are relayed according to  the order of the hypotheses in Cr.

A n example of the misconception verifying process will be dem onstrated in section
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4.6. The interactive process in the R PT  diagnosis environment is shown in Fig.23 in the 

chapter 5.

4.5.4 Misconception reranking

Although each m isconception in Cr proposed from an abductive hypothesis may 

explain several dem onstrated mistakes, having each one of them  proposed actually only 

requires one related m istake to be dem onstrated. I t is very likely that some of them are 

not the real cause of the m istake m, and that there is another reason which causes the 

m. Tb decide which m isconceptions in Cr are the student’s real problem, the system 

proceeds with a  verification process in the steps described above, and reassesses the 

plausibilities o f the misconceptions.

T he system revises the plausibility measure, PM value, according to  the student’s 

responses in the m isconception verification process. The PM  value, calculated in this 

process, is called the Final Plausibility M easure (FPM ). For each m isconception cj in Cr, 

the system calculates a value FPM(cj) to evaluate the degree to  which a  student suffers 

from Cj. The FPM(cj) is a  value that records the num ber o f wrong answers to  the items 

in CL(cj). T he system weighs the different items with different values depending on the 

degree of im portance and the proximity o f a  manifestation to  the concept. For example, 

item 1 for motivating the set up  o f a  term ination condition in CL(cj) (refer Fig.15) is 

m ore significant to  the diagnosing misconception ’’not having a  correct concept of term i­

nation to a  recursion”, than item  3, that checks whether the condition will definitely be 

reached in CL(ci), because the necessity of setting up a term ination condition is the 

m ost im portant o f all the m anifestations to  diagnose ci. A  wrong answer to  item 3 is the 

m istake ms. It gives more contributions to  diagnosing misconception C2  than ci, although 

this m istake is related to  c i  also. So the system assigns value 3 to  item 1 and value 2 to 

item 3. The basic form ula is
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FPM (q) =  ^  weight(item); item e  CL(q)

The FPM(Ci) is different from the IPM(c;). The FPM (q) value is for the system to 

weigh a student’s understanding o f q  under a certain circum stance in an interactive 

environment, while the IPM (q) value is for the system to  m easure a student’s under­

standing o f q  in the initial stage without any influence from external effects. An FPM 

value is based upon considerations of m ore than one aspect about a  concept and trying 

to  get diagnosis solution by verifying the misconception, so it is reasonable to  use it to 

rerank the  misconceptions and  to  subm it the list of reranked m isconceptions as the final 

diagnostic result.

The system builds a  group of counters to  record the total num ber o f the mistakes. 

For each checking list CL(q), there is a  counter fpm (q). For each incorrect answer, there 

is a value which is preassigned by the system. W hen a student answers the questions in 

the checking list CL(q), the system accumulates the value and records the accumulation 

in the corresponding counter fpm (q) if  the answer is incorrect. W hen the system obtains 

all the answers to  items in one checking list, the counter records the value of FPM  for 

the misconception. In o rder to  facilitate the com parison am ong the FPM  values, the 

system sum s the total possible FPM  value for each m isconception as 10 (that is when a 

student gets wrong answers to  all items in a  checking list) although it assigns a different 

weight to  each item  in one checking list. Finally the system com pares the values in dif­

ferent counters and  ranks the  m isconceptions by their FPM  values to  yield the final 

diagnosis list Cf.

There are three possible cases after the verification process:

• If  the student’s perform ances testify that all m anifestations in a  checking list 

CL(cj) exist, then the system can decide that the student has the m isconception Cj with a 

very high FPM value and the  c* is the one on the top  of the diagnostic result list.

• If the student’s performances only partially support the manifestations in a check-
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ing list, then it shows that the student has this misconception with a  m oderate FPM 

value. In this case, the system still does not eliminate the misconception cj from the 

diagnosis result, but lists it in the appropriate place on the diagnosis result list.

• If the student’s performances show nothing wrong when he answers the questions 

in a checking list, then the system will consider the initial appearance of related mis­

takes as an accidental event and remove the corresponding misconception from Cr.

4.6 Example of IADI Diagnosis Analysis

In this section, an example is given to show how the IA D I diagnosis model works 

on a  program ming problem-solving.

A n erroneous procedure is given in Fig. 16. This procedure was written by a student 

while she was working on her homework for a Pascal programming course. This proce-

Procedure insert (var T: table; newitem: integer); 
begin

new(T);

T ^ .  item :=  newitem;

T A . Lchild :=  nil;

T ~ .  Rchild :=  nil; 

if T  -  nil then

if newitem <  T ^ .ite m

then insert ( T ^ .  Lchild, newitem); 

else insert (T /v. Rchild, newitem);
end;

Fig. 16. A n Erroneous Procedure.

dure seems to show that the student has almost all of the concepts which are needed in 

solving this problem, setting term ination condition, giving recursive relationship, using 

correct formal param eter definition, inserting the node into BST correctly, and applying
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the new nodes to  hold the new data. However, she miswrote the term ination condition, 

possibly just because she was careless. She also misplaced the operation of inserting a 

new node. She might have thought tha t she could apply the node at the beginning of the 

procedure, since a new node is needed in order to hold the new data every time the 

procedure requires node insertion. She did not realize that since this is a recursive pro­

cedure, this procedure will be invoked and will apply a  new node for every recursive call 

no m atter the insertion action happened or not, finally causing stack overflow. If a p ro ­

cedure has this mistake, even if the term ination condition is correct, it will never reach 

the term ination condition.

The system checks this procedure by the structure analysis and detects two mis­

takes: misplacing the operation of inserting a  new node and miswriting the termination 

condition. The system searches the IA D I knowledge base and  hypothesizes three miscon­

ceptions by the abductive inference. There are four rules in the IA D I knowledge base, 

that are associated with these two mistakes,

Ci — ► m 2, c i — ► m g, C2 — ► m 6, and C7 — ► m2.

After taking the union o f can(nt2) and can(m<>), there are three proposed misconceptions 

ci, C2  and C7. The system ranks them  by IPM s and forms the interm ediary diagnosis Cr, 

{ci, C2, C7}. In the verification process, the system displays three checking lists CL(ci), 

CL(c2) and CL(C7), one after another. A fter getting a response from the student, the 

system will conclude the misconceptions the student may have. O ne possible response 

series occurs in the interaction between the system and students, and is listed in Fig. 17. 

The real system interface will be shown in next chapter.

There may be the following mistakes in your recursive procedure:

Mistake2: M isplace the operation of inserting a  new node.

Mistake6 : M iswrite the term ination condition.
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Now we will further diagnose your misconceptions. Please follow the instruc­

tions and answer the questions.

L et’s consider the concept o f the term ination condition in a recursion. 

D o you think it is necessary to  set the term ination condition in your recur­

sive procedure ’insert’ ? (yes/no) 

yes

T hat is correct.

Since we need the term ination condition to  end the recursive calls, we 

should consider a case as the condition. Then what is the condition? Please 

choose one from the following:

1. W hen the inserted data  is equal to a certain value;

2. When a  Binary Search Tree (BST) becomes empty;

3. W hen the root has a  value which is equal to  a  certain value;

4. W hen a  tree is not empty.

Please type a number.

2

T h at’s correct.

The term ination condition is when the BST becomes empty; how can 

you guarantee the condition will eventually arrive? Please choose one from 

the following:

1. Provide a  smaller value through a param eter in the recursive call 

statem ent;

2. Provide a smaller structure, such as a  subtree, through a  param eter 

in the recursive call statement;

3. Check whether the subtree in a  ’if’ statem ent is empty or not without 

providing a  smaller instance in the recursive call statem ent.

2

T hat’s correct, you need to provide a  sm aller structure.

The next problem is what you m ust do when this condition is satisfied.
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Please choose one num ber from the  following:

1. Insert the new data;

2. Com pare the inserted data  with the value of a root and  then m ake a

recursive call again.

3. D o nothing.

3

Only the first action is correct; insert the new data. Before the term ina­

tion condition is satisfied, the algorithm issues the recursive call to  find a 

proper place to  insert the new data. Since the base case has been reached, 

the proper place has been found, and you need to  insert the data  at this 

time.

U nder the term ination condition, you need to  apply a  new node and fill 

it with the necessary data. T he problem  is where these operations should be 

put? Please choose one num ber bellow.

1. A t the  very beginning of th e  procedure even before the base case.

2. W hen the base case is reached.

1

T hat’s not correct. I f  you apply a new node before checking the base 

case, every recursive call will get one new node and the term ination condi­

tion is never able to  be satisfied. Thus the recursion will no t cease until the 

stacks overflow. So the operation should be given when the base case is 

reached.

In this recursive procedure, w hat kind o f structure do you have to  use?

1. U se a  loop structure for control o f inserting n nodes in this recursive

procedure;

2. Use a  branch structure to decide to  go to  the base case or general

case.

Please type one num ber.

2

T hat’s correct.
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Now let’s consider the recursive relationship. In the relationship the re­

cursion is expressed in terms o f a  smaller instance of itself. D id you express 

this relationship in a m anner that expresses that the problem is identical in 

nature but smaller in size? (yes/no)

yes

T hat is correct.

Since we know th a t the recursive relationship will be represented in 

term s of a  smaller instance o f itself. A nd this small instance can be a small­

er value o r a smaller size o f the data  structure, what is the smaller instance 

in this particular procedure?

1. The smaller value in the node for each recursive call;

2. The empty tree;

3. The left subtree and the right subtree.

Please choose one number.

3

That is correct.

W hen we determine the recursive relationship in a recursion problem, 

do you think we need to  guarantee that the reduced size will eventually be­

come the degenerated case? (yes/no)

yes

Your answer is correct. But in your procedure it seems you did not give 

the  condition to  guarantee to  reach the degenerated case.

Let’s consider when it is appropriate to apply a new node. We need to 

apply a new node to  hold the new item. A nd this operation can be done 

before o r after we assign the data  into the corresponding field. Is that cor­

rect? (yes/no)

no

Your answer is correct. We m ust assign the data  into the node after we 

apply a new node.
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We can view the operations of applying a  new node and assigning data 

to it as one group. The next question is when do we use this group to  apply 

a new node?

1. W hen the term ination condition is true;

2. W hen the nonterm ination condition is true;

3. A t the very beginning of the procedure, that is before any other oper­

ations;

4. O thers.

Please choose one number.

