Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 1991

Integration of Abductive and Deductive Inference
Diagnosis Model and Its Application in Intelligent
Tutoring System

Jingying Zhang
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience etds

b Part of the Artificial Intellicence and Robotics Commons

Recommended Citation
Zhang, Jingying. "Integration of Abductive and Deductive Inference Diagnosis Model and Its Application in Intelligent Tutoring

System" (1991). Doctor of Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/7mcs-q184
https://digitalcommons.odu.edu/computerscience_etds/118

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/118?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

INTEGRATION OF ABDUCTIVE AND DEDUCTIVE INFERENCE
DIAGNOSIS MODEL AND ITS APPLICATION

IN INTELLIGENT TUTORING SYSTEM

by
Jingying Zhang
M.S. December 1981, Beijing University of Aeronautics and Astronautics
Beijing, People’s Republic of China
B.S. December 1976, Jiangxi University, Nanchang, Jiangxi, PR.C.

A Dissertation
Submitted to the Faculty of Old Dominion University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
Computer Science
Old Dominion University
December, 1991

Approved by:

St(;wart N. T. Shen (Dirégtor)V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

INTEGRATION OF ABDUCTIVE AND DEDUCTIVE INFERENCE
DIAGNOSIS MODEL AND ITS APPLICATION
IN INTELLIGENT TUTORING SYSTEM

Jingying Zhang
Old Dominion University, 1991
Director: Dr. Stewart N.T. Shen

This dissertation presents a diagnosis model, Integration of Abductive and Deduc-
tive Inference diagnosis mode! (IADI), in the light of the cognitive processes of human
diagnosticians. In contrast with other diagnosis models, that are based on enumerating.
tracking and classifying approaches, the IADI diagnosis model relies on different infer-
ences to solve the diagnosis problems. Studies on a human diagnosticians’ process show
that a diagnosis process actually is a hypothesizing process followed by a verification
process. The IADI diagnosis model integrates abduction and deduction to simulate these
processes. The abductive inference captures the plausible features of this hypothesizing
process while the deductive inference presents the nature of the verification process. The
JADI diagnosis model combines the two inference mechanisms with a structure analysis
to form the three steps of diagnosis, mistake detection by structure analysis, misconcep-
tion hypothesizing by abductive inference, and misconception verification by deductive
inference. An intelligent tutoring system, "Recursive Programming Tutor” (RPT), has
been designed and developed to teach students the basic concepts of recursive program-
ming. The RPT prototype illustrates the basic features of the IADI diagnosis approach,
and also shows a hypertext-based tutoring environment and the tutoring strategies, such
as concentrating diagnosis on the key steps of problem solving, organizing explanations

by design plans and incorporating the process of tutoring into diagnosis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I wish to thank my advisor Dr. Stewart Shen for his crucial guidance and encour-
agement during my study and research.

I wish to thank the other members in my previous and final committees, Dr. Larry
Wilson, Dr. Christian Wild, Dr. Ravi Mukkamala, Dr. Robert Lucking and Dr. Alan
Mandell for their valuable suggestions and support in this research, and careful reading
and helpful advice in reviewing this dissertation.

I would like to express my deep thanks to my parents, Yiaochen Zhang and Yun-
fang Du, for their lasting guidance, support and understanding.

I also appreciate my husband, Shensheng Zhao, who has endowed most concern
and help from many perspectives.

Thanks are also due to other faculty members in Computer Science department;
Dr. Michael Overstreet, Dr. Stephen Olariu, Dr. Shunichi Toida, Dr. James Schwing and
Dennis Ray for their help.

The friendship and help from my fellow graduate students, Jih-shih Hsu, Myron

Xu and Ghassan Issa are also appreciated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES .

Chapter
1. INTRODUCTION ..
1.1 Outline of Intelligent Tutoring Systems
1.2 Background
1.2.1 Domain knowledge module
1.2.2 Student modeling module
1.2.3 Tutor module
1.2.4. Instruction environment
1.3 1ADI Diagnosis Model
14 Dissertation Overview

2. RELATED WORK

2.1 ITSs in Programming Tutoring
2.1.1 MENO-II
2.1.2 PROUST
2.1.3 MENO Tutor
2.14 BRIDGE
2,15 LISP tutor
2.1.6 APROPOS2

2.2 Diagnosis Approaches
2.2.1 Model tracing
2.2.2 Condition induction
2.2.3 Issue analyzing
2.2.4 Plan recognition
2.2.5 Decision tree
2.2.6 Generate and test

2.3 Summary on the State of the Art

3. OUTLINE OF THE INTEGRATION OF ABDUCTIVE AND DEDUCTIVE

it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

vii

24
26
27

29
30
3i
35
35
37

INFERENCE DIAGNOSIS MODEL

3.1 Abductive And Deductive Logic Reasoning

3.2 A View Of The IADI Diagnosis Model
3.2.1 Detection at two levels
3.2.2 Integrated Inferences and applied rules in IADI model
3.2.3 Nondeterministic representation of diagnosis
3.24 Three steps in IADI diagnosis process

3.3 Knowledge Representation In IADI Diagnosis Model
3.3.1 Structure pattern
3.3.2 Hypothesizing rules
3.3.3 Checking list

3.4 Structure Analysis Process

3.5 Abductive Inference Process

3.6 Deductive Inference Process

3.7 Overall IADI Diagnosis Process Description

4, IADI DIAGNOSIS MODEL IN RECURSIVE PROGRAMMING

4.1 RPT Domain
4.1.1 Why choose recursion
4.1.2 Insertion problem description
4.1.3 Analysis on recursion algorithm
4.2 RPT System Outline
4.3 Mistake Detection
4.3.1 The organization of program structures
4.3.2 Program structure analysis
4.3.3 Program structure summary
4.3.4 Mistake types
4.4 Misconception Hypothesizing
4.4.1 Misconception types
4.4.2 Multiple relationships between mistakes and misconceptions
44.3 Abductive hypothesis
4.4.4 Misconception ranking
4.5 Misconception Verificaticn
4.5.1 Checking list

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41
42

45

48
49
51
51
51
54
54
56
57
59

61
61
61
63
63

68
70
74
76
79
5
83

85
87
87

4.5.2 Programming design plan 9%

4.5.3 Misconception verifying process 92
4.5.4 Misconception reraking 95
4.6 Example of IADI Diagnosis Analysis 97

5. TUTORING ENVIRONMENT OF RECURSIVE PROGRAMMING TUTOR 104

5.1 Objectives For Creating RPT Environment 104
5.2 Hypermedia Environment 106
5.3 Overall interface 107
5.4 RPT Instruction Environment 109
5.4.1 Representation of a spread node 110
5.4.2 Processing tree 112
5.4.3 Automatic generation of input argument values 115
5.4.4 Graphical representation of input data 117
5.4.5 Execution of the recursion in a spread node 119

5.5 RPT Diagnosis Environment 120
5.5.1 Program submission 120
5.5.2 Diagnosis interactive process 122
5.5.3 Types of mistake and misconception checking 124

5.6 File System of RPT 124
5.6.1 File system for instruction 125
5.6.2 File system for diagnosis environment 127

5.7 Features of RPT environment 128
5.7.1 Graphic illustration 128
5.7.2 Multi-dimension display 129
5.7.3 Visualization of Recursion 130

6. EMPIRICAL EVALUATION ON THE PERFORMANCE OF RPT 131
6.1 Bug Collection 132
6.2 Evaluation Of Bug Detection and Bug Collection 133
6.3 Evaluation of Misconception Diagnosis 136
6.3.1 Comparison in two groups 136
6.3.2 Diagnosis process shown from different version 137
6.3.3 Results shown in finals 139

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. CONCLUSIONS 143
7.1 Summary of IADI Diagnosis Model 143
7.1.1 Two-level detection 145
7.1.2 Combination of abduction and deduction 146

7.1.3 Concentrating the diagnosis on key steps of problem solving 146
7.1.4 Incorporating the process of tutoring into diagnosis 147
7.1.5 Nondeterministic diagnosis 148
7.1.6 Hypertext tutoring environment 149
7.1.7 Evaluation of RPT 149
7.2 Future Research Work 150
7.2.1 The degree of diagnostic details 150
7.2.2 The diversity of mistakes 151
7.2.3 Other applications 152
REFERENCES 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE PAGE

1. ITSs and Their Diagnosis Methods 11

2. Mistake Types 78

3. Misconception Types 81
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FI

1
. The Bug Program and a Dialogue On It
. Taxonomy Of Plans In LOGO

. Plans In Program Code

O 00 ~1 N L A W

—_ O G
GW\!O\GAWN;—IO

ERREBRERS

29.
30.
31

32

LIST OF FIGURES

GURES
Components of an ITS

. Overview Of JIADI Diagnosis Process

. A Correct Version Of Insertion Program

. RPT System Frame

. Diagnosis Process In IADI Model

. Another Version Of The Insertion Procedure

. An Erroneous Procedure

. An Erroneous Procedure

. An Example Of Error Program and Detected Mistakes

. A Checking List For c;

. The Explanations For The Different Choices In Item Two Of CL(c;)
. Checking List Arranged By Design Plans

. An Erroneous Procedure

. A Possible Series Of Student’s Response To The System
. Overall Interface Of RPT
. The Root Spread Node

PAGE

32
34
50
65
67
68
73
76
79

88
%
94
97
102
108
113

. Demonstration For The Inorder Traversal Problem With Input Binary Tree 114

. One Processing Tree

. Spread Nodes With The Input Binary search Tree
. The Part Of A Checking list In Use

. Types Checking For Misconceptions

. Program Collection

. Result Of Running Preliminary RPT System On Sample Data
27.

Bug Distribution In Students’ Programs

. Comparison In Two Groups

A Student’s Program

Another Version Of The Program In Fig. 29.

. Findings From Students’ Solutions

vii

Procedure To Calculate The Height Of Binary Search Tree

116
118
123
125
133
134
135
137
138
139
140
141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER ONE

INTRODUCTION

Research on intelligent tutoring serves two goals. The first one is to develop sys-
tems for automating education, and second one is to explore epistemological issues simi-
lar to those studied by psychologists (Anderson 90).

Psychologists, educators, and computer scientists are concerned with the research
on intelligent tutoring since 1970s, which has evolved from Computer-Assisted Instruc-
tion (CAI). It has become one of the most active fields in Artificial Intelligence (Al)
(Barr and Feigenbaumn 82) (Clancey 87). Intelligent Tutoring Systems are systems that
teach people new knowledge with Al technologies. Why do people precede them with
"intelligent”? What does it mean to teach intelligently? Many researchers in this field
try to give explanations to this point (Clancey 87) (Siuru 89) (Barr and Feigenbaum 82)
(Vanlehn 88) (Sleeman 82). Although there is no acknowledged definition for Intelligent
Tutoring Systems, contrasting with CAI, there is one characteristic shared by many ITSs,
which is that ITSs refer to a model of the student’s current knowledge (Vanlehn 88)
(Wallach 87). Based on this model, ITSs can not only transfer the predefined knowledge
in selected material, but can also ferret out the student’s misunderstandings and adapt
the content of instruction to the student’s level.

However, understanding students and focusing instructions on their understanding

is not easy even for human beings. Psychologists and educationists have been studying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this process since ancient times. The famous Chinese ancient educationist Han Fei Tzu

said in the section "The Difficulties of Persuasion” (Han 64):

On the whole, the difficult thing about persuading others is not that
one lacks the knowledge needed to state his case nor the audacity
to exercise his abilities to the full. On the whole, the difficult thing
about persuasion is to know the mind of the person one is trying to

persuade and to be able to fit one’s words to it (72-72).

Thus, in addition to the subject matter, there are two difficult tasks for the tutor. First,
the tutor must know what the student is really thinking; then he must find an individual-
ized instruction that fits the student’s needs.

Humans now use computers to teach students automatically and individually. But
these efforts must also confront the above two difficulties. With Al technology, one can
build the student module to represent the student’s current understanding. Modern com-
puter techniques provide many methods and tools that can be used to create a good
tutoring and learning environment that alleviates these difficulties. ITSs are rising as one
promising field to solve these two difficult problems.

There are dozens of ITSs scattered throughout the literature. These systems inte-
grate the intelligent tutor with computer-based technologies within the different subjects
of expertise. Although researchers in this field made great efforts to put forward a vari-
ety of methods, and have built some systems to make ITSs more intelligent, only a few
systems provide the applications in the real world. This implies that constructing ITSs is
still in a premature stage. Thus it is necessary to build more ITSs for exploration, and
also for gathering universal knowledge about how to build practical ITSs (Polson and
Richardson §8).

This dissertation presents a new diagnosis model, "Integration of Abductive and

Deductive Inference” (IADI), to diagnose the student’s current understanding. This mod-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

el is applied to student modeling problems of intelligent tutoring systems. A detailed
discussion about this diagnosis model is presented in chapter 3 which describes the
design and implementation of the intelligent Recursive Programming Tutor (RPT), which
teaches students the basic understanding of recursive programming. In this system the
pedagogical expertise in recursive programming was employed as domain knowledge,
and the case induction method was adopted to tutor students. To successfully achieve
this poal, the hypertext based tutor environment was created.

This chapter provides an introduction to this research work. Section 1.1 outlines the
existing Intelligent Tutoring Systems (ITSs), section 1.2 reviews the background of the
ITS, including the architecture of ITSs and the tutoring environment, section 1.3 briefly

introduces the IADI diagnosis model, and section 1.4 provides the dissertation overview.

1.1 Outline of Intelligent Tutoring Systems

Intelligent Tutoring Systems and the traditional Computer-Assisted Instruction sys-
tems both have representations of the subject knowledge they teach. But the ITS is dis-
tinguished from its predecessor the CAI by the way in which it communicates with stu-
dents, tries to understand students, and diagnoses the students’ misunderstandings. ITSs
apply Al knowledge representations and inference mechanisms to present and reason
about the subject matters, the student understandings, and pedagogical principles.

When one thinks of an intelligent tutor, one generally imagines an anatomy like in
Fig. 1, that provides a convenient classification of the research and direction of develop-
ment. The domain expert provides the domain knowledge and prepares to reason on that
domain. The tutorial expert offers strategies for students to learn the domain knowledge.
The diagnosis expert detects erroneous assumptions that the student may have. The stu-
dent model represents the student’s learning background and the current state of knowl-

edge. The instructional environment supports the activities of students and tutors. The

three experts, the domain expert, the diagnosis expert and the tutorial expert directly or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Domain
Expert
Diagnosis Tutorial
expert expert
Student Model
1
Instructional
Environment

Fig. 1. Components of an ITS

indirectly communicate with the student model in the tutoring process. Through the stu-
dent model and the diagnostic process, the system can identify what the student does
and does not know about the subject matter, and can then focus the tutoring effort on
the individual pedagogical needs of a student.

The existing intellipent tutoring systems possess different features. Some of them
focus on organization of subject knowledge (Clancey 82); some of them lay the particu-
lar emphasis on diagnosing the student’s current misunderstanding (Johnson and Solo-
way 84) (Burton 82) (Bonar 88); some of them are more involved with the instructions of
various strategies or pedagogies (Anderson 90) (Woolf and McDonald 84); some of the

systems concentrate their efforts on creating tutor environments (Woolf 88) (Hollan 84).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To construct an intelligent tutoring system, one must consider that the crucial work
is in building the student model. There are several student model representations in
existing ITSs, including production systems (Clancey 82), and procedural networks (Bur-
ton 82), frame representations (Carbonell 70) (Laubsch 75), and genetic graphs (Gold-
stein 82). After a representational scheme has been decided, the student’s understanding
needs to be detected. That is, for each of the student’s behaviors, the system should
hypothesize the corresponding explanations. However, sometimes the student’s behaviors
are incomplete or ambiguous, and this makes the diagnostic process more complicated.
Even so growing amounts of research efforts have been thrown into the studies of stu-
dent modeling problem. Various knowledge representations coordinating distinct diag-

nostic approaches have emerged in different 1TSs.

1.2 Background

The main components of an ITS are the domain expert module, the student model-
ing module, including the diagnosis process based on a student model, and the tutorial
expert module. These deal with the problem-solving expertise, students’ knowledge, and
tutoring strategies respectively. The tutorial environment, which is also an important part
of the ITS, facilitates the interaction between students and the computer tutor (Polson
and Richardson 88). This section introduces the previous work according to the architec-

ture of ITSs rather than proceeding chronologically.

1.2.1 Domain knowledge module

The domain expert module provides the knowledge to be imparted to the student,
and a standard for evaluating the student’s performance. This module is classified in
three approaches (Anderson 88). Each of the three approaches moves toward a more

cognitively faithful representation of the content expertise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Black box model

The first one is opaque and is called the black box model. It generates the correct
input-output behaviors over a range of tasks in the domain, and therefore can be used
as a judge of correctness. The early systems such as SOPHIE (SOPHisticated Instruc-
tional Environment) (Brown and Burton 75) and WEST (Burton and Brown 82) perform
their calculations as a black box. SOPHIE attempted to teach students to troubleshoot
faulty electronic circuits. It only checks the consistency of a student’s hypotheses about
failed circuit elements. WEST works as a mathematics game. The opaque expert per-
forms an exhaustive search for the possible moves in an electronic game board and
determines the optimal move. In the black box approach the internal computations and
reasoning processes from a given input to the conclusion are not available to users.
Although this approach does not present the reasoning process, it provides the correct
output as the information used to recognize the differences between student and expert

performances.

* Glass box model

The second approach is transparent and is called the glass box model or expert
system methodology. Since 2 major component of an expert system is an articulate, hu-
man-like representation of the underlying expertise in the domain, it is natural to use
the expert system as the domain expert module of the tutor to avoid the time-consuming
knowledge acquisition process. The domain expert component tries to explain and in-
spect each problem-solving decision in terms that correspond (at some level of abstrac-
tion) to those of a human problem-solver. But it only allows for explanations of informa-
tion processes inherent in the rules of its knowledge base which does not necessarily
correspond to the way a human expert reasons. The tutor GUIDON developed by Clan-
cey (Clancey 82) is based on the well-known expert system EMYCIN, whose domain of

expertise is the diagnosis of bacterial infections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ Cognitive model

The third approach is the cognitive model which simulates the process of human
problem-solving in a human-like manner. This approach simulates not only the domain
knowledge, but also the way humans use that knowledge. This model is considered the
most effective (Anderson 88). Although its implementation is time-consuming, there have
been dramatic improvements over the past 10 years (Wenger 87). It is helpful to consider
the types of knowledge to be taught, because that dictates the strategies of instruction.
There are three types according to Anderson: procedural knowledge, which is about how
to perform a task; declarative knowledge, which is in the form of a set of facts appropri-
ately organized; and causal knowledge, which allows humans to reason about behaviors
by using causal understanding.

Procedural knowledge can usually be represented by production rules. This type of
knowledge is applied in GEOMETRY Tutor, LISP Tutor (Anderson 90), DEBUGGY
systems (Burton 82), and some other systems. One of the major advantages of the pro-
duction rule is its modularity. Each production rule is an independent piece of knowl-
edge which benefits the instruction. The declarative knowledge in SCHOLAR system
(Carbonell 70), which is designed to teach South American geography, is represented by
a semantic network. In the network, the nodes stand for geographical objects and con-
cepts, which are organized in a partial hierarchy with relationships represented by links.
Some simple inference can be made by propagation of inherited properties via these
hierarchical links. However, in the WHY system, which also teaches geography (Stevens,
Collins and Goldin 82), the declarative knowledge is represented by a schema consisting
of action slots, factor slots, and fillers. The formalisms of causal knowledge are not as
mature as rule-based or schema formalisms. This knowledge representation was explored
in SOPHIE (Brown and Burton 82) and in de Kleer's work on causal propagation of the

behavior of device construction {de Kleer and Brown §3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actually the three kinds of knowledge are not isolated. In the cognitive process,
humans represent static structure as declarative knowledge, and employ the procedural
knowledge to dynamically reason about the behavior by utilizing causal interactions. An-
derson’s LISF, GEOMETRY and ALGEBRA tutors do the preliminary exploration by

combining the different types of knowledge (Anderson 90).

1.2.2 Student modeling module

The knowledge structure that represents the student’s current understanding of the
subject matter is called the student model. The reasoning process, which detects the
student’s mistakes by referring to the student model, is called the diagnosis. The student
model and diagnosis form the student modeling problem (Vanlehn 88) (Barr and Feigen-
baun 82), setting in the student model and diagnosis expert in Fig.1.

Vanlehn expounds the essential problems of student modeling in ITSs (Vanlehn 88).
According to his suggestion, the student model can be classified three dimensions. The
first dimension is the bandwidth, a measurement of the input of the student activity. The
second dimension is the target knowledge type, and the third dimension is the degree of
difference between students and experts. These dimensions indicate the structural prop-
erties of the student model. These classifications are designed to capture the differences
in the student modeling problem, and help the tutoring module decide the different tutor
strategies.

How much of the student’s activity is available to the diagnostic procedure? The
first dimension, the bandwidth, will give a measurement of the input information. Most
systems only input the final state to the diagnosis process, such as the student answers
to the question of a mathematics subtraction problem in the DEBUGGY system (Burton
82). Some programs can give the intermediate states, such as the SPADE system (Miller
82), which will supply information at several observable stages about what the student is

doing. The highest bandwidth is supposed to be able to attain a list of the approximate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mental states as the student solves a problem. A metal model is a coherent collection of
knowledge held by a person about some aspect, entity or concept of the world (Gentner
and Stevens 83). The LISP tutor (Anderson 90) tries to track the cognitive process as
closely as possible to the student’s mental states. This tutor uses a menu driven interface
to offer a student multiple problem solving paths. Assuming the paths can describe ev-
ery state of reasoning, the tutor obtains a sequence of mental states.

The second dimension is the target knowledge type which is categorized declarative
knowledge and procedural knowledge, including flat and hierarchical. Hierarchical repre-
sentations allow subgoals; flat ones do not. In the ACM diagnosis system (Langley and
Ohlsson 84), the subtraction procedure is a flat representation, but in the BUGGY sys-
tem it is a hierarchical one (Brown and Burton 78). The inference in a hierarchical
representation is more difficult because it takes more steps to know the subgoals, while
in the flat representation nothing is hidden. The declarative knowledge representations
have been used for meteorology (Stevens, Collins and Goldin 82) and geography (Carbo-
nell 70).

The difference between students and experts is the third dimension. Knowing the
differences is a necessary step to the diagnosing process. In most ITSs, the student mod-
el can be represented by the domain expert model plus a list of missing conceptions.
Such a student model is called an overlay model because the student model is just a
proper subset of the domain expert model. The overlay model is the most common type
of student model because it is easy to implement (Brown and Burton 78). However, it is
of limited value because of the fact that students have misconceptions as well as missing
conceptions. More complex student models represent misconceptions as well as the
missed conceptions. They employ a library to organize the predefined bugs (the missing
conceptions and the misconceptions). The bug library in the DEBUGGY system (Bur-
ton 82) is directed by the experimental analysis of several thousand mathematics sub-

traction tests. In diagnosis the system compares the student’s behavior with the expert

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

module and the bug library to form the student model. It is possible that a student has
several bugs and combinations of bugs. So the bug library has to include a large number
of compound bugs. There is an alternative to the bug library method which only con-
tains bug parts, and it dynamically constructs compound bugs from a library of bug
parts. It does not use the predefined bug library. This method is applied in the ACM
system (Langley and Ohlsson 84).

The diagnosis methods vary in different systems. Some of them are listed in table

1. The diagnosis problem will be presented in further detail in the next chapter.

1.2.3 Tutor module

The tutor module communicates with students. A tutor bears responsibility for se-
lecting and sequencing the material to be taught, monitoring and criticizing the student's
performance, and providing assistance whenever the student needs it. Usually, a domain
expert module is involved with formulating a representation of the material, and selecting
and sequencing the particular concepts. The instruction process, which is delivering the
curriculum to the student, should be accomplished in the tutor module (Halff 88). In
order to deliver the knowledge to the student, and reduce the differences between teach-
er and student as soon as possible, the tutor must determine the corresponding pedagog-
ical strategies in addition to knowing the student’s current understanding. The following

are some strategies used in the ITS.

* Socratic method

The Socratic method or presentation methed is one way to present material by
dialogue (Collins and Stevens 82). The dialogue elaborates in different ways for the dif-
ferent instructional objects. Teaching facts and concepts is done by explaining the mate-
rial. Teaching rules and functional relationships usually involves inducing the student to

consider the relevant data and to formulate the rule. Skills for deriving rules are taught

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Subject Student Diagnosis
System Matter Module Method Reference
. Library of Condition Langley &
ACM Subtraction Bug Parts Induction Ohlsson 84
Programming Library of Plan Re- .
APROPOS2 in PROLOG Bug cognition Loo 88
Programming Plan Re-
BIP in BASIC Overlay cognition Barr 76
Bridee Programming | Library of Plan Re- Bonar 88
& in PASCAL Bug cognition
. ; Decisi Brown &
BUGGY Subtraction IL;ubgrary of Too O Button 78
; Library of Generate Burton 82
DEBUGGY | Subtraction Bug Parts & Test
Geometry Geometry Library of Model
Bug Parts ‘Iracing Anderson %0
LISP Programming | Library of Model Anderson 90
in Lisp Bug Parts Tracing
GUIDON Infectious Overlay Diagnosis Clancey 82
diseases rules
MENO Programming Library of Plan Re- Woolf &
in PASCAL Bug cognition McDonald 84
Programming Library of Plan Re-
PROUST i PASCAL Bug cognition Soloway 83
Scholar Geography Overlay gigénmis Carbornell 70
Electronic Issue
SOPHIE Trouble- Overlay Analvz Brown 82
. alyzing
shooting
Programming Library of Plan Re- :
SPADE in LOGO Bug Parts cognition Miller 82
Steamship Issue
Steamer Propulsion Overlay Analyzing Hollan 84
WES Arithmetic Issue Brown &
T Expressions Overlay Analyzing Button 82
WHY Cause of Library of Diagnosis Stevens 82
Rainfall Bug rules
Logical Issue .
WUSOR Relations Overlay Analyzing Goldstein 82

Table 1. ITSs and Their Diagnosis Methods

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as procedures. These procedures are broken down into their components. This method
involves questioning the student in a way that will encourage him to reason about what
he knows whereupon the system can modify his conceptions. SCHOLAR (Carbonell 70)
was the first system that used the Socratic style of tutoring. The original system was
developed for teaching South American geography. It first diagnoses the underlying mis-
conceptions in the student’s knowledge; it then poses a problem that will guide the stu-
dent to discover his errors. The WHY system is a folow-up of SCHOLAR (Stevens and
Collins 77). It uses a set of tutorial rules to construct an experimental Socratic tutoring
system. This method leads the student to find errors or contradictions by entrapping

him in the consequences of his own conclusions.

* Case presentation

Case presentation is one method that presents the target skill by using worked
examples and guided exercises. These skills must be presented to the student in a man-
ner that demonstrates how the expert makes the decision at each step in the case and
what strategies he uses. It is also an apprenticeship style of learning. The SOPHIE sys-
tem is a good example of case presentation (Brown, Burton and de Kleer 82). Faults can
be inserted into the system to make a case, and the student is instructed to offer a
hypothesis as to what might be wrong. The student then makes a measurement of the
circuit to evaluate the hypothesis. Before each measurement the expert explains why it is
required. After each measurement, it explains what it can conclude from it. That is, the
system tells the student not whether the hypothesis is a correct identification of the fault,
but whether it is logically consistent with the information from the measurements. This
method makes explicit the strategies a domain expert uses, thereby giving the student an

example to follow.

¢ Coaching

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This method attempts to maintain control of the tutorial situation in order to pro-
tect the student from inappropriate or incorrect learning, and to keep the student from
exploring paths that are not instructionally useful. By coordinating the model tracing or
issue-based analyzing diagnosis technique (Anderson 90) (Burton and Brown 82), the
tutor can trace the student’s behavior, and match it to one of the paths that should be
the correct or optimal problem-solving solution. When the match fails, the tutor inter-
venes with advice and suggestions to guide the student to a successful path. There are
several coaching systems such as WEST (Brown and Burton 82), WUSOR (Goldstein 82)
and LISP tutor (Anderson 89).

1.2.4 Instructional environment

The instructional environment refers to the part of an ITS that specifies or sup-
ports the student’s activities and provides the tools for convenience learning. The envi-
ronment should be designed to allow students understand concepts efficiently. The fol-

lowing are systems which have the effective environments.

* Visualization of multiple concepts

The Envisioning Machine (Woolf 88) presents a visualization of the concepts of
physics. On the screen, the student can grab a ball, drop it or throw it in any direction,
and watch the trajectory of the object. At the same time there is a force diagrammatic
view of objects in motion. Two vectors in the diagram represent respectively the velocity
and acceleration of the object. In the past, acceleration and velocity have been difficult
to demonstrate because they only can be illustrated through still pictures. The environ-
ment gives the viewer multiple perspectives of concepts: motion trajectory, velocity and
acceleration of an object, and parallel displays of physical motion. The student can ad-

just his conceptions from his observations.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ Visual reasoning

An efficacious environment should make explicit or manifest an originally implicit
property of the contents, therefore aid the learner to accept and understand knowledge
effectively. The GEOMETRY tutor (Anderson 90) is a good example of an environment
that provides a new form of visual reasoning for the student, and brings out implicit
properties in the task. This system builds a logical chain from the premise to the conclu-
sion, and the system presents the process as a tree on the screen. Every node in the tree
is a statement, and a step of the proof derived from inference rules or geometry theo-
rems. The system shows the relationship of the steps and how they are arranged on a
path to the proof. The system provides the proof which can be derived from either the

bottom upward, using forward inference, or top downward, using backward reasoning.

¢ Icon provided

The STEAMER system provides simulation in a graphical display of a steam plant
(Hollan, Hutchins and Weitzman 84). In the graph, it supplies the icons to depict the
mechanism of a steam plant. When the simulation (the flow of fluid through the plant) is
running, motion in the pipes is animated to indicate the causal connections between
different parts of the plant. There are many other kinds of icon displays such as dials
that give the pressure at various points in the plant, and curve the graph of pressure as
it changes through time, and indicates the rate of change. These displays make visible
some aspects of automatic control systems that are difficult to see with traditional
gauges. Also these graphic displays can depict a steam plant in the different levels, from

the scheme of the entire plant to the separate part of the plant.

