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Abstract 

In this thesis, I look at the current state of research in two fields: 

the cognitive psychology of learning and expertise & the development of 

Intelligent Tutoring Systems, especially their methods of modelling the 

users knowledge state. Within these areas I proceed to examine the way 

that these theories have overlapped in the past and consider their recent 

divergence, suggesting that this parting of the ways is premature. I then 

consider other relevent research so as to suggest a hypothesis where a 

symbolic connectionist approach to the modelling of knowledge states 

could be a solution to previous difficulties in the field of Intelligent 

Tutoring. This hypothesis is then used to construct a method for its 

examination and also a computer program to analyse the collected data. 

I then undertake experimental work to validate my hypothesis, and 

compare my results and methods with a pre-established technique for 

interpreting the data, that of multi-dimensional scaling. Finally the 

method now shown to be feasible is discussed to indicate the its sucess 

and highlight its shortcomings. Further suggestions are also made as to 

further research avenues. 
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Chapter 1 

Introduction 

The purpose of this research work has been to examine the possibility of 

designing an Intelligent Tutoring System for Archaeological Science, and in particular 

to look at how such a system could represent the knowledge of this field. Within this 

thesis I examine the current state of the research literature in the fields of Cognitive 

Psychology and Intelligent Tutoring to enable the identification of a suitable method 

with which to pursue the modelling of Archaeological knowledge. This looks at the 

wider issues of teaching and learning as a necessary pre-cursor to the specific 

instances of the application of these theories in Intelligent Tutoring. In particular I look 

closely at the underlying pedagogy of these techniques, and criticise them for their 

shortcomings, offering an alternative. The work draws mainly upon the differences 

between expert and novice performances within a knowledge domain and how these 

differences may be identified and quantified. 

The study is performed using a method identified as holding potential to 

solve the problems already identified in previous works - the technique is that of 

multiple constraint satisfaction, as exemplified by the symbolic connectionism 

approach of Holyoak & Thagard (1989, 1990). Using a sample population of novices 

(first year undergraduates) and a small set of experts (three University Lecturers) the 

ability of this method is compared and contrasted with the established methods of 

multi-dimensional scaling. The results and conclusions of these experiments are then 

discussed, and further studies identified. To start with, I begin my review of the 

literature with that of Learning & Expertise. 
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Learning and Expertise 

It is difficult to restrict oneself to a single field of psychology when 

considering learning and expertise. This is because one cannot simply look at how 

people acquire expertise and become experts without firstly defining what an expert is -

what about them it is that sets them apart from the novice. This consideration has 

been addressed and the opinion of psychologists (or at least the general consensus) is 

that an expert can perform better than a novice at the particular field, especially at 

problem solving in the field (be it novel problems or familiar problems). Thus we have 

to look to the field of problem solving and the different psychological theories which it 

has produced. Only with due consideration to how an expert is supposed to function 

can we then carry our discussion forwards to see how an expert is different from a 

novice in the light of these theories. It is my intention, therefore, to firstly look at 

problem solving, and to rapidly move through theory from the historic to the current. 

Then armed with this prior discourse I shall move on to look more particularly at the 

question of what learning and expertise are. 

Problem Solving 

The first theories expounded on problem solving may be accredited to the 

Gestalt psychologists, such as Duncker (1945) and Kohler (1969). They understood 

that there were information processing types of skills, but also recognised the 

limitations of such skills, defining Set and Functional fixedness. However, they were 

intrigued by insight or ill-defined problems, and the way in which the answer seemingly 

'came' to one in a 'flash' with no apparent conscious thought process. An example of 

such a problem is that set by Maier (1933). Subjects were given a task of tying 

together two pieces of string which hung down from the ceiling. The distance between 

them was too great for you to simply reach out to both simultaneously, but an array of 
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standard tools lay on the floor to help you. The solution to the problem was to use a 

pair of pliers as a bob-weight on one string and set it swinging, thus getting it close 

enough to the other string for the subject to grab hold of both together. In Maier's 

experiment, subjects who did not work out the problem in 10 minutes were given a 

'subconscious' clue. An experimenter would come in to check on their progress and 

'accidentally' brush the string swaying with their shoulder. Many subjects obtained 

insight immediately afterwards, even though they couldn't say why the insight came to 

them. 

The way in which the solution occured to the subject by a sudden change 

in 'point of view' (here in using the pliers as a bob-weight) as opposed to the logical 

sequence of steps that characterised information processing was only documented 

though, not explained. We can see that somehow the functionality of the pliers is 

eventually overcome using analogies to prompt such a Gestalt switch, but we are 

offered no real explanation of how it did so. Indeed, it was this singular lack of a theory 

or explanation for insight problem solving that may have led to the monumental interest 

shown in the work of Newell and Simon (1972). They actually published a theory of an 

information processing solution to problem solving, and that alone marked it as a great 

breakthrough. 

Using their program, GPS (General Problem Solver), Newell & Simon 

employed weak means-end analysis to solve problems in a fashion that could easily be 

applied to any field. Weak means-end analysis is the employment of an algorithm 

whereby a goal is firstly identified, and then intermediate and soluble sub-goals are 

identified which will reduce the 'distance' between the current state and the desired 

goal. This takes the form of identifying previously known IF - THEN rules (adopting the 

terminology of logic and computing) from a library whose preconditions (the IFs) match 

those defined in the problem. If the outcomes of one of these rules would then result in 

the end state being closer to the Goal state, then it would be selected and a new 
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search would take place to bring the Goal state yet closer to the new current state. 

This would occur repeatedly, with the preconditions of each subsequent search equal 

to the outcomes of the previous resultant search. The mechanism can also work in 

reverse, thus employing either a forward, backward or combined method of searching 

the problem space. Table 1.1 shows how this process could work in a shopping 

scenario. Firstly the Goal is identified, and an Action and certain preconditions are 

inherent in the selected IF - THEN rule. The preconditions need to be checked before 

the rule can be executed, and in this instance we have assumed that the first 

precondition has not been met. This would result in the generation of a new Subgoal 

in order to fulfil the condition. This Subgoal also takes the form of a Goal with 

associated preconditions for action. This will be found to be true or else the conditions 

of it will also become Subgoals. The process will repeat itself through all conditions 

and all Subgoals until the problem is solved. As an account of how some of human 

problem solving works this theory is very useful and accurate. However, the claims of 

Newell and Simon that it successfully mimics human behaviour do not necessarily hold 

up to close scrutiny on some problems as I will shortly report: specifically the insight 

problems identified decades before by the Gestalt psychologists. This inevitably 

means that the work of Newell & Simon is open to attack as it does not account for 

human problem solving universally. Until more recently though, there has not been an 

alternative theory of problem solving offered. That state of affairs has now changed. 

It was apparent that not all of problem solving could be accounted for by 

GPS and other information processing accounts, as their claims were more thoroughly 

tested. Predictions had been made about problem solving such as serial and 

conscious searching through the problem space. However work with expert chess 

players showed that this is not necessarily the case: although they appear to spend a 

long time in finding the correct move during a game, the solution is invariably 
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Table 1.1 - An Example of Means-End Problem Solving. 

5 

If you needed to go shopping to stock up on provisions for the coming week, 
then you could solve such a problem through decomposing it into goals and sub-goals as 
such. 

IF THE GOAL IS TO GO SHOPPING GOAL 
AND THERE IS A SHOPPING LIST PRECONDITION-{P1} 
AND I HAVE MY CAR KEYS PRECONDITION-{P2} 
AND I AM IN MY CAR PRECONDITION - {P3} 
AND I KNOW WHICH SUPERMARKET TO USE PRECONDITION - {P4} 

THEN DRIVE TO THE SUPERMARKET ACTION 

If all of the preconditions are met, then the action will occur. However, if 
they are not all met, for instance if P1 was not true, then a search would take place for a 
new rule for which that precondition is a goal state. This rule would then be retrieved and 
acted upon to solve this sub-goal. 

IF THE GOAL IS TO HAVE A SHOPPING LIST GOAL 
AND I KNOW WHAT INGREDIENTS ARE NEED PRECONDITION -{P5} 
AND I KNOW WHAT IS MISSING FROM THE CUPBOARDS PRECONDITION - {P6} 
AND I HAVE A PEN AND PAPER PRECONDITION-{P7} 

THEN WRITE THE REQUIRED ITEMS ON THE PAPER ACTION 

This procedure can be repeated with further sub-goals for unfulfilled 
preconditions until the problem has been decomposed to a point where the problem 
solving can begin. The preconditions will then be met and the actions carried out, until all 
of the first preconditions are met. The problem is then solved and you can go shopping. 
Adapted from Stevenson (1993). 

available very quickly; it is just that the chess masters spend a long time checking their 

solution for possible flaws. The solution offered was to adopt the idea of automatic 

and rapid production rules, although an alternative is to follow Holyoak & Thagard 

(1989) using a symbolic connectionist approach. The latter method has great 

advantages in also accounting for insight problems as will be explained shortly. It was 

evidence such as this that caused people to doubt information processing as a 

universal panacea, and to start looking again at the findings of the Gestalt 

psychologists into insight problems - a set of problems whose solutions had already 

been documented as occurring without conscious thought and which did not apparently 
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possess any logical process or steps to their solution. This interest began a search for 

a theory which could describe the insight problems and would thus fill the gaps which 

were coming to light in the information processing view of problem solving. The 

answer that was found was the process of analogical thinking. 

Analogical thought was first, described as a paradigm for problem solving 

at the start of the 1980's. A good example of what is meant by this is provided in the 

seminal work of Gentner & Gentner in 1983. In their experiment they used different 

analogues of electricity to see how this affected peoples' conceptual understanding of 

it. The subjects were presented with either a water_flowing_in_pipes analogy or 

people_moving_through_a_racetrack analogy. In the water_flowing_in_pipes analogy 

pipes were given as analogous to wires in electrical circuits, as both connect 

components together. A water pump was given as analogous to a battery as both 

provide a supply to their respective circuits, and a narrow pipe was given as analogous 

to a resistor as both restrict the flow of the supply through their respective circuits. 

Water pressure was given as analogous to voltage, narrowness of pipe to resistance 

and flow rate of water to electrical current. Also the positive relationship between flow 

rate and pressure in the water_flowing_in_pipes analogy was given as analogous to 

the positive relationship between current and voltage in electrical circuits, and the 

negative relationship between flow rate and pipe narrowness in the 

water_flowing_in_pipes analogy was given as analogous to the negative relationship 

between current and resistance in electrical circuits. Similar analogies were made with 

the people_moving_through_a_racetrack analogy, such as a turnstile being given as 

analogous to a resistor as it restricts the flow (of people) in its circuit. 

Each analogy had strengths and weaknesses in explaining electrical 

theory. For resistors, the water analogy implies that two narrow pipes in parallel will 

allow less water flow than one narrow pipe as each constricts flow, and hence by 

analogy two resistors in parallel should have more resistance. Using the people 
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analogy though, two turnstiles in parallel instead of one turnstile should allow a quicker 

flow of people and so, by analogy, two resistors in parallel should have less resistance 

than one on its own. The analogies for batteries should also give one true and one 

false representation, but this time the water analogy gives the true analogy. Their 

experiments showed that these predictions were the case, in the way the subjects 

solved electrical problems which they were presented with. These results successfully 

proved that by the selection of different source analogues, the subjects could indeed 

be influenced in the way which they subsequently understood electrical problems. 

This is because of the mapping of different elements from the source onto the target -

the taking of different parts of the analogy and using them as examples to understand 

the concept of electricity. 

By 1987 Metcalfe & Weibe had demonstrated that indeed, not only can 

analogical thought be shown to be a factor in Human problem solving, but that in some 

insight problems at least, there is no possibility that conscious information processing 

of any sort is carried out. In a series of experiments they presented subjects with 

logical and insight problems to solve such as those presented in Table 1.2. The 

subjects were also instructed that as they attempted to solve these problems they were 

to report how closely they felt they were to a solution as they went along (they were 

actually prompted every 15 seconds by the experimenter for a rating). This report was 

given in terms of a 'warmth feeling' rated from cold through to hot (and finally solution 

obtained) which was then scored on a seven point scale by the experimenter. The 

study showed that with the logical problems the subjects moved in ratings from 1 

through to 7 in a fairly uniform fashion as they approached their solution, a finding 

consistent with Newell & Simon's GPS hypothesis. However, with the insight problems 

there was no observable shift from cold to warm prior to the solution being obtained - a 

direct contradiction of their work. This still did not account for the different way in 

which insight problems were tackled though: what it showed was that information 
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processing in itself was not entirely adequate, or even capable of providing all of the 
answers. 

Table 1.2 - Two problems from Metcalfe & Weibe (1987). 

An example of a serial problem:-

"Given containers of 163, 14, 25 and 11 ounces, and a source of unlimited water, 
obtain exactly 77 ounces of water" 

(Luchins, 1942). 

An example of an insight problem:-
"Water lilies double in area every 24 hours. At the beginning of summer there is one 
water lily on the lake. It takes 60 days for the lake to become completely covered with 
lilies. On which day is the lake half covered?" 

(Sternberg & Davidson, 1982). 

One of the main points that was found in research into analogical 

problem solving was the importance of the structure of an analogy to its retrieval & 

application. The most famous example of this point is the suite of 'Fortress' analogies 

as studied by Gick & Holyoak in 1980. The problem to be solved is a medical 

situation, and is described thus. 

"A patient has a tumour in his stomach which must be destroyed. A 

doctor has a medical device which can send a beam of radiation into the patient's body 

to destroy the tumour. However the tumour is surrounded by healthy tissue. If the 

beam of radiation is powerful enough to destroy the tumour it will also destroy the 

surrounding healthy tissue which is unaccepTable, but if the power of the beam is 

reduced such that the surrounding tissue is undamaged then the tumour will likewise 

be unaffected" 

The appropriate solution to this dilemma is to fire in multiple beams of 

radiation from several points around the patient so that the beams 'converge' at the 

tumour. In this way the healthy tissues are only subjected to a tolerably low amount of 
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radiation whilst the tumour receives a much higher dose and is destroyed. What Gick 

& Holyoak did in their experiment was to 'prime' the subjects with one of several 

alternative 'Fortress' analogies before presenting them with the target problem. The 

'Fortress' problem is described thus. 

"A small country has been overthrown by a dictator who now rules from 

within a strong fortress. It is surrounded by many farms and villages, and roads radiate 

from it like spokes on a wheel. A great general arose to oust the dictator, and gathered 

a large army powerful enough to capture the fortress in one concerted attack. 

However, the dictator had planted mines along the roads to the fortress, and they were 

set to prevent a large body of men attacking together, but to allow small groups to pass 

unhindered so he could retain control of the surrounding areas himself. Not only would 

a large group set of the mines and destroy itself, but it would incur the dictators wrath 

and he would retaliate destroying many of the surrounding villages. An attack thus 

seemed impossible" 

The source analogy given is structurally identical to the target to allow for 

a successful transfer of the analogy. By this I mean that each individual part of the 

source analogue has an identical corresponding part in the target. Thus the General 

has an Army is analogous to the Doctor has a Radiation Beam and the Patient has a 

Tumour is analogous to the Country has a Dictator. Likewise, the tumour being 

surrounded by healthy tissue is analogous to the fortress surrounded by villages and 

farms; the destruction of the tumour is analogous to the destruction of the fortress & 

the destruction of the destruction of the tumour leading to the destruction of healthy 

surrounding tissue is analogous with the assault on the fortress leading to the 

destruction of the army and the retaliatory destruction of the surrounding villages. 

Without this structural identity the analogy would not be successfully utilised. 
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The source analogues given were of three different types. In one the 

general splits his army into small groups and sends each down a separate road into 

the fortress thus capturing it: this is analogous to the 'correct' solution - this is the 

convergence condition. In a second source analogue the general finds one unmined 

road and sends his entire force down it - the open passage condition', and in a third 

the general digs a tunnel to the fortress and attacks through it - the incision condition. 

In response to these different sources the subjects did indeed produce different 

solutions to the tumour problem. Whilst those with the convergence analogue often 

found the converging beams solution, those with the 'open passage' source analogue 

often suggested the passing of the radiation beam through an equivalent open route in 

the body such as the oesophagus. Similarly those with the 'incision' analogue often 

suggested cutting the patient open to remove a line of healthy tissue down which to fire 

the radiation beam. 

These examples have given a flavour to the rich research of the past 

fifteen years into analogical problem solving which in itself is most merit worthy. By the 

end of the decade though (1989, 1990) Holyoak & Thagard had provided the first ever 

theory of solving insight problems with their own computer programs of Analogical 

Thought - ACME (Analogical Constraint Mapping Engine) & ARCS (Analogical 

Retrieval by Constraint Satisfaction). That a theory could be proposed was much more 

valuable than the descriptions of analogical problem solving alone. Drawing on the 

work of Gick and Holyoak (1980) & Gentner and Gentner (1983), it was already 

apparent that the structure of the analogies held a great deal of importance for the 

mapping of source problems onto the target problem. That is the source, such as the 

fortress problem only maps successfully if it matches the structure of the target - the 

tumour problem. Before discussing the ACME & ARCS work though we must consider 

two other pieces of evidence, since the theory of Analogical Thought which Holyoak & 

Thagard proposed draws additionally on the observations that analogical thought is 

both semantically and pragmatically constrained. 
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In 1986 Gentner & Toupin clearly showed how semantics plays a role. 

They presented children with a story including animals as actors, each with a various 

role. The children were asked to act out the story as it was read to them using 

specially provided props. They then presented a second version of the story to the 

children where the plot was very similar but the actors were of three different 

experimental conditions. The actors were either similar actors in the same roles (SS), 

dissimilar actors in the same roles (DS), or similar actors in dissimilar roles (SD). As 

predicted, the transfer of the first analogy to the second was greatest for the SS 

condition, whilst the SD condition caused the poorest mapping. Thus although the 

structure stayed the same, the semantic content also had its effect. 

The issue of pragmatics has been clearly demonstrated by both Holyoak 

& Thagard (1989) and Keane (1990). Holyoak & Thagard cite as a 'common sense' 

observation that in situations such as politics, where both semantic and structural 

content may be the same the pragmatism of the person's own bias or opinion comes in 

to play. They defend this statement with a simulation in the ACME system to the way 

in which a decision about the CONTRA rebels in Nicaragua can be biased by analogy 

to either Hungarian rebels (labelled as freedom fighters in the west) or the P.L.O. 

(labelled as terrorists). Both are structurally and semantically identical source 

analogues, but the personal bias of the subject associates the label of freedom fighters 

or terrorists to them - a purely pragmatic constraint. They argue that depending upon 

which of the possible different views you take of the CONTRA rebels will affect which 

of the analogies is successfully transferred, and indeed the simulations they ran with 

the ACME program using the data above confirmed their expectations. However, the 

original assumption about human nature is unsubstantiated empirically for this 

example, as interesting as the results may appear to be. More convincing then is the 

work of Keane on this area, as he does indeed base his work upon experimentation. 
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Keane (1990) presented subjects with the Maier problem of joining two 

distant pieces of string, but made some changes. Firstly there was a second way of 

joining the strings, by using a long pole to pull one string over to the other. Secondly, 

all of the subjects were presented with a story before the experiment to act as the 

source analogy instead of receiving the experimenter hint. The analogy had two 

versions, and was concerned with a helicopter rescuing people trapped in a burning 

building. In one version the rescue is successfully performed by people swinging to an 

adjacent building from a rope dangling under the helicopter. In the other version the 

same strategy was shown as too time consuming for an effective rescue, and so a 

different strategy was used to save the people. Thus the same analogy of a swing 

rope is given as source, but the pragmatic difference is that it is seen to work for one 

group but not by another. Indeed, the transfer of the analogy does follow the expected 

pattern in that those given it as a successful story transferred it and used the pliers 

solution, whilst those given it as an unsuccessful story ignored it and used the pole 

solution. 

In the ARCS program (1990), the target problem (which is inputted in a 

predicate calculus notation) has its predicates taken as a 'probe' for retrieval. Then 

where structurally similar1 predicates are found in memory a possible mapping is 

established and stored. All possible mappings to sources in memory are explored, and 

then all of the candidates are taken and a constraint satisfaction network is created 

around them. Different possible mappings for the same target predicate are mutually 

inhibitory whilst possible mappings from the same source but for different predicates 

are mutually excitatory. Semantically similar mappings receive additional excitation 

1 - A structurally similar predicate is one that takes the same number of arguments. For example 

Loves(John. Mary) {which is a notation for John loves Mary} is structurally similar to Hates(Jo/j/7,Mary) though they 

may be semantically different. Likewise Loves(John.Mary) is structurally different from Loves(John. Mary.Baby) 

whilst they may be semantically similar. 
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from a semantic unit, and prior beliefs/assumptions receive additional excitation from a 

pragmatic unit. The network is then run and allowed to settle to asymptote. The 

mappings which then end up with the greatest activation mark the analogy for retrieval. 

(This has been until very recently unsubstantiated as a simulation of human behaviour, 

but recently published experiments do show that structural similarity does indeed play 

a role in retrieval too - Wharton, Holyoak, Downing, Lange, Wickens & Melz, 1994). 

Once the analogy is retrieved it has to be mapped on to the target. 

ACME (1989) takes the source and pairs all possible mappings which are structurally 

similar to those in the target problem. Units also receive pragmatic and semantic 

weighting, but they are viewed as psychologically less important in the mapping than in 

the retrieval. Again a constraint satisfaction network is established with excitatory links 

between pairs having different target predicates and inhibitory links between pairs 

having the same target predicate. The network again settles to asymptote, and the 

best mapping from source to target is apparent in the final activation states of the 

possible mappings units 

To make this idea clearer, consider the partial constraint satisfaction 

network in Figure 1.1. The possible mapping of the two analogies has been made 

because of the structural similarity of the analogies. However, there are several 

possible mappings which can be made - for instance, the General could be mapped on 

to the Doctor or the Tumour. However, it could not be possible for him to be both and 

so all possible mappings of General are mutually exclusive. In the network there is an 

inhibitory connection between them (represented by a dotted line). If the General were 

to be analogous to the Doctor, it would also therefore follow that the Doctor could not 

be analogous to the Dictator, and so there is also an inhibitory link between these 

possible mappings. Meanwhile it is fully consistent for the Dictator to be analogous to 

the Tumour given the General analogous to the Doctor and so these mappings are 

mutually excitable (as represented by a solid line). As all the mappings are structurally 
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possible they all receive excitatory links from the Fortress Analogy = Tumour Analogy 

mapping. However, the mapping of the General and the Doctor are semantically 

similar in this story and so would receive an excitatory link from the semantic unit of 

ARCS. It would be this additional input to the system which would cause it to settle 

with higher activity on the General = Doctor mapping than the General = Dictator 

Mapping. In this partial example the pragmatic unit of ARCS makes no contribution, 

but it in general would act like the semantic unit, adding excitatory links where a 

possible mapping would be pragmatically favoured. 