3

That will cause this operation to  be m ade at every recursive call. Actual­

ly it may just apply the infinite nodes for the first data  until stacks overflow.

The term ination condition can never be reached.

Besides the one group under the term ination condition, do we need to 

en ter the group under the nonterm ination condition (that is the recursive 

case) too? (y/n)

no

That is correct.

You have the following misconception(s):

Misconception?: M isunderstand when to  apply a  new node to hold the 

new item.

M isconceptionl: Not having the correct concept of term ination to  a re­

cursion.

Fig. 17. A  possible Series O f Student’s Response To The System

From  the series o f the student’s responses, we can see tha t the misconception C2  is 

not in the final list because the student gives correct answers to all questions in CL(c2). 

T hat m eans the m istake mg is caused by ci. The system gets two wrong answers from 

the response to  CL(ci) and one from the responses to CL(c7). But the FPM (c7) is 4
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which is higher than FPM (ci), which is 2. So the final diagnostic result is the ranked list 

{07 , cj}, which is Cf. The part o f interaction is shown in Fig. 23.
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CHAPTER FIVE 

TUTORING ENVIRONMENT 

OF

RECURSIVE PROGRAMMING TUTOR

This chapter describes the tutoring environment of RPT. The environment here is 

used to refer to  the part of a  system that presents system’s diagnosing and tutoring 

process and supports the student’s learning activities. A  good tu to r should have a good 

environment for a student to  easily ca n y  out actions and to  see and understand the 

results and implication o f those actions. The R PT  system uses the hypermedia technique 

to  create a  graphical environment. The R PT  environment includes the instruction part 

and diagnosis part.

5.1 Objectives For Creating RPT Environment

O ne fact for students to  s tart to  learn recursion is th a t they try to make an analogy 

o f program  structures between the given problem  and the sam ple program, like we dis­

cussed before in section 3.4. This arouses us to  set an instruction environment where 

sam ple program s are given and students can learn from  these examples. A fter they m as­

ter som e basic concepts of recursion, they write their program  and  enter the diagnosis 

environment.

The m ost difficult thing about learning recursive program ming is that the recursive 

statem ents in a  program  do not show the procedure step by step explicitly. For example,
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the procedure of inorder traversal in a binary search tree can be simply written in recur­

sion as follows:

Procedure inorder(T) { T  is a binary tree } 

begin

I F T ^  0 

T H E N  begin

inorder ( Leftsubtree (T) ); 

print ( D ata ( T ) ); 

inorder ( R ightsubtree (T) )

end

end

The student may not be able to see through the process at the beginning. The program 

is so elegant and succinct, it does not even contain explicit repetitions. It compacts a 

complicated process into several recursive statements. For program  writing, the terse and 

simple form is good. But for the course of learning, it is better to reverse the procedure, 

unfold these statem ents, so that the originally hidden content in the recursive statem ent 

becomes visible to  the learner. I t is also necessary to  help students understand how to 

solve a  problem  by solving its subproblems. For example, in the recursive program  of 

quick sort, the way to  sort a smaller instance and the result of the partially sorted se­

quence can offer a  base for students to  connect the sim ilar strategy to the whole prob­

lem solving process. Because sorting a  smaller instance m ust be easier to  be understood 

com paring with working on a  large instance. A nd the result for the small instance solv­

ing, the partially sorted sequence, is obvious to  be able to  be seen. So breaking a prob­

lem down to the subproblem, solving the subproblem s and immediately showing the 

corresponding result will be conducive to  learning. Hence it is necessary for program ­

ming tu tors to  show the execution results of a  program  a t different stages in order for a 

student to  understand the execution process o f a  com putational algorithm. The RPT 

environment tries to  implement these ideas. It creates a  graphic illustration plus dia-
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logues and menus in the tutoring environment.

The environment for the diagnosis process needs an interactive interface. Because 

in an interactive environment, it is possible for a student to  gradually realize where he 

m ade m istake and w hat is the possible misconception. The explanations for basic mis­

takes and corresponding misconceptions are needed when the student still is confused. 

So the environment needs to  provide a  convenient method to show these explanations 

when a student asks.

Both instruction environment and diagnosis environment are created based on the 

hypertext model.

5.2 Hypermedia Environment

The RPT tutoring environment is built in a hypermedia environment. Hypermedia 

is regarded as a generalization o f the hypertext. Hypertext is a  model based on the 

assum ption that hum an idea processing occurs through association. It connects the in­

formation in a  network and provides the non-linear retrieval. Thus it can more closely 

model the deep structure of hum an idea processing (Clarson 88) (Shen and Zhang 89a). 

Hyperm edia is an interconnected net of inform ation in various forms from  text to  static 

graphics, anim ation and other types of m edia that can be accessed by the com puter 

system (Younggren 88). Among the hypertext and hypermedia systems in existence, KMS 

(Akscyn 88), NoteCards (Halasz 88), and Interm edia (G arrett 86) are the most famous 

ones. Conklin gives almost complete historical description o f the hypermedia systems 

(Conklin 87).

Although there is no generally accepted definition for hypermedia, the hypermedia 

systems can be characterized as follows:

• Network information organization

In hypermedia systems, information is represented by m ulti-m edia units, which are 

called objects. These objects may represent texts, pictures, video images, and voices.
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They are connected together by links and form networks.

• O n-line nonlinear retrieval

The network structures of hypermedia systems provide a n-dim ensional informa­

tion search space. U sers can navigate in any defined path through the links.

• Extraction of common concepts

In a network representation, a  common concept can be represented by a single 

object. This object can be linked to  all other related objects. This implementation allows 

the sam e concept to  be represented only once, therefore eliminates unnecessary redun­

dancy.

• Intelligent environment

Hyperm edia systems provide a  strong capability to represent knowledge in various 

media. In this environment, users can execute their tasks in a way closer to human 

cognitive processes.

Applying a  hyperm edia model in a  tutoring system allows providing the learning 

environment with graphic illustrations and  dynamic representations of knowledge and 

knowledge relationships. The R PT  environment further extends the hypertext model by 

incorporating dynam ic program  execution.

53  Overall interface

Creating the R PT  environment has two purposes. One is to  show the critical con­

cepts of the recursive programming in a hypertext model based representation in order 

to aid the student’s comprehension. A nother is to reveal the execution of the recursive 

program  in a  m ulti-dim ension environment so that the student can see through the pro­

blem-solving process. This environment is implemented on the Sun workstations with C 

and Sunview language under the Unix operation system.

The R PT  system provides an overall interface for both instruction environment and 

diagnosis environment. This interface contains three components fram ed by a window
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showed ill Fig. 18. T he three com ponents arc control panel, tty window and text window.

tormdoX acriiBn(fcffip)f iB .ra

Cot In s tru c tio n  o r M lo c l p r o b ln ,  than p ro g riM ln g  b a lw . 
r\\m m m :

tornadoX |J

Fig. 18. Overall Interface of HI*T

• Text window

The text window is used for students to write and edit their program .

• tty window
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The tty window is a usual command tool shell and is used to  emulate a standard 

terminal. In the programming tutor, the tty window is used to compile and execute the 

program, and also to interact with student in the diagnosis process.

• Control panel

The control panel contains three groups of buttons. The buttons in the second row 

are for load, save, compile and execution of a file. The button "Dynamic Instruction" is 

for entering the instruction environment which consists of another set of windows. The 

buttons "Tfextual Instruction”, "Diagnose”, "Mistake Types” and "Misconception Types” 

are used in the diagnosis environment. The control panel leaves the space for user to 

write the file nam e after the item "File name,” and the space in the right part of the 

panel for communication with the system.

5,4 RPT Instruction Environment

Some systems, such as LISP tutor (Anderson 89), PRO U ST (Johnson and Soloway 

84) and M ENO (Woolf and McDonald 84), tu tor programming in an environment of 

dialogue and menu. The natural language is a  good tool for communication. But some­

times it is not adequate in certain situations, particularly in the programming tutor. 

Natural language is usually considered as sentential representation which is sequential. 

One can not use any sequential representation to  effectively im part a complicated and 

interconnected algorithm represented in a com puter program. Actually, it is possible to 

use com puter to  create better learning environment. The R P T  instruction environment 

creates a  graphical dynamic representation to  facilitates the learning. Students can un­

derstand many concepts better in a  graphic environment since pictures and diagrams 

can provide m ore information than verbal descriptions and it has been claimed that one 

diagram  is sometimes worth ten thousand words (Larkin and Simon 87).

Usually a student enters the instruction environment first for getting the basic con-
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cept of the recursion. The RPT instruction environment allows a  student to select a 

recursive program  to  work on. A fter a student enters the environment by selecting the 

’’Dynamic Instruction” button on the control panel, he can see a window that is the root 

node o f a  processing tree. A  processing tree describes the execution process of a recur­

sive procedure. It consists of spread nodes and abstract links. A  spread node is a basic 

unit in the instruction environment which represents a status of a program  when we 

consider a  set of input data  attached to  it. A n abstract link represents a procedure 

calling relationship. The processing tree is created to  present the different levels of re­

cursion o f a recursive program. The spread node at the initial state  with the original 

input is the root node. In addition to  the representation o f the source code o f a recur­

sive program  displayed in a spread node, the system provides a graphical representation 

for the input data  in a  binary search tree. The system is also be able to  automatically 

generate the corresponding input data for the program  at any particular spread node. 

Each program  in a spread node can be executed with the relevant input value at the 

student’s option. These features provide clear visualization o f the recursion process thus 

is very conducive to  learning. The following subsections describe the detail structures 

and functions o f the processing tree.

5.4.1 Representation of a spread node

A  spread node represents one status of the recursion a t a  specific level. A  spread 

node contains the following facilities included in a  single frame.

• S tart panel

A  s ta rt panel contains selection button, instruction button and  message item. The 

buttons are  for a student to  select specific control functions to  be perform ed and the 

message item  is for providing messages to  the student. The start panel is present only on 

the head o f the root spread node and is not available in o ther spread node.
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« Lesson selection button 

This button is labeled as ’’Selection of Lesson.” Pressing the right mouse button 

when the cursor points on this button brings a menu to  be displayed. This menu is 

called lessons menu. The menu shows a  list of program  names for students to  

choose one of them  as the tutoring lesson.