* Dialogue
Most ITSs use dialogue for the instructional environment since humans naturally

use language as the main communication tool. MENO (Woolf and McDonald 84) uses

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dialogue in an attempt to understand a student’s programming bug and help resolve his
misconceptions. The system detects the errors in simple Pascal programs by the Bug
Finder, and passes the messages about the location of the error to the tutor. The tutor
then analyses the errors by communicating with the student in a dialogue. The student
answers the questions asked by the tutor in a simple way, such as a "yes/no” choice of
response. The tutor gives the suggestions to correct the program. There are correspond-
ing discourses for each different misconceptions. The LISP tutor (Anderson 90) also uses
dialogue, and it applies a menu-driven method. By menu choices, it imposes a structure
on what the student is allowed to do. The LISP tutor walks the student through the
creation of a LISP function, and corrects the student whenever he deviates from the

correct path. SCHOLAR, WHY and GUIDON use dialogue too.

1.3 IADI Diagnosis Model

This dissertation proposes a new diagnosis model, the Integration of Abductive and
Deductive Inference diagnosis model (LADI), to diagnose students’ mistakes and miscon-
ceptions in an intelligent tutoring system. An intelligent tutoring system prototype, the
"Recursive Programming Tutor”, has been designed and developed to teach students to
understand the basic concepts of recursive programming, and to illustrate this diagnosis
approach (Shen and Zhang 91) (Shen and Zhang 89b).

The IADI diagnosis model is based on the understanding of the cognitive process
of human diagnosticians. Usually a human diagnostician does not make a final decision
immediately after seeing a few symptoms. In view of the initial evidence, a doctor can
hypothesize about some possible diseases, but he does not make a decision at this mo-
ment. He collects more information and uses these information to verify and modify the
obtained hypotheses, and then he makes the differential diagnosis. This process may go

several cycles.

The 1ADI diagnosis model mainly uses two inference mechanisms, abduction and

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deduction. In the diagnosis process this model also accompanies a structure analysis.
Thus the IADI diagnosis approach involves three major processes.

The first one is the structure analysis. It detects a student’s mistakes which are
present in the program at the start of the IADI diagnosis process.

The second process is the abductive inference which infers a set of plausible candi-
date hypotheses from the student’s demonstrated mistakes. Each hypothesis in this set
represents just one candidate for explaining why the corresponding manifestation existed.
It is possible that a hypothesis in this set is not the true cause for the student’s mistake,
and some other hypothesis may be the true cause instead. Therefore, it is necessary to
further diagnose and decide which misconceptions in this set are more likely to be the
true causes.

The third step, the deductive process, is the misconception verification. It verifies
the focused hypotheses in the set of candidates by further checking the related manifes-
tations, and also tries to decide if the unexposed mistakes exist or not. In the 1IADI
diagnostic knowledge base, for each misconception there is a corresponding list which is
a menu list to allow the system to interactively investipate the students’ possible mis-
takes.

In the inference processes the plausibility measures are used to evaluate the possi-
bilities of each misconception candidate. Finally a list of misconceptions ranked in de-
creasing order of plausibilities is given as the diagnostic result.

This model shows a nondeterministic diagnosis. It combines the features of abduc-
tion and deduction, detects both mistakes and misconceptions, emphasizes tutoring on
students’ misconceptions, and incorporates the process of instruction into the diagnosis

process.

1.4 Dissertation Overview

This dissertation contains seven chapters. Chapter 2 surveys related work in intelli-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gent tutoring systems. The survey concentrate on the ITSs which teach computer pro-
gramming and the diagnostic approaches in student modeling problems, and then sum-
marizes three diagnosis models and presents the state of the art in student modeling
problems. Chapter 3 presents the outline of the IADI diagnosis model including the
characteristics of the proposed diagnosis model, the diagnostic knowledge representa-
tions, and the three main processes, structure analysis, abductive inference and deduc-
tive inference. Chapter 4 illustrates the application of the IADI diagnosis model in a
recursive programming tutor. This chapter gives details on how to organize the diagnosis
knowledge, how the three steps of the IADI diagnosis approach work, and how to mea-
sure the misconceptions using plausibility values. Chapter 5 describes the tutoring envi-
ronment of the Recursive Programming Tutor, including the diagnosis environment and
instruction environment. It is built on a hypertext model also combining other features.
The tutor’s performances are evaluated in Chapter 6. The evaluations are made from
students’ empirical tests. The last chapter summarizes this research work, followed by a

brief discussion of future research direction.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER TWO

RELATED WORK

Intelligent tutoring systems have been developed for many domains such as arith-
metic (Brown 82), algebra (Anderson 90), geography (Carbonell 70), geometry (Anderson
90), indefinite integration (Chan 90), medical diagnosis (Clancey 82), electronic trouble-
shooting (Brown, Burton and de Kleer 82) and computer programming (Soloway, Rubin,
Woolf, Bonar and Johnson 83). Different systems have their own emphases. This chapter
surveys the related work in intelligent tutoring systems which teach computer program-
ming, and the work in diagnosis approaches in student modeling problems. Then it sum-
marizes the three different diagnosis models which can be classified and the state of the

art.

2.1 ITSs in Programming Tutoring

Programming tutors have been explored for tutoring programming language BASIC
(Barr & Beard 76), PASCAL (Johnson 84) (Soloway 83) (Woolf 84) (Bonar 88), LOGO
(Miller 82), FORTRAN (Adam 80), LISP (Anderson 90) and PROLOG (Looi 88). The
traditional programming tutor, such as BIP (which teaches the BASIC), can not diagnose
the students’ program when it was developed at beginning in 1975. With the pace of
evolving from CAI to ITS, it added the diagnosis capability to improve the system’s
tutor ability (Barr and Beard 76). The most programming tutors are only able to work
on a small problem domain with narrow programming language problem. The PASCAL

programming tutors (Johnson 84) (Soloway 83) (Woolf 84) (Bonar 88) intend to work on

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a rainfall assignment with tutoring of the knowledge about how to use the loop structure
and the related variables. The PROLOG tutor (Looi 88) is targeted for the list reversion
and list element number counting only. The LOGO (Miller 82) itself is an elementary
programming language. Even so, the efforts provided in these researches made signifi-
cant studies from various perspectives, especially in the Al technical development and
cognitive process.

In this section, several tutoring systems that involve programming teaching will be
reviewed. MENO-II, PROUST, MENO Tutor and BRIDGE come from MENO project.
which started in the late seventies. This project attempts to build an intelligent tutor for
novice Pascal programmers. Its goals were to diagnose nonsyntactic errors in programs,
to connect these bugs to underlying misconceptions and to tutor the student with respect
to these misconceptions. After the first system MENO-II (Soloway, Rubin, Woolf, Bonar
and Johnson 83), developed at University of Massachusetts, the project branched into at
least three directions leading to different doctoral dissertations. Johnson and Soloway
moved to Yale University and developed PROUST system to study the bug diagnosis
from a new angle (Johnson and Soloway 84); Woolf and McDonald developed system
MENO Tutor by utilizing a discourse management network (Woolf and McDonald 84);
Bonar developed system BRIDGE with an intermediate representation to give students
specific mental models to support their problem solving process (Bonar 88).

The LISP tutor, which has been developed over 8 years at Carnage-Mellon Univer-
sity by John Anderson and his colleague, is a good vehicle to teach student LISP pro-
gramming with cognitive model.

The APROPOS2 was developed in the department of Al, University of Edinburgh.
The bug analysis of a PROLOG program in APROPOS2 has been divided at three

levels of abstraction, which gives a clear top-down structure.

2.1.1 MENO-II

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MENO-II is a diagnostic system that specializes in the analysis of loop structures and
related variables in Pascal program (Soloway 83). It consists of two major components:
the Bug-Finder and the Tutor. The Bug-Finder parses a student’s program into a parse
tree that is matched against a simple description of the solution. This is done with the
help of specialized knowledge about types of loops and corresponding plans, as well as a
library of known bug types. In the bug finding process, there are four stages. In the first
stage, the student’s program is parsed into a parse tree. The second step is to annotate
the parse tree with useful information about the various nodes. During the third stage of
the process, the Bug-Finder searches for instances of the various programming plans.
Finally, the Bug-Finder searches the Bug Catalogue in the bug library for matches. If a
bug is discovered, the tutor then analyzes it by a set of specific inference routines that
suggest possible underlying misconceptions.

MENO-II detects the bug inefficiently because it analyzes bugs locally in a con-
text-independent fashion by means of simple template matches, MENO-II can not cope
with the complexity of the programming process and with the extraordinary variability in

programs.

2.1.2 PROUST

PROUST (PROgram Understander STudents) system tries to identify the nonsyn-
tactic bugs in students’ Pascal programs (Johnson and Soloway 84) (Wenger 87). PRO-
UST is an expert at finding bugs in program of the rainfall assignment written by the
students. This assignment is to calculate the number of rainy days, find the maximum
rainfall on any one day in the period, and average rainfall from an input stream of
rainfall values.

Johnson and Soloway believe that diagnostic methods, that look for bugs in pro-
grams, merely by inspecting the code can not cope with the variability in novices' pro-

gramming. They propose an intention-based diagnosis approach which is to construct a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coherent model of what the programmer’s intentions were and how they were realized in
the program, and to identify errors in these intentions or in their realization based on
this intention. To analyze a student’s program, PROUST builds goals to understand
problem specifications which provide a starting point for identifying the student’s inten-
tions, and uses a knowledge base of plans which might be selected by students to realize
those goals. For novices, they may not have a clear concept about what kind of plan can
be used to reach the goal; they only have an intention to satisfy a goal. Hence, the theme
in PROUST is to analyze the intention of a student from the goal that is the problem
specification and the solution that is submitted by the student. For example, the main
goal of the rainfall assignment is to average the rainfall. PROUST recognizes that an
iterative looping plan is required to achieve the subgoal of the main goal. The loop must
collect the rainfall values, sum them to calculate the running total and count the number
of days. After that, the running total must be divided by the counter to obtain the
average. PROUST thus sets up an agenda of goals and attempts to match each of them
to the student’s code. When all the goals on the agenda have been successfully matched
with the student’s code, PROUST has understood the student’s program because it
knows how the student achieved, or failed to achieve, each of the subgoals. Each of the
failures is understood by PROUST as a bug. Thus, according to the design stages men-
tioned above, the diagnosis process works on three layers. The top one consists of the
various possible specifications decomposed into goals and subgoals, then the plans that
could be selected as implementation methods for each goals or subgoals, and finally the
different realizations in which plans can match the code.

PROUST system is an off-line tutor that has access only to a final product or state
on which to base its diagnosis of student errors. The complete student programs are
submitted to PROUST, which provides a printout of the diagnosis results and corre-
sponding explanations. The designers of PROUST feel that there is a lack of the sophis-

ticated pedagogical expertise; they are remedying it with using the information about

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each student’s errors to guide the presentation of course material. The real tutor will

appear in another system BERTIE (Johnson 86).

2.1.3 MENO Tutor

MENO Tutor tries to capture the discourse strategies observed in human tutors. It
works on two domains, rainfall study and Pascal programs. In Pascal program, it just
works for Pascal looping concepts (Woolf and McDonald 84).

Besides providing Bug-Finder for detecting the semantic errors, MENO Tutor de-
velops a general framework: Discourse Management Network (DMN), which is a kind of
augmented transition network. It also provides a good interface to communicate with
students. Fig.2. shows a dialogue in MENO Tutor for a buggy program. The buggy pro-
gram is for averaging problem, which is in left of the figure.

The most important contribution made by MENO Tutor is the DMN net. The
DMN is a set of decision units organized into three planning levels that successively
refine the actions of the tutor. The nodes or states correspond to tutorial actions and
these nodes are organized hierarchically. The highest level is pedagogic states. In this
level a specific tutoring approach will be determined, such as the diagnosis of student's
knowledge or introduction of a new topic. At the second level, strategic states, the peda-
gogy is refined into a strategy, specifying the approach to be used. At the lowest level, a
tactic is selected to implement the strategy.

When the system is in the tutoring mode at the pedagogical level, and an incorrect
answer from the student has triggered the strategic action, such as teaching her some
pieces of data, many actions at the tactical level can then be chosen to accomplish this,
such as giving a corrective statement for her answer, making a general statement about
some relevant facts, or questioning the causal dependencies underlying her assertion.
The path in the hierarchical structures is default path. MENO Tutor provides meta-rules

to create preemption path, which occurs in the same level. The preemption path can

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Student’s Program

1. program average (input, output);

2. var Sum, Count, Data: integer;

3. Avg: real;

4. begin

S. Sum:=0;

6. Count;= (;

7. read (Data);

8. while Data < > 99999 do
0. begin

10. Sum:= Sum + Data;
11 Count:= Count + 1;
12. Data:= Data + 1;
13. end;

14. Avg:= Sum/Count;

15. writeln ('The average is ', Avg);

16 end.

Tutor: Do you know that Data in line 8isa con-
trol variable for the while loop?

Student:Yes.

Tutor: Does that mean that Data should be

a) Initiated before the loop?

b) Added into Sum within the loop?
c) Modified within the loop?

d) Both a) and c).

Swdent: c.

Tator: You seem to understand about the control
variable of the while loop. Now let us talk
about some other command statements.
What do you think rcad (Data) in line 7
does with the value of Data?

a) Reads all the values of Data at onctime.
b) Reads in a single value of Data.
c) Assigns several new input values to Data.

Student: a.

Tutor: Then do you think that Data:= Data + 1
updates the next of those values?

Student: Yes.

Tutor: There is your misconception. Adding one is a
common way to step through a range of va-
lues. But it cannot apply here because your
read instruction in linc 7 retrieves only a
single value. You should replace line 12 by a
second call to read (Data).

Fig.2 The Buggy Program and A Dialogue On It

obviously provide more in keeping student history or discourse history.

2.1.4 BRIDGE

BRIDGE system intends to build a bridge between novice to experienced program-

mer. Bridge tries to find natural evolving stages in the development of plans when stu-

dents design, implement and test their program, and to articulate each stage explicitly by

providing intermediate representations. The intermediate representations allow a stu-

dents to directly represent design and partial complete programs (Bonar 88).

BRIDGE consists three phases. Phase I provides informal English description for

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the program. It displays a English Phrase Menu and the submenus for each phrase. The
student user chooses the phrases to construct their natural language “program” which is
very much like the sudocode. This solution will be shown on the “English Step-by-step
Solution” window. The phase II is to refine the informal description of phase I into a
series of semi-formal programming plans. In this stage, the English phrases become
explicit plans, represented by icon, and displayed in a “Visual Solution” window. Bonar
argues that since plans represent high-level programming obiects, it is sensible to depict
them as icons that suggest their function. The phase III is to translate the plan-based
description into actual Pascal code. The student’s task is to match each visual plan icon
to one or more Pascal statements. After one icon and a Pascal language construct are
selected from the “Visual Solution” window and from the pop-up menu separately, the
corresponding statement will be shown in a "Pascal Solution™ window.

In the phase I and phase II, BRIDGE tries to understand the student’s partial
work and diagnoses this work. The basic diagnostic strategy is matching student’s plan
to a particular student model. The English phrases in the solution from phase I are
mapped to the catalog of programming plans. In BRIDGE, there are four student mod-
els corresponding to four different looping strategies. These models are specified at four
different levels. The students’ performances will be matched with one of the models, then
compared with a list of requirements for a correct solution to the problem. For the
incorrect solution, BRIDGE will give hints and suggestions.

BRIDGE shows its method by solving the "Ending Value Averaging” problem,
which is a problem of reading data and calculating their average by using loop.

BRIDGE was used by approximately 40 students. They suggest that BRIDGE is helpful.

2.1.5 LISP tutor
LISP tutor is built for testing Anderson’s cognitive model ACT* {Adaptive Control

of Thought), a successor of ACT. ACT* theory has many assumptions, two of them are

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

very important to our ITS. The first one is that cognitive functions can be represented as
sets of production rules. The second one concerns the mechanisms of the learning mod-
el. The learning model consists of a set of assumptions about how the student’s knowl-
edge state changes in each step during a problem-solving phase. This model is employed
in model tracing diagnosis approach in LISP tutor (Anderson, Boyle, Corbett and Lewis
90).

The declarative knowledge and the procedural knowledge are well organized in the
tutor system. The declarative knowledge is what is deposited in human memory when
someone is told something as in instruction or reading a text. The declarative knowledge
is organized in schema-like structures, the PUPS structures (PenUltimate Production
System). The procedural knowledge is represented by a set of production rules that de-
fine the skill how to solve a problem. The idea is that knowledge is first acquired declar-
atively through instruction, and that it has to be converted and reorganized into proce-
dures through experience. Only then can it be usefully reflected in behavior. The tutor’s
task is to help students to acquire the production rules which would be possessed by the
competent problem solver.

LISP tutor can help students to write basic LISP code to solve the problems that
appear in an introductory LISP textbook. The LISP tutor presents the ideal program-
mer’s knowledge and novice’s knowledge in the form of production rules, the ideal rule
and buggy rule respectively. The system gives the student the instructions in LISP and
tries to bring the student into specific problem solving situation. The tutor provides
assistance to student essentially by running the model in synchrony with the student,
comparing the student’s response at each step to the relevant ideal and bug rules and
responding accordingly. This is the model tracing diagnosis technique. A salient feature
of LISP tutor is to get the student to mimic the steps of an ideal production model.
Every time the student enters one new line of code, the tutor comes back with a re-

sponse. Once the student makes an error, or the student choses a suboptimal strategy,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system attempts to diagnose and give a hint as to the correct and optimal solution
so that he can change his solution immediately.

The LISP tutor has been in use in an introductory Lisp course at Carnegie~-Mellon
University since the fall of 1984 {Corbett et al. 1990). It has been tested by the students
in classroom and the results are very encouraging. Two groups of 10 students were given
the same lectures, but only one group used the tutor.The tutored students spent 30%less
time on the problems than those working on their own, but scored 43% better on the

test.

2.1.6 APROPOS2

APROPOS2 stands for Analyser of PROlog Programs Of Students. It is a program
analyser for a PROLOG programming teaching system. APROPOS2 detects and cor-
rects nonsyntactic errors in student PROLOG programs written to do simple but nontri-
vial list and number manipulation tasks (such as list reversion and count of the atom
number in a list) (Looi 88).

The bug analysis in APROPOS2 has been done at three levels of abstraction: the
algorithm level, the predicate definition level and the code level. The analysis at the
algorithm level checks the different kinds of design for the task solution. In APROPOS2,
for example, three algorithms for list reversion can be recognized. The student’s PRO-
LOG program is matched against a library of task algorithm. The analysis at the predi-
cate definition level detects the different types of bugs in the predicate definition of the
chosen algorithm, such as missing, extra and incorrect predicate definition. The work at
the third level, the implementation level, is checking the code that implements each pred-
icate definition. The bug analysis is done from the top level, the algorithm level to the
down level, the code in students’ solution. After the analysis, the system will give a re-
port for the result such as which statements are correct, and which might be wrong and

the relevant reason.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APROPOS2 uses a heuristic best-first search strategy to map the student’s pro-
gram to a prechosen algorithm, a set of predicate definitions and the code of the pro-
gram. APROPOS2 combines the dynamic and static analysis as its debugging approach.
The static analysis works on the code. The result in this analysis is finding the common
bug and suggesting corrections before dynamic analysis is invoked. The dynamic analysis
here means to examine the running of the program to get solutions both for student’s
program and the correct program. The student can compare these solutions and gain
some hints,

APROPOS?2 has been work on at least 95 students’ programs. The result shows
that it can correctly detect most bugs, up to 80% (looi 88). Only very few program can it
not give the correct answer, since it is possible that there are some disguise in the

clauses of programs.

2.2 Diagnosis Approaches

The diagnosis has been one of the major subjects of research in Artificial Intelli-
gence in both the theoretical and the practical area. The diagnostic problem was dis-
posed in many different domains, from trouble shooting in electronic appliances and
circuits, to diagnosis of complex mechanical or physical system, to medical diagnosis.
The diagnosis process in Intelligent Tutoring refers to collecting the information about
the student’s activities and inferring his understandings. It is more difficult to deal with
than diagnosis in many other expert systems in general, such as device diagnosis, be-
cause the object of diagnosis in an ITS is a series of the student’s abstract mental states.
Since this task often involves the construction of a student model, these activities have
also been called student modeling problem. The student modeling problem is raising up
to a prominent position. Diagnostic approaches in the existing ITSs are varied with dif-
ferent perspectives in different systems. Plan recognition, model tracing, issue analyzing,

condition induction, generate and test, and decision tree have been received much atten-

-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion. In this subsection these diagnostic approaches are briefly reviewed. In next subsec-
tion, these approaches are further compared and summarized into three different mod-

els.

2.2.1 Model tracing

The model tracing approach attempts to track the student’s performance across
problem at every mental step. The model tracing is based on the psychological assump-
tion that human cognitive behavior can be modeled as a production system, The produc-
tion rules are viewed as the description of the unit of skill or the prediction of the steps
the students will take (Anderson 90).

When a student is working on a problem the tutor generates all the possible next
steps, both correct and incorrect. The tutor will display a menu and let student choose
one item, which is one step corresponding the student’s next action. The tutor assumes
that the student use the relative production rule to generate the next particular mental
state. After comparing the student’s response to the internal expert model and the pres-
tored erroneous actions, the tutor is able to recognize whether the student is on the
correct solution path or not, and gives the necessary interpretation for student’s activi-
ties. The tutor monitors the student’s responses essentially on a symbol-by-symbol basis.
If the student’s half typed code seemly can match one of the templates provided by the
system, the system will allow the student to continue without interruption (Corbett, et al.
1990).

The model tracing method intends to create a close correspondence between units
of the internal model built by the professional programmer and steps obtained from the
student behaviors. This approach has its advantages. Anderson uses this technique in
LISP, ALGEBRA and GEOMETRY tutor and call it model tracing to express the fact
that the student is made to follow the system’s model quite closely and the student will

know how to correct the mistake when the student behavior deviates from the ideal path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Under this model the student never strays far from a correct solution. So, the model
tracing approach is good for both diagnosis and guidance.

The model tracing method is based on the goal-restricted production system archi-
tecture. The straightforward scheme in LISP tutor restricts the student’s activities into a
local area and may not fit the need for more complex program analysis. The explanation
during the intermediate stage is useful sometimes, especially for reminding the students
who are in the early learning stages. But in the programming setting, important errors
are usually revealed only after an unsuccessful execution occurs, and only when the stu-

dent see this result, he can get a deep impression.

2.2.2 Condition induction

The model tracing approach rests on an assumption that for any two consecutive
mental states in the student’s problem solving there is a rule in its model to connect
these two states. ACM system (Automated Cognitive Modeler) uses condition induction
approach to construct a rule from one state to the other between two consecutive states
instead of storing all the rules in advance (Langley and Ohlsson 84).

The ACM system works on the subtraction domain. The system constructs a set of
production rules from the description of the problem states (condition) and the behavior
of a student (operator). The operator converts one state to another; the condition in the
same rule should be consistent with the applicability of the operator. The conditions and
operators are stored in two libraries respectively. For a given problem, there is a "prob-
lem behavior graph” (actually it is a search tree) in which each node is a state yielded
by one operator. This tree includes all possible states either by correct performances or
incorrect performances. ACM intends to decide which path can match student’s behav-
ior. Given a student’s answers on a set of problems, ACM starts with a set of produc-
tion rules and then uses a discrimination process to determine which sequences of oper-

ators have led to the student answers. For a particular problem, the states lying on the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

student’s solution path corresponding the positive instances of the rule, and the states
are set one step off the path corresponding the negative instances. In order to distin-
guish the positive instances from the negative ones, therefore lead the path to match the
observed behavior, ACM infers additional conditions (beyond the original ones) from a
list of tests, ACM provides ten potentially relevant tests such as whether one number
was preater than another, whether one row was above another. Once inferred and se-
lected the best matched tests adds them as the appropriate conditions to each of these
rules then recombines the more specific rules into a final model. This model simulates
the student’s subtraction strategy and explains the student’s behavior since the rules in

this model can reproduce these sequences on the same problems.

2.2.3 Issue analysis

The model tracing is based on the assumption that all of the student’s significant
mental states are available to the diagnostic program. If the bandwidth is not high
enough, the model tracing can not be used. Issue analyzing is based on analyzing a set
of issues rather than considering accurate psychological stage of a student.

The on-line coach system WEST (Burton and Brown 82) uses issue analyzing
method for elementary mathematics study. It teaches the students arithmetic in an envi-
ronment of a mathematics game in which the student tries to move to the goal position
as fast as possible. The number of moves will be indicated by the value of the arithmetic
expression. The plus, minus, times, divide operations, and using parentheses in the ex-
pression and other game skills are presented as issues. WEST analyzes these issues em-
bodied in both the students’ move and the expert’s move. In the game the student orga-
nizes three numbers given by the spinners into an arithmetic expression to determine the
number of a movement. The expert generates an ordered list of all possible moves in the
same circumstances, that is for the same three random numbers and the same starting

position. If the student’s expression does not produce the expert’s optimal move, WEST

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

starts to diagnose what issues the student is weak to handle. WEST uses issue recogniz-
ers to analyze the student’s moves and to identify which issues have been used. The
issue recognizers also analyzes the expert’s moves to select combinations of given num-
bers and the issues which are better than student’s, and to provide a list of issues the
student did not apply. From the list, WEST summarizes the issue which are being con-
sidered as the weakness of the student. Then the coach provides a prestored text to
explain expert's strategies and also gives an example to show the expert’s intelligent
move.

In the issue analyzing approach, the diagnosis process concentrates on the issue
analysis. If a student writes an expression 2*4 + 1, then the system will analyze the
times issue and plus issue and check whether they are appropriate in the context of the
moves. Issue analyzing approach ignores the choices what the student was trying to do
before he decided to make that move, while those choices might be the stages which be
fully considered in the model tracing approach. For the issues in WEST, there is no
concept of error issues. They are only identified by the differences how often each issue
was used properly and how often it was overlooked. The differences are recorded in two
counters, used and missed, of each issue. Later on the system can find the student’s
weak issues based on comparison of the two counters. The diagnosis in WEST is based
upon the analysis of the separated issues. It does not deal with the relations of multiple

interactive issues.

2.2.4 Plan recognition
Plan recognition uses plans as models to capture the experts’ decision and follow
the students’ attempts in problem-solving. This approach formalizes the human tutor’s
insight using the plan, the essential ingredients of program design experience. The sys-
tems SPADE (Miller 82), BRIDGE (Bonar 88), PROUST (Johnson and Soloway 84) and
MACSYMA ADVISOR (Genesereth 82) use the plan recognition diagnosis method.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The early work on plan recognition was done in SPADE (Structured Planning And
DEbugging) project which built a programming tutor for interpreting simple picture pro-
grams in LOGO and presented 2 theory of planning and debugging. This theory explores
at least three hypotheses. The first one is that the problem-solving behaviors can be
described by a series of plans. The second is that bugs can be represented by the conse-
quence of incorrect plans under incomplete knowledge and limited resources. And the
third one is that articulating the plans (one’s problem solving strategies) facilitates learn-
ing. This is the Al contribution to the diagnosis (Miller 82). The plans in SPADE simu-
late the human tutor’s design choices and are classified by a taxonomy of concepts of

program design (Fig. 3). SPADE models planning strategies into three categories at the

Identify Primitive

enti

/ Previously Designed Procedure
Sequential

. Decomposition
Nonlinear

Conjunction {

Decompose Composition
Plan

Iteration
Repetition Recursion
Regrou
Equivalence [grotp
Generic w» licit
Reformulate . e
Specialize
Simplify { Generalize

Analogy
Fig. 3. Taxonomy Of Plans In LOGO
most general level: identification with previously solved problems; decomposition into

simpler sub-problems; and reformulation of the problem descriptions. For each strategy,

the system provides more details (refer Fig. 3). The design choices are indicated by the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plans in the hierarchical representations. And the hierarchical structure forms a plan
tree. The student’s developmental plan of the program code are edited by the system
according the plan tree. Diagnosis process in this model is depicted by the search in the
plan tree. The root node in the tree is the overall goal, nonleaf nodes are the subgoals.
The diagnosis task is to infer an incorrect design choice when it is given the student’s
action as the leave node of the tree. Using plan to make the decision process explicit
would encourage a good design strategy. Although SPADE only implemented at the
stage of plan-oriented programming editor, its idea of using plans shows basic step
towards to building a good tutor.

The plan recognition in PROUST is as an intermediate stage in the diagnosis pro-
cess. Johnson made the claim: programmers use programming plans not only in under-
standing programs, but also in writing programs. When programmer write programs,
they need to determine what goals must be satisfied, and then select plans which satisfy
those goals, although sometimes they choose incorrect plans (Johnson 86). PROUST's
main analytic task is to locate in the student’s code the plans for each of the goals in the
problem specification. PROUST has a list of plans related with the goals they achieve.
Plans in the list include the expert plans, buggy plans and some information about mis-
application of correct plans. Each plan is represented by a frame which contains a set of
slots, The most important part of a plan is described by the Template slot which gives
the structure of the plan template. The basic building blocks of plan templates consist of
one Pascal statement or a set of Pascal statements because each statement usuaily can
represent a primitive unit of action. The other slots provide various additional facts and
assertions about the plan. In the rainfall assignment, for example, accumulating the
counter and running the total are necessary to calculate the average. So the program will
include corresponding plans, “counter plan” that consists of statements "Count := 0"
and ”Count := Count + 1", and “running total plan™ that consists of statements "Sum

:= (0” and "Sum := Sum + New" (refer Fig.2 and Fig. 4). Plans are used in PROUST

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— Count:= 0;

Counter Plan| [Sum := ;
r
—~-ounter tan | New := 0

) while New < > 9999 do —
Running

Total Plan begin —_—
read (New); —~—{ Sentinel read-pro-
if New < > 9999 then cess while plan
begin —

— Sum := Sum + New;
— Count := Count + 1;

end; —
end; —_—

Fig4 Plans In Program Code

in following way. From program specifications, PROUST selects a goal to be analyzed. It
retrieves a set of plans from the plan list, each of which might be used by novices to
implement the goal. PROUST then matches each plan against the program as much as
possible. The matching process from goal to code can describe the student behaviors,
either correct or incorrect. If we consider the plans in SPADE play a role for the pro-
gram editor to help student to make a good program design, then plans in PROUST
would play a role of diagnosis to help tutor to find the error,

The plan in BRIDGE (Bonar 88) is presented in an explicit environment during the
period when students solve their problems in three phases as described in section 2.14.
Bonar asserts that plans play central role while a student constructs his program from
informal description of natural language to the formal statements of computer program
and the plan be viewed as a mental model and can be presented by visual icons. From
macroscopic point of view the plans are used in different way in BRIDGE and PRO-
UST. BRIDGE uses plans to map the student’s intended goal into code to help student
with writing code while PROUST to map the code back into the student’s original goal

to infer the student’s design process and give the interpretations.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.5 Decision tree

The decision tree technique is working in a deterministic manner and targeted for
accurate diagnoses in the problem with low bandwidth. BUGGY system uses this tech-
nique to diagnose the student’s subtraction errors after the student’s answers to a set of
test problems are given. It attempts to determine what internalized set of incorrect in-
structions or rules gives the student’s solutions rather than only judge whether the an-
swer is incorrect {Brown and Burton 78).