Figure 1.1 - A Partial Constraint Satisfaction Network for the Fortress 

Analogy = Tumour Analogy Mapping 

Fortress Analogy 

j m o u ^ ^Gene General = Tumour General = Doctor 

octor^ ^Dicta imour^ Dictator = Doctor Dictator = Tumour 

Pragmatic 
Unit 

Holyoak & Thagard have successfully used ARCS to find suitable 

analogues for problems such as retrieving correctly the Sour Grapes fable from 

amongst all of Aesops fables, and for finding the best 'convergence' analogy from 

Semantic 
Unit 
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different contenders including the Fortress problem (after Gick & Holyoak, 1980) to 

solve the Tumour problem (Thagard et al, 1990). They have also used ACME to 

successfully simulate the mapping of sources onto targets for the same 'convergence' 

problems, and also for many other analogy scenarios including Rutherford's analogy of 

the solar system to the atomic nucleus and the missionaries and cannibals problem to 

the farmers dilemma. These simulations match the observed psychological results on 

analogy found previously by themselves and other researchers (Holyoak & Koh, 1987; 

Gick & Holyoak, 1980; Gholson et al, 1988; Falkenheimer et al, 1986; Gentner & 

Toupin, 1986; Thagard et al, 1990; Kittay, 1987) in two ways. Firstly, that the 

mappings obtained were the same as with human subjects, and secondly that the 

percentages of subjects who retrieved an analogy formed the same rank as was made 

by the number of cycles which the constraint satisfaction network took to settle; i.e. the 

program found analogies as comparably difficult as did human subjects. 

Problem Solving 

We are left therefore with two competing research paradigms for problem 

solving. We have two apparently different types of problem - serial, logical, conscious 

problems and parallel, insight, unconscious problems. We likewise have apparently 

two hypotheses about problem solving. That all problems are solved through serial, 

logical, conscious (though eventually automated) information processing strategies, 

and that problems may be solved through unconscious, parallel constraint satisfaction 

methods. Thus acquainted (and armed?) with the two opposing theories of problem 

solving, we may move on to look at theories of expertise. 
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Acquiring Expertise 

The acquisition of expertise was pursued by the information processors 

as much as possible, but as with the Gestalt Psychologists before them they were only 

capable of description, not explanation (DeGroot, 1965, Chase and Simon, 1973). 

That was until the work of J.R. Anderson. His ACT (Adaptive Control of Thought) 

theory (1983) is very similar to that of Newell & Simon in its use of IF ... THEN rules, or 

Production Rules as Anderson calls them. However, it additionally states in explicit 

terms how such rules may be constructed from declarative knowledge originally, and 

then how these rules may be changed, altered and modified so that the knowledge 

itself changes from that which characterises a novice, to that which characterises an 

expert. 

ACT is a 3 stage theory. In the first stage the learner utilises pure 

declarative knowledge only. This is viewed as raw use of knowledge, such as being 

instructed to drive a car. Here the student gets a declarative input [instructions from 

the driving instructor] and converts them into actions [i.e. release accelerator, depress 

clutch, take gearstick out of first, put gearstick into second by moving it downwards, 

release clutch, press accelerator again]. The learner moves on to the second stage 

when they start to form procedures (IF ... THEN rules). 

The second stage of ACT is that of proceduralization. Here the explicitly 

learnt declarative knowledge is compiled into procedures. Thus a procedure for 

changing from first gear to second gear would be created, i.e.: 

P1 

IF THE GOAL IS TO CHANGE FROM FIRST GEAR TO SECOND GEAR 

AND I STILL HAVE MY FOOT ON THE ACCELERATOR 

THEN R E L E A S E ACCELERATOR 
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P2 

IF THE GOAL IS TO CHANGE FROM FIRST GEAR TO SECOND GEAR 

AND I HAVE R E L E A S E D THE ACCELERATOR 

THEN D E P R E S S THE CLUTCH 

AND LIKEWISE FOR T H E R E S T OF T H E MOVEMENTS 

The second stage of ACT is also marked by the compilation of 

procedures, so the Procedures P1, P2, ... for changing gear from first to second will 

eventually be compiled to give just one procedure, P: 

P 

IF THE GOAL IS TO CHANGE FROM FIRST GEAR TO SECOND GEAR 

THEN R E L E A S E ACCELERATOR, D E P R E S S CLUTCH, MOVE GEARSTICK IN 

TO SECOND, R E L E A S E CLUTCH, P R E S S ACCELERATOR. 

The third stage of ACT is marked by three further refinements, and is the 

stage of fine tuning procedures. The three refinements are strengthening, 

Generalization and Discrimination. Strengthening is a simple adherence that each 

time a procedure is used it becomes stronger: that is, more automated, quicker firing, 

more subconscious, more durable. Generalisation occurs when the common elements 

of a set of productions are noticed and form an overarching production. In our 

continuing car example, having acquired productions for the changes from second to 

third, third to fourth, and fourth to fifth gear too, our subject may now generalise from 

these similar productions to a new changing up a gear production PQ: 

PG 

IF THE G O A L IS TO CHANGE UP A GEAR 
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THEN R E L E A S E ACCELERATOR, D E P R E S S CLUTCH, MOVE GEARSTICK IN 

TO THE NEXT HIGHEST GEAR, R E L E A S E CLUTCH, P R E S S 

ACCELERATOR 

The final point is discrimination, and this is the acquisition of knowledge 

as to when the production is inappropriate. In the continuing example of gear 

changing, discrimination would add the notion that it is inappropriate to use the general 

form of the changing-up procedure PQ if the gearstick is already in the highest gear: 

thus the discriminated form is PQQ 

PGD 

IF THE GOAL IS TO CHANGE UP A GEAR 

AND THE GEARSTICK IS NOT ALREADY IN THE HIGHEST GEAR 

THEN R E L E A S E ACCELERATOR, D E P R E S S CLUTCH, MOVE GEARSTICK IN 

TO THE NEXT HIGHEST GEAR, R E L E A S E CLUTCH, P R E S S 

ACCELERATOR 

The ACT theory then follows the information processing line but makes 

clear the stages which a learner passes through as they transit from novicehood to 

expertise through the conscious conversion of declarative knowledge to procedures, 

which with practice are compiled, then generalised, discriminated, strengthened and 

automated. However, all is not rosy with Anderson's theory. In the same way that 

Newell & Simon, and more particularly Information Processing itself fell short of 

universal applicability, so too does ACT. The wealth of criticism against it has now 

reached such a proportion that it must surely be a matter of little time before an 

analogical account of expertise is fully expounded. The criticism levelled so far at 

Information Processing (IP) accounts of expertise and ACT in particular are numerous, 

and I will here cover in the main those highlighted by Keith Holyoak (1991) and 

Rosemary Stevenson (1993), as they between them look at almost all of the relevant 
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evidence. I shall go though this evidence though case by case, as there are some 13 

or more valid and distinct objections. 

Case 1: IP . accounts of expertise claim that experts in a field have 

superior pattern perception for their domain. However, Allard & Starkes (1991) in a 

study of expert volleyball players found that experts had no better pattern perception 

for the game than novices. This is undoubtedly due to the fact that offensive positions 

in volleyball are designed to be misleading, and so are not used by the opposition as a 

part of their game playing strategy. 

Case 2: LP. accounts of expertise claim that problems are solved both 

more quickly and more easily by experts than by novices. However Scardamalia & 

Bereiter (1991) in a study of expert writers found that they took longer over their work 

and felt more pain in doing their work than did novices. 

Case 3: LP. accounts of expertise argue that experts have a superior 

memory for knowledge of their domain. Adelson (1984) showed that in computer 

programmers though, novices had a better memory for code than did experts. Experts 

did have a good domain memory too, but for different things, such as the overall 

structure of the program. 

Case 4: LP. accounts imply that procedures become highly automated 

and inflexible with expertise. However, Anderson himself (1987) has shown in work on 

text editors that domain knowledge can be flexibly re-organised. So too have Lesgold, 

Rubinson, Feltovich, Glaser, Klopfer & Wang (1988) in a study of radiologists. In this 

experiment both novices and experts were shown an X-ray of a patient who although 

healthy, had had a lung removed previously. This causes the heart to move in the rib 

cage and gives the impression of an enlarged heart - indeed, this is the diagnosis all 

gave initially. However, after being told that the patient was also in perfect health and 
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had previously undergone major surgery, the experts immediately reorganised their 

thoughts and came up with the correct diagnosis, whilst the novices remained 

helplessly unenlightened. 

Case 5: LP. accounts clearly state that expertise is the proceduralization 

of conscious declarative knowledge. Berry & Broadbent (1984) though suggest that 

implicit knowledge can be acquired without any conscious declarative understanding of 

the knowledge learnt, and yet still exhibit expertise. 

Case 6: LP. accounts most distinctly emphasise the domain specificity of 

expertise. Yet Ericsson & Poison (1988) have shown through the study of the waiter 

J.C. that expertise in one activity (memory for restaurant orders) can be transferred to 

memory for a different domain (abstract categories). Also Doerner & Schoelkopf 

(1991) demonstrated that businessmen can successfully transfer their expertise from 

their own domain to a complex simulation of subsistence agriculture. 

Case 7: I.P. claims that expertise is a function of practice. However Chi 

et al (1989) clearly demonstrates with physics students that the time spent is not 

relevant, but that the form that the practice takes is what is crucial. Also Gentner 

(1983) showed that practice time is not of its own enough to achieve expertise in 

typing, but that a restructuring of the task is also necessary. 

Case 8: LP. accounts of expertise state that experts use domain specific 

productions whilst novices use weak declarative knowledge in problem solving. Yet 

Larkin (1981) found that expert physicists used declarative knowledge to solve 

problems too, but that they used it in a more expert way. They reformulated the 

problem first, and then applied declarative knowledge. 
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Case 9: IP . accounts of expertise also state that novices initially use 

weak means-end analysis to solve problems and later on this is proceduralized in 

domain specific, expert, problem solving methods. However Sudler et al (1983,1985) 

has shown that on algebra-word problems, the use of means-end analysis actually 

impairs performance. 

Case 10: IP . ideas of expertise say that expertise is accompanied by a 

switch from backwards search to forwards search strategies. Anderson himself though 

(1984) has shown that expert computer programmers use backward search, whilst 

Doerner & Schoelkopf (1991) have shown that expertise can be hallmarked by flexibly 

switching between several different strategies. 

Case 11: IP . tells us that for the novice to be successful in attaining 

expertise they need feedback on performance and they need to have clearly defined 

goals. In direct contradiction to this however is the work of Sloboda (1991). He tells 

us that such feedback and clearly defined goals can actually be detrimental in the case 

of acquiring musical expertise, and this is backed up empirically by another study by 

Sloboda & Howe (1991) which links failure to achieve expertise with the pressure of 

such feedback and goals. 

Case 12: IP . necessarily implies that if we use productions as experts, 

then by finding those productions we may predict expert behaviour. Lundell (1988) 

tried to perform such a task, compiling productions for experts and then trying to 

predict the experts' solutions to problems. This however failed to be predictive to any 

statistical significance, and worse still one experts' model was as predictive of any 

other expert. By comparison though, the same process was also undertaken using a 

trained connectionist network which was both statistically predictive and also was 

specific to the individual expert upon whom it was modelled. 
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Case 13: IP . similarly implies that if we may find such expert production 

rules we may then teach these rules to novices and hence allow them to gain 

expertise. Indeed this is central to Intelligent Tutoring Systems if they are to work 

using an Information Processing paradigm. Wenger (1987) argues against this 

paradigm, and lays the failure of intelligent tutoring firmly at the feet of overlay ideas of 

expertise. ( I will discuss this more later on in this thesis, as it is a pivotal point, and 

one which we seek to remedy). 

As you can see, there is a large body of evidence against ACT and the 

information processing point of view. Indeed, Holyoak (1991) sees that most of these 

points are already answered by the symbolic connectionism theory of analogical 

thought which he and Paul Thagard propose. Yet to stop here would leave much still 

unsaid about expertise. Again it would appear that we are not far from two competing 

views of expertise as we have two competing views of problem solving. Is it 

necessarily the case though that they are competing views? As I said earlier, there are 

13 or more cases against pure information processing. However, there may well be 

room for both theories in accounting for expertise. To understand more deeply we 

must look at how expertise is acquired in a wider context. That of social implications 

and of metacognitive skills and learning strategies. 

Other Avenues 

To examine further the theme that the two different accounts of problem 

solving and expertise may co-exist I will start with the work of Giyoo Hatano (1988). 

This paper is of great importance for its clarity in distinguishing between two different 

types of expertise - Routine & Adaptive - and for doing so in real life activities. Hatano 

studied Japanese children acquiring expertise in the use of an abacus for 

mathematical computation. They start off with the declarative knowledge of its 
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operation, and with practice they continue to increase in speed and accuracy in using 

the abacus. Experts can perform many complex arithmetic problems in a very short 

space of time (through proceduralization), and some can even do away with the 

physical abacus itself. Such a tale appears to closely follow the ACT account of 

expertise. Indeed, these children also conform to the domain specificity of ACT, 

finding it impossible to transfer their knowledge to a different domain: with a pencil and 

paper they lose their 'expert' abilities of speed and accuracy (Amaiwa, 1987). These 

experts Hatano defines as Routine, because they lack the ability to adapt to novel 

situations and problems. 

To illustrate what an adaptive expert is by comparison, Hatano directs us 

to the studies of Carraher, Carraher & Schliemann (1985,1987). In their studies of the 

Brazilian children who are street vendors they found that they had acquired their 

expertise through the need for honest and transparent salesmanship, with constantly 

changing prices. Also, their normal working mathematics is vocal, not silent, and their 

mathematics is worked upon visibly concrete representations - the quantities of fruit 

they are selling. This obviously led to the children acquiring a deep conceptual 

understanding of arithmetic since in experiments they were able to apply (transfer) 

their knowledge to a different mathematical domain. This, according to Hatano, means 

that they are adaptive experts. 

The reasons for this difference are apparently due to the way in which the 

street vendors learnt their mathematics. Adaptive experts have to possess a deep 

conceptual understanding as opposed to automatic procedures if they are to achieve 

cross domain transfer and the ability to tackle novel problems, and according to 

Hatano there are four conditions which when met lead to the acquisition of conceptual, 

not procedural knowledge. These conditions are: 1/ That the learner continually 

encounters novel problems, thus emphasising broad conceptual knowledge over 

proceduralized speed at a few problems; 21 That encouragement is given to the 
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learner to seek comprehension, thus leading to the employment of metacognitive skills 

during learning; 3/ That the learner is free from immediate feedback, as otherwise 

speed will be encouraged at the price of understanding & 4/ That learning takes 

place in a vocal and social exchange, as this promotes self examination of knowledge 

more than solitary learning will do. By these categorisations, the Japanese abacus 

users conforming to none are well placed as routine experts, whilst the Brazilian street 

vendors conforming to all 4 conditions are well defined as adaptive experts. 

Hatano does also note however, that this does not imply that procedural 

knowledge is necessarily inferior, as it has advantages of speed and accuracy over 

conceptual knowledge. He merely seeks to note that they are indeed different and 

distinct. This notion is clearly supported by the study which Mayer and Greeno (1972) 

carried out. They taught two groups of learners about elementary statistics, but one 

group was taught procedural knowledge first (formulae) and then conceptual 

knowledge (relating statistics to everyday life and occurrences) at a later point while 

the order was reversed for the other group. The group taught procedural knowledge 

first performed better at subsequent testing for rote application of formulae, but 

floundered at questions about the formulae themselves and at insoluble questions. 

The conceptual knowledge first group by comparison showed the exact opposite 

pattern of ability. The training to routine or adaptive expertise is thus possible, and the 

choice may be motivated by the end need for such expertise. 

Another study which makes a distinction between routine and adaptive 

expertise is that of John Sloboda (1991). He has studied the expert musicians at the 

Chetham school in Manchester to investigate the differences between expert 

musicians who 'make it' to the uppermost echelons of their profession (concert soloists, 

first violins etc.) compared to the average attainers (normal orchestra members). To 

do so he obtained reliable predictions of future performance from the school's 

teachers, and thus also managed to question the learners about their practice 
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(learning) regime whilst it was still fresh in their minds. The most striking distinctions to 

be found were that those who achieved true greatness: 1/ Came from non-musical 

families where their efforts were judged as praise-worthy (when a musical set of 

parents could have been more critical, if trying to be constructive); 21 Spent more time 

practising with second and third instruments whilst their less able peers concentrated 

more on their first instrument & 3/ Concentrated less on scales and set pieces but 

instead explored other styles or their own compositions/improvisations. This study too 

enforces the theoretical viewpoint of Hatano that there is a societal / motivational 

importance to the acquisition of different expertise, and that an adaptive expert obtains 

broader and deeper conceptual knowledge through their learning instead of 

concentrating on procedural routines. 

It does not take a large leap of faith to see that such a broad base of 

experiences instead of repetitive practice at a small range of problems can lead not 

only to the acquisition of deep conceptual understanding, but that it will also by 

necessity mean that adaptive experts have a greater base of possible analogues to 

apply to novel situations than a routine expert. Thus we may also attach firmly the 

notion of adaptive expertise to analogical theories of problem solving as we did routine 

expertise to procedural models of problem solving and procedural models of expertise. 

We thus open the door even wider towards an analogical theory of expertise. To try 

and formulate what such a theory would need to incorporate though, we shall have to 

continue our characterisation of how adaptive expertise is acquired, and also think 

perhaps about the ground in-between pure expertise, be it routine or adaptive. 

There is now an increasing body of evidence that metacognitive skills are 

of immense importance to the acquisition and utilisation of adaptive expertise. Two 

generally accepted metacognitive abilities are self-explanation and self-monitoring. I 

will look at both these skills in the context of different studies, starting with self-

explanation. This metacognitive skill can be seen most easily in the study by Chi et al 
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(1989). The paper presents an analysis of students' study habits and methods when 

given novel learning (about physics), and it also categorises the subjects by testing of 

their learning into "Good" or "Poor" students (by whether they were in the more or least 

successful half of the subjects). Looking for correlations in this data, it was apparent to 

Chi et al that the two groups definitely employed different learning methods. The 

"Poor" students did not employ any metacognitive abilities, but instead focused on 

specific examples in a routine fashion: they sought to solve problems without engaging 

in self-monitoring or explanation. The "Good" students by comparison did engage in 

those metacognitive activities, not relying upon the examples but approaching the field 

in a conceptual and adaptive way. This shows that apparently by college age, learning 

strategies have already been established and fixed, which correspond to either the 

employment of metacognitive abilities or lack of it. 

Similar results were found by Brown et al (1977, 1981, 1983) as to the 

use of metacognitive monitoring in acquiring adaptive expertise. The task of 

summarising text using comprehension strategies is a complex one with 6 strategies 

identified by Brown and colleagues. The difficulty of such a task may be appreciated 

given that even college students do not always utilise all of the strategies when 

summarising. However Brown et al demonstrated that the use of metacognitive 

monitoring can be effective in the selection of all strategies for use. In an experiment 

they took three subject groups and asked them to summarise various texts. One group 

was merely told to perform the task; a second was told also that there were 6 useful 

strategies which should be employed in summarising, and they were also tutored in the 

6 strategies. A third group not only received the instructions of the second, but were 

also taught about metacognitive monitoring - they were explicitly instructed in how to 

check that they had used the 6 strategies in their summarisations. The results of the 

experiment showed that indeed, the third group performed better than the second 

group who performed better than the first group. It was also observed that the greatest 

improvement with the third group came when they had to summarise a difficult text or 
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when the subject had originally been less proficient in summarisation originally. Thus 

metacognitive monitoring allowed the subjects to check that they were utilising a skill 

which others had learnt but failed to appropriately apply. 

Allied to these two studies is the work of Dweck and colleagues (1978, 

1980, 1985, 1988). This work was carried out on junior school children, and it was 

discovered that by that age children had already become fixed into one of two learning 

categories - Helpless or Mastery-oriented. Helpless children when confronted with a 

difficult problem attributes the failure to themselves; they will become avoidant, trying 

to change the subject to something which they are skilful at, but suffer from a decrease 

in performance at tasks. Mastery-oriented children by comparison do not attach failure 

to themselves but mastery; they work hard and employ self-explanation as they 

endeavour to overcome the difficulty. This results in increased task performance. 

Dweck sees this as the result of the children's intuitive theories of their own 

intelligence. These are respectively identified as Fixed or Incremental theories of 

intelligence. Helpless children see intelligence as fixed and given, thus if you can only 

ever be so intelligent then a difficulty will always be a difficulty. To this theory then, the 

answer to such difficulties is obviously to ignore them and go on to something which 

you can achieve, but it also means the learner feels inferior and stressed by their 

inability causing degraded performance. Mastery-oriented children see intelligence as 

incremental though, thus learning can continue to add to the intellect, thus by 

overcoming a difficulty the learner can increase their intelligence. To this theory then, 

the solution to a difficult problem is perseverance, as by understanding the problem 

better through self-explanation and repeated attempts to solve it the learner may gain 

mastery, solve the problem and increase their abililty. 

Again, such a distinction can be looked at in terms of a difference 

between adaptive and routine learning strategies: Helpless children concentrate on a 

few problems at which they can become quick and efficient whilst mastery-oriented 
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children employ metacognition to discover a wider set of problems and solutions and 

thus attain greater conceptual understanding. The study also takes on board some 

possibly underlying social trends too. Helpless children were not originally helpless -

younger children do not exhibit such behaviour. What has happened is that society 

has forced the children into such intuitive models of intelligence through the 

experiences the child has had. If teachers only value routine expertise (rapid and 

accurate problem solving) then the learner will see such as the only thing worthy or to 

be valued. This ties in also with the work of John Sloboda (1991) mentioned earlier. 

The encouragement and motivation a child receives (or any learner) will affect their 

view of problem solving and expertise, albeit that the example may not be intentional. 

These three studies then underline the importance of metacognitive skills 

in the acquisition of adaptive expertise, and that people use such adaptive learning 

strategies from the primary school through to university level. It also shows us that 

people get stuck in their ways easily, and usually stay stuck. However, with explicit 

instructions the learner can be made to employ adaptive methods when they previously 

did not make use of metacognitive skills. This implies that someone who has never 

followed the adaptive/Mastery-oriented/metacognitive path before can, through 

explicitly addressing such lack, be brought to employ adaptive methods of learning and 

problem solving and so acquire adaptive expertise. This then is almost enough for us 

to define what a theory of adaptive expertise would look like, but we must add one final 

(and perhaps to some surprising) element. This centres on the question of how pure 

are adaptive or routine expertise. 

Stevenson & Palmer (1994) note that routine problem solving 

(proceduralization) has one great power - the freeing up of working memory for other 

tasks. Without this ability an expert could never tackle the problems commensurate to 

his or her level, as their working memory would be overloaded by all of the rest of their 

domain knowledge. This point must hold just as true for an adaptive expert as it does 
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for a routine expert too, or else they could never tackle expert problems (unless they 

had a superhuman working memory!). This insight is deceptively simple yet it can all 

to easily be forgotten (or ignored). However, without the ability to access rapidly at 

least some of our prior knowledge (such as terms and concepts), new knowledge 

acquisition would quickly become impossible because of the limitations on our working 

memory. This now in place too, we may move on. 