• Instruction button

This button is labeled as ’’Instruction.” Clicking the left mouse button on this but­

ton will cause a text fram e to  be displayed. The text fram e shows a  specific instruc­

tion text for the selected tutoring lesson. This text includes detailed description of 

the problem  and also the instruction on how to solve the problem.

♦ M essage item

This item is used for the system to  show warning messages and/or specific instruc­

tions according to  the on-line situation.

• I/O  panel

The I/O  panel provides the space for displaying the input argument values and the 

output da ta  for the program  a t a  certain level o f recursion. This panel is bellow the start 

panel.

* Inpu t item

This item is labeled with ’’input” in root node and ’’Input Subtree:” in non root 

spread node. This item displays the input argument values for the spread node. 

The input argum ent value is typed by a  student a t the input item  in root spread 

node. The values displayed a t input item s in other spread nodes are generated by 

the system. Besides the da ta  display, the input item also provides the graphic illus­

tration  for the input data  (please refer section 5.4.4).

• output item

This item is labeled with output. This item shows the returning d ata  for the spread 

node upon the completion o f execution.

I l l
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* Program  list panel

The program  list panel displays the recursive procedure source code when a s tu ­

dent chooses a tutoring lesson from the selection button. This panel is on the under­

neath p art o f a  spread node.

A fter a student enters the instruction environment, he gets a  basically empty root 

spread node fram e with a message suggesting him to click a t the ’’Selection of pro­

gram s” button to  select a program  to work on. After he does so, he gets a list of the 

available programs. Fig. 19 shows the root spread node. In Figure 19, the student se­

lected the ’’inorder” program  which tutors the subject o f solving the inorder traversal 

problem  recursively. The source code o f the ’’inorder" program  is shown in the program  

list panel of the root spread node frame. A t this point, the system rem inds the student 

input the argum ent values a t the Input Item  o f the I/O  panel. W hen a student clicks at 

the instruction button, the general instruction for this lesson is displayed in the text 

frame, which is shown in the right of Figure 19. The o ther spread nodes will be showed 

in the processing tree described in the next subsection.

5.4.2 Processing tree

M any instructors like to  give the classroom teaching o f recursive program ming in 

the following way:

(1) W rite the program  on the blackboard and  use some sam ple input argum ent value to

sim ulate how the program  works.

(2) A s the sim ulation goes on, when the simulated execution comes a recursive call 

statem ent, the instructor draws another instance, which is in the sm aller size, of 

the sam e program  on the blackboard. The sim ulation then continues a t the new 

instance o f the program.

(3) W hen the execution o f a  certain instance o f the program  reaches a  base case, the

recursion stops and the control returns to  its parent level a t the original call state-
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Fig. 19 The Root spread Node

incut witli llic resulting values. The execution continues from there on at the par­

ent level.

The drawings on the blackboard discussed above naturally am ount to a tree like 

the one in Hig.20. This tree is called the processing tree since it represents a process to 

reach a solution. The tree shows a process for the inorder traversal procedure with the
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A

Procedure inordcr(B) 
begin 

IF B <  > 0  
THEN 

begin 
inordcr(0); 
print(DATA(B)); 
inorder(0) 

end 
end.

Procedure inordcr(C) 
begin 

IF C < > 0 
THEN

begin /
inorder(D); ----- /
print(DATA(C)); 
inorder(E) 

end 
end.

------V

Procedure inorder(D) 
begin 

IF D < > 0  
THEN 

begin 
inorder{0); 
print(DATA(D)); 
inorder(0) 

end 
end.

Procedure inorder(A) 
begin 

IF A < > 0  
THEN 

begin 
inorder(B); -  
print(DATA(A)); 
inorder(C) 

end 
end.

Procedure inorder(E) 
begin 

IF D < > 0  
THEN 

begin 
inorder(0); 
print(DATA(E)); 
inorder(0) 

end 
end.

Fig.20 O ne D em onstration O f Processing Tree 
For The Inorder Traversal Problem With Input Binary Search Tree A

input binary tree A. E ach ’’instance” of the program  mentioned above amounts to  a 

spread node. The sentences ’’inorder (B) ” and "inorder (C)” in the procedure associate 

with a spread node respectively by an  abstract link, which will further spread these 

subprocedures on the subtree B and C. In the tutoring environment, the student is al­

lowed to  select the actions at his/her own discretion. In other words, the student may
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follow the execution in a certain sequence as above, o r  may selectively do and see what 

is desired. This environm ent facilities different learning paths for different students. 

Thus there are different processing trees for different learning paths.

M ore formally, a processing tree consists of the spread nodes and the abstract 

links that a re  procedure calling relationships among spread nodes. These calling relation­

ships are kept a  track  internally by the system. The processing tree can describe the 

process of a  recursive program  execution at any level. The root spread node is defined at 

level 1. Every recursive call statem ent in the list program  panel of the current spread 

node is associated with a spread node a t the next level, whose level num ber is one great­

er than  the level num ber of its parent. Spread nodes in different levels have identical 

structures but different input values th a t are for subproblem  solving in different size. A 

spread node a t level i is considered to  be at a higher level than another spread node at 

the level i +  1. A  processing tree may be extended very deep. But, generally speaking, the 

simulation on prim aty several levels can give more inspiration to  students, so it is most 

useful and effective for student to  m aster the recursive concept. T hat m eans the learning 

process usually do not necessarily go to  the all branches of the processing tree, but stops 

a t certain level.

Fig. 21 shows a  processing tree for the inorder traversal procedure in the RPT 

environment. In  any spread  node, the student can click the m ouse button a t a recursive 

call statem ent to  cause an  expansion into a child spread node.

5.4 J  Automatic generation of input argument values

A fter a  student chooses a lesson, he needs to  follow the specifications given in the 

instructions for the lesson and  type the input argument values on the input item of I/O  

panel. In the example of inorder traversal problem  showed in Fig. 21, the num ber 10 at

* As the first step, RPT system just deals with the recursive call that has been explicitly 
referred to itself.
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bogln
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u r lto ln (T * .Itn );

Input S u b tm  T: 4  34 20 33 3 2 .  
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Output: procedure Inorder(vy 7: labia) 

begin
procedure tncrder(var T: table); 

begin
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begin
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v r lte ln (T M t« );  

lnorderg-.Fchtld)

end

Input Subtree T: 1 563 .
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begin

t f  TO nll then 

begin

inorder(T*.tch11d) 
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ln o rd er(r .fch lld )

end

Fig.21. O ne Processing Tree

the beginning of the input string is the  num ber o f nodes in the binary search tree. The 

other input num bers are the  da ta  for nodes o f the binary search tree. The input data 

given by the student goes through another hidden program  that generates the interior 

data  structure, the binary search tree, which is in term  used by the recursive program 

"inorder.”

A fter a  child spread node is created through the o rder o f a  student, clicking the
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left mouse button on one recursive call statement, the input argument values for the 

child spread node are automatically generated by the system and are displayed at the 

Input Item of the I/O  panel in the child spread node. These data  are for the smaller size 

problem solving. In the inorder traversal problem, for example, the input data of a child 

spread node forms a left (or right) subtree. U nder this representation, the student can 

see the recursive relationships and understand how the recursion works on the smaller 

instance, therefore it helps students to understand the whole problem solving process. In 

cases where the curren t spread  node already presen ts a leaf that the recursive call 

should not be performed but the students selects such a call, a  warning message will be 

provided. Fig. 21. shows the generated input data in term s of the smaller instance for the 

corresponding subtree in the input item for each spread node in that processing tree.

5.4.4 Graphical representation of input data

W hen an instructor demonstrates how to solve the inorder traversal problem, he/ 

she usually draws a  binary search tree fo r the input d ata  and explains how the algorithm 

handles the data. The graphical representation of a  binary search tree is very helpful for 

students to  understand the algorithm. It is not adequate if the input data is given only in 

the numerical form. The R P T  instruction environment provides the graphical representa­

tion for the input data to  imitate the hum an tu to rs’ actions.

For a  set o f the input data, the system can automatically generate a  graph that is a 

binary search tree matched with the displayed data  a t the Input Item. This graph is 

generated and displayed only when a student asks by clicking the left mouse button on 

the label ’’Input” of a  spread node. The system can generates the graph for every spread 

node, no m atter on what level of a processing tree it is, provided the student clicks the 

mouse button on the label ’’Input” in a  selected spread node. Thus a  student can see a 

subtree o f original binary search tree when he orders the display at a child spread node. 

Fig. 22 shows the graphical representation of the input data  for several different spread
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Fig.22 Spread Nodes With The Input Binary Search Tree

nodes. In  the learning process a  student can see and learn the way how the given in­

stance becomes smaller and smaller and finally arrives an  empty tree. This series of 

binary search trees gives a  visualized process to  dem onstrate how the recursion proceeds 

on those data.
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5.4.5 Execution o f the recursion in a  spread node

T he hypertext systems were traditionally used in organizing and displaying texts 

and materials. Some hypertext systems even allow procedural attachm ent to enable the 

system to perform  specific tasks (Conklin 87). For the purpose of recursive program ming 

tutoring, static displays o f source program s without anim ation are hardly conducive to 

learning. Procedure attachm ent does not allow the needed anim ation at arbitrary  levels 

of the recursion. The R PT  instruction environment allows the display of the source code 

and the input argum ent values at any level. It also allows the selected execution a t any 

level a t the direction o f the student. The R PT environment has extended the typical 

hypertext model and it is conducive to learn recursion.

The system provides execution of the recursion in an arbitrary  spread node of a 

processing tree. This is achieved by the student’s simply clicking at the selected proce­

dure header section in the spread node. Upon completion o f the execution, the results 

derived from the given input values to  the specific spread node are shown to the student

in the O utput Item o f the I/O  Panel in the spread node. If a student clicks the left
«

mouse button on the procedure header of the root node, he will get the resulting output 

for the whole problem . If  the student likes to  know the execution result o f any subset, he 

just needs to  activate the procedure by clicking at the procedure header o f correspond­

ing spread node. T he result for the subset will be shown on the screen. This capability 

involves more than ju st displaying a text as a typical hypertext system does. This system 

displays the source code but also executes the recursive program  to show the dynamic 

process. In the example shown in Figure 21, the root spread node in the leftmost posi­

tion and the center spread node illustrate the results o f the selective execution ordered 

by the student who w anted to see the inorder traversal of the initial input binary search 

tree, and its left subtree and the right subtree of the root. In this case, the corresponding 

output are ”5 9 11 12 23 28 32 33 34 56 65 66 68 77 89 563,” "5 9 11 12 23 28 32 33 34”
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and ”56 65 66 68 77 89 563” for the three binary search trees, respectively.