In the BUGGY system a set of subtraction tests that will be given to students are
selected in advance. BUGGY preanalyzes these subtraction test and constructs a deci-
sion tree. BUGGY also terms this decision tree as a procedural network that represents
the application of the possible skills of subtraction and connects elementary subskills
into a network. The top node of the tree corresponds to the first subtraction problem.
The answers to the problem, which are made by every possible bug as well as the cor-
rect subskills, form the child nodes. Each node is associated with one of the bugs or the
correct subskill which produce the same answer. From all of these nodes, the next test
problem and corresponding answers under the possible bugs and the correct subskill will
form next level of nodes. A diagnostic process based on this decision tree technique
contains all the necessary subskills for the global skill, as well as all the possible bugs of
each subskill, Each leaf node corresponds to one diagnosis and each diagnosis process
may correspond to several paths from a root to a leaf. Thus the decision tree can pro-
vide the explanations for the student’s incorrect behaviors with a set of exact internalized
errors which are translated by the subskills. BUGGY system views the compound bug as
one bug. This is too expensive when the combinatorial situations of primitivrebugs aod

considered.

2.2.6 Generate and test

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is necessary to consider that the student has several bugs at the same time. In
the decision tree method, only the single bugs and possible pairs of bugs are considered.
Even then, for 55 bugs, there already have been 552 {3025) possible bug pairs. Thus the
decision tree will be a huge tree. DEBUGGY system uses generate and test diagnostic
method to generate compound bugs dynamically instead prestore all possible bugs and
their combinations into a tree. It can deal with up to four or five multiple co-occurring
bugs (Burton 82).

DEBUGGY system generates an initial set of bugs by testing the student on the
set of given problems. Every bug in this set replaces a subprocedure in the correct mod-
el and predicts an answer for each given problem, which will be tested against the stu-
dent’s answer. If any one of those answers can match one of the student’s answers. then
it explains at least one of the student’s wrong answers. Usually, there are several bugs
can be generated from the student’s answers to the initial given problems. Then the
system tries to decide which one will be chosen as the candidate of the compound bug
and which one is not necessarily to stay in the set of single bugs. DEBUGGY removes
the bugs that are completed subsumed by other single bugs in order to reduce the size
of the set of single bugs. DEBUGGY then combines these single bugs to form the com-
pound bugs. The system predicts the answer for those compound bugs and compares
them with the student’s answers. Finally, it tests all of the bugs and selects the ones that
best match the student’s answer. Choosing the compound bugs which can explain more
answers than its parts can do is also considered. This method needs to test a large sets
of data to get the accurate or complete diagnostic result.

DEBUGGY and BUGGY work with a predefined subtraction test and the stu-
dent’s answers to it. IDEBUGGY provides an interactive environment (Burton 82). After
obtaining a set of diagnoses from the student’s answers, it generates some new subtrac-
tion problems by using problem generators. The generators are designed to produce

problems that are made to meet certain conditions, such as requiring borrowing, having

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

zero on the top. These problems will be expected to split the bugs in the current set of
diagnoses. Then it will find the more accurate diagnosis as the result. In this process
IDEBUGGY yields fewer test problems than DEBUGGY and BUGGY do to achieve

the same accuracy.

2.3 Summary on the State of the Art

A considerable amount of research has been devoted to ITS with respectable re-
sults, These systems can vary greatly in the type of pedagogical approach they imple-
ment and even in the techpology they adopt. Most systems built so far just show labora-
tory experiments primarily intended to demonstrate feasibility; only a few of them have
been put into applications like LISP tutor (Anderson 89), GUIDON (Clancey 82).
STEAMER (Hollan 84). It is obviously that research on ITS is still very young. It has a
long way to go to produce actual intelligent systems for helping people acquire various
forms of knowledge. It needs to explore more methods from different prospectives so
that people can compare and choose the most reasonable and realistic one.

In ITS research most significant effort has been devoted to the student modeling
problem. By virtue of student model and diagnostic process, intelligent tutoring pro-
grams can represent what a student does and does not know about the subject matter
and can focus teaching and tutoring on the specific needs of an individual student. In
this process many fundamental cognitive science issues have to be addressed also, other-
wise the teaching and learning can not go further to deeper stage. The student model is
very important so that some researchers think that an ITS simply contains a student
model and three experts, the domain expert, tutoring expert and diagnostic expert. All of
the three experts communicate with student model (Wallach 87).

Although the existing diagnostic approaches in current student modeling problems
are based on different formalisms for knowledge representation and different scheme for

diagnosis process, they fall roughly into three models according to their diagnosis styles:

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the enumerating model, the tracking model and the classifying model. All of these mod-

els have both reasonable sides and weak sides.

¢ Enumerating model

The diagnostic techniques such as decision tree (Brown and Burton 78), and gener-
ate and test (Burton 82) belong to the enumerating model and they are used for diagnos-
tic problems with low input bandwidth (Vanlehn 88) like a final state or intermediate
states. In these approaches the definite answers to a given problem, such as the result of
a numerical subtraction, can be obtained from both the student and the domain expert.
For every possible incorrect answer given by a student, the system attempts enumerate
all possible bugs in an enumerating model. This model can work well when the problem
domain is very simple, but it is not suitable for tutoring complex problems that require
the diagnosis of abstract mental states. The mistakes in complex problems are not neces-
sary enumerable. They are from students’ cognitive activities, and usually they are not

definite as the answers for certain simple mathematics problems.

* Tracking model

The diagnosis techniques such as model tracing (Anderson 90) and condition in-
duction (Langley and Ohlsson 84) belong to the tracking model. They try to track stu-
dents’ behaviors at every mental step to deal with the diagnosis in more complex prob-
lems. This approach has an inherent problem. The human mental activities are not
always discernible, and it is very difficult to accurately seize a student’s misunderstand-
ing at each step of a problem solving process. In problems at higher levels, obtaining the
accurate mental states is simply not feasible, even though it can be very desirable. On
the other hand, the tracking model only allows a student to follow the steps given by the
system’s model and forces the student to solve the problem in the manner that the tutor

uses. Therefore the student has no chance to explore and evaluate alternative designs.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ Classifying model

The issue analysis (Burton and Brown 82) and plan recognition (Johnson and Solo-
way 84) can be categorized as classifying models. The techniques under this model char-
acterize significant issues, plans, goals and strategies, and then try to recognize them
according to predefined expectations during the student’s problem solving process. Based
on this classification, the system can interpret the student’s behavior most plausibly on
the cognitive level. In contrast with the methods under tracking model, these methods
encourage student understand the design process on the high level of mental activities,
give students the chance not only for response to the states on sentence by sentence
basis which is a quit weak view of student problem-solving. Although these approaches
under this model seem to be more realistic, there are some problems which need to be
solved, such as how to choose the proper issues when there exist complex relationships
among issues and how to choose an accurate plan when several plans can be used to
serve the same goal.

There exist other views about building and using student models among research-
ers. They take a sceptical attitude to both the need for detailed student models and the
practical possibility of constructing them. The difficulties to build such complex student
models and the preconceptions about the potential roles of student model make them
doubt whether the cost of building runnable and maintainable student models is worth-
while in terms of the gain in teaching efficiency (Sandberg 87).

Self restates the importance for student models in intelligent tutoring systems and
presents the possibility of actually constructing them (Self 88). He states that it is not
essential for ITSs to possess precise student models and contain detailed representations
of all the components. Self suggests changes in philosophical approaches, such as having
the student tell the system what the system needs to know instead guessing, and not

diagnosing what the system can not treat. He claims that solutions for some aspects of

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the student modelling problem are practically attainable and useful if we back off from
the grand vision and adopt more realistic aims.

Based on analyzing the current diagnosis models in ITSs, we can see all of these
models are not adequate, they need to be improved. A new diagnostic model, Integration
of Abductive and Deductive Inference (IADI) has been explored. This model intends to
step forward the human diagnostician’s inside, to simulate the human’s reasoning ways,
therefore avoid disadvantages of existing diagnosis techniques in intelligent tutoring sys-

tem and synthesize their advantages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER THREE
GENERAL MODEL
OF
INTEGRATION OF
ABDUCTIVE AND DEDUCTIVE INFERENCE DIAGNOSIS

In light of the cognitive processes of human diagnosticians, a new diagnosis model,
Integration of Abductive and Deductive Inference (IADI) model, is derived. In contrast
with the other three models summarized in last chapter, that based on enumerating,
tracking and classifying approaches, the IADI diagnosis model is an inferencing model
because it relies on different inferences to solve the diagnosis problem.

Just as Pople indicated in 1973 (Pople 73), "The principal deficiency of existing
systems is their reliance on a single form of logical inference —deduction- which, though
essential, is inadequate for many types of problem solving activity.” Different mecha-
nisms of inference can be complementary to each other when they are combined appro-
priately, so that the capability to solve a problem can be greatly improved. Thus inte-
grating different types of reasoning is becoming one of the main characteristics of
second generation expert systems (Torasso and Console 89). The IADI diagnosis model
combines abductive inference and deductive inference to simulate the human diagnosti-
cian’s cognition in diagnosis problem solving. The IADI diagnosis model as a general
diagnosis approach was proposed and applied in a prototype of the recursive program-
ming tutoring system. This chapter describes the basic concept of abductive inference

and deductive inference, and presents the outlines of the IADI diagnosis model includ-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing its basic features, the diagnosis knowledge representation, and three steps in the
IADI diagnosis process. The next chapter explains how to apply the IADI diagnosis

model to solving a real problem.

3.1 Abductive and Deductive Logic Reasoning

Philosophers have considered abduction as a distinct type of reasoning from the
two traditionally recognized types, deduction and induction (Fann 70), (Pople 73), (Char-
niak and McDermott 85). The various forms of logical inference can be characterized as

following different models.

¢ induction Given { P(a) = q, P(b) = q, .. } 1)

Infer (wx)P(x)=q. xe{ab,..}

* deduction Given { (wx)P(x) —> Q(x),P(a)} (2
Infer Q(a).
* abduction Given { (wx)P(x) — Q(x),Q(a)} (3)

Infer P(a) as possible explanation.

Deductive inference is to infer the result for a specific case after being given the
general rule (general knowledge) and a specific case (conditional evidence). If the general
rule and the conditions are true, then the result, a logical consequence of the given data,
is definitely true. In the deductive reasoning process there are two different control strat-
egies: the forward chaining reasoning process and the backward chaining reasoning pro-
cess. IRIS is one system that works in forward chaining style. It applies the given data to
check the conditions of a rule to determine whether the consequence can be drawn or
not (Trigoboff and Kulikowski 77). Some systems, such as MYCIN which is based on

deductive reasoning, work in a backward chaining fashion. This mechanism builds sub-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

goals to prove. It checks the condition part of a rule. This process might go several
levels deep. That is, proof for a subgoal may involve several rules. If one of the subgoals
turns out to be fail, then the resuit is false. When deductive reasoning is applied to
diagnosis problem solving, the uncertainty measures are usually connected (Shortliffe 76)
because diagnosis features require plausibility. Actually this kind of reasoning already
deviates from purely deductive reasoning,

Abduction or abductive inference is to infer the best or most plausible explana-
tions for a given set of facts (Pople 73). This reasoning can be characterized as non-
monotonic reasoning (Bundy 90) (Geffner 89). One of the important features of abduc-
tive reasoning is that abductive reasoning is plausible reasoning. After being given the
general rule and a specific case (observed facts) like Q(a) in above (3), abductive infer-
ence infers another specific case such as P(a) in (3) as one possible hypothesis or expla-
nation for the given case. The inferred explanation may not be definitely true because we
can not conclude that P(a) is certainly true from the given data in the above formula.
From other rules, if any, it may infer other hypotheses that would also explain the ob-
served facts. In other words, abductive reasoning is a process which infers a set of the
most plausible hypotheses for the given evidences.

Although the term “abduction” was first introduced into the Al literature around
1973, abductive inference has not received much attention from the Al field even though
abduction logic reasoning is more suitable for use with many AI systems than other
kinds of logic reasoning. Not until very recently did researchers realize that abduction is
valuable and can be applied to many areas such as machine vision, natural language
processing, legal reasoning and plan interpretation, and especially diagnosis problem
solving because human diagnostic inference naturally falls into the category of abduction
(Charniak and McDemmott 85) (Peng and Reggia 90).

Reggia and his colleagues proposed the Parsimonious Covering Theory which is

based on the Set Covering model, for diagnostic problem solving in the abductive expert

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system (Reggia et al. 85 a, b, c) (Peng and Reggia 90). Their research is an attempt to
build a formal model of abductive inference in a mathematically rigorous fashion for
diagnosis problem solving. This model infers the minimal set of hypotheses as the diag-
nostic result which can cover the given manifestations (symptoms). Although this model
captures some desirable features of diagnostic problem solving, it is not necessarily ap-
propriate to have the minimal cover as the diagnostic result. There are some situations
where a minimal cover would not be the most plausible explanation for a set of manifes-
tations. For example, there are two sets of plausible explanations in a medical diagnosis,
both of them can account for all of the given symptoms. One set contains two common
diseases, another contains one rare disease. A physician would rather choose two com-
mon diseases as the differential diagnosis than choose the minimal cover which is the
rare disease. Hence, having the minimal cover of the given symptoms as the diagnosis
result may not be appropriate, especially when we consider the learning process as a
cognitive process. On the other hand, this theory treats the hypotheses in the minimal
cover with equal weight. It seems that there always are a few, and only a few, hypotheses
in the minimal cover which are critical. Human experts usually weight the critical hy-
pothesis more than the less critical ones. Hence, it is worth the study on which one is
better, choosing the minimal cover for the given manifestations, or choosing the critical

ones as the explanations.

3.2 A View of the 1ADI Diagnosis Model

Due to the nature of the real human cognitive process in diagnosis problem solv-
ing, it is suitable to use abduction as the first reasoning step to hypothesize misconcep-
tions from mistakes, and then use deduction to verify these hypothesized misconceptions.
Thus the two processes form an integrated inference process which works at detecting

on two levels.

This section represents the basic characteristics of the IADI diagnosis model which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

include the two-level detection, the integrated inference mechanism, the rules distinction,
the nondeterministic feature, and the three diagnosis steps in the IADI diagnosis pro-
cess. A detailed description of the three diagnostic steps and their applied knowledge
will be given in the following sections. How the IADI diagnosis model works in real

systems will be described in next chapter.

3.2.1 Detection at two levels

The purpose in diagnosis problem solving is to find the disorders or mistakes in
order to provide a foundation for the system to remedy or correct anomalies in one way
or another. In a tutoring system, besides detecting the student’s actions to provide a
starting point for a tutor to give instruction, the diagnosis process should also be able to
detect a student’s knowledge of a certain subject. An understanding or a misunderstand-
ing is viewed as a mental activity that is used to interpret people’s behaviors. Therefore,
knowing the student’s knowledge will enable the tutor to give more rational explanations.
Thus, it seems to be necessary to diagnose at two levels, action and understanding.

In a tutoring system a mistake is a student’s incorrect action which is usually dem-
onstrated when he performs in a problem-solving process, while a misconception is a
student’s misunderstanding at the conceptual level. Usually the misunderstanding of a
concept about the subject material is the reason that students make mistakes. So a mis-
take is viewed as a defect at the surface level from a cognitive point of view. But a
misconception is viewed as a defect at the deep level. Actually, both mistake detection
and misconception detection are important. Reporting mistakes can help students to
realize what is wrong. Pointing out misconceptions can help students to understand why
it is wrong. If only the mistakes are identified without an explanation of the underlying
conceptual knowledge, then the mistakes will be repeated under the different circum-
stances. If only the misconceptions are listed without showing where the corresponding

mistakes are and what the mistakes look like, then it seems to be too far and too deep

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be understood by students, especially novice students who are in a course of learning

completely new material.

3.2.2 Integrated inferences and applied rules in IADI model

Studies on a human diagnosticians’ process show that a diagnosis process actually
is a hypothesizing process and followed by a verification process. For example, a human
diagnostician only makes conjectures after seeing some symptoms; he does not immedi-
ately make the decision for the diagnosis at this time. He needs more information to
verify these conjectures. For example, a doctor usually first hypothesizes one or more
possible diseases based on initial evidences. Then he collects more information from lab
tests, conversation with the patient, investigating the treatment history, and so on. Finally
he makes the differential diagnosis. Abductive inference captures the plausible features
of this hypothesizing process while deductive inference presents the nature of the verifi-
cation process. Thus the reasoning process using the combination of abduction and de-
duction to simulate the hypothesizing and verification processes is much closer to the
process of human cognition in the real world. Besides integrating abductive inference
and deductive inference, the IADI diagnosis model also incorporates the structure analy-
sis to find the demonstrated mistakes.

Both abduction and deduction need the cause-effect relationship to support the
reasoning. In order to represent the causal relationship in a diagnosis problem solving,
the rule in the following form is applied in the IADI model:

If the misconception (disorder) exists
then a certain mistake (manifestation) can be caused.
It presents the cause-effect relationships between the antecedent and the consequent in
a rule, and supports the abductive reasoning and the deductive reasoning more readily.
Most existing diagnostic systems only use deductive inference. They use rules typi-

cally in the form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If conjunction of mistakes (manifestations) exists

then disorder {misconception) can be decided.
This kind of rules are target for constructing chains of deductive reasoning (Barr and
Feigenbaum 82). Such reasoning proceeds from the principle of modus ponens. If there
is a rule in the database and its antecedent is satisfied, then the consequent is definitely
true. Here the consequent is the diagnostic result. This process may involve several rules
in order to prove one result. Although the reasoning process based on such a form is
theoretically correct, it is not practical for many types of real world diagnostic problems.
In such a rule, the manifestations together form a sufficient condition for the conse-
quent. But in the real world, this condition is difficult to be satisfied because a disorder
does not always necessarily cause all of the manifestations simultaneously in most cases.
Thus it is unnecessary for all of the manifestations to be able to appear at the same
time. Hence it is difficult for some rules to be fired, typically when these rules have
several or many manifestations in the conjunction part.

The rules in the first form are easily fired since each rule only needs one manifes-
tation as the fuse; the corresponding misconception can be derived as one candidate
hypothesis to explain the existence of the manifestation. The rules in this form naturally
support the abductive process to infer multiple plausible hypotheses from the given man-
ifestations because usually there are several rules which can be related to each one of
the given manifestations in an abductive knowledge base. The result at this inference
step establishes the basis for further selecting the most plausible hypotheses in the next
step of the verification process.

The rules in the second form are aimed at heuristic matching while the rules in the
first form are aimed at causal reasoning. In a tutoring system the rules in the first form
indicate the causal relationships between mistakes made by a student and the miscon-

ceptions the student may have. Causal relationships can be effectively used to describe

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interconnections of the students’ behaviors and their understanding from a surface level
to a deep level in a precise way. This definite representation of cause-effect relationships
is more important in a tutoring process than in other systems. Based on this clear repre-
sentation, a tutor can readily conclude the cause from manifestations, and therefore can
give instructions in a more reasonable manner. In the verification inference process of
the IADI diagnosis model, this rule form provides a causal path for questioning students

in order to verify their misconceptions, and instructing on a conception.

3.2.3 Nondeterministic representation of diagnosis

The diagnostic results from the diagnostic process are not "certain” in most cases,
especially when incorporated with a tutoring process. In a cognitive process such as
learning or tutoring, it is very difficult to indicate one or several misconceptions as the
final diagnostic result. The reason is that the student’s misconceptions are usually asso-
ciated. It is difficult to distinguish which particular misconception caused the existing
incorrect behaviors because sometimes the effects of misconceptions are intercrossing or
overlapping. Sometimes even the students’ behaviors themselves are incomplete or am-
biguous. This situation happens frequently, especially when someone is in the course of
learning new knowledge, such as a novice’s programming technique learning. So provid-
ing a list of possible misconceptions and arranging them by their plausibilities becomes
realistic.

In order to measure the "uncertainty” of the selected hypotheses, different models
can be used. Among these models, probability theory is the most classical theory and is
relatively mature. Some diagnostic systems even use this model to infer or decide hy-
potheses, not just to measure them as an attachment. The knowledge in these kinds of
models is represented as prior probabilities of disorders and conditional probabilities of
disorders for given symptoms (Charniak and McDermott 85) (Pearl 88). This model re-

quires data independence assumptions in a practical system which are not always valid.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, this model can work only when all present manifestations are given in
advance, and it does not attempt to obtain further information for verifying hypotheses
as required in a diagnosis process. In the IADI diagnosis model, uncertainty measure is
defined in an intuitive way and can be easily calculated. And this measure is used to
help rank the proposed hypotheses as a complementary of abductive and deductive in-

ference processes.

3.2.4 Three steps in IADY diagnosis process

Considering the necessity of detection of both mistakes and misconceptions in a
tutoring system, the diagnosis process in the IADI diagnosis model consists of the fol-
lowing three steps:

« Mistake detection by structure analysis;

» Misconception hypothesizing by abductive inference;

» Misconception verification by deductive inference.

The three-step cycle can continue until the mistakes do not occur any more. Fig. 5
shows an overview of the IADI diagnosis process.

Diagnosis in 2 modeled system requires finding mistakes first, then it can further
analyze these mistakes so that misconceptions can be infered and verified. Mistake de-
tection is the first manipulation after a problem is given. In a programming tutoring
system the mistake detection process attempts to find program errors (or program bugs)
by using the program structure analysis. The program errors will be the input data for
the abductive and deductive inferences.

Taking the mistakes obtained from the first step, the diagnosis system infers a set
of plausible candidate hypotheses by an abductive inference process, and assigns a plau-
sibility measure for each hypothesis. In a tutoring system these candidate hypotheses are
the student’s misconceptions for a particular problem. But every hypothesis in this set is

just one candidate for explaining why the mistake existed. There might be other hypothe-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
‘ Initial _/M—;takc Structure Modified
problem Qection Analysis problem

Mistakes

Misconception
Hypothesing

Abductive
Inference

Proposed
Misconceptions|

Misconception
Verification

Deductive
Inference

Verified
Misconceptions

™\ -
N’

Fig. 5. Overview Of IADI Diagnosis Process

ses that can also account for the mistake. In order to verify which hypotheses are the
more precise representations of the misconceptions that truly cause the mistakes made

by the student, the system needs a verification process.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the third step the diagnosis system verifies the proposed candidate hypotheses
based on a deductive inference process. The system checks the existence of undemon-
strated mistakes and revises the plausibility measure. In this step the system provides an
interactive process with the student to get more information. Finally it produces a list of

ranked hypotheses as the result of differential diagnosis.

3.3 Knowledge Representation in IADI Diagnosis Model

In the IADI diagnosis model, the knowledge about a diagnosis problem is collected
in a diagnosis knowledge base. The IADI diagnostic knowledge base contains structure
knowledge, student’s mistakes and misconceptions for a particular problem, and check-

ing list.

3.3.1 Structure pattern

A structure is a representation of the basic organization of a substance and the
manner of construction. It is the fundamental basis with which to do reasoning (Reiter
87). For example the structure in a computer program is a syntactic structure of a pro-
gram which can be viewed as a pattern or a template. It consists of specific statements,
such as if ... then ... else ..; while ... do ...; case ... which represent the selection structure,
repetition structure, and multialternative structure respectively (Leestma and Nyhoff 84).
Analysis on the structures can be used to identify the possible mistakes in a program. To
avoid an excessively detailed analysis, a structure analysis usually grasps the key words
in a structure such as ’if-then-else’, 'while-do’, and ’case’, and just recognizes these key

words in a structure analysis.

3.3.2 Hypothesizing rules

A diagnosis process detects the mistakes first by the structure analysis; then it

St

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

further analyzes these mistakes, infers and verifies misconceptions. Mistakes and miscon-
ceptions are organized in a triple (M, C, R), where

M represents a finite set of all identifiable mistakes. In an ITS, these mistakes
are the possible incorrect performances of students. In a programming tu-
toring system, the mistakes are the manifested program errors or program
bugs.

C represents a finite set of all possible candidate hypotheses that are the
potential causes of mistakes in M. These candidate hypotheses are the
misconceptions that the students may have in the learning process.

R represents a finite set of production rules which indicate the causal relation-
ships between elements in C and M, If there is a rule ¢; — m;in the
set R, where ¢; € C, mj € M, that means the misconception c; can cause
the mistake m; under certain circumstances. This rule is also called a hy-
pothesizing rule or a misconception-mistake rule.

For given sets C and M, the following facts exist:

For one c;, there might be multiple mistakes. That means one misconception can
cause a student to make several mistakes. For example, in recursive programming if the
student misunderstands the recursive relationship he might incorrectly give a smaller
instance in a recursive procedure call, and he also might miswrite the condition in a
condition statement which may cause the recursive procedure to be called. That is, we
have

¢; : Confusion on the recursive relationship;

m; : miswriting the condition in one condition statement;

my, : misgiving the smaller instance in a recursive procedure call;

and ¢;—» m;

Ci—» my.

On the other hand, for one m;, there might be multiple misconceptions. That

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

means one mistake can be caused by several misconceptions. For example, besides con-
fusion on the recursive relationship, misunderstanding the termination condition might
also make the student miswrite the condition in the conditional statement for a recursive
procedure calling statement. Thus we have:
c; : misunderstanding the termination condition;
and c;— m;
| —> mj.
Consequently we can define following sets:
man(¢;) indicates all possible manifested mistakes which are caused by ¢;, and
can(mj) indicates all possible candidate hypotheses which can cause m;.
That is
man(¢;) = {mj| (cG—>m) R}
can(m;) = {¢ |{c;—»m;) gR} wherecig C, mjeM.
An IADI diagnosis problem can be defined as a five tuple
{MCRM, G}
where
M, C, R are defined as before, and they are precollected in the LADI knowledge
base;
Mp = { my, mp, .. m }, My © M, is obtained from the mistake detection on a
student’s performance;
C, C C has different values at different steps:
Before misconception hypothesizing, C, = ¢;
After misconception hypothesizing, Cy= C; which is the candidate hypotheses
set for the intermediary IADI diagnosis;
After the misconception verification, C; = Cy which is the final IADI diagno-

SiS.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.3 Checking list

For each misconception in C, the system sets up a checking list. The checking lists
consist of items. Those items are related with the manifestations which can be caused by
this misconception. These items are represented as questions and choices, and they are
organized by the cause-effect relationship and design plans. The detailed description is

in section 4.5.1.

3.4 Structure Analysis Process

Structure analysis is the initial process for the IADI diagnosis model. It detects a
set of mistakes My = {my, my, ... m}, Mp € M, and provides the M, as the input of
the abductive inference process.

In programming, although there are many intentions or intermediate processes be-
fore a student makes his program and runs it, if possible, usually only the submitted
program or the final solution is visible. One can consider the final program code or final
execution result as the final solution. So the program error analysis techniques can be
basically classified into an analysis of program structures and an analysis of program
behaviors. The program structure analysis compares the structures in a student’s pro-
gram and the structures in a instructor’s program. The program behavior analysis works
on the output of a program or the output of the program’s components to detect the
program bugs from the incorrect execution results.

In some programming problems, the structures are simple such as the structures in
a recursive program. Usually, a recursive program has a succinct program structure,
although it could contain things difficult for a novice programmer to understand. Never-
theless, it is this feature of the succinct program structure that makes the structure
analysis of a mistake detection feasible. Given a recursive problem, usually there are
only a limited number of ways to solve it, therefore a limited number of code patterns

for a particular problem solving. In other programming solving problems, it is common

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to have a longer and more complex program. Thus, the structure analysis may be much
more complicated due to the greater number of possible patterns. In that case the struc-
ture analysis has to be supplemented by other methods.

By observing student problem solving behavior, we found that most students begin
to learn recursive programming by making an analogy of structures between the given
problem and a known program. Research on recursive problem solving of novice pro-
grammers shows that 80% of students’ programs are accomplished by structural analo-
gies of earlier programs since relatively simple program patterns usually provide these
opportunities. Even expert programmers still use the provided templates or a chuck to
solve a problem if it is similar to a problem which has been previously solved. Only
when the problem becomes complicated, will 2 more sophisticated analysis be applied.
Researchers have found that abstracting the structural features of recursion and simply
imitating them is sufficient for beginners to solve routine recursive problems, although
its effect decreases when the problem is novel or difficult (Bhuiyan, Greer and McCalla
91) (Wiedenbeck 89). That may be the reason that the LISP tutor basically asks students
to use recursion templates to fill in to arrive at a final program when a novice comes to
learn recursion (Anderson, Boyle, Corbett and lewis 90).

In the IADI diagnosis model, the structure representation of a modeled system is
an abstraction of the key features about a program as well as a syntactic template. In
most cases of computer programming, incorrect program structures are the main reason
that results in failure of expected functions performed by a program. So the knowledge
about program structure is a kind of causal knowledge. It can be viewed as a kind of
deep knowledge. This deep knowledge can be used not only for detecting program mis-
takes, but also for providing the reason for explaining the program errors.

The IADI diagnosis approach first collects possible correct structures and possible
incorrect structures in the diagnosis knowledge base. Structure analysis then attempis to

find the mismatches between the actual structure and the expected structures. If there is

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a mismatch, it is very likely there is a mistake m;. Then the system includes the m; in

Mp.

3.5 Abductive Inference Process

The IADI diagnosis model uses abductive inference to hypothesize possible mis-
conceptions after a student’s demonstrated mistakes are available. This is the first step
of diagnosis at the conception level.