We can propose that there are 4 required components to an Analogical 

Theory of Expertise then in any domain. 

1/ The acquisition of conceptual knowledge about the 

particular domain. 

21 The acquisition of a large amount of diverse knowledge 

both from within and without the domain. 

3/ The acquisition of metacognitive abilities which will allow 

both 

a) the formation of links between 1/ & 2/. & 

b) the acquisition of 1/ & 21. 

4/ The acquisition of procedural skills to allow for the free 

space required in working memory by 1/ & 21. 

Thus we may see from above that Adaptive expertise necessarily is 

reliant upon routine expertise. Indeed, by looking at Figure 1.2 we can see how the 

expertise and its acquisition can be represented as a cyclical process. Obviously in a 

puritanical view of adaptive expertise we would only look at the right hand side of the 

diagram whilst a puritanical view of routine expertise looks only at the left hand side. 

However it is conceivable that a routine expertise could exist independently of 

metacognitive reorganisation of knowledge and of analogical transfer (as indicated by 

the arrows by-passing the right hand side of the diagram), whilst adaptive expertise 
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must necessarily be reliant to some extent upon the facets of routine expertise. I think 

that most problem solving lies in the shades of grey between both camps, but that lack 

of metacognitive ability can lead some people to be (almost) purely routine experts. 

Here I will end my review of the current state of expertise in the literature. 

Figure 1.2 - An Overview of Expertise 

Routine methods: vs Adaptive Methods 

Proceduralization vs Conceptual Understanding 
Anderson's vs Holyoak & Thagard's 

ACT Theory ACME/ARCS 
+ Metacognitive Skills 

Initial Learning through Declarative Knowledge 

\ / 
Initial Proceduralization 

of terms and concepts 
\ Re-organization of knowledge 

through metacognition and analogy 

Initial Proceduralization 

of terms and concepts / 
Re-organization of knowledge 

through metacognition and analogy 

\ 
/ 

\ / \ 
\ 

Further Proceduralization 

to free working memory 

\ 
\ 

Further re-organization of knowledge 

through metacognition and analogy 

Further Proceduralization 

to free working memory ( v ; 
Further re-organization of knowledge 
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Further re-organization of knowledge 
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Chapter 2 
Knowledge and its Elicitation 

It is apparent from the previous chapter that there are different types of 

problems and different ways in which we solve them - logical problems which are 

arguably solved by the application of rules or procedures, and insight problems which 

are arguably solved by the retrieval of an analogy. In both cases, the answer to a 

particular type of problem is retrieved from memory, and in each case that answer is of 

the appropriate form to solve the problem posed. What we have not yet touched on is 

the way in which these answers are stored in memory - the way in which we represent 

knowledge. It is useful to understand this for three purposes: firstly, as it acts as a 

further explanation to the psychology of problem solving, and also of expertise; 

secondly as this will also aid us in our discussion of the way in which Intelligent 

Tutoring Systems may store knowledge of experts and students & thirdly because it 

paves the way for a discussion on how we may elicit knowledge from subjects, a point 

which is central both to the system and method which is finally adopted in this 

research. 

Representing Knowledge 

When considering the representation of knowledge we have to look at 

the work done and the theories put forward in the light of the different types of 

knowledge that people have studied. We have already identified that when people are 

trying to solve problems that they employ knowledge that is either in the form of a 

production rule or an analogy, and these will be discussed together shortly. 

Knowledge in the form of production rules may be thought of as 'knowing how', as they 

are used when want to know how to do something. You may know how to tie your 
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shoe-lace for instance or drive a car, or indeed you may know how to solve a complex 

problem. This kind of knowledge is most often refereed to as procedural knowledge, 

as it embodies the procedures which we may follow to achieve a task. There is 

however another kind of knowledge, which may be thought of as 'knowing that', as it 

embodies your knowledge of the world in an almost 'raw' sense, and also our 

knowledge of concepts. You know that there is stuff called grass that you walk on, and 

you know that it is green. You also know that your favourite aunt is called Ethel, and 

that Elvis died in 1978. This 'knowing that' knowledge is most usually referred to as 

declarative knowledge, and it does indeed declare our knowledge of the world. It is 

essential to understand declarative knowledge and the ways in which it has been 

postulated we represented it. This is because declarative knowledge is a necessary 

precursor to procedural knowledge as will also shortly be explained. Declarative 

knowledge probably also underlies analogical problem solving. What appears to be 

retrieved are the concepts of the source analogy. Firstly then we shall look at 

declarative knowledge. 

Declarative Knowledge 

The first theory on how we represent knowledge has roots in classical 

and modern philosophy - that knowledge is represented as logical arguments. The 

way in which these Logic Based Systems are described in modern times is in the 

predicate calculus notation which was devised by the philosopher Frege in 1879. In 

this style of notation, a predicate is the word which acts upon other words, and these 

others are the arguments which the predicate takes. Hence the phrase 'John owns the 

book' would be given in predicate calculus notation as OWNS(john,book). 
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As our knowledge about the world is supposedly logically defined in 

these systems, we can exercise the rules of logic upon such knowledge. Hence we 

can represent certain parts of our knowledge not only by the structure of the predicate 

calculus and its contents but also by the application of logical operators upon the 

notation (IF, AND, NOT, OR). For example, we could logically deduce from IF 

OWNS(john,book) AND GIVES(john,michael,book) that it is now the case that 

OWNS(michael,book). We can also make statements which apply not only to 

individuals but also groups or classes of individuals by using a variable in our logic. 

For example, to represent the statement 'All grass is green' we can use the following 

notation: 

For all x, if x is grass then x is green. 

Such logic based systems,thus can be thought of as representing all 

knowledge as a set of propositions (such as OWNS(john,book)) to which the rules of 

logic may be applied to generate new sentences and new knowledge which was 

previously not made known to the person. Unfortunately there are draw-backs to this 

style of representation of knowledge, of which the most obvious discrepancy to human 

behaviour is the matter of retrieval of knowledge. The way in which a logic based 

system can order such a set of propositions would be no more than an arbitrary list, 

perhaps ordered by the chronology of our acquisition, but nevertheless still a serial list 

of propositions. To then retrieve any information from such a list would require the 

exhaustive searching down the list until the appropriate knowledge was come across, 

which implies that we cannot easily find appropriate knowledge and that some items of 

knowledge (those at the top of the list) would be more quickly recalled than others 

(those at the end of the list) without any other factor making a difference to these 

relative speeds. However, this is not what we find. 
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The real observed case is that we can very easily access areas of our 

knowledge, and that related concepts are retrieved very rapidly. To try and account 

for such behaviour the theory of semantic networks (e.g. Quillian, 1968) was proposed. 

In such theories knowledge of the world is organised in a tree-like structure (in a 

similar way to taxonomical classifications). In this structure the joining points of the 

branches, the nodes, are symbolic of concepts. The branches themselves are 

symbolic of the relationship between the nodes. A typical example of such a semantic 

network is to consider the taxonomy of the blackbirds as in Figure 2.1. 

Figure 2.1 - A Semantic Network for the Blackbird. 

( ANIMALS ) 

Has Feathers ) 

'Can Fly ) 

( BLACKBIRD^) 

Here the 'blackbird' node is linked to the 'bird' node to represent its 

inclusion in the class of birds, which in turn is linked to nodes for 'has feathers' and 

'can fly' to indicate these attributes of birds, and also to the node of 'animals' to 

indicate birds' inclusion in this class. The organisation of the network is such that a 

superset is always above any particular node and a subset below, whilst attributes are 

at the same level. In this way our knowledge of the world is rapidly accessible 

because of the hierarchical structure of the semantic network. Networks can also 

represent knowledge of individuals too, by having nodes for them. Thus we could 

represent the fact that we have a particular garden visitor who is a blackbird and who 

we call Morris by having a Morris node linked to the blackbird node in our example. 
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Semantic networks can represent knowledge of the world then too, not just the 

underlying concepts. 

To be an improvement on the logic based systems semantic networks 

would have to incorporate the successes of those systems in addition to providing a 

better explanation than those systems at their identified weak points. Logic based 

systems are capable of performing the logical deductions and inferences on their 

knowledge base, producing new knowledge which had not been previously made 

explicit but was implicit in the knowledge. Such identification of new knowledge from 

the knowledge base can also be performed within a semantic network. For instance, 

from our example we have that a Bird has the attributes of 'has feathers' and 'can fly', 

and also that the relationship exists that a blackbird is a part of the class of birds. 

Given the fact that we have arranged our nodes in the superset/subset fashion and 

that a subset always inherits the attributes of the superset we can infer that a blackbird 

has feathers and can fly too. To stop us having a penguin in this arrangement who 

can fly, we would have to give our penguin a node as a a subset of Bird but with its 

own attribute that it cannot fly, and also make the proviso that in terms of inheriting 

attributes, those closest to the node have precedence over those inherited from further 

away. With these given, a semantic network is as capable as a logic based system to 

make appropriate deductive inferences, and superior because of its speed of recalling 

conceptually related information. 

Even though such a representation is superior to logic based systems in 

its closeness of approximation to humanity there are still problems with semantic 

networks. One criticism of semantic networks, for example, is that of exemplars. It has 

been shown (Rosch, 1973) that some members of a class are viewed as more 

acceptable than others. For instance, a robin is viewed as a better example of birds 

than a penguin, and good examples are recalled more quickly than bad examples. To 

try and account for such evidence a revised version of semantic networks was put 
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forwards (Collins & Loftus, 1975). In this view all nodes in the network are always at 

some base level of activity or above. When the activity level of any particular node 

reaches a threshold level there is then a spreading of activity through the network to 

connected nodes, and that part of the network is accessible to conscious attention. To 

then account for exemplars, they only need to have a lower than average threshold 

whilst a poor example has a higher than average threshold, or the connections 

between the exemplar and its superclass node could allow more activity to spread 

more quickly down it thus allowing for quicker activation than a poor example whilst 

both have an identical threshold. 

It is still the case though that semantic networks are not truly adequate 

as there are enduring problems even after the revision to its operation with the 

addition of spreading activity. These are problems such as flexibility of retrieval and of 

knowledge of the real world. The answers given to such problems were to group 

semantic networks together as Frames or Scripts. A Frame is a re-orientation of 

semantic networks with the purpose of characterising knowledge about concepts, 

whilst a Script does a similar thing for situations. Consider a dog: given a semantic 

network we could understand it was a subset of animals and a superset of many 

breeds (such as Collie, Spaniel, Doberman ...) and that it has certain attributes such 

as four legs, a tail and so on. What a semantic network does not tell us is that dogs 

are infamous for attacking postmen, are usually found in their owners houses or at the 

park playing, and that their owners will often feed them, take them for walks and have 

them vaccinated at the vets. To try and encapsulate such a wealth of knowledge in 

one 'chunk' (a group of separate elements which can be manipulated as a whole) the 

notion of Frames was devised by Minsky (1977). 
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Figure 2.2 
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- A Frame for a Dog 

DOG 
Slot: 
superset: 
number of legs: 
subset: 
situations: 
owner's actions: 
own actions: 

default: 
optional values: 
optional values: 
optional values: 
optional values: 

Value: 
animal 
four 
collie, spaniel... 
park, house... 
walk, feed, vaccinate... 
chase the postman ... 

Adapted from Stevenson (1993) by the author's permission. 

In a partial representation for a dog then, such as Figure 2.2, we can see 

that a frame has certain attributes which are defined by the slots for information and 

fillers for those slots. The concept is then defined by the configuration of these 

attributes and the values which they have taken. A superset is a slot in the frame for a 

dog, and it always takes the value of animal - this is because the taxonomic 

relationship will never be other than as it is now. The number of legs is also a slot, but 

this only takes a default value - we assume the default to be true, but accept that we 

could be told otherwise. This accounts for the fact that in most situations a dog will 

have four legs, but some particular individuals may have lost one leg through a 

misfortune. In such a case the particular subset of dog, an individual's frame, could 

specify that the slot for number of legs takes a value which would then over-ride the 

default. In such inheritances then only an unfilled slot would inherit the filler from a 

superset frame, working just as a semantic network does. Slots can thus be filled by a 

reference to another frame, or by a default value. Another type of filler is an optional 

filler, such as for owner's actions. Here there are many typical fillers for a slot, any of 

which could be appropriate at a given time. Frames thus organise the information 

inherent in a semantic network in order to reflect the way in which such information is 

known and used in the real world. 
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The similar theory used for situations is that of Scripts (Schank & 

Abelson, 1977). Where Minsky's Frame told us about a stereotypical dog, a script is a 

description of a stereotypical situation or event. A script will contain information such 

as the name of the script, the props and roles in the script, the entry and exit 

conditions for the script and a set of scenes which could take place in the script. To 

clarify this, consider the example of a restaurant. In the Restaurant script the props 

would be Food, tables, Cutlery, Crockery, Menus etc. and the roles would be 

Customer, Waiter/Waitress, Cook etc. The entry conditions would include the 

Customer being hungry and having money, and the exit conditions would be the 

Customer having less money and not being hungry. Typical scenes would be Entering 

the Restaurant, Ordering, Eating and Paying the Bill, and a scene would consist of 

many actions, e.g. for Ordering the actions may include: Customer asks for a menu, 

Waiter brings menu, Customer orders from menu, Waiter gives order to Cook, Cook 

prepares the food. 

Such a representation again re-orients the knowledge it contains to 

conform to real world expectations of knowledge, such as knowing how to order food is 

related going to a restaurant because you are hungry. The computer programme 

which was written to test this theory by the authors seems to confirm its ability to act in 

a human way. When presented with information about a particular restaurant visit, the 

programme could infer from the information 'John was served quickly' & 'John left a 

large tip' that John left the large tip because he was served quickly. Likewise it could 

infer from 'The waiter gave John a menu' that John was given the menu to enable him 

to order. The system is thus capable of making the kinds of deductive inferences that 

the other representational systems were capable of, but of doing so in a real world 

setting. 

One problem with the notion of such scripts was their heavy burden on 

human memory - to encapsulate paying a restaurant bill in a restaurant script and then 
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paying a hotel bill in a hotel script and so on is clearly wasteful of memory. To account 

for this, Schank proposed MOPS - Memory Organisation Packets. These take items 

common to many scripts (such as the paying of bills) and form one single form of the 

knowledge which is then linked to any scripts which utilises it. Such an action not only 

makes scripts more flexible but also allows for learning. For instance, individually 

learnt actions could be generalised after a time in a similar way. 

Unfortunately the problem with Scripts and Frames is that they are too 

big (even with MOPS) as is shown by further recourse to human behaviour. We do not 

act like a Script or Frame in as much as we do not usually recall the entire information 

which either would predict. We may infer a few additional things about situation or 

concept, but not the whole set of related information. Also they are still not flexible 

enough. If there was a fire in a restaurant, we would most certainly know what it was 

and what to do. However there is certainly no fire scenario in the restaurant script, 

and to make all such possible links to each individual script again takes us into 

problems on memory usage through the repetition of information, even if it is only 

stored as links to MOPS. A further problem which exists is that of retrieval of a Frame 

or Script. These must be organised similarly to semantic networks in that each Frame 

or Script is called much as a Node is - by a name. After which the associated 

information is retrieved. Where it otherwise (such as all parts of a Script of Frame 

allowing for recalling of the whole) we come back to our practical problems with 

memory space and also might wonder as to the point of organising knowledge into 

Frames and Scripts if not to allow for a common recall under one idea. However, the 

point is that in many cases the keyword - the script title - will not of itself be 'activated' -

will not be mentioned in a sentence. For an example, consider the phrase - "The five 

hour journey from London to New York". It is most apparent from this phrase that the 

journey must have been by aeroplane, but there is certainly no information in the 

phrase by which we could retrieve the information about aeroplane travel by which to 

make the deduction that the plane must have been the method of transport. 
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So where does this leave the representation of declarative knowledge? 

We still have no definite solution to the way in which declarative knowledge may be 

represented. What we have done is to briefly look at the major theories which have 

been proposed in order, highlighting how problems with each have led to the devising 

of a new way to consider the representation of declarative knowledge. We have drawn 

attention to the ways in which it is possible that declarative knowledge may be 

represented, and that in itself is sufficient for us to move on to look at procedural 

knowledge, and the ways in which it could be represented. We will come back to the 

path set out by this work later though, and consider where the representation of 

declarative knowledge goes from here - hybrid systems. Firstly though we must look 

at procedural knowledge and at connectionist systems of representation. 

Procedural Knowledge 

Procedural knowledge as I have already mentioned is the knowledge 

which explains how we do things. The main ways in which we might solve a problem 

or otherwise engage in using procedural knowledge is through the application of 

production rules. Production rules (Anderson, 1983) are units of knowledge which tell 

us how to achieve a goal. They are stored in our long term memory and consist of a 

condition, possibly preconditions and an action. An example of production rules and a 

discussion about them has already been given in earlier in this chapter when we 

discussed Anderson's theory of expertise. However it is worth adding here that this 

theory as with all of the others so far discussed this chapter is both symbolic and 

serial. To re-iterate this means that the thing that represents our knowledge of the 

world in these theories is an explicit representation of that thing. Thus in a semantic 

network a Blackbird is represented by a Blackbird node, and in a Frame a Dog is 

represented by a frame called Dog. In addition, these symbolic theories all assume 
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that the processing of information occurs consciously in our short term or working 

memory, and is thus constrained by its limitations on size. Therefore, all the 

processing of information has to take place in a serial or linear fashion, with related 

information having to be processed one after the other. These two points make the 

serial symbolic theories common in several flaws. Firstly, these systems logically 

require that given the correct information a correct answer will be achieved - this is 

hardly the hallmark of human behaviour! Secondly, such systems also would imply 

that given the same conditions, it would be difficult for them to recover from an error - a 

point which has already been shown as false in this chapter. Thirdly, the idea that all 

processing of information is conscious has also been shown as unsatisfactory in the 

previous chapter (c.f. insight problems). Finally, it is also the case that these systems 

are relatively bad at coming to conclusions in cases of incomplete evidence - however, 

we ourselves are remarkably good at inducing a conclusion from impoverished stimuli. 

Parallel Distributed Processing 

To try and answer these criticisms of serial and symbolic knowledge 

representation, a new direction was sought, and in 1986, McClelland, Rumelhart (and 

the PDP research group) unveiled a solution - Parallel Distributed Processing (PDP). 

Instead of a serial processing of separate items of knowledge, all items would be 

processed in parallel, and instead of a symbolic representation of the knowledge, a 

distributed representation would be used. This is quite a conceptual leap from the 

serial and symbolic, so to try and explain more clearly consider Figure 2.2 and the 

case of a blackbird. In our previous symbolic representations, a blackbird would be 

represented as a node in a symbolic network called blackbird, or as a blackbird frame 

using Minsky's theory. However, it is readily apparent that in a distributed 

representation there is actually no 'unit' called blackbird at all. 
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Figure 2.3 - Possible PDP Network Showing Activity Pattern for a Blackbird. 

1 * Long 

2' Long Yellow 
5' Long Blue 

6" Long Green 
Flies Black 

2" Long Brown 

( ^ e 7 ^ Grey Wings 

Beak White 

Instead there is a series of 'elements' which might be perceptual cues to 

many different birds (in this partial network). All of the elements would normally be 

connected, although some of the connections would be mutually exclusive, such as the 

length of the bird - these links are represented in the Figure with dotted lines. The 

lines connecting elements associated with a blackbird (dark circles) have been shown 

as solid lines, and the rest left off for clarity. Given the perceptual stimulus of a 

blackbird for the first time, the elements which make up the blackbird would become 

'activated'. By then being told that this stimulus is a blackbird, the 'pattern of activity' 

can then represent the stimulus - the blackbird. In this way the representation of the 

blackbird is 'distributed' over several basic elements which together constitute a 

blackbird, without the need for a blackbird at all. The activity from any one activated 

node may also spread to other connected nodes, so in continuing exposures to a 

blackbird stimulus there will be a continual flow of activity down the links from each of 

the requisite elements. This flow of activity will be greatest through those links which 

connect two elements that are both parts of a blackbird. Using a neurological 

argument it is assumed that such usage will increase the size or strength of the link 
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between these elements, so in a training period of exposures the activity pattern for a 

blackbird can be 'learnt'. This effect can only be effectively considered though 

because of its parallel nature. We can look at the activity spreading from all active 

nodes simultaneously. 

To continue looking at this example, the parallel and distributed nature of 

these representations is most strikingly demonstrated in the case of an incomplete 

perceptual stimulus. Consider a fleeting glance at a bird as it flies overhead. Maybe 

you could see that it was black, but couldn't make out any other colours (such as the 

yellow beak), and you think its about six to twelve inches long, but couldn't say exactly. 

This is where the ability of a parallel and distributed system to actually process the 

information is most powerful. Looking at two new versions of the original network in 

Figure 2.4, we can see that initially (on the left) this would give us a different set of 

starting conditions from our perceptual stimulus. However, the activity would flow most 

readily down the pre-existing channels for a blackbird (lines shown), also activating the 

yellow and beak nodes (on the right). The two activated length nodes are mutually 

inhibitory, so as the six inch node receives additional activation from the other nodes it 

will inhibit the 1 foot node, and eventually the network will reach a settled state where 

the blackbird nodes are activated and recognition can occur. 

Figure 2.4 - Identifying a Blackbird from Incomplete Information 

1 Long 1 Long 

Yellow 2' Long Yellow 2' Long 
5 Long 5 Long Blue Blue 

Green 6" Long Green 6 Long 
Flies Flies Back Black 

Brown 2" Long Brown 2" Long 

( ^ G r e T ^ ) ( ^ G r e T ^ ^ Grey Wings Grey Wings 

Beak Beak While White 
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This tends to confirm human behaviour in the identification of a most 

likely candidate from partial information. Consider also that the less the information 

the longer it would take for the network to 'infer' the identity of the mystery bird, as 

more spreading of activity would have to take place before threshold levels were 

reached (if at all). This could be related to uncertainty in an inference and taking a 

while to make a decision. As I have described it, parallel distributed processing as a 

model for representing knowledge explains several observable phenomena of Human 

memory. Firstly, the ease of retrieval of data. As I have explained, the name of any 

particular node is not needed to retrieve its information, as it only exists as a pattern of 

activity distributed over several elements. Indeed, it only requires that some of these 

elements be initially activated to recognise the stimulus. Thus rapid retrieval of 

knowledge is possible even in those situations where symbolic systems are unable to 

cope, and indeed beyond those situations into those even further deprived of 

information. This may also be expressed in terms of how the system works if 

damaged. If any part of a symbolic representation were 'damaged' then nothing would 

be known about that damaged part of the system. In a parallel distributed system, 

because the knowledge is not local to any part of it damage to an area would have no 

more effect than a lack of stimulus information did - it may take longer to achieve a 

decision, but there may not be an effect on the overall functioning. Only with massive 

destruction of the distributed system would we see a severe performance decline. 