5.S RPT Diagnosis Environm ent

In the overall interface, a student usually enters the instruction environm ent first. 

A fter he got som e concepts on the recursion, he can selects one problem  to work on and 

write his program  on the text window. If  the com pilation can be passed but run time 

errors exist, the student can enter the diagnosis environment to find what are the possi­

ble m istakes and misconceptions.

The m ain feature for the diagnosis environm ent is that it provides an interactive 

interface. The diagnosis activities in this environm ent follows abductive and deductive 

reasoning path and design plans. The com m unication between the system and students 

is in a natural language dialogue style. The system also provides menu, texts and buttons 

to  allow a student to  select problem  from a  list and see the description for the types of 

m istakes and m isconceptions at a  student’s initiative by open a text window with simply 

clicking on the corresponding button. The following subsections introduces the each part 

o f the environment.

5.5.1 Program submission

Before diagnosing, a student needs to  write the recursive program  and elim inate its 

all syntax errors. The diagnosis environm ent provides following facilities for subm itting a 

nonsyntax program  (Please refer the overall interface in Fig.18):

• Problem  selection button 

T his b u tto n  is labeled as "Textual In s tru c tio n ”. P ressing the left m ouse bu tton  

brings a  m enu to  be displayed. This is the problem  menu. This menu shows a  list 

o f program  problems for student to  choose to diagnose. Releasing from this button 

causes a  text window to be displayed. The text describes the problem  and the re­

lated basic concepts.
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• Name item

A  student should define a  file nam e for a program . The nam e can be given at the 

nam e item which is on the right bottom  line of the control panel, labeled as ’’File 

name.” The student can give either a nam e as the file nam e o r the path name of a 

file for system to access.

• Load button

A  file will be loaded in the text window if clicking the left mouse button at "Load” 

button. The file nam e should be given on the nam e item in advance. The file being 

loaded can be any file stored in the user’s file system. It is not necessary to  be the 

one being edited in the text window.

• Save button

Clicking the left mouse button at "Save” button causes the file in text window to be 

saved under the given name in the name item.

• Compile button

Clicking the left mouse button a t "Compile" button gives an order for system to 

generate a  com m and to  compile a program. The program  is in a file under the 

nam e showed in the  nam e item. The generated com m and is in tty window. It also 

generates a  corresponding executable object program  code. The result of compila­

tion showed in the tty window.

• Execution button

The nam e of executable program  code will be showed in tty window and executed 

by the system if a student clicks the left mouse button on the button ’’Execution”.

• Message item

This item  is in the right part of the control panel. The system sends message at 

this item to com m unicate with students and give instructions how to use this envi­

ronment.
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5.5.2 Diagnosis interactive process 
*

l b  enter the diagnosis process, the student needs to  click the left mouse button on 

the "diagnose” button. Then the system starts the diagnosis process. T he process is pro­

ceeded in tty window.

First, the system picks out the recursive procedures from the being diagnosed pro­

gram  and lists all the recursive procedure names. The student chooses one recursive 

procedure to  diagnose. T he system redisplays the code o f the recursive procedure in the 

tty window in order for the student to  review the recursive procedure. A t the same time, 

the  system  is detecting the mistakes of that procedure and lists the possible mistakes in 

tty window.

T he system hypothesizes the possible misconceptions from the obtained mistakes 

internally. It docs not show them to  the student since these hypothesized misconceptions 

needs to  be further verified.

T hen the system begins a dialogue with the student. For each hypothesized miscon­

ception, the system displays its checking list, lists several related topics either by rising 

questions o r by m aking choices, and analyzes student’s answers. These questions and 

choices a re  arranged according to  the cause-effect relationships between the misconcep­

tion and  mistakes, and also the design plans o f the recursive program . For each incor­

rect answer, the system gives explanations. Fig. 23 shows an interaction while a student 

is using a checking list. A fter the system gives explanations, the student may realize what 

kind o f m isconception he has. Then he can correct the m istakes o r give another version 

o f the design. The student may decide to  stop the display o f these lists whenever he 

thinks he already got the enough inform ation to  correct his mistake. The system can also 

give the suggestion o f keeping on checking, when there are rem ained checking lists asso­

ciated with candidate hypotheses in C r whose IPM  are not very low. So this process is in 

a m ixed-initiative tutoring environment.

Finally, the system concludes the misconceptions based upon the student’s  answer
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recursive o i l !  s ta tn en t;
2 . Provide i  m a ile r  a tru c tu re , such ee i  sub tree , through 

a parameter In tha recu rs ive  c a l l  e lilm ent;
3 . Check the sub tree  in the If alalmrmnl w ithout providing 

a sm aller Instance in recu rsive  c e l l  s ta tem e n t.
Please type e m nber.
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T h a t's  c o rre c t ,  you need to provide a sm aller s tru c tu re .
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yes

The next problem is  what you must do when th is  condition  Is 
s a tis fa c to ry . P lease choosa one nuiber from the followings:

1. In se rt the new d a ta ;
2 . Caapare the in serted  data w ith the value of ro o t and then 

make a recu rsive  c a l l  again.
3. Do nothing.

3
Only the f i r s t  a ction  Is c o rre c t. Insert the new d a ta .
Before tho term ination condition I t  s a tla l to d , the algothm 
Issues the recu rsive  c a l l  to find a proper place to tn so rt 
a mar d a ta . Since the base case has been reached, you need 
to  In se rt the data  a t  th is  n tn en l.

Continue to  chock tho term ination condition? (yes/no) 
yes

Undor the torm lnallon cond ition , you nond to apply a nm  
node and f i l l  f t  up w ith the necessary da ta . The problem 
Is  where these operations should be put?
Please choose one nanber bellow.
1. At the very beginning of the  procedure even before the 

ba te  case .
2 . Vhen the base case Is reached.

t
T h a t's  not c o rre c t. I f  you apply a new node before checking 
the base case , every recu rs ive  c a l l  w ill  get one nnr nodo and 
th s  recu rs ion  w ill not be ceased u n t i l 1 the s lacks overflew. 
So th s  operation  should be given when the  base case reaches

Continue to  check the term ination condition? (yes/no)

type
nodeplr = 'node; I
node :  record I

Item : Integer; I
Lchlld, Rchlld ! nodeplr I

end;
tab le  = nodeplr; 

var T: tab le ;

procedure croa le(var T: ta b le ) ; 
begin

T := n it  
end;

procedure 1nsert( var T: ta b le ; nouilem; In teger); 
begin

nnr(T);
T*.Item := n e u llm ; !
T*.Lchlld := n i l ;
T*.Rchlld := n i l ;
I f  T :  n i l  than

If nowllm < T '.l lo n
then ln s sr l(T " .lc h U d , nouilen) 
e lse  ln serl(f* .R ch lld , noultora)

end;

procedure b u lld lree (v a r T: ta b le ) ;
var n , l ,k :  in teger;
bogln

w rlle ln f 'P le a so  Input the nurber of nodes ' ) ;  
read(n);
w rlle ln ( 'P le a se  input the node ' ) ;  
fo r 1:= 1 to  n do 
begin 

read(k); 
lnsnrl(T ,k ) 

end;
Bnd;

procedure inorder(T: tab le ); 
begin

If T O nll then 
begin

Fig. 23. Part O f A  Checking List In Use

to the related questions and choices. The m isconception types are  listed in the tty win 

dow finally.
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5 .5 3  Types o f m istake and  misconception checking

W hen the system finds the mistakes and misconceptions in the diagnosis process, it 

reports their types and gives very brief explanations in the tty window. For the novice 

students, they may not fully understand the meaning of erro r messages. The types needs 

to  be further explained. The system uses one piece of text to  explain one mistake type or 

one m isconception type. For each type the student can call the text displayed in a  text 

fram e when he needs. There are two buttons facilitating the type checking which are 

listed bellow:

• M istake type checking button

This button is labeled as ’’M istake 'types.” If a  student clicks the left mouse button 

a t this button and gives the type num ber following the prom pt in the message item, 

then the system will open a fram e to show the text which gives the corresponding 

explanation to  th a t m istake type.

• M isconception type checking button

This button is labeled as ’’Misconceptions.” Using operations on this button in the 

sam e way as on the m istake type checking button, a student can see the further 

explanations to  misconceptions in  the text frames.

Fig. 24 shows the text fram es th a t give the explanations for misconception type Cj 

and type C7. These types are related with the report in the diagnosis process displayed in 

tty window.

5.6 File System o f RPT

The following subsections introduce the file system o f R PT  The R PT  system is 

only a prototype now. But the way the files are organized and the system works provides 

the system engineers facilities to  easily add the subjects to  be tutored and the problems 

to  be diagnosed. Whenever an  instructor wants to  add  a  recursive program  in a different 

subject, the system engineer can create a  group o f files and pu t them into the system.
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1. Vhen tha la m in a tio n  condition  la true;
2 . Vhen tha nontern lnatIon  condition la  Irua;
3 . At the very beginning of the procedure, th a t Is 

before any o th e r operations;
d . O thers.

P le a s e  c h o o se  o ra  nunber.
3

Ih a t w ill cause th is  operation  lo be atada a t every 
recu rs ive  c a l l .  A ctually  I t  nay Ju st apply tha Inf In it 
nodes for the f i r s t  data u n t l l l  slacks are overflow.
The term ination  condition  can raver be reached.

Continue to  check tha tin e  to  apply niu node? (yea/no) 
yea

fioaldo* the one group under the term ination condition , do ue 
road lo pu l thq group under the nonterminal Ion condition 
( th a t  Is  the recu rs ive  caan) too? (y/n) 

n
Thai Is c o r r e c t . .
You have the  following m liconceptlon(s):
H1aconceptlon7: M isunderstanding when to apply a n w  node 
lo  hold the new item.
M fsconceptlonl: Not having the co rrec t concept of term ination 
fo r a recu rs ion .

You can c lic k  Taft button on the 'M isconceptions' 
bu tton  to  get fu r th e r  explanations lo your misconceptions.