The abductive inference process infers a set of plausible candidate hypotheses from
the set M, which is obtained from the mistake detection process, and also from the
hypothesizing rules prestored in the diagnosis knowledge base. That is, given an initial
IADI diagnostic problem {M, C, R, M}, for each mj € M (where 1 < j < 1), this
process will infer can(m;) by applying the hypothesizing rules. The can(m;) is a set of all
the possible candidate hypotheses of misconceptions that may cause m;. The union of
can(m;), 1< j < |, becomes the selected candidate hypotheses set, called C,. Every hy-
pothesis in can(m;) represents just one candidate for explaining why the mistake m; ex-
isted unless |can(m;}| =1 in which case the can(m;) is the definite cause for m; because
there is no other alternative misconception for the mj. If |can(m;)| > 1, it is possible that
a hypothesis in can(m;) is not the true cause the student made the mistake m; and some
other hypothesis in can(m;), which is generated from other hypothesizing rules, may be
the true cause instead, as was the case discussed in subsection 3.3. Hence, there is a
need for the verification process to further verify and determine which misconceptions in
the set Cs are more likely to be the student’s true misconceptions.

In the abductive inference process, the system calculates the Plausibility Measure
(PM) for each candidate hypothesis in Cs The Plausibility Measure PM(c;) is defined as
a numerical value to be assigned to the hypothesis c; to represent its plausibility for a
diagnosis problem. The PM values, calculated in the abductive inference process, are

called Initial PM (IPM) values. These values are decided by the number of initially dem-

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

onstrated mistakes and the information in the knowledge base. The system then yields
the initial ranking of the candidate hypotheses in C according to the descending order
of their IPM values. The ranked set C; is called C..

At the end of the abduction process, the intermediary IAD! diagnostic problem
{M, C, R, M;, C;} is produced. The C; will be sent to the next process, the deductive

inference process.

3.6 Deductive Inference Process

Given the intermediary IADI diagnostic problem {M, C, R, My, C;}, the deductive
inference process investigates the hypothesized candidates in C;, further refines their
plausibility measures, and then arranges a final list of the hypotheses as the diagnosis
result.

The deductive inference process tries to verify each ¢; in C; in a backward chaining
fashion. There is a difference from the traditional deductive inference in a backward
chaining control structure. In the traditional deductive inference, the backward reasoning
starts with the target that is usually the consequence of a rule, then it retrieves all the
rules that can make the target and determines if there is a rule for which the condition,
that is the premise in a rule, has been met. If the condition is satisfied, the assumed
target can be deduced as true. In the IADI diagnosis model, the inference rules have
different forms (refer to section 3.2.2 and 3.3). Hence, even though the backward reason-
ing has the same fashion from back to front in rules, the meaning is fundamentally
different. The deductive backward reasoning in the JADI diagnosis mode! takes the can-
didate hypotheses and invokes the related rules to collect their mistakes which are in the
consequent parts of those rules. Then it checks whether a student has these mistakes or
not, and therefore determines whether the student really has this misconception or not,
and then puts the corresponding candidate hypothesis on the right place in the final list

of diagnosis results.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the deductive inference process, the system sets up a checking list for each
misconception in C. The checking list contains some items and some questions. Those
items and questions are associated with the mistakes that appear on the right hand side
of the rules which have same misconception as the left hand side. The checking list is
used to allow the system to check on a student’s unexposed mistakes to further verify the
misconception.

By analyzing the internal relationships between the misconception and its mistakes,
we find that there is another relationship besides the cause-effect relationship which is
presented in misconception-mistake rules. That is the design plan. When a student is
learning a new concept or a new technique, or when he wants to implement a concept in
programming, he must follow certain design plans. Plans are the detailed steps to reach
a goal. If one design plan deviates from the correct path, it would not be able to imple-
ment the correct concept, and a relative mistake is very likely to be presented instead.
Obviously, mistakes and design plans are inevitably associated. Solving problems by de-
sign plans shows the ability to divide a given problem into smaller ones and synthesize
the corresponding solutions into a global solution for the original problem. Therefore it
can be viewed as a mental model which can show the coherent knowledge including both
structural and functional properties. Combining this mental model into a diagnosis and
tutoring process will raise the diagnostic precision and pedagogical effectiveness. Thus
the items and questions in a checking list are considered to be organized according to
the associated design plans as well as the cause-effect facts. When students interact with
a system by using the checking list, the questions and the corresponding explanations
displayed in this process will encompass the structure analysis, the cause-effect rational-
ization, and design plan development. This synthesized knowledge will help detect and
verify the corresponding misconception, and also teach how to solve a problem step by
step.

According to the student’s actions, the system will assess the plausibilities of the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misconceptions and revise the plausibility measure. These PM values, calculated in the
deductive process, are called the Final PM (FPM) values. Each FPM(c;) value is decided
in an interactive environment when a student answers the questions or makes a choice in
a checking list.

After reranking the hypotheses in C; according to FPMs, the system concludes the
reranked list C; as the final IADI diagnosis. The IADI approach provides a list of

ranked diagnostic results, Cy, in the form of nondeterministic diagnosis.

3.7 Overall IADI Diagnosis Process Description

From the above description, we see that there are three steps in the IADI diagno-
sis process. In the first step, the mistake detection process, the system detects a set of
mistakes, M, which are the mistakes initially demonstrated by the student. In the sec-
ond step, the abductive inference process, the system works on the mistakes in Mp. That
is, the system is given M, it infers C;, calculates the IPMs, and ranks C; into C;. In the
third step, the deductive inference process, it works on the hypotheses in C; obtained
from the abduction process. It uses the checking lists corresponding to the hypotheses in
C,, and collects more information through interactions with the student to refine the

plausibility measures, and finally obtains the reranked Cg as the final diagnosis.

To summarize, for a given problem submitted by a student, the overall process for
the IADI diagnosis process can be described as follows:
1). For a given problem, detect a set of mistakes Mp = { mj, m, ..., m; }
2). For every mj in Mp (1<j<1), infer can(m;);
3). Calculate the initial plausibility measure IPM for each misconception in Cg;

4).c; - U can (m);

=1

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Cs is the set of selected candidate hypotheses)
5). Rank the hypotheses in Cs according to their IPMs from high to low to obtain C;;
6). C, +— o; (C; is a temporary set of Hypotheses)
Repeat
7. Get ¢; from Cy;
8). Display its checking list CL{c;);
9). Get the student’s choices of items in CL{c;);
10). Give the explanations to each item selected by the student;
11). Calculate the final plausibility measure FPM for c;;
12)C,*+— Ci-{c };
BM.C<*+— C +{c}h
until C; = o.
13). Rerank the hypotheses in C, according to their FPMs, to form the final

diagnosis Cp..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER FOUR
IADI DIAGNOSIS MODEL
IN

RECURSIVE PROGRAMMING TUTOR

The general model of the IADI diagnosis approach can be extended in various
ways to accommodate different diagnostic problems. This chapter illustrates the IADI
diagnosis model in a Recursive Programming Tutor (RPT). RPT has been designed and
developed to teach students to understand the basics of programming in recursion. This
system is implemented in C and Sunview languages at the Sun workstation. At present,
the RPT is a prototype of the recursive programming tutor. This chapter describes the
diagnosis process in RPT. The hypermedia environment of RPT will be described in next

chapter.

4.1 RPT Domain
The objective of diagnosis in RPT is to find the run time errors or bugs in a
program which contains recursive algorithms, and then to conjecture the students’ mis-

conceptions based on the detected program bugs.

4.1.1 Why choose recursion
The concept of recursion is chosen as the tutoring subject because this concept is
very useful as is evidenced in expressing various algorithms in computer science. A pro-

cess is said to be recursive if it partially consists of or is defined in terms of itself

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Wirth 76]). The concept is encountered in many important applications, such as scarch
algorithms, sorting algorithms, and even grammar definitions of the syntax in natural
language. The power of recursion is obviously owing to the possibility of defining an
infinite process by the finite statements. This feature makes the recursive program code
very terse, and also makes it difficult to be understood when a student encounters it for
the first time. This problem rises partially from a succinct program structure on the
surface but with an underlying a complicated process in the recursive program. Thus,
the recursive conception is a challenging subject to teach.

Recursion is also a quite interesting topic to study. Many students claim to experi-
ence a significant cognitive change as they gain understanding of the recursive concep-
tion (Bhuiyan, Greer and McCalla 91). Usually it is in Pascal that students first encoun-
ter the recursion concept, so the recursive programming in Pascal is chosen as the
problem domain. Thus we can teach students the recursive concept at the point where
they are just beginning to learn it.

Sometimes people use induction to help design recursive algorithms since there are
some similarities between them. From a theoretical point of view, we can see that all
recursive algorithms can be proved by induction. On the practical point of view, both of
them try to reduce a problem to several smaller problems, and generally speaking the
methods for reduction are the same (Manber 88). This strategy of reducing a problem
into smaller problems is used in the RPT system, but proving a recursive algorithm is
not addressed here.

The RPT system provides the mechanism to allow a domain expert to add pro-
grams for either problems of instruction or problems of diagnosis into the tutoring sys-
tem. As a prototype of RPT, the system selects the inorder traversal program as the
instruction material, and the issue of inserting nodes into a binary search tree as the
Tepresentative example 10 be analyzed in the diagnosis process. This chapter illustrates

how the IADI diagnosis model works in the recursive programming tutor for insertion

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem solving. How to give instructions for recursive algorithms will be presented in

the next chapter.

4.1.2 Insertion problem description

When we consider which materials or cases to work on, we need to consider
whether they are significant in the sense that they evolve gradually from simple to com-
plex in order to allow the student to obtain the knowledge from subskills to the required
complete skills. The insertion problem is chosen because it is a typical example used in
almost all algorithm introduction text books and it fully illustrates the use of recursion.

The insertion of recursive algorithms involves insert one node at a time into a
Binary Search Tree (BST). There are two kinds of cases: one is to insert a node into an
empty BST, and the other one is to insert a node into a nonempty BST. The first case,
inserting a node into an empty tree, can be easily done by making the new node become
the root of the empty tree in a pointer-linked tree structure. In the second case, the
algorithm compares the node to be inserted with the one in the root of the BST to
decide into which subtree the node should be inserted. If it is less than the root node,
then the new node must be inserted into the left subtree; if it is greater, then it must be
inserted into the right subtree. That is, the algorithm requires that the properties of a
binary search tree are still preserved.

To solve the insertion problem, a correct version is given in Fig. 6. It includes the
related specifications, the insertion procedure, and other associated procedures which

show how the insertion procedure is called and how the results are printed out.

4.1.3 Analysis on recursive algorithm
The procedure "insert” in Fig. 6 is recursive. A recursive algorithm solves a prob-
lem by solving one or more smaller problems of the same type with the same strategies.

The smaller problem refers to either a numeric parameter or the size of the data struc-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program printBST (input, output);
type
nodeptr = " node;
node = record
item : integer;
Lchild, Rchild : nodeptr
end;
table = nodeptr;
var T : table;

procedure create {var T : table);
begin

T = nil
end;

procedure insert (var T : table; newitem : integer);
{Insert one node into BST at one time}
begin
if T = nil then
begin
new(T);
T7, item := newitem;
T~. Lchild := nil;
T~. Rchild := nil
end
else if newitem < T*. item then
insert(T~. Lchild, newitem)
else insert(T . Rchild, newitem)
end;

procedure buildtree(var T : table);

{Insert n nodes to build a BST}

var n, i, K : integer;

begin
writeln('Please input the number of node);
read(n);
writeln(’Please input the node °);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fori:= 1tondo
begin
read(k);
insert(Tk)
end;
end;

procedure printnode(var T : table),
{Print the nodes in the BST}
begin
if T <> nil then
begin
printnode(T ~. Lchild);
writeln (T". item);
printnode(T ~. Rchild);
end
end;

begin
create(T);
bildtree(T);
printnode(T);
end.

Fig. 6 A Correct Version Of Insertion Program

ture that is being manipulated. The size of smaller problems should be decreased at
each recursive call. Finally the algorithm reaches a base case. Thus a recursive algorithm
must include the base case and the recursive case. The base case, or the degenerate
case, is a case in which the problem size is sufficiently small so that the problem can be
solved directly. The recursive case, or the general case, is a case in which the solution is
expressed in terms of a smaller instance of itself (Helman and Veroff 86). Usually jobs in
different cases are different. In the insertion problem, the job in a recursive case is

searching for a place; the job in a base case is to insert the new node in the selected

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

place. In some problems such as the inorder traversa! problem, the job in a base casc is
doing nothing. Even so, remaining a recognition of base case is needed because it ensur-
es that the algorithm will be able to return successfully. The recursive process starts with
a general situation and checks whether there is a degenerate case. If that case occurs,
the recursive process terminates. Ensuring that a base case can be reached in a finite
number of steps is very important because it is expected to terminate a potentially infi-
nite sequence of recursive calls. Otherwise the algorithm will keep issuing recursive calls

until all available memory has been used.

4.2 RPT System Outline

The RPT system design emphasizes the diagnosis process. It also provides a hyper-
media environment for instruction as well as diagnosis. The system frame is depicted in
Fig. 7. The domain knowledge comes from diagnosis experts and tutoring experts. The
IADI diagnosis knowledge base contains program structures for a particular problem of
programming, and the possible mistakes and misconceptions on that programming prob-
lem. The RPT instruction knowledge base contains specific instructions for selected tu-
toring lessons, and specific representations for instructions on those lessons. The envi-
ronments for both diagnosis and instruction are created on the hypertext model.
Students interact with the environment to communicate with the RPT system. Based on
the student’s activities, RPT builds a student’s mode! for the system to work on.

Fig. 8 shows the main part of the RPT system, the diagnosis process in the interac-
tion between the student model and the diagnosis knowledge base, which is the represen-
tative of the diagnosis expert. How the IADI diagnosis knowledge base is generated and
applied, how the three diagnosis subprocesses work together, and what the student mod-

el is at corresponding stages will be described in following subsections of this chapter.

4.3 Mistake Detection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RPT Domain
Expert

C Diagnosis) Tutoring
pert ert

[

IADI Diagnosis RPT Instruction
Knowledge Base Knowledge Base

1 1

Diagnosis Instruction
environment Environment

N e
/
Students)

Fig. 7. RPT System Frame

— e e . e e e e e e e St e e B, W P e G . G g

,.
|
I
I

Mistake detection is the first step in the IADI diagnosis process. It finds mistakes
from a student’s submitted program. This mistake detection process is completed by
program structure analysis. The detected mistakes {mj, mp, ... mj}, which is M, C M,

are submitted to the misconception hypothesizing process.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Instruction
Students

1 Performing

Recursive
Program code

-
l
|
I

|
I
|
|

]
| | Mistake
I | Detection

Program
Structures

l—.—u—.—..—u——u—..—..—...—.-—-——————————

U man (c;)

Misconception
Hypothesizing

(o)
l
0

I

I

|

i | 1 A ci}ecklng
] I i) . Z list (c;)
} C; + FPMs—C; |/ 4 : Misconception

I

|

|

|

I

I

Verification

IADI Diagnosis

Diagnosing Knowledge base

— et et St e St Gl

L

Fig. 8. Diagnosis Process In IADI Model

43.1 The organization of program structures

Program structures are organized in the IADI diagnosis knowledge base. There are

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two categories of structures which are usually used in diagnosis systems: incorrect struc-
tures and correct structures. If a piece of code matches with a correct structure, the
system can assume that some requirements have been satisfied and the program is cor-
rect on this part. If a piece of code matches with an incorrect structure, the diagnosis
system will claim that an error has been identified. But if a diagnosis knowledge base
only contains incorrect structures, the system can not find the bug such as a correct
structure missing. Obviously missing a correct structure for a necessary function in a
problem is also an error. On the other hand, if a diagnosis knowledge base only contains
correct structures, the system will claim there is an error when a correct structure is
missing or a piece of code does not match with any correct structure. However it can
not provide more information about the bugs such as the bug category, bug features,
bug location; therefore it does not benefit tutoring greatly.

The IADI diagnosis knowledge base contains both correct and incorrect program
structures for a particular problem. Thus it provides a wide range of program structures
to be analyzed in proper situations.

Due to the variability in program implementations, the program structures can also
be very different. For error recognition purposes, the system needs to have the knowl-
edge of all possible syntactic structures of programs including correct program structure
and incorrect program structure. For example, in order to compare two numbers n; and
ny, and decide to do t; or 13, the structure patterns can be the following:

if nj < n; then t; else t
or ifn; > ny then t3 else ty
or if nj < n; then t; else t;
or ifny; < nj then t; else ty
The number of possible combinations of the three syntax elements in one statement: one

from n; or ny, sign of inequality and one from t; or tp is 23. Some of them are correct,

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but some of them are not. Some students may even use other structures such as while-
do to substitute for the if-then selection structure. In some cases the while-do structure
is a wrong structure, while in other cases the substitution of a repetition structure for
selection structure may be proper. In order to make a correct diagnosis, theoretically the
diagnosis knowledge base should contain all of the possible correct alternative structures
and all of possible incorrect structures for a particular problem. Practically, however, it
is impossible to obtain all of this information even for a trivial problem in programming.
It is limited by experts’ experience, and also by the obtainability of novices’ behaviors.
So in the IADI diagnosis knowledge base the correct structures are only their main
alternatives, and the incorrect structures are those which frequently appear in students’

programs.

4.3.2 Program structure analysis

From the above analysis of the features of recursion, it is easy to see that recogniz-
ing the base case and the recursive case should be used as the cornerstone of structure
analysis of a program which uses a recursive algorithm. Selecting one of these two cases
needs to use a condition, that is called the termination condition. The next problem is
deciding what the termination condition in the insertion algorithm is. The insertion algo-
rithm first tries to find a place for a new node to insert. Once the place is located, the
node can be inserted. The algorithm searches the location recursively. So the termination
condition is actually used to end the searching process. When a tree or a subtree is
empty, the condition is reached, that is a place to insert the node is found. Thus the
termination condition is when a tree or a subtree is empty.

Usually a selection structure, which has the if-then-else pattern, is applied to
branch between the two cases. Although other structures can be used in some problems
such as generating permutations problems (Kruse 87), in most problems like recursive

algorithms in introductory courses, the repetition structure can not be used for the rec-

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ognition purpose because it usually goes into an infinite loop. The repetition structure
should not be used in insertion algorithm either. If a repetition structure, such as while-
do, needs to be used, it should not contain a recursive call (Dale and Weems 87). But in
a novice’s program, the loop structure comes into existence when a novice tries to under-
stand and explain recursion in terms of prior knowledge of iteration. Some researchers
have investigated and proved that students’ knowiedge about iteration dominates their
knowledge about recursion in the carly stages of learning recursion, and students try to
draw analogies of recursion to loops or interative structures (Bhuiyan, Greer and McCal-
la 91). So the repetition structure should be recognized as a incorrect structure. In the
mistake detection process, a mistake is announced whenever the repetition structure is
found to include a recursive call in the insertion algorithm,

In order to recognize the termination condition in a recursive program, the if-then-
else selection structure is vsually needed to include the termination condition, base case
call and recursive case call. In the selection structure, between the key words if and then,
there should be an expression as the termination condition to choose one case to ex-
ecute. This expression consists of two simple expressions of operands and one of the
relational operators such as =, <>, <, >.. (Kruse 87). These syntax structures pro-
vide the basis for program error detection. In the insertion algorithm described in sec-
tion 4.1.2, a tree structure is required by the problem nature, and the tree or the subtree
is indicated by a pointer. The objects to be compared, or the two operands on the two
sides of the operator are the roots of two subtrees. One of them is the empty tree since
this expression is used to recognize a termination condition. For an empty tree, the
indicated pointer is represented by a nil pointer. Thus, the structure "= nil” or "< >
nil” can be used to decide whether a termination condition exists in a student insertion
algorithm.

After the base case and the recursive case have been discriminated, the next prob-

lem is to decide what should be done in different cases. When a tree is not empty, the

It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm falls into a recursive case. In a recursive case, the algorithm is trying to locate
a place for the new node. The basic strategy is to compare the data in the new node
with the data in the root of the current subtree. The comparison result is used to decide
in which subtree the further search will be, that is to decide whether a recursive call
occurs on a left subtree or on a right subtree. Since the recursive call is a procedure call,
that is a call to itself within the procedure, the system can identify the recursive call
statement by comparing the procedure call statement and the procedure name in the
procedure heading. The recursive call made from within the procedure passes a subtree
of the previous tree through the parameter. The parameter should be within a pair of
parentheses following the procedure name in the procedure heading. Because the pointer

1

is used to indicate a tree, there must be a '’ mark in a subtree representation. This
syntax information can help the structure analysis. Some students do not write subtree
representations in parameters directly. They first assign the subtree to a variable in as-
signment statements before a recursive call statement, and then include the variable in
the parameters of the recursive call. In this case the system also uses those syntax struc-
tures to recognize whether a subtree has been passed.

Some students do not use the correct action in a recursive case. By comparing the
given data and the root of current subtree, they try to find a node in the binary search
tree instead of finding a place for inserting the node. In this case they usually use an
equality relational operator *=' or an inequality relational operator *< > instead of use
a comparison relational operator '<’ or >’ in a selection structure under a nontermina-
tion condition (if there is a termination condition to identify this case in the program).
For example, they may use ’if newitem = T".item then,” instead of 'if newitem <
T~ .item then’ as in the version of Fig. 6.

The new data, which is used for comparison when determining the necessity of a

further search, can be obtained from the passed parameter. Then the structure analysis

can get information about the data from the parameters. But there may be alternative

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ways to pass the data. In some programs the new data is not passed by the parameter
directly. The new data is contained in a2 node which is set by another procedure, and it
is the entire node that is passed from the parameter. It makes the structure analysis

slightly different. This version is showed in Fig, 9.

Procedure insert (var T : table; leaf : nodeptr);

begin
if T = nil
then T := leaf
else
if leaf~.item < T”.item
then insert (T, Lchild, leaf)
else insert (T . Rchild, leaf)
end;

Fig. 9. Another Version Of The Insertion Procedure

The operation in the base case of version 2 is different from the operation in the
previous version. The recursive process in the insertion problem is a search process that
is looking for a proper position by checking whether the current tree is empty or not.
When the empty tree eventually arrives (that is, the base case is reached), the search is
terminated and another kind of job should be done. In the base case the new data or
the new node will be inserted. Thus the operations in the base case are to apply a new
node and assign a value for the data and the pointers for the node as shown in Fig. 6.
or to insert the node passed from the parameter as in another version presented in Fig.
9. To determine if these operations are correct or not, the system can check to see the
key word like 'new’ (for applying the new node) exists or not in version 1, or compare
the variable in the base case with the pointer variables in the declaration part to make

sure the node is inserted in version 2.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Program structure summary

From the description of the insertion problem, and the analysis of recursive algo-
rithms and insertion program structures in previous sections, the program structures for
insertion problem solving recursively can be summarized. The different structures are
called different structure elements. The basic structure elements in the IADI diagnosis
knowledge base are presented bellow:

1. Data-holding structure elements :

« Record as a formal parameter

The new node to be inserted as an entire record is passed from the formal param-
eter of the procedure heading,

« Integer as a formal parameter

The new data which will be a part of new node is passed from the formal parame-
ter of the procedure heading.

Recognition of these two different structure elements is used to check whether the
correct action is applied in base case.

2. Selection structure elements :

«if ... <> nil then ... else

- if ... = nil then ... else

These structure elements are used to determine whether the termination condition
exists.

3. Iteration structure elements :

« while ... do

« for

* Tepeat

These three structure elements are used to check whether the loop structure is
used. If one of them is used, a mistake is indicated since an infinite loop will be caused

by the loop structure in the insertion algorithm.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Position—checking structure elements

e new (...); if ... <> nil then ... else

« new (...); if ... =nil then ... else

 if .. <> nil then new (...) else

s if ... = nil then new (..)else

The above four structure elements are used to determine whether the action of
applying the new node exists and whether it occurs in the right place whenever it is
needed.

5. Subset structure element

« Dot .’ in actual parameters of recursive call statements

« Dot "” in the right hand side of an assignment and the assigned variable appears
in recursive call statement

The system determines if one of actual parameters in a recursive call statement is
in the form of a subtree by identifying the existence of the syntax representation of a dot
", either in a recursive call statement or in an assignment statement before the recursive
call. If this mark is missing, the recursive call statement does not give the small instance
of 2 subtree to work on and the procedure can not arrive at the ending point.

6. Comparison structure elements

eif .. < 7. then .. else

oif .. > 7. then.. else

«if ., < .. then.. else

«if . > ..then ..else

These four structure elements are used to compare the new data with the data in
the root of the current subtree and decide which subtree will be searched further.

7. VPD (Variable Parameter Definition) structure element

= var

It is used to determine if a formal parameter is a variable parameter.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Besides checking the existence of the element structures, the system also checks the
relationships or relative operations among the element structures. The procedure in

Fig.10 is an erroneous procedure about insertion. The system compares the structures in

Procedure insert (var T: table; newitem: integer);

begin
new(T);
if T= nil then
begin
T~ . item := newitem;
T~. Lehild := nil;
T~ . Rchild := nil;
end
else
if newitem < T”.item
then insert (T . Lchild, newitem);
else insert (T ™. Rchild, newitemy);
end;

Fig. 10. An Erroneous Procedure.

the procedure with the correct and incorrect structures in the IADI diagnosis knowledge
base. Since one of the if .. <> nil then ... structure elements and the if ... =nil then ...
structure elements appeared, the systems can determine if the necessary termination con-
dition in this recursive procedure exists. But the operation of applying a new node is
misplaced, which should be put under the termination condition. The system checks the
relative position of the element structures 'new’ and 'if ... = nil then’ as well as their
existence, and recognizes that the mistake of misplacing the operation of getting a new

node had been made.

4.3.4 Mistake types

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The program structure analysis serves for mistake detection. The 1ADI diagnosis
process attempts to concentrate its efforts on the mistakes which are related to the cru-
cial concepts. It refers to the major concepts in the key steps of a correct recursive
problem solving and other basic programming concepts. It also refers the possible mis-
conceptions about these concepts drawn from the students’ experience. These major con-
cepts include (the details will be introduced in next section) :

» There must be a termination condition to stop the recursion.

» The actions in base case.

» The actions in recursive case.

« The smaller instance for each recursive call which represents the recursive rela-
tionship between a problem and its subproblems.

« Formal parameter definitions.

« Binary Search Tree definition.

» Necessity of applying a new node to hold the data to be inserted.

From the analysis of program structure elements in the insertion problem, the sys-
tem can detect the related mistakes. Different mistakes are called different types such as
type mj, type my ... The mistake types in the JADI diagnosis knowledge base form the
set M which is defined in section 3.3. The mistake types are listed in table 2.

One example that contains some of these mistake types is shown in Fig. 11. The
RPT system interface is shown in Fig.12. The system checks the program made by a
student that is in the text window of the right column of a diagnosis interface (the entire
interface is described in the next chapter). Initially the tty window, which is on the left
column of the interface, is empty. After the command "diagnose” is invoked, the system
picks up the recursive procedure from the student’s program, and displays it in the tty
window. The system further analyzes the structures of this procedure and finds that the
expected termination structure elements and the subset structure element do not appear.

It identifies the possible mistake types and begins a dialogue with the student in the tty

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Types

Mistakes

my
m3
my
ms
ms

my

mg
mg
mjp

mj

miz

mj3

Missing the termination condition.

Misplace the operation of inserting new node.

Misuse a loop structure.

Lacking parameter in recursive call statement.

Did not provide the smaller instance.

Miswrite the termination condition.

Missing key word which defines the variable parameter in the
formal parameter definition.

Misorder the data in left subtree and right subtree.

Not apply a new node to hold the new item.

Apply too many new nodes for inserting one new item.

Tty to find nodes in a binary search tree instead finding a place
to insert a node.

Create a new node after using it.

Not apply a new node, but try to assign data to it.

window. In this example there are two mistake types that are missing termination condi-
tions and do not provide the smaller instances which are highlighted in Fig. 12. Thus the
corresponding mistake types m; and mg are detected, and the set Mp = {m, ms} is

formed. The initial IADI diagnosis problem { M, C, R, M, } will be submitted in the

Table 2. Mistake Types

next diagnosis step, the misconception hypothesis process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Procedure insert (var T: table; newitem: integer);
begin

new(T);

T".item := newitem;

T~. Lchild := nil;

T~ . Rchild : = nil;

insert (T, newitem);
end;

Fig. 11. An Erroneous Procedure.

4.4 Misconception Hypothesizing

The misconception hypothesizing process starts from the initial IADI diagnosis
problem {M, C, R, Mp}, where M, is a set of demonstrated mistakes {my, mz ... mj}; it
infers a set of plausible candidate misconceptions to yield the intermediary IADI diag-
nosis problem { M, C, R, M,,, C; }. This misconception hypothesizing is done by abduc-

tive inference.

4.4.1 Misconcepfion types

Misconceptions are the reason that students make mistakes under certain circum-
stances. The misconceptions in the IADI knowledge base are established by deviating
from the required concepts identified by experts for the tutoring subjects. The insertion
problem solving requires many concepts. Some of them are important, for example, the
concept about the binary search tree, the concept about the termination condition when
inserting 2 node into a binary search tree, the concept about the smaller instance to
represent the recursive relationship in this problem, and other basic program knowledge
such as how to define the variable parameter, when and how to apply a new node ... In
the IADI diagnosis knowledge base different misconceptions are called different miscon-

ception types such as misconception type cy, ¢ ... These misconception types for the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2] tornadol cp f18.rs desktop/.
torradoX scrasndumpdfiz.re

s \

Tantunl Instiruction

Im (Towpite) Exscuts J Disgrosa tha file.