Even so, with increasing damage to the system there is a 'graceful degradation' of 

performance. Instead of all or nothing (in symbolic systems), we have an incremental 

decrease in performance. This can be compared to people with brain damage, where 

minor cases of brain injury are not system threatening, but with increased damage 

performance becomes worse by stages (such as the slow decrease in patient ability 

from continued brain haemorrhaging in Alzheimer's disease). 

PDP models can also simulate the best aspects of symbolic systems as a 

natural part of their operations. The idea of default assignment, so critical to 
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inheritance in semantic networks and also in frames is a part of the spread of 

activation in parallel distributed systems. In the earlier blackbird example, even when 

we had the fleeting glance of the bird because we expect a bird to usually have a beak 

the activity flowed through its usual links and activated the beak (a default 

assignment). The only way to stop this happening would be in the presence of an 

over-riding stimulus, such as a blackbird in clear view with a facial injury. In such a 

case an element for 'no beak' would be activated, and this would by nature have an 

inhibitory link to the 'beak' node. Inspite of the usual predisposition for the system to 

activate beak, the node would receive constant inhibition from the 'no beak' node, and 

since this is a permanent stimulus with the bird in view it would necessarily over-ride 

the default for the blackbird representation. As in ail other ways this activation pattern 

resembled a blackbird, and more closely resembled its activity pattern than any other, 

the bird would still be assumed to be a blackbird - just a particular special instance of a 

blackbird without a beak. The system thus also handles memory recall even in a 

situation where the stimulus directly contradicts a usual condition of the knowledge. 

To finish off our examination of what a PDP model does well, consider 

the case of prototypes and exemplars. These again are fairly critical parts of the 

Frames/Scripts systems, and also of the revised semantic networks representation. Is 

it possible though for a distributed system to encapsulate this abstract idea? In 

symbolic systems prototypes such as the idea of a blackbird would be stored as a unit 

of knowledge, and particular instances of that knowledge, such as individual birds with 

slight marking changes or injuries etc. would be stored as other individual and discrete 

units. In McClelland & Rumelhart's work they gave a PDP system a definition of 50 

instances of a conceptual type (individual cats) each of which were slightly different in 

their spread of activation across eight elementary units. Each activation pattern was 

associated to a unit for the cat's name. Then a partial stimulus was given to the 

system which was of general cat traits but not any individual cat already given, and the 

system generated a prototypical cat without activating any particular individual and 



Chapter 2 Knowledge and its Elicitation 46 

without prior exposure to a prototype cat pattern. Prototypes are thus an emergent 

function of PDP systems. 

Unfortunately, there is a very big (and quite obvious) drawback to any 

PDP representation - a lack of relational data. As the model takes elements of any 

knowledge and represents the knowledge itself as an activity pattern over these 

elements, there is no easy way to express the relationships between this data. For 

instance, consider the phrase 'John loves Mary'. To represent this as a PDP network 

we would necessarily have three interconnected nodes, but the problem is how to 

distinguish this from the phrase 'Mary loves John'. The only difference between the 

two phrases is the relational information contained within the linear structure of the 

phrase, but this information is lost if the phrase is decomposed to a set of elements. 

The only way to get around this is to use propositions in the representation which are 

by nature symbolic representations, not elements. It thus seems inevitable that as 

both systems offer answers to the problems which the other representation cannot 

accommodate that a hybrid system of knowledge representation is going to be most 

likely to have all the answers to Human knowledge representation. 

Hybrid Systems 

In the Symbolic Connectionism of Holyoak & Thagard (1989, 1990) as 

described in the previous chapter, the use of symbolic representations is combined 

with the parallel constraint satisfaction which is a part of the parallel nature of PDP 

systems. The other notable attempt at a hybrid model is the work of Kintsch (1988) in 

creating a model of Human discourse. In both these systems a set of logical symbolic 

rules generate a large number of 'contenders' for the solution to the initially described 

problem. Then a network is created with the contenders and a series of constraints 
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(syntactic, semantic and pragmatic) are solved in parallel over the entire network, with 

the most highly activated 'contender' chosen as the solution (and bought into 

conscious thought at that time). By using symbolic representations in the system the 

problems of relational information in PDP systems is overcome. By using parallel 

constraint satisfaction the problems of purely symbolic systems of incomplete 

knowledge, ease of retrieval, unconscious problem solving and memory limitations are 

also solved. With further research a unified theory of knowledge representation 

appears possible. This then ends my brief look at the representation of knowledge. 
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Eliciting Knowledge 

48 

There are four common ways in which the knowledge of a person is 

elicited in psychology. These are through inference from experiments in controlled 

situations, by interviews or self reports, through observation or protocol analysis and 

by repertory grid or scaling methods. Each of these methodologies has its area of 

application and many associated pros and cons. It is my intention to briefly talk about 

the four different methodologies and then to comment at the end as to the choice of 

elicitation method chosen for use in this study. 

Experimental Inferencing 

This is perhaps the most common method of eliciting knowledge used by 

psychologists. Subjects are asked to perform tasks under experimentally controlled 

conditions. These are invariably created with a particular theory in mind, and are 

constructed in order to prove (or disprove) it. If the subjects behave as predicted by 

the theory which designed the experiment then we may infer that the subjects probably 

acted as they did in accordance with that theory. The use of this methodology for 

inferring problem solving strategies of expertise is not particularly appropriate. The 

main problem is that the knowledge which we are usually seeking to define in cases of 

expertise is large and complex. In any kind of experimentally controlled situation it is 

only through the successful isolation of one (or a very small number) of factors which 

allows us to investigate the variable(s) under consideration. At the best then we would 

be forced into preforming many many experiments in order to elicit the requisit amount 

of knowledge. 

A second, and perhaps more telling problem is that as already stated this 

type of knowledge elicitation is completely theory driven. It is only by knowing in 
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advance what you want the results to be that you can then set about building the 

experiment to isolate those elements and investigate their role in the situation. If you 

are seeking to elicit knowledge for which you do not have a good theory or model 

already created, this kind of method will again prove very inappropriate. A final 

restriction with this type of method is that because it relies on control over the 

situation, it is virtually a necessity that it be performed under laboratory conditions. 

This will prove to be a major obstacle with certain domains where the knowledge would 

not be accesible under lab conditions, either because of its complexity or the length of 

time involved in performing the task. 

Interviews and Self-Report. 

One of the most common (and perhaps obvious) methods of finding out 

how someone thinks when solving a problem is to ask them. This technique has been 

very common in the field of expert systems. An acknowledged expert in a field will be 

asked how they attempt to tackle a task, and then their answers are used as the raw 

information by which the same task could (and should) be tackled in the future. This 

has been critiscised as being overly simplistic, and a further refinement of the method 

is not to believe carte-blanche that the reported rules and knowledge of the expert is 

actually how they did accomplish the task. In this latter case the expert's responses 

are treated as a source of information from which the rules and knowledge may be 

derived or induced. 

The problems with the methodology are mainly based on the naivety of 

the assumption in the first case - that the reported solutions from the expert are in fact 

those which they used. This is shown to be unlikely with evidence both from the 

information processors and also their critics. According to Anderson's Theory of 

knowledge representation (ACT), declarative knowledge becomes proceduralised as a 
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part of the upwards progression to expertise, becoming unconscious. It is thus 

necessarily the case that expert knowledge (by the ACT theory) is unavailable to 

conscious recollection. Therefore any reported knowledge which the expert thinks 

they used in their solution to a task is unlikely to be a valid reflection. What is more, 

the work of Berry and Broadbent (1984) demonstrated that learning is not necessarily 

bound to pass through a declarative step. They showed how a complex rule-based 

game could be mastered through the acquisition of skilled (expert) knowledge without 

there being any declarative knowledge for them to proceduralise in the first place -

only the feedback of their performance in the game. Here too though, we see again 

that whatever knowledge the experts may be applying, it is most unlikely that it is 

available to conscious recollection. 

A further (and possibly fatal) flaw in the use of Self-Reports as a method 

of knowledge elicitation is their susceptibility to 'post hoc explanations'. Having 

sucessfully completed a task without any conscious attention to the process of its 

performance it is very possible to then attribute the performance to some unrelated 

phenomena. To give a facile example, consider the sub-conscious task of catching a 

ball. This is not a process which we learn through verbal instruction but actively 

through practice. However, if asked to self report on the process a subject could 

endeavour to describe their own actions and theorise about them, creating a 

misleading picture of the task's solution. Obviously such a facile example denigrates 

the use of Self-Reports. They can indeed be very useful at providing knowledge about 

a domain, and in some cases the task performed may well be open to later report. 

However, the direction of this kind of knowledge elicitation has moved on now to the 

more robust technique of protocol analysis 
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Protocol Analysis & Observation. 

The solution to 'post hoc explanations' in Self-Reporting is to take away 

the opportunity to make them. This is commonly achieved now through the taking of 

Protocols. These are records of a subjects efforts to solve a task at the time of the 

attempt. Instead of Self-Reporting on the solution to a problem after the fact in taking 

a protocol the subject would be asked to verbalise their thought processes 

concurrently with the task itself. The form of a protocol need not necessarily be verbal, 

but commonly this has been the form which they have taken. 

It is of course vital that the taking of Verbal Protocols does not fall foul of 

the problems associated with Self-Report at all. Thus protocols are not in themselves 

treated as knowledge of a task itself. Instead they are treated as the raw data from 

which knowledge of a task may be extracted. By treating the protocol as the end 

product of a cognitive process in the same way that the task performance itself is an 

end product of a cognitive process, it may be possible to work backwards to the 

underlying knowledge. This then brings us to the obvious argument as to what 

methods are applicable or appropriate to the interpretation of the protocol data to infer 

knowledge. The subjects own interpretation could be used, but that would fall foul of 

the problems inherent originally in Self-Reporting. Instead we must rely upon our own 

interpretations, and these will undoubtedly be coloured by the theories to which we 

adhere. 

A common way in which protocol analysis is actually utilised is to define 

a problem in advance in the light of a theory, and to then use that theory to make 

predictions to the possible methods of problem solving which the subject could apply. 

These can then be used to create a scoring form which can be used in analysing the 

protocols. In Newell & Simon (1972) they were investigating information processing in 

problem solving and defined a scoring method in advance to test the theory. For 
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instance, as they were concerned with the creation and use of goals and sub-goals by 

subjects they decided to looked for statements of the form of "I am trying to do ..." or "I 

am trying to achieve ..." as indicating the current goal state to which the subject was 

working. 

Verbal protocols of course suffer from the problem that not all tasks are 

verbally expressible or have little or no verbal component to their thought process. As 

I have already said though, protocols need not necessarily be bound to verbal 

information. The style of protocol analysis may also be applied to purely observational 

studies. Taking a verbal protocol is merely asking a subject to 'think aloud' as they 

carry out a task. This is akin to inferring cognitive processes from experimentally 

manipulating tasks, but as the task is in no way subject to experimental variation itself, 

it provides a more realistic indicator of real task performance. We may thus make our 

own protocol of a subject's behaviour and task performance without restricting 

ourselves to the confines of the laboratory. 

Repertory grids & Scaling Methods 

The repertory grid is a method devised by Kelly (1955) originally to elicit 

the social beliefs and constraints of people. Subjects were initially asked to generate 

a list of people, and subsequently to name dimensions upon which the subjects felt 

that some of the people in their list showed similarities or differences. Having created 

a set of dimensions the subjects are then asked to rate the people on the list for each 

of the dimensions. Analysis of the data through multivariate statistics can then be 

used to find clusterings of people in these dimensions or of dimensions themselves. 

This technique has been taken beyond its social creation into purely cognitive 

knowledge elicitation by replacing people as elements in the data with concepts. 
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A related application is to use multi-dimensional scaling methods to 

visually illustrate clusterings of elements in the multi-dimensional space, and to allow 

for visual identification of the dimensions. This work is akin to reporatory grid 

workings, but is more interpretive. Subjects are given a set of concepts as a list of all 

possible pairwise combinations and asked to rate them on a scale for similarity. These 

similarity measures are assumed to be representative of the psychological association 

between the concepts. The ratings can then be used to plot the concepts in a multi­

dimensional space and then scaled to be illustrated in two (or more) dimensions. The 

plot can then be used to uncover latent strucures in the data - clusters of concepts 

indicating commonalities; dimensions being visible in diametrically opposing concepts. 

The weakness with reporatory grids and scaling methods is that they are 

generally very poor at eliciting procedural knowledge. Understanding the way in which 

a subject views the relationship between the kettle and a tea-bag is not going to give 

you instruction on how to make a cuppa! By contrast however, a procedural 

knowledge elicitation technique is unlikely to furnish you with any deep and conceptual 

insight into the knowledge domain - just how to solve a particular problem. 

To date, Intelligent Tutoring Systems have in the vast majority of cases 

used procedural knowledge for their representations of expert knowledge, and as I will 

argue later I believe that this is a great hindrance to their ability to work well. To this 

end, the wethods of this research will follow a non-procedural approach, utilising a 

Hybrid Knowledge representation based upon the work of Holyoak & Thagard. It 

becomes obvious that the knowledge must be elicited in the appropriate format and so 

some form of repertory grid or multi-dimensional scaling technique will be used. It will 

later become apparent that a multi-dimensional scaling approach most closely fits the 

need of the knowledge representational system I chose, and so I will elicit knowledge 

of the domain using pairwise concept similarity ratings. 
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Chapter 3 
Intelligent Tutoring 

Intelligent Tutoring Systems 

An Intelligent Tutoring System (ITS) is the upper most pinnacle of 

Computer Aided Instruction / Computer Aided Learning (CAI or CAL). It embodies a 

computer mediated session of educational benefit to the participant. This goes 

beyond the mere use of a computer for presentation of an expert's knowledge or for 

the monitoring of a student's competence at pre-prepared questions. Instead it should 

be able to harness the information inherent in the interaction between the user and the 

computer (the learner and the teacher) to be able to Model the student's knowledge. 

By extracting such information from the user the ITS can then function like an 

Intelligent Tutor, to adapt and react to the individual needs of the user. To do this 

though, the ITS has to be able to draw on the research carried out in Al, Cognitive 

Science and Education in addition to having the relevant domain expertise. To 

successfully combine all of the requisite abilities to create the ITS it has become 

customary to design the ITS in a modular fashion, with each part of the system 

performing different (though linked) functions. 

Most ITSs comprise of four distinct parts or sections: the expert module, 

the diagnostic module, the teacher module and the user interface. These four parts 

interact together to provide the user or learner with the best possible environment 

within which to learn (as shown in Figure 3.1). Most ITSs are defined only in terms of 

the expert representation that they utilise, because usually it is only this first criterion 

that is addressed in the design. Thus we may commonly refer to W E S T (Burton & 

Brown, 1982) as a 'Black-Box Tutor' which it truly is, but will more often neglect to 

mention that WEST is also an 'Intermediate States - Flat Procedural' 
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Figure 3.1 

Intelligent Tutoring 

- A Schematic Representation of a Typical ITS 

5 5 

Expert Module 
This is the part of the ITS that 
holds a representation of the 

experts knowledge. It may be 
encoded a s production rules, 
declarative knowledge or as 
connections strengths in a 

stwork. 

Diagnostic Module 
This module contains the rules 

and strategies for interpreting the 
students answers (obtained from 

teaching module) to yield a 
I of their thought processes , 

o do so it draws upon the expert 
module for domain knowledge. 

^1/ 

Teaching Module 

This module contains the psychological and educational 
rules which dictate how best to guide the learner through 

the tutorials and simulations. It also contains the rules 
for coaching/tutoring that tell the ITS when to interrupt 

and what to do/say when it does. 

User Interface 

This module contains all of the tutorials and simulations 
which the student will use. This can be straight text 

through to a full multimedia presentation. It is dynamically 
linked through the diagnostic module to the rest of the ITS 

Tutor (if we refer to its diagnostic methods) which would be an equally valid and no 

less incomplete description of it. However, most ITSs are creations which are 

designed to test cognitive models, and so it is hardly surprising that authors invariably 

classify them by this criterion. This vast majority have only cursory teacher modules 

(e.g. the BUGGY Tutors, Burton, 1982) and user interfaces (e.g. PROUST, Johnson & 

Soloway, 1984), and frequently the diagnostic module is mis-used as merely an 
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extension of the expert module (e.g. WUSOR, Goldstein, 1982). I shall endeavour to 

approach these four aspects of ITSs individually & to substantiate my criticisms at that 

later point. I will then concentrate on some recent developments and applications by 

way of a conclusion. 

The Expert Module 

What is supposed to put the ITS above other forms of CAI/CAL is the 

incorporation of an intelligence in the tutoring, especially through the expert module. 

This part of the ITS must embody the knowledge of the experts in the particular field or 

domain, as well as their skills and problem solving abilities. The way in which this 

information is represented is central to the way in which the whole ITS will operate, as 

this dictates how the modules communicate with each other, and is what really makes 

the ITS function intelligently. Historically the expert module originated from the work 

into expert systems done in Artificial Intelligence (Al). Since those beginnings it has 

moved on to adopt Cognitive Models to help it function more effectively, and so it has 

developed in parallel with the changing theories of Cognitive Psychology (see Chapter 

Two). I shall now go through these developments in more detail, starting with the first 

developed Intelligent Tutoring Systems. 

The first ITSs employed what are called Black Box expert modules, 

because their design only allowed for an output to be associated to an input without 

any possibility of understanding why this association had been made. Such expert 

modules in actuality would usually be little more than a large database of possible 

steps which were worked through in an exhaustive search (e.g. WEST, Burton & 

Brown, 1982), or used completely non-human algorithms to deduce an answer (e.g. 

SOPHIE, Brown & Burton, 1975). In WEST all possible moves are calculated (moves 

are made by combining three numbers in any legitimate arithmetical combination) and 
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then the consequences of the moves are computed. The move giving rise to the best 

completion of an overall criterion (such as creating the furthest distance between the 

computer and the player) is then chosen. Similarly SOPHIE, an ITS developed to 

analyse electronic circuits, worked by using mathematical equations to find the faults. 

These expert modules clearly operated very differently to the way in 

which a human would attempt to solve the problem, which although not strictly a 

problem for the expert module was a difficulty for the teaching module. Tutoring needs 

to be able to help the learner, and Black Box Experts can only correct a wrong answer 

with the right answer, which will not help the learner understand why they were wrong. 

The next stage in the development of the expert module then was Glass 

Box Expert Modules, so called for the ability of the teaching module to look within the 

box at how the expert module reached its answer. These ITSs drew upon the original 

work in the field of expert systems in Al, where much effort had been put in to the 

design of computerised representation of an expert's knowledge. This form of expert 

knowledge was gained through knowledge engineering, whereby the answers to 

questions were collected from the appropriate expert sources and collated into a form 

for use in the computers programming. This gave rise to programs which could 

accurately and precisely recall the exact answers to specific questions. This was a 

logical answer to the problems of the Black Box Expert, as it meant that the expert 

module inherently contained human knowledge. 

It was expert systems such as MYCIN (Shortliffe, 1976) which were used 

as the expert modules for ITSs, which in this case was GUIDON (Clancey, 1982). 

Since they relied upon the knowledge of a human, there was data available to the 

teaching module from the expert module which could effectively be used. Indeed to 

use them would also be cost effective as the expert module already existed and so 

could literally be used 'off the shelf. Unfortunately, although the knowledge was 
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human in origin, for speed and efficiency it was accessed by the system through 

backwards search or exhaustive search algorithms. Thus the actual thought 

processes used became non-human, and the explanation which they could yield 

turned out to be of limited additional help to that which a black box expert could yield. 

This led to the insight then that you cannot instruct, correct, or advise 

competently unless you can understand how the expert is thinking, and this became a 

major turning point in the development of ITSs. It became obvious then that the 

teaching module had to have access to a representation of the expert which truly 

reflects the Human thought processes. It was this need that led to the adoption of 

theories of cognitive psychology for building expert modules. These Cognitive Models 

fall into three classes, each claiming greater cognitive fidelity than the others. This 

mirrors the way in which cognitive theories have developed, competed and advanced 

(perhaps) in the last twenty years. The first set of expert modules from this cognitive 

tradition are those employing Procedural Knowledge. 

Procedural Knowledge models employ the problem solving strategies 

epitomised by Newell & Simon (1972) and Anderson (1982) with knowledge stored as 

production rules. An incorrect solution can then be traced along a production until the 

point where they diverge, and this marks the point required for tutoring (as it is where 

the student went wrong). This is a somewhat simplified picture since the identification 

of the student's reasoning process, and hence the procedure that they used, is not 

always straight forward - this though is a problem for the diagnostic module, and is 

discussed under that heading. The underlying assumption however of the validity of 

procedural knowledge is the same, regardless of diagnosis. In some instances this is 

a useful way of thinking and teaching, but it is a very narrow avenue to solely pursue in 

tutoring. It can only allow for one correct solution to a problem, and only one (or a 

small set) of allowable ways of coming to that answer. Many systems have been 

developed along this methodology, indeed all of the systems so far mentioned utilise 
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some form of IF ... THEN rules to operate. The best exemplars of this type of ITS 

though are probably Anderson's own systems (for obvious reasons) - The Geometry 

Tutor (1985) and the LISP Tutor (1986). 

In the LISP Tutor the student is learning the programming language 

LISP, and the Tutor is designed to make sure that the student will successfully create 

a functioning programme. The computer screen is split in half, with a tutor 'window' 

and a code 'window'. These two text windows are the User Interface. The tutor will 

give the student a task to complete (selected in a sequential fashion from problems in 

a LISP programming book, written by Anderson Corbett and Reiser) and will then allow 

them to start coding. The tutor has two main interventions - firstly it will offer syntactic 

guidance, both by spotting spelling mistakes and also by providing 'templates'. For 

instance, if the student was to define a function they would have to write a piece of 

code with the keyword defun followed by three requisite arguments. Thus as soon as 

they type 'defun' in the code window the Tutor obligingly gives them the defun 

'template' telling them what three arguments are required. The other tutor intervention 

is to interrupt whenever a mistake is made and instruct the student as to the nature of 

the mistake. It will then wait for a correction and will not allow continuation with the set 

problem until the mistake has been rectified (although further help on the mistake may 

be given). 

The teaching module thus contains some very simple procedures for 

deciding the nature and timing of tutoring. Advice is given instantly and progress is 

inhibited until the mistake is corrected. Advice is however graduated such that if a 

general or conceptual explanation does not provide an appropriate correction then 

more specific help is given, finally ending with the code itself being provided by the 

tutor. This more extreme intervention is reached more rapidly if the tutor recognises 

that the error has been repeated frequently or if the tutor cannot diagnose the error. At 

a much more coarse level, after each pair of lessons a quiz is administered. Failure at 
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the quiz leads to a re-try, and further failure forces the student through the lessons 

again. Two quiz failures after this will then see them sent to the human tutor. 