Any o ther recu rs iv e  procedure which you uan l lo check? (y/n)

Pleeee give the n a i a r  o f the mle 
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F ile  name; wrong.p
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explanation to  mlsconcep

The mlsconceptlonl Is  no concept of larmlna 
ton to  the recursion  or lalsundsrstandtng th is  

concept. The term ination condition should be 
presented In a recursive procedure.

ocadure Inaertf var T 
gin

nna(T);
T ". Item : -  raw U ni;
T".Lchlld := n i l ;
T '.ftch lld  ;= n i l ;
1f T = n il  than

If  rawlton < T ' . l l m
than 1 n sv l(f* .L ch lld , n o u ll e n )  
e lae  1nsert(I* .R chlld , m utism )

tab le ; m u lla n ; In teger);

Explanation to aleconcaptlon

Th* misconception? Is noTonceot about th*
lin e  when apply the neu nods to  hold noaitae. 
Operation for applying tho neu node should be 
located a t  co rrec t place as an action  In base
case.

procedure lnord*r( 
begin

If  T O n l l  then  
b eg in

Fig. 24. Types Checking For M isconceptions

5.6.1 File system Tor instruction

In tlic R PT  system, one lesson is one recursive program . For each program  there 

a rc  a group of related files. Their names arc ended with .instruct, .p, .out, .input, and 

.program 'respectively. For example, if there is a lesson of inorder traversal program  and
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the corresponding source code file is inorder.p, then there is a set of files for this lesson, 

whose names are inorder.instruction, inorder.out, inorder.input and inorder.program.

• .p file

This file holds the source code of a  recursive program for a  lesson.

• .instruction file

This file gives the textual description to  introduce the basic concept about one recur­

sive program . For example, for the program  of inorder traversal problem solving the 

text explains the problem in terms o f the general problem description. If it is neces­

sary, it will help student review some prerequisite knowledge, such as ’’W hat is inord­

er?”; ’’W hat is the differences between inorder and preorder, inorder and postorder?”. 

The text also includes the specification for using the tutoring tool. The text file will be 

shown in the text window when a student selects the selection button in the start panel 

o f a  root node, like the fram e in Fig. 19.

• .out file

This file is an executable file prepared by the system engineer. W hen a student asks to 

run the program  in .p file, the system automatically generates the corresponding ex­

ecutable program  with the file nam e ending with .out and executes this file.

• .input file

This file is for the specific display o f input data. The system engineer makes this file. 

For example, for inorder traversal program  the system engineer makes this kind of file 

for students to  see the graphical representation of input data.

• .program  file

This file holds the recursive procedure which is picked from the program  in file .p by 

the system. When a  student studies on a program, the system will display the proce­

dure in this file on the program  list panel. For the inorder traversal procedure, the 

system provides the functions of execution and the function of display. Both of the 

functions can work on different instances of this recursive procedure. A  student can
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see the execution result for the current input when he clicks the left mouse button at 

the procedure header and see the display of a spread node for next level o f recursion

when he clicks the button a t  the recursive call statem ent in the program list panel. For

other program s, the system needs to give different functions.

The first four kinds o f files are prepared by the system engineer and the last one is 

generated by the system. For each new subject, that is a  recursive program, the system 

adds these four files into the system. When the system generates the lesson menu, it 

makes the m enu one item longer since the system finds there is one more .instruction 

file in the system. Thus the length of menu is exactly according to  the num ber o f lessons. 

This is a  flexible way to  add new lessons.

5.6.2 File system for diagnosis environment

Files in diagnosis process supports the problem  understanding, mistake detecting 

and m isconception recognition. There are following different kinds o f files.

• Problem  description file

This file gives the textual description to  one recursive program  when a  student selects 

a  recursive program  to work on. This text file has the nam e ending with .problem. This 

file briefly introduces the basic concepts about that recursive program and the way to 

sta rt to  solve the problem. It gives the information such as ’’what is the problem ?" 

’’W hat is the recursive relationships in the problem ?” ’’W hat is the term ination condi­

tion of the recursive program ?” This file is displayed when a student selects a  problem 

from the problem  selection button in the control panel.

• Recursive procedure file

This file holds the recursive procedure which is picked out from  the program  in file .p 

by the system in diagnosis process. This file has the sam e nam e as the recursive proce­

dure name. W hen a  student selects a  recursive procedure to  work on, the system be­

gins a  structure analysis on this procedure during the m istake detection process. The
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system also displays the procedure in this file in the tty window to let the student 

review.

• M istake explanation file 

For each mistake type there is one file to  explain the corresponding mistake. It is 

aim ed to  help students to  understand what kind m istake he has m ade. This text de­

scription is a  more detailed description than the brief information in the m istake re­

port. This file is displayed when a student requests from the mistake type button in 

the control panel.

» M isconception explanation file 

For each m isconception type there is one file to  explain it. The system uses it to  help 

students to  understand w hat kind o f misconceptions he may have. This text is a fur­

ther explanation to  the misconception. This file is displayed when a student requests 

from the m isconceptions button in the control panel.

The system engineer can add m ore recursive problem, mistake types and misconception 

types whenever needed. For the different problem s he needs to add  different problem 

description file and support flies. W hen the m ore m istake types and m isconception types 

are found, the corresponding explanation files o f mistake and m isconceptions need to be 

added.

5.7 Features of RPT environment

T he R P T  environment is built with the hypertext model plus the program  execu­

tion. I t  provides graphic illustration, m ulti-dim ension display and visualized proceeding 

to  help students to understand a  recursive problem  solving process.

5.7.1 G raphic illustration

Pictures and diagram s can readily be used in the knowledge representation, and 

sometimes they can give m ore information. Graphic representation can immediately
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show the objects and their relationships so that people can accept information promptly 

by using hum an intelligence. The recursive programming is very difficult to be accepted 

by novices especially when they first encounter it. It seems th a t an unknown process is 

built over the sam e unknown process, only in multiple different ways. Indeed, comparing 

with other programming concepts, such as variable definition, input, output, loop struc­

ture, it is difficult to m aster. Using a com puter to  teach students, especially when it is 

possible to  supply a graphic illustration environment, not just verbal interactions, will 

provide an opportunity to  alleviate the degree o f difficulty. The R PT environment allows 

students to  use the processing tree to  represent the recursive relationships in nested 

program s a t different levels and to  use the graphic representation for a binary search 

tree to  depict the input data. Thus, this environment provide one more dimension in 

user-interface than other programming tu tor system which only provide dialogue and 

menu. The environment o f graphic illustration, in which the student learns the concepts 

and details about recursive programming, can foster intuition for abstract concepts and 

will m ake a  lasting impression on the mind of students.

5.7.2 Multi-dimension display

In  the R P T  environment, travel o r search among the spread nodes in a  processing 

tree can be easily carried ou t by a  simple click on the mouse button from any node in 

the  tree. This m ulti-dim ension retrieval process furnishes multiple dimension navigation 

paths. In the m ost tu tor environments, only the static display is allowed. These environ­

m ents only give display for the current state step by step  in the linear order, such as in 

the system LISP tu tor and GEOM ETRY tutor [Anderson 89]. Sometimes the sequential 

display conforms the course o f hum an knowledge acquisition. But the m ulti-dimension 

display is m ore powerful to  catch the brainstorm  that just flashed through the student’s 

m ind and to  follow the instantaneous idea in the cognitive processes. The R PT  environ­

m ent provides the display at multiple level not only for program code but also for the

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



input and the execution result of corresponding program. A nd this display can be con­

trolled by students. This mixed-initiative display endows students with more chances for 

creative thinking.

5.73 Visualization of recursion

T he m ost difficult thing for student to  learn the recursive program ming is that the 

program  is too elegant and succinct to  understand the program content. This is due to 

the feature o f the recursion that it defines an infinite process in a terse statem ent. In the 

R PT  environm ent the automatically generated spread node can unfold the process of a 

recursive program. The execution result for the subset of a  corresponding input data can 

be displayed by the student’s requiring. Thus, the originally hidden program  and the 

underneath process are visible to  the student. W hen a student learns the case at the 

spread node, he will see corresponding unfolded program  by visually opening the knowl­

edge environment. This gradational display allows students to go through the processing 

tree from  the roo t to  any node in the tree a t any level, therefore get corresponding 

program  a t an  incremental refinement. Different levels of refinement are needed for ef­

fectively tutoring different students.
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CHAPTER SIX 

EMPIRICAL EVALUATION 

ON

THE PERFORMANCE OF RPT

Previous chapters have presented the IA D I diagnosis model and its applications in 

a recursive program ming tutoring system. This chapter evaluates the perform ance of 

R PT  with em phasis on the IAD I diagnosis model.

The evaluations of ITSs have been underem phasized in the past. Even though there 

are few of ITS systems intended to  do so, there is no standard  set of evaluation methods 

for addressing these problem s (Littman and Soloway 88). Because the field of ITSs is too 

young, building ITSs is still somewhat an art, and there are few ITSs that can be called 

’’finished.” Designers of ITSs are  currently more concerned with usefully guiding the 

development of their systems, than  with determ ining if they are effective educational end 

products.

The evaluations o f R PT  reported here show an encouraging result from the experi­

ence in diagnosis processing o f R PT  and its running examples. The observations and 

analyses show tha t students are learning from the tutor. And this fact is consistent with 

our subjective efforts and wishes when we set out to construct the tu to r with the diagno­

sis model.

Although em pirical tests indicate that an encouraging result has been achieved, 

there still are some problems. These problems involve transporting the tu to r from the 

research environment to  the practical environment. It needs to pay more efforts to solve
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these problem s. The further considerations and possible works are addressed in the next 

chapter.

6.1 Bug Collection

The IA D I knowledge base currently is for insertion problem  which is a problem  of 

inserting nodes into a  binary search tree recursively. The possible m istakes in the IADI 

knowledge base are classified into thirteen different types. This classification is based on 

the program  structures of students’ program s for solving this particular problem. These 

m istake types are sum m arized from the students’ solutions to  the insertion problem in 

their homework and class work for the PASCAL program ming class, and also from the 

sam ple program s provided by experienced instructors.

