
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 1991

Integration of Abductive and Deductive Inference
Diagnosis Model and Its Application in Intelligent
Tutoring System
Jingying Zhang
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Zhang, Jingying. "Integration of Abductive and Deductive Inference Diagnosis Model and Its Application in Intelligent Tutoring
System" (1991). Doctor of Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/7mcs-q184
https://digitalcommons.odu.edu/computerscience_etds/118

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/118?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

INTEGRATION OF ABDUCTIVE AND DEDUCTIVE INFERENCE

DIAGNOSIS MODEL AND ITS APPLICATION

IN INTELLIGENT TUTORING SYSTEM

by

Jingying Zhang

M.S. December 1981, Beijing University of Aeronautics and Astronautics

Beijing, People’s Republic of China

B.S. December 1976, Jiangxi University, Nanchang, Jiangxi, P.R.C.

A Dissertation

Submitted to the Faculty of Old Dominion University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Computer Science

Old Dominion University

December, 1991

Approved by:

Stewart N. T. Shen (Director)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

INTEGRATION OF ABDUCTIVE AND DEDUCTIVE INFERENCE

DIAGNOSIS MODEL AND ITS APPLICATION

IN INTELLIGENT TUTORING SYSTEM

Jingying Zhang

Old Dominion University, 1991

Director: Dr. Stewart N.T. Shen

This dissertation presents a diagnosis model, Integration of Abductive and Deduc­

tive Inference diagnosis model (IADI), in the light of the cognitive processes of human

diagnosticians. In contrast with other diagnosis models, that are based on enumerating,

tracking and classifying approaches, the IA D I diagnosis model relies on different infer­

ences to solve the diagnosis problems. Studies on a hum an diagnosticians’ process show

that a diagnosis process actually is a hypothesizing process followed by a verification

process. The IA D I diagnosis model integrates abduction and deduction to sim ulate these

processes. The abductive inference captures the plausible features of this hypothesizing

process while the deductive inference presents the nature of the verification process. The

IA D I diagnosis model combines the two inference mechanisms with a structure analysis

to form the three steps of diagnosis, m istake detection by structure analysis, misconcep­

tion hypothesizing by abductive inference, and misconception verification by deductive

inference. An intelligent tutoring system, ’’Recursive Programm ing T ito r” (RPT), has

been designed and developed to teach students the basic concepts of recursive program ­

ming. The R PT prototype illustrates the basic features of the IA D I diagnosis approach,

and also shows a hypertext-based tutoring environment and the tutoring strategies, such

as concentrating diagnosis on the key steps of problem solving, organizing explanations

by design plans and incorporating the process of tutoring into diagnosis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I wish to thank my advisor D r. Stewart Shen for his crucial guidance and encour­

agement during my study and research.

I wish to thank the other members in my previous and final com m ittees. Dr. Larry

Wilson, Dr. Christian Wild, D r. Ravi M ukkamala, D r. Robert Lucking and Dr. Alan

Mandell for their valuable suggestions and support in this research, and careful reading

and helpful advice in reviewing this dissertation.

I would like to express my deep thanks to my parents, Yiaochen Zhang and Yun-

fang Du, for their lasting guidance, support and understanding.

I also appreciate my husband, Shensheng Zhao, who has endowed most concern

and help from many perspectives.

Thanks are also due to o ther faculty m em bers in Com puter Science departm ent:

Dr. M ichael Overstreet, D r. Stephen Olariu, D r. Shunichi Tbida, D r. Jam es Schwing and

Dennis Ray for their help.

T he friendship and help from my fellow graduate students, Jih -sh ih Hsu, Myron

Xu and G hassan Issa are also appreciated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LIST O F T A B L E S .. vi

LIST O F F I G U R E S .. vii

C hapter

1. I N T R O D U C T I O N .. 1

1.1 Outline o f Intelligent TUtoring Systems 3

1.2 Background 5

1.2.1 D om ain knowledge module 5

1.2.2 Student modeling module 8

1.2.3 TUtor module 10

1.2.4. Instruction environment 13

1.3 IA D I Diagnosis Model 15

1.4 D issertation Overview 16

2. RELATED W O RK 18

2.1 ITSs in Programming TUtoring 18

2.1.1 MENO-n 19
2.1.2 PRO U ST 20

2.1.3 M ENO TUtor 22

2.1.4 B R ID G E 23

2.1.5 LISP tu tor 24

2.1.6 APROPOS2 26

2.2 Diagnosis Approaches 27

2.2.1 Model tracing 28

2.2.2 Condition induction 29

2.2.3 Issue analyzing 30

2.Z4 Plan recognition 31

2.2.5 Decision tree 35

2.2.6 G enerate and test 35

2.3 Summary on the State of the A rt 37

3. O UTLINE O F T H E INTEGRATION O F ABDUCTIV E A N D D ED U CTIV E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IN FER EN C E DIAGNOSIS M O DEL 41

3.1 Abductive A nd Deductive Logic Reasoning 42

3.2 A View O f The IA D I Diagnosis Model 44

3.2.1 Detection a t two levels 45

3.2.2 Integrated Inferences and applied rules in IADI model 46

3.2.3 Nondeterministic representation o f diagnosis 48

3.2.4 Three steps in IA D I diagnosis process 49

3.3 Knowledge Representation In IA D I Diagnosis M odel 51

3.3.1 Structure pattern 51

3.3.2 Hypothesizing rules 51

3.3.3 Checking list 54

3.4 Structure Analysis Process 54

3.5 Abductive Inference Process 56

3.6 Deductive Inference Process 57

3.7 Overall IA D I Diagnosis Process Description 59

4. IA D I DIAGNOSIS M O D EL IN RECURSIV E PROGRAM M ING 61

4.1 R PT Dom ain 61

4.1.1 Why choose recursion 61

4.1.2 Insertion problem description 63

4.1.3 Analysis on recursion algorithm 63

4.2 R PT System Outline 66

4.3 M istake Detection 66

4.3.1 The organization o f program structures 68

4.3.2 Program structure analysis 70

4.3.3 Program structure summary 74

4.3.4 M istake types 76

4.4 M isconception Hypothesizing 79

4.4.1 M isconception types 79

4.4.2 M ultiple relationships between mistakes and misconceptions 83

4.4.3 Abductive hypothesis 84

4.4.4 M isconception ranking 85

4.5 M isconception Verification 87

4.5.1 Checking list 87

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2 Programming design plan 90

4.5.3 M isconception verifying process 92

4.5.4 M isconception reraking 95

4.6 Example of IA D I Diagnosis Analysis 97

5. TU TO RIN G EN V IRO N M EN T O F RECU RSIV E PROGRAM M ING TUTOR 104

5.1 Objectives For Creating R PT Environm ent 104

5.2 H yperm edia Environm ent 106

5.3 Overall interface 107

5.4 R P T Instruction Environm ent 109

5.4.1 Representation of a spread node 110

5.4.2 Processing tree 112

5.4.3 Autom atic generation of input argument values 115

5.4.4 G raphical representation o f input data 117

5.4.5 Execution of the recursion in a spread node 119

5.5 R PT Diagnosis Environm ent 120

5.5.1 Program subm ission 120

5.5.2 Diagnosis interactive process 122

5.5.3 Types of mistake and misconception checking 124

5.6 File System o f R PT 124

5.6.1 File system for instruction 125

5.6.2 File system for diagnosis environment 127

5.7 Features o f R P T environment 128

5.7.1 G raphic illustration 128

5.7.2 M ulti-dim ension display 129

5.7.3 Visualization of Recursion 130

6. EM PIR IC A L EVALUATION ON T H E PERFO R M A N C E O F RPT 131

6.1 Bug Collection 132

6.2 Evaluation O f Bug D etection and Bug Collection 133

6.3 Evaluation of M isconception Diagnosis 136

6.3.1 Com parison in two groups 136

6.3.2 Diagnosis process shown from different version 137

6.3.3 Results shown in finals 139

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. CONCLUSIONS 143

7.1 Summary o f IA D I Diagnosis M odel 143

7.1.1 TWo-level detection 145

7.1.2 Com bination o f abduction and deduction 146

7.1.3 Concentrating the diagnosis on key steps of problem solving 146

7.1.4 Incorporating the process o f tutoring into diagnosis 147

7.1.5 Nondeterministic diagnosis 148

7.1.6 Hypertext tutoring environm ent 149

7.1.7 Evaluation o f R PT 149

7.2 Future Research Work 150

7.2.1 The degree of diagnostic details 150

7.2.2 The diversity of m istakes 151

7.2.3 O ther applications 152

R EFE R EN C ES 153

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE PAGE

1. ITSs and Their Diagnosis Methods 11

2. Mistake Types 78

3. Misconception Types 81

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

FIG U RES PAGE

1. Components of an ITS 4

2. The Bug Program and a Dialogue On It 23

3. Thxonomy O f Plans In LOGO 32

4. Plans In Program Code 34

5. Overview O f IA D I Diagnosis Process 50

6. A C orrect Version O f Insertion Program 65

7. R PT System Fram e 67

8. Diagnosis Process In IADI Model 68

9. A nother Version O f The Insertion Procedure 73

10. A n Erroneous Procedure 76

11. An Erroneous Procedure 79

12. An Example O f E rro r Program and Detected M istakes 80

13. A Checking List For C2 88

14. The Explanations For The Different Choices In Item Two O f CL(c2) 90

15. Checking List Arranged By Design Plans 94

16. An Erroneous Procedure 97

17. A Possible Series O f Student’s Response To The System 102

18. Overall Interface O f R PT 108

19. The Root Spread Node 113

20. D em onstration For The Inorder Traversal Problem With Input Binary Tree 114

21. One Processing H ee 116

22. Spread Nodes With The Input Binary search Tree 118

23. The Part O f A Checking list In Use 123

24. Types Checking For Misconceptions 125

25. Program Collection 133

26. Result O f Running Preliminary R PT System O n Sample D ata 134

27. Bug D istribution In Students’ Programs 135

28. Com parison In Two G roups 137

29. A Student’s Program 138

30. A nother Version O f The Program In Fig. 29. 139

31. Procedure To Calculate The Height O f Binary Search Tree 140

32. Findings From Students’ Solutions 141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER ONE

INTRODUCTION

Research on intelligent tutoring serves two goals. The first one is to develop sys­

tems for autom ating education, and second one is to explore epistemological issues simi­

lar to those studied by psychologists (Anderson 90).

Psychologists, educators, and com puter scientists are concerned with the research

on intelligent tutoring since 1970s, which has evolved from C om puter-A ssisted Instruc­

tion (CAI). I t has become one of the most active fields in Artificial Intelligence (Al)

(Barr and Feigenbaum 82) (Clancey 87). Intelligent Tbtoring Systems are systems that

teach people new knowledge with AI technologies. Why do people precede them with

"intelligent"? W hat does it m ean to teach intelligently? M any researchers in this field

try to give explanations to this point (Clancey 87) (Siuru 89) (B arr and Feigenbaum 82)

(Vanlehn 88) (Sleeman 82). Although there is no acknowledged definition for Intelligent

Tbtoring Systems, contrasting with CAI, there is one characteristic shared by many ITSs,

which is that ITSs refer to a model o f the student’s current knowledge (Vanlehn 88)

(Wallach 87). Based on this model, ITSs can not only transfer the predefined knowledge

in selected material, bu t can also ferret out the student’s m isunderstandings and adapt

the content of instruction to the student’s level.

However, understanding students and focusing instructions on their understanding

is not easy even for hum an beings. Psychologists and educationists have been studying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this process since ancient times. The famous Chinese ancient educationist H an Fei Tzu

said in the section ”The Difficulties o f Persuasion” (H an 64):

On the whole, the difficult thing about persuading others is not that

one lacks the knowledge needed to state his case nor the audacity

to exercise his abilities to the full. On the whole, the difficult thing

about persuasion is to know the mind o f the person one is trying to

persuade and to be able to fit one’s words to it (72-72).

Thus, in addition to the subject m atter, there are two difficult tasks for the tutor. First,

the tu tor m ust know what the student is really thinking; then he m ust find an individual­

ized instruction th a t fits the student’s needs.

H um ans now use com puters to teach students automatically and individually. But

these efforts m ust also confront the above two difficulties. With A I technology, one can

build the student m odule to represent the student’s current understanding. M odern com­

puter techniques provide many m ethods and tools that can be used to create a good

tutoring and learning environment that alleviates these difficulties. ITSs are rising as one

prom ising field to solve these two difficult problems.

There are dozens o f ITSs scattered throughout the literature. These systems inte­

grate the intelligent tu to r with com puter-based technologies within the different subjects

of expertise. A lthough researchers in this field m ade great efforts to put forward a vari­

ety o f methods, and have built som e systems to m ake ITSs m ore intelligent, only a few

systems provide the applications in the real world. This implies th a t constructing ITSs is

still in a prem ature stage. Thus it is necessary to build m ore ITSs for exploration, and

also for gathering universal knowledge about how to build practical ITSs (Poison and

R ichardson 88).

This dissertation presents a new diagnosis model, ’’Integration of Abductive and

Deductive Inference” (IADI), to diagnose the student’s current understanding. This mod-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

el is applied to student modeling problems of intelligent tutoring systems. A detailed

discussion about this diagnosis model is presented in chapter 3 which describes the

design and implementation of the intelligent Recursive Programming Tbtor (RPT). which

teaches students the basic understanding of recursive programming. In this system the

pedagogical expertise in recursive programming was employed as domain knowledge,

and the case induction method was adopted to tutor students. To successfully achieve

this goal, the hypertext based tu tor environment was created.

This chapter provides an introduction to this research work. Section 1.1 outlines the

existing Intelligent Tbtoring Systems (ITSs), section 1.2 reviews the background of the

ITS, including the architecture o f ITSs and the tutoring environment, section 1.3 briefly

introduces the IA D I diagnosis model, and section 1.4 provides the dissertation overview.

1.1 Outline o f Intelligent Tbtoring Systems

Intelligent Tbtoring Systems and the traditional C om puter-Assisted Instruction sys­

tems both have representations o f the subject knowledge they teach. But the ITS is dis­

tinguished from its predecessor the CAI by the way in which it communicates with stu­

dents, tries to understand students, and diagnoses the students’ misunderstandings. ITSs

apply A I knowledge representations and inference mechanisms to present and reason

about the subject matters, the student understandings, and pedagogical principles.

W hen one thinks of an intelligent tutor, one generally imagines an anatomy like in

Fig. 1, th a t provides a convenient classification of the research and direction of develop­

ment. The domain expert provides the domain knowledge and prepares to reason on that

domain. The tutorial expert offers strategies for students to learn the domain knowledge.

The diagnosis expert detects erroneous assum ptions that the student may have. The stu­

dent model represents the student’s learning background and the current state of knowl­

edge. T he instructional environment supports the activities of students and tutors. The

three experts, the domain expert, the diagnosis expert and the tutorial expert directly or

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Domain
Expert

Tutorial
expert

Diagnosis
expert

Student Model

Instructional
Environment

Student

Fig. 1. Com ponents o f an ITS

indirectly com municate with the student model in the tutoring process. Through the stu­

dent model and the diagnostic process, the system can identify what the student does

and does not know about the subject m atter, and can then focus the tutoring effort on

the individual pedagogical needs o f a student.

The existing intelligent tutoring systems possess different features. Some of them

focus on organization of subject knowledge (Clancey 82); some o f them lay the particu­

lar em phasis on diagnosing the student’s current m isunderstanding (Johnson and Solo­

way 84) (Burton 82) (Bonar 88); some of them are more involved with the instructions of

various strategies o r pedagogies (Anderson 90) (Woolf and M cDonald 84); some of the

systems concentrate their efforts on creating tu tor environments (Woolf 88) (Hollan 84).

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To construct an intelligent tutoring system, one m ust consider that the crucial work

is in building the student model. There are several student model representations in

existing ITSs, including production systems (Clancey 82), and procedural networks (Bur­

ton 82), fram e representations (Carbonell 70) (Laubsch 75), and genetic graphs (Gold­

stein 82). A fter a representational scheme has been decided, the student’s understanding

needs to be detected. T hat is, for each of the student’s behaviors, the system should

hypothesize the corresponding explanations. However, sometimes the student’s behaviors

are incomplete o r ambiguous, and this makes the diagnostic process more complicated.

Even so growing am ounts of research efforts have been thrown into the studies of stu­

dent modeling problem. Various knowledge representations coordinating distinct diag­

nostic approaches have emerged in different ITSs.

1.2 Background

The m ain components o f an ITS are the dom ain expert module, the student model­

ing module, including the diagnosis process based on a student model, and the tutorial

expert module. These deal with the problem-solving expertise, students’ knowledge, and

tutoring strategies respectively. The tutorial environment, which is also an im portant part

o f the ITS, facilitates the interaction between students and the com puter tu tor (Poison

and R ichardson 88). This section introduces the previous work according to the architec­

ture o f ITSs ra ther than proceeding chronologically.

1.2.1 Domain knowledge module

The dom ain expert module provides the knowledge to be im parted to the student,

and a standard for evaluating the student’s performance. This module is classified in

three approaches (Anderson 88). Each o f the three approaches moves toward a more

cognitively faithful representation o f the content expertise.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Black box model

The first one is opaque and is called the black box model. It generates the correct

input-output behaviors over a range o f tasks in the domain, and therefore can be used

as a judge of correctness. The early systems such as SO PH IE (SO PH isticated Instruc­

tional Environment) (Brown and Burton 75) and W EST (Burton and Brown 82) perform

their calculations as a black box. SO PH IE attem pted to teach students to troubleshoot

faulty electronic circuits. It only checks the consistency of a studen t’s hypotheses about

failed circuit elements. W EST works as a mathem atics game. The opaque expert per­

forms an exhaustive search for the possible moves in an electronic game board and

determ ines the optimal move. In the black box approach the internal com putations and

reasoning processes from a given input to the conclusion are not available to users.

Although this approach does not present the reasoning process, it provides the correct

output as the information used to recognize the differences between student and expert

performances.

• Glass box model

The second approach is transparent and is called the glass box model or expert

system methodology. Since a m ajor component o f an expert system is an articulate, hu­

m an-like representation of the underlying expertise in the domain, it is natural to use

the expert system as the dom ain expert module of the tu to r to avoid the time-consum ing

knowledge acquisition process. The dom ain expert com ponent tries to explain and in­

spect each problem-solving decision in term s that correspond (at some level o f abstrac­

tion) to those of a hum an problem-solver. But it only allows for explanations of informa­

tion processes inherent in the rules o f its knowledge base which does not necessarily

correspond to the way a hum an expert reasons. The tu tor G U ID O N developed by Clan­

cey (Clancey 82) is based on the well-known expert system EMYCIN, whose domain of

expertise is the diagnosis of bacterial infections.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Cognitive model

The third approach is the cognitive model which simulates the process of human

problem -solving in a hum an-like manner. This approach simulates not only the domain

knowledge, but also the way humans use that knowledge. This model is considered the

m ost effective (Anderson 88). Although its implementation is time-consuming, there have

been dram atic improvements over the past 10 years (Wenger 87). It is helpful to consider

the types o f knowledge to be taught, because that dictates the strategies of instruction.

There are th ree types according to Anderson: procedural knowledge, which is about how

to perform a task; declarative knowledge, which is in the form of a set of facts appropri­

ately organized; and causal knowledge, which allows hum ans to reason about behaviors

by using causal understanding.

Procedural knowledge can usually be represented by production rules. This type of

knowledge is applied in GEOM ETRY Tlitor, LISP TUtor (Anderson 90), DEBUGGY

systems (Burton 82), and some other systems. One of the m ajor advantages of the p ro ­

duction rule is its modularity. Each production rule is an independent piece of knowl­

edge which benefits the instruction. The declarative knowledge in SCHOLAR system

(Carbonell 70), which is designed to teach South Am erican geography, is represented by

a sem antic network. In the network, the nodes stand for geographical objects and con­

cepts, which are organized in a partial hierarchy with relationships represented by links.

Some simple inference can be made by propagation of inherited properties via these

hierarchical links. However, in the W HY system, which also teaches geography (Stevens.

Collins and Goldin 82), the declarative knowledge is represented by a schema consisting

of action slots, factor slots, and fillers. The formalisms o f causal knowledge are not as

m ature as rule-based or schema formalisms. This knowledge representation was explored

in SO PH IE (Brown and B urton 82) and in de Kleer’s work on causal propagation of the

behavior of device construction (de Kleer and Brown 83).

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actually the three kinds of knowledge are not isolated. In the cognitive process,

hum ans represent static structure as declarative knowledge, and employ the procedural

knowledge to dynamically reason about the behavior by utilizing causal interactions. A n­

derson’s LISP, GEOM ETRY and ALGEBRA tutors do the preliminary exploration by

combining the different types of knowledge (Anderson 90).

1.2.2 S tudent modeling module

The knowledge structure that represents the student’s current understanding of the

subject m atter is called the student model. The reasoning process, which detects the

student’s m istakes by referring to the student model, is called the diagnosis. The student

model and diagnosis form the student modeling problem (Vanlehn 88) (Barr and Feigen-

baun 82), setting in the student model and diagnosis expert in Fig.l.

Vanlehn expounds the essential problems of student modeling in ITSs (Vanlehn 88).

According to his suggestion, the student model can be classified th ree dimensions. The

first dimension is the bandwidth, a m easurem ent of the input of the student activity. The

second dimension is the target knowledge type, and the th ird dimension is the degree of

difference between students and experts. These dimensions indicate the structural prop­

erties o f the student model. These classifications are designed to capture the differences

in the student modeling problem, and help the tutoring module decide the different tutor

strategies.

How m uch of the student’s activity is available to the diagnostic procedure? The

E rst dimension, the bandwidth, will give a measurement of the input information. Most

systems only input the final state to the diagnosis process, such as the student answers

to the question o f a m athematics subtraction problem in the DEBUGGY system (Burton

82). Some program s can give the interm ediate states, such as the SPADE system (Miller

82), which will supply information at several observable stages about what the student is

doing. The highest bandw idth is supposed to be able to attain a list of the approximate

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mental states as the student solves a problem. A m etal model is a coherent collection of

knowledge held by a person about some aspect, entity or concept of the world (G entner

and Stevens 83). The LISP tu tor (Anderson 90) tries to track the cognitive process as

closely as possible to the student's mental states. This tu tor uses a menu driven interface

to offer a student multiple problem solving paths. Assuming the paths can describe ev­

ery state of reasoning, the tu tor obtains a sequence of mental states.

T he second dimension is the target knowledge type which is categorized declarative

knowledge and procedural knowledge, including flat and hierarchical. Hierarchical repre­

sentations allow subgoals; flat ones do not. In the ACM diagnosis system (Langley and

Ohlsson 84), the subtraction procedure is a flat representation, but in the BUGGY sys­

tem it is a hierarchical one (Brown and Burton 78). The inference in a hierarchical

representation is more difficult because it takes more steps to know the subgoals, while

in the flat representation nothing is hidden. The declarative knowledge representations

have been used for meteorology (Stevens, Collins and Goldin 82) and geography (Carbo-

nell 70).

The difference between students and experts is the th ird dimension. Knowing the

differences is a necessary step to the diagnosing process. In m ost ITSs, the student m od­

el can be represented by the domain expert model plus a list of missing conceptions.

Such a student model is called an overlay model because the student model is just a

proper subset of the domain expert model. The overlay model is the most common type

of student model because it is easy to implement (Brown and Burton 78). However, it is

o f limited value because o f the fact th a t students have misconceptions as well as missing

conceptions. M ore complex studen t m odels rep resen t m isconceptions as well as the

missed conceptions. They employ a library to organize the predefined bugs (the missing

conceptions and the misconceptions). The bug library in the DEBUGGY system (Bur­

ton 82) is directed by the experimental analysis of several thousand m athem atics su b ­

traction tests. In diagnosis the system com pares the student’s behavior with the expert

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

module and the bug libraiy to form the student model. I t is possible that a student has

several bugs and combinations of bugs. So the bug library has to include a large num ber

of com pound bugs. There is an alternative to the bug library m ethod which only con­

tains bug parts, and it dynamically constructs com pound bugs from a libraiy of bug

parts. It does not use the predefined bug libraiy. This m ethod is applied in the ACM

system (Langley and Ohlsson 84).

The diagnosis m ethods vary in different systems. Some of them are listed in table

1. The diagnosis problem will be presented in further detail in the next chapter.

1.2.3 Thtor module

The tu tor module communicates with students. A tu tor bears responsibility for se­

lecting and sequencing the m aterial to be taught, monitoring and criticizing the student’s

performance, and providing assistance whenever the student needs it. Usually, a domain

expert module is involved with formulating a representation o f the material, and selecting

and sequencing the particular concepts. The instruction process, which is delivering the

curriculum to the student, should be accomplished in the tu tor m odule (H alff 88). In

order to deliver the knowledge to the student, and reduce the differences between teach­

er and student as soon as possible, the tu tor m ust determ ine the corresponding pedagog­

ical strategies in addition to knowing the student’s current understanding. The following

are some strategies used in the ITS.

• Socratic method

The Socratic m ethod o r presentation method is one way to present m aterial by

dialogue (Collins and Stevens 82). The dialogue elaborates in different ways for the dif­

ferent instructional objects. Teaching facts and concepts is done by explaining the m ate­

rial. Teaching rules and functional relationships usually involves inducing the student to

consider the relevant data and to formulate the rule. Skills for deriving rules are taught

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Subject
M atter

Student
Module

Diagnosis
M ethod Reference

ACM Subtraction
Library of
Bug Parts

Condition
Induction

Langley &
Ohlsson 84

APROPO S2 Programming
in PRO LOG

Library of
Bug

Plan Re­
cognition Looi 88

BIP Programming
in BASIC

Overlay Plan Re­
cognition B arr 76

Bridge Programming
in PASCAL

Libraiy of
Bug

Plan Re­
cognition

Bonar 88

BUGGY Subtraction Library of
Bug

Decision
Tree

Brown &
Button 78

DEBUGG Y Subtraction Libraiy of
Bug Parts

Generate
& Test

Burton 82

Geometry Geometry Libraiy of
Bug Parts

Model
H a tin g Anderson 90

LISP Programming
in Lisp

Libraiy of
Bug Parts

Model
H a tin g

Anderson 90

G U ID O N Infectious
diseases

Overlay Diagnosis
rules

Clancey 82

M ENO
Programming
in PASCAL

Libraiy of
Bug

Plan Re­
cognition

Woolf &
M cDonald 84

PR O U ST Programming
in PASCAL

Library of
Bug

Plan Re­
cognition

Soloway 83

Scholar Geography Overlay Diagnosis
rules

Carbornell 70

SO PH IE
Electronic
TCouble-
shonting

Overlay
Issue
Analyzing Brown 82

SPADE Programming
in LO G O

Library of
Bug Parts

Plan Re­
cognition

Miller 82

Steam er Steamship
Propulsion Overlay Issue

Analyzing
Hollan 84

W EST Arithmetic
Expressions Overlay

Issue
Analyzing

Brown &
Button 82

W HY Cause o f
Rainfall

Library of
Bug

Diagnosis
rules

Stevens 82

W USOR Logical
Relations Overlay Issue

Analyzing
Goldstein 82

Table 1. ITSs and Their Diagnosis M ethods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as procedures. These procedures are broken down into their components. This method

involves questioning the student in a way that will encourage him to reason about what

he knows whereupon the system can modify his conceptions. SCHOLAR (Carbonell 70)

was the first system that used the Socratic style of tutoring. The original system was

developed for teaching South American geography. It first diagnoses the underlying mis­

conceptions in the student’s knowledge; it then poses a problem that will guide the stu­

dent to discover his errors. The W HY system is a follow-up o f SCHOLAR (Stevens and

Collins 77). It uses a set of tutorial rules to construct an experimental Socratic tutoring

system. This method leads the student to find errors or contradictions by entrapping

him in the consequences of his own conclusions.

* Case presentation

Case presentation is one m ethod that presents the target skill by using worked

examples and guided exercises. These skills m ust be presented to the student in a m an­

ner that dem onstrates how the expert makes the decision a t each step in the case and

what strategies he uses. I t is also an apprenticeship style of learning. The SO PH IE sys­

tem is a good example o f case presentation (Brown, Burton and de Kleer 82). Faults can

be inserted into the system to m ake a case, and the student is instructed to offer a

hypothesis as to what might be wrong. The student then makes a m easurem ent of the

circuit to evaluate the hypothesis. Before each m easurem ent the expert explains why it is

required. A fter each measurement, it explains w hat it can conclude from it. T hat is, the

system tells the student not whether the hypothesis is a correct identification o f the fault,

bu t whether it is logically consistent with the inform ation from the m easurem ents. This

m ethod makes explicit the strategies a domain expert uses, thereby giving the student an

example to follow.

• Coaching

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This m ethod attem pts to m aintain control of the tutorial situation in order to pro­

tect the student from inappropriate or incorrect learning, and to keep the student from

exploring paths that are not instructionally useful. By coordinating the model tracing or

issue-based analyzing diagnosis technique (Anderson 90) (Burton and Brown 82), the

tu tor can trace the student’s behavior, and match it to one of the paths that should be

the correct or optim al problem-solving solution. When the match fails, the tu tor inter­

venes with advice and suggestions to guide the student to a successful path. There are

several coaching systems such as W EST (Brown and Burton 82), W USOR (Goldstein 82)

and LISP tutor (Anderson 89).

1.2.4 Instructional environment

The instructional environment refers to the part of an ITS that specifies or sup­

ports the student’s activities and provides the tools for convenience learning. The envi­

ronm ent should be designed to allow students understand concepts efficiently. The fol­

lowing are systems which have the effective environments.

• Visualization of multiple concepts

The Envisioning M achine (Woolf 88) presents a visualization of the concepts of

physics. O n the screen, the student can grab a ball, drop it o r throw it in any direction,

and watch the trajectory of the object. A t the sam e tim e there is a force diagram matic

view o f objects in motion. 'Rvo vectors in the diagram represent respectively the velocity

and acceleration of the object. In the past, acceleration and velocity have been difficult

to dem onstrate because they only can be illustrated through still pictures. The environ­

m ent gives the viewer multiple perspectives o f concepts: motion trajectory, velocity and

acceleration of an object, and parallel displays of physical motion. The student can ad­

just his conceptions from his observations.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Visual reasoning

An efficacious environment should make explicit o r manifest an originally implicit

property o f the contents, therefore aid the learner to accept and understand knowledge

effectively. The GEOM ETRY tutor (Anderson 90) is a good example o f an environment

that provides a new form o f visual reasoning for the student, and brings out implicit

properties in the task. This system builds a logical chain from the premise to the conclu­

sion, and the system presents the process as a tree on the screen. Every node in the tree

is a statem ent, and a step o f the proof derived from inference rules or geometry theo­

rems. The system shows the relationship o f the steps and how they are arranged on a

path to the proof. The system provides the proof which can be derived from either the

bottom upward, using forward inference, o r top downward, using backward reasoning.

• Icon provided

The STEA M ER system provides simulation in a graphical display of a steam plant

(Hollan, H utchins and Weitzman 84). In the graph, it supplies the icons to depict the

mechanism o f a steam plant. When the simulation (the flow of fluid through the plant) is

running, motion in the pipes is anim ated to indicate the causal connections between

different parts of the plant. There are many o ther kinds of icon displays such as dials

that give the pressure a t various points in the plant, and curve the graph of pressure as

it changes through time, and indicates the rate o f change. These displays m ake visible

som e aspec ts of au tom atic control system s th a t are d ifficult to see w ith trad itional

gauges. Also these graphic displays can depict a steam plant in the different levels, from

the scheme o f the entire plant to the separate part of the plant.