In order to make the judgements that the learner sees, the LISP tutor has 

to have some expert representation of these programming problems and a way to 

diagnose the students mistakes to allow for appropriate messages at the point of 

intervention. The expert module contains production rules which conform to 

Anderson's ACT theory (as described in chapter 2) for LISP programming, of the form: 

IF the goal is to add some numbers together 

THEN code a call to + and set goals for the arguments 

Then if the student had been asked to generate a code where they had to add together 

some numbers the expert model tells us that they would have to start with the code '+'. 

If this was the action of the student then the next production would be consulted for 

which the IF statement was a match to the successfully carried out production - to 

code the arguments. If however the THEN clause was not followed by the student -

the coding o f ' + ' then the tutor will intervene. As the nature of this comparison is 

immediate and step by step, the assumption is that there are no stages in the students 

thought which are missing from the information given to the Tutor. The entire need for 

diagnosing at the immediate level is redundant - all the tutor has to do is see if the 

student action mimics the production, and if not then the student is wrong. 

There are however some broader criteria for diagnosis which is 

described by Anderson et al as Model Tracing. That is, whether or not the path which 

the student's coding is going down will lead to a successful fulfilment of the problem 

set by the tutor. This is because there may be several ways to successfully complete 

any given task - for instance, to add a list of numbers you could add them all together 

first to last, or last to first, or add them in pairs even. To avoid 'hard-coding' all 

possible permutations which would appear to be a less than elegant demonstration of 

the ACT theory the general LISP productions are used in conjunction with a problem 
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specification. Instead of just following the correct solution path it can attempt to model 

the student's steps using their code so far as refinements to the problem specification. 

This is made possible by taking all the legitimate LISP productions plus a set of 

erroneous productions (bugs) which have been experimentally identified. All possible 

combinations for these rules, given the initial problem and the current code entered, 

are calculated, yielding several possible codings for the next step. When the student 

then writes some more code it is compared to the calculated codings. If any of them 

match, then it may be assumed that the student has used the productions involved in 

the matched tutor's solution in their own method. The tutor can then examine those 

productions to determine whether the student is or is not on the correct path to the 

solution. If the productions used were all legitimate then the student is still on track, 

whereas if they included known misconceptions the student is incorrect and requires 

tutoring. If no codings were matched then path is considered unrecognisable. It is the 

comparison of the student's actions to those predicted by the model which gives the 

process its name of Model Tracing. 

Such a methodology may well be appropriate in the case of skill based 

problem solving, such as learning to drive a car, where there is only one (or a few) 

sequential ways in which to approach the problem. The same methodology though 

may be singularly lacking at more general tasks where a wide body of knowledge is 

required and where a sequential or linear approach is not appropriate. Thus to teach 

general principles and conceptual understanding requires a different approach, and 

thus the use of Declarative Knowledge for the expert module is the next cognitive 

process to consider. 

Declarative Knowledge expert modules owe much to the cognitive 

theories of such as Schank & Abelson (1977) and Minsky (1975). General declarative 

knowledge is organised into scripts or frames and the knowledge of the expert exists 

both in the nature of the links within and between them. It also resides in a separate 
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set of rules of an If - Then variety to employ the general knowledge. The first use of 

such a methodology was in SCHOLAR (Carbonell, 1970). This ITS utilised interlinked 

"frames" to contain the knowledge of South American geography, and had separate 

rules for conducting the tutorial session. A more recent example of this style of expert 

model is the rainfall tutor of Stevens, Collins & Goldin (1982). Within the expert model 

a large body of knowledge on rainfall is stored in the form of scripts such as the one 

below: 

EVAPORATION: Actors Source: Large-body of 
water 

Destination: Air-Mass 

Factors Temperature(Source) 
Temperature(Destination) 
Proximity(Source, Destination) 

Functional-Relationship Positive(Temperature(Source)) 

Positive(Temperature(Destination)) 

Positive(Proximity(Source,Destination) 

Result lncrease(Humidity(Destination)) 

In this case, the evaporation schema, there are 'slots' for the actors in 

evaporation, the factors that influence evaporation, the functional relationship between 

these factors and the result of evaporation. Similar schemas also exist for all the other 

aspects of the water cycle, such as condensation, cooling and rain. In the course of a 

tutorial interaction, these 'slots' could be filled in with the students knowledge if the 

tutor can give the student appropriate questions to isolate the individual elements of 

understanding. The 'slots' to be interrogated and indeed the schemas are not 

necessarily set in a pre-defined order. Instead by using a Socratic dialogue the 

student's answers can both provide their knowledge to the system and dictate the 

course of the questioning. Appropriate knowledge is stored as correctly filled 'slots' 

whilst mal-rules are inappropriately filled 'slots'. However, in order to extract all the 

necessary knowledge IF ... THEN rules are needed to organise the Socratic dialogue, 
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such as IF the answer is correct for a particular case THEN ask a question for a prior 

cause. As is typical of this area though, the expert module is not a part of a functional 

ITS in the same way that Anderson's LISP Tutor is. It is a completely separate entity 

with proposed methods by which it could work as an ITS - there is no real 

implementation however. 

The final step (to date) has been in the use of Qualitative Processes in 

the expert module. Broadly speaking these models examine the mental behaviour 

underlying problem solving of dynamic systems, and the work of DeKleer and Brown 

(1984) is perhaps most noteworthy of them. Their work on a conceptual 

representation of a pressure regulator proceeds as follows. For them, a process of 

envisionment takes place which comprises of the construction and subsequent 

simulation of a causal model, which may be understood locally at any interaction along 

the causal chain. To them each local concept is a confluence of the local relationships 

and constraints, and the overall concept of the regulator's functioning is the set of all 

confluences. 

The expert representation of knowledge in this system is similar both to 

schemas (which encode declarative knowledge) and productions (which encode 

procedural knowledge). In the modelling of a pressure regulator (Figure 3.1) each part 

of the device is described as a set of relationships which relate to the effects that 

surrounding parts of the device have upon it. By way of example, consider the 

'confluence' of relationships at the pressure regulators valve: 

S P i n , out" S Q # i ( V V ) + s x F P = 0, where 8P i n o u t is the change in pressure, 

5 Q # 1 ( V V ) is the change in flow & 

8 X F P is the position of the valve control. 
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Figure 3.1 - A Representation of a Pressure Regulator 
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The actual knowledge which is held in this representation is a 

combination, not only of the individual confluences of relationships, but also of the 

causal links which we may make when trying to understand the system. To 

understand the pressure regulator locally, we must understand that IF the output 

pressure rises, THEN this will in turn decrease the valve opening. However, IF the 

valve opening is decreased THEN the output pressure will fall. Thus the confluence of 

these conditions is the equation given which will maintain an (dynamic) equilibrium. 

On a wider scale however, any individual confluence is part of a larger system. In an 

example of an electronic circuit (as much of DeKleer & Browns' work comes from their 

SPICE Tutor for solving electrical circuit problems) a similar dynamic equilibrium is 

investigated (Figure 3.2). Here individual confluences for the effects of a battery, a 

clapper and a coil are considered: 

Battery: L1 <=> L3 

Clapper: Open: L1 <=0, L2 <=0. IF F1=0 THEN Clapper becomes 
Closed 

Closed. L1 <=1, L2 <=1. IF F1=1 THEN Clapper becomes 
Open. 

Coil: On: F1 <=1. IF L2=1, THEN Coil becomes OFF. 
IF L2=0, THEN Coil becomes OFF. 

Off: F1<=0. IF L2=1, THEN Coil becomes ON. 
IF L2=0, THEN Coil becomes ON. 
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Figure 3.2 - Attribute Topology of the Buzzer Circuit 
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The battery is simple, as its relationship is a permanent ON for current 

flow in the circuit. For the Clapper, if it is open, then there is no current between L1 & 

L2; if there is no force F1 then this will make the clapper close. If the Clapper is 

closed, then there is current between L1 & L2; if there is a force F1 the clapper will 

become opened. For the Coil, if it is On then there will exist a force F1 (an electro­

magnetic attraction upon the clapper arm); If there is no current in L2 then the coil will 

become Off, and if there is no current in L3 then the coil will become off. If the coil is 

Off then there will not be a force F1; If there is current in L2 then the coil will become 

On, and if there is current in L3 then the coil will become off. This still only defines the 

individual elements though, just as the pressure regulator only defined itself & not the 

whole system of which it is a part. To see how a system functions, all of the 

confluences must be considered together in a casual model. 

In our circuit example we must first assume certain initial conditions, such 

as the coil is off (0), there is no force (F1=0) and the clapper is closed (0). If we then 

start at the battery, then the current is always flowing (11=1, 13=1). Progressing to the 

clapper, we find that 11=1 implies 13=1, and since there is no force the clapper is 

closed. Moving on to the coil, we find that it will become on (12=1, 13=1) and that 

therefore this will cause the force F1 to be. If we carry on our investigation of the 

causal links, we find that this will now cause the clapper to become open which in turn 
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causes the circuit to break (11=0, 12=0). This again in turn will cause the coil to 

become off, and then the force F1 to disappear, and this then in turn will cause the 

clapper to become closed. All of which brings us back to the initial conditions with 

which we started, and so the whole process can cyclically repeat itself. This process 

thus, from the system viewpoint, causes the clapper to move continuously backwards 

and forwards, thus making a buzzing noise. 

This work is perhaps ill-defined at the present due to the lack of research 

so far published. However, as an expert module it perhaps embodies both declarative 

and procedural knowledge, and it also has quite obvious parallels with connectionism. 

The individual confluences are most certainly rule based but are organised in a 

schema based fashion. More so, the actual system analysis can only occur when the 

individual elements are processed together, with a parallel exchange of causality 

between the individual confluences. For these reasons I include it, as I see the work 

as being a possible half-way-house to the symbolic connectionism expert module 

which is a goal of this research work. That then is a brief look at the Expert Module of 

an ITS. Next I shall discuss the Diagnostic Module. 

The Diagnostic Module 

The diagnostic module is the part of the ITS which compares the 

student's behaviour to the expert, and it tries to infer the student's knowledge. This 

results in some kind of representation of the student's knowledge called the student 

model, which stores the results of the diagnosis for use by the rest of the ITS. There 

are many complex ways to divide up the plethora of different student models which 

exist. Amongst these are the notions of the Bandwidth in diagnosis, the Cognitive 

Theory underlying the Knowledge Representation and whether the student model 

exists as an Overlay to the expert model (a difference model), or as an assembly of 
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identified Bugs or Bug Parts. This information is then available (or should be) to the 

rest of the ITS, specifically through the Teaching Module, to allow for modifications to 

the interaction which takes place so as to continually improve the quality of the 

interaction with regards to the student's learning outcomes. 

The information for diagnosis comes from the interaction of the learner 

with the ITS, be it through moves made in a game, answers to computer generated 

questions, commentaries on actions or commands issued to a (simulated) device. The 

challenge is to interpret the data garnered and thus create the student model. The 

classification suggested by VanLehn (1988) is worth examining because of its 

completeness, as it focuses on all of the different methods employed so far. 

Student Models 

For Student Models VanLehn breaks down their classification into three 

dimensions as I said earlier - Bandwidth, Representation and Difference Model. Each 

ITS has its Diagnostic Module classified by VanLehn by these three categories. To 

start with then, is the dimension of Bandwidth. This is a measure of the quality of input 

which the diagnostic module receives about the student. He identifies three 

Bandwidths - approximate mental states, intermediate states and final states. Final 

states are ITSs working with only the end products of cognition such as BUGGY 

(Burton, 1982). In Buggy an arithmetic problem is presented to the learner, and the 

only user input that Buggy receives is the final answer to the problem, with no idea as 

to the stages which the subject went through to come to their decision. This is low 

bandwidth because relatively little information is given as input, and means that to 

work out the processes which are going on in the subject's problem solving a lot of 

work and assumptions will have to be made by the system (and which will shortly be 

discussed in more detail under Diagnosis). 
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The Intermediate States category is used where some information is 

available to the Diagnostic module concerning the subject's steps in coming to their 

solution. This will not be all of the steps in their thought process, but obviously there is 

less work to do to extrapolate from this information to understand all of the steps that 

they made than is involved when working with Final State information. As there is 

more information elicited from the subject this is classified as Medium Bandwidth. An 

example of where such a Bandwidth is used in an ITS is in WEST (Burton & Brown, 

1982). Here an arithmetic game is played by the subject, where the calculation of 

sums with random numbers is used to progress along a playing board. The player can 

use any valid arithmetic operator (+,-,/,*) and the higher the number made the further 

along the board the subject can move. There are also short cuts you can take, and 

moves which will send the opposition (the computer) backwards, so the highest 

possible number is not always the best move. Thus, the input of each turn is not in 

itself the final solution as the playing of the entire game represents the entire problem. 

Likewise the input is clearly not the entire thought process, as the calculation and 

choice of a number are not directly available to the ITS. Thus these 'mid game' moves 

are typical of the use of Intermediate States of information. 

Approximate mental states are the highest bandwidth, and are where the 

user is questioned at every point along possible decision trees, such as in GUIDON 

(Clancey, 1982) or the LISP tutor (Anderson, 1984 - described earlier). Such 

interrogations are deemed to show virtually every mental state during cognition, and 

thus no further extrapolation will be required by the diagnostic module in order to 

understand the users thought processes. The whole idea of the Bandwidth Dimension 

though seems dis-important to me. It is granted a useful categorisation for descriptive 

purposes, but VanLehn seems to be making much more of it - he implies that High 

Bandwidth solutions are somehow more valid by virtue of their closer scrutiny of our 

thought process. 
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The problem is however that we cannot make this claim universally as 

VanLehn appears to - quality of input cannot be ascribed on this Bandwidth criterion. 

Some problems are solved in a linear, information processing style such as 

mathematical problems and I will not argue with that; but surely neither can we argue 

with the fact that some problems are not, but are solved in some analogical fashion 

such as insight problems (see Chapter 2). Thus it is ludicrous to say that having the 

Final State solution only (Low Bandwidth) will be less valid or less true than 

Approximate Mental States (High Bandwidth). We must study the two different 

processes of problem solving in the most appropriate way for each of them (i.e. 

examining intermediate states or final states for analogical problem solving). We must 

not condemn a priori a diagnosis to be less valid than another purely in terms of using 

a lower Bandwidth input. Were we to do so we would have to guarantee that the 

approximate mental states are indeed much better representations than intermediate 

or final states are, and clearly as the idea of approximate mental states in analogical 

problem solving is impossible, I feel that such a guarantee cannot be made. If we are 

therefore to keep a Bandwidth element, it will only be useful to us if applied less 

strongly. If we are aware of its descriptive meaning and know with what kind of input it 

is trying to deal (something which is lacking in VanLehn's classification) then it can be 

of use to us. In its present form though I would consider it dangerously misleading due 

to its confined outlook (linear problem solving only). 

The second categorisation of VanLehn's is the idea of the 

Representational type of the ITS. This seems a bit superfluous as it merely re-iterates 

the expert module's knowledge base (although VanLehn does subdivide Procedural 

Knowledge into systems which do or do not employ the use of sub-goals). However, 

as a descriptive classification it is acceptable. There is little point in here repeating the 

different types of representational types, as they have been covered briefly already 

within this chapter and have been more fully explained earlier in this thesis (Chapter 

2). However I may again note that the fact VanLehn does not cover non-linear 
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systems reflects the fact that there are no fully functional ITSs which rely purely upon a 

connectionist approach or which apply themselves to non-linear problem solving. His 

omission in this respect is thus unsurprising. 

The third categorisation which is offered to us is that of the Difference 

between Student and Expert. This is either as an Overlay Model, or as a Bug Library. 

An Overlay Model is one such as that used in WUSOR (Goldstein, 1982). In this ITS a 

game of 'Hunt the Wumpus' is played. In this game the player enters a network of 

caves. In each cave there are four tunnels leading to other caves, the whole system 

thus being interconnected. Within each cave there may exist a hazard; a pit, giant 

bats or the Wumpus. If you walk into a pit you die, and if you walk into the Wumpus 

you are lunch! Giant bats are very unpredictable taxi cabs - they swoop down on you 

and pick you up, dropping you at a random location in the cavern system (possibly on 

a pit or the Wumpus). Fortunately you are warned of the existence of these dangers in 

neighbouring pits by 'feeling a draught' (Pit in an adjacent cave), 'hearing a squeak' 

(Bats in an adjacent cave) or 'smelling a Wumpus' (Wumpus in an adjacent cave). To 

kill the Wumpus and win you have to shoot an arrow into his cave from an adjacent 

cave, and you have a very limited supply of arrows. 

Figure 3.3 - An Example of a Possible Cave Structure in the Hunt the Wumpus Game. 

3 

Z
, BATS 
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Success in WUSOR depends upon mastering certain skills. For instance 

(see Figure 3.3), if you were in cave 1 and 'heard a squeak', and then moved to cave 2 

and 'heard a squeak' you can logically deduce that there are bats in cave 3. There are 

other more difficult rules about dangers, such as double evidence of an unconfirmed 

danger make a cave more risky than a single evidence of danger. It is assumed that 

anyone's skill level is based upon how many of these skills they have mastered, and 

the fact that they are sequentially learnt. Thus you have to know that single evidence 

of danger (i.e. 'I smell a Wumpus') means the adjacent caves are risky before you can 

learn the 'double evidence of danger' rule. To then model the student expertise is a 

simple matter. The system identifies what strategies they have adopted from amongst 

those previously worked out as required for expert play by the ITS's creators (i.e. did 

they choose to enter a risky cave with only one evidence of danger rather than two - if 

so they have learnt the double evidence rule). Then the student's level of expertise is 

simply a measure of which rules they are using from that master set. 

This type of system of modelling expert / novice differences is called an 

Overlay Model because it treats the learner as an imperfect facsimile of the expert, 

and merely lacking in some of the expert's knowledge and skills. Thus we may 

represent the student's knowledge by overlaying a card with holes cut in it on to a 

representation of the expert's knowledge, allowing us to 'see' only selected parts of the 

expert's knowledge. The student's knowledge is therefore a pure subset of the experts 

knowledge. Bug Libraries on the other hand although still treating the learner as an 

imperfect approximation to the expert, do not take the view that the learner brings no 

prior knowledge with them to the learning situation. Instead it assumes that they will 

bring with them both some correct rules which are the same as the expert's knowledge 

but also with some mal-rules or 'Bugs' which are different from the experts'. 

In the Buggy Tutors (Burton, 1982) then, the student's tasks are simple 

arithmetic problems, and the expert module contains a list of rules (productions) for 



Chapter 3 Intelligent Tutoring 72 

successfully performing simple arithmetic such as addition, with separate rules for 

additions of elements with and without a carry, and for what to do with the carry if there 

is one. There is also a set of pre-identified Bugs which are rules that the students may 

use but are incorrect ways to solve the arithmetic problem. One example of such a 

Bug would be to forget the carry when adding numbers together that totalled more than 

9. In this type of tutor, the diagnosis of the student's learnt rules and learnt Bugs (or 

mal-rules) would be performed in a similar way to that already described for 

Anderson's LISP Tutor - all possible rules (both correct and mal-rules) for a problem 

are used to generate all possible answers. The student's answer is then compared 

with those the system has calculated, and then if a match is found the student can be 

assumed to have used those rules which the system did to arrive at the same answer. 

The student can then be represented as a collection of identified Bugs and correctly 

learned rules. These Bugs and rules are either assembled from Bug Libraries or Bug 

Part Libraries (the difference between which I will explain in diagnosis). However it too 

means that the student is viewed as an imperfect simulacrum of the expert; a view 

which I will challenge most vehemently in discussing my model later on. 

Diagnosis 

The other central part to the diagnostic module other than the Student 

Model itself is the diagnostic techniques with which the model is assembled. Many 

different techniques have been tried, and VanLehn charts 9 specific types in great 

detail. I will however limit myself to discussing the trends within these techniques, 

although the interested reader can examine the classifications he offers more fully if 

they desire. The techniques of Model Tracing, Path Finding, Condition Induction and 

Expert Systems all employ a similar method to diagnose procedural knowledge, and so 

I will explain their general nature in the light of Model Tracing, as this was described 

earlier in this chapter (Anderson's LISP Tutor). Basically, if the student demonstrates 

knowledge sufficient to move from position A to position B, such as coming to the 
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correct piece of coding in the creation of a LISP programme, then we may conclude 

that they are aware of the rule or chain of rules which account for knowing how to get 

from position A to position B (Model Tracing/Path Finding) The difference between 

path finding and model tracing is that Path Finding uses lower Bandwidth information 

than Model Tracing, and therefore it is a chain of rules as opposed to a single rule that 

is identified. An ITS which uses the Path Finding method is PIXIE (Sleeman, 1982; 

Sleeman et al, 1991). In PIXIE students have to solve algebraic equations and enter 

simplifications as they progress towards an answer (Intermediate States Bandwidth). 

However, as this does not necessarily contain all the steps they carried out in their 

solution, only a chain of rules can be assessed, not necessarily individual rules. 

Alternatively we can attribute the bug or bugs consistent with having erroneously gone 

from A to B to the student, such as they wrote an incorrect piece of code as earlier 

discussed. This could of course be the case with either Model Tracing or Path 

Finding. 

Expert Systems have more complex sets of rules than other ITSs and so 

can give rise to responses from students which show possible partial knowledge of a 

rule. GUIDON (Clancey, 1982) is an ITS which utilises a medical Expert System 

called MYCIN. In it the student follows a prompted set of questions to carry out a 

medical diagnosis, but there are many medical conditions where a certain set of 

symptoms could be indicators. For instance, the student may come to the correct 

answer from considering only certain of the symptoms, not all of them. Since the 

correct answer could thus have been arrived at by more than one different chain of 

steps then we can only reasonably assume that they are aware of one or other of the 

possible sets of rules to make the correct (or incorrect) diagnosis. In this case a 

percentage probability may therefore be attached to a rule (or several rules) as to the 

confidence the ITS has in the student understanding of that rule (or rules). After 

further trials it is possible that some of these rules may receive increases to their 

confidence from a different diagnosis whilst others do not, and that eventually after a 
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certain threshold the system may be confident that the learner does know a particular 

rule. 