A t the first stage, the author created bug program s to sim ulate the detection object 

based on  ob ta ined  stu d en ts’ bug program s from  helping studen ts  to  com plete their 

homework. A t the first round, eleven different m istake types were summarized. These 

m istake types were then investigated by several experienced program m ers and instruc­

tors, and  two different m istake types (m istake type 12 and type 13) were added to  the 

knowledge base based on their experience. For each of these mistake types there is one 

program  module in the R PT  system to  be implemented which is used to  analyze and 

recognize the corresponding mistake.

Then the R P T  system is used to  analyze the students’ programs, and is also ex­

pected to  receive m ore information from  the real objects of the bug detection. In the 

1990 fall semester, the intention o f collecting the bug solutions from the students’ home­

work failed because m ost subm itted homework was a  correct version of the solutions; 

the interm ediate solution, the bug program s in their previous versions were not turned 

in. In the 1991 spring semester, students were asked to subm it their program s for the 

insertion problem  during class time as class work. The inform ation obtained from their 

class w ork is shown in Fig 25.
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Total num ber o f programs : 27

Num ber o f analyzed program s : 2 0

Num ber of correct program s : 6

N um ber of bug programs : 14

N um ber of bugs : 2 0

Fig. 25. Program Collection

This class work was taken in 30 minutes. The purpose of collecting these programs 

was to  get to  know what is the students’ thoughts when they were learning the recursion, 

and w hat are the  possible mistakes they will make a t the beginning. There were about 40 

students in the class, but only 27 program s were subm itted. The 27 programs were made 

by 24 students. There are three programs in the different version, but by the same stu­

dents. A m ong the 27 program s, only 20 program s are analyzed because these 20 pro­

gram s are syntax error free programs and they are significant for the insertion problem 

solving. T hat is, we do not want to analyze on incomplete program  which has no m ean­

ing to  solving the problem, even if there is no syntax error in tha t program. There are 6  

program s which are  bug free and give correct solutions. In the other 14 programs there 

exist 20 m istakes which were going to  be analyzed by the R PT system.

6.2 Evaluation of Bug Detection and Bug Collection

The prelim inary R PT  system ran  the 14 students’ program s and the result of the 

sam ple data  is shown in Fig. 26.

T he total num ber o f existing bugs in the 14 student’s program s is 20. From the 

results we can see th a t the preliminary R PT system can recognize the m ost of the mis­

takes, (90% in this test). B ut some m istakes are misreported, which means those base
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Num ber of bugs :

No. of bugs recognized correctly : 

No. o f bugs recognized incorrectly : 

No. o f m isdetected bugs :

20
18

2
6

Fig. 26. Result O f Running Preliminary RPT 
System On Sample D ata

are  classified as the incorrect bug category. For example, the two bugs recognized incor­

rectly in Fig. 26 were erroneously detected as m istake type 11 when they were actually 

m istake type 6 . There also existed some m isdetections under which the correct programs 

were looked upon as bug programs or the  correct parts of the code were reported as 

mistakes. In three bug program s, a piece o f correct code is misdetected as mistake type 

5. Also three times the system erroneously reported m istake type 6  in programs which 

were correct. T he m isdetections are involved m ore than three modules in the preliminary 

detection program. It was necessary to  modify these modules in the preliminary diagno­

sis program  in order to  eliminate the misdetections.

T he reason for the misdetection is tha t the prelim inary system did not contain the 

case which is m ore general. For example, for the mistake type 5, ’’Did not provide the 

sm aller instance”, the module to  check this m istake only checks whether the smaller 

instance such as T ^ .L ch ild  is presented in the actual param eters. However, some stu­

dents use the assignment statem ent like T :=  T ^ .L ch ild  first, then they do  not need to 

present T ~  .Lchild in the param eters of the recursive call statem ent. They can write the 

recursive call statem ent a s  ’’insert (T  newitem)”, instead o f ’’insert (T ^ .L ch ild , new- 

item )”. T he sam e situations are present in other inconsistent cases. Obviously the system 

should be able to  cover the  general cases. T he preliminary R PT  system was remedied 

after these inconsistent cases were found. Now the R PT  system can detect the mistakes
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correctly, the cases that misdetect bugs and incorrectly recognize bugs have disappeared 

from the sample data. D ue to the variety of novice programs, it is certain that there will 

be unexpected cases which the system will not be able to  detect. This is one limitation of 

the system, but it is not a problem  of the essential detection approach.

The mistakes that were collected from the students’ program s happened to fall into 

the catalogue of mistakes in the R PT diagnosis knowledge base. The distribution of the 

twenty mistakes in students’ program s after running the revised R PT  system is shown in 

Fig.27.

M istakes in 
Diagnosis KB

m i m2  m3 ni4 m5 m6 m 7 mg mg m 10 m n m 12 m 13

M istakes in stu­
dents’ programs 5 1 1  0 0 3 3 0 5 0 0 0 2

Fig. 27. Bug D istribution In Students’ Programs

From  the bug distribution, we can see the mistakes m i ’’missing term ination condi­

tion” and the mistake 109  "not applying a  new node to hold the new item ” are the most 

common mistakes m ade by students since the percentage of these mistakes in the total 

mistakes reaches up to  25%. Mistakes m6  "miswrite the term ination condition” and m7 

’’missing key word which defines the variable param eter in the formal param eter defini­

tion” are easily m ade by the novice programmers. Both of them take up 15 percent of 

mistakes in the sample data. M istakes m 2  ’’misplace the operation of inserting a new 

node,” m3  ’’use a  loop structure”, and m i3 ’’not apply a new node, bu t try to  assign data 

to  it” are m ade sometimes but not as often. Some mistakes, such as 1114, ms, ms, mio, 

m u  and m p  were rarely found in the sample data. These mistakes are ’’lacking param e­

ter in recursive call statem ent,” ’’did not provide the smaller instance,” ’’m isorder the 

data  in left subtree and  right subtree,” ’’apply too many new nodes for inserting one new
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item ,” ’’try to  find nodes in a binary search tree instead of finding a place to insert a 

node” and ’’create a new node after using it.” The percentage may be different in the 

different group of students’ programs. It seems that the mistakes in the IADI knowledge 

base can cover all of m anifestations in the current collected programs.

63  Evaluation of Misconception Diagnosis

The R PT  system has been run with approximately 40 students in the ’’Problem 

Solving and  Programm ing Lab" class of the 1991 spring semester. During class time, the 

instructor first briefly introduced the RPT system. This introduction includes what is the 

basic purpose of R PT  how to work in the R PT  instruction environment and the diagnos­

ing environment, and also the system’s user menu. A fter that, a homework which in­

cludes the insertion problem  is assigned to students. Then the students practiced using 

R PT  and tried  to  sta rt their assignment in class. Students either wrote their program in 

the text window of the R PT  diagnosis environment, or called their prewritten program 

directly. A fter the program s passed the Pascal compilation, they were subm itted to  the 

R PT  diagnostic process.

63.1 Comparison in two groups

M ost students can not get the correct solution by only running their program  once. 

Usually students detect fewer bugs than actually exist, and  they take more time to  find 

them than  is necessary for the experienced program m er and com puter tutor. W hen they 

use the R P T  system, students are inspired by the suggestions and hints received when 

they work on the checking lists in the interactive communication with the R PT  system. 

A fter abou t one hour of class time including the instructor’s brief introduction and 

working with R PT  most of students acquire the confidence to  com plete the assignment. 

During their homework time, the tu tor helps students to  complete the homework more 

quickly than  students can by themselves. With the tu tor students feel more confident
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about trying to  find out whether there are bugs, locating the bugs, and then correcting 

the corresponding code.

The Fig. 28 shows the com parison num bers in cases there students complete the

\ Num ber o f  stu­
dents completed 
the course

Num ber of stu­
dents doing 
the assignment

Number of stu­
dents finishing 
the assignment

Percentage o f 
the students 
completed

Fall
1990 33 27 26 78.8%

Spring
1991

38 36 36 94.7%

Fig. 28. Comparison In Ttoo Groups

assignment in the spring sem ester and fall semester. The num ber of students complete 

the course, ra ther than the num ber of registered students, is listed here because it is a 

m ore reasonable base to  show how many students are studying in the class. These cases 

are  in two groups; students in the fall semester did not use the R PT system, but the 

students in the spring sem ester used R PT The assignment in the spring 1991 is an in- 

order traversal problem  plus the deletion of any node from the built binary search tree, 

while the assignment in the fall 1990 was just a  pure inorder traversal problem. Obvious­

ly the assignment in the spring was more difficult than the one in the fall. The result 

indicates th a t com paring with the situation in spring semester, more students were will­

ing to  and  able to  complete the similar bu t even more complicated assignment when 

they can use the R PT  system to  help them to  understand the basic recursive concepts, 

diagnose the mistakes in their subm itted programs, and clear their misconceptions. Al­

though there may be o ther facts which can affect the students’ attitude to  do recursive 

assignment, we can see th a t the help from R PT  is quite encouraging.

63.2 Diagnosis process shown from different versions
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Some of the students subm itted the interm ediate results which become different 

versions to  be analyzed. Tracing the different versions is very helpful in analyzing the 

system’s performance. For example, a  student first subm itted his program, the first ver­

sion, of which has the mistake type 9 ’’not apply new node to  hold the new item.” The 

procedure is displayed in Fig. 29. When he entered the diagnosis environment, he got the

Procedure insert (var T  : table; k : integer);
begin

if T  <  >  nil then 

begin
if T ' \  item < k  then 

insert ( T ^ .  Rchild, k); 

if T ~ .  item > k then

insert ( T ^ . Lchild, k);

end;
end;

Fig. 29. A  Student’s Program

error message after the m istake detection process and began a  dialogue with the RPT 

system. H e followed the checking list CLfcg) which is related to  the necessity of applying 

a new node and the way to  use it, and found out the misconception. The questions in 

the sam ple are such as

Do you think it’s necessary to have the new data saved in a node?

D o you need to  apply a  new node for holding this new data?

In order to  apply a  node to  hold the new data, what function will you use?

D uring the interactive conversation the student was enlightened and realized he needed 

to  include the application of the new node in his program. A nother version in Fig.30, 

which is subm itted by the student later, testifies to this conjecture.