• Dialogue

M ost ITSs use dialogue for the instructional environm ent since hum ans naturally

use language as the m ain communication tool. M EN O (Woolf and M cDonald 84) uses

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dialogue in an attem pt to understand a student’s programming bug and help resolve his

misconceptions. The system detects the errors in simple Pascal program s by the Bug

Finder, and passes the messages about the location of the error to the tutor. The tutor

then analyses the errors by communicating with the student in a dialogue. The student

answers the questions asked by the tu tor in a simple way, such as a ”yes/no” choice of

response. The tu tor gives the suggestions to correct the program. There are correspond­

ing discourses for each different misconceptions. The LISP tutor (Anderson 90) also uses

dialogue, and it applies a m enu-driven method. By menu choices, it imposes a structure

on w hat the student is allowed to do. The LISP tutor walks the student through the

creation o f a LISP function, and corrects the student whenever he deviates from the

correct path. SCHOLAR, W HY and G U ID O N use dialogue too.

13 IADI Diagnosis Model

This dissertation proposes a new diagnosis model, the Integration of Abductive and

D eductive Inference diagnosis model (IADI), to diagnose students’ mistakes and miscon­

ceptions in an intelligent tutoring system. An intelligent tutoring system prototype, the

’’Recursive Programming Tbtor”, has been designed and developed to teach students to

understand the basic concepts of recursive programming, and to illustrate this diagnosis

approach (Shen and Zhang 91) (Shen and Zhang 89b).

The IA D I diagnosis model is based on the understanding of the cognitive process

o f hum an diagnosticians. Usually a hum an diagnostician does not make a final decision

im mediately after seeing a few symptoms. In view of the initial evidence, a doctor can

hypothesize about some possible diseases, bu t he does not make a decision a t this mo­

ment. H e collects m ore information and uses these information to verify and modify the

obtained hypotheses, and then he makes the differential diagnosis. This process may go

several cycles.

The IA D I diagnosis model mainly uses two inference mechanisms, abduction and

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deduction. In the diagnosis process this model also accompanies a structure analysis.

Thus the LADI diagnosis approach involves three m ajor processes.

The first one is the structure analysis. It detects a student’s mistakes which arc

present in the program a t the start of the IA D I diagnosis process.

The second process is the abductive inference which infers a set of plausible candi­

date hypotheses from the student’s dem onstrated mistakes. Each hypothesis in this set

represents just one candidate for explaining why the corresponding manifestation existed.

I t is possible that a hypothesis in this set is not the true cause for the student’s mistake,

and som e other hypothesis may be the true cause instead. Therefore, it is necessary to

further diagnose and decide which misconceptions in this set are m ore likely to be the

true causes.

The third step, the deductive process, is the misconception verification. It verifies

the focused hypotheses in the set of candidates by further checking the related manifes­

tations, and also tries to decide if the unexposed m istakes exist or not. In the IADI

diagnostic knowledge base, for each misconception there is a corresponding list which is

a menu list to allow the system to interactively investigate the students’ possible mis­

takes.

In the inference processes the plausibility measures are used to evaluate the possi­

bilities o f each m isconception candidate. Finally a list o f misconceptions ranked in de­

creasing order of plausibilities is given as the diagnostic result.

This model shows a nondeterministic diagnosis. It combines the features of abduc­

tion and deduction, detects both mistakes and misconceptions, emphasizes tutoring on

students’ misconceptions, and incorporates the process of instruction into the diagnosis

process.

1,4 Dissertation Overview

This dissertation contains seven chapters. C hapter 2 surveys related work in intelii-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gent tutoring systems. The survey concentrate on the ITSs which teach com puter pro­

gramming and the diagnostic approaches in student modeling problems, and then sum ­

marizes three diagnosis models and presents the state of the a rt in student modeling

problems. C hapter 3 presents the outline of the IA D I diagnosis model including the

characteristics of the proposed diagnosis model, the diagnostic knowledge representa­

tions, and the three main processes, structure analysis, abductive inference and deduc­

tive inference. C hapter 4 illustrates the application of the IADI diagnosis model in a

recursive programming tutor. This chapter gives details on how to organize the diagnosis

knowledge, how the three steps of the IAD I diagnosis approach work, and how to mea­

sure the misconceptions using plausibility values. Chapter 5 describes the tutoring envi­

ronm ent o f the Recursive Programm ing Tlitor, including the diagnosis environment and

instruction environment. It is built on a hypertext model also combining other features.

The tu to r’s perform ances are evaluated in C hapter 6. The evaluations are m ade from

students’ empirical tests. The last chapter summarizes this research work, followed by a

brief discussion of future research direction.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER TWO

RELATED WORK

Intelligent tutoring systems have been developed for many domains such as arith­

m etic (Brown 82), algebra (Anderson 90), geography (Carbonell 70), geometry (Anderson

90), indefinite integration (Chan 90), medical diagnosis (Clancey 82), electronic trouble­

shooting (Brown, Burton and de Kleer 82) and com puter programming (Soloway, Rubin,

Woolf, Bonar and Johnson 83). Different systems have their own emphases. This chapter

surveys the related work in intelligent tutoring systems which teach com puter program ­

ming, and the work in diagnosis approaches in student modeling problems. Then it sum ­

marizes the three different diagnosis models which can be classified and the state of the

art.

2.1 ITSs in Program m ing Tbtoring

Programming tutors have been explored for tutoring programming language BASIC

(B arr & Beard 76), PASCAL (Johnson 84) (Soloway 83) (Woolf 84) (Bonar 88), LO GO

(Miller 82), FORTRAN (Adam 80), LISP (Anderson 90) and PRO LO G (Looi 88). The

traditional programming tutor, such as BIP (which teaches the BASIC), can not diagnose

the students’ program when it was developed at beginning in 1975. With the pace of

evolving from CAI to ITS, it added the diagnosis capability to improve the system’s

tu tor ability (Barr and Beard 76). The m ost program ming tutors are only able to work

on a small problem dom ain with narrow programming language problem. The PASCAL

program ming tutors (Johnson 84) (Soloway 83) (Woolf 84) (Bonar 88) intend to work on

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a rainfall assignm ent with tutoring of the knowledge about how to use the loop structure

and the related variables. The PRO LOG tutor (Looi 88) is targeted for the list reversion

and list element num ber counting only. The LO GO (Miller 82) itself is an elementary

program m ing language. Even so, the efforts provided in these researches made signifi­

can t studies from various perspectives, especially in the AI technical development and

cognitive process.

In this section, several tutoring systems th a t involve programming teaching will be

reviewed. M EN O -II, PRO U ST M ENO TUtor and BRID G E come from M ENO project,

which started in the late seventies. This project attem pts to build an intelligent tu tor for

novice Pascal program mers. Its goals were to diagnose nonsyntactic errors in programs,

to connect these bugs to underlying misconceptions and to tutor the student with respect

to these misconceptions. A fter the first system M E N O -II (Soloway, Rubin, Woolf, Bonar

and Johnson 83), developed a t University of M assachusetts, the project branched into at

least th ree directions leading to different doctoral dissertations. Johnson and Soloway

moved to Yale University and developed PRO U ST system to study the bug diagnosis

from a new angle (Johnson and Soloway 84); Woolf and M cDonald developed system

M EN O TUtor by utilizing a discourse management network (Woolf and M cDonald 84);

Bonar developed system BRID G E with an interm ediate representation to give students

specific m ental models to support their problem solving process (Bonar 88).

T he LISP tutor, which has been developed over 8 years at Cam age-M ellon Univer­

sity by John A nderson and his colleague, is a good vehicle to teach student LISP pro­

gramm ing with cognitive model.

The A PR O PO S2 was developed in the departm ent of AI, University o f Edinburgh.

The bug analysis of a PRO LO G program in APROPO S2 has been divided a t three

levels of abstraction, which gives a clear top-dow n structure.

2.1.1 M E N O -II

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M E N O -II is a diagnostic system that specializes in the analysis of loop structures and

related variables in Pascal program (Soloway 83). It consists of two major components:

the B ug-Finder and the Tlitor. The B ug-Finder parses a student’s program into a parse

tree tha t is m atched against a simple description of the solution. This is done with the

help of specialized knowledge about types of loops and corresponding plans, as well as a

library of known bug types. In the bug finding process, there are four stages. In the first

stage, the student’s program is parsed into a parse tree. The second step is to annotate

the parse tree with useful information about the various nodes. D uring the third stage of

the process, the B ug-Finder searches for instances of the various programming plans.

Finally, the B ug-Finder searches the Bug Catalogue in the bug library for matches. If a

bug is discovered, the tu to r then analyzes it by a set of specific inference routines that

suggest possible underlying misconceptions.

M E N O -II detects the bug inefficiently because it analyzes bugs locally in a con­

text-independent fashion by m eans of simple tem plate matches, M EN O -II can not cope

with the complexity of the programming process and with the extraordinary variability in

program s.

2.1.2 PROUST

PRO U ST (PRO gram U nderstander STbdents) system tries to identify the nonsyn­

tactic bugs in students’ Pascal program s (Johnson and Soloway 84) (Wenger 87). PR O ­

U ST is an expert a t finding bugs in program of the rainfall assignment written by the

students. This assignment is to calculate the num ber of rainy days, find the maximum

rainfall on any one day in the period, and average rainfall from an input stream of

rainfall values.

Johnson and Soloway believe that diagnostic methods, tha t look for bugs in pro­

grams, merely by inspecting the code can not cope with the variability in novices’ pro­

gramming. They propose an intention-based diagnosis approach which is to construct a

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coherent model o f what the program m er’s intentions were and how they were realized in

the program, and to identify errors in these intentions or in their realization based on

this intention. To analyze a student’s program, PRO U ST builds goals to understand

problem specifications which provide a starting point for identifying the student’s inten­

tions, and uses a knowledge base o f plans which might be selected by students to realize

those goals. For novices, they may not have a clear concept about w hat kind o f plan can

be used to reach the goal; they only have an intention to satisfy a goal. Hence, the theme

in PRO U ST is to analyze the intention o f a student from the goal th a t is the problem

specification and the solution that is subm itted by the student. For example, the main

goal of the rainfall assignment is to average the rainfall. PRO U ST recognizes that an

iterative looping plan is required to achieve the subgoal of the m ain goal. The loop must

collect the rainfall values, sum them to calculate the running total and count the num ber

of days. A fter that, the running total m ust be divided by the counter to obtain the

average. PRO U ST thus sets up an agenda o f goals and attem pts to m atch each o f them

to the student’s code. W hen all the goals on the agenda have been successfully matched

with the student’s code, PR O U ST has understood the student’s program because it

knows how the student achieved, o r failed to achieve, each of the subgoals. Each o f the

failures is understood by PRO U ST as a bug. Thus, according to the design stages men­

tioned above, the diagnosis process works on three layers. The top one consists o f the

various possible specifications decomposed into goals and subgoals, then the plans that

could be selected as implementation m ethods for each goals o r subgoals, and finally the

different realizations in which plans can m atch the code.

PRO U ST system is an off-line tu to r that has access only to a final product or state

on which to base its diagnosis o f student errors. The complete student program s are

subm itted to PROUST, which provides a printout o f the diagnosis results and corre­

sponding explanations. The designers o f PR O U ST feel that there is a lack of the sophis­

ticated pedagogical expertise; they are remedying it with using the information about

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each student’s errors to guide the presentation of course material. The real tutor will

appear in another system BERTIE (Johnson 86).

2.13 MENO Thtor

M EN O Tutor tries to capture the discourse strategies observed in human tutors. It

works on two domains, rainfall study and Pascal programs. In Pascal program, it just

works for Pascal looping concepts (Woolf and M cDonald 84).

Besides providing Bug-Finder for detecting the semantic errors, M ENO Thtor de­

velops a general framework: D iscourse M anagem ent Network (DMN), which is a kind of

augmented transition network. It also provides a good interface to communicate with

students. Fig.2. shows a dialogue in M EN O Thtor for a buggy program . The buggy p ro­

gram is for averaging problem, which is in left o f the figure.

The m ost im portant contribution m ade by M EN O Thtor is the DM N net. The

DM N is a set o f decision units organized into three planning levels that successively

refine the actions of the tutor. The nodes or states correspond to tutorial actions and

these nodes are organized hierarchically. The highest level is pedagogic states. In this

level a specific tutoring approach will be determ ined, such as the diagnosis of student's

knowledge or introduction o f a new topic. A t the second level, strategic states, the peda­

gogy is refined into a strategy, specifying the approach to be used. At the lowest level, a

tactic is selected to implement the strategy.

When the system is in the tutoring mode a t the pedagogical level, and an incorrect

answer from the student has triggered the strategic action, such as teaching her some

pieces o f data, many actions at the tactical level can then be chosen to accomplish this,

such as giving a corrective statem ent for her answer, making a general statem ent about

some relevant facts, or questioning the causal dependencies underlying her assertion.

T he pa th in the hierarchical structures is default path . M EN O Thtor provides m eta-rules

to create preem ption path, which occurs in the same level. The preem ption path can

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Student’s Program
1. program average (input, output);
2. var Sum, Count, Data: integer;
3. Avg: real;
4. begin
5. Sum : = 0;
6. Count: = 0;
7. read (Data);
8. while D ata < > 99999 do
9. begin
10. Sum: = Sum + D ata;
11. Count: = Count + 1;
12. D a ta := D ata + 1;
13. end;
14. Avg: = Sum/Count;
15. writeln (T h e average is Avg);
16 end.

TUton

Student
Tlnor:

Student:
Ttiton

Student:
Tilton

Student:
Tliton

Do you know that Data in line 8 is a con­
trol variable for the while loop?
:Ycs.
Docs that mean that Data should be

a) Initiated before the loop?
b) Added into Sum within the loop?
c) Modified within the loop?
d) Both a) and c).

: c.
You seem to understand about the control
variable of the while loop. Now let us talk
about some other command statements.
What do you think read (Data) in line 7
docs with the value of Data?

a) Reads all the values of Data at onetime.
b) Reads in a single value of Data.
c) Assigns several new input values to Data.

: a.
Then do you think that Data: Data + 1
updates the next of those values?
: Yes.
There is your misconception. Adding one is a
common way to step through a range of va­
lues. But it cannot apply here because your
read instruction in line 7 retrieves only a
single value. You should replace line 12 by a
second call to read (Data).

Fig.2 The Buggy Program and A Dialogue O n It

obviously provide more in keeping student history or discourse history.

2.1.4 BRIDGE

B R ID G E system intends to build a bridge between novice to experienced program ­

mer. Bridge tries to find natural evolving stages in the development of plans when stu­

dents design, implement and test their program, and to articulate each stage explicitly by

providing interm ediate representations. The interm ediate representations allow a stu­

dents to directly represent design and partial complete programs (Bonar 88).

B R ID G E consists three phases. Phase I provides informal English description for

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the program . It displays a English Phrase Menu and the submenus for each phrase. The

student user chooses the phrases to construct their natural language ’’program ” which is

very much like the sudocode. This solution will be shown on the ’’English Step-by-step

Solution” window. The phase II is to refine the informal description of phase I into a

series of sem i-form al programming plans. In this stage, the English phrases become

explicit plans, represented by icon, and displayed in a ’’Visual Solution” window. Bonar

argues that since plans represent high-level programming objects, it is sensible to depict

them as icons that suggest their function. The phase III is to translate the plan-based

description into actual Pascal code. The student’s task is to match each visual plan icon

to one o r more Pascal statements. A fter one icon and a Pascal language construct are

selected from the ’’Visual Solution” window and from the pop-up menu separately, the

corresponding statem ent will be shown in a ’’Pascal Solution” window.

In the phase I and phase II, B RID G E tries to understand the student’s partial

work and diagnoses this work. The basic diagnostic strategy is m atching student’s plan

to a particular student model. The English phrases in the solution from phase I are

m apped to the catalog of programming plans. In BRIDGE, there are four student mod­

els corresponding to four different looping strategies. These models are specified a t four

different levels. The students’ performances will be m atched with one of the models, then

com pared with a list of requirem ents for a correct solution to the problem. For the

incorrect solution, B RID G E will give hints and suggestions.

B R ID G E shows its method by solving the ’’Ending Value Averaging” problem,

w hich is a p rob lem of read in g d a ta an d ca lcu la ting th e ir average by using loop.

B R ID G E was used by approximately 40 students. They suggest that B RID G E is helpful.

2.1.5 LISP tutor

LISP tu to r is built for testing A nderson’s cognitive model ACT* (Adaptive Control

of Thought), a successor o f A CT ACT* theory has many assumptions, two of them are

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

very im portant to our ITS. The first one is that cognitive functions can be represented as

sets of production rules. The second one concerns the mechanisms of the learning mod­

el. The learning model consists of a set o f assumptions about how the student’s knowl­

edge state changes in each step during a problem-solving phase. This model is employed

in model tracing diagnosis approach in LISP tutor (Anderson, Boyle, C orbett and Lewis

90).

The declarative knowledge and the procedural knowledge are well organized in the

tu tor system. The declarative knowledge is what is deposited in human memory when

someone is told something as in instruction or reading a text. The declarative knowledge

is organized in schema-like structures, the PUPS structures (Penultim ate Production

System). The procedural knowledge is represented by a set of production rules that de­

fine the skill how to solve a problem. The idea is that knowledge is first acquired declar-

atively through instruction, and that it has to be converted and reorganized into proce­

dures through experience. Only then can it be usefully reflected in behavior. The tu tor’s

task is to help students to acquire the production rules which would be possessed by the

com petent problem solver.

LISP tu tor can help students to write basic LISP code to solve the problem s that

appear in an introductory LISP textbook. The LISP tu tor presents the ideal program ­

m er’s knowledge and novice’s knowledge in the form of production rules, the ideal rule

and buggy rule respectively. The system gives the student the instructions in LISP and

tries to bring the student into specific problem solving situation. The tu to r provides

assistance to student essentially by running the model in synchrony with the student,

com paring the student’s response a t each step to the relevant ideal and bug rules and

responding accordingly. This is the model tracing diagnosis technique. A salient feature

of LISP tu tor is to get the student to mimic the steps of an ideal production model.

Every time the student enters one new line of code, the tu tor comes back with a re­

sponse. Once the student makes an error, or the student choses a suboptim al strategy,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system attem pts to diagnose and give a hint as to the correct and optimal solution

so that he can change his solution immediately.

The LISP tu tor has been in use in an introductory Lisp course at Carnegie-M ellon

University since the fall o f 1984 (C orbett et al. 1990). It has been tested by the students

in classroom and the results are very encouraging. TWo groups of 10 students were given

the sam e lectures, bu t only one group used the tutor.The tutored students spent 30%less

tim e on the problem s than those working on their own, but scored 43% better on the

test.

2.1.6 APROPOS2

APRO PO S2 stands for Analyser o f PROlog Programs O f Students. It is a program

analyser for a PRO LO G programming teaching system. APRO PO S2 detects and cor­

rects nonsyntactic errors in student PRO LO G programs written to do simple bu t nontri­

vial list and num ber manipulation tasks (such as list reversion and count o f the atom

num ber in a list) (Loot 88).

The bug analysis in APROPO S2 has been done a t three levels o f abstraction: the

algorithm level, the predicate definition level and the code level. The analysis at the

algorithm level checks the different kinds of design for the task solution. In APROPOS2,

for example, three algorithms for list reversion can be recognized. The student’s PRO ­

LO G program is m atched against a library o f task algorithm. The analysis at the predi­

cate definition level detects the different types of bugs in the predicate definition of the

chosen algorithm, such as missing, extra and incorrect predicate definition. The work at

the th ird level, the implementation level, is checking the code that implements each pred­

icate definition. The bug analysis is done from the top level, the algorithm level to the

down level, the code in students’ solution. A fter the analysis, the system will give a re­

po rt for the result such as which statem ents are correct, and which might be wrong and

the relevant reason.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P R 0 P 0 S 2 uses a heuristic best-first search strategy to m ap the student’s pro­

gram to a prechosen algorithm, a set of predicate definitions and the code of the pro­

gram. A PRO PO S2 combines the dynamic and static analysis as its debugging approach.

The static analysis works on the code. The result in this analysis is finding the common

bug and suggesting corrections before dynamic analysis is invoked. The dynamic analysis

here m eans to examine the running of the program to get solutions both for student’s

program and the correct program . The student can com pare these solutions and gain

some hints.

APR O PO S2 has been work on a t least 95 students’ programs. The result shows

that it can correctly detect m ost bugs, up to 80% (looi 88). Only very few program can it

not give the correct answer, since it is possible that there are some disguise in the

clauses o f programs.

2.2 Diagnosis Approaches

The diagnosis has been one o f the m ajor subjects of research in Artificial Intelli­

gence in both the theoretical and the practical area. The diagnostic problem was dis­

posed in many different dom ains, from trouble shooting in electronic appliances and

circuits, to diagnosis o f complex mechanical or physical system, to medical diagnosis.

The diagnosis process in Intelligent TUtoring refers to collecting the inform ation about

the student’s activities and inferring his understandings. It is m ore difficult to deal with

than diagnosis in many o ther expert systems in general, such as device diagnosis, be­

cause the object o f diagnosis in an ITS is a series o f the student’s abstract mental states.

Since this task often involves the construction o f a student model, these activities have

also been called student modeling problem. The student modeling problem is raising up

to a prom inent position. Diagnostic approaches in the existing ITSs are varied with dif­

ferent perspectives in different systems. Plan recognition, model tracing, issue analyzing,

condition induction, generate and test, and decision tree have been received much atten-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion. In this subsection these diagnostic approaches are briefly reviewed. In next subsec­

tion, these approaches are further compared and summarized into three different mod­

els.

2.2.1 Model tracing

The model tracing approach attem pts to track the student’s performance across

problem at every mental step. The model tracing is based on the psychological assum p­

tion that human cognitive behavior can be modeled as a production system. The produc­

tion rules are viewed as the description of the unit of skill or the prediction o f the steps

the students will take (Anderson 90).

W hen a student is working on a problem the tu tor generates all the possible next

steps, both correct and incorrect. The tutor will display a menu and let student choose

one item, which is one step corresponding the student’s next action. The tu to r assumes

that the student use the relative production rule to generate the next particular mental

state. After com paring the student’s response to the internal expert model and the pres­

tored erroneous actions, the tu tor is able to recognize whether the student is on the

correct solution path or not, and gives the necessary interpretation for student’s activi­

ties. The tu tor monitors the student’s responses essentially on a symbol-by-symbol basis.

If the student’s half typed code seemly can match one of the templates provided by the

system, the system will allow the student to continue without interruption (Corbett, et al.

1990).

T he model tracing method intends to create a close correspondence between units

o f the internal model built by the professional program m er and steps obtained from the

student behaviors. This approach has its advantages. Anderson uses this technique in

LISP, ALGEBRA and GEOM ETRY tu tor and call it model tracing to express the fact

th a t the student is m ade to follow the system’s model quite closely and the student will

know how to correct the mistake when the student behavior deviates from the ideal path.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U nder this model the student never strays far from a correct solution. So, the model

tracing approach is good for both diagnosis and guidance.

The model tracing m ethod is based on the goal-restricted production system archi­

tecture. The straightforward scheme in LISP tutor restricts the student’s activities into a

local area and may not fit the need for m ore complex program analysis. The explanation

during the interm ediate stage is useful sometimes, especially for reminding the students

who are in the early learning stages. But in the programming setting, im portant errors

are usually revealed only after an unsuccessful execution occurs, and only when the stu­

dent see this result, he can get a deep impression.

2.2.2 Condition induction

T he model tracing approach rests on an assum ption that for any two consecutive

m ental states in the student’s problem solving there is a rule in its model to connect

these two states. ACM system (Automated Cognitive Modeler) uses condition induction

approach to construct a rule from one state to the other between two consecutive states

instead o f storing all the rules in advance (Langley and Ohlsson 84).

The ACM system works on the subtraction domain. The system constructs a set of

production rules from the description o f the problem states (condition) and the behavior

of a student (operator). The operator converts one state to another; the condition in the

sam e rule should be consistent with the applicability of the operator. The conditions and

operators are stored in two libraries respectively. For a given problem , there is a ’’prob­

lem behavior graph” (actually it is a search tree) in which each node is a state yielded

by one operator. This tree includes all possible states either by correct performances or

incorrect performances. ACM intends to decide which path can m atch student’s behav­

ior. Given a student’s answers on a se t of problems, ACM starts with a set o f produc­

tion rules and then uses a discrim ination process to determ ine which sequences of oper­

ators have led to the student answers. For a particular problem, the states lying on the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

student’s solution path corresponding the positive instances of the rule, and the states

are set one step off the path corresponding the negative instances. In order to distin­

guish the positive instances from the negative ones, therefore lead the path to match the

observed behavior, ACM infers additional conditions (beyond the original ones) from a

list of tests. ACM provides ten potentially relevant tests such as whether one num ber

was greater than another, whether one row was above another. Once inferred and se­

lected the best m atched tests adds them as the appropriate conditions to each of these

rules then recombines the more specific rules into a final model. This model simulates

the student’s subtraction strategy and explains the student’s behavior since the rules in

this model can reproduce these sequences on the same problems.

2.23 Issue analysis

The model tracing is based on the assum ption that all of the student’s significant

m ental states are available to the diagnostic program. If the bandwidth is not high

enough, the model tracing can not be used. Issue analyzing is based on analyzing a set

of issues ra ther than considering accurate psychological stage of a student.

T he o n -lin e coach system W EST (B urton and Brown 82) uses issue analyzing

m ethod for elem entaiy m athematics study. It teaches the students arithm etic in an envi­

ronm ent of a m athem atics game in which the student tries to move to the goal position

as fast as possible. The num ber of moves will be indicated by the value of the arithm etic

expression. The plus, minus, times, divide operations, and using parentheses in the ex­

pression and o ther game skills are presented as issues. W EST analyzes these issues em ­

bodied in both the students’ move and the expert’s move. In the game the student orga­

nizes three num bers given by the spinners into an arithm etic expression to determ ine the

num ber o f a movement. The expert generates an ordered list of all possible moves in the

sam e circum stances, that is for the same three random num bers and the same starting

position. If the student’s expression does not produce the expert’s optimal move, W EST

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

starts to diagnose what issues the student is weak to handle. W EST uses issue recogniz­

ers to analyze the student’s moves and to identify which issues have been used. The

issue recognizers also analyzes the expert’s moves to select combinations of given num­

bers and the issues which are better than student’s, and to provide a list of issues the

student did not apply. From the list, W EST summarizes the issue which are being con­

sidered as the weakness of the student. Then the coach provides a prestored text to

explain expert’s strategies and also gives an example to show the expert’s intelligent

move.

In the issue analyzing approach, the diagnosis process concentrates on the issue

analysis. If a student writes an expression 2*4 + 1, then the system will analyze the

times issue and plus issue and check whether they are appropriate in the context of the

moves. Issue analyzing approach ignores the choices w hat the student was trying to do

before he decided to m ake th a t move, while those choices might be the stages which be

fully considered in the model tracing approach. For the issues in WEST, there is no

concept of error issues. They are only identified by the differences how often each issue

was used properly and how often it was overlooked. The differences are recorded in two

counters, used and missed, o f each issue. Later on the system can find the student’s

weak issues based on com parison o f the two counters. The diagnosis in W EST is based

upon the analysis o f the separated issues. It does not deal with the relations of multiple

interactive issues.

2.2.4 Plan recognition

Plan recognition uses plans as models to capture the experts’ decision and follow

the students’ attem pts in problem-solving. This approach formalizes the hum an tutor's

insight using the plan, the essential ingredients of program design experience. The sys­

tem s SPADE (Miller 82), B RID G E (Bonar 88), PRO U ST (Johnson and Soloway 84) and

MACSYM A ADV ISO R (Genesereth 82) use the plan recognition diagnosis method.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The early work on plan recognition was done in SPADE (Structured Planning And

DEbugging) project which built a programming tu to r for interpreting simple picture p ro ­

gram s in LOGO and presented a theory of planning and debugging. This theory explores

a t least three hypotheses. The first one is that the problem-solving behaviors can be

described by a series of plans. The second is tha t bugs can be represented by the conse­

quence of incorrect plans under incomplete knowledge and limited resources. And the

third one is th a t articulating the plans (one’s problem solving strategies) facilitates learn­

ing. This is the A I contribution to the diagnosis (Miller 82). The plans in SPADE sim u­

late the hum an tu tor’s design choices and are classified by a taxonomy o f concepts of

program design (Fig. 3). SPADE models planning strategies into three categories a t the

Plan

Identify

Decompose

Reformulate

Primitive

Previously Designed Procedure

(Sequential
f Decomposition

Nonlinear ^
1 Composition

(Iteration

Recursion

(Regroup

Generic Explicit

(Specialize

Generalize

Analogy

Repetition

Equivalence

Simplify

Fig. 3. Taxonomy O f Plans In LOGO

m ost general level: identification with previously solved problems; decomposition into

sim pler sub-problem s; and reformulation o f the problem descriptions. For each strategy,

the system provides more details (refer Fig. 3). The design choices are indicated by the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plans in the hierarchical representations. A nd the hierarchical structure forms a plan

tree. The student’s developmental plan o f the program code are edited by the system

according the plan tree. Diagnosis process in this model is depicted by the search in the

plan tree. The root node in the tree is the overall goal, nonleaf nodes are the subgoals.

The diagnosis task is to infer an incorrect design choice when it is given the student’s

action as the leave node of the tree. Using plan to m ake the decision process explicit

would encourage a good design strategy. Although SPADE only implemented at the

stage of plan-oriented programming editor, its idea of using plans shows basic step

towards to building a good tutor.

The plan recognition in PRO UST is as an interm ediate stage in the diagnosis pro­

cess. Johnson m ade the claim: programmers use program ming plans not only in under­

standing program s, bu t also in writing programs. W hen program mer write programs,

they need to determ ine what goals m ust be satisfied, and then select plans which satisfy

those goals, although sometimes they choose incorrect plans (Johnson 86). PRO U ST’s

m ain analytic task is to locate in the student’s code the plans for each of the goals in the

problem specification. PRO U ST has a list of plans related with the goals they achieve.

Plans in the list include the expert plans, buggy plans and some information about mis­

application o f correct plans. Each plan is represented by a fram e which contains a set of

slots. T he m ost im portant part o f a plan is described by the Template slot which gives

the structure o f the plan template. The basic building blocks of plan tem plates consist of

one Pascal statem ent o r a set of Pascal statem ents because each statem ent usually can

represent a primitive unit of action. The other slots provide various additional facts and

assertions abou t the plan. In the rainfall assignment, for example, accum ulating the

counter and running the total are necessary to calculate the average. So the program will

include corresponding plans, ’’counter plan” tha t consists o f statem ents ’’Count := 0"

and ’’C o u n t : = Count + 1”, and ’’running to tal plan” th a t consists of statem ents ’’Sum

:= 0” and ’’Sum := Sum + New” (refer Fig.2 and Fig. 4). Plans are used in PRO UST

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Counter Plan

Running
Total Plan

C o u n t: = 0;

S u m : = 0;

N ew : = 0;

while New < > 9999 do

begin
read (New);
if New < > 9999 then

begin

Sentinel read-pro-
cess while plan

S u m : = Sum + New;

C o u n t: = Count + 1;

end;

end;

Fig.4 Plans In Program Code

in following way. From program specifications, PRO UST selects a goal to be analyzed. It

retrieves a set of plans from the plan list, each of which might be used by novices to

im plement the goal. PRO U ST then matches each plan against the program as much as

possible. The matching process from goal to code can describe the student behaviors,

either correct or incorrect. If we consider the plans in SPADE play a role for the pro­

gram editor to help student to make a good program design, then plans in PRO UST

would play a role o f diagnosis to help tu tor to find the error.

The plan in B RID G E (Bonar 88) is presented in an explicit environment during the

period when students solve their problem s in three phases as described in section 2.1.4.

Bonar asserts that plans play central role while a student constructs his program from

informal description o f natural language to the formal statem ents o f com puter program

and the plan be viewed as a m ental m odel and can be presented by visual icons. From

m acroscopic point of view the plans are used in different way in B RID G E and PRO ­

UST B R ID G E uses plans to m ap the student’s intended goal into code to help student

with writing code while PRO U ST to m ap the code back into the student’s original goal

to infer the student’s design process and give the interpretations.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.5 Decision tree

The decision tree technique is working in a determ inistic m anner and targeted for

accurate diagnoses in the problem with low bandwidth. BUGGY system uses this tech­

nique to diagnose the student’s subtraction errors after the student’s answers to a set of

test problem s are given. It attem pts to determ ine what internalized set o f incorrect in­

structions or rules gives the student’s solutions rather than only judge whether the an­

swer is incorrect (Brown and Burton 78).