The second trend I identify is in bringing intermediate state knowledge up 

to approximate mental states through inference procedures. This is the idea behind 

Plan Recognition and Issue Tracing. In Plan Recognition the jumps from A to B are 

too big to have only one possible route (i.e. Path Finding) and so the possible routes 

have to be constructed by various algorithms. If the steps are only small you could 

employ a Model Tracing approach on the results of the Path Finding, but if the chains 

are long then an alternative method will prove more expedient. In the CIRRUS system 

(VanLehn, 1987) the user input is parsed to form a discrete set of 'visible' actions 

(visible because it is only these parts of the problem solving process which the ITS can 

'see' as input). These 'visible' actions are treated as the broadest level of a 

hierarchical tree structure, and they are linked together at branch nodes by 'invisible' 

subgoals, going all the way back along the tree's nodes until you get to just one branch 

at the top which represents the entire goal state. In plan recognition, it is the inferring 

of the treeful of 'invisible' subgoals (the assumed unseen steps that the subject 

utilised) which is the diagnostic task. Once the subgoals have been identified, 

possible paths may be recognised by an exhaustive search of the tree 'plan'. If there 

is a unique solution then this will represent the course which the subject took, and it 

will be a depth first, left to right traversal of the tree plan (assuming a left to right 

parsing of the subject's solution steps). If the plan recognition finds no solution then it 

assumes a fault in the subject's methods, so if this approach is used with a Bug Library 

system the Bugs can then be used in the invisible nodes of the tree plan and a Buggy 

solution be found instead. If there is more than one possible solution identified, 

various heuristics can be used to find the more probable route, or a repeated set of 

measurements on similar problems could be used to try and reduce the set of solutions 

to a unique route. 
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Issue Tracing is the essentially the same process as Model Tracing, but 
it is applied to a more coarse level of Bandwidth. Working with only intermediate 
knowledge states as in WEST the tutorial aims to 'coach' the user in the issues of 
arithmetic; it is not interested in the actual mechanics of the arithmetic as is the case 
with the BUGGY Tutors. In Issue Tracing instead of identifying fine grain actions such 
as the various attempts in the learner's head to reach the eventual answer, it 
recognises coarser grained issues, such as whether the learner used 'multiply' in its 
arithmetic or can use short-cuts in the game. The amount of time 'issues' are used in a 
game is counted, as is the amount of times an issue could have been used and wasn't. 
If an issue is used many times and missed relatively few then the student is believed to 
understand that issue. The reverse would indicate that the student doesn't understand 
the issue. The threshold for the ratio (for indicating a lack of understanding) is set 
high to try and avoid a mis-diagnosis. This is caused by the fact that one issue could 
have been 'missed' purely because another issue could have and was used with equal 
or greater success. When the threshold is reached however, the Coach will issue 
advice to the player on how they could improve their game. 

The third trend is the set of techniques used with Bug Models. These all 

function similarly in that the answers to many pre-prepared questions are analysed to 

find the fewest number of Bugs consistent with all of the error types found. An 

example of the type of material with which they all work (arithmetic problems) is given 

for ease of understanding the processes used. 

60 811 Bugs or mal-rules. 
- 17 - 4 6 

50 845 1/ 0 - N = 0 
57 835 2/ N - M = | N - M | 
50 835 3/ Both 1 & 2. 

Here we can see how two common arithmetic mal-rules would manifest in 

two different subtraction tasks. The first mal-rule is that zero minus any number is 
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zero, which is obvious in its manifestation in the first subtraction, and also occurs in 

the second subtraction after the 'borrowing' of the ten for the units column subtraction. 

The second mal-rule is that in any subtraction the smaller number is always taken 

away from the larger number. When both these Bugs combine though they become 

more difficult to follow, as in the first subtraction they give the same answer as the first 

mal-rule in isolation as the first bug suppresses the action of the second (Bug #1 

always taking precedent). However in the other subtraction task the action of the 

second mal-rule means that a borrow is never made and so the first mal-rule never has 

a chance to be active. 

The first technique used in Buggy models is that of Decision Trees, as in 

BUGGY (Burton, 1982). Here all possible Bugs for each question are calculated in 

advance by brute force, and consulted when the answers are given. A tree of all of the 

possible routes through Bugs to get from Question to Answer can then be constructed 

for all the questions a candidate will attempt. For example, if the subtractions were 

given to a subject in the order above, the decision tree would start with the first 

subtraction and branch to the answers 50 and 57. If the answer given was 57 it would 

be linked to only Bug #2, and a Bug would be successfully identified. If the answer 

given was 50 though it would not discriminate between Bug #1 & Bug #2 combined or 

only Bug #1 . The tree in this latter condition could then point to the second 

subtraction. Here the decision tree would have the answers of 845 and 835 as 

branches. If the answer was 845 this is linked to Bug #1 only, and so the Bug would 

be identified. If the answer was 835 this would be linked normally to Bug #1 & Bug #2 

or only Bug #2. However we have already identified earlier in the tree that Bug #2 on 

its own is not the case, so this branch can instead point to the conclusion both Bug #1 

& Bug #2. In the real ITS 55 Bugs were under investigation - a possible 3025 Bug 

pairs and an even higher number of higher order combinations. To allow for more 

efficient diagnosis a decision tree was drawn up to try and create a set of unique paths 

through as small an amount of questions as possible to diagnose all possible bugs and 
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bug combinations. Assuming that no errors are made (as opposed to the application 

of Bugs) then from this Decision Tree a minimum number of Bugs consistent with a 

high percentage of the errors (about 90-95%) are selected. To work with all the 

possible Bugs is computationally expensive though, especially as Bugs can be 

compounded with other Bugs to produce new Bugs. 

It is the explosion of possible combinations caused by combining more 

than two Bugs that prompted the move to using Bug Parts instead and dynamically 

assembling the parts into specific Bugs. Thus Generate and Test is used in 

DEBUGGY(1982) to select a small number of fundamental Bug Parts consistent with a 

majority of the errors in a student's performance. What this means is that initially only 

sole Bugs are sought out by the ITS in an initial trial period. Assuming that the learner 

possessed both of the Bugs discussed earlier, then either of the subtraction problems 

already given would indicate the possible use by the learner of either or both of these 

Bugs. Having thus successfully identified a small number of possible primary Bugs, a 

set of all Bug pairs could then be generated (which is much smaller than the set of all 

possible Bug pairs). This set is then used and subtraction tasks are used at this stage 

which will identify some Bugs and discard others. The then smaller still set of 

unconfirmed primary bugs would then be combined into a higher order combination 

and the process repeated incrementally until all the primary Bugs are identified or until 

there is no improvement in the match. This Generate and Test method is a very 

general technique, however, and is more effective if heuristics are used to home in on 

specific Bugs sooner. 

The final technique developed is that of Interactive Diagnosis, where the 

Generate and Test Method is carried out dynamically during the student's session, and 

the possible Bugs identified are used to modify the interaction whilst the student is still 

working thorough problems. With BUGGY & DEBUGGY a set list of subtractions is 

given and worked with by students, and modifications and selections of new material to 
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try and further discover Bugs or refine the opinion of possible Bugs to definites occurs 

'off-line' - there is no instantaneous re-scheduling of materials. With IDEBUGGY 

though new questions are sought which will test the ITS's hypotheses about possible 

Bugs as would happen off-line with DEBUGGY to help it distinguish between similar 

Bug types. IDEBUGGY does this though as the student attempts more tests, actually 

re-defining the questions given as the student takes the test. This has been the most 

successful diagnosis method so far employed by Bug driven ITSs, but the process is 

still not rapid enough to ensure that the student isn't sometimes kept waiting for 

noticeable periods of time whilst the ITS searches for the next problem to present to 

the subject. 

That concludes my look at the Diagnostic Module. Despite the ideals 

behind this Module, it is apparent that feedback is not always quick enough or 

immediate enough to be of use in instruction. In BUGGY & DEBUGGY there is just a 

collection of data, no modification of the user environment and no tutoring & 

IDEBUGGY is sometimes too slow in its modifications of the material. In WEST to 

avoid incorrectly assuming a person's lack of knowledge, they have to make the same 

omissions repeatedly before being coached. Since the program does not alter the 

environment to look for these issues, they could go un-noticed for a very long time. 

Other diagnosis methods may not necessarily tell us the whole story either. In Model 

Tracing and its variants any un-anticipated actions will cause the programme to 

assume that the learner has made an error without knowing that this is the case, and 

worse still an ITS like the LISP Tutor would specifically stop them from proceeding with 

their course of action until they changed they way back to the pre-planned routes. I 

especially draw attention to the way in which all of these models treat the learner's 

knowledge as a sub-set of the expert's. 

Although the shortcomings of overlay models are many, it seems that the 

Buggy theories often side-step this criticism themselves, or are even offered as a 
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solution. People have assumed that the problem with overlay modelling is that 

learners cannot bring prior knowledge with them which is either a mal-rule or a correct 

rule. Such prior knowledge is identifiable and can form an expert's library of rules. 

This means however that buggy models assume that there are only so many possible 

correct ways to solve a problem, and so many possible incorrect ways. The learner 

possess a finite number of these (pre-calculated) rules and the buggy rules can thus 

be identified and therefore corrected. The end result of such a process is that the 

student may be turned out as a perfect recreation of the expert. If a learner however 

brings with them correct knowledge or incorrect knowledge which is not identified in 

the library of Bug parts or the library of correct rules then the ITS will not be able to act 

appropriately. This is a major problem, and one to which I will frequently return. In a 

wider sense we can therefore say that buggy models too fall foul of overlay modelling. 

They are intent on turning the student into the expert, and thus although they allow for 

the student to begin with a different set of knowledge to the expert, they expect them to 

finish up with exactly the same knowledge - the ultimate overlay. This predisposition is 

common to overlay modelling as well as buggy modelling, and I will refer to it as the 

Overlay Paradigm in Student Modelling. It is a point to which I will return in somewhat 

greater detail in Chapter 4. For now, however, I shall move on to the third module in a 

typical ITS, the Teaching Module. 

Teacher Module 

As is said at the beginning of this section in the Schematic 

Representation of a Typical ITS (Figure 3.1) the Teaching Module should be 

responsible for three main activities. These are the selection and sequencing of 

materials presented, the coaching or tutoring of the user, and the modifying and 

updating of the computer's models. I shall thus tackle my appraisal of ITSs under 

these three criteria. The use of any teaching strategy has only slowly come to be 



Chapter 3 Intelligent Tutoring 80 

adopted by the ITS field, with early projects such as SCHOLAR (Carbonell, 1970) 

dependant mainly on student choice to modify the interaction through help options, 

rather than through the intelligent adaptation of the tutoring by the machine. However 

more recent ITSs have started to address these issues somewhat better, with two main 

approaches being evident: Tutoring and Coaching. 

An ITS such as WUSOR (Goldstein, 1982) or WEST (Burton & Brown, 

1982) which operates at the level of issues or super-ordinate concepts are typical of 

the class of ITS which employs a Coaching Strategy. These ITSs have a set of 

heuristics based on good psychological and educational practice to try and keep the 

ITS session running smoothly and profitably for the user's learning outcomes. These 

heuristics are numerous and varied, but a few examples serve to illustrate the points: 

A SESSION SHALL NOT BE INTERRUPTED UNTIL THE USER HAS HAD A CHANCE TO 

ACQUAINT THEMSELVES WITH THE ITS; 

COACHING WILL NOT BE GIVEN UNLESS THE OUTCOME IS DRAMATICALLY BETTER 

THAN THE STUDENT'S MOVE. 

THE LEARNER WILL NOT BE INTERRUPTED TWO MOVES CONSECUTIVELY; 

COACHING WILL NOT BE GIVEN IF THE USER IS GOING TO LOSE WHATEVER; 

These all serve to try and maintain interest from the student and to only 

coach when and where it will be most beneficial and best remembered. Then, when 

the coaching is finally to be given, it is subdivided into different levels of tutoring 

depending on the overall competence of the user. For example, in WUSOR a player 

of Hunt the Wumpus could be about to stumble into Giant Bats in a particular cave, for 

which they have already gained double evidence, whilst they could move into a cave 

for which they only have single evidence of Bats - a less risky option. The kind of 

coaching they may get at this stage would be a message such as "Multiple evidence 

for Giant Bats is more dangerous than single evidence for Giant Bats". However, if the 
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player had already apparently learnt this rule in relation to pits, the intervention could 

be based upon this different level of competence - "We have already seen that 

multiple evidence for Pits is more dangerous than single evidence". This will hopefully 

maintain relevance and interest more effectively than starting from scratch again as 

the first message did and insulting the player's intelligence. The help information 

which is given is also accessible upon demand from the ITS. These Coaches thus 

make intelligent decisions upon when to make an interruption to coach, and also make 

a (semi) intelligent decision as to the form the coaching takes when it is administered. 

In ITSs that Coach such as the gaming environments of WEST and 

WUSOR there is just one continuous session, so there cannot be any alteration of the 

materials that they present. Instead the emphasis is on the manipulation of the Tutor's 

parameters. In WUSOR you can change the rules of the game after one session and 

before the next (if the player is still the same) to make the game more challenging and 

so develop more difficult skills. For instance, the single evidence for a danger is quite 

an easy skill to master if you can only hear a danger from one cave away - if you 

extend that to two caves away the need to use multiple evidence and work such things 

out carefully becomes much more essential to success. 

In ITSs that Tutor however, the emphasis is on the manipulation of the 

materials presented. In an ITS like Kimball's Calculus Tutor (1982) the teaching 

module consults the student model to discover their level of competence in the various 

calculus solving techniques, and then selects material to tutor with from the areas of 

greatest student weakness. Thus the ordering of the material is changed through the 

intelligence of the system. The system also offers on-line help and advice at request, 

with different levels of help from clues and hints through to completing the problem for 

the user. By reason of the nature of this interaction though, there is no need for the 

ITS to interrupt the student's progress, and so it does not need to be bogged down 

with the heuristics evident in the Coaching style of interaction. A similar adaptation 
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also occurs during the interaction in IDEBUGGY (Burton, 1982). However, the 

BUGGY series acts more like a diagnostic aid such as the MYCIN expert system than 

as an intelligent Tutor. Although BUGGY and DEBUGGY collected data and 

formulated student models, it is only with IDEBUGGY that we see intelligent adaptation 

of the material, but only so as to better facilitate diagnosis - there is no on-line 

modification of instruction at all - indeed there is no tutoring of the student whatsoever. 

To thus say that these ITSs have a teaching module or tutoring strategy is generous in 

the extreme. By my generalised definition at the start of this chapter, they are at least 

one module short of an ITS. 

According to Halff (1988) the teaching module should address three main 

issues - The nature of Learning, of Teaching and of the Domain. He espouses the view 

that although we understand that the user is not a "blank slate" we do not adjust our 

ITSs so as to weed out the old inappropriate knowledge whilst we are sowing the new. 

This we need to tackle, and it is a major problem for our understanding of learning. 

Similarly he sees fault in our teaching strategies, in that we are not always appropriate 

in using the expert model as a teaching representation. He thus suggests we adopt a 

Propaedeutic representation of the knowledge - an intermediate stage of 

representation which would allow the user to acquire learning skills initially instead of 

skilled performance in the domain, but that would allow for this to be learned later 

through practice. This suggestion comes from a production system point of view 

comparable to Anderson's PUPS but can equally well be applied to creating short term 

production style knowledge bases from which to then explore more conceptual 

knowledge: a possibility which I have already considered in my review of Expertise, 

especially noting the suggestion of Stevenson & Palmer (1994). Such a method is a 

worthy suggestion, however it may be implemented. 

Halff also identifies three issues which a Teaching module should 

address in the selection of materials: firstly, that each session should be solvable and 
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comprehensible to the learner in the light of their curriculum so far; secondly, that the 

instruction should be 'transparent' so that the exercises or structure of the tutor reflects 

the underlying knowledge, & thirdly, that the material is individualisable to the learner. 

The first of these criteria is perhaps that most frequently addressed in ITSs. In 

Anderson's LISP Tutor the teaching strategy is based on a few very simple heuristics. 

Within a lesson there are heuristics such as 'always interrupt when a student is wrong' 

and 'if the student is repeatedly incorrect on the same topic give them the solution'. At 

the broader level it tests after every other lesson, and if the test is failed progress is 

not allowed to the next lessons, but revision of the last lessons is forced instead. Thus 

Anderson fulfils the first of Halffs selection criteria, but does not succeed on the other 

two points. 

Structural transparency can be related to a schema approach in ITS 

structure. In SCHOLAR, Carbonell's ITS for South American Geography, the 

information is internally organised into schemas for each country with slots filled for 

appropriate country information or pointing to other schemas. In Scholar this structure 

dictates the method of teaching, as the interrogative style of tutoring is based on the 

underlying schema representations. A typical session might start with the question 

'Did you know that Argentina is a Country in South America?' (emphasising the 

Continent Country Super/Sub Ordinate relationship). SCHOLAR might then enquire if 

they wish to know more of Argentina, and then offer other information which relates to 

Argentina (such as Population, Location, Cities, Borders). When it then is time to 

move on to another situation it could ask if the student knows another country on the 

same latitude as Argentina, or whether it remembers which country borders Argentina. 

It also emphasises these relationships when testing the subject at the end of a 

session. Typical summary questions would be of the type 'Is Buenos Aries a City in 

Argentina'. 
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Halff s third point is that of Individuation. This can somewhat be seen in 

the re-selection of materials in IDEBUGGY, though as this is purely for the aid of 

diagnosis and not for the student's direct learning enhancement it is a poor example. 

If the re-sequencing was to make a point in the tutorial interaction to the learner, then 

it would be a very good example of individuation. In WUSOR there is a certain degree 

of individuation, in that players of different competences receive different playing 

advice and conditions, but the level of individuation is very coarse as the tutor only 

operates at an issue based level of instruction. Therefore the individuation will be 

common to many people, not user specific. A similar form of individuation appears to 

happen in the LISP Tutor, where there is graduated advice and only competent users 

can move on to the next stage of learning, but this is a phantom - the graduated advice 

is a constant gradation, not one based on the user's skills, and the requirement of 

competence to move on does not change the sequence of presentation beyond 

recovering old material until they are ready for the new - the next stage of novel 

learning will always be the same for all students. The only real individuation in the 

LISP Tutor comes from the individual Bugs which define an individual student's model. 

These are wholly individual representations for a particular learner and can be used to 

individuate the diagnosis stage. The teaching materials however are never re-ordered 

to account for the diagnosis. It merely indicates whether the learner's solution is 

correct or incorrect. 

Halff also indicates that within the learning experience the knowledge 

should be sequenced for relatedness and generality. That is, novel concepts should 

be tackled in an order of priority where concepts closely related to existing knowledge 

are taught before more distantly related topics. Then, when new concepts are tackled, 

they should be taught as a generalised concept before moving on to specific 

instantiations of that concept. Going back to SCHOLAR we can see that there is some 

ordering for relatedness. The ITS doesn't just teach South American Geography at 

random or a set of unrelated countries. It moves to other related areas to teach new 
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information. Having learnt of Argentina and its border with Brazil progressing to learn 

of Brazil. Also the distance of relationships are tackled from closer relations first - thus 

going from South America to Argentina and then Argentina to Buenos Aires, not 

straight from Argentina to Buenos Aires. 

As can be seen, there are many desirable elements in the teaching 

strategy of an ITS which should be addressed by the Teaching Module, and that to 

date many ITSs have only addressed some or other of these points. To successfully 

utilise all these strategies would require the blending of two or more of the ITSs 

described, with each from a different school of representing and interpreting 

knowledge. As I have described, current models do not necessarily address the topic 

of teaching at all (BUGGY Tutors), let alone fully. Indeed drawing upon the 

Psychology of Learning and the Acquisition of Expertise, it is easy to see that some 

hybrid representation (employing a combination of both approaches) may indeed be 

necessary to allow for all teaching strategies to be instantiated in the same ITS. The 

point must be though, that whatever is appropriate to the situation must be used to try 

and ensure three things - The Relevance of the Instruction, the Memorability of the 

Instruction and the Interest of the Instruction, and these three must all be assured for 

each individual user. This is obviously an area open to much research, as the major 

ITSs have not adequately addressed the topic. What has been done so far is bitty and 

incomplete, and is something about which there is little feedback, and on which more 

studies will have to be carried out. It is also of note that these same goals can also be 

shared by the user interface as will shortly be discussed. That then completes a brief 

look at the work of the Teaching Module to date. 
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The User Interface 

This final section of the ITS should be the place wherein the tutorial 

materials reside, the simulations are run etc., and so could contain a large diversity of 

elements. In many current ITSs though, this module has largely been confined to text 

processing, be it through a sophisticated natural language processor or a set of multi-

choice style pre-prepared questions. The BUGGY series for instance employs little 

more than standard text methods for presenting its arithmetic questions, as does 

Kimball's Calculus Tutor. Even a simulation such as WUSOR fails to take advantage 

of most of the other possibilities and sticks to plain text and a planning screen for the 

student to record their suspicions (and only then in later versions). Looking more 

closely at Figure 3.4 we can see that the entire Tutorial session is carried out through 

standard text from the Tutor and single letter responses from the leaner. The planning 

screen may force them into thinking about the gaming process & therefore the 

underlying concepts, but it is the textual interaction which is more typical of the other 

named Tutors. In this there is nothing to stimulate or interest the learner, and nothing 

to encourage thinking about the concepts or knowledge encapsulated within the ITS. 

They are thus missing out on a lot of learning potential which can be obtained through 

(carefully) utilising a multimedia user interface. 

The point of using multimedia presentation is two-fold. Firstly, the 

presentation of information in several different modes is much more likely to aid 

learning. This is because it will both promote greater memorability due to the 

complexity of the information (by which I mean the number of connections the new 

knowledge can make to relevant prior knowledge that the learner possesses) and 

likewise is more likely to engender deeper conceptual learning for the same reason. 

Secondly, and just as importantly, such a presentation of the information is more likely 

to engage and sustain the motivation of the subject. 
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Figure 3.4 - Sample Tutorial Screens from WUSOR: Game Screen & Planning Screen. 

Game Screen. 

We are now in cave D. The neighbours are caves C, G, and B. What now? [Tutor] 

> B [Student] {Command moves student to Cave B} 

We are now in cave B. The neighbours are caves A, D, and F. What a stench! The Wumpus 

must be in one of the neighbouring caves. Squeak! I hear bats. They must be in of the 

neighbouring caves. What now? [Tutor] 

>X+ [Student] {Command marks cave as hazardous in planning advice screen} 

Which danger (Bats, Pits or Wumpus)? [Tutor] 

>BW [Student] 

Which Caves? [Tutor] 

>ADF [Student] 

Planning Screen. 

B SQUEAK F 

BAT+ BAT+ 
WUM+ • 

• WUM + 

SMELL 

C 

BAT+ 
WUM + 

Warren 0: 2 Bats, 1 Pit, 1 Wumpus Trail B D 

i/ISITED B D FRINGE A C F G UNVISITED E H I J K 
BAT- BAT+ ADF 
PIT • PIT • 
WUM - WUM+ ADF 

Simple devices have been used in some of the ITSs developed already, 

such as the graphic display of the gaming board and coach in WEST. The display 

consists of a graphical gaming board covering about one third of the screen. The 

board has a twisting trail along which stage-coaches (the counters in this game) may 

be moved. The stages are on the trail as graphical images, as are the towns (although 

they are more representational than detailed). Similarly the shortcuts are marked as 
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direct routes between twisting parts of the main trail. The three random numbers 

which make up the turns are displayed both as numerals and as points on three 'clock 

face' types of indicators. There is an on screen area for the player to type in a 

calculation using buttons for the allowable numbers and operations. There is also a 

hint box for them to gain advice on their calculation, and they can perform many 

different calculations before click an 'ok' button to enter their final number. Lastly there 

is a coaching display box which is seen as a squared 'speech bubble' coming from the 

mouth of a childish cartoon of a sports coach (with coach written across his chest). In 

his spoken words he gives advice, such as suggesting a different calculation they 

could have performed which would advance the learner's stage-coach much further, 

and offering them to take their move again (with a yes/no clock box). 