H Diagnoss Histake Typss |(Misconceplions] Flle nma: error/ildnisbise.p
tornaded error/{ldmisbase sjprogram inorder{inpul,cutpul);
Please Inpul the mumber of nodes '
it i (ypc‘
*lsase inpul the node nodeptr = “node;
34 45 12 9 node = record
[Sogmantatfon faull] fton : integer;
tornadol dlagnos's . Lchild, Rehild @ nodepte
Plsase give the path name of the fils you want to dlagnose: eand;
rrer/{idmiabase.p : table = nodeptr;
iJfour recurstve pracaduras ary §n the filss var 1: table;
“ingert’, .
“{norder”’, procedurs creats(var T: table);
you may need to chock thom, bogin
T :=n1)
Plares typs the cecuraive procedure name uhich B ond ;

o~

you Vika to checks insori

procedurs Snseri(var T: table; nouftem: {nlager);

Plazes chatk your racursive procedure belios: /% Nissing base. Since this procedure wanis to insert

§ [l & node, apply na node first, And not providing the
Procadure tnsart(var 1: tabls; neuitom: Inleger); ssaller (nstance, ¢/
#/* Missing base. Sinco Lh(s procedurs wants to insert [beg!n
{h nodo, apply now noda Tirst, And not providing the ¢ nou(l);
shmaller Inslance. ¢/ ; T~ Hm ;= nouftom;
ihugin T~.1ehild := all;
‘ now{l); : T~.Rehild iz nii; .
. T~.1%en := nowitom; g ingort{1, noulim)
¢ T~.4ehiid 32 nl}; wnd;
3 T*.8child :2 nil; ' |
2 insert{T, nouiton) procadure bulldirss(var T: labls); i

ind; var n,{,k: Intager; ;
% There may bo some nista¥us In your recursive fwocedurs, bagin
§ Mistakel: Higssing the tarminalion conditlion. writeln(’Plasse inpul the nueber of nades °); 'l
i HistakeS: 01 not provide the saaller instance. rusd(n);
} R wriisIin(’Plaase input the node); :
1 You can click Joft mouss button on the ‘Mistake Typas’ [for t:2 1 o ndo
§ tutten to get furihber explansiions to your misiakes. begin !
2 N resd{k); i
3’ How wa wil) furthor diagnose your misconceptions, f tnser1{T,x) ‘
; Planse follow the Instruclion ang answar ths guestions. } and;

ond;

] Yat’s consider concepl of ths tormination condition ina
E rocursion, Do you think 11 {8 nocogoary Lo sot the lormina- procodure inordor (var T: tsble);
{] tion condition In your racursive procedure *tnsert’ ? (yns/no)f.[begin

§ 1O ntd thea
1] E— I]

SRR R B R N o TR RUR R

Fig. 12. An Example Of Error Program
and Detected Mistakes,

insertion problem are listed in table 3.

A student may know that there is a nced (or termination condition in a recursive
program when reading a text book or listening (o an instructor, But when they begin to
program on a recursive algorithm, it is not easy for them to remember this point espe-
cially when there is nothing to do in a base case like in the inorder traversal algorithm,

Missing the termination condition reflects that the student does not quite understand

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Types Misconceptions

c1 Not having the correct concept of termination for a recursion.

c2 Confusion on the recursive relationship.

c3 Incorrect concept about the definition of a Binary Search Tree.

(7 Misunderstanding the definition of variable parameter of a
procedure.

(V3 Confusion on the concepts of building a Binary Search Tree (BST)

and searching a node in a BST.
cs No concept how to hold a new item in a tree structure.

c7 Misunderstanding when to apply new node to hold the new item.

Table 3. Misconception Types

that a recursion needs a condition to suspend issuing recursive calls and that it must
return to the previous call after the recursion has ended. Sometimes students do not
forget to put the condition, but they may put the wrong condition or put it in a wrong
place. In the insertion problem, the algorithm needs to find a place to insert the new
node and it proceeds recursively. When an empty subtree is found, the searching process
should stop and a new node should be inserted. Some students simply think that since
the insertion definitely requires the application of a new node to hold the new data, they
apply the new node at the beginning of the procedure, and put the termination condition
after applying the new node, such as the procedure in Fig 10. Misplacing the termination
condition reflects that the student does not understand exactly why there should be a
termination condition, and what should be done when the case occurs. The misconcep-
tion types ¢; and c7 in table 3 describe these erroneous concepts.

The strategy for solving a problem in recursion is defining the problem in terms of

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a smaller problem of the same type. The smaller problem has the same nature as the
original problem, but is of a smaller size. Thus in a recursive case, there must be a
relational representation between the each smaller problem and the original problem
which represents how the size of the problem is being reduced in a series of recursive
calls. This relational representation is called a recursive relationship. This relationship
should guarantee that the subproblems generated are closer to the anticipated base case
than the original one. The smaller size of original problem is usually given in the actual
parameter of a recursive call statement, and it defines a smaller problem that is current-
ly working. That is, the recursive relation is passed by the parameter. For the insertion
problem, the smaller problem is in subtree size. Sometimes students do not reduce the
size of the problem when they make a recursive call, or they simply forget to put the size
which needs to pass to the procedure. The misconception type 2 in table 3 summarizes
these errors.

Some students do not have a clear concept of the definition of a Binary Search
Tree (BST). They ignore the defining property of a BST that requires that the data value
in the BST follow a certain order, that is for any node, the data in it is greater than the
data in its left subtree and less than the data in the right subtree (Dale and Weems 86).
This misconception about the definition of BST is presented in misconception type 3.
Another misconception about the BST is a concern of the concept of building a BST.
Some students confuse building a BST by inserting node one by one with searching a
node in a BST. This is related to what action should be taken in a BST. The insertion
procedure should be targeted for searching for an appropriate place to enter the new
data. The purpose is not to look for a node which has a data value equal to the new
data. This incorrect concept is addressed in misconception type cs.

Other misconceptions are related with the basic program knowledge. For example,
some students may not have a clear concept about the differences between the variable

parameter and the value parameter. Therefore, they do not know that it is necessary to

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enter 2 key word “var” in front of the variable when they want to define a variable
parameter to bring the changed value made in the called procedure back to the calling
procedure. To insert a node into a tree, a new node must be created first, and then
linked the node into the BST In Pascal the predefined procedure "new” is responsible
for creating a new memory cell. Students may not realize that there is a need to allocate
the dynamic memory cell. These misconceptions are presented in misconception ¢4 and

cg separately.

4.4.2 Multiple relationships between mistakes and misconceptions

A tutor’s main purpose is to help students get rid of confusion at the conception
level. However, it is not always easy to identify these misconceptions in a complicated
problem solving such as in computer programming, because one misconception can be
manifested in several mistakes and several misconceptions may cause one same mistake.
The IADI diagnosis model uses the abductive inference process to hypothesize the mis-
conceptions from demonstrated mistakes, as the first step of diagnosis at the conception
level.

The abductive inference applies a set of hypothesizing rules. These hypothesizing
rules describe the cause and effect relationships between misconceptions and mistakes.
From the analysis of section 4.3.4 and section 4.4.1, we can summarize these rules and
include them in the IADI diagnosis knowledge base. For each possible misconception
there may be several related rules. For example, the rules related with misconception c;

are:

C1—» I, C1—% m3, C}—» I3, C;—» My, C]— M.
That is, not having the correct concept of termination for a recursion could cause five
possible mistakes: missing the termination condition; misplacing the operation of insert-
ing the new node; using a loop structure; not providing smaller instances and miswriting

the termination condition. But in one student’s program, there is usually only one or

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

several of them appeared under this misconception.

On the other hand, for each possible mistake, there may also be several related
rules. The IADI diagnosis model uses the rules to infer the plausible explanations and
present their relationship. For example, if there is a mistake ms: not providing a smaller
instance when a recursive call occurs, then the possible causes for it can be drawn from
following two rules:

c) —» ms, Cz —» ms.
They hypothesize that not having a correct concept of termination to a recursion or
confusion about the recursive relationship, or both can cause the mistake ms. We can
not eliminate any misconceptions neither favor any particular one at this point. We have
to collect them all in a set and make further analysis. Under different circumstances, a
student may make different mistakes form one misconception or the student may only
demonstrate one mistake, but it is related to different misconceptions. These practical
existences form an intricate relationship net between misconceptions and mistakes. The
cause and effect representation can make this relationship easier to understand and

make the corresponding explanation more eloquent.

4.4.3 Abductive hypothesis

In the misconception hypothesizing process, the system works on the mistakes in
M), which are initially demonstrated in the student program and offered by the mistake
detection process.

For each mistake m; in My, the system checks the rules in the IADI knowledge
base. The rules in the IADI diagnosis knowledge base are grouped by misconceptions.
That is, for each misconception, there is a group of rules that match the same miscon-
ception on the left hand side. The system works on the rules in each group. It searches
this group to check whether there is a rule which right hand sides matches with the m;

If so, the misconception on the left hand sides of this rule is marked. Since one m; can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be caused by several misconceptions, the system searches each group and finds all rules
which right hand side matches with m;. The corresponding misconceptions form a set of
candidate hypotheses can{m;). These misconceptions are considered to be the possible
causes of the mistake mj. After the system hypothesizes all the candidate hypothesis sets
for all the mistakes in Mp, it concludes the conjunction of these sets, the union
i
UJcan(m;), as C;.
j=1
In the erroneous procedure displayed in Fig.11, there are two demonstrated mis-

take types mj and ms. The system finds the related rules:

C|l—» my, Cy—» 1N,

C) —» s, Cy—» g
and forms can{m;) = {cj, ¢7} and can(ms) = {c;, c2}. The union of can{m;) and
cam(ms) is {c1, c3, ¢7}. The misconceptions in the union become the selected candidate
hypotheses set C;. Any ¢; in C; is one possible explanation to one or several mistakes.
Then the system hypothesizes the following misconceptions as the candidate hypotheses
for that particular problem: not having the correct concept of termination to a recursion;
confusion about the recursive relationship and misunderstanding when to apply a new
node to hold the new data. These candidate hypotheses are the basis to give the explana-
tions to the demonstrated mistakes, missing the termination condition and not providing
the smaller instances. As for how to chose the best explanation, it will be addressed in

section 4.5.

4.4.4 Misconception ranking

Each hypothesized misconception in Cg can explain at least one demonstrated mis-
take. The more a hypothesis can explain, the more plausible the hypothesis is. In order
to measure the plausibility of one hypothesized misconception, the IADI diagnosis sys-

tem builds a measurement, the Plausibility Measure (PM), which is defined in section

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5. The PM values, calculated in the misconception hypothesizing process, are the Initial
Plausibility Measure (IPM). IPM is used to provide the comparisons among the hypothe-
sized misconceptions. IPM(c;) is calculated by dividing the number of mistakes in

man(c;) which are also in Mp, by the number of mistakes only in man(c;), that is:

| {m; | m; € M and m; € man{c;)} |

PMe) = | man(c) |

For example, if [man(c;))| = 4, and only one of the mistakes in man(c;) appears in Mp,
then IPM for ¢; is 1/4.

For every candidate hypothesis ¢; in Cs, the system will calculate a value IPM(c;)
for it. Thus, if the majority of mistakes which are related to c; appear in My, then
IPM(c;) has a greater value which shows that this misconception is demonstrated from
wider aspects, and therefore it is more likely that the student has this misconception.
Conversely, if no mistake in Mp is related with c;, then its IPM(c;) value is zero which
shows that this misconception does not cause any mistakes in the current programming,
and that the student does not appear to have this misconception ¢;. According to their
IPM values, the system ranks these misconceptions in Cg in descending order of their
IPM values, and forms the ranked candidate misconception set C;.

The IADI diagnosis system sets up counters to record the number of mistakes. For
each misconception c;, which is in the set C, there is a counter ipm(c;). In the miscon-
ception hypothesizing process, the system checks the mistakes in M. If the mistake
matches the right hand side of a rule, the system finds the corresponding misconception
¢; on the left hand side and increases the counter ipm(c;) by 1 while adding the ¢; into
Cs. At the end of the hypothesizing process, the counter ipm(c;) records the number of
mistakes which are in M, and also in man(c;). There is also a unit for each misconcep-
tion to record the sum of the related mistakes. Thus the IPM(c;) can be calculated by
dividing ipm(c;} by man(c;).

The candidate hypotheses set Cs for erroneous procedures in Fig.11 contains three

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misconceptions, c;, ¢ and c7. Since there are 6 possible mistakes in man(c;) and only
two of them are demonstrated in Mp, the IPM value for c; is 2/6. For the other two
misconceptions ¢z and cj, the system checks the diagnosis knowledge base and gets
man(cz)=3 and man(c;)=4, and obtains the values IPM(c3)=1/3 and IPM(c7)=1/4 re-
spectively. So the misconceptions in C; are ranked in the order ¢, ¢, ¢7.

The IPM measure is just a rough measurement. It is not as strict as the probability
theory is, and it is not used as the basis for inferring the hypotheses. In the IADI
diagnosis system, inferring the candidate hypotheses relies on the abductive inference.
The main purpose of calculating the plausibilities in the hypothesizing process is to pro-
vide a ranked list of misconceptions to the verification process. Thus the verification
process to the hypothesized misconceptions can work in a more efficient way because
this discrimination by descending order provides an opportunity for the user to work on
the misconceptions which have high IPM values, and ignore those misconceptions which
have very low IPM values or zero value. In another words, this measurement just targets
for helping the tutor to select misconceptions which are the individual problems for a
particular student, and focus the instruction on these specific concepts instead going

through the whole set of misconceptions.

4.5 Misconception Verification

Given the intermediary IADI diagnosis problem {M, C, R, M;, G}, the system
begins a misconception verification process. This process is based on deductive infer-
ence. It interacts with the student to obtain more information for verifying the hypothe-
sized misconceptions in C;. During this process, an instruction is also provided which is
based on design plans. Finally a list of ranked misconceptions in Cy is provided as the

final diagnostic result.

4.5.1 Checking list

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The misconception verification process is based on deductive inference in an inter-
active environment. This environment is shown through a set of checking lists.

In the IADI diagnostic knowledge base, for each c; in C, there is a group of rules
whose left hand sides are c;. Mistakes on the right hand sides of these rules are consid-
ered to be manifestations caused by the c;. These manifestations compose the set
man(c;). For each c; the system establishes a checking list, CL(c;). The item in the
checking list CL{c;) can be a choice or a question which is related to the mistake in
man(c;).

Fig. 13 shows a checking list for misconception ¢3, confusion on the recursive rela-
tionship. Since there are three rules in the IADI knowledge base which are related with
the misconception cj,

Cy —» my, Cz— ms, C3—>» mb

there are three possible mistakes. The checking list CL(c2) includes these manifestations
and organizes them in a way that the items can be related with these manifestations and
therefore to the misconception c;. Since the corresponding mistakes are lacking a pa-
rameter in a recursive call statement, not providing the smaller instances and miswriting
the termination condition, the problems are listed in the CL(cz) in the form of a ques-
tion or multiple choice. After a student gives the answer or makes a choice on an item
the system judges the answer or choice, and gives an appropriate explanation or instruc-
tion interactively. In the real system, the items in one checking list are separated by the
student’s answer and the system’s explanation and instruction. The corresponding expla-
nations for each item in the checking list CL(c;) are shown in Fig.14. A real example in
the system interface will be shown in the section 4.6.

From above descriptions, we can see that checking lists actually serve two func-
tions. One is for further detection of a student’s unexposed mistakes. In order to verify
the misconception a student has, the system creates an environment in which all the

questions and possible choices are associated with that concept. Compared to the initial-

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. In a recursive relationship, the recursion is expressed in terms
of a smaller instance of itself. Did you express this relation-
ship in the manner that the problem is identical in nature but
smaller in size? (yes/no)

2. Since we know the recursive relationship will be represented
in terms of a smaller instance of itself, and this smaller in-
stance can be a smaller value or a smaller size of the data
structure, what is the smaller instance in this insertion prob-
lem? Please choose one number from the following choices:

1. The smaller value in a node for each recursive call;
2. The empty tree;
3. The left subtree or the right subtree.

3. When you decide the recursive relationship in a recursive
problem, do you need to guarantee that the reduced size will
eventually become the degenerate case? (yes/no)

Fig. 13. A Checking List For c;

ly demonstrated mistakes which are made without any externat condition, the student’s
confusion on a certain concept can be further exposed in this environment. From the
student’s choices to the items and the student’s answers to the related questions, the
system can evaluate the degree to which the student suffers from the misconception.
Another function of checking lists is for instruction. When a student demonstrates
any manifestations in the lists, the system will give the corresponding explanations to the
student based on the cause-effect relationships and also the program design plan which
will be addressed in the next subsection. The impromptu instructions help students to

get rid of the confusion about the misconception.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Explanation for item 1 (if the student’s answer is 'no’).

A recursive algorithm must include a recursive case for which the
algorithm is expressed in terms of itself, and in this case the problem
size must be diminished at each recursive call. You need to express
this relationship in a smaller problem of itself.

Explanation for item 2 (if the student’s answer is choice 1):

Only choice number three is correct. You chose number 1 which is
not correct. This procedure is to insert data into a binary search tree
which is a tree structure, not a single value. So you need to find
relationships between the original structure and a smaller structure.

Explanation for item 2 (if the student’s answer is choice 2):

Only choice number three is correct. You tried to find an empty
tree as the recursive relationship, but that is not correct. Actually,
the final target is to find the empty subtree, but it may need several
recursive calls to reach it. So you need to represent this relationship
between the tree and the left subtree and the right subtree.

Explanation for item 2 (if the student’s answer is choice 3):
You have a correct choice.

Explanation for item 3 (if the student’s answer is 'no’);

We should ensure that the way that the problem size diminishes
makes the degenerate case finally be reached. At this point, the prob-
lem is sufficiently small that it can be solved directly and the recur-
sive calls will be ended. Otherwise the process may not stop and goes
to stack overflow.

Fig. 14. The Explanations For The Different Choices
In Items Of CL{cy)

4.5.2 Programming design plan
From the discussion in section 3.6, we know that the system organizes the items in

a checking list according to the design plan as well as the cause-effect relationship. The

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design plans describe the sequence of programming steps which directs a program task
or subtask to be completed or directs a programming concept to be fully understood by
the student if considered from the angle of programming tutoring. For example, when a
student wants to find a termination condition for the insertion problem, the termination
condition is viewed as a programming concept as well as a program goal (or subgoal) for
accomplishing the insertion of a node into a binary search tree. When the student wants
to implement the termination condition, he must have a series of design plans in mind.
If the student does not follow a correct design plan for the programming problem, there
will be a mistake. Therefore the analysis of mistakes and misconceptions is inevitably
involved in the analysis of design plans. And the design plan analysis can provide effec-
tive information for misconception diagnosis. Under this consideration, when the system
collects the items related to one misconception into a checking list, the system arranges
these items according to the design plans. Thus, the system connects the design plans to
a certain concept while the system analyzes the related misconception by the cause-ef-
fect relationship. And the design plans are considered the information at a high level of
a conception.

Related with the termination condition concept in the insertion problem, the design
plans can be the following:

» Motivate to set up a termination condition;

» Find a case as the condition;

« Check whether the condition can definitely be reached;

« Consider what to do under this condition;

« Deliberate the operations under the termination condition;

« Think over what kind of structure can be used for building the termination con-
dition.

In the system, these plans are posed as questions, such as Why there is a need for

a termination condition? What is that condition? What kind of structure should be used

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for building the condition? How can you guarantee that the condition will eventually
arrive? What operation should be done if the condition is met? After the student gives
an answer, the system judges this answer and gives explanations for it. Raising questions
to and receiving answers from the student allows the system to be able to obtain more
information to verify the misconception acquired from the misconception hypothesizing
step. On the other hand, providing solutions to these problems makes the design plan
explicit, and it will help students to make a correct design plan to set up the termination
condition. Here the solutions provided by the system are the explanations to the stu-
dent’s answers. The explanations combined with the design plans offer the background
knowledge for a concept and the programming steps; therefore they can help students to
understand the whole programming process.

In the IADI diagnosis process the system arranges these plans into a checking list
as items either by questions or by a multiple-choice problem. Fig. 15 shows the design

plans for the termination condition concept in the checking list CL(c;).:

4,53 Misconception verifying process

The purpose of the IADI diagnosis process is to find the most likely misconcep-
tions related to mistakes in a student’s programming. Since the misconceptions in C, are
only candidates for explaining why the corresponding mistakes exist, it is possible that
some misconceptions in C; are not the reason or main reason for those mistakes. Thus,
after the misconceptions are hypothesized from the abductive process, the system still
needs a process to verify which misconceptions are the true causes. The misconception
verification process is based on deductive inference.

For each candidate misconception ¢; in C; which is obtained from the misconcep-
tion hypothesizing process, the deductive inference process performs a verification pro-
cess in the following manner. First the system displays its checking list CL(c;) to a stu-

dent. From the previous discussion, we know that a checking list contains information

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Do you think it is necessary to set the termination condition in

your recursive procedure? (yes/no)

2. Since we need the termination condition to end the recursive calls,
we should consider a case as the condition. Then what is the con-
dition? Please choose one from the followings:

1.) When the inserted data is equal to certain value;

2.) When a Binary Search Tree (BST) becomes empty;

3.) When the root has a value which is equal to certain value;
4.) When a tree is not empty.

3, The termination condition is when the BST becomes empty, how
can you guarantee the condition will eventually arrive? Please

choose one from the following:
1.) Provide a smaller value through a parameter in the
recursive call statement;
2.) Provide a smaller structure, such as a subtree, through
a parameter in the recursive call statement;
3.) Check whether the subtree in a 'if’ statement is empty or
not without providing a smaller instance in the recursive

call statement.

4, The next problem is to decide what to do when the termination
condition is satisfactory. Please choose one number from the fol-
lowing choices:

1.) Insert the new data;

2.) Compare the inserted data with the value of the root and
then make a recursive call again;

3.) Do nothing,

5. Under the termination condition, you need to apply a new node
and fill it with the necessary data, the problem is where these op-
erations should be entered? Please choose one number from bel-

low:

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.) At the very beginning of the procedure even before the
base case;

2.) When the base case is reached.

6. In this insertion problem, what kind of structure will you use?
1.) Use a loop structure for contro! of inserting n nodes in
this procedure;
2.} Use a branch structure to decide to go to the base case

or the general case.

Fig. 15. Checking List Arranged By Design Plans

about the manifestations which can be caused by c; and the design plans which are used
to realize the corresponding concept in a program. So the CL{c;) has a dual function; it
can be used to determine if the student has unexposed mistakes and if he follows design
plans.

The basic form of an item in a checking list is a question. Following the display of
a question, the student gives answers by typing yes or no, or by typing a number to
choose an item.

From answers and choices, the system then analyzes the student’s understanding to
a particular problem and evatuates how much the student suffers from this misconcep-
tion, and how far he departs from the correct design plans. In this interactive environ-
ment the system checks to see if the student is vulnerable to my (my € man(c;)) under
some circumstances. For each answer and choice, the system gives explanations that are
a part of the instruction on the tutoring material.

The system will display all the checking lists for the misconceptions in C.. The
displays of Checking Lists are relayed according to the order of the hypotheses in C;.

An example of the misconception verifying process will be demonstrated in section

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6. The interactive process in the RPT diagnosis environment is shown in Fig.23 in the

chapter S.

4.5.4 Misconception reranking

Although each misconception in C; proposed from an abductive hypothesis may
explain several demonstrated mistakes, having each one of them proposed actually only
requires one related mistake to be demonstrated. It is very likely that some of them are
not the real cause of the mistake m, and that there is another reason which causes the
m. To decide which misconceptions in C; are the student’s real problem, the system
proceeds with a verification process in the steps described above, and reassesses the
plausibilities of the misconceptions.

The system revises the plausibility measure, PM value, according to the student’s
responses in the misconception verification process. The PM value, calculated in this
process, is called the Final Plausibility Measure (FPM). For each misconception ¢; in C;,
the system calculates a value FPM(c;) to evaluate the degree to which a student suffers
from c;. The FPM(c;) is a value that records the number of wrong answers to the items
in CL{c;). The system weighs the different items with different values depending on the
degree of importance and the proximity of a manifestation to the concept. For example,
item 1 for motivating the set up of a termination condition in CL{c;) (refer Fig.15) is
more significant to the diagnosing misconception "not having a correct concept of termi-
nation to a recursion”, than item 3, that checks whether the condition will definitely be
reached in CL{c;), because the necessity of setting up a termination condition is the
most important of all the manifestations to diagnose c). A wrong answer to item 3 is the
mistake ms, It gives more contributions to diagnosing misconception c; than c;, although
this mistake is related to c; also. So the system assigns value 3 to item 1 and value 2 to

item 3. The basic formula is

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FPM(c)) = Z weight(item); item € CL(c})

The FPM(c;) is different from the IPM(c;). The FPM(c;) value is for the system to
weigh a student’s understanding of ¢; under a certain circumstance in an interactive
environment, while the IPM(c;) value is for the system to measure a student’s under-
standing of c; in the initial stage without any influence from external effects. An FPM
value is based upon considerations of more than one aspect about a concept and trying
to get diagnosis solution by verifying the misconception, so it is reasonable to use it to
rerank the misconceptions and to submit the list of reranked misconceptions as the final
diagnostic result.

The system builds a group of counters to record the total number of the mistakes.
For each checking list CL{c;), there is a counter fpm(c;). For each incorrect answer, there
is a value which is preassigned by the system. When a student answers the questions in
the checking list CL{c;), the system accumulates the value and records the accumulation
in the corresponding counter fpm(c;) if the answer is incorrect. When the system obtains
all the answers to items in one checking list, the counter records the value of FPM for
the misconception. In order to facilitate the comparison among the FPM values, the
system sums the total possible FPM value for each misconception as 10 (that is when a
student gets wrong answers to all items in a checking list) although it assigns a different
weight to each item in one checking list. Finally the system compares the values in dif-
ferent counters and ranks the misconceptions by their FPM values to yield the final
diagnosis list Cy.

There are three possible cases after the verification process:

« If the student’s performances testify that all manifestations in a checking list
CL{(c;) exist, then the system can decide that the student has the misconception ¢; with a
very high FPM value and the c; is the one on the top of the diagnostic result list.

« If the student’s performances only partially support the manifestations in a check-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing list, then it shows that the student has this misconception with a moderate FPM
value. In this case, the system still does not eliminate the misconception c; from the
diagnosis result, but lists it in the appropriate place on the diagnosis result list.

o If the student’s performances show nothing wrong when he answers the questions
in a checking list, then the system will consider the initial appearance of related mis-

takes as an accidental event and remove the corresponding misconception from C,.

4.6 Example of IADI Diagnosis Analysis

In this section, an example is given to show how the IADI diagnosis model works
on a programming problem-solving.

An erroneous procedure is given in Fig.16. This procedure was written by a student

while she was working on her homework for a Pascal programming course, This proce-

Procedure insert (var T: table; newitem: integer);
begin
new(T);
T, item := newitem;
T~. Lchild := nil;
T7. Rchild := nil;
if T = nil then
if newitem < T".item
then insert (T ~. Lchild, newitem);
else insert (T . Rchild, newitem);
end;

Fig. 16. An Erroneous Procedure.

dure seems to show that the student has almost all of the concepts which are needed in
solving this problem, setting termination condition, giving recursive relationship, using

correct formal parameter definition, inserting the node into BST correctly, and applying

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the new nodes to hold the new data. However, she miswrote the termination condition,
possibly just because she was careless. She also misplaced the operation of inserting a
new node. She might have thought that she could apply the node at the beginning of the
procedure, since a new node is needed in order to hold the new data every time the
procedure requires node insertion. She did not realize that since this is a recursive pro-
cedure, this procedure will be invoked and will apply a new node for every recursive call
no matter the insertion action happened or not, finally causing stack overflow. If a pro-
cedure has this mistake, even if the termination condition is correct, it will never reach
the termination condition.

The system checks this procedure by the structure analysis and detects two mis-
takes: misplacing the operation of inserting a new node and miswriting the termination
condition. The system searches the IADI knowledge base and hypothesizes three miscon-
ceptions by the abductive inference. There are four rules in the IADI knowledge base,
that are associated with these two mistakes,

cy—» my, C;}—» m, Cy—» my and ¢ —» my
After taking the union of can(mgy) and can(mg), there are three proposed misconceptions
¢y, ¢2 and c7, The system ranks them by IPMs and forms the intermediary diagnosis C;.
{c1, ¢z, c7}. In the verification process, the system displays three checking lists CL(c}),
CL(cz) and CL(c7), one after another. After getting a response from the student, the
system will conclude the misconceptions the student may have. One possible response
series occurs in the interaction between the system and students, and is listed in Fig. 17.

The real system interface wilt be shown in next chapter.

There may be the following mistakes in your recursive procedure:
Mistake2: Misplace the operation of inserting a new node.

Mistake6: Miswrite the termination condition.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now we will further diagnose your misconceptions. Please follow the instruc-

tions and answer the questions.

Let’s consider the concept of the termination condition in a recursion.
Do you think it is necessary to set the termination condition in your recur-
sive procedure ‘insert’ ? (yes/no)

yes

That is correct.

Since we need the termination condition to end the recursive calls, we
should consider a case as the condition. Then what is the condition? Please
choose one from the following:

1. When the inserted data is equal to a certain value;

2. When a Binary Search Tree (BST) becomes empty;

3. When the root has a value which is equal to a certain value;

4. When a tree is not empty.

Please type a number.

2

That’s correct,

The termination condition is when the BST becomes empty; how can
you guarantee the condition will eventually arrive? Please choose one from
the following:

1. Provide a smaller value through a parameter in the recursive call

statement;

2. Provide a smaller structure, such as a subtree, through a parameter

in the recursive call statement;

3. Check whether the subtree in a 'if” statement is empty or not without

providing a smaller instance in the recursive call statement.

2

That's correct, you need to provide a smaller structure.

The next problem is what you must do when this condition is satisfied.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Please choose one number from the following:

1. Insert the new data;

2. Compare the inserted data with the value of a root and then make a

recursive call again.

3. Do nothing.

3

Only the first action is correct; insert the new data, Before the termina-
tion condition is satisfied, the algorithm issues the recursive call to find a
proper place to insert the new data. Since the base case has been reached,
the proper place has been found, and you need to insert the data at this

time.

Under the termination condition, you need to apply a new node and fill
it with the necessary data. The problem is where these operations should be
put? Please choose one number bellow.

1. At the very beginning of the procedure even before the base case.

2. When the base case is reached.

1

That’s not correct. If you apply a new node before checking the base
case, every recursive call will get one new node and the termination condi-
tion is never able to be satisfied. Thus the recursion will not cease until the
stacks overflow. So the operation should be given when the base case is

reached.

In this recursive procedure, what kind of structure do you have to use?
1. Use a loop structure for control of inserting n nodes in this recursive
procedure;

2. Use a branch structure to decide to go to the base case or general
case.

Please type one number.

2

That’s correct.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now let’s consider the recursive relationship. In the relationship the re-
cursion is expressed in terms of a smaller instance of itself. Did you express
this relationship in a manner that expresses that the problem is identical in
nature but smaller in size? (yes/no)

yes

That is correct.

Since we know that the recursive relationship will be represented in
terms of a smaller instance of itself. And this small instance can be a small-
er value or a smaller size of the data structure, what is the smaller instance
in this particular procedure?

1. The smaller value in the node for each recursive call;

2. The empty tree;

3. The left subtree and the right subtree.

Please choose one number.