In the BUGGY system a set o f subtraction tests that will be given to students are

selected in advance. BUGGY preanalyzes these subtraction test and constructs a deci­

sion tree. BUGGY also terms this decision tree as a procedural network that represents

the application of the possible skills o f subtraction and connects elementary subskills

into a network. The top node of the tree corresponds to the first subtraction problem.

The answers to the problem, which are m ade by eveiy possible bug as well as the cor­

rect subskills, form the child nodes. Each node is associated with one o f the bugs o r the

correct subskill which produce the sam e answer. From all o f these nodes, the next test

problem and corresponding answers under the possible bugs and the correct subskill will

form next level of nodes. A diagnostic process based on this decision tree technique

contains all the necessary subskills for the global skill, as well as all the possible bugs of

each subskill. Each leaf node corresponds to one diagnosis and each diagnosis process

may correspond to several paths from a root to a leaf. Thus the decision tree can pro­

vide the explanations for the student’s incorrect behaviors with a set o f exact internalized

errors which are translated by the subskills. BUGGY system views the com pound bug as

one bug. This is too expensive when the com binatorial situations of primitivrebugs aod

considered.

2.2.6 Generate and test

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is necessary to consider that the student has several bugs at the same time. In

the decision tree method, only the single bugs and possible pairs of bugs are considered.

Even then, for 55 bugs, there already have been 552 (3025) possible bug pairs. Thus the

decision tree will be a huge tree. DEBUGGY system uses generate and test diagnostic

method to generate compound bugs dynamically instead prestore all possible bugs and

their com binations into a tree. It can deal with up to four or five multiple co-occurring

bugs (Burton 82).

DEBUG G Y system generates an initial se t of bugs by testing the student on the

set of given problems. Every bug in this set replaces a subprocedure in the correct m od­

el and predicts an answer for each given problem, which will be tested against the stu­

dent’s answer. If any one of those answers can m atch one of the student’s answers, then

it explains a t least one of the student’s wrong answers. Usually, there are several bugs

can be generated from the student’s answers to the initial given problems. Then the

system tries to decide which one will be chosen as the candidate o f the com pound bug

and which one is not necessarily to stay in the set of single bugs. DEBUGGY removes

the bugs that are completed subsumed by other single bugs in order to reduce the size

of the set of single bugs. DEBUGGY then combines these single bugs to form the com ­

pound bugs. The system predicts the answer for those compound bugs and com pares

them with the student’s answers. Finally, it tests all of the bugs and selects the ones that

best m atch the student’s answer. Choosing the compound bugs which can explain more

answers than its parts can do is also considered. This method needs to test a large sets

o f data to get the accurate or complete diagnostic result.

D EBU G G Y and BUGGY work with a predefined subtraction test and the stu­

dent’s answers to it. IDEBUGGY provides an interactive environment (Burton 82). After

obtaining a set of diagnoses from the student’s answers, it generates some new subtrac­

tion problem s by using problem generators. T he generators are designed to produce

problem s th a t are m ade to meet certain conditions, such as requiring borrowing, having

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

zero on the top. These problems will be expected to split the bugs in the current set of

diagnoses. Then it will find the more accurate diagnosis as the result. In this process

IDEBUGGY yields fewer test problems than DEBUGGY and BUGGY do to achieve

the same accuracy.

23 Summary on the State of the Art

A considerable am ount of research has been devoted to ITS with respectable re­

sults. These systems can vary greatly in the type of pedagogical approach they imple­

m ent and even in the technology they adopt. M ost systems built so far ju st show labora­

tory experiments primarily intended to dem onstrate feasibility; only a few of them have

been pu t in to applications like LISP tu to r (A nderson 89), G U ID O N (Clancey 82),

STEAM ER (Hollan 84). It is obviously that research on ITS is still very young. It has a

long way to go to produce actual intelligent systems for helping people acquire various

forms of knowledge. It needs to explore more methods from different prospectives so

that people can com pare and choose the most reasonable and realistic one.

In ITS research m ost significant effort has been devoted to the student modeling

problem. By virtue of student model and diagnostic process, intelligent tutoring pro­

gram s can represent what a student does and does not know about the subject m atter

and can focus teaching and tutoring on the specific needs of an individual student. In

this process many fundamental cognitive science issues have to be addressed also, other­

wise the teaching and learning can not go further to deeper stage. The student model is

very im portant so th a t some researchers think that an ITS simply contains a student

model and three experts, the domain expert, tutoring expert and diagnostic expert. All of

the three experts communicate with student model (Wallach 87).

Although the existing diagnostic approaches in current student modeling problems

are based on different formalisms for knowledge representation and different scheme for

diagnosis process, they fall roughly into three models according to their diagnosis styles:

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the enum erating model, the tracking model and the classifying model. All of these m od­

els have both reasonable sides and weak sides.

• Enum erating model

The diagnostic techniques such as decision tree (Brown and Burton 78), and gener­

ate and test (Burton 82) belong to the enum erating model and they are used for diagnos­

tic problem s with low input bandwidth (Vanlehn 88) like a final state o r interm ediate

states. In these approaches the definite answers to a given problem, such as the result of

a numerical subtraction, can be obtained from both the student and the domain expert.

For every possible incorrect answer given by a student, the system attem pts enum erate

all possible bugs in an enumerating model. This model can work well when the problem

dom ain is veiy simple, but it is not suitable for tutoring complex problems that require

the diagnosis of abstract m ental states. The mistakes in complex problems are not neces­

sary enumerable. They are from students’ cognitive activities, and usually they are not

definite as the answers for certain simple m athem atics problems.

• Tracking model

The diagnosis techniques such as model tracing (Anderson 90) and condition in­

duction (Langley and Ohlsson 84) belong to the tracking model. They try to track stu­

dents’ behaviors a t every mental step to deal with the diagnosis in more complex prob­

lems. This approach has an inherent problem. The hum an mental activities are not

always discernible, and it is very difficult to accurately seize a student’s m isunderstand­

ing a t each step of a problem solving process. In problems a t higher levels, obtaining the

accurate m ental states is simply not feasible, even though it can be very desirable. On

the other hand, the tracking model only allows a student to follow the steps given by the

system’s model and forces the student to solve the problem in the m anner that the tutor

uses. Therefore the student has no chance to explore and evaluate alternative designs.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Classifying model

The issue analysis (Burton and Brown 82) and plan recognition (Johnson and Solo­

way 84) can be categorized as classifying models. The techniques under this model char­

acterize significant issues, plans, goals and strategies, and then try to recognize them

according to predefined expectations during the student's problem solving process. Based

on this classification, the system can interpret the student’s behavior m ost plausibly on

the cognitive level. In contrast with the m ethods under tracking model, these methods

encourage student understand the design process on the high level of m ental activities,

give students the chance not only for response to the states on sentence by sentence

basis which is a quit weak view of student problem-solving. Although these approaches

under this model seem to be more realistic, there are some problem s which need to be

solved, such as how to choose the p roper issues when there exist complex relationships

am ong issues and how to choose an accurate plan when several plans can be used to

serve the sam e goal.

There exist other views about building and using student models among research­

ers. They take a sceptical attitude to bo th the need for detailed student models and the

practical possibility o f constructing them . The difficulties to build such complex student

models and the preconceptions about the potential roles of student model make them

doubt whether the cost o f building runnable and m aintainable student models is worth­

while in term s o f the gain in teaching efficiency (Sandberg 87).

Self restates the im portance for student models in intelligent tutoring systems and

presents the possibility o f actually constructing them (Self 88). H e states that it is not

essential for ITSs to possess precise student models and contain detailed representations

of all the components. Self suggests changes in philosophical approaches, such as having

the student tell the system what the system needs to know instead guessing, and not

diagnosing what the system can not treat. H e claims that solutions for some aspects of

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the student modelling problem are practically attainable and useful if we back off from

the grand vision and adopt more realistic aims.

Based on analyzing the current diagnosis models in ITSs, we can see all of these

models are not adequate, they need to be improved. A new diagnostic model, Integration

of Abductive and Deductive Inference (IADI) has been explored. This model intends to

step forward the hum an diagnostician’s inside, to simulate the hum an’s reasoning ways,

therefore avoid disadvantages o f existing diagnosis techniques in intelligent tutoring sys­

tem and synthesize their advantages.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER THREE

GENERAL MODEL

OF

INTEGRATION O F

ABDUCTIVE AND DEDUCTIVE INFERENCE DIAGNOSIS

In light o f the cognitive processes of hum an diagnosticians, a new diagnosis model.

Integration o f Abductive and Deductive Inference (IAD I) model, is derived. In contrast

with the other three models summarized in last chapter, that based on enumerating,

tracking and classifying approaches, the IAD I diagnosis model is an inferencing model

because it relies on different inferences to solve the diagnosis problem.

Ju s t as Pople indicated in 1973 (Pople 73), ’T h e principal deficiency of existing

systems is their reliance on a single form o f logical inference -deduction - which, though

essential, is inadequate for many types of problem solving activity.” Different mecha­

nisms of inference can be complementary to each other when they are combined appro­

priately, so that the capability to solve a problem can be greatly improved. Thus inte­

g ra ting d ifferen t types o f reasoning is becom ing one o f the m ain characteristics of

second generation expert systems (Tbrasso and Console 89). T he IA D I diagnosis model

combines abductive inference and deductive inference to sim ulate the hum an diagnosti­

cian’s cognition in diagnosis problem solving. The IA D I diagnosis model as a general

diagnosis approach was proposed and applied in a prototype of the recursive program ­

ming tutoring system. This chapter describes the basic concept of abductive inference

and deductive inference, and presents the outlines o f the IA D I diagnosis model includ-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing its basic features, the diagnosis knowledge representation, and three steps in the

IA D I diagnosis process. The next chapter explains how to apply the IAD I diagnosis

model to solving a real problem.

3.1 Abductive and Deductive Logic Reasoning

Philosophers have considered abduction as a distinct type of reasoning from the

two traditionally recognized types, deduction and induction (Fann 70), (Pople 73), (Char-

niak and M cDerm ott 85). The various forms of logical inference can be characterized as

following different models.

• induction Given { P(a) = q, P(b) = q, ... } (1)

Infer (vx) P(x) = q. x e { a, b , ... }

• deduction Given { (vx) P(x) — ► Q(x) , P(a) } (2)

Infer Q(a).

• abduction Given { (vx) P(x) — ► Q(x) , Q(a) } (3)

Infer P(a) as possible explanation.

Deductive inference is to infer the result for a specific case after being given the

general rule (general knowledge) and a specific case (conditional evidence). If the general

rule and the conditions are true, then the result, a logical consequence o f the given data,

is definitely true. In the deductive reasoning process there are two different control s tra t­

egies: the forward chaining reasoning process and the backward chaining reasoning pro­

cess. IRIS is one system th a t works in forward chaining style. It applies the given data to

check the conditions of a rule to determ ine whether the consequence can be drawn or

not (Trigoboff and Kulikowski 77). Some systems, such as M YCIN which is based on

deductive reasoning, work in a backward chaining fashion. This mechanism builds sub-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

goals to prove. It checks the condition part o f a rule. This process might go several

levels deep. T hat is, p roof for a subgoal may involve several rules. If one of the subgoals

turns out to be fail, then the result is false. W hen deductive reasoning is applied to

diagnosis problem solving, the uncertainty measures are usually connected (Shortliffe 76)

because diagnosis features require plausibility. Actually this kind o f reasoning already

deviates from purely deductive reasoning.

A bduction or abductive inference is to infer the best o r m ost plausible explana­

tions for a given set o f facts (Pople 73). This reasoning can be characterized as non­

m onotonic reasoning (Bundy 90) (Geffner 89). O ne o f the im portant features of abduc­

tive reasoning is that abductive reasoning is plausible reasoning. A fter being given the

general rule and a specific case (observed facts) like Q (a) in above (3), abductive infer­

ence infers another specific case such as P(a) in (3) as one possible hypothesis or expla­

nation for the given case. The inferred explanation may not be definitely true because we

can not conclude tha t P(a) is certainly true from the given data in the above formula.

From other rules, if any, it may infer other hypotheses th a t would also explain the ob­

served facts. In o ther words, abductive reasoning is a process which infers a set of the

m ost plausible hypotheses for the given evidences.

Although the term ’’abduction” was first introduced into the AI literature around

1973, abductive inference has not received much attention from the A I field even though

abduction logic reasoning is m ore suitable for use w ith many AI systems than other

kinds o f logic reasoning. Not until very recently d id researchers realize that abduction is

valuable and can be applied to many areas such as m achine vision, natural language

processing, legal reasoning and plan interpretation, and especially diagnosis problem

solving because hum an diagnostic inference naturally falls into the category of abduction

(C ham iak and M cD erm ott 85) (Peng and Reggia 90).

Reggia and his colleagues proposed the Parsim onious Covering Theory which is

based on the Set Covering model, for diagnostic problem solving in the abductive expert

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system (Reggia et al. 85 a, b, c) (Peng and Reggia 90). Their research is an attem pt to

build a formal model of abductive inference in a mathematically rigorous fashion for

diagnosis problem solving. This model infers the minimal set of hypotheses as the diag­

nostic result which can cover the given manifestations (symptoms). Although this model

captures some desirable features of diagnostic problem solving, it is not necessarily ap­

propriate to have the minimal cover as the diagnostic result. There are some situations

where a minimal cover would not be the most plausible explanation for a set of manifes­

tations. For example, there are two sets of plausible explanations in a medical diagnosis,

both of them can account for all of the given symptoms. One set contains two common

diseases, another contains one rare disease. A physician would rather choose two com­

mon diseases as the differential diagnosis than choose the minimal cover which is the

rare disease. Hence, having the minimal cover of the given symptoms as the diagnosis

result may not be appropriate, especially when we consider the learning process as a

cognitive process. On the other hand, this theoiy treats the hypotheses in the minimal

cover with equal weight. It seems th a t there always are a few, and only a few, hypotheses

in the minimal cover which are critical. Hum an experts usually weight the critical hy­

pothesis more than the less critical ones. Hence, it is worth the study on which one is

better, choosing the minimal cover for the given manifestations, or choosing the critical

ones as the explanations.

3.2 A View of the IADI Diagnosis Model

Due to the nature of the real hum an cognitive process in diagnosis problem solv­

ing, it is suitable to use abduction as the first reasoning step to hypothesize misconcep­

tions from mistakes, and then use deduction to verify these hypothesized misconceptions.

Thus the two processes form an integrated inference process which works a t detecting

on two levels.

This section represents the basic characteristics of the IA D I diagnosis model which

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

include the two-level detection, the integrated inference mechanism, the rules distinction,

the nondeterm inistic feature, and the three diagnosis steps in the IADI diagnosis pro­

cess. A detailed description of the three diagnostic steps and their applied knowledge

will be given in the following sections. How the IA D I diagnosis model works in real

systems will be described in next chapter.

3.2.1 Detection at two levels

The purpose in diagnosis problem solving is to find the disorders or mistakes in

order to provide a foundation for the system to remedy or correct anomalies in one way

or another. In a tutoring system, besides detecting the student’s actions to provide a

starting point for a tutor to give instruction, the diagnosis process should also be able to

detect a student’s knowledge of a certain subject. A n understanding or a m isunderstand­

ing is viewed as a mental activity that is used to in terpret people’s behaviors. Therefore,

knowing the student’s knowledge will enable the tu to r to give more rational explanations.

Thus, it seems to be necessary to diagnose at two levels, action and understanding.

In a tutoring system a mistake is a student’s incorrect action which is usually dem ­

onstrated when he performs in a problem-solving process, while a misconception is a

student’s m isunderstanding a t the conceptual level. Usually the m isunderstanding of a

concept about the subject material is the reason th a t students make mistakes. So a mis­

take is viewed as a defect a t the surface level from a cognitive point of view. But a

misconception is viewed as a defect a t the deep level. Actually, both m istake detection

and m isconception detection are important. Reporting m istakes can help students to

realize w hat is wrong. Pointing out misconceptions can help students to understand why

it is wrong. If only the mistakes are identified without an explanation of the underlying

conceptual knowledge, then the mistakes will be repeated under the different circum ­

stances. If only the misconceptions are listed without showing where the corresponding

m istakes are and w hat the mistakes look like, then it seems to be too far and too deep

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be understood by students, especially novice students who are in a course of learning

completely new material.

3.2.2 Integrated inferences and applied rules in IADI model

Studies on a hum an diagnosticians’ process show that a diagnosis process actually

is a hypothesizing process and followed by a verification process. For example, a human

diagnostician only makes conjectures after seeing some symptoms; he does not im medi­

ately m ake the decision for the diagnosis a t this time. H e needs more inform ation to

verify these conjectures. For example, a doctor usually first hypothesizes one or more

possible diseases based on initial evidences. Then he collects more information from lab

tests, conversation with the patient, investigating the treatm ent history, and so on. Finally

he makes the differential diagnosis. Abductive inference captures the plausible features

of this hypothesizing process while deductive inference presents the nature of the verifi­

cation process. Thus the reasoning process using the combination of abduction and de­

duction to sim ulate the hypothesizing and verification processes is much closer to the

process o f hum an cognition in the real world. Besides integrating abductive inference

and deductive inference, the IA D I diagnosis model also incorporates the structure analy­

sis to find the dem onstrated mistakes.

Both abduction and deduction need the cause-effect relationship to support the

reasoning. In order to represent the causal relationship in a diagnosis problem solving,

the rule in the following form is applied in the IA D I model:

If the misconception (disorder) exists

then a certain m istake (m anifestation) can be caused.

It presents the cause-effect relationships between the antecedent and the consequent in

a rule, and supports the abductive reasoning and the deductive reasoning more readily.

M ost existing diagnostic systems only use deductive inference. They use rules typi­

cally in the form:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If conjunction of m istakes (manifestations) exists

then disorder (misconception) can be decided.

This kind o f rules are target for constructing chains o f deductive reasoning (Barr and

Feigenbaum 82). Such reasoning proceeds from the principle o f m odus ponens. If there

is a rule in the database and its antecedent is satisfied, then the consequent is definitely

true. H ere the consequent is the diagnostic result. This process may involve several rules

in order to prove one result. Although the reasoning process based on such a form is

theoretically correct, it is not practical for many types o f real world diagnostic problems.

In such a rule, the m anifestations together form a sufficient condition for the conse­

quent. But in the real world, this condition is difficult to be satisfied because a disorder

does not always necessarily cause all o f the m anifestations simultaneously in m ost cases.

Thus it is unnecessary for all o f the m anifestations to be able to appear at the same

time. H ence it is difficult for some rules to be fired, typically when these rules have

several o r many m anifestations in the conjunction part.

The rules in the first form are easily fired since each rule only needs one manifes­

tation as the fuse; the corresponding misconception can be derived as one candidate

hypothesis to explain the existence o f the m anifestation. The rules in this form naturally

support the abductive process to infer m ultiple plausible hypotheses from the given m an­

ifestations because usually there are several rules which can be related to each one of

the given m anifestations in an abductive knowledge base. The result a t this inference

step establishes the basis for further selecting the m ost plausible hypotheses in the next

step of the verification process.

T he rules in the second form are aim ed a t heuristic matching while the rules in the

first form are aim ed a t causal reasoning. In a tutoring system the rules in the first form

indicate the causal relationships between m istakes m ade by a student and the miscon­

ceptions the student m ay have. Causal relationships can be effectively used to describe

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interconnections of the students’ behaviors and their understanding from a surface level

to a deep level in a precise way. This definite representation o f cause-effect relationships

is more im portant in a tutoring process than in other systems. Based on this clear repre­

sentation, a tu tor can readily conclude the cause from manifestations, and therefore can

give instructions in a more reasonable manner. In the verification inference process of

the IA D I diagnosis model, this rule form provides a causal path for questioning students

in order to verify their misconceptions, and instructing on a conception.

3.23 Nondeterministic representation of diagnosis

T he diagnostic results from the diagnostic process are not ’’certain” in most cases,

especially when incorporated with a tutoring process. In a cognitive process such as

learning o r tutoring, it is veiy difficult to indicate one or several misconceptions as the

final diagnostic result. The reason is that the student’s misconceptions are usually asso­

ciated. I t is difficult to distinguish which particular misconception caused the existing

incorrect behaviors because sometimes the effects of misconceptions are intercrossing or

overlapping. Sometimes even the students’ behaviors themselves are incomplete o r am ­

biguous. This situation happens frequently, especially when someone is in the course of

learning new knowledge, such as a novice’s programming technique learning. So provid­

ing a list o f possible misconceptions and arranging them by their plausibilities becomes

realistic.

In o rder to m easure the ’’uncertainty” o f the selected hypotheses, different models

can be used. Among these models, probability theory is the m ost classical theory and is

relatively m ature. Some diagnostic systems even use this model to infer or decide hy­

potheses, no t ju s t to m easure them as an attachm ent. The knowledge in these kinds of

models is represented as prior probabilities o f disorders and conditional probabilities of

disorders for given symptoms (Cham iak and M cD erm ott 85) (Pearl 88). This model re­

quires data independence assumptions in a practical system which are not always valid.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furtherm ore, this model can work only when all present manifestations are given in

advance, and it does not attem pt to obtain further information for verifying hypotheses

as required in a diagnosis process. In the IADI diagnosis model, uncertainty measure is

delined in an intuitive way and can be easily calculated. A nd this m easure is used to

help rank the proposed hypotheses as a complementary of abductive and deductive in­

ference processes.

3.2.4 Three steps in IADI diagnosis process

Considering the necessity of detection of both mistakes and misconceptions in a

tutoring system, the diagnosis process in the IAD I diagnosis model consists of the fol­

lowing three steps:

• M istake detection by structure analysis;

• M isconception hypothesizing by abductive inference;

• M isconception verification by deductive inference.

The three-step cycle can continue until the mistakes do not occur any more. Fig. 5

shows an overview of the IA D I diagnosis process.

Diagnosis in a modeled system requires finding m istakes first, then it can further

analyze these m istakes so tha t misconceptions can be infered and verified. Mistake de­

tection is the first manipulation after a problem is given. In a program ming tutoring

system the mistake detection process attem pts to find program errors (or program bugs)

by using the program structure analysis. The program errors will be the input data for

the abductive and deductive inferences.

Thking the mistakes obtained from the first step, the diagnosis system infers a set

of plausible candidate hypotheses by an abductive inference process, and assigns a plau­

sibility m easure for each hypothesis. In a tutoring system these candidate hypotheses are

the student’s misconceptions for a particular problem. But every hypothesis in this set is

just one candidate for explaining why the mistake existed. There might be other hypothe-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Structure
Analysis

M istake
Detection

Studenl

M isconception
. Verification >

Initial
problem

M odified
problem

Verified
Misconceptions

Proposed
Misconceptions

Mistakes

Deductive
Inference

Abductive
Inference

Fig. 5. Overview O f IA D I Diagnosis Process

ses th a t can also account for the mistake. In order to verify which hypotheses are the

m ore precise representations of the m isconceptions that truly cause the m istakes made

by the student, the system needs a verification process.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the third step the diagnosis system verifies the proposed candidate hypotheses

based on a deductive inference process. The system checks the existence of undemon­

strated mistakes and revises the plausibility measure. In this step the system provides an

interactive process with the student to get more information. Finally it produces a list of

ranked hypotheses as the result of differential diagnosis.

3 3 Knowledge Representation in IADI Diagnosis Model

In the IA D I diagnosis model, the knowledge about a diagnosis problem is collected

in a diagnosis knowledge base. The IA D I diagnostic knowledge base contains structure

knowledge, student’s m istakes and misconceptions for a particular problem , and check­

ing list.

33.1 Structure pattern

A structure is a representation of the basic organization o f a substance and the

m anner of construction. It is the fundamental basis with which to do reasoning (Reiter

87). For example the structure in a com puter program is a syntactic structure o f a pro­

gram which can be viewed as a pattern o r a template. It consists of specific statem ents,

such as if ... then ... else ...; while ... do ...; case ... which represent the selection structure,

repetition structure, and multialtem ative structure respectively (Leestm a and Nyhoff 84).

Analysis on the structures can be used to identify the possible m istakes in a program. To

avoid an excessively detailed analysis, a structure analysis usually grasps the key words

in a structure such as ’if-then-else’, ’while-do’, and ’case’, and ju s t recognizes these key

words in a structure analysis.

33 .2 Hypothesizing rules

A diagnosis process detects the mistakes first by the structure analysis; then it

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

further analyzes these mistakes, infers and verifies misconceptions. Mistakes and miscon­

ceptions are organized in a triple (M, C, R), where

M represents a finite set of all identifiable mistakes. In an ITS, these mistakes

are the possible incorrect performances of students. In a programming tu­

toring system, the mistakes are the manifested program errors o r program

bugs.

C represents a finite set of all possible candidate hypotheses that are the

potential causes of mistakes in M. These candidate hypotheses are the

misconceptions that the students may have in the learning process.

R represents a finite set of production rules which indicate the causal relation­

ships between elements in C and M. If there is a rule c, — ► mj in the

set R, where Cj e C, mj e M, that means the misconception q can cause

the mistake mj under certain circumstances. This rule is also called a hy­

pothesizing rule or a misconception-mistake rule.

For given sets C and M, the following facts exist:

For one Cj, there might be multiple mistakes. That means one misconception can

cause a student to make several mistakes. For example, in recursive programming if the

student m isunderstands the recursive relationship he might incorrectly give a smaller

instance in a recursive procedure call, and he also might miswrite the condition in a

condition statem ent which may cause the recursive procedure to be called. That is, we

have

cj : Confusion on the recursive relationship;

m j : miswriting the condition in one condition statement;

mk : misgiving the smaller instance in a recursive procedure call;

and Cj mj,

q — ► m k.

O n the o ther hand, for one mj(there m ight be m ultiple m isconceptions. T hat

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

means one mistake can be caused by several misconceptions. For example, besides con­

fusion on the recursive relationship, m isunderstanding the term ination condition might

also make the student miswrite the condition in the conditional statem ent for a recursive

procedure calling statem ent. Thus we have:

C] : m isunderstanding the termination condition;

and Cj mj;

c i — ► mj.

Consequently we can define following sets:

man(C j) indicates all possible manifested mistakes which are caused by c;, and

can(mj) indicates all possible candidate hypotheses which can cause mj.

T hat is

m an(C j) = { mj [(c j— ► mj) e R }

can(m j) = { Cj | (c; — ► mj) e R } where Cj e C, mj e M.

A n IA D I diagnosis problem can be defined as a five tuple

{ M, C, R, Mp> Cp }

where

M, C, R are defined as before, and they are precollected in the IA D I knowledge

base;

Mp = { m i, m2, ... mj }, Mp C M, is obtained from the m istake detection on a

student’s performance;

Cp c C has different values a t different steps:

Before misconception hypothesizing, Cp = <J>;

A fter misconception hypothesizing, Cp = C r which is the candidate hypotheses

set for the intermediary IA D I diagnosis;

A fter the misconception verification, Cp = Cf which is the final IADI diagno­

sis.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.3 Checking list

For each misconception in C, the system sets up a checking list. The checking lists

consist of items. Those items are related with the manifestations which can be caused by

this misconception. These items are represented as questions and choices, and they are

organized by the cause-effect relationship and design plans. The detailed description is

in section 4.5.1.

3.4 S tru c tu re Analysis Process

Structure analysis is the initial process for the IAD I diagnosis model. It detects a

set o f mistakes Mp = {m i, m2 , ... mi}, Mp c M, and provides the Mp as the input of

the abductive inference process.

In programming, although there are many intentions or interm ediate processes be­

fore a student m akes his program and runs it, if possible, usually only the subm itted

program o r the final solution is visible. One can consider the final program code or final

execution result as the final solution. So the program error analysis techniques can be

basically classified into an analysis o f program structures and an analysis of program

behaviors. T he program structure analysis com pares the structures in a student’s pro­

gram and the structures in a instructor’s program. The program behavior analysis works

on the output of a program or the output of the program ’s components to detect the

program bugs from the incorrect execution results.

In som e program m ing problems, the structures are simple such as the structures in

a recursive program. Usually, a recursive program has a succinct program structure,

although it could contain things difficult for a novice program m er to understand. Never­

theless, it is this feature of the succinct program structure that makes the structure

analysis o f a mistake detection feasible. Given a recursive problem, usually there are

only a lim ited num ber of ways to solve it, therefore a limited num ber of code patterns

for a particular problem solving. In o ther programming solving problems, it is common

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to have a longer and m ore complex program. Thus, the structure analysis may be much

more com plicated due to the greater num ber o f possible patterns. In that case the struc­

ture analysis has to be supplem ented by other methods.

By observing student problem solving behavior, we found that m ost students begin

to learn recursive program m ing by making an analogy of structures between the given

problem and a known program. Research on recursive problem solving of novice pro­

gram m ers shows that 80% of students’ program s are accomplished by structural analo­

gies of earlier program s since relatively simple program patterns usually provide these

opportunities. Even expert program mers still use the provided tem plates or a chuck to

solve a problem if it is similar to a problem which has been previously solved. Only

when the problem becomes complicated, will a more sophisticated analysis be applied.

Researchers have found that abstracting the structural features of recursion and simply

imitating them is sufficient for beginners to solve routine recursive problems, although

its effect decreases when the problem is novel or difficult (Bhuiyan, G reer and McCalla

91) (W iedenbeck 89). T hat m ay be the reason that the LISP tu to r basically asks students

to use recursion tem plates to fill in to arrive a t a final program when a novice comes to

learn recursion (Anderson, Boyle, C orbett and lewis 90).

In the IA D I diagnosis model, the structure representation of a modeled system is

an abstraction of the key features about a program as well as a syntactic template. In

most cases of com puter programming, incorrect program structures are the m ain reason

that results in failure of expected functions perform ed by a program . So the knowledge

about program structure is a kind o f causal knowledge. I t can be viewed as a kind of

deep knowledge. This deep knowledge can be used not only for detecting program mis­

takes, b u t also for providing the reason for explaining the program errors.

T he IA D I diagnosis approach first collects possible correct structures and possible

incorrect structures in the diagnosis knowledge base. Structure analysis then attem pts to

find the mismatches between the actual structure and the expected structures. If there is

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a mismatch, it is very likely there is a mistake m;. Then the system includes the mj in

M p.

3.5 Abductive Inference Process

The IA D I diagnosis model uses abductive inference to hypothesize possible mis­

conceptions after a student’s dem onstrated m istakes are available. This is the first step

of diagnosis at the conception level.

The abductive inference process infers a set of plausible candidate hypotheses from

the set Mp which is obtained from the mistake detection process, and also from the

hypothesizing rules prestored in the diagnosis knowledge base. That is, given an initial

IA D I diagnostic problem {M, C, R, Mp}, for each mj e Mp (where 1 < j < 1), this

process will infer can(mj) by applying the hypothesizing rules. The can(mj) is a set of all

the possible candidate hypotheses of misconceptions that may cause mj. The union of

can(mj), 1 < j < 1, becomes the selected candidate hypotheses set, called Cs. Every hy­

pothesis in can(mj) represents just one candidate for explaining why the mistake mj ex­

isted unless |can(m j)| = 1 in which case the can(mj) is the definite cause for mj because

there is no other alternative misconception for the mj. If |can(nij)| >1 , it is possible that

a hypothesis in can(mj) is not the true cause the student m ade the mistake mj and some

other hypothesis in can(mj), which is generated from other hypothesizing rules, may be

the true cause instead, as was the case discussed in subsection 3.3. Hence, there is a

need for the verification process to further verify and determ ine which misconceptions in

the set Cs are more likely to be the student’s true misconceptions.