The advantages of the WEST board are several. Firstly there are the 

motivational factors. It is designed to be fun for the intended users (primary school 

children) with moving stage-coaches, buttons to 'click' on screen and a friendly cartoon 

character offering them the advice (as opposed to the 'computer' itself). Also it is 

taking advantage of several different ways of presenting the information to the learner, 

i.e. the numbers and the mathematics. Firstly the numbers are randomly assigned on 

screen both as numerals, (i.e. 1, 2 and 7) and then also as in three number indicators: 

& ;£>; 0 
Then finally the numbers are also represented by the movements of the stage-coaches 

along the trail - counting along a number line. 

More complex designs have occurred recently too, such as the graphical 

interface in STEAMER (Holan, Hutchins & Weitzman, 1984) and in RBT (Woolf et al, 

1987; Woolf, 1988a). The approach of these two systems (STEAMER & RBT) is even 

more appropriate, with the Tutorial Session (the running of a steam powered plant) 
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displayed in a number of user chosen fashions. Taking RBT which is a simulation of 

an industrial boiler used in paper milling, if we look at the computer display we are 

presented with a wealth of graphical and textual information available on several 

different screen layouts. We can display simulations of a number of vital instruments, 

switches, warning lights or meters. The information can also be displayed as time 

traces, or as a physical representation of the power plant itself. In the main screen 

there is a large graphical representation of the actual boiler, with simulated actions 

occurring within the graphic. For instance, you can see the fuel being squirted onto 

the flue bed, can see the position of valves and their opening and closing & the flow 

rate of the liquor to the boiler. The main screen also has a section of basic dials 

showing Fuel composition and feed rate, water feed rate, steam temperature, pressure 

and flow rate and the composition of the flue gas (in important elements). There are 

also four Tutor guides to the overall Safety, Efficiency, Emissions and Reliability of the 

RBT operations. To find out more information in RBT you can look more closely at 

particular parts of the boiler, view the entire control panel or look at graphs for trends 

in the boiler's operations. 

In close up the on screen graphic is enlarged to provide a better 'picture' 

of localised events, but otherwise the other on screen graphics (the Tutor guides and 

the partial control panel) are unchanged. The graphic can also be completely turned 

off to allow for the rest of the control panel to be fitted on screen. This gives a 

complete break down of Fuel rates, temperatures, composition, pressure and state, 

and similarly full accounts of the Steam, Flue Gases, Combustion and Water. On the 

final screen, the trends screen, the user can request to see how any of the factors in 

RBT (such as fuel temperature, Steam flow, 02 content in exhaust fumes) have varied 

over time , allowing the learner to see how their actions have altered them. 

The RBT Tutor then allows the learner to attempt to run the boiler, 

altering various functions such as fuel rate into the boiler, or performing external 
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actions on the boiler such as 'rodding' the fuel vents to let air flow in more easily 

(assuming they were clogged). When the user gains competence at 'day-today' 

operations, problems can then be induced in the boiler for the student to react too. All 

changes made to the function of the boiler through RBT are made by selecting actions 

from a pull-down menu of all allowable user actions (such as 'rod the air ports', or 'put 

in liquor'). The screen even has an area for an alarm to flash (the area is reserved on 

all screens) and is accompanied by a noise. This prompts the user to see what is 

going wrong in the boiler, or they can consult the alarm menu to be told what function 

has tripped the alarm (such as increased exhaust emissions). After use of the tutor it 

is intended that people will be capable of running (under supervision) a real boiler. 

In RBT simple numerical information, such as a flow rate, can be 

displayed visually in up to four different modes. This has the added advantage over 

the more usual alphanumeric displays, that it supports the use of both rapid 

proceduralized skills and also deeper conceptual development. For instance, by 

observing a numerical readout from a meter or gauge you could use a piece of 

procedural knowledge (such as IF flow X > Imn THEN shut valve Y) whilst you could 

obtain / use conceptual knowledge from the time traces (such as observing over time 

that a trend in one part of the system CAUSES a particular trend in a different part of 

the system). The system is interactive, allowing many complex functions to be bought 

together in a real life task, and for the student to learn how they inter-relate in a non-

threatening environment. True mastery (conceptual) as well as knowledge of how to 

cope with emergencies appropriately and quickly enough (procedural) are taught. It is 

probably the best application of a Tutorial system I have come across. 

Another good example of the way in which the User Interface should be 

designed is the work of Price & Hobbs as described by Price (1993) and Soper & 

MacDonald (1994). Price & Hobbs are the executive producers of a set of computer 

aided learning materials for the teaching of basic University level Economics called 
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WinEcon. Within their programs there is a consistency of screen design which helps 

the learner to easily attempt any of the different parts of the package, both in uses of 

areas and also use of symbols and icons. The learning sessions are performed 

through the presentation of text and graphics, as well as utilising many different forms 

of student interactions and computer simulations. Graphs and models can be 

'tweaked' and the result of varying conditions dynamically observed. For instance, in 

investigating an economic phenomenon called the Pareto effect (to do with the 

allocation of goods) the user can alter the initial conditions of a calculation and then 

see the effects this has on the outcome of the effect both in comparison to previous 

conditions in a scatter-plot and also for the particular instance in a pie chart. 

Consistency in design also means that summaries and important points are easy to 

locate and become more memorable. Likewise the factual knowledge which is 

presented as rules and is thus of the style of productions is complemented by the 

conceptual learning encouraged by the interactive parts of the tutorials. In addition, 

the actual design is modular, allowing wholesale changes to the operations and design 

of the packages to be instituted regardless of who authored any one particular 

teaching module, and without necessarily altering the User Interface. Indeed, any 

modem authoring package or even spreadsheet or office suite is capable of creating 

the most aesthetic of graphical user interfaces (GUIs ), as the courseware for teaching 

kinetics amply demonstrates (Young & Heath, 1994). 

Recent Directions 

From the papers presented at the World Conference on Artificial 

Intelligence in Education in the late Autumn of 1993, it was clear that the research 

paradigm within Intelligent Tutoring Systems had shifted. In the keynote address itself, 

Kurt VanLehn pointed out the changes. Progress in modelling was seen to have come 

to a halt. Mostly people pursued the Anderson ideals of productions or similar 
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information processing (IF - THEN) expert models, with an overlay student model (be it 

overt overlay or implied overlay through bug libraries). What ITS developers had 

failed to properly come to terms with though was the pedagogy of the interactions and 

this was where we were now to turn. He drew upon examples of self-explanation (a 

metacognitive skill discussed in the previous chapter) to show how we could best 

learn. He then went on to suggest (most forcefully) that without real progress in our 

understanding of student learning and the subsequent application of this knowledge to 

the design of ITSs we would not be able to improve their performance in any 

significant way. Indeed, it was even indicated that production style modelling such as 

based on Anderson's ACT theory be sacrificed too and replaced with less cognitively 

realistic but more robust models which will actually work 'in the field'. ITS development 

in the Expert module (and Diagnostic module) should stop, and we should instead 

focus on the teaching module and the Student interface. 

This kind of view is echoed by many other researchers. Warren, 

Goodman & Maciorowski (1993) argued successfully for increased re-use of previous 

work. Using an executive program to co-ordinate various 'off the shelf packages and 

old systems as modules within an object oriented environment saves much valuable 

resources and development time. Meanwhile a small amount of new programming is 

sufficient to tailor the package to the specific task it will perform. The modularity is 

stressed even further allowing for future 'upgrades' of different components of the ITS, 

even future developments in the modelling segments. For now however, no progress 

is deemed necessary or expedient in this direction. Orey, Young & Trent (1993) also 

commented on the prohibitively large amount of time that the creation of successful 

ITSs takes, and advocated the adoption of intermediary development aids, allowing for 

Experts to swiftly create courseware through enhanced authoring tools. 

Michael Orey (in Orey & Nelson, 1993) goes on to blame some of the 

failure of ITSs not only on development times but on the cognitive models employed. 
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He sees that some form of hybridised representation is required to succeed in the 

creation of an ideal ITS; one where truly intelligent machines may communicate with 

the learner and perform the complex task of teaching. This belief is due to the problem 

that the form of knowledge representation is dependent upon the nature of the domain 

and the nature of the tutoring required. One could easily teach strictly algebraic topics 

(such as geometry) by production rules because of their similar nature, whilst in the 

teaching of troubleshooting where causal reasoning is the key to success a semantic 

network or frame based solution is more appropriate. To thus have an ideal ITS which 

conforms to Orey's desires it must be capable of dealing with all types of 

representations in order to deal with all types of problems - therefore hybridisation will 

be a necessity. Of course, one can teach something apparently based on serial 

logical knowledge through causal networked models (such as Brown and DeKleer, 

1984) but the ideal system will also need to address the pedagogical fact that some 

people will learn better with one form of presentation or the other (or indeed both) 

regardless of the material presented (Stenning, Cox & Oberlander, Forthcoming). 

Similarly the ITS may need access to separate models of the learner for the same 

purpose: i.e. structuring the presentation of learning material may well be more easily 

based on a production rule style of model for a specific task but for a wider context be 

best served by a networked model. Obviously, if one model could hold both sets of 

information, much could be gained in terms of speed and efficiency, not to say our own 

understanding. 

In line with this kind of approach the study of HyperMedia systems for 

Computer Based Learning and Intelligent Tutoring holds many promises. The 

structure of HyperMedia can be thought of as being both networked and symbolic - it is 

inherently a hybrid form of knowledge representation. Each nodal point can represent 

symbolic information or rules, whilst the inter-links between the nodes contain 

additional information about the particular domain (or domains) of knowledge. It must 

be pointed out however, that in Human use of such structures we can only follow one 



Chapter 3 Intelligent Tutoring 94 

link at a time and only view one node of information at a time, but these are limitations 

we impose upon the structure by our use of it. The potential exists within it for a 

computer to make use of the representational form through parallel access of nodes 

and parallel travelling of links. 

Indeed, Hybrid Models are pointed to as a possible saviour from the 

overlay problem (described in brief earlier) of standard ITSs by Mitchell & Grogono 

(1993). They espouse the view that in Intelligent Tutoring there exists an area of 

knowledge which we should like the learner to become proficient in (called the 

knowledge base) and a set of interconnections which relate all of this knowledge within 

the knowledge base (called the concept map). By then basing our modelling of the 

learner on these representations, we can have an understanding of not only what they 

have learnt from the knowledge base but how they see the knowledge relate to itself 

within the concept map. We are not therefore bound by a simple discrepancy 

comparison (or overlay paradigm) to deem the learner right or wrong, but can look at 

how they obtained their answer - to see whether the learner has developed a 

qualitatively different perspective whilst retaining a logically consistent network of their 

own. 

HyperMedia CALs are not new, but the cross-over to adding some form 

of Intelligent Tutoring within them is. Some experimental work has been carried out on 

diagnosis within HyperMedia systems by Viau & Larivee (1993). In their research Viau 

& Larivee created an 'interactive textbook' to teach first year college students basic 

computer ideas and processes. The system also logged all interactions for each 

subject, generating a use path for time spent on any particular area of information 

(page) and amount of times travelled between any pair of pages. By applying pre & 

post use tests to the subjects (70 students) they could determine the factors of the 

interaction which accompanied enhanced learning. This in turn allows for a diagnostic 

technique where either learners who follow one or another strategy can be directed in 
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the most educationally profitable fashion through the material or can be instructed as 

to the most efficient were of learning for that particular student style. Indeed, such 

developments was speculated upon in 1990 by Fabrice Florin, who envisioned an 

Information Landscape, where a Guide (The Intelligent Tutor) could accompany you 

through the land, journeying along roads (Tutorials), stopping to play (simulations and 

interactives), following a river (presentations) or simply wandering (HyperMedia) but 

always with a friend by your side with guidance and answers to hand. 

Another example shows how the HyperMedia principle is again applied to 

create a domain free intelligence in a piece of CAL. The Linctus PB project (Briggs, 

Tompsett & Oates) utilises a networked system again, but the expert information is 

encoded purely as statements of medical symptoms within a node related to the 

medical condition which that node represents. The system then automatically creates 

the links between nodes, for instance where any node with a condition is linked to any 

node describing a symptom of that condition. Nodes also represent medications for 

certain conditions and symptoms. The system as a whole operates as an intelligent 

repository of knowledge for the pharmacist - a kind of 'memory jogger'. Details can be 

entered of a patient to elicit a 'diagnosis', whilst browsing through the HyperMedia 

system allows the pharmacist to refresh his or her memory. The system's knowledge 

as a whole was derived from experts in consultation with the designers, but the style of 

creation of the package is universally applicable. 

To recapitulate the current position of ITS research, we can look to 

several distinct threads. Firstly there is the position of the orthodox cognitive 

psychologists who have viewed ITSs as a means to an end. As Orey makes clear 

(1993) an ITS is an excellent tool for learning about human cognition and thus they 

make very good experiments for proving the feasibility of different cognitive models of 

thought, learning and expertise. This camp has come to a point where the overheads 

of cognitive fidelity have still not produced a workable Intelligent Tutor with any 
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applicability except in the narrowest of fields, and so they have now turned their 

attention from modelling the knowledge of learners and experts to modelling the 

learning process itself. Such ITSs have rarely crossed over though from the laboratory 

into the classroom. A second thread is that of computer based learning. This is the 

school of people who take the pragmatic approach that a computer that is a useful tool 

in learning is a lot better than one which mimics humanity but can't actually teach 

anyone anything. They have recently been making much better use of the resources 

in computer based instruction (WinEcon, Price & Hobbs). This is purely a piece of 

CAL software with no claims or pretensions to an expert module, teaching module or 

diagnostic module. Yet within the screen layout they have incorporated tasks as 

previously described which allow the learner to partake in interactions with the 

knowledge to encourage conceptual understanding. The screen design is created to 

ease learning through consistent presentations and interesting images and 

assignments: thus still incorporated learning theories in their design and therefore 

creating effective tutoring material. 

The third thread is the emerging union between these two camps. The 

recognition of the Psychology and Al communities that a deliverable at the end of the 

day is important and of the Computer Aided Learning community that an intelligence in 

tutoring is desirable is opening up a new area. Work such as that of Viau & Larivee 

(1993) is moving the psychologists into the modelling of a practical and deliverable ITS 

by investigating modelling on a HyperMedia authoring system that is widely used 

already in CAL. In their work they took an interactive textbook designed as a piece of 

HyperText (in HyperCard) with other HyperMedia representations such as images 

available. To this standard authoring package, which is used in many CAL based 

applications, Viau & Larivee incorporated a diagnostic element to discover how much 

time was spent by learners when they used the interactive textbook on any particular 

topic, and to trace the routes which they took. From this data they established 

patterns of use of the CAL, and then performed testing on the subjects to see who had 
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learnt most of the contents of the interactive textbook. This they proceeded to 

correlate with their identified strategies from the raw data and thus could now predict 

how use of the CAL would most effectively lead to increased learning. They are thus 

bringing the psychology behind Intelligent Tutoring to ready made CAL applications 

which could after further developments be used to 'upgrade' the CAL software into 

some form of ITS. 

On the other hand, CAL designers such as Warren, Goodman & 

Maciorowski (1993) have investigated the transition of laboratory ITSs to used 

applications through the adoption of a modular yet communicative system which allows 

Intelligent Tutoring modules to be combined with proprietary authoring packages and 

pre-existent CAL. Instead of working within the CAL packages (proprietary authoring 

software such as HyperCard, ToolBook and Authorware) they are creating their own 

programmes to perform a similar function to Viau and Larivee - to perform the 

functions of an ITS. However, each module is completely independent of the others, 

but they 'communicate' between each other under the aegis of a piece of control 

software. They can thus use a CAL package as the User Interface and design 

whatever 'front end' to the overall ITS they desire (and not be confined just to 

HyperCard as Viau and Larivee are). Then they add a program to the authoring 

package to communicate with the control software and the ITS can function with any 

proprietary software. Similarly, the modelling or diagnostic modules can be inter­

changed at will - perhaps in response to a breakthrough in student modelling, or 

perhaps to facilitate swapping between specifically production based or schema based 

or analogical based learning. 

This together with my previous discourses into the current state of 

cognitive psychology with regards to modelling, eliciting and representing knowledge 

is sufficient background to isolate a research field. However, the field of application 

for such research as well as the specific system of implementation to be investigated 
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must also be considered. In the next Chapter I therefore proceed to discuss these 

matters, explaining the choices of field, architecture and methodology before 

embarking upon a description of the experimental work. 
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Chapter 4 
Modelling for an Archaeology ITS 

Archaeological Need 

A Very Brief History 

My experiences have given me a very personal viewpoint on the teaching 

of Archaeology at University. Students in the subject tend to split into two camps from 

their first day at University - scientists and non-scientists, of whom the latter are 

traditionally the much larger proportion of students. The problem is two-fold; firstly 

teaching to a mixed background of students makes 'pitching the level' of the contents 

somewhere between very difficult and virtually impossible; secondly the actual 

contents themselves will be either too scientific to interest one half of the group, or too 

humanist for the other. Before fleshing out these points though we have to understand 

that the teaching of science to Archaeologists is in itself an essential objective of 

modern Archaeology. There are many scientific techniques available to the 

archaeologist to aid and enhance their work now, through the finding of sites and 

artefacts, to their subsequent mapping, recovery and interpretation. However, to 

successfully employ these scientific techniques requires conceptual understanding of 

their underlying science or else the techniques may be unhelpful at best, or at worst 

invalid and misleading as I will now explain. 

By way of an example, consider the case of radiocarbon dating, perhaps 

one of the more popular scientific methods for helping the archaeologist identify the 

scientific age of a given sample. The problem is, that there are many factors relating 

to radiocarbon dating which will tell the scientist and the archaeologist whether the 

sample is useful or indeed valid. For instance, there are certain periods of history for 

which the scientists cannot calibrate the technique as accurately as for others. By way 
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of an example, a Roman find may well require very accurate dating for it to be of use to 

the archaeologist (say within 10 years either side, perhaps less) whilst radiocarbon 

dating cannot actually provide a better estimate of its age than +/- 50 years. In this 

instance then combined Archaeological and Scientific knowledge are needed to 

understand that radiocarbon dating would not be an appropriate technique to use in 

this circumstance. Likewise the technique can only be used on finds within a certain 

age range and requires a certain minimum size of sample dependent upon its age to 

allow for a measurement of its age to be made. More importantly perhaps, there are 

certain preconditions upon the handling of the object for it to be dated correctly, such 

as complete isolation from any modern sources of carbon to avoid contamination with 

younger material. This also requires the archaeologist to understand what materials 

actually contain carbon (a good many students are surprised to learn that this means a 

polythene bag cannot be used in place of a paper one - tin foil is the appropriate 

material in this instance). 

Having thus established that there is a need for the teaching of Scientific 

Techniques to archaeologists we return to our previous problem - the two distinct 

groups of archaeologists. The scientists are perhaps a lesser problem as they already 

possess a good deal of the requisite knowledge, albeit that they have not yet related it 

to the field of archaeology. They would genuinely like to learn some archaeology 

though (a good motivational factor in learning) and so could do well given a chance. 

However the non-science based archaeologists (as a general rule) have done little or 

no science at any previous level, only taking the minimum required 'O' levels to 

matriculate. They do not enjoy science, were glad to see the back of it, and are deeply 

offended when they reach university to be informed that they must start to learn 

enough science for them to appreciate the techniques that will help them in the future. 

In addition to the problem of their antipathy to the subject is the class 

size. With there being relatively few scientists taking archaeology either as a main or 
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subsidiary subject the lectures on scientific techniques are given to a mixed audience 

of predominately antipathetic non-scientists and a few science students. Whatever the 

level then pitched at the class, the non-scientists will resent the science whilst the 

scientists are unlikely to be motivated by science devoid of archaeology and pitched 

way below their own understanding. We thus have two problems - the student's 

antipathy to the subject matter and the teaching of the subject matter itself. 

An ITS for Archaeological Science 

The situation thus described was the prompt for investigating the 

development of an ITS for archaeological science. The individuation which can be 

gained from a one to one interaction with an interactive and responsive piece of 

software (by which I mean the ability of the tutor to respond to & adapt to a particular 

individual student in a way which is educationally advantageous for the student) could 

alleviate the two problems identified earlier. This could be achieved by allowing for 

the various different levels of scientific and archaeological understanding within the 

learner group. Then an ITS could individuate for any student, by altering the 

curriculum presented to the learner. An archaeologist could be gently bridged from 

their prior knowledge of archaeology through to the scientific applications which 

Archaeologists utilise, and then to the underlying scientific principles themselves. This 

would cushion the Archaeologists from the shock to the system caused by throwing 

them into the science head first. Likewise, the scientists to whom ancient history is 

most probably a closed book can be gently led from the science through the scientific 

applications which Archaeologists utilise (though this time focusing on the science first 

instead of the Archaeology), and then into the actual archaeology itself. Also, just as 

obviously, this allows for total re-arrangement of the material presented. Thus 

students of whatever background can be directed through the learning experience in 
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whatever way is most educationally profitable given their own individual prior 

knowledge. This of course is given the proviso that there is an intelligence to 

diagnose the learners prior knowledge state first, or that the students themselves can 

choose their own curriculum, or both. 

This would make for more effective learning possibilities, especially if the 

software employed additional multimedia techniques for complex displays of the 

information. By this it is meant that the information is presented in different forms such 

as plain text, graphics, or in an interactive simulation. Such complexity makes for 

greater memorability of the learning event. In addition, interest is more likely to be 

promoted by the use of animations, sounds and graphics which a multimedia 

presentation entails. Within the context of the tutoring the motivation of the student 

could thus be more easily promoted and maintained. An ITS for Archaeology is thus a 

possible solution which could bring excellent learning outcomes to a troubled area of 

higher education. 

Scientific Dating in Archaeology 

A General Description 

The subject matter for the knowledge domains which I intend to use is 

drawn from Scientific Archaeology - Dating Techniques. As a part of their first year 

lecture courses Archaeology undergraduates learn of many different dating techniques 

and studying some of the common ones (such as radiocarbon dating or carbon 14 

dating). This makes it an ideal area to study novice expert differences, as first years 

will hopefully be knowledgeable enough in the subject area to comprehend the 

terminology of the techniques without necessarily yet having an in-depth 

understanding of the processes. They would thus be a good novice group, more so 
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than a group of people with no experience of the domain. The latter would only furnish 

us with the knowledge that they understood nothing, or did not know the relevant 

terminology. By looking at fledgling knowledge however we have something to 

compare with the knowledge representation of the experts - lecturers in Scientific 

Archaeology. To help the reader understand the domain too I offer a brief insight into 

Scientific Dating techniques below. 

Carbon 14 Dating 

Carbon 14 Dating (which is also called Radiocarbon Dating) is perhaps 

the most commonly known of the scientific dating techniques, being responsible for 

establishing the age of items such as the East Anglian Bog Man (Pete Marsh), the 

Sutton Hoo Long Ship and recently the Turin Shroud. Carbon 14 (or C14) is a 

radioactive isotope of Carbon. This means that it is subject to radioactive decay. In a 

period of time called the Half Life, half of the number of C14 atoms will have decayed. 