3

That is correct.

When we determine the recursive relationship in a recursion problem,
do you think we need to guarantee that the reduced size will eventually be-
come the degenerated case? (yes/no)

yes

Your answer is correct. But in your procedure it seems you did not give

the condition to guarantee to reach the degenerated case.

Let’s consider when it is appropriate to apply a new node. We need to
apply a new node to hold the new item. And this operation can be done
before or after we assign the data into the corresponding field. Is that cor-
rect? (yes/no)

no

Your answer is correct. We must assign the data into the node after we

apply a new node.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can view the operations of applying a new node and assigning data
to it as one group. The next question is when do we use this group to apply
a new node?

1. When the termination condition is true;

2, When the nontermination condition is true;

3. At the very beginning of the procedure, that is before any other oper-
ations;

4. Others.

Please choose one number.

3

That will cause this operation to be made at every recursive call. Actual-
ly it may just apply the infinite nodes for the first data until stacks overflow.

The termination condition can never be reached.

Besides the one group under the termination condition, do we need to
enter the group under the nontermination condition (that is the recursive
case) too? (y/n)

no

That is correct.

You have the following misconception(s):

Misconception7: Misunderstand when to apply a new node to hold the
new item.

Misconceptionl: Not having the correct concept of termination to a re-

cursion.

Fig. 17. A possible Series Of Student’s Response To The System

From the series of the student’s responses, we can see that the misconception ¢; is
not in the final list because the student gives correct answers to all questions in CL{c3).
That means the mistake mg is caused by c;. The system gets two wrong answers from

the response to CL{c;) and one from the responses to CL(c7). But the FPM(cy) is 4

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is higher than FPM(c;), which is 2. So the final diagnostic result is the ranked list

{c3, c1}, which is C;. The part of interaction is shown in Fig. 23,

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER FIVE
TUTORING ENVIRONMENT
OF
RECURSIVE PROGRAMMING TUTOR

This chapter describes the tutoring environment of RPT. The environment here is
used to refer to the part of a system that presents system’s diagnosing and tutoring
process and supports the student’s learning activities. A good tutor should have a good
environment for a student to easily carry out actions and to see and understand the
results and implication of those actions. The RPT system uses the hypermedia technique
to create a graphical environment. The RPT environment includes the instruction part

and diagnosis part.

5.1 Objectives For Creating RPT Environment

One fact for students to start to learn recursion is that they try to make an analogy
of program structures between the given problem and the sample program, like we dis-
cussed before in section 3.4, This arouses us to set an instruction environment where
sample programs are given and students can learn from these examples. After they mas-
ter some basic concepts of recursion, they write their program and enter the diagnosis
environment.

The most difficult thing about learning recursive programming is that the recursive

statements in a program do not show the procedure step by step explicitly. For example,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the procedure of inorder traversal in a binary search tree can be simply written in recur-

sion as follows:

Procedure inorder(T) { T is a binary tree }

begin
IFT> 0
THEN begin
inorder (Leftsubtree (T));
print (Data (T));
inorder (Rightsubtree (T))
end
end

The student may not be able to see through the process at the beginning. The program
is so elegant and succinct, it does not even contain explicit repetitions. It compacts a
complicated process into several recursive statements, For program writing, the terse and
simple form is good. But for the course of learning, it is better to reverse the procedure,
unfold these statements, so that the originally hidden content in the recursive statement
becomes visible to the learner. It is also necessary to help students understand how to
solve a problem by solving its subproblems. For example, in the recursive program of
quick sort, the way to sort a smaller instance and the result of the partially sorted se-
quence can offer a base for students to connect the similar strategy to the whole prob-
lem solving process. Because sorting a smaller instance must be easier to be understood
comparing with working on a large instance. And the result for the small instance solv-
ing, the partially sorted sequence, is obvious to be able to be seen. So breaking a prob-
lem down to the subproblem, solving the subproblems and immediately showing the
corresponding result will be conducive to learning. Hence it is necessary for program-
ming tutors to show the execution results of a program at different stages in order for a
student to understand the execution process of a computational algorithm. The RPT

environment tries to implement these ideas. It creates a graphic illustration plus dia-

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logues and menus in the tutoring environment.

The environment for the diagnosis process needs an interactive interface. Because
in an interactive environment, it is possible for a student to gradually realize where he
made mistake and what is the possible misconception. The explanations for basic mis-
takes and corresponding misconceptions are needed when the student still is confused.
So the environment needs to provide a convenient method to show these explanations
when a student asks.

Both instruction environment and diagnosis environment are created based on the

hypertext model.

5.2 Hypermedia Envirenment

The RPT tutoring environment is built in a hypermedia environment. Hypermedia
is regarded as a generalization of the hypertext. Hypertext is a model based on the
assumption that human idea processing occurs through association. It connects the in-
formation in a network and provides the non-linear retrieval. Thus it can more closely
model the deep structure of human idea processing (Clarson 88) (Shen and Zhang 89a).
Hypermedia is an interconnected net of information in various forms from text to static
graphics, animation and other types of media that can be accessed by the computer
system (Younggren 88). Among the hypertext and hypermedia systems in existence, KMS
(Akscyn 88), NoteCards (Halasz 88), and Intermedia (Garrett 86) are the most famous
ones. Conklin gives almost complete historical description of the hypermedia systems
(Conklin 87).

Although there is no generally accepted definition for hypermedia, the hypermedia
systems can be characterized as follows:
» Network information organization

In hypermedia systems, information is represented by multi-media units, which are

called objects. These objects may represent texts, pictures, video images, and voices.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

They are connected together by links and form networks.
» On-line nonlinear retrieval

The network structures of hypermedia systems provide a n-dimensional informa-
tion search space. Users can navigate in any defined path through the links.
« Extraction of common concepts

In a network representation, a common concept can be represented by a single
object. This object can be linked to all other related objects. This implementation allows
the same concept to be represented only once, therefore eliminates unnecessary redun-
dancy.
+ Intelligent environment

Hypermedia systems provide a strong capability to represent knowledge in various
media. In this environment, users can execute their tasks in a way closer to human
cognitive processes.

Applying a hypermedia model in a tutoring system allows providing the learning
environment with graphic illustrations and dynamic representations of knowledge and
knowledge relationships. The RPT environment further extends the hypertext model by

incorporating dynamic program execution.

5.3 Overall interface

Creating the RPT envircnment has two purposes. One is to show the critical con-
cepts of the recursive programming in a hypertext model based representation in order
to aid the student’s comprehension. Another is to reveal the execution of the recursive
program in a multi-dimension environment so that the student can see through the pro-
blem-solving process. This environment is implemented on the Sun workstations with C
and Sunview language under the Unix operation system.

The RPT system provides an overall interface for both instruction environment and

diagnosis environment. This interface contains three components framed by a window

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

showed in Fig. 18. The three components are control panel, tly window and text window.

Tontua} Instruction .
Cot instruction or salecl problom, thon progrmming below.

(Tompile)(_Execute |
Flle ramo:

Nintake Types J(Misconceplions

{ T Dynaric Tnatruciion)

Diagnose
Turmuox 1]

Tk

Fig. 18. Overall Interface of RIPT

+ Text window
The text window is used for students to write and edit their program.

« tly window

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

The tty window is a usual command tool shell and is used to emulate a standard
terminal. In the programming tutor, the tty window is used to compile and execute the

program, and also to interact with student in the diagnosis process.

« Control panel

The control panel contains three groups of buttons. The buttons in the second row
are for load, save, compile and execution of a file. The button "Dynamic Instruction” is
for entering the instruction environment which consists of another set of windows. The
buttons "Textual Instruction”, "Diagnose”, "Mistake Types” and “Misconception Types”
are used in the diagnosis environment. The control panel leaves the space for user to

write the file name after the item "File name,” and the space in the right part of the

panel for communication with the system.

5.4 RPT Instruction Environment

Some systems, such as LISP tutor (Anderson 89), PROUST (Johnson and Soloway
84) and MENO (Woolf and McDonald 84), tutor programming in an environment of
dialogue and menu. The natural language is a good tool for communication. But some-
times it is not adequate in certain situations, particularly in the programming tutor.
Natural language is usually considered as sentential representation which is sequential.
One can not use any sequential representation to effectively impart a complicated and
interconnected algorithm represented in a computer program. Actually, it is possible to
use computer to create better learning environment. The RPT instruction environment
creates a graphical dynamic representation to facilitates the learning. Students can un-
derstand many concepts better in a graphic environment since pictures and diagrams
can provide more information than verbal descriptions and it has been claimed that one

diagram is sometimes worth ten thousand words (Larkin and Simon 87).

Usually a student enters the instruction environment first for getting the basic con-

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cept of the recursion. The RPT instruction environment allows a student to select a
recursive program to work on. After a student enters the environment by selecting the
"Dynamic Instruction” button on the control panel, he can see a window that is the root
node of a processing tree. A processing tree describes the execution process of a recur-
sive procedure. It consists of spread nodes and abstract links. A spread node is a basic
unit in the instruction environment which represents a status of a program when we
consider a set of input data attached to it. An abstract link represents a procedure
calling relationship. The processing tree is created to present the different levels of re-
cursion of a recursive program. The spread node at the initial state with the original
input is the root node. In addition to the representation of the source code of a recur-
sive program displayed in a spread node, the system provides a graphical representation
for the input data in a binary search tree. The system is also be able to automatically
generate the corresponding input data for the program at any particular spread node.
Each program in a spread node can be executed with the relevant input value at the
student’s option. These features provide clear visualization of the recursion process thus
is very conducive to learning. The following subsections describe the detail structures

and functions of the processing tree.

5.4.1 Representation of a spread node

A spread node represents one status of the recursion at a specific level. A spread
node contains the following facilities included in a single frame.
« Start panel

A start panel contains selection button, instruction button and message item. The
buttons are for a student to select specific control functions to be performed and the
message item is for providing messages to the student. The start panel is present only on

the head of the root spread node and is not available in other spread node.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

« Lesson selection button
This button is labeled as "Selection of Lesson.” Pressing the right mouse button
when the cursor points on this button brings a menu to be displayed. This menu is
called lessons menu. The menu shows a list of program names for students to
choose one of them as the tutoring lesson.
» Instruction button
This button is labeled as "Instruction.” Clicking the left mouse button on this but-
ton will cause a text frame to be displayed. The text frame shows a specific instruc-
tion text for the selected tutoring lesson. This text includes detailed description of
the problem and also the instruction on how to solve the problem.
« Message item
This item is used for the system to show warning messages and/or specific instruc-
tions according to the on-line situation.
+ 1/0 panel
The I/O panel provides the space for displaying the input argument values and the
output data for the program at a certain level of recursion. This panel is bellow the start
panel,
+ Input item
This item is labeled with “input” in root node and "Input Subtree:” in non root
spread node. This item displays the input argument values for the spread node.
The input argument value is typed by a student at the input item in root spread
node. The values displayed at input items in other spread nodes are generated by
the system. Besides the data display, the input item also provides the graphic illus-
tration for the input data (please refer section 5.4.4).
* output item
This item is labeled with output. This item shows the returning data for the spread

node upon the completion of execution.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ Program list panel

The program list panel displays the recursive procedure source code when a stu-
dent chooses a tutoring lesson from the selection button. This panel is on the under-
neath part of a spread node.

After a student enters the instruction environment, he gets a basically empty root
spread node frame with a message suggesting him to click at the "Selection of pro-
grams” button to select a program to work on. After he does so, he gets a list of the
available programs. Fig. 19 shows the root spread node. In Figure 19, the student se-
lected the "inorder” program which tutors the subject of solving the inorder traversal
problem recursively. The source code of the "inorder” program is shown in the program
list panel of the root spread node frame. At this point, the system reminds the student
input the argument values at the Input Item of the I/O panel. When a student clicks at
the instruction button, the general instruction for this lesson is displayed in the text
frame, which is shown in the right of Figure 19. The other spread nodes will be showed

in the processing tree described in the next subsection.

5.4.2 Processing tree
Many instructors like to give the classroom teaching of recursive programming in
the following way:

(1) Write the program on the blackboard and use some sample input argument value to
simulate how the program works.

(2) As the simulation goes on, when the simulated execution comes a recursive call
statement, the instructor draws another instance, which is in the smaller size, of
the same program on the blackboard. The simulation then continues at the new
instance of the program.

(3) When the execution of a certain instance of the program reaches a base case, the

recursion stops and the control returns to its parent level at the original call state-

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

endtood (CULUREY = Satrtropaiieth
tornadol cp f12.rs deskiop/,
tornadol scroendumpd(19.rs

P S YT T Ty S P T T P PR I PP P T P R PR PP T P PRI

i tulbsn

Got Inetruciions,
File namo:

tornadol {nstruction 3

Mleass Input data first. Thon you can click alther [“Seleciion of Tessons)
lln procadure hoaader 1o exocutn §t or tha recuralve (Tnatruction)]
call statmieil to run 11 on tho wallor Instace.

oy

CTNA

it

Input ¢ 15 56 83 23 8 34 563 65 20 12 11 77 33 68 32 5 6§

SN

Output:
< procedure {norder(var T: table); | Instruction for program {nordar,
begln 3)¥Yelcoma ta RPT. This lesson Is to f1lustrate to you
1f TOR) then os Lo pragran Inorder traversal of » binary search

trae with & rocursive program.

=

begl :
ate In » binsry sserch trse (851), there I3 & root con- 1
Inordur(T~.Lchild); talning stne valus. A smaller valus, {1 suists, is
1tadn(i~.1 . in fty left subiree end a graster velus, §f anists
britein(i®.dtem); Is in 1is right subtres. This graater and Iwsser
(rordur (T=.Achi 1) value relationship holds in all the subireesa,
ongd

The racuraive inordor traveras) algoritim visits the
ond; nodes In & BSI in the following manner to obtain al}
the veluas In Whe tree In sacending order: vieit all
tha nodes (n the root’s left subiree flrst, then the
roat, finally o)1 {he nodes in 1ts right subtres,
¥hile visiting 2 sublres, ths sine algorfitm 1s ap-
plied (recursively).

2

573 e

To usa the INORDER tulor, da the fa)lowing:

i

1. Givo the input data sftor ‘Inputs’ an follows:
tha mushor of mumhers Lo be placed in tha BST, fal-
.tlasod by the nunbors ta arbitrary ordor,

Xy

2. You can now 900 how the INORDER procodure works

on the uhale 85T or its either sublrae by: £y
2.1). clicking tho loft mauno butlon at tho proce-]
|dure header, the first line of the procedurs listing

‘ ‘n ses the result on the whole 8ST. The system Lill

Fig. 19 The Root spread Node

ment with the resulting values, The execution continues from there on at the par-

ent level.

The drawings on the blackboard discussed above naturally amount to a tree like
the one in Fig.20, This tree is called the processing tree since it represents a process to

reach a solution. The tree shows a process for the inorder traversal procedure with the

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FELELN

8,7

PRIEY

L

SIS AT

T A

oo A A A)

e

2

B C
Procedure inorder(B)
begin
D E IFB < >0
/] THEN
{ begin
H inorder(0);
/ priniDATA®))
inorde)
Procedure inorder(A) / end tl:;gti::durc inorder(D)
begin end.
IFA< >0 / IFD < >0
THEN Il TI‘LEN
begi cgin
print(DATA(A)); / pnné(DrgrA(D));
inorder(C) -\ / l:imr er(0)
end \ Procedure inorder(C) !l dcn
end. \ begin end.
A IFC< >0
\ THEN /T
\| beain .
\ inorder(D); S ll:gg;::durc inorder(E)
Pm:j(Dr(AgA(C)); BN < >0
inorde —_—
A THEN
em;i‘md \ begin
. { inorder(0);
\ print(DATAGE)):
\ inorder(0)
\ end
end.

Fig.20 One Demonstration Of Processing Tree
For The Inorder Traversal Problem With Input Binary Search Tree A

input binary tree A. Each “instance” of the program mentioned above amounts to a
spread node. The sentences “inorder (B) ” and "inorder (C)” in the procedure associate
with a spread node respectively by an abstract link, which will further spread these
subprocedures on the subtree B and C. In the tutoring environment, the student is al-

lowed to select the actions at his/her own discretion. In other words, the student may

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

follow the execution in a certain sequence as above, or may selectively do and see what
is desired. This environment facilities different learning paths for different students.
Thus there are different processing trees for different learning paths,

More formally, a processing tree consists of the spread nodes and the abstract
links that are procedure calling relationships among spread nodes. These calling relation-
ships are kept a track internally by the system. The processing tree can describe the
process of a recursive program execution at any level. The root spread node is defined at
level 1. Every recursive call statement in the list program panel of the current spread
node is associated with a spread node at the next level, whose level number is one great-
er than the level number of its parent. Spread nodes in different levels have identical
structures but different input values that are for subproblem solving in different size. A
spread node at level i is considered to be at a higher level than another spread node at
the level i+ 1. A processing tree may be extended very deep. But, generally speaking, the
simulation on primary several levels can give more inspiration to students, so it is most
useful and effective for student to master the recursive concept. That means the learning
process usually do not necessarily go to the all branches of the processing tree, but stops
at certain level.

Fig. 21 shows a processing tree for the inorder traversal procedure in the RPT
environment. In any spread node, the student can click the mouse button at a recursive

call statement to cause an expansion into a child spread node.

5.4.3 Automatic generation of input argument values
After a student chooses a lesson, he needs to follow the specifications given in the
instructions for the lesson and type the input argument values on the input item of I/O

panel. In the example of inorder traversal problem showed in Fig. 21, the number 10 at

* As the first step, RPT system just deals with the recursive call that has been explicitly
referred to itself.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2] tornidal cp 13.rs

Jtorracch screondag)fzl.ce Irgut Subtree T: 4312115,

B Output:
tc Instruction }[Textual Instruction . 3 procedre trorder(var T: table);
Load Sive [Compiis J[Executs | Gat i . '
(" Dtagrose J(Wistain Types J[Misconcaptions] Fila reme begtn
flormadsx. instnction Input Sbtres T: 9233 HBR NN 1 T0nt1
Dtput: S911 27BN M
Execution starts. The reslt w111 be shon on the (31
output {tem. You can ses the tree gragh foresd by procesre {porder{var Tz tabls); Irput Subtree T2 4 36 28 T 2
the frput dats # you click the “feput’ ftmm. begin Otput: 28323 ¢
i TOM1 then n

Input : 155683203 HSEI6528 124177 1 &8 2 5 65
Qutputs 5911122328 3233 34 5665 666877835683

p"ocm‘xnor-ar(vxr T: tabls);
begin
{f TOn11 then
dagin

begin
frorger(T~.Lchi1d);
witeln(T*. (tm};
{norder(T~.Rehi td)

procecurs irorder {var T: tabls);
begin

{norder(T*.Lchild
witeln(T*.item);

if TOnil then
begin

frorder{1~.Lchild);
writeln{1*.{tm);
inorder(1°.Rehi 1)

Irput Subtree T: 4 85 7768 65
Output: 55 66 58 77

Input Subtree T: 6 89 563 BS 77 54 B6
Output: procedure inorder{vy T: tabla);

Imtr'uctim\ for progra fnorder. @ procedure inorder(var T: tadle);

[¥eicone 1o R This tesscn 2 to slluatrate 1o youl] [begtn
oy to progras inorder traversa) of a binary
il traw uith & recursive prograe,

i TOn{1 then

¢
In a binary search tree (8ST), there {s x root con- begin
il taining some value. 4 sazller value, {f exists, is {norder(T*.Lchild)
B in {ts left subtree 1nd & grsater vilus, {f exists, witela(T> 1tan); procedurs inorder(var T: table); |

B 12 in its right sbtree, This greatsr and lessar

:Jalue relitionship holds in all the subtress. trorder (T~ Reht1d) [l bogto
; H TOntl then
:1The recursive {nordar traversal sigoritin visits the
Z{rodes in a 85T in the £0llowing manner to obtain 1) begin

the values in the tres in ascending order: visit sl - .
Ithe nodes {n the root’s lsft subtres first, then the Snordar(1”.Lchi1d);
“jroat, finally a1 the nodes in its right subtres. witeIn(T*.1tes);
sl¥hile visiting & subtres, the same alporithe is ap- . P
/| 114 (racursivaly). inorder (1. Reht 1d)

ond

Fig.21. One Processing Tree

the beginning of the input string is the number of nodes in the binary search tree. The
other input numbers are the data for nodes of the binary search tree. The input data
given by the student goes through another hidden program that generates the interior
data structure, the binary search tree, which is in term used by the recursive program
"inorder.”

After a child spread node is created through the order of a student, clicking the

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

left mouse button on one recursive call statement, the input argument values for the
child spread node are automatically generated by the system and are displayed at the
Input Item of the I/O panel in the child spread node. These data are for the smaller size
problem solving. In the inorder traversal problem, for example, the input data of a child
spread node forms a left (or right) subtree. Under this representation, the student can
see the recursive relationships and understand how the recursion works on the smaller
instance, therefore it helps students to understand the whole problem solving process. In
cases where the current spread node already presents a leaf that the recursive call
should not be performed but the students selects such a call, a warning message will be
provided. Fig. 21. shows the generated input data in terms of the smaller instance for the

corresponding subtree in the input item for each spread node in that processing tree.

5.4.4 Graphical representation of input data

When an instructor demonstrates how to solve the inorder traversal problem, he/
she usually draws a binary search tree for the input data and explains how the algorithm
handles the data. The graphical representation of a binary search tree is very helpful for
students to understand the algorithm. It is not adequate if the input data is given only in
the numerical form. The RPT instruction environment provides the graphical representa-
tion for the input data to imitate the human tutors’ actions.

For a set of the input data, the system can automatically generate a graph that is a
binary search tree matched with the displayed data at the Input Item. This graph is
generated and displayed only when a student asks by clicking the left mouse button on
the label "Input” of a spread node. The system can generates the graph for every spread
node, no matter on what level of a processing tree it is, provided the student clicks the
mouse button on the label "Input” in a selected spread node. Thus a student can see a
subtree of original binary search tree when he orders the display at a child spread node.

Fig. 22 shows the graphical representation of the input data for several different spread

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reutdisglay F .
“Ttormadot cp #2175 dosktop/. Inputdisplay for progran Inorder &Y

»tornadod sereondurpdi2.rs n a
2 9]
Dynanic Instruction J(Textual Jeatruction 5 ' * ‘
Load Saee J(Compils J(Exacute | Eet frstructions. LR B
(Diagnoss | (Mistake Types J(Nisconcoptions] Filw neme: M 7
ornadol instruction ”
r t
Bacution starts. The result will be shoun on the o
output itea. You can sce the tree graph formed by xg’;#;?lz'dgz?zzggzumns
the irgut data 1 you cliek the *frput’ flm, .
procedure {norder(var T: table); N
Imu‘:‘155509239345535525121177335832566 tagin
Output: §9 11 12 2328 32 33 34 55 65 66 69 77 89 563
N £ TOni1 &l
procedure inorder{var T: tablg); begin Input Subtree T: 4 M 28 1 2
begh Outpts
1§ TOni) then . procedurs {norder(var T: table);
begtn Inputdisplay for progran incrder. (313
Inorder{T* Lchild); T
uriteln{T" itan);
{norder{T~.Rchi1d)
end k|
end; krd
Inputdisplay for program Incrder.
£
' * L procedurs inorder{var T: tahls):
2 B9
, . , . Ingutdisplay for program inorder, @
9 H 85 563 = o
’ A : .
S }2 ol . , n & Iy
woom @ .
66

DT

Fig.22 Spread Nodes With The Input Binary Search Tree

nodes. In the learning process a student can see and learn the way how the given in-
stance becomes smaller and smaller and finally arrives an empty tree. This series of

binary search trees gives a visualized process to demonstrate how the recursion proceeds

on those data.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.5 Execution of the recursion in a spread node

The hypertext systems were traditionally used in organizing and displaying texts
and materials. Some hypertext systems even allow procedural attachment to enable the
system to perform specific tasks (Conklin 87). For the purpose of recursive programming
tutoring, static displays of source programs without animation are hardly conducive to
learning. Procedure attachment does not allow the needed animation at arbitrary levels
of the recursion, The RPT instruction environment allows the display of the source code
and the input argument values at any level. It also allows the selected execution at any
level at the direction of the student. The RPT environment has extended the typical
hypertext model and it is conducive to learn recursion.

The system provides execution of the recursion in an arbitrary spread node of a
processing tree. This is achieved by the student’s simply clicking at the selected proce-
dure header section in the spread node. Upon completion of the execution, the results
derived from the given input values to the specific spread node are shown to the student
in the Output Item of the I/O Panel in the spread node. If a student clicks the left
mouse button on the procedure header of the root node, he will get tl;e resulting output
for the whole problem. If the student likes to know the execution result of any subset, he
just needs to activate the procedure by clicking at the procedure header of correspond-
ing spread node. The result for the subset will be shown on the screen. This capability
involves more than just displaying a text as a typical hypertext system does. This system
displays the source code but also executes the recursive program to show the dynamic
process. In the example shown in Figure 21, the root spread node in the leftmost posi-
tion and the center spread node illustrate the results of the selective execution ordered
by the student who wanted to see the inorder traversal of the initial input binary search
tree, and its left subtree and the right subtree of the root. In this case, the corresponding

output are "5 9 11 12 23 28 32 33 34 56 65 66 68 77 89 563,” "5 9 11 12 23 28 32 33 34”

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and "56 65 66 68 77 89 563” for the three binary search trees, respectively.

5.5 RPT Diagnosis Environment

In the overall interface, a student usually enters the instruction environment first.
After he got some concepts on the recursion, he can selects one problem to work on and
write his program on the text window. If the compilation can be passed but run time
errors exist, the student can enter the diagnosis environment to find what are the possi-
ble mistakes and misconceptions.

The main feature for the diagnosis environment is that it provides an interactive
interface. The diagnosis activities in this environment follows abductive and deductive
reasoning path and design plans, The communication between the system and students
is in a natural language dialogue style. The system also provides menu, texts and buttons
to allow a student to select problem from a list and see the description for the types of
mistakes and misconceptions at a student’s initiative by open a text window with simply
clicking on the corresponding button. The following subsections introduces the each part

of the environment.

5.5.1 Program submission

Before diagnosing, a student needs to write the recursive program and eliminate its
all syntax errors. The diagnosis environment provides following faciliti;:s for submitting a
nonsyntax program (Please refer the overall interface in Fig.18):

» Problem selection button

This button is labeled as "Textual Instruction”. Pressing the left mouse button

brings a menu to be displayed. This is the problem menu. This menu shows a list

of program problems for student to choose to diagnose. Releasing from this button

causes a text window to be displayed. The text describes the problem and the re-

lated basic concepts.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» Name item
A student should define a file name for a program. The name can be given at the
name item which is on the right bottom line of the control panel, labeled as "File
name.” The student can give either a name as the file name or the path name of a
file for system to access.

* Load button
A file will be loaded in the text window if clicking the left mouse button at “Load”
button. The file name should be given on the name item in advance. The file being
loaded can be any file stored in the user’s file system. It is not necessary to be the
one being edited in the text window.

+ Save button
Clicking the left mouse button at "Save” button causes the file in text window to be
saved under the given name in the name item.

» Compile button
Clicking the left mouse button at "Compile” button gives an order for system to
generate a command to compile a program. The program is in a file under the
name showed in the name item. The generated command is in tty window. It also
generates a corresponding executable object program code. The result of compila-
tion showed in the tty window.

» Execution button
The name of executable program code will be showed in tty window and executed
by the system if a student clicks the left mouse button on the button "Execution”.

« Message item
This item is in the right part of the control panel. The system sends message at
this item to communicate with students and give instructions how to use this envi-

ronment.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 Diagnosis interactive process

To enter the diagnosis process, the student needs to click the left mouse button on
the "diagnose” button. Then the system starts the diagnosis process. The process is pro-
ceeded in tty window.

First‘, the system picks out the recursive procedures from the being diagnosed pro-
gram and lists all the recursive procedure names. The student chooses one recursive
procedure to diagnose. The system redisplays the code of the recursive procedure in the
tty window in order for the student to review the recursive procedure. At the same time,
the system is detecting the mistakes of that procedure and lists the possible mistakes in
tty window.

The system hypothesizes the possible misconceptions from the obtained mistakes
internally, It does not show them to the student since these hypothesized misconceptions
needs to be further verified.

Then the system begins a dialogue with the student. For each hypothesized miscon-
ception, the system displays its checking list, lists several related topics either by rising
questions or by making choices, and analyzes student’s answers. These questions and
choices are arranged according to the cause-effect relationships between the misconcep-
tion and mistakes, and also the design plans of the recursive program. For each incor-
rect answer, the system gives explanations. Fig. 23 shows an interaction while a student
is using a checking list. After the system gives explanations, the student may realize what
kind of misconception he has. Then he can correct the mistakes or give another version
of the design. The student may decide to stop the display of these lists whenever he
thinks he already got the enough information to correct his mistake. The system can also
give the sugpestion of keeping on checking, when there are remained checking lists asso-
ciated with candidate hypotheses in C; whose 1PM are not very low. So this process is in

a mixed-initiative tutoring environment,

Finally, the system concludes the misconceptions based upon the student’s answer

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

crelteal (09 ALy -

-

_irennetzch
tornsdol ep 122.re desktop/.
“Jtornado¥ screendumpdf23.rs

A4

X
{_ Dynamic Instruclion](* Textua) [nstruction)
Load Save Cowpile Exgculo Dlagnone the Tile.