In the abductive inference process, the system calculates the Plausibility M easure

(PM) for each candidate hypothesis in Cs. The Plausibility M easure PM (q) is defined as

a numerical value to be assigned to the hypothesis q to represent its plausibility for a

diagnosis problem. T he PM values, calculated in the abductive inference process, are

called Initial PM (IPM) values. These values are decided by the num ber of initially dem-

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

onstrated m istakes and the information in the knowledge base. The system then yields

the initial ranking o f the candidate hypotheses in Cs according to the descending order

of their IPM values. The ranked set Cs is called Cr.

A t the end o f the abduction process, the interm ediary IADI diagnostic problem

{M, C, R, Mp, Cr} is produced. The C r will be sent to the next process, the deductive

inference process.

3.6 Deductive Inference Process

Given the interm ediary IA D I diagnostic problem {M, C, R, M p, Cr}, the deductive

inference process investigates the hypothesized candidates in C r, further refines their

plausibility measures, and then arranges a final list of the hypotheses as the diagnosis

result.

The deductive inference process tries to verify each c, in Cr in a backward chaining

fashion. There is a difference from the traditional deductive inference in a backward

chaining control structure. In the traditional deductive inference, the backward reasoning

starts with the target that is usually the consequence o f a rule, then it retrieves all the

rules that can m ake the target and determines if there is a rule for which the condition,

that is the prem ise in a rule, has been met. If the condition is satisfied, the assumed

target can be deduced as true. In the IAD I diagnosis model, the inference rules have

different form s (refer to section 3.2.2 and 3.3). Hence, even though the backward reason­

ing has the sam e fashion from back to front in rules, the meaning is fundamentally

different. The deductive backward reasoning in the IA D I diagnosis model takes the can­

didate hypotheses and invokes the related rules to collect their m istakes which are in the

consequent parts of those rules. Then it checks whether a student has these mistakes or

not, and therefore determines whether the student really has this misconception or not,

and then puts the corresponding candidate hypothesis on the right place in the final list

of diagnosis results.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the deductive inference process, the system sets up a checking list for each

misconception in C. The checking list contains some items and some questions. Those

items and questions are associated with the mistakes that appear on the right hand side

o f the rules which have sam e m isconception as the left hand side. The checking list is

used to allow the system to check on a student’s unexposed mistakes to further verify the

misconception.

By analyzing the internal relationships between the misconception and its mistakes,

we find that there is another relationship besides the cause-effect relationship which is

presented in m isconception-m istake rules. T hat is the design plan. W hen a student is

learning a new concept o r a new technique, or when he wants to im plement a concept in

programming, he m ust follow certain design plans. Plans are the detailed steps to reach

a goal. If one design plan deviates from the correct path, it would not be able to imple­

m ent the correct concept, and a relative m istake is very likely to be presented instead.

Obviously, mistakes and design plans are inevitably associated. Solving problems by de­

sign plans shows the ability to divide a given problem into smaller ones and synthesize

the corresponding solutions into a global solution for the original problem. Therefore it

can be viewed as a m ental model which can show the coherent knowledge including both

structural and functional properties. Combining this mental model into a diagnosis and

tutoring process will raise the diagnostic precision and pedagogical effectiveness. Thus

the items and questions in a checking list are considered to be organized according to

the associated design plans as well as the cause-effect facts. When students interact with

a system by using the checking list, the questions and the corresponding explanations

displayed in this process will encompass the structure analysis, the cause-effect rational­

ization, and design plan development. This synthesized knowledge will help detect and

verify the corresponding misconception, and also teach how to solve a problem step by

step.

According to the student’s actions, the system will assess the plausibilities of the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misconceptions and revise the plausibility measure. These PM values, calculated in the

deductive process, are called the Final PM (FPM) values. Each FPM (q) value is decided

in an interactive environment when a student answers the questions or makes a choice in

a checking list.

A fter reranking the hypotheses in Cr according to FPM s, the system concludes the

reranked list Cf as the final IADI diagnosis. The IADI approach provides a list of

ranked diagnostic results, Cf, in the form of nondeterm inistic diagnosis.

3.7 Overall IADI Diagnosis Process Description

From the above description, we see that there are three steps in the IA D I diagno­

sis process. In the first step, the m istake detection process, the system detects a set of

mistakes, Mp, which are the mistakes initially dem onstrated by the student. In the sec­

ond step, the abductive inference process, the system works on the mistakes in Mp. That

is, the system is given M p, it infers Q , calculates the IPMs, and ranks Cs into Cr. In the

third step, the deductive inference process, it works on the hypotheses in Cr obtained

from the abduction process. It uses the checking lists corresponding to the hypotheses in

Cr, and collects more information through interactions with the student to refine the

plausibility measures, and finally obtains the reranked Cf as the final diagnosis.

To summarize, for a given problem subm itted by a student, the overall process for

the IA D I diagnosis process can be described as follows:

1). For a given problem, detect a set o f mistakes M p = { m i, m 2 , . . . , m j }

2). For every mj in Mp (1 < j < 1), infer can(mj);

3). Calculate the initial plausibility m easure P M for each m isconception in Cs:

1

4) c< - — U can (mj):
r S ; - i

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Cs is the set o f selected candidate hypotheses)

5). Rank the hypotheses in Q according to their IPM s from high to low to obtain Cr

6). C t — <t>; (C t is a temporary set of Hypotheses)

Repeat

7). Get c; from C r;

8). Display its checking list CL(cj);

9). Get the student’s choices of items in CL(Cj);

10), Give the explanations to each item selected by the student;

11). Calculate the final plausibility measure FPM for cj;

12). Cr Cr - { q };

13). C, "* Cj + { c j };

until Cr =

13). Rerank the hypotheses in C t according to their FPM s, to form the final

diagnosis Cf..

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER FOUR

IADI DIAGNOSIS MODEL

IN

RECURSIVE PROGRAMMING TUTOR

The general model o f the IA D I diagnosis approach can be extended in various

ways to accom m odate different diagnostic problems. This chapter illustrates the IADI

diagnosis model in a Recursive Programming Thtor (RPT), R PT has been designed and

developed to teach students to understand the basics of programming in recursion. This

system is implemented in C and Sunview languages at the Sun workstation. A t present,

the R PT is a prototype of the recursive programming tutor. This chapter describes the

diagnosis process in R PT The hypermedia environment o f R PT will be described in next

chapter.

4.1 RPT Domain

The objective o f diagnosis in R PT is to find the run time errors o r bugs in a

program which contains recursive algorithms, and then to conjecture the students’ mis­

conceptions based on the detected program bugs.

4.1.1 Why choose recursion

The concept o f recursion is chosen as the tutoring subject because this concept is

very useful as is evidenced in expressing various algorithms in com puter science. A p ro­

cess is said to be recursive if it partially consists o f or is defined in term s of itself

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Wirth 76]. The concept is encountered in many im portant applications, such as search

algorithms, sorting algorithms, and even gram m ar definitions of the syntax in natural

language. The power of recursion is obviously owing to the possibility of defining an

infinite process by the finite statem ents. This feature makes the recursive program code

very terse, and also makes it difficult to be understood when a student encounters it for

the first time. This problem rises partially from a succinct program structure on the

surface but with an underlying a complicated process in the recursive program. Thus,

the recursive conception is a challenging subject to teach.

Recursion is also a quite interesting topic to study. Many students claim to experi­

ence a significant cognitive change as they gain understanding o f the recursive concep­

tion (Bhuiyan, G reer and M cCalla 91). Usually it is in Pascal that students first encoun­

ter the recursion concept, so the recursive program m ing in Pascal is chosen as the

problem domain. Thus we can teach students the recursive concept a t the point where

they are just beginning to learn it.

Sometimes people use induction to help design recursive algorithms since there are

some similarities between them. From a theoretical point of view, we can see that all

recursive algorithms can be proved by induction. On the practical point o f view, both of

them try to reduce a problem to several smaller problem s, and generally speaking the

methods for reduction are the same (M anber 88). This strategy of reducing a problem

into smaller problem s is used in the R PT system, but proving a recursive algorithm is

not addressed here.

The R PT system provides the mechanism to allow a dom ain expert to add pro­

grams for either problem s of instruction or problem s o f diagnosis into the tutoring sys­

tem. As a prototype of RPT, the system selects the inorder traversal program as the

instruction material, and the issue of inserting nodes into a binary search tree as the

representative example to be analyzed in th e diagnosis process. This chapter illustrates

how the IA D I diagnosis model works in the recursive program ming tu tor for insertion

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem solving. How to give instructions for recursive algorithms will be presented in

the next chapter.

4.1.2 Insertion problem description

W hen we consider which m aterials o r cases to work on, we need to consider

whether they are significant in the sense that they evolve gradually from simple to com­

plex in order to allow the student to obtain the knowledge from subskills to the required

com plete skills. The insertion problem is chosen because it is a typical example used in

alm ost all algorithm introduction text books and it fully illustrates the use of recursion.

The insertion o f recursive algorithms involves insert one node a t a time into a

Binary Search Tfee (BST). There are two kinds of cases: one is to insert a node into an

empty BST and the other one is to insert a node into a nonem pty BST The first case,

inserting a node into an empty tree, can be easily done by making the new node become

the root o f the em pty tree in a pointer-linked tree structure. In the second case, the

algorithm com pares the node to be inserted with the one in the root of the BST to

decide into which subtree the node should be inserted. If it is less than the root node,

then the new node m ust be inserted into the left subtree; if it is greater, then it m ust be

inserted into the right subtree. T hat is, the algorithm requires that the properties of a

binary search tree are still preserved.

Tb solve the insertion problem, a correct version is given in Fig. 6. It includes the

related specifications, the insertion procedure, and other associated procedures which

show how the insertion procedure is called and how the results are prin ted out.

4.13 Analysis on recursive algorithm

The procedure ’’insert” in Fig. 6 is recursive. A recursive algorithm solves a prob­

lem by solving one o r m ore smaller problem s o f the sam e type with the sam e strategies.

The smaller problem refers to either a numeric param eter o r the size of the data struc-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program printBST (input, output);

type
nodeptr = ^ node;

node = record

item : integer;

Lchild, Rchild : nodeptr

end;
table = nodeptr;
var T : table;

procedure create (var T : table);

begin

T = nil

end;

procedure insert (var T ; table; newitem : integer);
{Insert one node into BST at one time}
begin

i f T = nil then

begin

new(T);

T ~ . item := newitem;

T " \ Lchild := nil;

T ^ . Rchild := nil

end

else if newitem < T ^ . item then

in se rt(T ^ . Lchild, newitem)
else in se rt(T ^ . Rchild, newitem)

end;

procedure buildtree(var T : table);

{Insert n nodes to build a BST}

var n, i, k ; integer;

begin

writeln(’Please input the num ber o f node ’);

read(n);

writeln(’Please input the node ’);

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for i: = 1 to n do

begin

read(k);

insert(T,k)

end;

end;

procedure printnode(var T : table);

{Print the nodes in the BST}

begin

if T < > nil then

begin

p rin tn o d e(T ^ . Lchild);

writeln (T ~ . item);
p rin tn o d e(T ''\ Rchild);

end

end;

begin

create(T);

biIdtree(T);

printnode(T);

end.

Fig. 6 A Correct Version O f Insertion Program

ture tha t is being m anipulated. The size of smaller problem s should be decreased at

each recursive call. Finally the algorithm reaches a base case. Thus a recursive algorithm

m ust include the base case and the recursive case. The base case, or the degenerate

case, is a case in which the problem size is sufficiently small so that the problem can be

solved directly. The recursive case, or the general case, is a case in which the solution is

expressed in term s of a smaller instance of itself (Helman and Veroff 86). Usually jobs in

different cases are different. In the insertion problem, the job in a recursive case is

searching for a place; the job in a base case is to insert the new node in the selected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

place. In some problem s such as the inorder traversal problem, the job in a base case is

doing nothing. Even so, remaining a recognition of base case is needed because it ensur­

es that the algorithm will be able to return successfully. The recursive process starts with

a general situation and checks whether there is a degenerate case. If that case occurs,

the recursive process terminates. Ensuring th a t a base case can be reached in a finite

num ber of steps is very im portant because it is expected to term inate a potentially infi­

nite sequence of recursive calls. Otherwise the algorithm will keep issuing recursive calls

until all available memory has been used.

4.2 RPT System Outline

The R PT system design emphasizes the diagnosis process. It also provides a hyper­

media environment for instruction as well as diagnosis. The system fram e is depicted in

Fig. 7. The dom ain knowledge comes from diagnosis experts and tutoring experts. The

IA D I diagnosis knowledge base contains program structures for a particular problem of

programming, and the possible mistakes and misconceptions on that programming prob­

lem. The R PT instruction knowledge base contains specific instructions for selected tu­

toring lessons, and specific representations for instructions on those lessons. The envi­

ro n m en ts fo r b o th d iag n o sis an d in s tru c tio n are c rea ted on th e hypertex t m odel.

S tudents interact with the environment to com m unicate with the R PT system. Based on

the student’s activities, RPT builds a student’s model for the system to work on.

Fig. 8 shows the main p a rt of the R PT system, the diagnosis process in the interac­

tion between the student model and the diagnosis knowledge base, which is the represen­

tative o f the diagnosis expert. How the IA D I diagnosis knowledge base is generated and

applied, how the three diagnosis subprocesses work together, and what the student m od­

el is a t corresponding stages will be described in following subsections o f this chapter.

43 Mistake Detection

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R PT Domain
Expert

TUtoring
Expert

Diagnosis
Expert

IA D I Diagnosis
Knowledge Base

R PT Instruction]
Knowledge Base

Student
Model

Instruction
Environment

Diagnosis
environment

Students

Fig. 7. R P T System Fram e

M istake detection is the first step in the IA D I diagnosis process. It finds mistakes

from a student’s subm itted program. This m istake detection process is completed by

program structure analysis. The detected mistakes {mi, m2 , ... mj}, which is Mp c M,

are subm itted to the misconception hypothesizing process.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performing

Recursive
Program code

Mistake
Detection

Program
Structures

U■— I
M isconception
Hypothesizing

Cs + IPM s

checking
list (q)

Misconception
Verification

IAD I Diagnosis
Knowledge baseStudent Model Diagnosing

Fig. 8. Diagnosis Process In IA D I Model

43.1 The organization of program structures

Program structures are organized in the IA D I diagnosis knowledge base. There are

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two categories o f structures which are usually used in diagnosis systems: incorrect struc­

tures and correct structures. If a piece o f code matches with a correct structure, the

system can assume that some requirements have been satisfied and the program is cor­

rect on this part. If a piece o f code m atches with an incorrect structure, the diagnosis

system will claim that an error has been identified. But if a diagnosis knowledge base

only contains incorrect structures, the system can not find the bug such as a correct

structure missing. Obviously missing a correct structure for a necessary function in a

problem is also an error. O n the other hand, if a diagnosis knowledge base only contains

correct structures, the system will claim there is an error when a correct structure is

missing or a piece o f code does not m atch with any correct structure. However it can

not provide more information about the bugs such as the bug category, bug features,

bug location; therefore it does not benefit tutoring greatly.

The IA D I diagnosis knowledge base contains both correct and incorrect program

structures for a particular problem. Thus it provides a wide range of program structures

to be analyzed in proper situations.

Due to the variability in program implementations, the program structures can also

be very different. For erro r recognition purposes, the system needs to have the knowl­

edge o f all possible syntactic structures o f program s including correct program structure

and incorrect program structure. For example, in order to com pare two num bers n i and

n2 , and decide to do or t2 , the structure patterns can be the following:

if n j < n2 then t j else t2

o r if n i > n2 then t2 else ti

o r if n i < n2 then t2 else t j

o r if n2 < n i then t i else t2

T he num ber of possible combinations of the three syntax elements in one statement: one

from n j o r n2, sign o f inequality and one from t i or t2 , is 23. Some of them are correct.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but some of them are not. Some students may even use other structures such as while-

do to substitute for the if-then selection structure. In some cases the while-do structure

is a wrong structure, while in other cases the substitution of a repetition structure for

selection structure may be proper. In order to make a correct diagnosis, theoretically the

diagnosis knowledge base should contain all o f the possible correct alternative structures

and all o f possible incorrect structures for a particular problem. Practically, however, it

is impossible to obtain all of this information even for a trivial problem in programming.

It is limited by experts’ experience, and also by the obtainability of novices’ behaviors.

So in the IA D I diagnosis knowledge base the correct structures are only their main

alternatives, and the incorrect structures are those which frequently appear in students’

programs.

4.3.2 Program structure analysis

From the above analysis of the features o f recursion, it is easy to see that recogniz­

ing the base case and the recursive case should be used as the cornerstone o f structure

analysis of a program which uses a recursive algorithm. Selecting one of these two cases

needs to use a condition, tha t is called the term ination condition. The next problem is

deciding what the term ination condition in the insertion algorithm is. The insertion algo­

rithm first tries to find a place for a new node to insert. Once the place is located, the

node can be inserted. The algorithm searches the location recursively. So the termination

condition is actually used to end the searching process. W hen a tree o r a subtree is

empty, the condition is reached, that is a place to insert the node is found. Thus the

term ination condition is when a tree o r a subtree is empty.

U sually a selection structure , which has the if-th en -e lse pattern , is applied to

branch between the two cases. Although other structures can be used in some problems

such as generating perm utations problems (Kruse 87), in m ost problems like recursive

algorithms in introductory courses, the repetition structure can not be used for the rec-

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ognition purpose because it usually goes into an infinite loop. The repetition structure

should not be used in insertion algorithm either. If a repetition structure, such as while-

do, needs to be used, it should not contain a recursive call (Dale and Weems 87). But in

a novice’s program, the loop structure comes into existence when a novice tries to under­

stand and explain recursion in term s of prior knowledge of iteration. Some researchers

have investigated and proved that students’ knowledge about iteration dom inates their

knowledge about recursion in the early stages of learning recursion, and students try to

draw analogies o f recursion to loops or interative structures (Bhuiyan, G reer and McCal-

la 91). So the repetition structure should be recognized as a incorrect structure. In the

m istake detection process, a mistake is announced whenever the repetition structure is

found to include a recursive call in the insertion algorithm.

In order to recognize the term ination condition in a recursive program , the if-then-

else selection structure is usually needed to include the term ination condition, base case

call and recursive case call. In the selection structure, between the key words if and then,

there should be an expression as the term ination condition to choose one case to ex­

ecute. This expression consists of two simple expressions of operands and one of the

relational operators such as = , < > , < , > ... (Kruse 87). These syntax structures pro­

vide the basis for program erro r detection. In the insertion algorithm described in sec­

tion 4.1.2, a tree structure is required by the problem nature, and the tree o r the subtree

is indicated by a pointer. The objects to be com pared, o r the two operands on the two

sides of the operator are the roots o f two subtrees. One o f them is the empty tree since

this expression is used to recognize a term ination condition. For an empty tree, the

indicated pointer is represented by a nil pointer. Thus, the structure ” = nil" o r ” < >

nil” can be used to decide whether a term ination condition exists in a student insertion

algorithm.

After the base case and the recursive case have been discrim inated, the next prob­

lem is to decide what should be done in different cases. W hen a tree is not empty, the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm falls into a recursive case. In a recursive case, the algorithm is trying to locate

a place for the new node. The basic strategy is to com pare the data in the new node

with the data in the root of the current subtree. The comparison result is used to decide

in which subtree the further search will be, that is to decide whether a recursive call

occurs on a left subtree or on a right subtree. Since the recursive call is a procedure call,

that is a call to itself within the procedure, the system can identify the recursive call

statem ent by com paring the procedure call statem ent and the procedure name in the

procedure heading. The recursive call m ade from within the procedure passes a subtree

of the previous tree through the param eter. The param eter should be within a pair of

parentheses following the procedure name in the procedure heading. Because the pointer

is used to indicate a tree, there m ust be a mark in a subtree representation. This

syntax inform ation can help the structure analysis. Some students do not write subtree

representations in param eters directly. They first assign the subtree to a variable in as­

signment statem ents before a recursive call statement, and then include the variable in

the param eters of the recursive call. In this case the system also uses those syntax struc­

tures to recognize whether a subtree has been passed.

Some students do not use the correct action in a recursive case. By comparing the

given data and the root of current subtree, they try to find a node in the binary search

tree instead of finding a place for inserting the node. In this case they usually use an

equality relational operator ’= ’ o r an inequality relational operator ’< > ’ instead of use

a com parison relational operator ’ < ’ or ’ > ’ in a selection structure under a nonterm ina­

tion condition (if there is a term ination condition to identify this case in the program).

For example, they may use ’if newitem = T " \i te m then,’ instead o f ’if newitem <

T ^ .i te m then’ as in the version of Fig. 6.

The new data, which is used for comparison when determining the necessity of a

further search, can be obtained from the passed param eter. Then the structure analysis

can get inform ation about the data from the param eters. But there may be alternative

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ways to pass the data. In some programs the new data is not passed by the param eter

directly. The new d ata is contained in a node which is set by another procedure, and it

is the entire node that is passed from the param eter. It makes the structure analysis

slightly different. This version is showed in Fig. 9.

Procedure insert (var T : table; le a f : nodeptr);
begin

i f T = nil

then T : = leaf

else

if l e a f i t e m < T ^ . i te m

then insert (T ^ . Lchild, leaf)

else insert (T ^ . Rchild, leaf)
end;

Fig. 9. Another Version O f The Insertion Procedure

The operation in the base case of version 2 is different from the operation in the

previous version. The recursive process in the insertion problem is a search process that

is looking for a proper position by checking whether the current tree is empty or not.

When the empty tree eventually arrives (that is, the base case is reached), the search is

term inated and another kind of job should be done. In the base case the new data or

the new node will be inserted. Thus the operations in the base case are to apply a new

node and assign a value for the data and the pointers for the node as shown in Fig. 6.

or to insert the node passed from the param eter as in another version presented in Fig.

9. To determ ine if these operations are correct o r not, the system can check to see the

key word like ’new’ (for applying the new node) exists or not in version 1, or com pare

the variable in the base case with the pointer variables in the declaration part to make

sure the node is inserted in version 2.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 3 3 Program structure summary

From the description of the insertion problem, and the analysis of recursive algo­

rithm s and insertion program structures in previous sections, the program structures for

insertion problem solving recursively can be summarized. The different structures are

called different structure elements. The basic structure elements in the IA D I diagnosis

knowledge base are presented bellow:

1. D ata-holding structure elements :

• Record as a formal param eter

The new node to be inserted as an entire record is passed from the formal param ­

eter of the procedure heading.

• Integer as a formal param eter

The new data which will be a part o f new node is passed from the formal param e­

ter o f the procedure heading.

Recognition of these two different structure elements is used to check whether the

correct action is applied in base case.

2. Selection structure elements :

• i f ... < > nil then ... else

• i f ... = nil then ... else

These structure elements are used to determ ine whether the term ination condition

exists.

3. Iteration structure elements :

• w h ile ... do

• for

• repeat

These three structure elements are used to check whether the loop structure is

used. If one o f them is used, a m istake is indicated since an infinite loop will be caused

by the loop structure in the insertion algorithm.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Position-checking structure elements

• new (...); i f ... < > nil then ... else

• new (...); i f ... = nil then ... else

• if ... < > nil then new (...) else

• if ... = nil then new (...) else

The above four structure elements are used to determ ine whether the action of

applying the new node exists and whether it occurs in the right place whenever it is

needed.

5. Subset structure element

• D ot 7 in actual param eters of recursive call statem ents

• Dot 7 in the right hand side of an assignment and the assigned variable appears

in recursive call statem ent

The system determ ines if one o f actual param eters in a recursive call statem ent is

in the form of a subtree by identifying the existence of the syntax representation of a dot

either in a recursive call statem ent or in an assignment statem ent before the recursive

call. If this m ark is missing, the recursive call statem ent does not give the small instance

of a subtree to work on and the procedure can not arrive a t the ending point.

6 . Com parison structure elements

• i f ... < ~ . then ... else

• i f ... > then ... else

• if < ... then ... else

• if ~ . > ... then ... else

These four structure elements are used to com pare the new data with the data in

the root o f the curren t subtree and decide which subtree will be searched further.

7. V PD (Variable Param eter Definition) structure element

« var

It is used to determ ine if a formal param eter is a variable param eter.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Besides checking the existence of the element structures, the system also checks the

relationships or relative operations among the element structures. The procedure in

Fig. 10 is an erroneous procedure about insertion. The system com pares the structures in

Procedure insert (var T: table; newitem: integer);
begin

new(T);

if T = nil then

begin

T 'L item := newitem;

T ~ . Lchild : = nil;
T ~ . Rchild := nil;

end
else

if newitem < T 'L item

then insert (T ~ . Lchild, newitem);
else insert (T 'L Rchild, newitem);

end;

Fig. 10. An Erroneous Procedure.

the procedure with the correct and incorrect structures in the IAD I diagnosis knowledge

base. Since one o f the if .. < > nil then ... structure elements and the if ... = nil then ...

s tructure elements appeared, the systems can determine if the necessary term ination con­

dition in this recursive procedure exists. But the operation o f applying a new node is

m isplaced, which should be pu t under the term ination condition. The system checks the

relative position o f the element structures ’new’ and ’if ... = nil then’ as well as their

existence, and recognizes that the m istake o f misplacing the operation o f getting a new

node had been made.

4.3.4 M istake types

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The program structure analysis serves for mistake detection, The IADI diagnosis

process attem pts to concentrate its efforts on the mistakes which are related to the cru­

cial concepts. It refers to the m ajor concepts in the key steps of a correct recursive

problem solving and other basic programming concepts. It also refers the possible mis­

conceptions about these concepts drawn from the students’ experience. These m ajor con­

cepts include (the details will be introduced in next sec tio n):

• There must be a term ination condition to stop the recursion.

• The actions in base case.

• The actions in recursive case.

• The smaller instance for each recursive call which represents the recursive rela­

tionship between a problem and its subproblems.

• Formal param eter definitions.

• Binary Search Tree definition.

• Necessity of applying a new node to hold the data to be inserted.

From the analysis of program structure elements in the insertion problem, the sys­

tem can detect the related mistakes. Different mistakes are called different types such as

type m i, type m2 ... The mistake types in the IA D I diagnosis knowledge base form the

set M which is defined in section 3.3. The mistake types are listed in table 2.

One example that contains some of these mistake types is shown in Fig, 11. The

R PT system interface is shown in Fig.12. The system checks the program made by a

student that is in the text window of the right column of a diagnosis interface (the entire

interface is described in the next chapter). Initially the tty window, which is on the left

column o f the interface, is empty. A fter the command ’’diagnose” is invoked, the system

picks up the recursive procedure from the student’s program, and displays it in the tty

window. The system further analyzes the structures of this procedure and finds that the

expected term ination structure elements and the subset structure element do not appear.

It identifies the possible mistake types and begins a dialogue with the student in the tty

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Types Mistakes

m i Missing the term ination condition.

m 2 M isplace the operation o f inserting new node.

m3 M isuse a loop structure.

1TI4 Lacking param eter in recursive call statem ent.

m 5 D id not provide the smaller instance.

m 6 M iswrite the term ination condition.

1TI7 M issing key word which defines the variable param eter in the

formal param eter definition.

m 8 M isorder the data in left subtree and right subtree.

mg Not apply a new node to hold the new item.

m l0 Apply too many new nodes for inserting one new item.

m u Tfy to find nodes in a binary search tree instead finding a place

to insert a node.

m 12 C reate a new node after using it.

mi3 Not apply a new node, but try to assign data to it.

Thble 2. M istake Types

window. In this example there are two m istake types th a t are missing term ination condi­

tions and do not provide the smaller instances which are highlighted in Fig. 12. Thus the

corresponding m istake types m i and ms are detected, and the set Mp = {m !t ms} is

formed. The initial IA D I diagnosis problem { M, C, R, Mp } will be subm itted in the

next diagnosis step, the misconception hypothesis process.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure insert (var T: table; newitem: integer);
begin

new(T);
T ~ . item := newitem;

T ~ . Lchild := nil;
T ~ . Rchild := nil;

insert (X newitem);
end;

Fig. 11. An Erroneous Procedure.

4.4 M isconception Hypothesizing

The m isconception hypothesizing process starts from the initial IA D I diagnosis

problem {M, C, R, Mp}, where Mp is a set o f dem onstrated mistakes {mi, m2 ... mj}; it

infers a se t o f plausible candidate misconceptions to yield the interm ediary IADI diag­

nosis problem { M, C, R, Mp, C r }. This misconception hypothesizing is done by abduc-

tive inference.

4,4.1 M isconception types

M isconceptions are the reason that students m ake mistakes under certain circum­

stances. The misconceptions in the IA D I knowledge base are established by deviating

from the required concepts identified by experts for the tutoring subjects. T he insertion

problem solving requires many concepts. Some o f them are im portant, for example, the

concept abou t the binary search tree, the concept about the term ination condition when

inserting a node into a binary search tree, the concept about the sm aller instance to

represent the recursive relationship in this problem, and other basic program knowledge

such as how to define the variable param eter, when and how to apply a new node ... In

the IA D I diagnosis knowledge base different m isconceptions are called different miscon­

ception types such as misconception type ci, C2 ... These misconception types for the

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D yn iM c I n s tr u c t io n i t x t u s l in s t r u c t io n

2S iv J^~Cp»pMi H E n sc u ts l Olegnoem thm f i ts .
DUgnose][H IsU kaT ypes]I M isconceptions] H l« n*»e: e rro r /IH itls b is e .f i

tcrn idoX tr r o r /1 l4 e 1 s b « B t
P t e is e Input th e rw tb er o f nodes
1
M s it s Input th e nods
M 4 5 12 9
’S sg m sn titto n f a u l t
to rn a d o ! d ia g n o s is

P le t s e g i v e th e p i t h n*m# o f th o U W you want to d la g n o ts :
jrror / 11dm 1 t b i a s . p
/our r e c u r s iv e p r a c sd u r ss a r t In th e f t I t s

' I n s e r t ' ,
' I n o r d o r ' ,

you may nood t o chock th n n .

P l a n s ty p s tb s r s c u r s t v s p ro csd u rs nams w h ich
you T ike t o ch eck : tn a s r t

P la ta # ch ock your r s c u r s t v s procad u rs b e llo w ;

 ̂ proced u re in aarlC var T: t a b t s ; newt torn: I n te g e r) ;
M iss in g b a s s . S in c e t h i s p roced u re w a n ts t o I n s s r t

x n o d e , a p p ly now nods f i r s t * And n o t p r o v id in g th s
f i l l e r I n s t in c s . * /
*ug1n

nou{T>;
T ^ .U srt := naullom ;
l-.UhUd is Ml;
T * .R c h ild :2 n i l ;
ln s # r t { T , n eu ltem)

•ndj
Thar# n a y bo sums m ls t ik u # In your r e c u r i lv # p r o c sd u r s .
M lsta k fll: H is s in g lb s t o r n in i l i o n c o n d i t io n .
H ls U k sS ; Old n o t p r o v td s th o m i l l e r I n s la n c s .

You ca n c l i c k l o f t n ou s# b u tto n on th s 'M ista k e Types*
b u tto n t o g e t f u r lh o r e x p la n a t io n s to your m is ta k e s .