In the program  showed in Fig. 30 the student tried to  correct the mistake type 9 in
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Procedure insert (var T : table; k : integer); 

begin

new(T);

T ^ .i te m  :=  k; 

if (T  <  >  nil) then 

begin

if T " \  item <  k  then 

insert ( T ^ .  Rchild, k); 
if T 'N. item >  k then

insert (T ~ . Lchild, k);
end;

end;

Fig. 30. A nother Version O f The Program In Fig.29

the version shown in Fig. 29. But this version still was not correct. A nother mistake 

appeared, type 2, ’’M isplace the operation of inserting a  new node.” T hat showed that 

even the student already knew he needed to  apply a new node, but there was another 

step needs to  be considered. This step was to find the correct position in which to insert 

the new node. Following the checking lists CL(c7) then, which contains the question like 

’’when you need to apply a  new node to  hold the new item ?” and other related ques­

tions, the student realized what was wrong and found the correct place to  insert the 

node. Finally he corrected the m istake and got the correct solution and completed the 

assignment successfully.

6.3.3 Results shown in finals

The test on the students final examination supports the claim that the R PT  system 

helps students avoid misconceptions in  their programming.

In the final examination of the spring 1991 semester, the students were given two 

problems. One is to  write a  procedure to  calculate the height o f any binary search tree
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(Helman and Veroff 8 6 ) (we call it a  height problem here), and another is to find a bug 

on a given bug problem  and correct it. In this final exam this procedure is required to 

work with other given procedures to  solve the problem. The insertion procedure is one 

of the given procedures which is a basic step in building a  binary search tree. One of 

the correct versions to  calculate the height is displayed in Fig. 31. By com paring the 

procedure in Fig. 31 to  the previous correct insertion procedure (one version is in Fig. 6 )

Procedure height (var m : integer; T: ta b le );

var h i, h2 : integer;

begin
if T  <  >  nil then 
begin 

m :=  m + 1; 

h i  :=  m; 
h2 : — m;

height (h i, .Lchild); 

height (h2, T ^ .R child ); 

if h i  > h 2  then m : =  h i;
else m : =  h2 ;

end;

end;

Fig. 31. Procedure l b  Calculate The Height 

O f Binary Search Tree.

we find that some concepts implied in the two procedures are similar. These concepts 

are about the term ination condition in a recursion process, the recursive relationship, 

and the definition o f the variable param eter of a  procedure. If  we imagine the possible 

m istakes in the height problem, the related mistake types may be the following:

M istake m i : M issing the term ination condition;

M istake m 3  : U se a loop structure;

M istake m 4  : Lacking param eter in recursive call statement;
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M istake ms : D id  not provide the smaller instance;

M istake mg : Miswrite the termination condition;

M istake m-j: M issing key word which defines the variable param eter in the formal 

param eter definition.

Since there are many similar concepts in the two procedures, we can assume that 

the students tutored by the R PT  system with the problem solving of insertion will get the 

benefits o f this and hopefully avoid sim ilar misconceptions and mistakes in the problem 

solving o f height.

We manually analyzed the students’ solutions after the final exam, and got the 

following results shown in Fig.32. In the final examination, only five students gave the

Num ber o f students who took the fin a l: 38;

Num ber o f students who subm itted the answer to  this problem : 31;

N um ber of procedures having m l ; 0;

N um ber of procedures having m3 :0;

N um ber o f procedures having m4 :1 ;

Num ber o f procedures having m5 ; 0;

Num ber o f procedures having m 6 :0;

N um ber o f procedures having m 7 :1 .

Fig. 32. Finding From  Students’ Solutions

correct solutions. M ost of students can not solve the problem completely a t the examina­

tion time. O ne reason is it is a  little b it hasty with the 3 hours to solve two problems. 

T he observation shows th a t the m ain obstacle is something in the logic o f the process 

to  find the height o f a  binary search tree which is a harder problem than the insertion 

problem . From  the Fig. 32 we can see the results from the subm itted solutions. These 

results indicate that after students used the R PT  system to help them get rid o f some 

m isconceptions, the m ost common mistake, type 1 , missing term ination condition, was
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almost eliminated in this final exam. The easily made m istake type 6  is eliminated too. 

and the another easily m ade mistake type 7, missing key word which defines the variable 

param eter in the formal param eter definition were reduced to  1 out of 31 from 3 out of 

27 (The one who had m ade the mistake type 7 in final was within the three who m ade it 

in classwork). The m istake type 4, lacking param eter in a recursive call statem ent, ap­

peared in the final which had not appeared in the class work or homework before, but it 

was in the diagnosis knowledge base. If we com pare this result with the manifestations 

shown in Fig. 27, we can see that these results are quite encouraging.
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CHAPTER SEVEN 

CONCLUSIONS

The previous chapters have discussed the Integration o f the Abductive and Deduc­

tive Inference diagnosis model and its application in a Recursive Programming Tutor. 

The substantive issues and the state of the art have been presented. This chapter sum ­

m arizes this research and the contributions of the IADI model to  diagnosis problem 

solving, then proposes some further research issues.

7.1 Summary of IADI Diagnosis Model and Its Significance

T he abilities to  understand the m ental activities of a student, and to  detect and 

correct misconceptions in the student’s  understanding are the main features that distin­

guish the ITS from other systems such as expert systems and earlier CAI systems. This 

motivates many researchers to  concentrate their efforts on the student modeling problem 

and diagnosis problem  solving.

There are many different diagnosis m ethods provided in the existing student m od­

eling problems o f intelligent tutoring systems. Thble 1 in C hapter 1 listed the m ajor 

diagnosis techniques in different student models. C hapter 2  described and discussed 

these different techniques and further classified them  into three types of diagnosis m od­

els. The enum erating model can work well when the problem  size is small, o r the combi­

nation and the perm utation of facts, like the facts in subtraction, are easily obtained. 

But it does not work well in  more complex problems such as the case involving mental 

states. The tracking model tries to  track a student’s mental stages at every step in order 

to  establish a  complete student’s mental model. But the feasibility of grasping every
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m ental state  of a hum an is questionable, and tightly following steps indicated by the 

system restricts some possible solutions. The classifying model captures the design plans 

and the significant issues to build a student model, therefore it is m ore realistic than the 

tracking model, and m ore effective than the enumerating model. But this model does not 

show how to  deal with the complex relationships between basic conceptions and demon­

stra ted  mistakes.

The IA D I diagnosis model is explored to  diagnose students’ m istakes and miscon­

ceptions in complex problems. It is different from the existing diagnosis models. The 

IA D I diagnosis model combines different types of inferences, the abductive inference 

and  deductive inference. The basic process is divided into three steps, mistake detection, 

m isconception hypothesizing and misconception verification. These three steps are ac­

complished by structure analysis, abductive inference and deductive inference respective­

ly. The abductive inference is used to  catch the plausible features o f hypothesizing pro­

cess while the deductive inference is used to  presents the nature of verification process. 

T hus it becomes an inferencing model, and the different inferences can be supplement 

w ith each other. This model provides detection a t two levels. I t detects m istakes to  show 

w hat incorrect actions are, and  also detects misconceptions to  find why the wrong ac­

tions occur. Com paring with the detection a t only one level, this m odel can bring poten­

tialities of tutoring into full play. This diagnosis model focuses on the m ain conceptions 

in a  problem  and catches the key steps in problem solving to  avoid excessive details. It 

also attem pts to  connect the relationships between mistakes and m isconceptions in rules 

for a particular problem, and associate design plans to  program m ing conceptions. Thus 

it provides rationality to  elaborate conception during tutoring. This model simulates hu­

m an diagnostician’s reasoning process in cognitive activities in o rder to  obtain a better 

solution. This model works in  a  hypertext concept based tutoring environment. It allows 

students to  m aster the concept o f recursion and the a r t of recursive programming with 

relative ease. The general model is outlined in Chapter 3 and the  processes are de-
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scribed in C hapter 4, with an application in a recursive program ming tutor. The working 

environm ent is illustrated in C hapter 5. Finally the empirical tests and evaluations are 

presented in C hapter 6 .

T he following subsections address the significance o f the model by summarizing 

the features th a t make the IA D I diagnostic model distinguish itself from other models 

and  also sum m arizing the contributions o f the R PT  system.

7.1.1 TYvo-level detection

T he IA D I diagnosis model provides a two-level detection. The first is mistake de­

tection a t the action level. The second is misconception detection a t the conceptional 

level. Diagnosis systems typically only detect mistakes. If a diagnostic process only indi­

cates mistakes, it will not be able to  help students to  understand the reason, and it may 

not even be able to  convince a  student th a t mistakes were actually made. Obviously, it is 

not sufficient if the diagnosis process in a tutoring system detects m istakes only on the 

surface. It can not reach the fullest potential o f an intelligent tutoring system. In an 

intelligent tutoring system, the diagnosis process m ust carry a step further to find the 

m isconception so that it can provide the  basis for a tu tor to  give possible causal expla­

nations for incorrect actions, and for students to  get a deeper comprehension, and there­

fore can elim inate a  whole set of mistakes. Some tutoring systems provide only concep­

tional explanations to  the detected mistakes. These explanations come from  experience. 

The formal relationships between m istakes and misconceptions are not summarized. The 

IA D I d iagnosis m odel sum m arizes a  set o f production  ru les in the IA D I diagnosis 

knowledge base th a t represent the cause-effect relationships between mistakes and mis­

conceptions which are considered as the most im portant principle to  follow in a  diagno­

sis system (Torasso and Console 89) (W hite and Frederiksen 90). A nd this helps the 

system find m isconceptions from  mistakes.
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7.1.2 Com bination of abduction and deduction

M ost expert systems, including tutoring systems, for diagnostic problem solving 

only use deductive inference. Although the reasoning process based on this inference 

mechanism is essential, it is not adequate by itself in solving many real world diagnostic 

problems. There are some problem s associated with deductive inference systems. For 

example, many o f them have an extensive list of conditions so that it is difficult to  fire a 

rule. And the deductive inference systems lack the representation of cause-effect knowl­

edge in their traditional production rules.

On the other hand, some expert systems for diagnosis use abductive inference only. 

In such systems it seems that something is lacking when explanations to incorrect ac­

tions are needed. It lacks a  good organization of the material to  be explained. This is a 

very im portant point in a tutoring system. By taking into consideration o f the complex 

relationships between mistakes (in other problems they may be called symptoms, bugs, 

or m anifestations) and misconceptions, and exploiting the features of abductive inference 

and deductive inference, we have combined abduction and deduction into the diagnosis 

process. This integrated diagnosis process has a hypothesis process and a  verification 

process which are very close to  hum an diagnosticians’ process. A nd the rule form in the 

IA D I knowledge base supports both abduction and deduction. The explanations to each 

m isconception are well organized by the design plans which can be expected to  have an 

effective tutoring result.