Diagnose J{ Histaks Types J(Hisconceptions] Fila nama: wrong.p

Please cthoose one from the followlngs: .iFW""' 1rn-der(lrpul,mtpu!);
1. Provide s onaller valus through s prrameter in the .
recursive call statment; type
2. Provide a aller slruclure, such as a sublres, through |. nodeplr = “node;
2 paranslar In Ltha recursive £a)) slatment; k nodo = record
3. Check the subtres in ths If alatlomanl without providing §° ftem : integer;
2 smallor Ingtance in recursive call otatormant. 4 Lehild, Rehild ¢ nodeptr
Please type » mmber, H end} %
2 R teble = nodeptr;
That’s correct, you need to provide a smallier struclure. Avar T: table;
Continua to chack tho terminatlon condltion? (yec/mo) ‘|procedura croate(var T: table); 4
yes | begin
" T :=nfl

The next problem {s what you must do vhen this condition 1s |} :|end;
satisfactory. Please choose one number from the followings:
I. Insart the new dats;

procedurs insart(var 7; lsble; neuilex; Integer);
2. Cawpare the insorted data with the valus of rool and Lhen |:]begin

make a rocursive call again. : neu(T); :
3. Do nothing. N T item 2= neulim; ¢
3 - T=.Lehlld := nll; §
Dnly the (Irst actinn 1s correct, Inserl the new dala. 5 T~.Achld := ni}; E
Bofore the termination condition is satisfied, the algothm : 11 7 = ni) then
Issuos the recursive call to find 3 propor place to insort N 1 nowiten { T-.Hom ?
a nas data. Since the base casa has been reached, you noed " then lnsert{T~.Lchild, nouilem) {
Lo Insert Lhe data st Lhis momenl. : elsa Inseri{T~.Rchild, nouitom) :
*{end; :
Continun to check tho tormination condition? (yes/no) | ,
yes i |procadure bulldtras({var T: table); g
s{var n,1,k: integer; ¢
Undor the terminalion condition, you nond Lo apply 2 neu ‘|bagin i
nodo and (111 §t up uith ths necessary dala. The problen wrileIn{’Please Inpul the mumbar of nodes ‘); ‘
I8 vhere these pperations should be put? . read(n); §
Please choose one rumber bellow. wrileIn({‘Pleass fnpul the node *); ‘
1. At the very baginning of the procedure even before the ; for 1321 tondo it
base case. i begin §
2. Yhon ths base cass in reached. [road{k}); i
1 ingori(7,%) 4

That’s nol correct. If you apply & new node before checking
the bage rase, every recursive call uwlll get ona nas nodo and
ths recursion i1l not ba ceased untill the stacks ovarflos,
So tha oparation should ba given vhen the bise case reaches.

end;
end;

procedure inorder(T: table);
bagin
11 TOnll then

PO R R TR A LR L P e

3 TR

Conljlruu to check ths termination condition? (yes/ro)

LWy

R o A ST’

Fig. 23. Part Of A Checking List In Use

to the related questions and choices. The misconception types are listed in the tty win-

dow finally.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.3 Types of mistake and misconception checking
When the system finds the mistakes and misconceptions in the diagnosis process, it
reports their types and gives very brief explanations in the tty window. For the novice
students, they may not fully understand the meaning of error messages. The types needs
to be further explained. The system uses one piece of text to explain one mistake type or
one misconception type. For each type the student can call the text displayed in a text
frame when he needs. There are two buttons facilitating the type checking which are
listed bellow:
« Mistake type checking button
This button is labeled as "Mistake Types.” If a student clicks the left mouse button
at this button and gives the type number following the prompt in the message item,
then the system will open a frame to show the text which gives the corresponding
explanation to that mistake type.
+ Misconception type checking button
This button is labeled as "Misconceptions.” Using operations on this button in the
same way as on the mistake type checking button, a student can see the further
explanations to misconceptions in the text frames.
Fig. 24 shows the text frames that give the explanations for misconception type c;
and type c7. These types are related with the report in the diagnosis process displayed in

tty window.

5.6 File System of RPT

The following subsections introduce the file system of RPT. The RPT system is
only a prototype now. But the way the files are organized and the system works provides
the system engineers facilities to easily add the subjects to be tutored and the problems
to be diagnosed. Whenever an instructor wants to add a recursive program in a different

subject, the system engineer can create a group of files and put them into the system.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e S S L R
$/tornadol cp 123.ruv dosktop/.
“{tornadoX screendumpdi24.rs

: X
———————— e —————ae.
Dynanic Instruction Tentus] Inairuciion] Plosse glve the rsber of the misconception type:
Load Im mI Then click the right mouse button at the “Mlsconceptions’ tutton.

Diagnose J(Histake Typos J(Misconcoptions] Flle nama: wrong.p

PRI AN >
PANK VAN TSI

Lel’s consider uhatl Lime is appropriste 1o apply & nes node. [z]progeem inorder{irput,output);

Ve noed to apply a2 nt nods to hold the new §lem, And (hie gf
operation can bs dona before or aftsr wa assign the dats Inlo 55
the corresponding fleld. Is thal corract? (yss/na) gz
yos | 83
That is wrong. You should apply » now node Jirst, ihen The misconception] is no concept of termina- 7
a9sign tho dala into 1. Dlhorwige, olther ono node Wil bo il ion 10 the recursion or misunderstanding thie g1
overwrilten or the node you are trying to assign data in concept. The terminition condition should be ?:
has nil¥ pointer. BB pressnted in 4 rocursive procaduce. “
‘ b

Continue to chack tha time to apply nou nada? (yes/no) ‘:}
yos

So wa can view the operalions of applying new node and
assigning data to 1% as one group. The next quastion s
when we vae this group to apply the now node?

i

¢.;
£
¥
A

1. ¥hen the termination condiiion s trus; 3
2. Vhen Lhe nontermination condition fa lrus; E:oudu" insert(var T: luble; neuilen: Integer); j
3. AL the vory bepinning af the procedure, that {s pin i
bafore any othor oporatlons; nne(T);
4, Olhers. T*. 1t 2 newltom; 5
Please choose ono number. T~.Lthid 2= nil; i
J T*.RechiNd := nll; i
That widl causo this operation Lo be made at overy 1f T = n4) thmn :
rocursive call, Actually 1t may just apply tha infinlt if novitem ¢ T-.iim ¢
nodes for the first data untill stacks are ovarflow, then {nsart{f~.Lchiid, nowilen) :
The termination condilion can navor be reached. olae Insert{T~.Rchild, newilen) 41
end; %
Continun to chack the time to apply ntu node? {yes/no) &;
yas ¢
Boaidos tho ono group undor Lha terminalion condilion, do ve 34
nosd Lo pul the group under the nontarminallon condition HE
(thn: s tha racureivae casn} too? (y/n) The misconception? fs no concept about the
1 .]
W That s correct.. Line whan apply the nes node to hold nasitem j

You have the foltowing misconception(s): Opuration for applylng the nes node should be

Misconception?: Nisunderstanding when to apply & nms node

Tocated at correct place as an action In base

Lo hold the nes iten. cae,
Misconcopt lonl: Not having Lho correct concept of lerminallon
‘sf for a cecuraion,

SRR RTERI ROk

You can click 1aft button on {he "Misconcaptions’ 8 - o .
button to gat further explanations to your aisconcegtions. procecurs inorderil: table);
bepin
Any other racursive procadure which you vant Lo check? (y/n) 11 70nll then
B begin

R R SR R R e R R O R

Fig. 24. Types Checking For Misconceptions

5.6.1 File system for instruction
In the RPT system, one lesson is one recursive program. For each program there
are a group of rclated files. Their names arc ended with .instruct, .p, .out, .input, and

.program-respectively. For example, if there is a lesson of inorder traversal program and

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the corresponding source code file is inorder.p, then there is a set of files for this lesson,

whose names are inorder.instruction, inorder.out, inorder.input and inorder.program.

- .p file
This file holds the source code of a recursive program for a lesson.

- .instruction file
This file gives the textual description to introduce the basic concept about one recur-
sive program. For example, for the program of inorder traversal problem solving the
text explains the problem in terms of the general problem description. If it is neces-
sary, it will help student review some prerequisite knowledge, such as "What is inord-
er?”; "What is the differences between inorder and preorder, inorder and postorder?”.
The text also includes the specification for using the tutoring tool. The text file will be
shown in the text window when a student selects the selection button in the start panel
of a root node, like the frame in Fig. 19.

» .out file
This file is an executable file prepared by the system engineer. When a student asks to
run the program in .p file, the system automatically generates the corresponding ex-
ecutable program with the file name ending with .out and executes this file.

» .input file
This file is for the specific display of input data. The system engineer makes this file.
For example, for inorder traversal program the system engineer makes this kind of file
for students to see the graphical representation of input data.

« .program file
This file holds the recursive procedure which is picked from the program in file .p by
the system. When a student studies on a program, the system will display the proce-
dure in this file on the program list panel. For the inorder traversal procedure, the
system provides the functions of execution and the function of display. Both of the

functions can work on different instances of this recursive procedure. A student can

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

see the execution result for the current input when he clicks the left mouse button at
the procedure header and see the display of a spread node for next level of recursion
when he clicks the button at the recursive call statement in the program list panel. For
other programs, the system needs to give different functions.
The first four kinds of files are prepared by the system engineer and the last one is
generated by the system. For each new subject, that is a recursive program, the system
adds these four files into the system. When the system generates the lesson menu, it
makes the menu one item longer since the system finds there is one more .instruction
file in the system. Thus the length of menu is exactly according to the number of lessons.

This is a flexible way to add new lessons.

5.6.2 File system for diagnosis environment
Files in diagnosis process supports the problem understanding, mistake detecting

and misconception recognition. There are following different kinds of files.

+ Problem description file
This file gives the textual description to one recursive program when a student selects
a recursive program to work on. This text file has the name ending with .problem. This
file briefly introduces the basic concepts about that recursive program and the way to
start to solve the problem. It gives the information such as “"what is the problem?”
"What is the recursive relationships in the problem?” "What is the termination condi-
tion of the recursive program?” This file is displayed when a student selects a problem
from the problem selection button in the control panel.

» Recursive procedure file
This file holds the recursive procedure which is picked out from the program in file .p
by the system in diagnosis process. This file has the same name as the recursive proce-
dure name. When a student selects a recursive procedure to work on, the system be-

gins a structure analysis on this procedure during the mistake detection process. The

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system also displays the procedure in this file in the tty window to let the student
review.
« Mistake explanation file
For each mistake type there is one file to explain the corresponding mistake. It is
aimed to help students to understand what kind mistake he has made. This text de-
scription is a more detailed description than the brief information in the mistake re-
port. This file is displayed when a student requests from the mistake type button in
the control panel.
+ Misconception explanation file
For each misconception type there is one file to explain it. The system uses it to help
students to understand what kind of misconceptions he may have. This text is a fur-
ther explanation to the misconception. This file is displayed when a student requests
from the misconceptions button in the control panel.
The system engineer can add more recursive problem, mistake types and misconception
types whenever needed. For the different probiems he needs to add different problem
description file and support files. When the more mistake types and misconception types
are found, the corresponding explanation files of mistake and misconceptions need to be

added.

5.7 Features of RPT environment
The RPT environment is built with the hypertext model plus the program execu-
tion. It provides graphic illustration, multi-dimension display and visualized proceeding

to help students to understand a recursive problem solving process.

5.7.1 Graphic illustration
Pictures and diagrams can readily be used in the knowledge representation, and

sometimes they can give more information. Graphic representation can immediately

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

show the objects and their relationships so that people can accept information promptly
by using human intelligence. The recursive programming is very difficult to be accepted
by novices especially when they first encounter it. It seems that an unknown process is
built over the same unknown process, only in multiple different ways. Indeed, comparing
with other programming concepts, such as variable definition, input, output, loop struc-
ture, it is difficult to master. Using a computer to teach students, especially when it is
possible to supply a graphic illustration environment, not just verbal interactions, will
provide an opportunity to alleviate the degree of difficulty. The RPT environment allows
students to use the processing tree to represent the recursive relationships in nested
programs at different levels and to use the graphic representation for a binary search
tree to depict the input data. Thus, this environment provide one more dimension in
user-interface than other programming tutor system which only provide dialogue and
menu. The environment of graphic illustration, in which the student learns the concepts
and details about recursive programming, can foster intuition for abstract concepts and

will make a lasting impression on the mind of students.

5.7.2 Multi-dimension display

In the RPT environment, travel or search among the spread nodes in a processing
tree can be easily carried out by a simple click on the mouse button from any node in
the tree. This multi-dimension retrieval process furnishes multiple dimension navigation
paths. In the most tutor environments, only the static display is allowed. These environ-
ments only give display for the current state step by step in the linear order, such as in
the system LISP tutor and GEOMETRY tutor [Anderson 89]. Sometimes the sequential
display conforms the course of human knowledge acquisition. But the multi-dimension
display is more powerful to catch the brainstorm that just flashed through the student’s
mind and to follow the instantaneous idea in the cognitive processes. The RPT environ-

ment provides the display at multiple level not only for program code but also for the

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input and the execution result of corresponding program. And this display can be con-
trolled by students. This mixed-initiative display endows students with more chances for

creative thinking.

5.7.3 Visualization of recursion

The most difficult thing for student to learn the recursive programming is that the
program is too elegant and succinct to understand the program content. This is due to
the feature of the recursion that it defines an infinite process in a terse statement. In the
RPT environment the automatically generated spread node can unfold the process of a
recursive program. The execution result for the subset of a corresponding input data can
be displayed by the student’s requiring. Thus, the originally hidden program and the
underneath process are visible to the student. When a student learns the case at the
spread node, he will see corresponding unfolded program by visually opening the knowl-
edge environment. This gradational display allows students to go through the processing
tree from the root to any node in the tree at any level, therefore get corresponding
program at an incremental refinement. Different levels of refinement are needed for ef-

fectively tutoring different students.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER SIX
EMPIRICAL EVALUATION
ON
THE PERFORMANCE OF RPT

Previous chapters have presented the IADI diagnosis model and its applications in
a recursive programming tutoring system. This chapter evaluates the performance of
RPT with emphasis on the JADI diagnosis model.

The evaluations of ITSs have been underemphasized in the past. Even though there
are few of ITS systems intended to do so, there is no standard set of evaluation methods
for addressing these problems (Littman and Soloway 88). Because the field of ITSs is too
young, building ITSs is still somewhat an art, and there are few ITSs that can be called
“finished.” Designers of ITSs are currently more concerned with usefully guiding the
development of their systems, than with determining if they are effective educational end
products.

The evaluations of RPT reported here show an encouraging result from the experi-
ence in diagnosis processing of RPT and its running examples. The observations and
analyses show that students are learning from the tutor. And this fact is consistent with
our subjective efforts and wishes when we set out to construct the tutor with the diagno-
sis model.

Although empirical tests indicate that an encouraging result has been achieved,
there still are some problems. These problems involve transporting the tutor from the

research environment to the practical environment. It needs to pay more efforts to solve

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these problems. The further considerations and possible works are addressed in the next

chapter.

6.1 Bug Collection

The IADI knowledge base currently is for insertion problem which is a problem of
inserting nodes into a binary search tree recursively. The possible mistakes in the IADI
knowledge base are classified into thirteen different types. This classification is based on
the program structures of students’ programs for solving this particular problem. These
mistake types are summarized from the students’ solutions to the insertion problem in
their homework and class work for the PASCAL programming class, and also from the
sample programs provided by experienced instructors.

At the first stage, the author created bug programs to simulate the detection object
based on obtained students’ bug programs from helping students to complete their
homework. At the first round, eleven different mistake types were summarized. These
mistake types were then investigated by several experienced programmers and instruc-
tors, and two different mistake types (mistake type 12 and type 13) were added to the
knowledge base based on their experience. For each of these mistake types there is one
program module in the RPT system to be implemented which is used to analyze and
recognize the corresponding mistake.

Then the RPT system is used to analyze the students’ programs, and is also ex-
pected to receive more information from the real objects of the bug detection. In the
1990 fall semester, the intention of collecting the bug solutions from the students’ home-
work failed because most submitted homework was a correct version of the solutions;
the intermediate solution, the bug programs in their previous versions were not turned
in. In the 1991 spring semester, students were asked to submit their programs for the
insertion problem during class time as class work. The information obtained from their

class work is shown in Fig 25.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Total number of programs : 27

Number of analyzed programs : 20
Number of correct programs : 6
Number of bug programs : 14
Number of bugs : 20

Fig. 25. Program Collection

This class work was taken in 30 minutes. The purpose of collecting these programs
was to get to know what is the students’ thoughts when they were learning the recursion,
and what are the possible mistakes they will make at the beginning. There were about 40
students in the class, but only 27 programs were submitted. The 27 programs were made
by 24 students. There are three programs in the different version, but by the same stu-
dents. Among the 27 programs, only 20 programs are analyzed because these 20 pro-
grams are syntax error free programs and they are significant for the insertion problem
solving, That is, we do not want to analyze on incomplete program which has no mean-
ing to solving the problem, even if there is no syntax error in that program. There are 6
programs which are bug free and give correct solutions. In the other 14 programs there

exist 20 mistakes which were going to be analyzed by the RPT system.

6.2 Evaluation of Bug Detection and Bug Collection

The preliminary RPT system ran the 14 students’ programs and the result of the
sample data is shown in Fig. 26,

The total number of existing bugs in the 14 student’s programs is 20. From the
results we can see that the preliminary RPT system can recognize the most of the mis-

takes, (90% in this test). But some mistakes are misreported, which means those base

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of bugs : 20

No. of bugs recognized correctly : 18
No. of bugs recognized incorrectly : 2
No. of misdetected bugs : 6

Fig. 26. Result Of Running Preliminary RPT
System On Sample Data

are classified as the incorrect bug category. For example, the two bugs recognized incor-
rectly in Fig. 26 were erroneously detected as mistake type 11 when they were actually
mistake type 6. There also existed some misdetections under which the correct programs
were looked upon as bug programs or the correct parts of the code were reported as
mistakes. In three bug programs, a piece of correct code is misdetected as mistake type
5. Also three times the system erroneously reported mistake type 6 in programs which
were correct. The misdetections are involved more than three modules in the preliminary
detection program. It was necessary to modify these modules in the preliminary diagno-
sis program in order to eliminate the misdetections.

The reason for the misdetection is that the preliminary system did not contain the
case which is more general. For example, for the mistake type 5, "Did not provide the
smaller instance”, the module to check this mistake only checks whether the smaller
instance such as T .Lchild is presented in the actual parameters. However, some stu-
dents use the assignment statement like T:= T~ .Lchild first, then they do not need to
present T~ Lchild in the parameters of the recursive call statement. They can write the
recursive call statement as “insert (T, newitem)”, instead of “insert (T~ .Lchild, new-
item)”. The same situations are present in other inconsistent cases. Obviously the system
should be able to cover the general cases. The preliminary RPT system was remedied

after these inconsistent cases were found. Now the RPT system can detect the mistakes

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

correctly, the cases that misdetect bugs and incorrectly recognize bugs have disappeared
from the sample data. Due to the variety of novice programs, it is certain that there will
be unexpected cases which the system will not be able to detect. This is one limitation of
the system, but it is not a problem of the essential detection approach.

The mistakes that were collected from the students’ programs happened to fall into
the catalogue of mistakes in the RPT diagnosis knowledge base. The distribution of the

twenty mistakes in students’ programs after running the revised RPT system is shown in

Fig27.

Mistakes in
Diapnosis KB

Mistakes in stu-
dents’ programs

mp mp m3y my msg mg My mg Mg mjg mp; mp mp3

511 0 0 3 3 0 5 0 0 o0 2

Fig. 27. Bug Distribution In Students’ Programs

From the bug distribution, we can see the mistakes m; "missing termination condi-
tion” and the mistake mg "not applying a new node to hold the new item” are the most
common mistakes made by students since the percentage of these mistakes in the total
mistakes reaches up to 25%. Mistakes m6 “miswrite the termination condition” and m7
"missing key word which defines the variable parameter in the formal parameter defini-
tion” are easily made by the novice programmers. Both of them take up 15 percent of
mistakes in the sample data. Mistakes m; "misplace the operation of inserting a new
node,” m3 “use a loop structure”, and my3 "not apply a new node, but try to assign data
to it” are made sometimes but not as often. Some mistakes, such as m4, ms, mg, myg.
m); and mj; were rarely found in the sample data. These mistakes are “lacking parame-
ter in recursive call statement,” "did not provide the smaller instance,” "misorder the

data in left subtree and right subtree,” "apply too many new nodes for inserting one new

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

”

item,” "try to find nodes in a binary search tree instead of finding a place to insert a
node” and "create a new node after using it.” The percentage may be different in the
different group of students’ programs. It seems that the mistakes in the JADI knowledge

base can cover all of manifestations in the current collected programs.

6.3 Evaluation of Misconception Diagnosis

The RPT system has been run with approximately 40 students in the "Problem
Solving and Programming Lab” class of the 1991 spring semester. During class time, the
instructor first briefly introduced the RPT system. This introduction includes what is the
basic purpose of RPT, how to work in the RPT instruction environment and the diagnos-
ing environment, and also the system’s user menu. After that, a homework which in-
cludes the insertion problem is assigned to students. Then the students practiced using
RPT and tried to start their assignment in class. Students either wrote their program in
the text window of the RPT diagnosis environment, or called their prewritten program
directly. After the programs passed the Pascal compilation, they were submitted to the

RPT diagnostic process.

6.3.1 Comparison in two groups

Most students can not get the correct solution by only running their program once.
Usually students detect fewer bugs than actually exist, and they take more time to find
them than is necessary for the experienced programmer and computer tutor. When they
use the RPT system, students are inspired by the suggestions and hints received when
they work on the checking lists in the interactive communication with the RPT system.
After about one hour of class time including the instructor’s brief introduction and
working with RPT, most of students acquire the confidence to complete the assignment.
During their homework time, the tutor helps students to complete the homework more

quickly than students can by themselves, With the tutor students feel more confident

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

about trying to find out whether there are bugs, locating the bugs, and then correcting

the corresponding code.

The Fig. 28 shows the comparison numbers in cases there students complete the

Number of stu- [Number of stu- [Number of stu-| Percentage of
dents completed) dents doing dents finishing | the students
the course the assignment | the assignment | completed
Fall
1990 33 27 26 78.8%
Spring 0
1991 38 36 36 94.7%

Fig. 28. Comparison In Two Groups

assignment in the spring semester and fall semester. The number of students complete
the course, rather than the number of registered students, is listed here because it is a
more reasonable base to show how many students are studying in the class. These cases
are in two groups; students in the fall semester did not use the RPT system, but the
students in the spring semester used RPT. The assignment in the spring 1991 is an in-
order traversal problem plus the deletion of any node from the built binary search tree,
while the assignment in the fall 1990 was just a pure inorder traversal problem. Obvious-
ly the assignment in the spring was more difficult than the one in the fall. The result
indicates that comparing with the situation in spring semester, more students were will-
ing to and able to complete the similar but even more complicated assignment when
they can use the RPT system to help them to understand the basic recursive concepts,
diagnose the mistakes in their submitted programs, and clear their misconceptions. Al-
though there may be other facts which can affect the students’ attitude to do recursive

assignment, we can see that the help from RPT is quite encouraging.

6.3.2 Diagnosis process shown from different versions

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some of the students submitted the intermediate results which become different
versions to be analyzed. Tracing the different versions is very helpful in analyzing the
system’s performance. For example, a student first submitted his program, the first ver-
sion, of which has the mistake type 9 "not apply new node to hold the new item.” The

procedure is displayed in Fig. 29. When he entered the diagnosis environment, he got the

Procedure insert (var T : table; k : integer);

begin
if T <> nil then
begin
if T™.item < k then
insert (T~ . Rchild, k);
if T”.item > k then
insert (T~ . Lchild, k);
end;
end;

Fig. 29. A Student’s Program

error message after the mistake detection process and began a dialogue with the RPT
system, He followed the checking list CL{cg) which is related to the necessity of applying
a new node and the way to use it, and found out the misconception. The questions in
the sample are such as

Do you think it’s necessary to have the new data saved in a node?

Do you need to apply a new node for holding this new data?

In order to apply a node to hold the new data, what function will you use?
During the interactive conversation the student was enlightened and realized he needed
to include the application of the new node in his program. Another version in Fig.30,
which is submitted by the student later, testifies to this conjecture.

In the program showed in Fig. 30 the student tried to correct the mistake type 9 in

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure insert (var T : table; k : integer);

begin
new(T);
T".tem:= k;
if (T <> nil) then
begin
if T™.item < k then
insert (T~. Rchild, k);
if T™.item > Kk then
insert (T ™. Lchild, k);
end;
end;

Fig. 30. Another Version Of The Program In Fig.29

the version shown in Fig. 29, But this version still was not correct. Another mistake
appeared, type 2, "Misplace the operation of inserting a new node.” That showed that
even the student already knew he needed to apply a new node, but there was another
step needs to be considered. This step was to find the correct position in which to insert
the new node. Following the checking lists CL{c7) then, which contains the question like
"when you need to apply a new node to hold the new item?” and other related ques-
tions, the student realized what was wrong and found the correct place to insert the
node. Finally he corrected the mistake and got the correct solution and completed the

assignment successfully.

6.3.3 Results shown in finals

The test on the students final examination supports the claim that the RPT system
helps students avoid misconceptions in their programming,

In the final examination of the spring 1991 semester, the students were given two

problems. One is to write a procedure to calculate the height of any binary search tree

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Helman and Veroff 86) (we call it a height problem here), and another is to find a bug
on a given bug problem and correct it. In this final exam this procedure is required to
work with other given procedures to solve the problem. The insertion procedure is one
of the given procedures which is a basic step in building a binary search tree. One of
the correct versions to calculate the height is displayed in Fig. 31. By comparing the

procedure in Fig. 31 to the previous correct insertion procedure (one version is in Fig. 6)

Procedure height (var m : integer; T: table);
var hl, h2: integer;
begin
if T< > nil then
begin
m:=m+];
hl:= m;
h2:= m;
height (h1, T~ .Lchild);
height (h2, T~ Rchild);
if h1>h2 then m := hl;
else m := h2;
end;
end;

Fig. 31. Procedure To Calculate The Height
Of Binary Search Tree.

we find that some concepts implied in the two procedures are similar. These concepts
are about the termination condition in a recursion process, the recursive relationship,
and the definition of the variable parameter of a procedure. If we imagine the possible
mistakes in the height problem, the related mistake types may be the following:

Mistake m; : Missing the termination condition;

Mistake m3 : Use a loop structure;

Mistake my : Lacking parameter in recursive call statement;

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mistake ms : Did not provide the smaller instance;

Mistake mg : Miswrite the termination condition;

Mistake m7 : Missing key word which defines the variable parameter in the formal
parameter definition.

Since there are many similar concepts in the two procedures, we can assume that
the students tutored by the RPT system with the problem solving of insertion will get the
benefits of this and hopefully avoid similar misconceptions and mistakes in the problem
solving of height.

We manually analyzed the students’ solutions after the final exam, and got the

following results shown in Fig.32. In the final examination, only five students gave the

Number of students who took the final : 38;

Number of students who submitted the answer to this problem : 31;

Number of procedures having m1: G;

Number of procedures having m3 : §;
I

Number of procedures having m4 : 1;

Number of procedures having mS5 : 0;

By

Number of procedures having mé6 : ;
1

Number of procedures having m7: 1.

Fig. 32. Finding From Students’ Solutions

correct solutions. Most of students can not solve the problem completely at the examina-
tion time. One reason is it is a little bit hasty with the 3 hours to solve two problems.
The observation shows that the main obstacle is something in the logic of the process
to find the height of a binary search tree which is a harder problem than the insertion
problem. From the Fig. 32 we can see the results from the submitted solutions. These
results indicate that after students used the RPT system to help them get rid of some

misconceptions, the most common mistake, type 1, missing termination condition, was

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

almost eliminated in this final exam. The easily made mistake type 6 is eliminated too.
and the another easily made mistake type 7, missing key word which defines the variable
parameter in the formal parameter definition were reduced to 1 out of 31 from 3 out of
27 (The one who had made the mistake type 7 in final was within the three who made it
in classwork)., The mistake type 4, lacking parameter in a recursive cali statement, ap-
peared in the final which had not appeared in the class work or homework before, but it
was in the diagnosis knowledge base. If we compare this result with the manifestations

shown in Fig. 27, we can see that these results are quite encouraging.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER SEVEN
CONCLUSIONS

The previous chapters have discussed the Integration of the Abductive and Deduc-
tive Inference diagnosis model and its application in a Recursive Programming Tutor.
The substantive issues and the state of the art have been presented. This chapter sum-
marizes this research and the contributions of the IADI model to diagnosis problem

solving, then proposes some further research issues.

7.1 Summary of IADI Diagnosis Model and Its Significance

The abilities to understand the mental activities of a student, and to detect and
correct misconceptions in the student’s understanding are the main features that distin-
guish the ITS from other systems such as expert systems and earlier CAI systems. This
motivates many researchers to concentrate their efforts on the student modeling problem
and diagnosis problem solving.

There are many different diagnosis methods provided in the existing student mod-
eling problems of intelligent tutoring systems. Table 1 in Chapter 1 listed the major
diagnosis techniques in different student models. Chapter 2 described and discussed
these different techniques and further classified them into three types of diagnosis mod-
els. The enumerating model can work well when the problem size is small, or the combi-
nation and the permutation of facts, like the facts in subtraction, are easily obtained.
But it does not work well in more complex problems such as the case involving mental
states. The tracking model tries to track a student’s mental stages at every step in order

to establish a complete student’s mental model. But the feasibility of grasping every

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mental state of a human is questionable, and tightly following steps indicated by the
system restricts some possible solutions. The classifying model captures the design plans
and the significant issues to build a student model, therefore it is more realistic than the
tracking model, and more effective than the enumerating model. But this model does not
show how to deal with the complex relationships between basic conceptions and demon-
strated mistakes.

The IADI diagnosis model is explored to diagnose students’ mistakes and miscon-
ceptions in complex problems. It is different from the existing diagnosis models. The
IADI diagnosis model combines different types of inferences, the abductive inference
and deductive inference. The basic process is divided into three steps, mistake detection,
misconception hypothesizing and misconception verification. These three steps are ac-
complished by structure analysis, abductive inference and deductive inference respective-
ly. The abductive inference is used to catch the plausible features of hypothesizing pro-
cess while the deductive inference is used to presents the nature of verification process.
Thus it becomes an inferencing model, and the different inferences can be supplement
with each other. This model provides detection at two levels. It detects mistakes to show
what incorrect actions are, and also detects misconceptions to find why the wrong ac-
tions occur. Comparing with the detection at only one level, this model can bring poten-
tialities of tutoring into full play. This diagnosis model focuses on the main conceptions
in a problem and catches the key steps in problem solving to avoid excessive details. It
also attempts to connect the relationships between mistakes and misconceptions in rules
for a particular problem, and associate design plans to programming conceptions. Thus
it provides rationality to elaborate conception during tutoring. This model simulates hu-
man diagnostician’s reasoning process in cognitive activities in order to obtain a better
solution. This model works in a hypertext concept based tutoring environment. it allows
students to master the concept of recursion and the art of recursive programming with

relative ease. The general model is outlined in Chapter 3 and the processes are de-

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scribed in Chapter 4, with an application in a recursive programming tutor. The working
environment is illustrated in Chapter 5. Finally the empirical tests and evaluations are
presented in Chapter 6.