Now w# w i l l fu r th e r d ia g n o se your m ls c o n c s p t to n i .
P le a t s f o l lo w th s I n s tr u c t io n and answer t h s q u e s t io n s .

l e t ' s c o n s id e r co n c e p t o f t h s te r m in a tio n c o n d i t io n In a
r e c u r s io n , Do you th in k I t I s n o c o o o iry tt» s o t th e term ina­
t io n c o n d i t io n In your r e c u r s iv e p roced ure 'I n s e r t * ? (y u s /n o)

« lp ro g ra « tn o r d a r (In p u t,o u tp u t);

ty p*
n o d sp tr 2 "nods;
node 2 reco rd

Itnm : In teg e r ;
l c h i l d , R c h ild : nodoptr

end;
t a b le = n od eptr;

v ar X i U b le ;

p roced u re c r e a t e (v s r T: t a b le) ; ,
b e g in

T := n i l
end;

proced u re ln s e r t (var T: t a b le ; newitem : I n te g e r) ;
/ • H is s in g b a s e . S in c e t h i s procedu re w an ts to In se r t
• n od e, a p p ly new node f i r s t . And n o t p r o v id in g th e
w a l l e r I n s ta n c e . • /
b eg in

n o u (l> ;
T " , l t m := noultom ;
T - . U h l l d : s n i l ;
T“ .R c h ild : 2 n i l ;
ln s o r t{T , n o w litn)

end;

p roced u re b u l1 d tr # e (v » r T: t a b le) ;
v a r n ,1 fk : In teg e r ;
b eg in

w r l t e ln ('P 1 e a s e Input th e nupbor o f nodes ') ;
r e a d (n);
w r H e) n ('F U a s t Input th e node ') ;
fo r I : : 1 to n do
b e g in

r e a d (k);
1 n s tr l (T ,k)

end;
end;

proced u re 1nordor(var T: t a b le) ;
bogtn

I f T O n i l than
; b o q ln

îrT.rTT.r.rTT

Fig. 12. An Example O f E rror Program
and Detected Mistakes.

insertion problem are listed in table 3 .

A studen t m ay know that there is a need for term ination condition in a recursive

program when reading a text book or listening to an instructor. But when they begin to

program on a recursive algorithm, it is not easy for them to rem em ber this point espe­

cially when there is nothing to do in a base case like in the inorder traversal algorithm.

M issing the term ination condition reflects that the student does not quite understand

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Types Misconceptions

ci Not having the correct concept of term ination for a recursion.

c 2 Confusion on the recursive relationship.

c3 Incorrect concept about the definition of a Binary Search Tree.

C4 M isunderstanding the definition of variable param eter of a

procedure.

C5 Confusion on the concepts o f building a Binary Search Tree (BST)

and searching a node in a BST.

c 6 No concept how to hold a new item in a tree structure.

C7 M isunderstanding when to apply new node to hold the new item.

T^ble 3. M isconception Types

that a recursion needs a condition to suspend issuing recursive calls and that it must

return to the previous call after the recursion has ended. Sometimes students do not

forget to put the condition, but they may put the wrong condition or put it in a wrong

place. In the insertion problem, the algorithm needs to find a place to insert the new

node and it proceeds recursively. When an empty subtree is found, the searching process

should stop and a new node should be inserted. Some students simply think that since

the insertion definitely requires the application of a new node to hold the new data, they

apply the new node at the beginning of the procedure, and pu t the term ination condition

after applying the new node, such as the procedure in Fig 10. M isplacing the term ination

condition reflects that the student does not understand exactly why there should be a

term ination condition, and what should be done when the case occurs. The misconcep­

tion types Ci and C7 in table 3 describe these erroneous concepts.

The strategy for solving a problem in recursion is defining the problem in term s of

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a sm aller problem of the sam e type. The smaller problem has the sam e nature as the

original problem, but is of a smaller size. Thus in a recursive case, there must be a

relational representation between the each smaller problem and the original problem

which represents how the size of the problem is being reduced in a series of recursive

calls. This relational representation is called a recursive relationship. This relationship

should guarantee th a t the subproblem s generated are closer to the anticipated base case

than the original one. The smaller size o f original problem is usually given in the actual

param eter o f a recursive call statem ent, and it defines a smaller problem that is current­

ly working. T hat is, the recursive relation is passed by the param eter. For the insertion

problem, the smaller problem is in subtree size. Sometimes students do not reduce the

size of the problem when they make a recursive call, o r they simply forget to put the size

which needs to pass to the procedure. The misconception type 2 in table 3 summarizes

these errors.

Some students do not have a clear concept of the definition o f a Binary Search

Tree (BST). They ignore the defining property of a BST that requires that the data value

in the BST follow a certain order, th a t is for any node, the data in it is greater than the

data in its left subtree and less than the d ata in the right subtree (Dale and Weems 8 6).

This m isconception about the definition o f BST is presented in m isconception type 3.

A nother misconception about the BST is a concern of the concept of building a BST.

Some students confuse building a BST by inserting node one by one with searching a

node in a BST. This is related to w hat action should be taken in a BST. The insertion

procedure should be targeted for searching for an appropriate place to enter the new

data. The purpose is no t to look for a node which has a data value equal to the new

data. This incorrect concept is addressed in misconception type cs.

O ther misconceptions are related with the basic program knowledge. For example,

some students may not have a clear concept about the differences between the variable

param eter and the value param eter. Therefore, they do not know that it is necessary to

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enter a key word ”var” in front of the variable when they want to define a variable

param eter to bring the changed value m ade in the called procedure back to the calling

procedure. Tb insert a node into a tree, a new node must be created first, and then

linked the node into the BST In Pascal the predefined procedure ’’new” is responsible

for creating a new memory cell. Students may not realize that there is a need to allocate

the dynam ic memory cell. These misconceptions are presented in misconception C4 and

C5 separately.

4.4.2 M ultiple relationships between m istakes and misconceptions

A tu to r’s m ain purpose is to help students get r id o f confusion a t the conception

level. However, it is not always easy to identify these misconceptions in a complicated

problem solving such as in com puter programming, because one misconception can be

m anifested in several m istakes and several misconceptions may cause one same mistake.

T he IA D I diagnosis model uses the abductive inference process to hypothesize the mis­

conceptions from dem onstrated mistakes, as the first s tep of diagnosis a t the conception

level.

The abductive inference applies a se t o f hypothesizing rules. These hypothesizing

rules describe the cause and effect relationships between m isconceptions and mistakes.

From the analysis of section 4.3.4 and section 4.4.1, w e can sum m arize these rules and

include them in the IA D I diagnosis knowledge base. For each possible misconception

there may be several related rules. For example, the rules related with misconception Ci

are:

Ci — ► m i, c i — ► m2, c i — ► m3, c i — ► m s, c i — ► mg.

T hat is, not haring the correct concept o f term ination for a recursion could cause five

possible mistakes: missing the term ination condition; misplacing the operation o f insert­

ing the new node; using a loop structure; no t providing smaller instances and miswriting

the term ination condition. But in one student’s program, there is usually only one or

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

several of them appeared under this misconception.

O n the other hand, for each possible mistake, there may also be several related

rules. The IA D I diagnosis model uses the rules to infer the plausible explanations and

present their relationship. For example, if there is a m istake ms: not providing a smaller

instance when a recursive call occurs, then the possible causes for it can be drawn from

following two rules:

c i — ► ms, c2 — ► m 5.

They hypothesize th a t not having a correct concept of term ination to a recursion or

confusion about the recursive relationship, o r both can cause the m istake ms. We can

not elim inate any misconceptions neither favor any particular one at this point. We have

to collect them all in a set and m ake further analysis. U nder different circumstances, a

student may make different m istakes form one misconception or the student may only

dem onstrate one mistake, bu t it is related to different misconceptions. These practical

existences form an intricate relationship net between misconceptions and mistakes. The

cause and effect representation can make this relationship easier to understand and

m ake the corresponding explanation more eloquent.

4.4.3 Abductive hypothesis

In the m isconception hypothesizing process, the system works on the mistakes in

Mp which are initially dem onstrated in the student program and offered by the mistake

detection process.

F or each mistake m, in Mp, the system checks the rules in the IA D I knowledge

base. The rules in the IA D I diagnosis knowledge base are grouped by misconceptions.

T hat is, for each misconception, there is a group of rules that m atch the sam e miscon­

ception on the left hand side. The system works on the rules in each group. It searches

this group to check whether there is a rule which right hand sides m atches with the m;.

If so, the m isconception on the left hand sides of this rule is m arked. Since one m; can

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be caused by several misconceptions, the system searches each group and finds all rules

which right hand side matches with mj. The corresponding misconceptions form a set of

candidate hypotheses can(mj). These misconceptions are considered to be the possible

causes o f the m istake mj. After the system hypothesizes all the candidate hypothesis sets

fo r all th e m istakes in Mp, it concludes th e co n ju n ctio n o f th ese se ts, the union

i
U can(m j), as Cs.
/-i

In the erroneous procedure displayed in F ig .ll, there are two dem onstrated mis­

take types m i and ms. The system finds the related rules:

c i — ► mi, C7 — ► mi,

ci — ► ms, C2 — ► ms

and form s can(m i) = {ci, C7} and can(ms) = {ci, C2 }. The union o f can(m i) and

cam(m 5) is {cl, C2, C7}. The misconceptions in the union become the selected candidate

hypotheses set Cs. Any q in Q is one possible explanation to one o r several mistakes.

Then the system hypothesizes the following misconceptions as the candidate hypotheses

for th a t particular problem: not having the correct concept o f term ination to a recursion:

confusion about the recursive relationship and m isunderstanding when to apply a new

node to hold the new data. These candidate hypotheses are the basis to give the explana­

tions to the dem onstrated mistakes, missing the term ination condition and not providing

the smaller instances. A s for how to chose the best explanation, it will be addressed in

section 4.5.

4.4.4 Misconception ranking

Each hypothesized misconception in Q can explain a t least one dem onstrated mis­

take. The more a hypothesis can explain, the m ore plausible the hypothesis is. In order

to measure the plausibility of one hypothesized misconception, the IA D I diagnosis sys­

tem builds a measurement, the Plausibility M easure (PM), which is defined in section

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5. The PM values, calculated in the misconception hypothesizing process, are the Initial

Plausibility M easure (IPM). IPM is used to provide the comparisons among the hypothe­

sized m isconceptions. IPM(Cj) is calculated by dividing the num ber o f m istakes in

man(cj) which are also in Mp by the num ber o f mistakes only in man(cj), that is:

I {mj I m i e M n and m; c m an(q)} I
IPM(cj) = J - 1-------2--------- ^ ------ ■

I m an(q) |

For example, if (man(cj)j = 4, and only one of the mistakes in m an(q) appears in Mp,

then IPM for q is 1/4.

For every candidate hypothesis q in Cs> the system will calculate a value IPM (q)

for it. Thus, if the majority of m istakes which are related to Cj appear in M p, then

IPM (q) has a greater value which shows that this misconception is dem onstrated from

wider aspects, and therefore it is more likely that the student has this misconception.

Conversely, if no m istake in Mp is related with c;, then its IPM (q) value is zero which

shows that this misconception does not cause any mistakes in the current programming,

and that the student does not appear to have this misconception C j . According to their

IPM values, the system ranks these misconceptions in Cs in descending order of their

IPM values, and forms the ranked candidate misconception set Cr.

T he IA D I diagnosis system sets up counters to record the num ber of mistakes. For

each misconception q , which is in the set C, there is a counter ipm (q). In the miscon­

ception hypothesizing process, the system checks the m istakes in Mp. If the mistake

matches the right hand side o f a rule, the system finds the corresponding misconception

Cj on the left hand side and increases the counter ipm (q) by 1 while adding the Cj into

Cs. A t the end o f the hypothesizing process, the counter ipm (q) records the num ber of

mistakes which are in Mp and also in m an(q). There is also a unit for each misconcep­

tion to record the sum o f the related mistakes. Thus the IPM (q) can be calculated by

dividing ipm (q) by man(q).

The candidate hypotheses set Q for erroneous procedures in F ig .l l contains three

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misconceptions, c^ C2 and C7. Since there are 6 possible mistakes in m an(ci) and only

two of them are dem onstrated in Mp, the IPM value for c i is 2/6. For the other two

misconceptions C2 and C7, the system checks the diagnosis knowledge base and gets

man(c2) = 3 and man(c7) = 4 , and obtains the values IPM(c2) = l / 3 and IPM(c7) = l / 4 re­

spectively. So the misconceptions in C r are ranked in the order Ci, C2 , C7 .

The IPM measure is just a rough measurement. It is not as strict as the probability

theory is, and it is not used as the basis for inferring the hypotheses. In the IADI

diagnosis system, inferring the candidate hypotheses relies on the abductive inference.

The m ain purpose o f calculating the plausibilities in the hypothesizing process is to pro­

vide a ranked list of misconceptions to the verification process. Thus the verification

process to the hypothesized misconceptions can work in a more efficient way because

this discrim ination by descending order provides an opportunity for the user to work on

the m isconceptions which have high IPM values, and ignore those misconceptions which

have very low IPM values or zero value. In another words, this m easurem ent just targets

for helping the tu to r to select misconceptions which are the individual problems for a

particular student, and focus the instruction on these specific concepts instead going

through the whole set o f misconceptions.

4.5 Misconception Verification

Given the interm ediary IA D I diagnosis problem {M, C, R, M p, Cr}, the system

begins a m isconception verification process. This process is based on deductive infer­

ence. I t interacts with the student to obtain m ore inform ation for verifying the hypothe­

sized misconceptions in Cr. D uring this process, an instruction is also provided which is

based on design plans. Finally a list of ranked misconceptions in Cf is provided as the

final diagnostic result.

4.5.1 Checking list

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The m isconception verification process is based on deductive inference in an inter­

active environment. This environment is shown through a set o f checking lists.

In the IA D I diagnostic knowledge base, for each cj in C, there is a group of rules

whose left hand sides are cj. Mistakes on the right hand sides o f these rules are consid­

ered to be m anifestations caused by the Cj. T hese m anifesta tions com pose the set

man(cj). For each cj, the system estab lishes a checking list, CL(cj). T he item in the

checking list CL(cj) can be a choice or a question which is related to the m istake in

man(cj).

Fig. 13 shows a checking list for m isconception C2, confusion on the recursive rela­

tionship. Since there are three rules in the IA D I knowledge base which are related with

the m isconception Cj,

c2 — ► m4 , C2 — ► ms, C2 — ► m 6

there are three possible mistakes. The checking list CL(c2) includes these manifestations

and organizes them in a way that the item s can be related with these m anifestations and

therefore to the misconception C2 . Since the corresponding m istakes are lacking a pa­

ram eter in a recursive call statem ent, not providing the sm aller instances and miswriting

the term ination condition, the problem s are listed in the CL(c2) in the form o f a ques­

tion o r m ultiple choice. A fter a student gives the answer o r makes a choice on an item

the system judges the answer or choice, and gives an appropriate explanation or instruc­

tion interactively. In the real system, the items in one checking list are separated by the

student’s answer and the system’s explanation and instruction. The corresponding expla­

nations for each item in the checking list CL(c2) are shown in Fig.14. A real example in

the system interface will be shown in the section 4.6.

From above descriptions, we can see that checking lists actually serve two func­

tions. O ne is for further detection o f a student’s unexposed mistakes. In order to verify

the m isconception a student has, the system creates an environm ent in which all the

questions and possible choices are associated with th a t concept. Com pared to the initial-

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. In a recursive relationship, the recursion is expressed in terms

of a smaller instance of itself. Did you express this relation­

ship in the m anner that the problem is identical in nature bu t

smaller in size? (yes/no)

2. Since we know the recursive relationship will be represented

in term s of a smaller instance of itself, and this smaller in­

stance can be a smaller value or a smaller size of the data

structure, what is the smaller instance in this insertion p rob ­

lem? Please choose one num ber from the following choices:

1. The smaller value in a node for each recursive call;

2. The empty tree;

3. The left subtree or the right subtree.

3. W hen you decide the recursive relationship in a recursive

problem, do you need to guarantee that the reduced size will

eventually become the degenerate case? (yes/no)

Fig. 13. A Checking List For C2

ly dem onstrated mistakes which are m ade without any external condition, the student’s

confusion on a certain concept can be further exposed in this environment. From the

student’s choices to the items and the student’s answers to the related questions, the

system can evaluate the degree to which the student suffers from the misconception.

A nother function of checking lists is for instruction. W hen a student dem onstrates

any m anifestations in the lists, the system will give the corresponding explanations to the

student based on the cause-effect relationships and also the program design plan which

will be addressed in the next subsection. The im prom ptu instructions help students to

get rid of the confusion about the misconception.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Explanation for item 1 (if the student’s answer is ’no’):

A recursive algorithm m ust include a recursive case for which the

algorithm is expressed in terms o f itself, and in this case the problem

size m ust be diminished a t each recursive call. You need to express

this relationship in a sm aller problem of itself.

Explanation for item 2 (if the student’s answer is choice 1):

Only choice num ber three is correct. You chose num ber 1 which is

no t correct. This procedure is to insert data into a binary search tree

which is a tree structure, not a single value. So you need to find

relationships between the original structure and a smaller structure.

Explanation for item 2 (if the student’s answer is choice 2):

Only choice num ber three is correct. You tried to find an empty

tree as the recursive relationship, bu t that is not correct. Actually,

the final target is to find the empty subtree, but it may need several

recursive calls to reach it. So you need to represent this relationship

between the tree and the left subtree and the right subtree.

Explanation for item 2 (if the student’s answer is choice 3):

You have a correct choice.

Explanation for item 3 (if the student’s answer is ’no’):

We should ensure that the way that the problem size diminishes

m akes the degenerate case finally be reached. A t this point, the prob­

lem is sufficiently small that it can be solved directly and the recur­

sive calls will be ended. Otherwise the process may not stop and goes

to stack overflow.

Fig. 14. The Explanations For The Different Choices
In Items O f CL(c2)

4.5.2 Programming design plan

From the discussion in section 3.6, w e know th a t the system organizes the items in

a checking list according to the design plan as well as the cause-effect relationship. The

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design plans describe the sequence of programming steps which directs a program task

or subtask to be com pleted or directs a programming concept to be fully understood by

the student if considered from the angle o f programming tutoring. For example, when a

student wants to find a term ination condition for the insertion problem, the termination

condition is viewed as a program ming concept as well as a program goal (or subgoal) for

accomplishing the insertion o f a node into a binary search tree. W hen the student wants

to implement the term ination condition, he must have a series of design plans in mind.

If the student does not follow a correct design plan for the program ming problem, there

will be a mistake. Therefore the analysis of mistakes and m isconceptions is inevitably

involved in the analysis o f design plans. A nd the design plan analysis can provide effec­

tive inform ation for misconception diagnosis. U nder this consideration, when the system

collects the item s related to one misconception into a checking list, the system arranges

these item s according to the design plans. Thus, the system connects the design plans to

a certain concept while the system analyzes the related misconception by the cause-ef-

fect relationship. A nd the design plans are considered the inform ation at a high level of

a conception.

Related with the term ination condition concept in the insertion problem, the design

plans can be the following:

• M otivate to set up a term ination condition;

• F ind a case as the condition;

• Check whether the condition can definitely be reached;

• Consider what to do under this condition;

• Deliberate the operations under the term ination condition;

• Think over w hat kind o f structure can be used for building the term ination con­

dition.

In the system, these plans are posed as questions, such as Why there is a need for

a term ination condition? W hat is that condition? W hat kind of structure should be used

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for building the condition? How can you guarantee that the condition will eventually

arrive? W hat operation should be done if the condition is m et? A fter the student gives

an answer, the system judges this answer and gives explanations for it. Raising questions

to and receiving answers from the student allows the system to be able to obtain more

inform ation to verify the misconception acquired from the misconception hypothesizing

step. On the o ther hand, providing solutions to these problem s makes the design plan

explicit, and it will help students to make a correct design plan to set up the term ination

condition. H ere the solutions provided by the system are the explanations to the stu­

dent's answers. The explanations com bined with the design plans offer the background

knowledge for a concept and the program ming steps; therefore they can help students to

understand the whole programming process.

In the IA D I diagnosis process the system arranges these plans into a checking list

as items either by questions or by a m ultiple-choice problem. Fig. 15 shows the design

plans for the term ination condition concept in the checking list CL(ci).:

4.5.3 Misconception verifying process

The purpose o f the IA D I diagnosis process is to find the m ost likely misconcep­

tions related to m istakes in a student’s programming. Since the misconceptions in C r are

only candidates for explaining why the corresponding m istakes exist, it is possible that

some m isconceptions in Cr are not the reason o r m ain reason for those mistakes. Thus,

after the m isconceptions are hypothesized from the abductive process, the system still

needs a process to verify which misconceptions a re the true causes. The misconception

verification process is based on deductive inference.

For each candidate m isconception q in Cr which is obtained from the misconcep­

tion hypothesizing process, the deductive inference process perform s a verification pro­

cess in the following m anner. F irst the system displays its checking list CLfyj) to a s tu ­

dent. From the previous discussion, we know that a checking list contains information

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. D o you think it is necessary to set the term ination condition in

your recursive procedure? (yes/no)

2. Since we need the term ination condition to end the recursive calls,

we should consider a case as the condition. Then what is the con­

dition? Please choose one from the followings:

1.) W hen the inserted data is equal to certain value;

2.) W hen a Binary Search Tree (BST) becomes empty;

3.) W hen the root has a value which is equal to certain value;

4.) W hen a tree is not empty.

3. The term ination condition is when the BST becomes empty, how

can you guarantee the condition will eventually arrive? Please

choose one from the following:

1.) Provide a smaller value through a param eter in the

recursive call statement;

2.) Provide a smaller structure, such as a subtree, through

a param eter in the recursive call statement;

3.) Check whether the subtree in a ’if’ statem ent is empty or

not without providing a smaller instance in the recursive

call statement.

4. The next problem is to decide what to do when the term ination

condition is satisfactory. Please choose one num ber from the fol­

lowing choices:

1.) Insert the new data;

2 .) Com pare the inserted d ata with the value o f the root and

then make a recursive call again;

3.) D o nothing.

5. U nder the term ination condition, you need to apply a new node

and fill it with the necessary data, the problem is where these op­

erations should be entered? Please choose one num ber from bel­

low:

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.) A t the very beginning of the procedure even before the

base case;

2.) When the base case is reached.

6 . In this insertion problem, what kind of structure will you use?

1.) U se a loop structure for control of inserting n nodes in

this procedure;

2.) Use a branch structure to decide to go to the base case

o r the general case.

Fig. 15. Checking List A rranged By Design Plans

about the manifestations which can be caused by Cj and the design plans which are used

to realize the corresponding concept in a program. So the C L(q) has a dual function; it

can be used to determ ine if the student has unexposed m istakes and if he follows design

plans.

The basic form o f an item in a checking list is a question. Following the display of

a question, the student gives answers by typing yes o r no, or by typing a num ber to

choose an item.

From answers and choices, the system then analyzes the student’s understanding to

a particular problem and evaluates how much the student suffers from this misconcep­

tion, and how far he departs from the correct design plans. In this interactive environ­

ment the system checks to see if the student is vulnerable to m^ (m^ e man(cj)) under

some circumstances. For each answer and choice, the system gives explanations that are

a part of the instruction on the tutoring material.

The system will display all the checking lists for the misconceptions in C r. The

displays of Checking Lists are relayed according to the order of the hypotheses in Cr.

A n example of the misconception verifying process will be dem onstrated in section

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6. The interactive process in the R PT diagnosis environment is shown in Fig.23 in the

chapter 5.

4.5.4 Misconception reranking

Although each m isconception in Cr proposed from an abductive hypothesis may

explain several dem onstrated mistakes, having each one of them proposed actually only

requires one related m istake to be dem onstrated. I t is very likely that some of them are

not the real cause of the m istake m, and that there is another reason which causes the

m. Tb decide which m isconceptions in Cr are the student’s real problem, the system

proceeds with a verification process in the steps described above, and reassesses the

plausibilities o f the misconceptions.

T he system revises the plausibility measure, PM value, according to the student’s

responses in the m isconception verification process. The PM value, calculated in this

process, is called the Final Plausibility M easure (FPM). For each m isconception cj in Cr,

the system calculates a value FPM(cj) to evaluate the degree to which a student suffers

from Cj. The FPM(cj) is a value that records the num ber o f wrong answers to the items

in CL(cj). T he system weighs the different items with different values depending on the

degree of im portance and the proximity o f a manifestation to the concept. For example,

item 1 for motivating the set up o f a term ination condition in CL(cj) (refer Fig.15) is

m ore significant to the diagnosing misconception ’’not having a correct concept of term i­

nation to a recursion”, than item 3, that checks whether the condition will definitely be

reached in CL(ci), because the necessity of setting up a term ination condition is the

m ost im portant o f all the m anifestations to diagnose ci. A wrong answer to item 3 is the

m istake ms. It gives more contributions to diagnosing misconception C2 than ci, although

this m istake is related to c i also. So the system assigns value 3 to item 1 and value 2 to

item 3. The basic form ula is

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FPM (q) = ^ weight(item); item e CL(q)

The FPM(Ci) is different from the IPM(c;). The FPM (q) value is for the system to

weigh a student’s understanding o f q under a certain circum stance in an interactive

environment, while the IPM (q) value is for the system to m easure a student’s under­

standing o f q in the initial stage without any influence from external effects. An FPM

value is based upon considerations of m ore than one aspect about a concept and trying

to get diagnosis solution by verifying the misconception, so it is reasonable to use it to

rerank the misconceptions and to subm it the list of reranked m isconceptions as the final

diagnostic result.

The system builds a group of counters to record the total num ber o f the mistakes.

For each checking list CL(q), there is a counter fpm (q). For each incorrect answer, there

is a value which is preassigned by the system. W hen a student answers the questions in

the checking list CL(q), the system accumulates the value and records the accumulation

in the corresponding counter fpm (q) if the answer is incorrect. W hen the system obtains

all the answers to items in one checking list, the counter records the value of FPM for

the misconception. In o rder to facilitate the com parison am ong the FPM values, the

system sum s the total possible FPM value for each m isconception as 10 (that is when a

student gets wrong answers to all items in a checking list) although it assigns a different

weight to each item in one checking list. Finally the system com pares the values in dif­

ferent counters and ranks the m isconceptions by their FPM values to yield the final

diagnosis list Cf.

There are three possible cases after the verification process:

• If the student’s perform ances testify that all m anifestations in a checking list

CL(cj) exist, then the system can decide that the student has the m isconception Cj with a

very high FPM value and the c* is the one on the top of the diagnostic result list.

• If the student’s performances only partially support the manifestations in a check-

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing list, then it shows that the student has this misconception with a m oderate FPM

value. In this case, the system still does not eliminate the misconception cj from the

diagnosis result, but lists it in the appropriate place on the diagnosis result list.

• If the student’s performances show nothing wrong when he answers the questions

in a checking list, then the system will consider the initial appearance of related mis­

takes as an accidental event and remove the corresponding misconception from Cr.

4.6 Example of IADI Diagnosis Analysis

In this section, an example is given to show how the IA D I diagnosis model works

on a program ming problem-solving.

A n erroneous procedure is given in Fig. 16. This procedure was written by a student

while she was working on her homework for a Pascal programming course. This proce-

Procedure insert (var T: table; newitem: integer);
begin

new(T);

T ^ . item := newitem;

T A . Lchild := nil;

T ~ . Rchild := nil;

if T - nil then

if newitem < T ^ .ite m

then insert (T ^ . Lchild, newitem);

else insert (T /v. Rchild, newitem);
end;

Fig. 16. A n Erroneous Procedure.

dure seems to show that the student has almost all of the concepts which are needed in

solving this problem, setting term ination condition, giving recursive relationship, using

correct formal param eter definition, inserting the node into BST correctly, and applying

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the new nodes to hold the new data. However, she miswrote the term ination condition,

possibly just because she was careless. She also misplaced the operation of inserting a

new node. She might have thought tha t she could apply the node at the beginning of the

procedure, since a new node is needed in order to hold the new data every time the

procedure requires node insertion. She did not realize that since this is a recursive pro­

cedure, this procedure will be invoked and will apply a new node for every recursive call

no m atter the insertion action happened or not, finally causing stack overflow. If a p ro ­

cedure has this mistake, even if the term ination condition is correct, it will never reach

the term ination condition.

The system checks this procedure by the structure analysis and detects two mis­

takes: misplacing the operation of inserting a new node and miswriting the termination

condition. The system searches the IA D I knowledge base and hypothesizes three miscon­

ceptions by the abductive inference. There are four rules in the IA D I knowledge base,

that are associated with these two mistakes,

Ci — ► m 2, c i — ► m g, C2 — ► m 6, and C7 — ► m2.

After taking the union o f can(nt2) and can(m<>), there are three proposed misconceptions

ci, C2 and C7. The system ranks them by IPM s and forms the interm ediary diagnosis Cr,

{ci, C2, C7}. In the verification process, the system displays three checking lists CL(ci),

CL(c2) and CL(C7), one after another. A fter getting a response from the student, the

system will conclude the misconceptions the student may have. O ne possible response

series occurs in the interaction between the system and students, and is listed in Fig. 17.

The real system interface will be shown in next chapter.

There may be the following mistakes in your recursive procedure:

Mistake2: M isplace the operation of inserting a new node.

Mistake6 : M iswrite the term ination condition.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now we will further diagnose your misconceptions. Please follow the instruc­

tions and answer the questions.

L et’s consider the concept o f the term ination condition in a recursion.

D o you think it is necessary to set the term ination condition in your recur­

sive procedure ’insert’ ? (yes/no)

yes

T hat is correct.

Since we need the term ination condition to end the recursive calls, we

should consider a case as the condition. Then what is the condition? Please

choose one from the following:

1. W hen the inserted data is equal to a certain value;

2. When a Binary Search Tree (BST) becomes empty;

3. W hen the root has a value which is equal to a certain value;

4. W hen a tree is not empty.

Please type a number.

2

T h at’s correct.

The term ination condition is when the BST becomes empty; how can

you guarantee the condition will eventually arrive? Please choose one from

the following:

1. Provide a smaller value through a param eter in the recursive call

statem ent;

2. Provide a smaller structure, such as a subtree, through a param eter

in the recursive call statement;

3. Check whether the subtree in a ’if’ statem ent is empty or not without

providing a smaller instance in the recursive call statem ent.

2

T hat’s correct, you need to provide a sm aller structure.

The next problem is what you m ust do when this condition is satisfied.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Please choose one num ber from the following:

1. Insert the new data;

2. Com pare the inserted data with the value of a root and then m ake a

recursive call again.

3. D o nothing.

3

Only the first action is correct; insert the new data. Before the term ina­

tion condition is satisfied, the algorithm issues the recursive call to find a

proper place to insert the new data. Since the base case has been reached,

the proper place has been found, and you need to insert the data at this

time.

U nder the term ination condition, you need to apply a new node and fill

it with the necessary data. T he problem is where these operations should be

put? Please choose one num ber bellow.

1. A t the very beginning of th e procedure even before the base case.

2. W hen the base case is reached.

1

T hat’s not correct. I f you apply a new node before checking the base

case, every recursive call will get one new node and the term ination condi­

tion is never able to be satisfied. Thus the recursion will no t cease until the

stacks overflow. So the operation should be given when the base case is

reached.

In this recursive procedure, w hat kind o f structure do you have to use?

1. U se a loop structure for control o f inserting n nodes in this recursive

procedure;

2. Use a branch structure to decide to go to the base case or general

case.

Please type one num ber.

2

T hat’s correct.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now let’s consider the recursive relationship. In the relationship the re­

cursion is expressed in terms o f a smaller instance of itself. D id you express

this relationship in a m anner that expresses that the problem is identical in

nature but smaller in size? (yes/no)

yes

T hat is correct.

Since we know th a t the recursive relationship will be represented in

term s of a smaller instance o f itself. A nd this small instance can be a small­

er value o r a smaller size o f the data structure, what is the smaller instance

in this particular procedure?

1. The smaller value in the node for each recursive call;

2. The empty tree;

3. The left subtree and the right subtree.

Please choose one number.

3

That is correct.

W hen we determine the recursive relationship in a recursion problem,

do you think we need to guarantee that the reduced size will eventually be­

come the degenerated case? (yes/no)

yes

Your answer is correct. But in your procedure it seems you did not give

the condition to guarantee to reach the degenerated case.

Let’s consider when it is appropriate to apply a new node. We need to

apply a new node to hold the new item. A nd this operation can be done

before o r after we assign the data into the corresponding field. Is that cor­

rect? (yes/no)

no

Your answer is correct. We m ust assign the data into the node after we

apply a new node.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can view the operations of applying a new node and assigning data

to it as one group. The next question is when do we use this group to apply

a new node?

1. W hen the term ination condition is true;

2. W hen the nonterm ination condition is true;

3. A t the very beginning of the procedure, that is before any other oper­

ations;

4. O thers.

Please choose one number.