7.1.3 C oncentrating the  diagnosis on key steps o f problem  solving

The IA D I diagnosis model is different from the existing tracking model and enu­

m erating model. The IAD I diagnosis model works by taking into consideration mental 

states, but it does not enum erate all the m istakes derived from various mental states. By 

studying the differences between experts and novices in different domains, cognitive psy­

chologists have discovered th a t students usually go through different conceptual stages,
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especially in the critical ones o f learning a subject [Brown and Burton 87]. Thus teaching 

is not the pouring o f knowledge into an  empty vessel, but more a process o f reconceptu- 

lization o f the critical issues. In the instruction stage o f  the R PT  system the tu tor tries to 

grasp critical issues to  induce general rules to  a  student who is learning the recursive 

program ming technique, because clarifying and solving them  are the crucial steps to 

solve the whole problem  [Shen, Zhang and Zhao 90]. In the diagnosis process this model 

selects m ajor m istakes m ade on key steps in problem solving and fatal misconceptions 

formed when learning a  subject to  form the diagnosis knowledge base, which contrasts 

the tracking model that tries to  arrange all mental activities and trace them. And the 

items in a checking list for verification o f a misconception are chosen for presenting the 

critical issues around the m ain steps o f a design plan to achieve a goal. This disposition 

is m uch m ore efficient and reasonable.

In the internal process of the diagnosis model, the abductive process infers a se­

lected candidate hypothesis set Cs for a  student. Every hypothesis in Cs is a probable 

m isconception that the student may have. The deductive process then focuses on the set 

Cs while the student works with the corresponding checking lists. Thus the efforts of the 

tu to r’s instruction is focused on the student’s specific misconceptions ra ther than using 

some generic instructions. It avoids requiring the tu tor to  go through the same detail 

when a  different student is being tutored. These are the typical characteristics of an ITS 

that has a instruction tailored to  the individual needs of students.

7.1.4 Incorporating the process of tutoring into diagnosis

The system begins to  tu tor while it is doing further diagnosis after the initial hy­

potheses are obtained. This is different from those systems in which the tu tor starts to  

give instructions or explanations only after the diagnosis result is gained [Johnson and 

Soloway 84] [Woolf and M cDonald 84]. In  such processes, the scope of diagnosing p ro ­

gramming errors is limited to  the information that is extractable from the buggy pro-
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grams themselves. In the deductive reasoning process of the IA D I diagnosis model, the 

system establishes checking lists to  further detect a student’s m istakes which are unde­

m onstrative in the original buggy program, and therefore verifies a student’s misconcep­

tions and produces a more precise student model. During this process, the system also 

gives instructions if the student answers questions inappropriately. The verification pro­

cess and the tutoring process proceed in an interactive environment. D uring the interac­

tion with a  student, the system follows both the cause path and the design plan. The 

corresponding instructions will help the student to understand the reason why he made a 

mistake, and to understand the design plan how they can reach a correct concept. Thus 

the tutoring process is incorporated into the diagnosis process in IADI. In this way, 

students can receive instructions on particular misconceptions whenever they are told 

there is something incorrect. These im prom ptu explanations and instructions can be 

readily absorbed by students.

7.1.5 Nondcterministic diagnosis

T he IA D I diagnosis model produces a  list of ranked misconceptions as the final 

result. I t is not a  determ inistic result. In  cases where the intersection of man(cj) and the 

detected m istakes is a subset o f  the intersection of man(cj) and the detected mistakes, Cj 

may still be a  eligible misconception. Thus the method includes both Cj and cj in Cs as 

appropriate.

In cognitive activities, excessively or rigorously determ inistic m athem atical models 

may not be appropriate. For example, if we have the rules 

c i — ► m i, c2  — ► m2 , c i — ► m 2, 

and we are given M p =  {mi, m2}, then Ci might be a good explanation for Mp and it 

also is the  minimal cover for M p in terms o f the Set Covering model [Reggia 85). But we 

can not rule out c2  as the possible diagnostic result, because it is possible that the 

student m ade m i through ci, and m ade m 2  through c2 under a different situation. In the
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IA D I diagnosis model, both c i and Cz are included in the final diagnostic list and are 

ordered in appropriate  way. Thus, this approach provides m ore reasonable result.

7.1.6 Hypertext tutoring environment

When we design an  ITS, we should consider that the ITS works with a student who 

does not understand the subject dom ain very well. There is no doubt that a well-de­

signed environm ent can enhance the capabilities of an ITS in many ways. The new tech­

niques and research ideas from com puter applications and cognitive science are opening 

up many opportunities for creating a  good instructional environment. The R PT  system is 

built in a  hypertext based environment. Although the hypermedia technique has been 

applied to  teach English literature, cell biology [Yankelovich 8 8 ] and engineering [Bourne 

89], it has not been used in program ming tutoring. The R P T  system uses the hypertext 

concept accompanying code execution to  create a  tutoring environment for recursive pro­

gramming. The significant cases and critical issues in the learning of recursive program ­

ming are presented in a  m ulti-dim ension graphic environment. This environment can 

also m ake the process originally hidden from the succinctly written recursive program 

visible. It allows students to  see through the recursive process at different levels of de­

tails and even get the execution result of the procedure a t each level. The environment 

and its o ther features are described in section 5.7.

7.1.7 Evaluation of RPT

T he em pirical evaluation of R PT  shows an encouraging result. The evaluation data 

are based on the com parisons in the ’’Problem Solving and Programming L ab” classes 

within two semesters. The system has been ru n  with approximately 40 students in the 

1991 spring semester. The com parison between the m istakes detected by R PT  and the 

mistakes detected by people shows that mistakes collected in the IA D I knowledge base 

can cover all the m istakes dem onstrated from  these students’ programs. W hen students
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use R PT  to solve the insertion problem, the progress steps can be seen from the differ­

ent versions subm itted from students. T hat is, the misconceptions were clarified by the 

instructions from the R PT diagnosis and tutoring process. The data  of the accomplish­

m ent of assignments assigned in the two semesters indicate that students were increasing 

com petent in recursive problem solving since more students (in percentage) in the spring 

1991 sem ester could complete the assignm ent than students in the fall 1990 semester 

when not using RPT, even though the assignment was more complicated in the spring 

1991 semester. Furtherm ore, most common mistakes were significantly reduced after the 

students had used the system. This conclusion became m ore evident when we com pared 

their class assignments and the final exams where harder problems but with similar 

concepts were given. O n the o ther hand, other factors that were not indicated in the 

analysis may also have played some role, even though they were not obvious. The sample 

size may also be considered quite small.

7.2 F u ture Research Work

A s a  first step in proposing and building a diagnosis model, the description about 

the IA D I model is concentrated on the basic principles and the m ain steps. It definitely 

has som e limitations. From  the prototype environment to  a real practical environment, it 

still has a long way to  go. In order to  improve the perform ance of the diagnosis model, 

there is a need from various perspectives. Several research issues are addressed in this 

section.

7.2.1 The degree of diagnostic details

The deductive reasoning in the IA D I model is a  process that verifies the hypothe­

ses from  the selected candidates. The checking lists are used to  list the possible manifes­

tations for every selected hypothesis. From  the student's choices the tu tor can decide 

what misconceptions the student may have. The more items a  checking list has, the more
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precise the student model can be. There is a tacit assum ption that tutoring based on 

fine-grained student models will be more effective than tutoring based on coarse-grained 

models. No one has attem pted to  check this assumption. The thing one needs to  know is 

whether the fine-grained modeling is worth the effort, and whether students are willing 

to  answer so many questions in a  checking list. Although the items are well organized by 

the design plans, what degree o f detail is suitable for a particular system still needs to 

be studied.

On the other hand, an acceptable view o f diagnosis problem solving behavior is 

th a t problem solving is carried out a t multiple levels of abstraction. For example, a gen­

eral misconception can be refined to  many specific misconceptions under the general 

one. Thus, the knowledge structure for cause-effect relationships among the general mis­

conceptions, specific misconceptions, and mistakes may become more com plicated if we 

consider that there is one m ore dimension added to  the cause-effect relationship we 

described in this model. The question is whether the multiple level, giving fine model 

description is better, o r if the flat structure, giving coarse model description is better. 

T he former may be able to  give a m ore precise diagnostic result. The latter may be more 

efficient a t giving a  diagnostic result since fewer relationships need to be taken into 

consideration. If the form er one is chosen, the knowledge structure m ust be rearranged 

in the diagnosis knowledge base.

7.2.2 The diversity of mistakes

T he IA D I diagnosis model is first implemented in a  recursive program ming tutor. 

Usually the recursive program  is short and its structure is not as varied as in other 

kinds of programming problems, although the concept about recursion is not easily to be 

understood. When the complexity o f a problem is increased or the size o f a solution 

becomes larger, the m istake detection will become increasingly difficult, because the 

types of structures in the solutions will be dramatically increased. Especially in the nov-
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ice program m ers’ solutions, bizarre mistakes under various misconceptions will emerge 

one after another and  the unexpected structure types will make detection difficult. Thus, 

a structure based m istake detection may not be able to  deal with it completely. Other 

methods, such as combining heuristic control strategy, need to  be put forward to com­

plem ent the structure based mistake detection.

7.2.3 Other Applications

Besides the topics mentioned in the last two subsections that need to  be studied, 

the im plemented R PT  prototype must be further tested in a wider range, such as getting 

m ore students to  work with it and allowing it to  tackle m ore diagnosis problems. Then 

we can acquire m ore em pirical data and refine the diagnosis knowledge base and tutor­

ing system, and even replenish the diagnosis model.

There are also many other domains that the IA D I diagnosis model can be applied 

to, such as o ther program ming languages, mathem atical subtraction, calculus, medicine, 

or digital circuit. For each different area, there is a  set of tasks to  be put into effect, 

such as bug collection, cause investigation, tutoring subjects induction, and so on. If  they 

are done, they would help us to  test m ore thoroughly the effectiveness of the inferenc- 

ing-based approach  to  diagnosing novice solutions. U pon successfully solving new issues 

in other dom ains, this diagnosis model will be greatly improved and the generality of 

this model m ay be proved.
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