The following subsections address the significance of the model by summarizing
the features that make the IADI diagnostic model distinguish itself from other models

and also summarizing the contributions of the RPT system.

7.1.1 Two-level detection

The 1ADI diagnosis model provides a two-level detection. The first is mistake de-
tection at the action level. The second is misconception detection at the conceptional
level. Diagnosis systems typically only detect mistakes. If a diagnostic process only indi-
cates mistakes, it will not be able to help students to understand the reason, and it may
not even be able to convince a student that mistakes were actually made. Obviously, it is
not sufficient if the diagnosis process in a tutoring system detects mistakes only on the
surface. It can not reach the fullest potential of an intelligent tutoring system. In an
intelligent tutoring system, the diagnosis process must carry a step further to find the
misconception so that it can provide the basis for a tutor to give possible causal expla-
nations for incorrect actions, and for students to get a deeper comprehension, and there-
fore can eliminate a whole set of mistakes. Some tutoring systems provide only concep-
tional explanations to the detected mistakes. These explanations come from experience.
The formal relationships between mistakes and misconceptions are not summarized. The
IADI diagnosis model summarizes a set of production rules in the IADI diagnosis
knowledge base that represent the cause-effect relationships between mistakes and mis-
conceptions which are considered as the most important principle to follow in a diagno-
sis system (Torasso and Console 89) (White and Frederiksen 90). And this helps the

system find misconceptions from mistakes.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.2 Combination of abduction and deduction

Most expert systems, including tutoring systems, for diagnostic problem solving
only use deductive inference. Although the reasoning process based on this inference
mechanism is essential, it is not adequate by itself in solving many real world diagnostic
problems. There are some problems associated with deductive inference systems. For
example, many of them have an extensive list of conditions so that it is difficult to fire a
rule. And the deductive inference systems lack the representation of cause—effect knowl-
edge in their traditional production rules.

On the other hand, some expert systems for diagnosis use abductive inference only.
In such systems it seems that something is lacking when explanations to incorrect ac-
tions are needed. It lacks a good organization of the material to be explained. This is a
very important point in a tutoring system. By taking into consideration of the complex
relationships between mistakes (in other problems they may be called symptoms, bugs,
or manifestations} and misconceptions, and exploiting the features of abductive inference
and deductive inference, we have combined abduction and deduction into the diagnosis
process. This integrated diagnosis process has a hypothesis process and a verification
process which are very close to human diagnosticians’ process. And the rule form in the
TIADI knowledge base supports both abduction and deduction. The explanations to each
misconception are well organized by the design plans which can be expected to have an

effective tutoring resuit.

7.1.3 Concentrating the diagnosis on key steps of problem solving

The IADI diagnosis model is different from the existing tracking model and enu-
merating model. The IADI diagnosis model works by taking into consideration mental
states, but it does not enumerate all the mistakes derived from various mental states. By
studying the differences between experts and novices in different domains, cognitive psy-

chologists have discovered that students usually go through different conceptual stages,

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

especially in the critical ones of learning a subject [Brown and Burton 87]. Thus teaching
is not the pouring of knowledge into an empty vessel, but more a process of reconceptu-
lization of the critical issues. In the instruction stage of the RPT system the tutor tries to
grasp critical issues to induce general rules to a student who is learning the recursive
programming technique, because clarifying and solving them are the crucial steps to
solve the whole problem [Shen, Zhang and Zhao 90]. In the diagnosis process this model
selects major mistakes made on key steps in problem solving and fatal misconceptions
formed when learning a subject to form the diagnosis knowledge base, which contrasts
the tracking model that tries to arrange all mental activities and trace them. And the
items in a checking list for verification of a misconception are chosen for presenting the
critical issues around the main steps of a design plan to achieve a goal. This disposition
is much more efficient and reasonable.

In the internal process of the diagnosis model, the abductive process infers a se-
lected candidate hypothesis set Cg for a student. Every hypothesis in Cg is a probable
misconception that the student may have. The deductive process then focuses on the set
C, while the student works with the corresponding checking lists. Thus the efforts of the
tutor’s instruction is focused on the student’s specific misconceptions rather than using
some generic instructions. It avoids requiring the tutor to go through the same detail
when a different student is being tutored. These are the typical characteristics of an ITS

that has a instruction tailored to the individual needs of students.

7.1.4 Incorporating the process of tutoring into diagnosis

The system begins to tutor while it is doing further diagnosis after the initial hy-
potheses are obtained. This is different from those systems in which the tutor starts to
give instructions or explanations only after the diagnosis result is gained [Johnson and
Soloway 84] [Woolf and McDonald 84]. In such processes, the scope of diagnosing pro-

gramming errors is limited to the information that is extractable from the buggy pro-

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

grams themselves. In the deductive reasoning process of the IADI diagnosis model, the
system establishes checking lists to further detect a student’s mistakes which are unde-
monstrative in the original buggy program, and therefore verifies a student’s misconcep-
tions and produces a more precise student model. During this process, the system also
gives instructions if the student answers questions inappropriately. The verification pro-
cess and the tutoring process proceed in an interactive environment. During the interac-
tion with a student, the system follows both the cause path and the design plan. The
corresponding instructions will help the student to understand the reason why he made a
mistake, and to understand the design plan how they can reach a correct concept. Thus
the tutoring process is incorporated into the diagnosis process in IADI In this way,
students can receive instructions on particular misconceptions whenever they are told
there is something incorrect. These impromptu explanations and instructions can be

readily absorbed by students.

7.1.5 Nondeterministic diagnosis

The IADI diagnosis model produces a list of ranked misconceptions as the final
result. It is not a deterministic result, In cases where the intersection of man(c;) and the
detected mistakes is a subset of the intersection of man(c;) and the detected mistakes, ¢
may still be a eligible misconception. Thus the method includes both ¢; and ¢j in C; as
appropriate.

In cognitive activities, excessively or rigorously deterministic mathematical models
may not be appropriate. For example, if we have the rules

Ci—» my, Co—» 1, C)—» My,

and we are given Mp = {mjy, mp}, then ¢; might be a good explanation for M;, and it
also is the minimal cover for Mp, in terms of the Set Covering model [Reggia 85]. But we
can not rule out cz as the possible diagnostic result, because it is possible that the

student made m; through c;, and made mj; through c; under a different situation. In the

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IADI diagnosis model, both c; and c; are included in the final diagnostic list and are

ordered in appropriate way. Thus, this approach provides more reasonable result.

7.1.6 Hypertext tutoring environment

When we design an ITS, we should consider that the ITS works with a student who
does not understand the subject domain very well. There is no doubt that a well-de-
signed environment can enhance the capabilities of an ITS in many ways. The new tech-
niques and research ideas from computer applications and cognitive science are opening
up many opportunities for creating a good instructional environment. The RPT system is
built in a hypertext based environment. Although the hypermedia technique has been
applied to teach English literature, cell biology [Yankelovich 88] and engineering [Bourne
89}, it has not been used in programming tutoring. The RPT system uses the hypertext
concept accompanying code execution to create a tutoring environment for recursive pro-
gramming. The significant cases and critical issues in the learning of recursive program-
ming are presented in a multi-dimension graphic environment. This environment can
also make the process originally hidden from the succinctly written recursive program
visible. It allows students to see through the recursive process at different levels of de-
tails and even get the execution result of the procedure at each level. The environment

and its other features are described in section 5.7.

7.1.7 Evaluation of RPT

The empirical evaluation of RPT shows an encouraging result. The evaluation data
are based on the comparisons in the "Problem Solving and Programming Lab” classes
within two semesters. The system has been run with approximately 40 students in the
1991 spring semester. The comparison between the mistakes detected by RPT and the
mistakes detected by people shows that mistakes collected in the IADI knowledge base

can cover all the mistakes demonstrated from these students’ programs. When students

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

use RPT to solve the insertion problem, the progress steps can be seen from the differ-
ent versions submitted from students. That is, the misconceptions were clarified by the
instructions from the RPT diagnosis and tutoring process. The data of the accomplish-
ment of assignments assigned in the two semesters indicate that students were increasing
competent in recursive problem solving since more students (in percentage) in the spring
1991 semester could complete the assignment than students in the fall 1990 semester
when not using RPT, even though the assignment was more complicated in the spring
1991 semester. Furthermore, most common mistakes were significantly reduced after the
students had used the system. This conclusion became more evident when we compared
their class assignments and the final exams where harder problems but with similar
concepts were given. On the other hand, other factors that were not indicated in the
analysis may also have played some role, even though they were not obvious. The sample

size may also be considered quite smalil.

7.2 Future Research Work

As a first step in proposing and building a diagnosis model, the description about
the IADI mode! is concentrated on the basic principles and the main steps. It definitely
has some limitations. From the prototype environment to a real practical environment, it
still has a long way to go. In order to improve the performance of the diagnosis model,

there is a need from various perspectives. Several research issues are addressed in this

section.

7.2.1 The degree of diagnostic details

The deductive reasoning in the IADI model is a process that verifies the hypothe-
ses from the selected candidates. The checking lists are used to list the possible manifes-
tations for every selected hypothesis. From the student’s choices the tutor can decide

what misconceptions the student may have. The more items a checking list has, the more

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

precise the student model can be. There is a tacit assumption that tutoring based on
fine-grained student models will be more effective than tutoring based on coarse-grained
models. No one has attempted to check this assumption. The thing one needs to know is
whether the fine-grained modeling is worth the effort, and whether students are willing
to answer so many questions in a checking list. Although the items are well organized by
the design plans, what degree of detail is suitable for a particular system still needs to
be studied.

On the other hand, an acceptable view of diagnosis problem solving behavior is
that problem solving is carried out at multiple levels of abstraction. For example, a gen-
eral misconception can be refined to many specific misconceptions under the general
one. Thus, the knowledge structure for cause-effect relationships among the general mis-
conceptions, specific misconceptions, and mistakes may become more complicated if we
consider that there is one more dimension added to the cause-effect relationship we
described in this model. The question is whether the multiple level, giving fine model
description is better, or if the flat structure, giving coarse model description is better.
The former may be able to give a more precise diagnostic result. The latter may be more
efficient at giving a diagnostic result since fewer relationships need to be taken into
consideration. If the former one is chosen, the knowledge structure must be rearranged

in the diagnosis knowledge base.

7.2.2 The diversity of mistakes

The IADI diagnosis model is first implemented in a recursive programming tutor.
Usually the recursive program is short and its structure is not as varied as in other
kinds of programming problems, although the concept about recursion is not easily to be
understood. When the complexity of a problem is increased or the size of a solution
becomes larger, the mistake detection will become increasingly difficult, because the

types of structures in the solutions will be dramatically increased. Especially in the nov-

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ice programmers’ solutions, bizarre mistakes under various misconceptions will emerge
one after another and the unexpected structure types will make detection difficult. Thus,
a structure based mistake detection may not be able to deal with it completely. Other
methods, such as combining heuristic control strategy, need to be put forward to com-

plement the structure based mistake detection.

7.2.3 Other Applications

Besides the topics mentioned in the last two subsections that need to be studied,
the implemented RPT prototype must be further tested in a wider range, such as getting
more students to work with it and allowing it to tackle more diagnosis problems. Then
we can acquire more empirical data and refine the diagnosis knowledge base and tutor-
ing system, and even replenish the diagnosis model.

There are also many other domains that the IADI diagnosis model can be applied
to, such as other programming languages, mathematical subtraction, calculus, medicine,
or digital circuit. For each different area, there is a set of tasks to be put into effect,
such as bug collection, cause investigation, tutoring subjects induction, and so on. If they
are done, they would help us to test more thoroughly the effectiveness of the inferenc-
ing-based approach to diagnosing novice solutions. Upon successfully solving new issues
in other domains, this diagnosis model will be greatly improved and the generality of

this model may be proved.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

Adam, Anne and Laurent, Jean-Pierre. 1980. LAURA: a system to debug student
programs. Artificial Intelligence 15: 75-122.

Aho, Alfred V., Hopcroft, John E. and Ullman, Jeffrey D. 1974, The design and
Analysis of Computer Algorithms. Menlo Park: Addison-Wesley Publishing
Company.

Akscyn, Robert M., McCracken, Donald L. and Yoder, Elise A. 1988. KMS: A

Distributed Hypermedia System For Managing Knowledge In Organizations.
Communications of ACM July 1988: 820-835.

Anderson, John R. 1983. Retrieval of Information Form Long-term Memory. Science,
220, 1983: 25-30.

Anderson, John R. 1988. The expert Module. In Foundations of Intelligent Tutoring
Systems, ed. Polson, Martha C. and Richardson, Jeffrey J., 21-54. Hillsdale:

Lawrence Erlbaum Associates Publishers.
Anderson, John R., Boyle, CFranklin, Corbett, Albert and Lewis, Matthew. 1990.
Cognitive Modelling and Intelligent Tutoring. Axtificial Intelligence 42: 51-81.

Barr, Avron and Beard, Marian. 1976. An Instructional Interpreter For BASIC. In
Computer Science and Education, ed. Colman, R.; and Lorton, R. Jr., (or ACM
SIGCSE Bulletin, Vol. 8, no.1) 325-334. Amsterdam: North Holland.

Barr, Avron and Feigenbaum, Edward A. 1982. Application-Oriented Al Research:

Education. Chap. in The Handbook of Antificial Intelligence (Vol. II). 225-294.
Los Altos: William Kaufmann Inc.

Bhuiyan, Shawkat H., Greer, Jim E. and McCalla, Gordon 1. 1991. Caracterizing,
Rationalizing, and Reifying Mental Models of Recursion. In Proceedings of The
I ional Conf he Learning Sci in The Institute for 1l

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I ine Sci Noxtl University, E Hlinois. USA. 2 1991
120~125.

Bonar, Jeffrey G. and Cunningham, Robert. 1988. Intelligent Tutoring with Intermediate
Representations. In Proceedings of Intermational Conference on Intelligent Tutoring
Systems, in Montreal, Canada, July 1-3, 1988, 25-32.

Bourne, John R., Cantwell, Jeff, Brodersen, Authur J., Antao, Brian, Koussis. Antonis
and Huang, Yen-Chun, 1989. Intelligent Hypertutoring in Engineering. Academic
Computing Sept., 1989: 18-38.

Brown, John Seely and Burton, Richard R. 1975. Multiple Representation of Knowledge

for Tutorial Reasoning, In Representation and Understanding: Studies in Cognitive
Science, ed. Bobrow, Daniel and Collins, Allan, 311-349. New York: Academic

Press.
Brown, John Seely and Burton, Richard R., 1978. Diagnostic Models For Procedural

Bugs in Basic Mathematical Skills. Cognitive Science 2: 155-192.

Brown, John Seely, Burton, Richard R. and de Kleer, Johan 1982. Pedagogical natural

Language and Knowledge Engineering Techniques in SOPHIE 1, II and IIl. In
Intelligent Tutoring Systems. ed. Sleeman, D.H. and Brown, J.S., 227-282. London:

Academic Press.

Brown, John Seely and Burton, Richard R. 1987. Reactive Learning Environments for

Teaching Electronic Troubleshooting. In Advances in Man-Machine Systems
Research, ed. Rouse, W.B,, 65-98. Greenwich: JAI press,

Bundy, Alan, 1990. Catalogue of Artificial Intelligence Technigues, Third revised edition.
New York: Springer-Verlag,

Burton, Richard R., 1982. Diagnosing Bugs in a Simple Procedural Skill. In Inteiligent
Jutoring Systems. ed. Sleeman, D.H. and Brown, J.S., 157-184. London: Academic

Press.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Burton, Richard R. and Brown, John Seely. 1982. "An Investigation of Computer

Coaching for Informal learning Activities.” In Intelligent Tutoring Systems, ed.
Sleeman, D.H. and Brown, J.S., 79-98. London: Academic Press.

Burton, Richard R. 1988. "The Environment Module of ITS.” In Foundations of
Intelligent Tutoring System, ed. Polson, Martha C. and Richardson, Jeffrey J.,
109-142. Hillsdale: Lawrence Erlbaum Associates Publishers.

Carbonell, Jaime. 1970. Al in CAI : An Artificial Intelligent Approach to Computer
Aided Instruction. JEEE Transaction on Man-Machine Systems, 11: 190-202.

Carlson, Patricia Ann. 1988. Hypertext: A Way of Incorporating User Feedback into

Online Documentation. In Text, Contexts, and Hypertext, ed. Barrett, Edward,
93-110. Cambridge: The MIT Press.

Chan, Tak-wai and Baskin, Arthur B. 1990. Learning Companion Systems. In_Intelligent

Tutoring Systems at the Crossroads of Artificial Intelligence and Education, ed.
Claude Frasson and Gilles Gauthier, 1-33. Norwood: Ablex Publishing

Corporation.

Charniak, Eugene and McDermott, Drew. 1985. Abduction, uncertainty and expert

systems. Chapter. In Introduction to Artificial Intelligence, 453-485. Reading:
Addison-Wesley.

Clancey, William J, 1982. Tutoring Rules for Guiding a Case method Dialogue. In
Intelligent Tutoring Systems, ed. Sleeman, D.H. and Brown, 1.S,, 201-225. London:

Academic Press.

Clancey, William J. 1987. Intelligent Tutoring Systems: A Tutorial Survey. In Current
Issue in Fxpert Systems, ed. Lamsweerde, A.V. and Dufour, P, 39-78. London:

Academic Press.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Collins, Allan and Stevens, Albert. 1982. Goals and Strategies of Inquiry Teacher. In
Advances in Instructional Psychology, vol. 2, ed. Glaser, R., 65-119. Hillsdale:

Lawrence Erlbaum Associates.

Conklin, Jeffery. 1987. Hypertext: An Introduction and Survey. IEEE Computer, Sep.
1987 17-41.

Corbett, Albert T, Anderson, John R. and Patterson, Eric G. 1990. Student Modeling
Tutoring Flexibility in the LISP Intelligent Tutoring System. In Intelligent Tutoring
Systems_at the Crossroads of Antificial Intelligence and Education, ed. Claude
Frasson and Gilles Gauthier, 83-106. Norwood: Ablex Publishing Corporation.

Date, Nell and Weems, Chip. 1987. Recursion. Chapter in Introductio to PASCAL and
Structured Design, 722-753. Lexington, Massachusetts Toroto: D. C. Heath
Company.

de Kleer, J. and Brown, John Seely. 1983. Assumptions and ambiguities in Mechanistic

Mental Methods. In Mental Models, ed. Gentner, Dedre. and Stevens, Albert L.,
155-190. Hillsdale; Lawrence Erlbaum Associates.

Fann, K.T. 1970. Peirce’s Theory of Abduction. The Hague: Martinus Nijhoff.

Garrett, Nancy, Smith, Karen E. and Myrowitz, Norman. 1986. Intermedia : Issues,
Strategies, and Tactics in the Design of a Hypermedia Document System. In
P i f the_Conf C s iC ive Work. Austi
Jexas, Dec., 1986, 163-174.

Geffner, H. 1989. Default Reasoning, Minimality and Coherence. In proceedings of the
first i ional f Princiol f Knowledse R .]
Reasoning. Toronto, Ontarjo, Canada, 1989, 137-148.

Genesereth, Michael R. 1982. The Role of Plans In Intelligent Teaching Systems. In
Intelligent Tutoring Systems, ed. Sleeman, D.H. and Brown, J.S., 137-155. London:

Academic Press.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gentner, Dedre and Stevens, Albert L. Eds. 1983. Mental Models, Hillsdale: Lawrence
Erlbaum Associates.
Goldstein, Ira P. 1982. The Genetic Graph: A Representation for the Evolution of

Procedural Knowledge. In Intelligent Tutoring Systems. ed. Sleeman, D.H. and
Brown, J.S.,, 51-77. London: Academic Press.

Halasz, Frank G. 1988. Reflections on Notecards: Seven Issues For the Next Generation
Of Hypermedia Systems. Communications of ACM, July 1988: 836-852.
Halff, Henry M. 1988. Curriculum and Instruction in Automated Tutors. In Foundations

of Intelligent Tutoring System, ed. Polson, Martha C. and Richardson Jeffrey J.,
79-108. Hillsdale: Lawrence Erlbaum Associates.

Han, Fei Tzu. 1964. "The Difficulties of Persuasion.” In Basic Writings, translated by
Burton Watson, 73-79. New York and London: Columbia University Press.

Helman, Paul and Veroff, Robert. 1986. Intermediate Problem Solving and Data
Structures, Walls and Mirrors, Menlo Park: The Benjamin/Cummings publishing
Company, INC.

Hollan, James, Hutchins, Edwin and Weitzman, Louis. 1984. STEAMER : An
Interactive Inspectable Simulation-based Training System. Aurtificial Intelligence
Magazine, Vol.5, no.2, 1984: 15-27.

Horowitx, Ellis and Sahni, Sartaj 1978, Fundamentals of Computer Algorithms.
Rockville: Computer Science Press.

Johnson, Lewis; and Soloway, Elliot. 1984. Intention-based Diagnosis of Programming

Errors. In Proceedings of the National Conference on Artificial Intelligence.
Austin, Texas, 162-168.

Johnson, Lewis. 1986. Intention-based Diagnosis of Novice Programming Errors.
Research Notes in Artificial Intelligence, 6, Los Altos: Morgan Kaufmann

Publishers, Inc.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kruse, Robert L. 1987. Generating Permutations. Section in Data Structures and
Program Design, 278-282. Englewood Cliffs: Prentice-Hall, Inc.

Langley, Pat and Ohlsson, Stellan. 1984. Automated Cognitive Modelling. In Proceedings
of American Association of Al 193-197. Los Altos: Morgan Kaufmann Publisher,

Inc.

Larkin, Jill H, and Simon, H.erbert A. 1987. Why a Diagram is (Sometimes) Worth
Ten Thousand Words. Cognitive Science, 11, 1987: 65-100.

Laubsch, J. H. 1975. Some Thoughts About Representing Knowledge In Instructional
Systems. In Proceedings of the Fourth International Joint Conference on Al
Isibili, USSR, 122-125.

Leestma, Sanford and Nyhoff, Larry. 1984. PASCAL Programming and Problem Solving.

New York: Macmillan Publishing Company, and London: Collier Macmillan

Publishers.

Littman, David and Soloway, Elliot. 1988, Evaluating ITSs: The Cognitive Science

Perspective. In Foundations of Intelligent Tutoring Systems, ed. Polson, Martha C.
and Richardson, Jeffrey J., 209-242, Hillsdale: Lawrence Erlbaum Associates.

Looi, Chee-Kit. 1988. APROPOS2: A Program Analyser For A PROLOG Intelligent

Teaching System. In Proceedings of Intelligent Tutoring S
1-3,.1988. ACM, SIGART, SIGCUE, 379-386.

Manber, udi, 1988. Using Induction to Design Algorithms. Communications of the
ACM, November 1988, Vol. 31, no. 11: 1300-1313.

Miller, Mark L. 1982. A Structured Planning and Debugging Environment for

Elementary Programming. In Intelligent Tutoring Systems, ed. Sleeman, D.H. and
Brown, 1.S., 119-135. London: Academic Press.

Pearl, Judea, 1988. Probabilistic Reasoning In Intclligent Systems: Networks of Plausible
Inference, San Mateo: Morgan Kaufmann Publisher, Inc.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Peng, Yun and Reggia, James A. 1990. Ahductive Inference Modls for Diagnostic
Problem-Solving, Springer Series of Symboloc Computation - Artificial

Intelligence, ed. Loveland, D.W. New York: Springer-Verlag.

Polson, Martha C. and Richardson, Jeffrey J. 1988. Foundations of Intelligent Tutoring
Systems. Hillsdale: Lawrence Erlbaurn Associates.

Pople, Harry. 1973. On the Mechanization of Abductive Logic. In Proceedings of the
International Joint Conference on Artificial Intelligence Conference. 1973, 147-152.

Reggia, James A, Nau, Dana S., Peng, Yun and Perricone, Barry 1985a. A Theoretical

Foundation For Abductive Expert Systems. In Approximate Reasoning in Expert
Systems, ed. Gupta, Madan M., Kandel, Abraham, Bandler, Wyllis and Kiszka,

Jerzy B., 459-472, North Holland: Elsevier Science Publishers B.V.

Reggia, James A., Perricone, Barry, Nau, Dana S. and Peng, Yun. 1985b. Answer
Justification in Diagnostic Expert Systems, part I : Abductive Inference and Its

Justification. JEEE Transactions on Biomedical Engineering, vol BME-32, No.4,
April 1985: 263-267.

Reggia, James A., Perricone, Barry, Nau, Dana S. and Peng, Yun. 1985c. Answer

Justification in Diagnostic Expert Systems, part II : Supporting Plausible

Justifications. JEEE Transactions on Biomedical Engineering, vol BME-32, No.4,
April 1985: 268-272.

Reiter, Ray. 1987. A Theory of Diagnosis From First Principles. Artificial Intelligence.
vol. 32 (1), 1987, 57-95.

Reiser, Brian J., Anderson, John R. and Earrll, Robert G. 1985. Dynamic Student
modeling in an Intelligent Tutor for Lisp Programming. In Proceedings of the

Ninth I ional Joint Confere Artificial Intelli Cont I
Angeles, 8-14.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sandberg, J.A.C. 1987. The Third International Conference on Artificial Intelligence and
Education. AICOM. 0, 51-53.

Self, John A., 1988, Bypassing The Intractable Problem of Student Modelling. In
1988 in Montreal. Canada, 18-24.

Shen, Stewart N-T. and Zhang, Jingying. 1989a. A Knowledge-Oriented Hypermedia
System. In BIGRE 63-64, May 1989, Workshop on Object-Oriented Document
Manipulation. Rennes, France, 20-31 May 1989, 307-316.

Shen, Stewart N.T. and Zhang, Jingying. 1989b. Recursive Programming Tutoring system.
In Proceedings of The Sixth JASTED International Symposium: Expert Systems
Theory and Applications, Los Angeles, CA, 14-16 Dec, 1989, 60-63.

Shen, Stewart N.T,, Zhang, Jingying and Zhao, Shensheng. 1990. A Tutoring System for
Critical Thinking. In Proceedings of The Eighth Annual Conf. on Techpology and
12-16 March, 1990, 448-458.

Shen, Stewart N.T. and Zhang, Jingying. 1991. Integration of Abductive and Deductive
Inference Diagnosis Methodology In Intelligent Tutoring. In Proceedings of The
Louisiana 1-5 April 1991, edited by R. J. Uttamsingh and A. M. Wildberger,

127-132. San Diego: A Publication of The Society for Computer Simulation.

Shortliffe, E. H. 1976. Computer-based Medical Consultations: MYCIN. New York:

American Elsevier.

Siuru, William D. 1989. Educational Applications — Challenger: A Domain Independent
Intelligent Tutoring System. JEEE Expert summer 1989: 77-79.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sleeman, D and Brown, 1.S. 1982, Introduction: Intelligent Tutoring Systems. In

Intellipent Tutoring Systems. ed. Sleeman, D.H. and Brown, J.S., 1-11. London:

Academic Press.
Soloway, Elliot M., Rubin, Eric, Woolf, Beverly P, Bonar, Jeffrey and Johnson, W.Lewis.

1983, MENO-II: an Al-based Programming Tutor. Journal of Computer-based
Instruction, Vol.10, no. 1: 20-34.

Stevens, Albert and Collins, Allan. 1977. The Goal Structure of a Socratic Tutor. In

Proceedings of the National ACM Conference, Seattle, Washington, 256-263. New

York: Association for Computing Machinery.
Stevens, Albert, Collins, Allan and Goldin, Sarah E. 1982. Misconceptions in Student

Understanding. In Intelligent Tutoring Systems, ed. Sleeman, D.H. and Brown, J.S.
13-24. London: Academic Press.

Torasso, Pietro and Console, Luca, 1989. Second Generation Expert Systems. Section in

Di ic Problem Solvi Combinine Heuristic, A . | Causal
Reasoning, 13-24. New York: Van Nostrand Reinhold.

Trigoboff, M. and Kulikowski, C. 1977. IRIS: A System for the Propagation of Inferences
in a Semantic Net. In Proceedings of the International Joint Conference on
Artificial Intelligence Conference, 1977, 274-280.

Vanlehn, Kurt. 1988. Student Modeling. In Foundations of Intelligent Tutoring System.
ed. Polson, Martha C. and Richardson, Jeffrey J.,, 55-78. Hillsdale, New Jersey:

Lawrence Erlbaum Associates.

Wallach, Bret. 1987. Development Strategies for ICAI on Small Computers. In Artificial

Intellipence and Instruction, ed. Kearsley, Greg, 305-322. Menlo Park, California:
Addison-Wesley Publishing Company.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wenger, Etienne. 1987. Antificial Intelligence and Tutoring Systems. Computational and
Cognitive Approaches To The Communication Of Knowledge. Los Altos: Morgan
Kaufmann Publishers, Inc.

White, Barbara Y. and Frederiksen, John R. 1990. Causal Model Progressions as a
Foundation For Intelligent Learning Environments. Artificial Intelligence 42
99-157.

Wiedenbeck Susan. 1989. Learning Iteration and Recursion From Examples.
International Journal Man-Machine Studies 30, 1-22.

Wirth, Niklaus, 1976. Recursive Algorithms. Chapter in Algorithms + Data Structures
=_Programs. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Woolf, Beverly P. and McDonald, David D. 1984. Building a Computer Tutor: Design
Issues. JEEE Computer, vol.17, no.9: 61-73.

Woolf, Beverly P. 1988. Intelligent Tutoring System: A Survey. In Exploring Artificial
Intellipence, ed. Shrobe, H.E. and the American Association for Al, 1-45. San

Mateo, California: Morgan Kaufmann Publishers, Inc.

Yankelovich, Nicole, Haan, Bernard J. and Drucker, Steven M. 1988. Connections in
Context: the Intermedia System. In Proceedings of the 21 Annual Hawaii
International Conference on System Sciences, vol If 1988, 715-724.

Younggren, Geri. 1988. Using an Object-Oriented Programming Language to create

Audience-Driven Hypermedia Environment. In Text, Contexts, and Hypertext, ed.
Barrett, Edward, 77-92. Cambridge, Massachusetts: The MIT Press.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 1991

	Integration of Abductive and Deductive Inference Diagnosis Model and Its Application in Intelligent Tutoring System
	Jingying Zhang
	Recommended Citation

	tmp.1571144940.pdf.CxET5