3

That will cause this operation to be m ade at every recursive call. Actual­

ly it may just apply the infinite nodes for the first data until stacks overflow.

The term ination condition can never be reached.

Besides the one group under the term ination condition, do we need to

en ter the group under the nonterm ination condition (that is the recursive

case) too? (y/n)

no

That is correct.

You have the following misconception(s):

Misconception?: M isunderstand when to apply a new node to hold the

new item.

M isconceptionl: Not having the correct concept of term ination to a re­

cursion.

Fig. 17. A possible Series O f Student’s Response To The System

From the series o f the student’s responses, we can see tha t the misconception C2 is

not in the final list because the student gives correct answers to all questions in CL(c2).

T hat m eans the m istake mg is caused by ci. The system gets two wrong answers from

the response to CL(ci) and one from the responses to CL(c7). But the FPM (c7) is 4

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is higher than FPM (ci), which is 2. So the final diagnostic result is the ranked list

{07 , cj}, which is Cf. The part o f interaction is shown in Fig. 23.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER FIVE

TUTORING ENVIRONMENT

OF

RECURSIVE PROGRAMMING TUTOR

This chapter describes the tutoring environment of RPT. The environment here is

used to refer to the part of a system that presents system’s diagnosing and tutoring

process and supports the student’s learning activities. A good tu to r should have a good

environment for a student to easily ca n y out actions and to see and understand the

results and implication o f those actions. The R PT system uses the hypermedia technique

to create a graphical environment. The R PT environment includes the instruction part

and diagnosis part.

5.1 Objectives For Creating RPT Environment

O ne fact for students to s tart to learn recursion is th a t they try to make an analogy

o f program structures between the given problem and the sam ple program, like we dis­

cussed before in section 3.4. This arouses us to set an instruction environment where

sam ple program s are given and students can learn from these examples. A fter they m as­

ter som e basic concepts of recursion, they write their program and enter the diagnosis

environment.

The m ost difficult thing about learning recursive program ming is that the recursive

statem ents in a program do not show the procedure step by step explicitly. For example,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the procedure of inorder traversal in a binary search tree can be simply written in recur­

sion as follows:

Procedure inorder(T) { T is a binary tree }

begin

I F T ^ 0

T H E N begin

inorder (Leftsubtree (T));

print (D ata (T));

inorder (R ightsubtree (T))

end

end

The student may not be able to see through the process at the beginning. The program

is so elegant and succinct, it does not even contain explicit repetitions. It compacts a

complicated process into several recursive statements. For program writing, the terse and

simple form is good. But for the course of learning, it is better to reverse the procedure,

unfold these statem ents, so that the originally hidden content in the recursive statem ent

becomes visible to the learner. I t is also necessary to help students understand how to

solve a problem by solving its subproblems. For example, in the recursive program of

quick sort, the way to sort a smaller instance and the result of the partially sorted se­

quence can offer a base for students to connect the sim ilar strategy to the whole prob­

lem solving process. Because sorting a smaller instance m ust be easier to be understood

com paring with working on a large instance. A nd the result for the small instance solv­

ing, the partially sorted sequence, is obvious to be able to be seen. So breaking a prob­

lem down to the subproblem, solving the subproblem s and immediately showing the

corresponding result will be conducive to learning. Hence it is necessary for program ­

ming tu tors to show the execution results of a program a t different stages in order for a

student to understand the execution process o f a com putational algorithm. The RPT

environment tries to implement these ideas. It creates a graphic illustration plus dia-

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logues and menus in the tutoring environment.

The environment for the diagnosis process needs an interactive interface. Because

in an interactive environment, it is possible for a student to gradually realize where he

m ade m istake and w hat is the possible misconception. The explanations for basic mis­

takes and corresponding misconceptions are needed when the student still is confused.

So the environment needs to provide a convenient method to show these explanations

when a student asks.

Both instruction environment and diagnosis environment are created based on the

hypertext model.

5.2 Hypermedia Environment

The RPT tutoring environment is built in a hypermedia environment. Hypermedia

is regarded as a generalization o f the hypertext. Hypertext is a model based on the

assum ption that hum an idea processing occurs through association. It connects the in­

formation in a network and provides the non-linear retrieval. Thus it can more closely

model the deep structure of hum an idea processing (Clarson 88) (Shen and Zhang 89a).

Hyperm edia is an interconnected net of inform ation in various forms from text to static

graphics, anim ation and other types of m edia that can be accessed by the com puter

system (Younggren 88). Among the hypertext and hypermedia systems in existence, KMS

(Akscyn 88), NoteCards (Halasz 88), and Interm edia (G arrett 86) are the most famous

ones. Conklin gives almost complete historical description o f the hypermedia systems

(Conklin 87).

Although there is no generally accepted definition for hypermedia, the hypermedia

systems can be characterized as follows:

• Network information organization

In hypermedia systems, information is represented by m ulti-m edia units, which are

called objects. These objects may represent texts, pictures, video images, and voices.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

They are connected together by links and form networks.

• O n-line nonlinear retrieval

The network structures of hypermedia systems provide a n-dim ensional informa­

tion search space. U sers can navigate in any defined path through the links.

• Extraction of common concepts

In a network representation, a common concept can be represented by a single

object. This object can be linked to all other related objects. This implementation allows

the sam e concept to be represented only once, therefore eliminates unnecessary redun­

dancy.

• Intelligent environment

Hyperm edia systems provide a strong capability to represent knowledge in various

media. In this environment, users can execute their tasks in a way closer to human

cognitive processes.

Applying a hyperm edia model in a tutoring system allows providing the learning

environment with graphic illustrations and dynamic representations of knowledge and

knowledge relationships. The R PT environment further extends the hypertext model by

incorporating dynam ic program execution.

53 Overall interface

Creating the R PT environment has two purposes. One is to show the critical con­

cepts of the recursive programming in a hypertext model based representation in order

to aid the student’s comprehension. A nother is to reveal the execution of the recursive

program in a m ulti-dim ension environment so that the student can see through the pro­

blem-solving process. This environment is implemented on the Sun workstations with C

and Sunview language under the Unix operation system.

The R PT system provides an overall interface for both instruction environment and

diagnosis environment. This interface contains three components fram ed by a window

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

showed ill Fig. 18. T he three com ponents arc control panel, tty window and text window.

tormdoX acriiBn(fcffip)f iB .ra

Cot In s tru c tio n o r M lo c l p r o b ln , than p ro g riM ln g b a lw .
r\\m m m :

tornadoX |J

Fig. 18. Overall Interface of HI*T

• Text window

The text window is used for students to write and edit their program .

• tty window

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tty window is a usual command tool shell and is used to emulate a standard

terminal. In the programming tutor, the tty window is used to compile and execute the

program, and also to interact with student in the diagnosis process.

• Control panel

The control panel contains three groups of buttons. The buttons in the second row

are for load, save, compile and execution of a file. The button "Dynamic Instruction" is

for entering the instruction environment which consists of another set of windows. The

buttons "Tfextual Instruction”, "Diagnose”, "Mistake Types” and "Misconception Types”

are used in the diagnosis environment. The control panel leaves the space for user to

write the file nam e after the item "File name,” and the space in the right part of the

panel for communication with the system.

5,4 RPT Instruction Environment

Some systems, such as LISP tutor (Anderson 89), PRO U ST (Johnson and Soloway

84) and M ENO (Woolf and McDonald 84), tu tor programming in an environment of

dialogue and menu. The natural language is a good tool for communication. But some­

times it is not adequate in certain situations, particularly in the programming tutor.

Natural language is usually considered as sentential representation which is sequential.

One can not use any sequential representation to effectively im part a complicated and

interconnected algorithm represented in a com puter program. Actually, it is possible to

use com puter to create better learning environment. The R P T instruction environment

creates a graphical dynamic representation to facilitates the learning. Students can un­

derstand many concepts better in a graphic environment since pictures and diagrams

can provide m ore information than verbal descriptions and it has been claimed that one

diagram is sometimes worth ten thousand words (Larkin and Simon 87).

Usually a student enters the instruction environment first for getting the basic con-

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cept of the recursion. The RPT instruction environment allows a student to select a

recursive program to work on. A fter a student enters the environment by selecting the

’’Dynamic Instruction” button on the control panel, he can see a window that is the root

node o f a processing tree. A processing tree describes the execution process of a recur­

sive procedure. It consists of spread nodes and abstract links. A spread node is a basic

unit in the instruction environment which represents a status of a program when we

consider a set of input data attached to it. A n abstract link represents a procedure

calling relationship. The processing tree is created to present the different levels of re­

cursion o f a recursive program. The spread node at the initial state with the original

input is the root node. In addition to the representation o f the source code o f a recur­

sive program displayed in a spread node, the system provides a graphical representation

for the input data in a binary search tree. The system is also be able to automatically

generate the corresponding input data for the program at any particular spread node.

Each program in a spread node can be executed with the relevant input value at the

student’s option. These features provide clear visualization o f the recursion process thus

is very conducive to learning. The following subsections describe the detail structures

and functions o f the processing tree.

5.4.1 Representation of a spread node

A spread node represents one status of the recursion a t a specific level. A spread

node contains the following facilities included in a single frame.

• S tart panel

A s ta rt panel contains selection button, instruction button and message item. The

buttons are for a student to select specific control functions to be perform ed and the

message item is for providing messages to the student. The start panel is present only on

the head o f the root spread node and is not available in o ther spread node.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

« Lesson selection button

This button is labeled as ’’Selection of Lesson.” Pressing the right mouse button

when the cursor points on this button brings a menu to be displayed. This menu is

called lessons menu. The menu shows a list of program names for students to

choose one of them as the tutoring lesson.

• Instruction button

This button is labeled as ’’Instruction.” Clicking the left mouse button on this but­

ton will cause a text fram e to be displayed. The text fram e shows a specific instruc­

tion text for the selected tutoring lesson. This text includes detailed description of

the problem and also the instruction on how to solve the problem.

♦ M essage item

This item is used for the system to show warning messages and/or specific instruc­

tions according to the on-line situation.

• I/O panel

The I/O panel provides the space for displaying the input argument values and the

output da ta for the program a t a certain level o f recursion. This panel is bellow the start

panel.

* Inpu t item

This item is labeled with ’’input” in root node and ’’Input Subtree:” in non root

spread node. This item displays the input argument values for the spread node.

The input argum ent value is typed by a student a t the input item in root spread

node. The values displayed a t input item s in other spread nodes are generated by

the system. Besides the da ta display, the input item also provides the graphic illus­

tration for the input data (please refer section 5.4.4).

• output item

This item is labeled with output. This item shows the returning d ata for the spread

node upon the completion o f execution.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Program list panel

The program list panel displays the recursive procedure source code when a s tu ­

dent chooses a tutoring lesson from the selection button. This panel is on the under­

neath p art o f a spread node.

A fter a student enters the instruction environment, he gets a basically empty root

spread node fram e with a message suggesting him to click a t the ’’Selection of pro­

gram s” button to select a program to work on. After he does so, he gets a list of the

available programs. Fig. 19 shows the root spread node. In Figure 19, the student se­

lected the ’’inorder” program which tutors the subject o f solving the inorder traversal

problem recursively. The source code o f the ’’inorder" program is shown in the program

list panel of the root spread node frame. A t this point, the system rem inds the student

input the argum ent values a t the Input Item o f the I/O panel. W hen a student clicks at

the instruction button, the general instruction for this lesson is displayed in the text

frame, which is shown in the right of Figure 19. The o ther spread nodes will be showed

in the processing tree described in the next subsection.

5.4.2 Processing tree

M any instructors like to give the classroom teaching o f recursive program ming in

the following way:

(1) W rite the program on the blackboard and use some sam ple input argum ent value to

sim ulate how the program works.

(2) A s the sim ulation goes on, when the simulated execution comes a recursive call

statem ent, the instructor draws another instance, which is in the sm aller size, of

the sam e program on the blackboard. The sim ulation then continues a t the new

instance o f the program.

(3) W hen the execution o f a certain instance o f the program reaches a base case, the

recursion stops and the control returns to its parent level a t the original call state-

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eMtodl
to rn a d o l cp f ! 2 . r * d « ik lo p /
to rn a d o l •cr o e n c k r tp X 1 9 .r»

t x t u i i I n a tr u c t to n 1D y n a n lc ln a t r u c 11 on

lo»d S»v« I P C a n p l l i 1 | U « c u t«] Col I n o lr u e lto n * .

D lT Q n o T ^ T n i io u i io T y p M n f H lic o rc « p t1 o n »] H I * m o :

 m rlo r n o d o l t n s lr u c l lo n

D b im IrfMit d«U f t r « L Then you can c lic k e ith e r
Dm proculuro txud<r to onoculo I t or the rocuralve
c e l l s taU m xit to n n II un tlto u su llu r Inslaiice.

S e le c t i o n o f l e t e qne

I n s tr u c t io n

In p u t : 15 56 OS 23 9 34 553 SS 20 12 11 77 33 68 32 S 6 ^
O utput:

p roced u re ln o r d o r (v a r T: t a b le) ;

bug In

I f T O n lI than

b o g ln

(norUar (l" .L c h l Id);

u r 1 t e l n (l * . 1 to n);

I n o r d y f f T - . f l c M I t l)

end

end;

ja m
1 n i t r u c t io n f o r prograa tn o r d o r . o 3
T C e l c w ^ n ^ ^ P T T l h l i ^ e M o r ^ ^ T ^ M I u a t r a t e to you
ttow to progran Inorder I n v e r t * ! o f • b in a r y se a rc h
t r o t w ith a r o c u r a lv e program .

In a b in a r y M arch I r to (5 5 1) , tharo Is a r o o t c o n ­
t a in in g s e n t v a lu e . A t n a l l e r v » lu a , II e x i s t s , Is
In I t s l o f t ou b trao and a g r o a to r v a lu e , II o x lo to .
I t In I t s r ig h t s u b t r e e . T h is g r e a te r and l e s s e r
v a lu e r e la t io n s h ip h o ld s In a t ! the s u b t r e e s .

The r o c u r a lv e Inorder t r a v e r s a l e lg o r t l lm v I s l t s the
n od es In a BST 1n th e fo l lo w in g runner t o o b ta in a l l
th« v a lu e s In llte t r e e In a sc en d in g o r d e r : v l a U a l l
th e n od es In th e r o o t ' s l e f t a o b tr ift f i r s t , then th e
r o o t , f i n a l l y a l l th e nodoo in I t s r ig h t s u b tr e e .
V h lle v i s i t i n g a s u b t r e e , t h e s m s a Igor I t ha Is ap­
p l ie d (r e c u r s iv e l y) .

To uso the iNOflDEft tu to r , do the following:

1. G ive th o Input d a ta s f l o r ' I n p u t : ' so fo llo w o :
the rxiibor o f nunher* to bo p la c e d In th e BST, f o l ­
lowed by th o nunbors In a r b itr a r y o r d o r ,

2 . You ca n now to o how th o iMOROfR p ro ced u re uorko
on th e w h o le 6ST o r I t s e i t h e r s u b tr e e b y:

2 . 1) . c l i c k i n g th o l o f t mouno b u tto n a t th o proco
dure h e a d e r , th e f i r s t l i n e o f th e p ro ced u re l i s t i n g
t
to se a th e r e s u l t on th e w h o le BST. The sy stem w i l l

32

I

Fig. 19 The Root spread Node

incut witli llic resulting values. The execution continues from there on at the par­

ent level.

The drawings on the blackboard discussed above naturally am ount to a tree like

the one in Hig.20. This tree is called the processing tree since it represents a process to

reach a solution. The tree shows a process for the inorder traversal procedure with the

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A

Procedure inordcr(B)
begin

IF B < > 0
THEN

begin
inordcr(0);
print(DATA(B));
inorder(0)

end
end.

Procedure inordcr(C)
begin

IF C < > 0
THEN

begin /
inorder(D); ----- /
print(DATA(C));
inorder(E)

end
end.

------V

Procedure inorder(D)
begin

IF D < > 0
THEN

begin
inorder{0);
print(DATA(D));
inorder(0)

end
end.

Procedure inorder(A)
begin

IF A < > 0
THEN

begin
inorder(B); -
print(DATA(A));
inorder(C)

end
end.

Procedure inorder(E)
begin

IF D < > 0
THEN

begin
inorder(0);
print(DATA(E));
inorder(0)

end
end.

Fig.20 O ne D em onstration O f Processing Tree
For The Inorder Traversal Problem With Input Binary Search Tree A

input binary tree A. E ach ’’instance” of the program mentioned above amounts to a

spread node. The sentences ’’inorder (B) ” and "inorder (C)” in the procedure associate

with a spread node respectively by an abstract link, which will further spread these

subprocedures on the subtree B and C. In the tutoring environment, the student is al­

lowed to select the actions at his/her own discretion. In other words, the student may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

follow the execution in a certain sequence as above, o r may selectively do and see what

is desired. This environm ent facilities different learning paths for different students.

Thus there are different processing trees for different learning paths.

M ore formally, a processing tree consists of the spread nodes and the abstract

links that a re procedure calling relationships among spread nodes. These calling relation­

ships are kept a track internally by the system. The processing tree can describe the

process of a recursive program execution at any level. The root spread node is defined at

level 1. Every recursive call statem ent in the list program panel of the current spread

node is associated with a spread node a t the next level, whose level num ber is one great­

er than the level num ber of its parent. Spread nodes in different levels have identical

structures but different input values th a t are for subproblem solving in different size. A

spread node a t level i is considered to be at a higher level than another spread node at

the level i + 1. A processing tree may be extended very deep. But, generally speaking, the

simulation on prim aty several levels can give more inspiration to students, so it is most

useful and effective for student to m aster the recursive concept. T hat m eans the learning

process usually do not necessarily go to the all branches of the processing tree, but stops

a t certain level.

Fig. 21 shows a processing tree for the inorder traversal procedure in the RPT

environment. In any spread node, the student can click the m ouse button a t a recursive

call statem ent to cause an expansion into a child spread node.

5.4 J Automatic generation of input argument values

A fter a student chooses a lesson, he needs to follow the specifications given in the

instructions for the lesson and type the input argument values on the input item of I/O

panel. In the example of inorder traversal problem showed in Fig. 21, the num ber 10 at

* As the first step, RPT system just deals with the recursive call that has been explicitly
referred to itself.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Elocution ita r ta . !>■ m u l t Mill b t A o n on U »

output I l ia . Vou can no th> I m y a p h foraod by

tho Input data I f you c l I d tbo 'Iigait' Itn.

Input : 16 56 B9 23 9 34 563 E 5 2 6 1 2 U 7 7 3 3 E 8 321

Output: 5 9 U 12 23 28 32 33 3 4 S G 6 5 6 6 E 8 77 89 560

iprocadurt 1ncrdor(vtr T: t ib ia);

begin

If TO nll thon

bogln

1nordar{T'.lcti1ld);

v r ltt ln O M ta a);

1nordar(T*.Rchl1^l)

and

l ln a tn c t lo n for progrn Inordtr.

Ipracodiro l^crdarfvar T; tib lo);

bogln

If TOnll thon

1nordar(TM.ch1ld)j

u r lto ln (T * .Itn);

Input S u b tm T: 4 34 20 33 3 2 .

Output: 28 32 33 34

IVolcora to RPT. This I tn cn la to lllu o tra t* to you
p a r to p rogm I nor dor travaraal of a binary atardi
j tr a a u ith a raajn lva prograa,

In a binary itarch traa (1ST), there la a root con­
taining io m value, t n a l l i r value, I f aviate, 1a
1n I t i l i f t fubtro* and a greater v ilu a , I f axlata,
Is In I ts r igh t subtree. This greater and lesser
value relationship holds In a l l th i subtrees.

The recursive Inordir traversal slgorlth a v i s i t s ths
nodM In a 6ST In ths follouing sinner to obtain s l l
the values In the tree In ascending order: v i s i t a l l
the nodes In the root's I s ft subtree f i r s t , then the
root, fin a lly a l l the nodes In i t s right subtree.

IVhlla v is it in g a subtree, the sane algorithm Is ap­
plied (recursively).

procsdure^inorderfvar T; tabla);

begin

If TOn11 then

begin

1norder(T*.Uh!l[

u rlteln (T * .ltea);

Input Subtree T: 4 65 77 66 6 6 .

65 EE 68 77
5 89 563 65 77 Ea EGInput Subtree T:

Output: procedure Inorder(vy 7: labia)

begin
procedure tncrder(var T: table);

begin

If TOnll then

begin

Inorder (T M chlld)

v r lte ln (T M t«);

lnorderg-.Fchtld)

end

Input Subtree T: 1 563 .

procedurt Inordenvar F: t a b le) ; ,

begin

t f TO nll then

begin

inorder(T*.tch11d)

urlte1n(T“.1 tee);

ln o rd er(r .fch lld)

end

Fig.21. O ne Processing Tree

the beginning of the input string is the num ber o f nodes in the binary search tree. The

other input num bers are the da ta for nodes o f the binary search tree. The input data

given by the student goes through another hidden program that generates the interior

data structure, the binary search tree, which is in term used by the recursive program

"inorder.”

A fter a child spread node is created through the o rder o f a student, clicking the

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

left mouse button on one recursive call statement, the input argument values for the

child spread node are automatically generated by the system and are displayed at the

Input Item of the I/O panel in the child spread node. These data are for the smaller size

problem solving. In the inorder traversal problem, for example, the input data of a child

spread node forms a left (or right) subtree. U nder this representation, the student can

see the recursive relationships and understand how the recursion works on the smaller

instance, therefore it helps students to understand the whole problem solving process. In

cases where the curren t spread node already presen ts a leaf that the recursive call

should not be performed but the students selects such a call, a warning message will be

provided. Fig. 21. shows the generated input data in term s of the smaller instance for the

corresponding subtree in the input item for each spread node in that processing tree.

5.4.4 Graphical representation of input data

W hen an instructor demonstrates how to solve the inorder traversal problem, he/

she usually draws a binary search tree fo r the input d ata and explains how the algorithm

handles the data. The graphical representation of a binary search tree is very helpful for

students to understand the algorithm. It is not adequate if the input data is given only in

the numerical form. The R P T instruction environment provides the graphical representa­

tion for the input data to imitate the hum an tu to rs’ actions.

For a set o f the input data, the system can automatically generate a graph that is a

binary search tree matched with the displayed data a t the Input Item. This graph is

generated and displayed only when a student asks by clicking the left mouse button on

the label ’’Input” of a spread node. The system can generates the graph for every spread

node, no m atter on what level of a processing tree it is, provided the student clicks the

mouse button on the label ’’Input” in a selected spread node. Thus a student can see a

subtree o f original binary search tree when he orders the display at a child spread node.

Fig. 22 shows the graphical representation of the input data for several different spread

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

InputditpUy for p ro^ m Inordtr.
tornado! cp f2 I ,r s desktop/,
torm dol *crwndurp>f22.r»

Oynaalc Instruction] [Textual Instruction

I Exacuta I Gat I n a v u c t t n .

Dl»qroM̂ |̂ l»UtaTyparnNlSSptttt̂ Fill la :

tornadol Inttructicn

Exacutlon a t i r t i . Tha raault w i l l ba r fn a i on th i

output I tea . You can a n tha tre e graph fx a c d bp

tha l im it data i f you c lic k tha 'Input' Itaa

Input Subtraa T: 9 23 9 34 2B 12 11 33 32 5

Output: 5 9 11 12 23 29 32 33 34

procadira lnordar(var T: tab la);
Input ; ' 1 6 56 69 23 9 34 563 6 5 2 9 1 2 11 7 7 3 3 0 9 32 5 66

Output: S 9 11 12 23 20 32 33 34 56 6SE6 68 77 B9S63
I f TO nll 11

btgln Input Subtree T: +4 31 20 33 32

Output:
procedure lnorder(var T: lib h i) ;

begin

i f T O nll then

begin

Inorder(T*.Lehlld);

u r lta ln (T M ta i) ;

Inorder(T'.Rchlld)

end

end;

procedure Inordarlvir T: ta b li) ;

Inputdliplay for progran Inorder.

Input Subtraa T: f6 99 563 65 77 Ea EE

Output:
Inputd ltp liy for pregrai Inorder

I procadira Inordarfvar T: ta b le);

[nputdlapliy for progria Inorder

Fig.22 Spread Nodes With The Input Binary Search Tree

nodes. In the learning process a student can see and learn the way how the given in­

stance becomes smaller and smaller and finally arrives an empty tree. This series of

binary search trees gives a visualized process to dem onstrate how the recursion proceeds

on those data.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.5 Execution o f the recursion in a spread node

T he hypertext systems were traditionally used in organizing and displaying texts

and materials. Some hypertext systems even allow procedural attachm ent to enable the

system to perform specific tasks (Conklin 87). For the purpose of recursive program ming

tutoring, static displays o f source program s without anim ation are hardly conducive to

learning. Procedure attachm ent does not allow the needed anim ation at arbitrary levels

of the recursion. The R PT instruction environment allows the display of the source code

and the input argum ent values at any level. It also allows the selected execution a t any

level a t the direction o f the student. The R PT environment has extended the typical

hypertext model and it is conducive to learn recursion.

The system provides execution of the recursion in an arbitrary spread node of a

processing tree. This is achieved by the student’s simply clicking at the selected proce­

dure header section in the spread node. Upon completion o f the execution, the results

derived from the given input values to the specific spread node are shown to the student

in the O utput Item o f the I/O Panel in the spread node. If a student clicks the left
«

mouse button on the procedure header of the root node, he will get the resulting output

for the whole problem . If the student likes to know the execution result o f any subset, he

just needs to activate the procedure by clicking at the procedure header o f correspond­

ing spread node. T he result for the subset will be shown on the screen. This capability

involves more than ju st displaying a text as a typical hypertext system does. This system

displays the source code but also executes the recursive program to show the dynamic

process. In the example shown in Figure 21, the root spread node in the leftmost posi­

tion and the center spread node illustrate the results o f the selective execution ordered

by the student who w anted to see the inorder traversal of the initial input binary search

tree, and its left subtree and the right subtree of the root. In this case, the corresponding

output are ”5 9 11 12 23 28 32 33 34 56 65 66 68 77 89 563,” "5 9 11 12 23 28 32 33 34”

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and ”56 65 66 68 77 89 563” for the three binary search trees, respectively.

5.S RPT Diagnosis Environm ent

In the overall interface, a student usually enters the instruction environm ent first.

A fter he got som e concepts on the recursion, he can selects one problem to work on and

write his program on the text window. If the com pilation can be passed but run time

errors exist, the student can enter the diagnosis environment to find what are the possi­

ble m istakes and misconceptions.

The m ain feature for the diagnosis environm ent is that it provides an interactive

interface. The diagnosis activities in this environm ent follows abductive and deductive

reasoning path and design plans. The com m unication between the system and students

is in a natural language dialogue style. The system also provides menu, texts and buttons

to allow a student to select problem from a list and see the description for the types of

m istakes and m isconceptions at a student’s initiative by open a text window with simply

clicking on the corresponding button. The following subsections introduces the each part

o f the environment.

5.5.1 Program submission

Before diagnosing, a student needs to write the recursive program and elim inate its

all syntax errors. The diagnosis environm ent provides following facilities for subm itting a

nonsyntax program (Please refer the overall interface in Fig.18):

• Problem selection button

T his b u tto n is labeled as "Textual In s tru c tio n ”. P ressing the left m ouse bu tton

brings a m enu to be displayed. This is the problem menu. This menu shows a list

o f program problems for student to choose to diagnose. Releasing from this button

causes a text window to be displayed. The text describes the problem and the re­

lated basic concepts.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Name item

A student should define a file nam e for a program . The nam e can be given at the

nam e item which is on the right bottom line of the control panel, labeled as ’’File

name.” The student can give either a nam e as the file nam e o r the path name of a

file for system to access.

• Load button

A file will be loaded in the text window if clicking the left mouse button at "Load”

button. The file nam e should be given on the nam e item in advance. The file being

loaded can be any file stored in the user’s file system. It is not necessary to be the

one being edited in the text window.

• Save button

Clicking the left mouse button at "Save” button causes the file in text window to be

saved under the given name in the name item.

• Compile button

Clicking the left mouse button a t "Compile" button gives an order for system to

generate a com m and to compile a program. The program is in a file under the

nam e showed in the nam e item. The generated com m and is in tty window. It also

generates a corresponding executable object program code. The result of compila­

tion showed in the tty window.

• Execution button

The nam e of executable program code will be showed in tty window and executed

by the system if a student clicks the left mouse button on the button ’’Execution”.

• Message item

This item is in the right part of the control panel. The system sends message at

this item to com m unicate with students and give instructions how to use this envi­

ronment.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 Diagnosis interactive process
*

l b enter the diagnosis process, the student needs to click the left mouse button on

the "diagnose” button. Then the system starts the diagnosis process. T he process is pro­

ceeded in tty window.

First, the system picks out the recursive procedures from the being diagnosed pro­

gram and lists all the recursive procedure names. The student chooses one recursive

procedure to diagnose. T he system redisplays the code o f the recursive procedure in the

tty window in order for the student to review the recursive procedure. A t the same time,

the system is detecting the mistakes of that procedure and lists the possible mistakes in

tty window.

T he system hypothesizes the possible misconceptions from the obtained mistakes

internally. It docs not show them to the student since these hypothesized misconceptions

needs to be further verified.

T hen the system begins a dialogue with the student. For each hypothesized miscon­

ception, the system displays its checking list, lists several related topics either by rising

questions o r by m aking choices, and analyzes student’s answers. These questions and

choices a re arranged according to the cause-effect relationships between the misconcep­

tion and mistakes, and also the design plans o f the recursive program . For each incor­

rect answer, the system gives explanations. Fig. 23 shows an interaction while a student

is using a checking list. A fter the system gives explanations, the student may realize what

kind o f m isconception he has. Then he can correct the m istakes o r give another version

o f the design. The student may decide to stop the display o f these lists whenever he

thinks he already got the enough inform ation to correct his mistake. The system can also

give the suggestion o f keeping on checking, when there are rem ained checking lists asso­

ciated with candidate hypotheses in C r whose IPM are not very low. So this process is in

a m ixed-initiative tutoring environment.

Finally, the system concludes the misconceptions based upon the student’s answer

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tornadol cp tZZ.ro desktop/,
tornadol screendurp)f23 .rs

1
Dynamic I n s tr u c t io n^^na«

^ ^ o a i ^ J £ " " 5 a v B ^] ^ ^ a i p l l ^ j £ l K S C U l e

[^vinoTBlpMoUkitYpnninaconcspnof?^
Diagnose the t i l e .
FI In nano: wrong.

£ program Inorder (I n p u t ,o u tp u t^Please choose one from the followings:
1. Provide a e n s tla r v itua through a parameter in the

recursive o i l ! s ta tn en t;
2 . Provide i m a ile r a tru c tu re , such ee i sub tree , through

a parameter In tha recu rs ive c a l l e lilm ent;
3 . Check the sub tree in the If alalmrmnl w ithout providing

a sm aller Instance in recu rsive c e l l s ta tem e n t.
Please type e m nber.

2
T h a t's c o rre c t , you need to provide a sm aller s tru c tu re .

Conllnuo to check tho term ination condition? (yoc/no)
yes

The next problem is what you must do when th is condition Is
s a tis fa c to ry . P lease choosa one nuiber from the followings:

1. In se rt the new d a ta ;
2 . Caapare the in serted data w ith the value of ro o t and then

make a recu rsive c a l l again.
3. Do nothing.

3
Only the f i r s t a ction Is c o rre c t. Insert the new d a ta .
Before tho term ination condition I t s a tla l to d , the algothm
Issues the recu rsive c a l l to find a proper place to tn so rt
a mar d a ta . Since the base case has been reached, you need
to In se rt the data a t th is n tn en l.

Continue to chock tho term ination condition? (yes/no)
yes

Undor the torm lnallon cond ition , you nond to apply a nm
node and f i l l f t up w ith the necessary da ta . The problem
Is where these operations should be put?
Please choose one nanber bellow.
1. At the very beginning of the procedure even before the

ba te case .
2 . Vhen the base case Is reached.

t
T h a t's not c o rre c t. I f you apply a new node before checking
the base case , every recu rs ive c a l l w ill get one nnr nodo and
th s recu rs ion w ill not be ceased u n t i l 1 the s lacks overflew.
So th s operation should be given when the base case reaches

Continue to check the term ination condition? (yes/no)

type
nodeplr = 'node; I
node : record I

Item : Integer; I
Lchlld, Rchlld ! nodeplr I

end;
tab le = nodeplr;

var T: tab le ;

procedure croa le(var T: ta b le) ;
begin

T := n it
end;

procedure 1nsert(var T: ta b le ; nouilem; In teger);
begin

nnr(T);
T*.Item := n e u llm ; !
T*.Lchlld := n i l ;
T*.Rchlld := n i l ;
I f T : n i l than

If nowllm < T '.l lo n
then ln s sr l(T " .lc h U d , nouilen)
e lse ln serl(f* .R ch lld , noultora)

end;

procedure b u lld lree (v a r T: ta b le) ;
var n , l ,k : in teger;
bogln

w rlle ln f 'P le a so Input the nurber of nodes ') ;
read(n);
w rlle ln ('P le a se input the node ') ;
fo r 1:= 1 to n do
begin

read(k);
lnsnrl(T ,k)

end;
Bnd;

procedure inorder(T: tab le);
begin

If T O nll then
begin

Fig. 23. Part O f A Checking List In Use

to the related questions and choices. The m isconception types are listed in the tty win

dow finally.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 .5 3 Types o f m istake and misconception checking

W hen the system finds the mistakes and misconceptions in the diagnosis process, it

reports their types and gives very brief explanations in the tty window. For the novice

students, they may not fully understand the meaning of erro r messages. The types needs

to be further explained. The system uses one piece of text to explain one mistake type or

one m isconception type. For each type the student can call the text displayed in a text

fram e when he needs. There are two buttons facilitating the type checking which are

listed bellow:

• M istake type checking button

This button is labeled as ’’M istake 'types.” If a student clicks the left mouse button

a t this button and gives the type num ber following the prom pt in the message item,

then the system will open a fram e to show the text which gives the corresponding

explanation to th a t m istake type.

• M isconception type checking button

This button is labeled as ’’Misconceptions.” Using operations on this button in the

sam e way as on the m istake type checking button, a student can see the further

explanations to misconceptions in the text frames.

Fig. 24 shows the text fram es th a t give the explanations for misconception type Cj

and type C7. These types are related with the report in the diagnosis process displayed in

tty window.

5.6 File System o f RPT

The following subsections introduce the file system o f R PT The R PT system is

only a prototype now. But the way the files are organized and the system works provides

the system engineers facilities to easily add the subjects to be tutored and the problems

to be diagnosed. Whenever an instructor wants to add a recursive program in a different

subject, the system engineer can create a group o f files and pu t them into the system.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• r '

iCy..yU» -
to rn a d o l cp f 2 3 .r s d o r t to f i / .
I or n t d o t 9C reendi*'p >f24.r3

\
Dynaatc In s tru c t Ion

L o i d 1 1 Sivo LOU lit
PUgnoBO H U tiV i Typo#

r«HtuiV In flru c llo n

r Execute

W aconceptlona

L e i 's consider what U se Is appropriate la apply a neu node,
Ve need lo apply a niu rad* lo hold th t m u I t n . And lh l«
operation can b* don* before o r a f te r we assign th* data Inlo
th* corresponding f ie ld . la th a t co rrac l? <y*a/na)

yoc
That Is wrong. You should apply a raw node f i r s t , then
assign tho data Into I t . Otherwise, o llh o r onn node w ill bo
overw ritten Dr the node you are try ing to assign data In
has n i l ! p o in te r.

Conttnuo to chock the t in s to apply n<u rads? (yes/no)
yes

So ue can view the operations of applying new node and
assigning data to I t as ora group. Thg next question Is
when we use th is group to apply the noj node?

1. Vhen tha la m in a tio n condition la true;
2 . Vhen tha nontern lnatIon condition la Irua;
3 . At the very beginning of the procedure, th a t Is

before any o th e r operations;
d . O thers.

P le a s e c h o o se o ra nunber.
3

Ih a t w ill cause th is operation lo be atada a t every
recu rs ive c a l l . A ctually I t nay Ju st apply tha Inf In it
nodes for the f i r s t data u n t l l l slacks are overflow.
The term ination condition can raver be reached.

Continue to check tha tin e to apply niu node? (yea/no)
yea

fioaldo* the one group under the term ination condition , do ue
road lo pu l thq group under the nonterminal Ion condition
(th a t Is the recu rs ive caan) too? (y/n)

n
Thai Is c o r r e c t . .
You have the following m liconceptlon(s):
H1aconceptlon7: M isunderstanding when to apply a n w node
lo hold the new item.
M fsconceptlonl: Not having the co rrec t concept of term ination
fo r a recu rs ion .

You can c lic k Taft button on the 'M isconceptions'
bu tton to get fu r th e r explanations lo your misconceptions.

Any o ther recu rs iv e procedure which you uan l lo check? (y/n)

Pleeee give the n a i a r o f the mle

Than c lic k the r f [M mouse button a t tha 'M laco m p tlo n s ' bu tton .
F ile name; wrong.p

ogrsm ln o rd e r(lrp u t,o u tp u t;;

explanation to mlsconcep

The mlsconceptlonl Is no concept of larmlna
ton to the recursion or lalsundsrstandtng th is

concept. The term ination condition should be
presented In a recursive procedure.

ocadure Inaertf var T
gin

nna(T);
T ". Item : - raw U ni;
T".Lchlld := n i l ;
T '.ftch lld ;= n i l ;
1f T = n il than

If rawlton < T ' . l l m
than 1 n sv l(f* .L ch lld , n o u ll e n)
e lae 1nsert(I* .R chlld , m utism)

tab le ; m u lla n ; In teger);

Explanation to aleconcaptlon

Th* misconception? Is noTonceot about th*
lin e when apply the neu nods to hold noaitae.
Operation for applying tho neu node should be
located a t co rrec t place as an action In base
case.

procedure lnord*r(
begin

If T O n l l then
b eg in

Fig. 24. Types Checking For M isconceptions

5.6.1 File system Tor instruction

In tlic R PT system, one lesson is one recursive program . For each program there

a rc a group of related files. Their names arc ended with .instruct, .p, .out, .input, and

.program 'respectively. For example, if there is a lesson of inorder traversal program and

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the corresponding source code file is inorder.p, then there is a set of files for this lesson,

whose names are inorder.instruction, inorder.out, inorder.input and inorder.program.

• .p file

This file holds the source code of a recursive program for a lesson.

• .instruction file

This file gives the textual description to introduce the basic concept about one recur­

sive program . For example, for the program of inorder traversal problem solving the

text explains the problem in terms o f the general problem description. If it is neces­

sary, it will help student review some prerequisite knowledge, such as ’’W hat is inord­

er?”; ’’W hat is the differences between inorder and preorder, inorder and postorder?”.

The text also includes the specification for using the tutoring tool. The text file will be

shown in the text window when a student selects the selection button in the start panel

o f a root node, like the fram e in Fig. 19.

• .out file

This file is an executable file prepared by the system engineer. W hen a student asks to

run the program in .p file, the system automatically generates the corresponding ex­

ecutable program with the file nam e ending with .out and executes this file.

• .input file

This file is for the specific display o f input data. The system engineer makes this file.

For example, for inorder traversal program the system engineer makes this kind of file

for students to see the graphical representation of input data.

• .program file

This file holds the recursive procedure which is picked from the program in file .p by

the system. When a student studies on a program, the system will display the proce­

dure in this file on the program list panel. For the inorder traversal procedure, the

system provides the functions of execution and the function of display. Both of the

functions can work on different instances of this recursive procedure. A student can

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

see the execution result for the current input when he clicks the left mouse button at

the procedure header and see the display of a spread node for next level o f recursion

when he clicks the button a t the recursive call statem ent in the program list panel. For

other program s, the system needs to give different functions.

The first four kinds o f files are prepared by the system engineer and the last one is

generated by the system. For each new subject, that is a recursive program, the system

adds these four files into the system. When the system generates the lesson menu, it

makes the m enu one item longer since the system finds there is one more .instruction

file in the system. Thus the length of menu is exactly according to the num ber o f lessons.

This is a flexible way to add new lessons.

5.6.2 File system for diagnosis environment

Files in diagnosis process supports the problem understanding, mistake detecting

and m isconception recognition. There are following different kinds o f files.

• Problem description file

This file gives the textual description to one recursive program when a student selects

a recursive program to work on. This text file has the nam e ending with .problem. This

file briefly introduces the basic concepts about that recursive program and the way to

sta rt to solve the problem. It gives the information such as ’’what is the problem ?"

’’W hat is the recursive relationships in the problem ?” ’’W hat is the term ination condi­

tion of the recursive program ?” This file is displayed when a student selects a problem

from the problem selection button in the control panel.

• Recursive procedure file

This file holds the recursive procedure which is picked out from the program in file .p

by the system in diagnosis process. This file has the sam e nam e as the recursive proce­

dure name. W hen a student selects a recursive procedure to work on, the system be­

gins a structure analysis on this procedure during the m istake detection process. The

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system also displays the procedure in this file in the tty window to let the student

review.

• M istake explanation file

For each mistake type there is one file to explain the corresponding mistake. It is

aim ed to help students to understand what kind m istake he has m ade. This text de­

scription is a more detailed description than the brief information in the m istake re­

port. This file is displayed when a student requests from the mistake type button in

the control panel.

» M isconception explanation file

For each m isconception type there is one file to explain it. The system uses it to help

students to understand w hat kind o f misconceptions he may have. This text is a fur­

ther explanation to the misconception. This file is displayed when a student requests

from the m isconceptions button in the control panel.

The system engineer can add m ore recursive problem, mistake types and misconception

types whenever needed. For the different problem s he needs to add different problem

description file and support flies. W hen the m ore m istake types and m isconception types

are found, the corresponding explanation files o f mistake and m isconceptions need to be

added.

5.7 Features of RPT environment

T he R P T environment is built with the hypertext model plus the program execu­

tion. I t provides graphic illustration, m ulti-dim ension display and visualized proceeding

to help students to understand a recursive problem solving process.

5.7.1 G raphic illustration

Pictures and diagram s can readily be used in the knowledge representation, and

sometimes they can give m ore information. Graphic representation can immediately

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

show the objects and their relationships so that people can accept information promptly

by using hum an intelligence. The recursive programming is very difficult to be accepted

by novices especially when they first encounter it. It seems th a t an unknown process is

built over the sam e unknown process, only in multiple different ways. Indeed, comparing

with other programming concepts, such as variable definition, input, output, loop struc­

ture, it is difficult to m aster. Using a com puter to teach students, especially when it is

possible to supply a graphic illustration environment, not just verbal interactions, will

provide an opportunity to alleviate the degree o f difficulty. The R PT environment allows

students to use the processing tree to represent the recursive relationships in nested

program s a t different levels and to use the graphic representation for a binary search

tree to depict the input data. Thus, this environment provide one more dimension in

user-interface than other programming tu tor system which only provide dialogue and

menu. The environment o f graphic illustration, in which the student learns the concepts

and details about recursive programming, can foster intuition for abstract concepts and

will m ake a lasting impression on the mind of students.

5.7.2 Multi-dimension display

In the R P T environment, travel o r search among the spread nodes in a processing

tree can be easily carried ou t by a simple click on the mouse button from any node in

the tree. This m ulti-dim ension retrieval process furnishes multiple dimension navigation

paths. In the m ost tu tor environments, only the static display is allowed. These environ­

m ents only give display for the current state step by step in the linear order, such as in

the system LISP tu tor and GEOM ETRY tutor [Anderson 89]. Sometimes the sequential

display conforms the course o f hum an knowledge acquisition. But the m ulti-dimension

display is m ore powerful to catch the brainstorm that just flashed through the student’s

m ind and to follow the instantaneous idea in the cognitive processes. The R PT environ­

m ent provides the display at multiple level not only for program code but also for the

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input and the execution result of corresponding program. A nd this display can be con­

trolled by students. This mixed-initiative display endows students with more chances for

creative thinking.

5.73 Visualization of recursion

T he m ost difficult thing for student to learn the recursive program ming is that the

program is too elegant and succinct to understand the program content. This is due to

the feature o f the recursion that it defines an infinite process in a terse statem ent. In the

R PT environm ent the automatically generated spread node can unfold the process of a

recursive program. The execution result for the subset of a corresponding input data can

be displayed by the student’s requiring. Thus, the originally hidden program and the

underneath process are visible to the student. W hen a student learns the case at the

spread node, he will see corresponding unfolded program by visually opening the knowl­

edge environment. This gradational display allows students to go through the processing

tree from the roo t to any node in the tree a t any level, therefore get corresponding

program a t an incremental refinement. Different levels of refinement are needed for ef­

fectively tutoring different students.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER SIX

EMPIRICAL EVALUATION

ON

THE PERFORMANCE OF RPT

Previous chapters have presented the IA D I diagnosis model and its applications in

a recursive program ming tutoring system. This chapter evaluates the perform ance of

R PT with em phasis on the IAD I diagnosis model.

The evaluations of ITSs have been underem phasized in the past. Even though there

are few of ITS systems intended to do so, there is no standard set of evaluation methods

for addressing these problem s (Littman and Soloway 88). Because the field of ITSs is too

young, building ITSs is still somewhat an art, and there are few ITSs that can be called

’’finished.” Designers of ITSs are currently more concerned with usefully guiding the

development of their systems, than with determ ining if they are effective educational end

products.

The evaluations o f R PT reported here show an encouraging result from the experi­

ence in diagnosis processing o f R PT and its running examples. The observations and

analyses show tha t students are learning from the tutor. And this fact is consistent with

our subjective efforts and wishes when we set out to construct the tu to r with the diagno­

sis model.

Although em pirical tests indicate that an encouraging result has been achieved,

there still are some problems. These problems involve transporting the tu to r from the

research environment to the practical environment. It needs to pay more efforts to solve

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these problem s. The further considerations and possible works are addressed in the next

chapter.

6.1 Bug Collection

The IA D I knowledge base currently is for insertion problem which is a problem of

inserting nodes into a binary search tree recursively. The possible m istakes in the IADI

knowledge base are classified into thirteen different types. This classification is based on

the program structures of students’ program s for solving this particular problem. These

m istake types are sum m arized from the students’ solutions to the insertion problem in

their homework and class work for the PASCAL program ming class, and also from the

sam ple program s provided by experienced instructors.

A t the first stage, the author created bug program s to sim ulate the detection object

based on ob ta ined stu d en ts’ bug program s from helping studen ts to com plete their

homework. A t the first round, eleven different m istake types were summarized. These

m istake types were then investigated by several experienced program m ers and instruc­

tors, and two different m istake types (m istake type 12 and type 13) were added to the

knowledge base based on their experience. For each of these mistake types there is one

program module in the R PT system to be implemented which is used to analyze and

recognize the corresponding mistake.

Then the R P T system is used to analyze the students’ programs, and is also ex­

pected to receive m ore information from the real objects of the bug detection. In the

1990 fall semester, the intention o f collecting the bug solutions from the students’ home­

work failed because m ost subm itted homework was a correct version of the solutions;

the interm ediate solution, the bug program s in their previous versions were not turned

in. In the 1991 spring semester, students were asked to subm it their program s for the

insertion problem during class time as class work. The inform ation obtained from their

class w ork is shown in Fig 25.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Total num ber o f programs : 27

Num ber o f analyzed program s : 2 0

Num ber of correct program s : 6

N um ber of bug programs : 14

N um ber of bugs : 2 0

Fig. 25. Program Collection

This class work was taken in 30 minutes. The purpose of collecting these programs

was to get to know what is the students’ thoughts when they were learning the recursion,

and w hat are the possible mistakes they will make a t the beginning. There were about 40

students in the class, but only 27 program s were subm itted. The 27 programs were made

by 24 students. There are three programs in the different version, but by the same stu­

dents. A m ong the 27 program s, only 20 program s are analyzed because these 20 pro­

gram s are syntax error free programs and they are significant for the insertion problem

solving. T hat is, we do not want to analyze on incomplete program which has no m ean­

ing to solving the problem, even if there is no syntax error in tha t program. There are 6

program s which are bug free and give correct solutions. In the other 14 programs there

exist 20 m istakes which were going to be analyzed by the R PT system.

6.2 Evaluation of Bug Detection and Bug Collection

The prelim inary R PT system ran the 14 students’ program s and the result of the

sam ple data is shown in Fig. 26.

T he total num ber o f existing bugs in the 14 student’s program s is 20. From the

results we can see th a t the preliminary R PT system can recognize the m ost of the mis­

takes, (90% in this test). B ut some m istakes are misreported, which means those base

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Num ber of bugs :

No. of bugs recognized correctly :

No. o f bugs recognized incorrectly :

No. o f m isdetected bugs :

20
18

2
6

Fig. 26. Result O f Running Preliminary RPT
System On Sample D ata

are classified as the incorrect bug category. For example, the two bugs recognized incor­

rectly in Fig. 26 were erroneously detected as m istake type 11 when they were actually

m istake type 6 . There also existed some m isdetections under which the correct programs

were looked upon as bug programs or the correct parts of the code were reported as

mistakes. In three bug program s, a piece o f correct code is misdetected as mistake type

5. Also three times the system erroneously reported m istake type 6 in programs which

were correct. T he m isdetections are involved m ore than three modules in the preliminary

detection program. It was necessary to modify these modules in the preliminary diagno­

sis program in order to eliminate the misdetections.

T he reason for the misdetection is tha t the prelim inary system did not contain the

case which is m ore general. For example, for the mistake type 5, ’’Did not provide the

sm aller instance”, the module to check this m istake only checks whether the smaller

instance such as T ^ .L ch ild is presented in the actual param eters. However, some stu­

dents use the assignment statem ent like T := T ^ .L ch ild first, then they do not need to

present T ~ .Lchild in the param eters of the recursive call statem ent. They can write the

recursive call statem ent a s ’’insert (T newitem)”, instead o f ’’insert (T ^ .L ch ild , new-

item)”. T he sam e situations are present in other inconsistent cases. Obviously the system

should be able to cover the general cases. T he preliminary R PT system was remedied

after these inconsistent cases were found. Now the R PT system can detect the mistakes

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

correctly, the cases that misdetect bugs and incorrectly recognize bugs have disappeared

from the sample data. D ue to the variety of novice programs, it is certain that there will

be unexpected cases which the system will not be able to detect. This is one limitation of

the system, but it is not a problem of the essential detection approach.

The mistakes that were collected from the students’ program s happened to fall into

the catalogue of mistakes in the R PT diagnosis knowledge base. The distribution of the

twenty mistakes in students’ program s after running the revised R PT system is shown in

Fig.27.

M istakes in
Diagnosis KB

m i m2 m3 ni4 m5 m6 m 7 mg mg m 10 m n m 12 m 13

M istakes in stu­
dents’ programs 5 1 1 0 0 3 3 0 5 0 0 0 2

Fig. 27. Bug D istribution In Students’ Programs

From the bug distribution, we can see the mistakes m i ’’missing term ination condi­

tion” and the mistake 109 "not applying a new node to hold the new item ” are the most

common mistakes m ade by students since the percentage of these mistakes in the total

mistakes reaches up to 25%. Mistakes m6 "miswrite the term ination condition” and m7

’’missing key word which defines the variable param eter in the formal param eter defini­

tion” are easily m ade by the novice programmers. Both of them take up 15 percent of

mistakes in the sample data. M istakes m 2 ’’misplace the operation of inserting a new

node,” m3 ’’use a loop structure”, and m i3 ’’not apply a new node, bu t try to assign data

to it” are m ade sometimes but not as often. Some mistakes, such as 1114, ms, ms, mio,

m u and m p were rarely found in the sample data. These mistakes are ’’lacking param e­

ter in recursive call statem ent,” ’’did not provide the smaller instance,” ’’m isorder the

data in left subtree and right subtree,” ’’apply too many new nodes for inserting one new

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

item ,” ’’try to find nodes in a binary search tree instead of finding a place to insert a

node” and ’’create a new node after using it.” The percentage may be different in the

different group of students’ programs. It seems that the mistakes in the IADI knowledge

base can cover all of m anifestations in the current collected programs.

63 Evaluation of Misconception Diagnosis

The R PT system has been run with approximately 40 students in the ’’Problem

Solving and Programm ing Lab" class of the 1991 spring semester. During class time, the

instructor first briefly introduced the RPT system. This introduction includes what is the

basic purpose of R PT how to work in the R PT instruction environment and the diagnos­

ing environment, and also the system’s user menu. A fter that, a homework which in­

cludes the insertion problem is assigned to students. Then the students practiced using

R PT and tried to sta rt their assignment in class. Students either wrote their program in

the text window of the R PT diagnosis environment, or called their prewritten program

directly. A fter the program s passed the Pascal compilation, they were subm itted to the

R PT diagnostic process.

63.1 Comparison in two groups

M ost students can not get the correct solution by only running their program once.

Usually students detect fewer bugs than actually exist, and they take more time to find

them than is necessary for the experienced program m er and com puter tutor. W hen they

use the R P T system, students are inspired by the suggestions and hints received when

they work on the checking lists in the interactive communication with the R PT system.

A fter abou t one hour of class time including the instructor’s brief introduction and

working with R PT most of students acquire the confidence to com plete the assignment.

During their homework time, the tu tor helps students to complete the homework more

quickly than students can by themselves. With the tu tor students feel more confident

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

about trying to find out whether there are bugs, locating the bugs, and then correcting

the corresponding code.

The Fig. 28 shows the com parison num bers in cases there students complete the

\ Num ber o f stu­
dents completed
the course

Num ber of stu­
dents doing
the assignment

Number of stu­
dents finishing
the assignment

Percentage o f
the students
completed

Fall
1990 33 27 26 78.8%

Spring
1991

38 36 36 94.7%

Fig. 28. Comparison In Ttoo Groups

assignment in the spring sem ester and fall semester. The num ber of students complete

the course, ra ther than the num ber of registered students, is listed here because it is a

m ore reasonable base to show how many students are studying in the class. These cases

are in two groups; students in the fall semester did not use the R PT system, but the

students in the spring sem ester used R PT The assignment in the spring 1991 is an in-

order traversal problem plus the deletion of any node from the built binary search tree,

while the assignment in the fall 1990 was just a pure inorder traversal problem. Obvious­

ly the assignment in the spring was more difficult than the one in the fall. The result

indicates th a t com paring with the situation in spring semester, more students were will­

ing to and able to complete the similar bu t even more complicated assignment when

they can use the R PT system to help them to understand the basic recursive concepts,

diagnose the mistakes in their subm itted programs, and clear their misconceptions. Al­

though there may be o ther facts which can affect the students’ attitude to do recursive

assignment, we can see th a t the help from R PT is quite encouraging.

63.2 Diagnosis process shown from different versions

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some of the students subm itted the interm ediate results which become different

versions to be analyzed. Tracing the different versions is very helpful in analyzing the

system’s performance. For example, a student first subm itted his program, the first ver­

sion, of which has the mistake type 9 ’’not apply new node to hold the new item.” The

procedure is displayed in Fig. 29. When he entered the diagnosis environment, he got the

Procedure insert (var T : table; k : integer);
begin

if T < > nil then

begin
if T ' \ item < k then

insert (T ^ . Rchild, k);

if T ~ . item > k then

insert (T ^ . Lchild, k);

end;
end;

Fig. 29. A Student’s Program

error message after the m istake detection process and began a dialogue with the RPT

system. H e followed the checking list CLfcg) which is related to the necessity of applying

a new node and the way to use it, and found out the misconception. The questions in

the sam ple are such as

Do you think it’s necessary to have the new data saved in a node?

D o you need to apply a new node for holding this new data?

In order to apply a node to hold the new data, what function will you use?

D uring the interactive conversation the student was enlightened and realized he needed

to include the application of the new node in his program. A nother version in Fig.30,

which is subm itted by the student later, testifies to this conjecture.

In the program showed in Fig. 30 the student tried to correct the mistake type 9 in

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure insert (var T : table; k : integer);

begin

new(T);

T ^ .i te m := k;

if (T < > nil) then

begin

if T " \ item < k then

insert (T ^ . Rchild, k);
if T 'N. item > k then

insert (T ~ . Lchild, k);
end;

end;

Fig. 30. A nother Version O f The Program In Fig.29

the version shown in Fig. 29. But this version still was not correct. A nother mistake

appeared, type 2, ’’M isplace the operation of inserting a new node.” T hat showed that

even the student already knew he needed to apply a new node, but there was another

step needs to be considered. This step was to find the correct position in which to insert

the new node. Following the checking lists CL(c7) then, which contains the question like

’’when you need to apply a new node to hold the new item ?” and other related ques­

tions, the student realized what was wrong and found the correct place to insert the

node. Finally he corrected the m istake and got the correct solution and completed the

assignment successfully.

6.3.3 Results shown in finals

The test on the students final examination supports the claim that the R PT system

helps students avoid misconceptions in their programming.

In the final examination of the spring 1991 semester, the students were given two

problems. One is to write a procedure to calculate the height o f any binary search tree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Helman and Veroff 8 6) (we call it a height problem here), and another is to find a bug

on a given bug problem and correct it. In this final exam this procedure is required to

work with other given procedures to solve the problem. The insertion procedure is one

of the given procedures which is a basic step in building a binary search tree. One of

the correct versions to calculate the height is displayed in Fig. 31. By com paring the

procedure in Fig. 31 to the previous correct insertion procedure (one version is in Fig. 6)

Procedure height (var m : integer; T: ta b le);

var h i, h2 : integer;

begin
if T < > nil then
begin

m := m + 1;

h i := m;
h2 : — m;

height (h i, .Lchild);

height (h2, T ^ .R child);

if h i > h 2 then m : = h i;
else m : = h2 ;

end;

end;

Fig. 31. Procedure l b Calculate The Height

O f Binary Search Tree.

we find that some concepts implied in the two procedures are similar. These concepts

are about the term ination condition in a recursion process, the recursive relationship,

and the definition o f the variable param eter of a procedure. If we imagine the possible

m istakes in the height problem, the related mistake types may be the following:

M istake m i : M issing the term ination condition;

M istake m 3 : U se a loop structure;

M istake m 4 : Lacking param eter in recursive call statement;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M istake ms : D id not provide the smaller instance;

M istake mg : Miswrite the termination condition;

M istake m-j: M issing key word which defines the variable param eter in the formal

param eter definition.

Since there are many similar concepts in the two procedures, we can assume that

the students tutored by the R PT system with the problem solving of insertion will get the

benefits o f this and hopefully avoid sim ilar misconceptions and mistakes in the problem

solving o f height.

We manually analyzed the students’ solutions after the final exam, and got the

following results shown in Fig.32. In the final examination, only five students gave the

Num ber o f students who took the fin a l: 38;

Num ber o f students who subm itted the answer to this problem : 31;

N um ber of procedures having m l ; 0;

N um ber of procedures having m3 :0;

N um ber o f procedures having m4 :1 ;

Num ber o f procedures having m5 ; 0;

Num ber o f procedures having m 6 :0;

N um ber o f procedures having m 7 :1 .

Fig. 32. Finding From Students’ Solutions

correct solutions. M ost of students can not solve the problem completely a t the examina­

tion time. O ne reason is it is a little b it hasty with the 3 hours to solve two problems.

T he observation shows th a t the m ain obstacle is something in the logic o f the process

to find the height o f a binary search tree which is a harder problem than the insertion

problem . From the Fig. 32 we can see the results from the subm itted solutions. These

results indicate that after students used the R PT system to help them get rid o f some

m isconceptions, the m ost common mistake, type 1 , missing term ination condition, was

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

almost eliminated in this final exam. The easily made m istake type 6 is eliminated too.

and the another easily m ade mistake type 7, missing key word which defines the variable

param eter in the formal param eter definition were reduced to 1 out of 31 from 3 out of

27 (The one who had m ade the mistake type 7 in final was within the three who m ade it

in classwork). The m istake type 4, lacking param eter in a recursive call statem ent, ap­

peared in the final which had not appeared in the class work or homework before, but it

was in the diagnosis knowledge base. If we com pare this result with the manifestations

shown in Fig. 27, we can see that these results are quite encouraging.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER SEVEN

CONCLUSIONS

The previous chapters have discussed the Integration o f the Abductive and Deduc­

tive Inference diagnosis model and its application in a Recursive Programming Tutor.

The substantive issues and the state of the art have been presented. This chapter sum ­

m arizes this research and the contributions of the IADI model to diagnosis problem

solving, then proposes some further research issues.

7.1 Summary of IADI Diagnosis Model and Its Significance

T he abilities to understand the m ental activities of a student, and to detect and

correct misconceptions in the student’s understanding are the main features that distin­

guish the ITS from other systems such as expert systems and earlier CAI systems. This

motivates many researchers to concentrate their efforts on the student modeling problem

and diagnosis problem solving.

There are many different diagnosis m ethods provided in the existing student m od­

eling problems o f intelligent tutoring systems. Thble 1 in C hapter 1 listed the m ajor

diagnosis techniques in different student models. C hapter 2 described and discussed

these different techniques and further classified them into three types of diagnosis m od­

els. The enum erating model can work well when the problem size is small, o r the combi­

nation and the perm utation of facts, like the facts in subtraction, are easily obtained.

But it does not work well in more complex problems such as the case involving mental

states. The tracking model tries to track a student’s mental stages at every step in order

to establish a complete student’s mental model. But the feasibility of grasping every

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ental state of a hum an is questionable, and tightly following steps indicated by the

system restricts some possible solutions. The classifying model captures the design plans

and the significant issues to build a student model, therefore it is m ore realistic than the

tracking model, and m ore effective than the enumerating model. But this model does not

show how to deal with the complex relationships between basic conceptions and demon­

stra ted mistakes.

The IA D I diagnosis model is explored to diagnose students’ m istakes and miscon­

ceptions in complex problems. It is different from the existing diagnosis models. The

IA D I diagnosis model combines different types of inferences, the abductive inference

and deductive inference. The basic process is divided into three steps, mistake detection,

m isconception hypothesizing and misconception verification. These three steps are ac­

complished by structure analysis, abductive inference and deductive inference respective­

ly. The abductive inference is used to catch the plausible features o f hypothesizing pro­

cess while the deductive inference is used to presents the nature of verification process.

T hus it becomes an inferencing model, and the different inferences can be supplement

w ith each other. This model provides detection a t two levels. I t detects m istakes to show

w hat incorrect actions are, and also detects misconceptions to find why the wrong ac­

tions occur. Com paring with the detection a t only one level, this m odel can bring poten­

tialities of tutoring into full play. This diagnosis model focuses on the m ain conceptions

in a problem and catches the key steps in problem solving to avoid excessive details. It

also attem pts to connect the relationships between mistakes and m isconceptions in rules

for a particular problem, and associate design plans to program m ing conceptions. Thus

it provides rationality to elaborate conception during tutoring. This model simulates hu­

m an diagnostician’s reasoning process in cognitive activities in o rder to obtain a better

solution. This model works in a hypertext concept based tutoring environment. It allows

students to m aster the concept o f recursion and the a r t of recursive programming with

relative ease. The general model is outlined in Chapter 3 and the processes are de-

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scribed in C hapter 4, with an application in a recursive program ming tutor. The working

environm ent is illustrated in C hapter 5. Finally the empirical tests and evaluations are

presented in C hapter 6 .

T he following subsections address the significance o f the model by summarizing

the features th a t make the IA D I diagnostic model distinguish itself from other models

and also sum m arizing the contributions o f the R PT system.

7.1.1 TYvo-level detection

T he IA D I diagnosis model provides a two-level detection. The first is mistake de­

tection a t the action level. The second is misconception detection a t the conceptional

level. Diagnosis systems typically only detect mistakes. If a diagnostic process only indi­

cates mistakes, it will not be able to help students to understand the reason, and it may

not even be able to convince a student th a t mistakes were actually made. Obviously, it is

not sufficient if the diagnosis process in a tutoring system detects m istakes only on the

surface. It can not reach the fullest potential o f an intelligent tutoring system. In an

intelligent tutoring system, the diagnosis process m ust carry a step further to find the

m isconception so that it can provide the basis for a tu tor to give possible causal expla­

nations for incorrect actions, and for students to get a deeper comprehension, and there­

fore can elim inate a whole set of mistakes. Some tutoring systems provide only concep­

tional explanations to the detected mistakes. These explanations come from experience.

The formal relationships between m istakes and misconceptions are not summarized. The

IA D I d iagnosis m odel sum m arizes a set o f production ru les in the IA D I diagnosis

knowledge base th a t represent the cause-effect relationships between mistakes and mis­

conceptions which are considered as the most im portant principle to follow in a diagno­

sis system (Torasso and Console 89) (W hite and Frederiksen 90). A nd this helps the

system find m isconceptions from mistakes.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.2 Com bination of abduction and deduction

M ost expert systems, including tutoring systems, for diagnostic problem solving

only use deductive inference. Although the reasoning process based on this inference

mechanism is essential, it is not adequate by itself in solving many real world diagnostic

problems. There are some problem s associated with deductive inference systems. For

example, many o f them have an extensive list of conditions so that it is difficult to fire a

rule. And the deductive inference systems lack the representation of cause-effect knowl­

edge in their traditional production rules.

On the other hand, some expert systems for diagnosis use abductive inference only.

In such systems it seems that something is lacking when explanations to incorrect ac­

tions are needed. It lacks a good organization of the material to be explained. This is a

very im portant point in a tutoring system. By taking into consideration o f the complex

relationships between mistakes (in other problems they may be called symptoms, bugs,

or m anifestations) and misconceptions, and exploiting the features of abductive inference

and deductive inference, we have combined abduction and deduction into the diagnosis

process. This integrated diagnosis process has a hypothesis process and a verification

process which are very close to hum an diagnosticians’ process. A nd the rule form in the

IA D I knowledge base supports both abduction and deduction. The explanations to each

m isconception are well organized by the design plans which can be expected to have an

effective tutoring result.

7.1.3 C oncentrating the diagnosis on key steps o f problem solving

The IA D I diagnosis model is different from the existing tracking model and enu­

m erating model. The IAD I diagnosis model works by taking into consideration mental

states, but it does not enum erate all the m istakes derived from various mental states. By

studying the differences between experts and novices in different domains, cognitive psy­

chologists have discovered th a t students usually go through different conceptual stages,

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

especially in the critical ones o f learning a subject [Brown and Burton 87]. Thus teaching

is not the pouring o f knowledge into an empty vessel, but more a process o f reconceptu-

lization o f the critical issues. In the instruction stage o f the R PT system the tu tor tries to

grasp critical issues to induce general rules to a student who is learning the recursive

program ming technique, because clarifying and solving them are the crucial steps to

solve the whole problem [Shen, Zhang and Zhao 90]. In the diagnosis process this model

selects m ajor m istakes m ade on key steps in problem solving and fatal misconceptions

formed when learning a subject to form the diagnosis knowledge base, which contrasts

the tracking model that tries to arrange all mental activities and trace them. And the

items in a checking list for verification o f a misconception are chosen for presenting the

critical issues around the m ain steps o f a design plan to achieve a goal. This disposition

is m uch m ore efficient and reasonable.

In the internal process of the diagnosis model, the abductive process infers a se­

lected candidate hypothesis set Cs for a student. Every hypothesis in Cs is a probable

m isconception that the student may have. The deductive process then focuses on the set

Cs while the student works with the corresponding checking lists. Thus the efforts of the

tu to r’s instruction is focused on the student’s specific misconceptions ra ther than using

some generic instructions. It avoids requiring the tu tor to go through the same detail

when a different student is being tutored. These are the typical characteristics of an ITS

that has a instruction tailored to the individual needs of students.

7.1.4 Incorporating the process of tutoring into diagnosis

The system begins to tu tor while it is doing further diagnosis after the initial hy­

potheses are obtained. This is different from those systems in which the tu tor starts to

give instructions or explanations only after the diagnosis result is gained [Johnson and

Soloway 84] [Woolf and M cDonald 84]. In such processes, the scope of diagnosing p ro ­

gramming errors is limited to the information that is extractable from the buggy pro-

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

grams themselves. In the deductive reasoning process of the IA D I diagnosis model, the

system establishes checking lists to further detect a student’s m istakes which are unde­

m onstrative in the original buggy program, and therefore verifies a student’s misconcep­

tions and produces a more precise student model. During this process, the system also

gives instructions if the student answers questions inappropriately. The verification pro­

cess and the tutoring process proceed in an interactive environment. D uring the interac­

tion with a student, the system follows both the cause path and the design plan. The

corresponding instructions will help the student to understand the reason why he made a

mistake, and to understand the design plan how they can reach a correct concept. Thus

the tutoring process is incorporated into the diagnosis process in IADI. In this way,

students can receive instructions on particular misconceptions whenever they are told

there is something incorrect. These im prom ptu explanations and instructions can be

readily absorbed by students.

7.1.5 Nondcterministic diagnosis

T he IA D I diagnosis model produces a list of ranked misconceptions as the final

result. I t is not a determ inistic result. In cases where the intersection of man(cj) and the

detected m istakes is a subset o f the intersection of man(cj) and the detected mistakes, Cj

may still be a eligible misconception. Thus the method includes both Cj and cj in Cs as

appropriate.

In cognitive activities, excessively or rigorously determ inistic m athem atical models

may not be appropriate. For example, if we have the rules

c i — ► m i, c2 — ► m2 , c i — ► m 2,

and we are given M p = {mi, m2}, then Ci might be a good explanation for Mp and it

also is the minimal cover for M p in terms o f the Set Covering model [Reggia 85). But we

can not rule out c2 as the possible diagnostic result, because it is possible that the

student m ade m i through ci, and m ade m 2 through c2 under a different situation. In the

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IA D I diagnosis model, both c i and Cz are included in the final diagnostic list and are

ordered in appropriate way. Thus, this approach provides m ore reasonable result.

7.1.6 Hypertext tutoring environment

When we design an ITS, we should consider that the ITS works with a student who

does not understand the subject dom ain very well. There is no doubt that a well-de­

signed environm ent can enhance the capabilities of an ITS in many ways. The new tech­

niques and research ideas from com puter applications and cognitive science are opening

up many opportunities for creating a good instructional environment. The R PT system is

built in a hypertext based environment. Although the hypermedia technique has been

applied to teach English literature, cell biology [Yankelovich 8 8] and engineering [Bourne

89], it has not been used in program ming tutoring. The R P T system uses the hypertext

concept accompanying code execution to create a tutoring environment for recursive pro­

gramming. The significant cases and critical issues in the learning of recursive program ­

ming are presented in a m ulti-dim ension graphic environment. This environment can

also m ake the process originally hidden from the succinctly written recursive program

visible. It allows students to see through the recursive process at different levels of de­

tails and even get the execution result of the procedure a t each level. The environment

and its o ther features are described in section 5.7.

7.1.7 Evaluation of RPT

T he em pirical evaluation of R PT shows an encouraging result. The evaluation data

are based on the com parisons in the ’’Problem Solving and Programming L ab” classes

within two semesters. The system has been ru n with approximately 40 students in the

1991 spring semester. The com parison between the m istakes detected by R PT and the

mistakes detected by people shows that mistakes collected in the IA D I knowledge base

can cover all the m istakes dem onstrated from these students’ programs. W hen students

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

use R PT to solve the insertion problem, the progress steps can be seen from the differ­

ent versions subm itted from students. T hat is, the misconceptions were clarified by the

instructions from the R PT diagnosis and tutoring process. The data of the accomplish­

m ent of assignments assigned in the two semesters indicate that students were increasing

com petent in recursive problem solving since more students (in percentage) in the spring

1991 sem ester could complete the assignm ent than students in the fall 1990 semester

when not using RPT, even though the assignment was more complicated in the spring

1991 semester. Furtherm ore, most common mistakes were significantly reduced after the

students had used the system. This conclusion became m ore evident when we com pared

their class assignments and the final exams where harder problems but with similar

concepts were given. O n the o ther hand, other factors that were not indicated in the

analysis may also have played some role, even though they were not obvious. The sample

size may also be considered quite small.

7.2 F u ture Research Work

A s a first step in proposing and building a diagnosis model, the description about

the IA D I model is concentrated on the basic principles and the m ain steps. It definitely

has som e limitations. From the prototype environment to a real practical environment, it

still has a long way to go. In order to improve the perform ance of the diagnosis model,

there is a need from various perspectives. Several research issues are addressed in this

section.

7.2.1 The degree of diagnostic details

The deductive reasoning in the IA D I model is a process that verifies the hypothe­

ses from the selected candidates. The checking lists are used to list the possible manifes­

tations for every selected hypothesis. From the student's choices the tu tor can decide

what misconceptions the student may have. The more items a checking list has, the more

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

precise the student model can be. There is a tacit assum ption that tutoring based on

fine-grained student models will be more effective than tutoring based on coarse-grained

models. No one has attem pted to check this assumption. The thing one needs to know is

whether the fine-grained modeling is worth the effort, and whether students are willing

to answer so many questions in a checking list. Although the items are well organized by

the design plans, what degree o f detail is suitable for a particular system still needs to

be studied.

On the other hand, an acceptable view o f diagnosis problem solving behavior is

th a t problem solving is carried out a t multiple levels of abstraction. For example, a gen­

eral misconception can be refined to many specific misconceptions under the general

one. Thus, the knowledge structure for cause-effect relationships among the general mis­

conceptions, specific misconceptions, and mistakes may become more com plicated if we

consider that there is one m ore dimension added to the cause-effect relationship we

described in this model. The question is whether the multiple level, giving fine model

description is better, o r if the flat structure, giving coarse model description is better.

T he former may be able to give a m ore precise diagnostic result. The latter may be more

efficient a t giving a diagnostic result since fewer relationships need to be taken into

consideration. If the form er one is chosen, the knowledge structure m ust be rearranged

in the diagnosis knowledge base.

7.2.2 The diversity of mistakes

T he IA D I diagnosis model is first implemented in a recursive program ming tutor.

Usually the recursive program is short and its structure is not as varied as in other

kinds of programming problems, although the concept about recursion is not easily to be

understood. When the complexity o f a problem is increased or the size o f a solution

becomes larger, the m istake detection will become increasingly difficult, because the

types of structures in the solutions will be dramatically increased. Especially in the nov-

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ice program m ers’ solutions, bizarre mistakes under various misconceptions will emerge

one after another and the unexpected structure types will make detection difficult. Thus,

a structure based m istake detection may not be able to deal with it completely. Other

methods, such as combining heuristic control strategy, need to be put forward to com­

plem ent the structure based mistake detection.

7.2.3 Other Applications

Besides the topics mentioned in the last two subsections that need to be studied,

the im plemented R PT prototype must be further tested in a wider range, such as getting

m ore students to work with it and allowing it to tackle m ore diagnosis problems. Then

we can acquire m ore em pirical data and refine the diagnosis knowledge base and tutor­

ing system, and even replenish the diagnosis model.

There are also many other domains that the IA D I diagnosis model can be applied

to, such as o ther program ming languages, mathem atical subtraction, calculus, medicine,

or digital circuit. For each different area, there is a set of tasks to be put into effect,

such as bug collection, cause investigation, tutoring subjects induction, and so on. If they

are done, they would help us to test m ore thoroughly the effectiveness of the inferenc-

ing-based approach to diagnosing novice solutions. U pon successfully solving new issues

in other dom ains, this diagnosis model will be greatly improved and the generality of

this model m ay be proved.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

A dam , A nne and L auren t, Jean -P ie rre . 1980. LAURA: a system to debug student

program s. Artificial Intelligence 15: 75-122.

A ho , A lfred V., H o p cro ft, Jo h n E . and U llm an, Jeffrey D. 1974. T he design and

A nalysis o f C o m p u te r A lgorithm s. M enlo Park: A dd ison -W esley P ublish ing

Company.

A kscyn , R o b e rt M., M cC racken , D o n a ld L. and Y oder, E lise A. 1988. KMS: A

D istrib u ted H yperm edia System For M anaging Knowledge In Organizations.

Communications of ACM July 1988: 820-835.

A nderson, John R. 1983. Retrieval of Inform ation Form Long-term Memory. Science.

220, 1983: 25-30.

A nderson, John R. 1988. T he expert Module. In Foundations of Intelligent Ib toring

Systems, ed. Poison, M arth a C. and R ichardson, Jeffrey J., 21-54. H illsdale:

Lawrence Erlbaum Associates Publishers.

A nderson, John R ., Boyle, C .Franklin , C orbett, A lbert and Lewis, M atthew. 1990.

Cognitive Modelling and Intelligent TUtoring. Artificial Intelligence 42: 51-81.

B arr, A vron an d B eard , M arian . 1976. A n Instructional In te rp re te r For BASIC. In

Com puter Science and Education, ed. Colman, R.; and Lorton, R. Jr., (or ACM

SIGCSE Bulletin. Vol. 8 , no .l) 325-334. Am sterdam: N orth Holland.

Barr, Avron and Feigenbaum, Edw ard A. 1982. A pplication-O riented AI Research:

Education. Chap. in The H andbook of Artificial Intelligence (Vol. II \ 225-294.

Los Altos: William K aufm ann Inc.

Bhuiyan, Shaw kat H ., G reer, Jim E. and M cCalla, G ordon I. 1991. Caracterizing,

Rationalizing, and Reifying M ental M odels of Recursion. In Proceedings of The

In te rn a tio n a l C onference on th e L earn ing Sciences, in T h e In s titu te for the

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning Sciences. Northwestern University. Evanston. Illinois. USA. August 1991.

120-125.

Bonar, Jeffrey G . and Cunningham, Robert. 1988. Intelligent Tbtoring with Intermediate

Representations. In Proceedings of International Conference on Intelligent Thtoring

Systems, in Montreal. Canada. July 1-3. 1988. 25-32.

Bourne, John R., Cantwell, Jeff, Brodersen, Authur J., Antao, Brian, Koussis. Antonis

and Huang, Yen-Chun, 1989. Intelligent Hypertutoring in Engineering. Academic

Computing Sept., 1989: 18-38.

Brown, John Seely and Burton, R ichard R. 1975. M ultiple Representation of Knowledge

for Tutorial Reasoning. In Representation and Understanding: Studies in Cognitive

Science, ed. Bobrow, Daniel and Collins, Allan, 311-349. New York: Academic

Press.

Brown, John Seely and Burton, R ichard R., 1978. Diagnostic M odels For Procedural

Bugs in Basic M athematical Skills. C ognitive Science 2: 155-192.

Brown, John Seely, Burton, Richard R. and de Kleer, Johan 1982. Pedagogical natural

Language and Knowledge Engineering Techniques in SO PH IE I, II and III. In

Intelligent Thtoring Systems, ed. Sleeman, D .H. and Brown, J.S., 227-282. London:

Academ ic Press.

Brown, John Seely and Burton, R ichard R. 1987. Reactive Learning Environm ents for

Teaching E lectronic Troubleshooting. In Advances in M an-M achine Systems

Research, ed. Rouse, W.B., 65-98. Greenwich: JA I press,

Bundy, Alan, 1990. Catalogue o f Artificial Intelligence Techniques. Third revised edition.

New York: Springer-Verlag.

Burton, R ichard R., 1982. Diagnosing Bugs in a Simple Procedural Skill. In Intelligent

Tutoring Systems, ed. Sleeman, D .H . and Brown, J.S., 157-184. London: Academic

Press.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Burton, R ichard R. and Brown, John Seely. 1982. ”A n Investigation o f C om puter

Coaching for Informal learning Activities.” In Intelligent Tbtoring Systems, ed.

Sleeman, D.H. and Brown, J.S., 79-98. London: Academic Press.

B urton , R ich a rd R. 1988. ’’T h e E nv iro n m en t M odule o f ITS." In F o u n d a tio n s of

Intelligent T iitnnng System, ed. Poison, M artha C. and R ichardson , Jeffrey J.,

109-142. Hillsdale: Lawrence Erlbaum Associates Publishers.

Carbonell, Jaime. 1970. A I in CAI : An Artificial Intelligent A pproach to Com puter

A ided Instruction. IE E E Transaction on M an-M achine Systems. 11: 190-202.

Carlson, Patricia Ann. 1988. Hypertext: A Way of Incorporating U ser Feedback into

Online Documentation. In Tfext. Contexts, and Hypertext, ed. Barrett, Edward,

93-110. Cambridge: The MTT Press.

Chan, Thk-wai and Baskin, A rthur B. 1990. Learning Companion Systems. In Intelligent

Tbtormg_Systems a t theJC rossroads o f Artificial Intelligence and Education, ed.

C la u d e F ra s s o n a n d G ille s G a u th ie r , 1 -3 3 . N o rw o o d : A b lex P u b lis h in g

Corporation.

C harniak , Eugene and M cD erm ott, Drew. 1985. A bduction, uncertain ty and expert

systems. C hapter. In In troduction to A rtific ia l in telligence. 453-485. Reading:

Addison-Wesley.

Clancey, W illiam J. 1982. Tbtoring Rules for G uiding a C ase m ethod D ialogue. In

Intelligent Tbtoring Systems, ed. Sleeman, D.H. and Brown, J.S., 201-225. London:

Academic Press.

Clancey, William J. 1987. Intelligent Tbtoring Systems: A Tbtorial Survey. In Current

Tssue in Expert Systems, ed. Lamsweerde, A.V. and Dufour, P., 39-78. London:

Academ ic Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Collins, A llan and Stevens, Albert. 1982. Goals and Strategies of Inquiry Teacher. In

Advances in Instructional Psychology, vol. 2, ed. G laser, R., 65-119. Hillsdale:

Lawrence Erlbaum Associates.

Conklin, Jeffery. 1987. Hypertext: A n Introduction and Survey. IE E E Computer. Sep.

1987: 17-41.

Corbett, A lbert T., Anderson, John R. and Patterson, Eric G. 1990. S tudent Modeling

Tbtoring Flexibility in the LISP Intelligent Tbtoring System. In Intelligent Tbtoring

Systems at the C rossroads o f Artificial Intelligence- and. E ducation, ed. Claude

Frasson and Gilles G authier, 83-106. Norwood: Ablex Publishing Corporation.

D ate, Nell and Weems, Chip. 1987. Recursion. C hapter in Introductio to PASCAL and

S tru c tu re d D esign. 722-753. Lexington, M assach u se tts Toroto: D . C. H eath

Company.

de Kleer, J. and Brown, John Seely. 1983. Assum ptions and am biguities in Mechanistic

M ental M ethods. In M ental Models, ed. Gentner, D edre. and Stevens, Albert L.,

155-190. Hillsdale: Lawrence Erlbaum Associates.

Fann, K.T. 1970. Peirce's Theory of Abduction. The Hague: M artinus Nijhoff,

G arrett, Nancy, Smith, K aren E. and Myrowitz, Norman. 1986. Interm edia : Issues,

S trategies, an d Thctics in th e D esign o f a H yperm edia D ocum ent System. In

Proceedings o f the Conference on Com puter-Supported Cooperative Work. Austin.

Texas. Dec.. 1986. 163-174.

Geffner, H . 1989. D efault Reasoning, Minimality and Coherence. In proceedings o f the

firs t in terna tional conference on Principles o f Knowledge R epresentation and

Reasoning. Tbronto. O ntario. C anada. 1989. 137-148.

Genesereth, M ichael R. 1982. The Role o f Plans In Intelligent Teaching Systems. In

Intelligent. Tbtoring Systems, ed. Sleeman, D .H . and Brown, J.S., 137-155. London:

Academ ic Press.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gentner, D edre and Stevens, A lbert L. Eds. 1983. M ental Models. Hillsdale: Lawrence

E rlbaum Associates.

G oldstein , Ira P. 1982. T he G enetic G raph: A R epresentation for the Evolution of

Procedural Knowledge. In Intelligent Tbtoring Systems, ed. Sleeman, D.H. and

Brown, J.S., 51-77. London: Academ ic Press.

Halasz, Frank G. 1988. Reflections on Notecards: Seven Issues For the Next Generation

O f Hyperm edia Systems. Com munications o f ACM. July 1988: 836-852.

Halff, Henry M. 1988. Curriculum and Instruction in Autom ated Tbtors. In Foundations

o f Intelligent Tutoring System, ed. Poison, M artha C. and Richardson Jeffrey J.,

79-108. Hillsdale: Lawrence Erlbaum Associates.

H an, Fei Tzu. 1964. ”The Difficulties o f Persuasion.” In Basic Writings, translated by

Burton Watson, 73-79. New York and London: Columbia University Press.

H elm an , Paul an d V eroff, R o b ert. 1986. In te rm e d ia te P rob lem Solving and D a ta

Structures. Walls and M irrors. M enlo Park: The Benjamin/Cummings publishing

Company, INC.

H o lla n , Ja m e s , H u tc h in s , E dw in a n d W eitzm an , L o u is . 1984. S T E A M E R : A n

Interactive Inspectable Sim ulation-based Training System. Artificial Intelligence

M agazine. Vol.5, no.2, 1984: 15-27.

H orow itx , E llis an d S ahn i, S a rta j 1978. F u n d am en ta ls o f C o m p u te r A lg o rith m s.

Rockville: C om puter Science Press.

Johnson, Lewis; and Soloway, Elliot. 1984. Intention-based Diagnosis o f Programming

E rro rs . In Proceedings o f the N ational C onference on A rtificial Intelligence.

Austin. Texas. 162-168.

Johnson, Lewis. 1986. In ten tio n -b ased D iagnosis o f Novice Program m ing E rro rs .

R esea rch N otes in A rtific ia l In telligence . 6, L os A ltos: M organ K aufm ann

Publishers, Inc.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kruse, R obert L. 1987. G enerating Perm utations. Section in D ata S tructures and

Program Design. 278-282. Englewood Cliffs: Prentice-Hall, Inc.

Langley, Pat and Ohlsson, Stellan. 1984. Autom ated Cognitive Modelling. In Proceedings

of American Association of AI. 193-197. Los Altos: Morgan Kaufmann Publisher,

Inc.

Larkin, Jill H, and Simon, H e rb e rt A. 1987. Why a Diagram is (Sometimes) Worth

Ten Thousand Words. Cognitive Science. 11, 1987: 65-100.

Laubsch, J. H . 1975. Some Thoughts A bout Representing Knowledge In Instructional

Systems. In Proceedings o f the Fourth In ternational Jo in t C onference on AI.

Tnhili. USSR. 122-125.

Leestma, Sanford and Nyhoff, L any . 1984. PASCAL Programming and Problem Solving.

New York: M acm illan P u b lish ing C om pany, an d L ondon: C ollier M acm illan

Publishers.

Littm an, D avid and Soloway, Elliot. 1988. Evaluating ITSs: T he Cognitive Science

Perspective. In Foundations of Intelligent Tbtoring Systems, ed. Poison, M artha C.

and Richardson, Jeffrey J., 209-242. Hillsdale: Lawrence Erlbaum Associates.

Looi, Chee-Kit. 1988. APROPOS2: A Program Analyser For A PRO LO G Intelligent

Teaching System. In Proceedings o f Intelligent Tbtoring Systems. M ontreal.. June

1-3. 1988. ACM. SIGART SIGCUE. 379-386.

M anber, udi, 1988. U sing Induction to Design A lgorithm s. C om m unications o f the

ACM. November 1988, Vol. 31, no. 11:1300-1313.

M ille r, M ark L. 1982. A S tru c tu re d P la n n in g an d D eb u g g in g E n v iro n m e n t for

Elem entary Programming. In Intelligent Tbtoring Systems, ed. Sleeman, D.H. and

Brown, J.S., 119-135. London: A cadem ic Press.

Pearl, Judea, 1988. Probabilistic Reasoning In Intelligent Svstem s-Jjelworks o f Plausible

Inference. San Mateo: Morgan Kaufmann Publisher, Inc.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Peng, Yun and Reggia, Jam es A . 1990. A bductive Inference M odls for D iagnostic

P ro b le m -S o lv in g . S p rin g e r S e rie s o f Sym boloc C o m p u ta tio n - A rtif ic ia l

Intelligence, ed. Loveland, D.W. New York: Springer-Vcrlag.

Poison, M artha C. and Richardson, Jeffrey J. 1988. Foundations of Intelligent Tbtoring

Systems. Hillsdale: Lawrence Erlbaum Associates.

Pople, Harry. 1973. O n the M echanization of Abductive Logic. In Proceedings of the

International_Joint .Conference on Artificial Intelligence Conference. 1973.147-152.

Reggia, James A., Nau, D ana S., Peng, Yun and Perricone, Barry 1985a. A Theoretical

Foundation For Abductive Expert Systems. In A pproxim ate Reasoning in Expert

Systems, ed. G upta, M adan M., Kandel, Abraham , Bandler, Wyllis and Kiszka,

Jerzy B„ 459-472. N orth Holland: Elsevier Science Publishers B.V.

Reggia, Jam es A., Perricone, Barry, Nau, D ana S. and Peng, Yun. 1985b. Answer

Justification in Diagnostic Expert Systems, part I : A bductive Inference and Its

Justification. IE E E Transactions on Biomedical Engineering, vol BM E-32, No.4,

A pril 1985: 263-267.

Reggia, Jam es A ., Perricone, Barry, Nau, D ana S. and Peng, Yun. 1985c. Answer

Ju s tif ic a tio n in D iag n o stic E x p ert System s, p a r t II : S u p p o rtin g P lausib le

Justifications. IE E E T fa n sa c tio n so n Biomedical Engineering, vol BME-32, No.4,

April 1985: 268-272.

Reiter, Ray. 1987. A Theory of Diagnosis From F irst Principles. Artificial Intelligence.

vol. 32 (1), 1987, 57-95.

Reiser, B rian J., A nderson, John R . and E arrll, R obert G . 1985. D ynam ic S tudent

m odeling in an Intelligent TUtor fo r L isp Program m ing. In Proceedings of the

N inth In ternational Jo in t Conference on A rtific iaU n te lligence C onference., los

A ngeles. 8-14.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sandberg, J.A .C. 1987. The Third International Conference on Artificial Intelligence and

Education. AICOM . 0. 51-53.

Self, John A., 1988, Bypassing The In tractab le Problem o f S tudent M odelling. In

Proceedings of International Conference on Intelligent Tbtoring Systems. July 1-3.

1988 in M ontreal. C anada. 18-24.

Shen, Stewart N .T and Zhang, Jingying. 1989a. A Knowledge-Oriented Hypermedia

System. In B IG R E 63-64. M ay 1989. Workshop on O bject-O riented Document

M anipulation. Rennes. France. 29-31 May 1989. 307-316.

Shen, Stewart N .T and Zhang, Jingying. 1989b. Recursive Programm ing Tbtoring system.

In Proceedings o f The Sixth IASTED International Symposium: Expert Systems

Theory and Applications. Los Angeles. CA. 14-16 Dec. 1989. 60-63.

Shen, Stewart N .T, Zhang, Jingying and Zhao, Shensheng. 1990. A Tbtoring System for

Critical Thinking. In Proceedings of The Eighth Annual Conf. on Technology and

Innovations in Training and Education Conference, a t Colorado Springs. Colorado.

12-16 M arch. 1990. 448-458.

Shen, Stewart N .T and Zhang, Jingying. 1991. Integration of A bductive and Deductive

Inference Diagnosis Methodology In Intelligent Tbtoring. In Proceedings of The

International Conf. on Artificial Intelligence and Simulation, held in New Orlean.

L ou isiana 1-5 A pril 1991. ed ited by R . J. U ttam singh an d A. M . W ildberger.

127-132. San Diego: A Publication o f The Society for Com puter Simulation.

Shortliffe, E . H . 1976. C om puter-based M edical. Consultations: M YCIN. New York:

A m erican Elsevier.

Siuru, William D. 1989. Educational Applications - Challenger: A Dom ain Independent

Intelligent Tbtoring System. IE E E Expert sum m er 1989: 77-79.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S leem an, D an d Brown, J.S . 1982, In tro d u c tio n : In te lligen t T u to ring System s. In

Intelligent Thtoring Systems, ed. Sleeman, D .H . and Brown, J.S., 1-11. London:

Academ ic Press.

Soloway, Elliot M., Rubin, Eric, Woolf, Beverly P., Bonar, Jeffrey and Johnson, W.Lewis.

1983. M EN O -II: an A l-based Programming TUtor. Journal of C om puter-based

Instruction. Vol.10, no. 1: 20-34.

Stevens, A lbert and Collins, Allan. 1977. The Goal Structure of a Socratic Tbtor. In

Proceedings nf the National ACM Conference. Seattle. Washington. 256-263. New

York: Association for Com puting Machinery.

Stevens, Albert, Collins, Allan and Goldin, Sarah E. 1982. M isconceptions in Student

U nderstanding. In Intelligent Tbtoring Systems, ed. Sleeman, D.H. and Brown, J.S.

13-24. London: Academic Press.

Torasso, P ietro and Console, Luca, 1989. Second G eneration Expert Systems. Section in

D ia gnostic Problem Solving. Com bining H euristic . A pproxim ate and Causal

Reasoning. 13-24. New York: Van N ostrand Reinhold.

Trigoboff, M. and Kulikowski, C. 1977. IRIS: A System for the Propagation o f Inferences

in a Sem antic Net. In Proceedings o f the In ternational Jo in t C onference on

Artificial Intelligence Conference. 1977. 274-280.

Vanlehn, Kurt. 1988. Student Modeling. In Foundations o f Intelligent Tbtoring System,

ed. Poison, M artha C. and R ichardson, Jeffrey J., 55-78. Hillsdale, New Jersey:

Lawrence Erlbaum Associates.

Wallach, Bret. 1987. Development Strategies for IC A I on Small Com puters. In Artificial

Intelligence and Instruction, ed. Kearsley, Greg, 305-322. Menlo Park, California:

Addison-W esley Publishing Company.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wenger, Etienne. 1987. Artificial Intelligence and Tbtoring Systems.. Com putational and

Cognitive A pproaches Tb H ie Communication Q f Knowledge. Los Altos: Morgan

Kaufmann Publishers, Inc.

White, B arbara Y. and Frederiksen, John R. 1990. Causal M odel Progressions as a

Foundation F or Intelligent Learning Environm ents. A rtificial Intelligence 42:

99-157.

W ied en b eck S u san . 1989. L ea rn in g I te ra tio n a n d R ecu rs io n F rom E x am p les.

International Journal M an-M achine Studies 30, 1-22.

W irth, Niklaus, 1976. Recursive Algorithms. Chapter in Algorithms + D ata Structures

- Programs. Englewood Cliffs, N J.: Prentice-Hall, Inc.

Woolf, Beverly P. and McDonald, David D. 1984. Building a Com puter Tutor: Design

Issues. IE E E Computer, vol.17, no.9: 61-73.

Woolf, Beverly P. 1988. Intelligent Tlitoring System: A Survey. In Exploring Artificial

Intelligence, ed. Shrobe, H .E. and the American Association for AI, 1-45. San

Mateo, California: M organ Kaufmann Publishers, Inc.

Yankelovich, Nicole, H aan, Bernard J. and Drucker, Steven M. 1988. Connections in

C o n tex t: th e In te rm e d ia System . In P ro ceed in g s o f th e 21 A n n u a l H aw aii

International Conference on System Sciences, vol II 1988. 715-724.

Younggren, Geri. 1988. Using an O bject-O riented Programming Language to create

Audience-Driven Hyperm edia Environment. In Tfext. Contexts, and Hypertext, ed.

B arrett, Edward, 77-92. Cambridge, M assachusetts: The M IT Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 1991

	Integration of Abductive and Deductive Inference Diagnosis Model and Its Application in Intelligent Tutoring System
	Jingying Zhang
	Recommended Citation

	tmp.1571144940.pdf.CxET5