C14 is a radioactive nuclide, and may combine with other elements just as other 

isotopes of Carbon do to form molecules. This means that C14 can enter into the 

carbon cycle. Radioactive C14 is produced originally in the upper atmosphere due to 

the affects of cosmic radiation from space. This produces a constant source of new 

C14. Given that there is also a constant decay of C14, a dynamic equilibrium can be 

set up, allowing a constant level of C14 to exist. The C14 will be photosynthesised by 

plant life and thus gets into the food chain, and so into all organisms. The way in 

which it is photosynthesised depends upon the type of plant. Different photosynthetic 

pathways exist in different plant types which affects the relative fractions of the 

different Carbon isotopes which the plant absorbs. In the seas a lot of C14 which is 

absorbed into the food chain in plankton, and a lot then becomes a part of the shells of 

crustaceans. This means that the Oceans are a great reservoir of C14. 
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Since there is deemed to be a constant level of C14 in the atmosphere, 

all the time that any living organism lives there will be a constant renewal of the C14 in 

their body through the food chain. However, with the death of that living organism the 

exchange of new C14 in the organism ceases. From that point onwards there can only 

be decay of C14 in the organism. By measuring the amounts of C14 and the other 

isotopes of Carbon at a later date, the proportion of C14 compared to the others will be 

found to have diminished compared to the equilibrium state in the environment. Libby 

measured the decay of radioactive carbon and found that the half life of C14 was 5700 

years (approximately). Using this figure it is thus possible to determine the period 

since death of any organic matter. 

Advanced Carbon 14 Dating 

Carbon 14 Dating has some further refinements. Firstly it is not the case 

that the environmental equilibrium of radiocarbon has been constant through time. It is 

therefore necessary to calibrate the age of any sample that has been C14 dated. This 

is achieved through the application of tree ring dating (or dendrochronology). Using 

tree rings it has been possible to construct a chronology for many thousands of years 

by looking at growth patterns and which we can fit in to our present calendrical system. 

We can also analyse the carbon content of each ring of the trees and so observe 

fluctuations in the proportion of C14 in the environment at any time in the tree's rings' 

history. This can be used to adjust the dates calculated with the assumption of a 

constant and unchanging equilibrium. 

In C14 Dating, the calculation of the proportion of C14 in a sample is 

performed by measuring the radioactivity of the sample. The activity of the sample is 

in proportion to the number of atoms of C14 and so calculations can be made to 

determine the amount of the different isotopes present. Unfortunately as the sample 
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gets older the radioactivity of the sample becomes less, and after 6 or more half lives 

there is so little radioactive carbon left undecayed that it becomes impossible to 

differentiate the activity from the sample and the activity that naturally occurs on the 

planet (background radiation). This Decay method of calculating radiocarbon dates is 

thus limited to an upper range of 30 000 - 40 000 years, beyond which age a sample 

cannot be dated 

There is however a solution to the problem of measuring radioactive 

decay, and that is to use Accelerator Mass Spectroscopy (or Accelerator Dating). 

When the activity is so low that it is virtually indistinguishable from background 

radiation there are still astronomically large numbers of actual radioactive nuclides in 

the material. Using a particle accelerator a technique called high energy mass 

spectroscopy can actually count the number of atoms of each Carbon isotope in a 

sample directly. By so doing an older sample can still yield a radiocarbon date up to a 

range of 50 000 - 80 000 years old. The use of such an Accelerator Dating technique 

has the added advantage that a smaller sample can also be used for dating as again 

the size of the sample activity is no longer a problem. 

A practical point also exists, that the Archaeological sample must be kept 

clear of any Modern sources of carbon to avoid contaminating the sample with new 

C14. If this were to happen then any calculations on the age of the sample would 

produce a falsely young age for it. Samples should always therefore be stored in non-

carbon compounds 

Potassium Argon Dating. 

Potassium Argon Dating (or K-Ar Dating) can be used to date much older 

objects than radiocarbon dating. The half life of radioactive Potassium (K40) is 1 000 
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000 000 years (approximately). When it decays Potassium 40 yields two different 

possible products (or Daughter Nuclides), and does so in a constant ratio. One of 

these Daughter elements is the gas, Argon. Potassium occurs naturally in many 

minerals and rocks, one of which is the mineral Feldspar. Feldspar forms a crystalline 

structure, and as the Potassium 40 in it slowly decays Argon gas is formed and 

trapped within the crystal. If the Feldspar crystals are subjected to massive heating 

such as being involved in some kind of Volcanic Event then the crystal lattice is 

weakened such that the Argon gas is driven off. 

To use K-Ar Dating as a technique all that needs be done is measure the 

amount of Argon gas trapped in a Feldspar crystal. This will tell you how much Argon 

has been produced since the last massive heating of the rock, and knowing the rate of 

Argon production (by virtue of the half life of Potassium 40) an age can be ascertained 

for the sample. Since the half life is so incredibly long this technique's range has a 

lower limit at 400 000 years old. 

Uranium Series Dating 

Uranium Series Dating (or Uranium Thorium Dating) uses the decay of 

radioactive Uranium to make a dating technique. Uranium has many different 

isotopes, more than one of which is radioactive. The decay of Uranium 234 (U234) 

produces several daughter products which are themselves radioactive. Fortunately 

the half life of U234 is relatively short (350 000 years) compared to the half life of 

some of the other products and Uranium isotopes (1 000 000 000 000 years 

approximately). Thus these other products and isotopes can be effectively ignored 

from our calculations. We had to be certain though as some of the other Uranium 

isotopes decay to the same daughter as U234 by a different path. The decay product 
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which we are interested in is Thorium. By calculating the build up of Thorium we can 

determine the age of a sample. 

Uranium is a naturally occuring element and is found in many rocks 

including sedimentary rocks. As water flows over the rocks Uranium can become 

absorbed into the water, however Thorium is insoluble and so cannot enter the 

groundwater. Underground when the water emerges into caves it can form stalactites 

as the Calcium in the water precipitates out. The Uranium in the groundwater can also 

be precipitated out and become a part of the stalactite too. As the Uranium continues 

to decay Thorium continues to be produced and also becomes a part of the stalactite. 

By determining the proportions of Uranium and Thorium in the stalactite it is thus 

possible to calculate the stalactite's age. 

General Dating Ideas 

There are several ideas which are common to the dating techniques 

which we have already mentioned. The actual calculation of the ages of the samples 

in all cases requires the application of a radioactive decay formula. All of the 

techniques are applied to an Archaeological material to provide a date, and each 

technique has an associated range to it within it is applicable. There are additionally 

some operating limits on the ranges, such as the size of samples and the sensitivity of 

equipment. 

For each technique there is some clock mechanism - a process which 

occurs at a regular and measureable rate (such as the decay of radioactive nuclide). 

The rate itself must be constant, as in the constant half life of radioactive materials. 

This all establishes a chronometer which can be investigated to see how long it has 

been running. To be used as a dating technique with any practical value though it is 
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essential to know when the chronometer started. All of the dating techniques thus 

have a clearly definable Zeroing Event - an action which started the chronometer 

running. For instance, in C14 Dating the proportion of C14 is stable until the organism 

dies and carbon exchange cessates. After this point (the Zeroing Event) there is a 

gradual decline in the amount of C14 in the organism because of the radioactive decay 

of C14. All of the techniques must also have a way of measuring the proportions of 

various elements in the samples to make the data for the calculating of the samples 

age, such as high energy mass spectroscopy. 

These five areas are the areas which I used in the design of the 

experimental material for this study. They include three completely different 

radiometric dating techniques, one of which, Carbon 14 Dating, was subdivided into 

basic dating procedures and advanced techniques. In addition, we have seen that 

there are some general principles that are common to all three techniques. This 

concludes my brief look at the radiometric techniques used. In the first study, a 

biological (and also nuclear) technique was investigated. That is mitochondrial DNA 

dating (or mtDNA Dating) 

In all human cells there exists mitochondria with but one exception - the 

male sperm. This is because mitochondria live in the cell cytoplasm which normally 

surrounds cells, but which sperms do not have. This means that although our genes 

are jointly inherited from both of our parents, our mitochondria all come from the 

maternal line. Over time, as with all cells, the mitochondria may undergo mutations, 

and this gives us the basis of a dating technique. Since there is a temporal mutation 

of the mitochondria, as long as we know the rate of that mutation we can calculate the 

divergence of different people's mitochondria by virtue of their genetic difference. 

Thus the female heredity can be ascertained for all women. By calculating the 

divergence between women of different ethnic origins we can chart the times at which 

different cultures split off from a common ancestry, right back to the first ever woman to 
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have lived who shares our own genetic make up. mtDNA Dating has shown that this 

common ancestor was born between 140 000 and 280 000 years ago, and that she 

lived in Africa. Archaeologists have nick-named her 'Eve'. That completes my brief 

discussion of the Archaeological materials. I shall now consider the problems in 

modelling knowledge. 

Designing a System 

Early developers of Intelligent Tutoring Systems (ITSs) made extensive 

use of simple overlay modelling to keep track of the student's progress as explained in 

Chapter 4. In these systems the expert's knowledge, however it has been encoded, is 

considered to be the entire sum of the knowledge concerning the particular domain. 

The student is considered to have acquired only a small fraction of this knowledge (if 

any) before learning begins as can be seen in Figure 4.1. The purpose of the 

Intelligent Tutoring System (ITS) in this case is to fill in the 'blank slate' that is the 

learners knowledge with all of the expert's knowledge as represented within the 

system. As the students knowledge at any one time could thus be represented by 

/aying a card with holes in it over a card containing the experts knowledge, the method 

gained the name of overlay modelling. 

Figure 4.1 - An Overlay Model view of Student and Expert Knowledge 

The Experts 
Knowledge 

The Students 
Knowledge 
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This clearly is an incomplete assessment of the student's actual 

knowledge, as they obviously do bring some prior experiences and ideas with them 

into any novel learning situation as was explained in Chapters 1 & 2. This meant that 

there was a gaping hole in student modelling methods, and led to a realisation that the 

mis-conceptions which learners bring with them must be addressed for effective 

remedial action to be taken and to effect appropriate new learning. This need led to 

the creation of 'Buggy' models to encapsulate the knowledge state of a learner within 

an ITS including misconceptions. 

Buggy Models 

In 'Buggy' or mis-conception models of student's knowledge it is assumed 

that the learner's lack of expertise is not only due to a lack of expert knowledge, but 

also parts of their own knowledge being erroneous, as is shown in Figure 4.2. The ITS 

either has a library of possible 'Bugs' pre-generated or else has a smaller library of 

'Bug' parts which can be used to create a larger number of 'Bugs' out of several 

compounded 'Bug' parts. Then when the ITS notices a discrepancy in performance 

between the learner and the recommendation from the expert model, it can consult its 

libraries to see whether the failing is due to a lack of knowledge or the application of 

an erroneous piece of knowledge. By the application of many different problems 

related to the knowledge domain it is possible to calculate which different 'Bugs' or 

'Bug' parts are responsible for a student's performance, and thus allow for effective 

tutoring to occur which can specifically address the mal-rules which the student has 

developed before teaching them the actual correct rules for the problems encountered. 

This is where commentaries end on the development of student models. 

You either have an Overlay model or a 'Buggy' model. However, it is my contention 

that both of these types of modelling are examples of Overlay modelling, and that ITSs 
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Figure 4.2 - A 'Buggy' Model view of Student and Expert Knowledge 

The Experts 
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Knowledge 

have yet to break out of an Overlay Paradigm. 

Critique of the Overlay Paradigm 

The problem can be represented most easily as in Figure 4.3. The 

domain knowledge is no longer to be seen as the expert's knowledge: they are 

independent areas. This should come as no surprise, since any two experts will have 

different views and opinions on some topics, although they may well agree on a good 

many more. The point is that an expert will not necessarily represent the entire 

domain knowledge. Likewise, it is also conceivable that an expert may in fact have 

some erroneous ideas themselves, maybe a few, perhaps none, but still possible. The 

student then may have knowledge which is also shared by the expert (although it is not 

all guaranteed to be 'correct') and also knowledge both appropriate and inappropriate 

to the domain which is not shared by the expert. 

If we allow ourselves this view of knowledge then we are allowing the 

student not only the freedom to have inappropriate knowledge of the domain as 
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Figure 4.3 - Beyond the Overlay Paradigm view of Student and Expert Knowledge 
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'Buggy' models allowed, but also to have or attain knowledge of the domain that is not 

necessarily shared by the expert. By this view I classify both Overlay modelling and 

'Buggy' modelling as methods which fall foul of the 'Overlay Paradigm' in Intelligent 

Tutoring; that the student's knowledge, when correct, must be a facsimile of the 

expert's knowledge. This would imply that the end point of all teaching is to turn out 

'clones' of our current experts both in terms of their knowledge and its application. As I 

discussed earlier (Chapter 2), such Routine Expertise, is not always desirable or 

appropriate as their are many situations which may call for Adaptive Expertise. 

What we should be teaching students instead is how to think like an 

expert, not what an expert already understands. In this respect what is required is a 

system that is capable of deriving a measure of expertise which is free from the 

content of the domain but can be used nevertheless to discriminate between levels of 

expert performance and behaviour within a domain. In such a system, expert thinking 

and application could be rewarded rather than rote learning of the expert's knowledge 

as is often the case in other systems. By not shackling ourselves to the Overlay 

Paradigm we can still teach expertise for and within a domain, but we do not 

necessarily teach purely the expert's knowledge of the domain. To be able to achieve 

this we need a system to encapsulate the knowledge of the learner that is not a 
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difference model from the expert model in the ITS and one that is additionally capable 

of storing information about the student's understanding of the subject and its 

concepts. 

Having shown how most current ITSs fail to do this and from my 

discussion of the emerging Hybrid modelling approach in Cognitive Science, it should 

be apparent that a Hybrid Symbolic Connectionist Model would satisfy the 

requirements of both a student and an expert model within an ITS. The actual system 

which seems most appropriate to this study is the Symbolic Connectionism of Holyoak 

& Thagard. Within their system, the knowledge of any person (student or expert) is 

represented by the interconnections between individual concepts for a given overall 

concept. Thus for the overall concept of chair we can see in Figure 4.4 that the 

various components and functions of it are all linked together. Some of these links are 

stronger than others, and represent the subject's belief that they are more closely 

related. 

Figure 4.4 - A Symbolic Connectionist Network for a Chair. 
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This model can be 'interrogated' in two ways. Firstly, we can look at the 

relationship judged between any two components, such as the 10 (maximum) 

relationship between 'Seat' and 'Used for Sitting'. In this way the symbolic nature of 

the model can mimic the way that a normal Overlay Paradigm system would function, 

as a simple comparison can be made between Student and expert answer. However, 

a second and more useful answer can be obtained from employing the connectionist 

part of the model. In Holyoak & Thagard's work the model was subject to a 

mathematical device to propagate activation throughout the network. To perform this 

feat, each concept (or node in the network) is initially assigned an arbritary level of 

activity. Then each node would have its activity altered by the activities of the nodes to 

which it is connected. Hence, with 'Seat' and 'Used for Sitting' maximally connected, 

Seat would receive an increase in activity equal to the activity of the node 'Used for 

Sitting' scaled by the strength of the connection, 10. This is obviously a greater 

contribution to the activity gained by the node 'Seat' than that which would come from 

its connection to the node 'Table' where the connection strength is only half the 

maximum at 5. Of course this assumes that both of the contributing nodes have the 

same activity, which would usually be the initial condition for the system. The process 

of gaining activity from the connections to other nodes is further modified by the 

activity of the node itself. For 'Seat' the contribution of its own activity and that of the 

connected nodes are weighted: the greater the activity of a node the less it is 

influenced by its connections to other nodes. Also, there is a decrease in activity due 

to decay of activity that is in proportion to the amount of activity in the node. This 

process occurs for each and every node, and when all of the calculations have been 

completed once, a cycle of time is deemed to have passed in the spread of activity. 

This propagation may be represented mathematically thus: 

A|M(t+1) = A N(t)*(1-d) + Z ( A i * C N i ) * ( 1 - A N ( t ) ) 

l A , 
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where Afg(t) = The Activity of the node N at a time t, 

d = The decay constant, 

Aj = The Activity of a node i, 

X = The sum over all nodes i, where i = 1 to the no. of nodes and i*N, 

& C[y|i = The connection strength between nodes N and i. 

This process is repeated until such time as no further cycles of the 

network (applications of the formula to the data) produce a change in the activities of 

any node. At this point the network is deemed to have reached a stable state. The 

activity of any node in comparison to the others then gives a relation of the node to the 

overall concept, with the node having the highest activity deemed to be most closely 

related to the overall concept. So, in our example for instance, the activities we find 

are as shown in Table 4.1. 

Table 4.1 - Activities for the Concepts in Chair 

Table Legs Seat Back Arms Used for Sitting 

Activity .404 .575 .614 .537 .484 .611 

This allow us to see that in the eyes of the subject the item Seat and the 

function of Used for Sitting are most important concepts to the overall concept of a 

chair, whilst Table is least important. In the mind of this subject (the author) I was 

clearly thinking of a desk chair, however it is easy to see that a completely different 

idea of a chair could be held by another person which would yield very different 

relationships between the individual concepts. Thus if you were to think of a comfy 

upholstered chair instead you may well give no relationship to table and very little to 

legs from any of the other nodes. Instead you may give much more weight to the 

arms, ending up with a network like Figure 4.5 instead. 
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Figure 4.5 - A different Symbolic Connectionist Network for a Chair. 
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Now to compare the relationships with the previous 'Expert' definition of a 

chair, there are only three relationships still judged identically - grounds to say that this 

person has a different idea of the concept Chair, and therefore according to the 

Overlay Paradigm the wrong concept. However, if we repeat our network analysis of 

the stable activation levels and compare with the previous result we can see clearly 

there is little difference. 

Table 4.2 - Activities for the Concepts in Chair, both Desk and Comfy 

Table Legs Seat Back Arms Used for Sitting 

Comfy .200 .436 .618 .594 .574 .608 

Desk .404 .575 .614 .537 .484 .611 

As can be seen from Table 4.2 although the activities have changed 

somewhat, the positions of importance given to each concept are still the same, with 

Seat most important, followed by Used for Sitting. However, the Comfy chair sees legs 

in 5th most important position rather than third, but otherwise there are no rank 

changes. What we do not have though is the independent measure to show that this 

second view of chairs is just as valid. Obviously we know that both are acceptable, 

and also that most people are experts in the field of chairs, being able to recognise 
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instantaneously whether an object is or is not a chair. What we need still is the 

measure of expertise. 

Measuring Expertise 

The idea of 'dynamically interrogating' the network would be difficult to 

use in practice due to the volume of information it would produce. If we were to 

continually take the activity of each and every node, even a small network would 

produce many items of data. If we then had to do this for both a student and an expert 

model to enable a comparison we would need to handle twice the data again, and we 

would still need to find some criteria on which to compare the information. Also, not 

only can we interrogate the network with an equal initial distribution of activity, but also 

we can interrogate it under different constraints: keeping one (or more) node(s) at a 

maximum activity for instance. This is called 'clamping' by Holyoak & Thagard, and 

allows us to investigate the effects of a given concept in relation to all of the other. It is 

akin to saying that the one concept is immutably true and then seeing how the 

relationships between the other possible concepts are altered because of it. By 

allowing any one or more node to be clamped we thus have another way of producing 

yet more information from the network on which to compare student and expert 

models. We are almost overwhelmed with possible comparisons. 

What is needed instead is something similar to the 'goodness' criteria 

used by PDP researchers (such as Rumelhart & McClelland), where a statistical or 

mathematical function could yield an interpretation of the entire network data in a 

readily comparable and simple numerical form. Their method though (Smolensky, 

1986) is not directly applicable to a symbolic system so an alternative technique was 

sought. The current research literature however failed to provide a suitable statistical 

test for data created by such a network. As the original work of Smolensky with 
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Harmony sounded plausible as a method if it could be applied to a different type of 

network I returned to it. A more recent study was also identified which appeared to 

use Smolensky's method with a symbolic network (Briton & Eisenhart, 1993) and so I 

studied both these works to identify a method for creating some form of 'goodness' 

value for a hybrid (symbolic & connectionist) network appropriate for this research. 

This 'goodness value' has become an important part of this thesis, and so a 

description and appraisal of the original works is a necessary fore-runner to my own 

research. I will start off with a quick look at the idea of network coherence which leads 

on to Smolensky's definitions of Harmony. Then I identify how he and also Briton & 

Eisenhart calculated their respective values for a network's Harmony, and finally what I 

myself learnt from these works and how I then applied this to create my own function 

for a network's coherence. 

Coherence 

To understand coherence, let us look at an example of a simple network 

with three inter-connected nodes: A, B & C. These nodes represent three concepts, 

and the connections between node pairs stand for the 'similarity' between them as 

perceived by the subject. A subject would be asked to rate the similarity of each pair 

of these three concepts on a scale of 0 to 10, where higher values represent greater 

similarity. If that subject judged all three concepts to be highly similar they would rate 

all three possible pairs (A&B, A&C and B&C) as 10, and the network representing this 

would be as shown in Figure 4.6. 

Now this network is logically self consistent if we examine it. To 

paraphrase the relationships we could say that A is similar to B, B is similar to C & C 
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Figure 4.6 - A Three Node Network with Three Highly Related Concepts. 
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is similar to A. Indeed we could borrow from logic and say that A=B=C is logically 

sensible since it expresses a transitive relationship. We can therefore say that this 

network is coherent. The same would also be true of a network where A-B was scored 

at 10 whilst B-C and C-A were scored with a zero. In this second case we could say 

A=B*C, which too is logically sensible (and implies through logical transitivity that A * 

C). However, were the case to be that A-B and B-C where scored 10 but C-A were 

scored with a zero then we have a difficulty. On one reading of this network (see 

Figure 4.7) A=B=C, which implies that A=C; however, A is not equal to C and so 

transitivity is violated. We therefore would say that this network is incoherent. We 

should also say the same of a network where C-A scored 1 instead of 0 and A-B and 

B-C still scored 10. This is however a different case from the previous one, since the 

strengths of the relationships are no longer all-or-none. We therefore have to quantify 

coherence instead of using an all-or-none binary measure. 

Figure 4.7 - A Three Node Network with Three Highly Related Concepts. 
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A quantitative measure of coherence can be calculated from the 

difference between the activation of each pair of nodes and the strength of connection 

between each pair. What coherence shows is the way in which the supposed 

relationships of the individual pairs is consistent with the overall pattern indicated by 

the network's inter-relationships in all other possible paths. The activation states 

represent for us the 'global' importance of each concept to the overall concept in a 

stable and unconstrained network1. We can then compare these overall activation 

levels (the activation levels of the nodes) with the ascribed similarities (the subject's 

ratings, which are represented by the connection strengths between nodes) by taking 

the nodes in pairs. We can thus look at the deeper inter-relationships which the 

overall activation levels express for a pair of activation levels in comparison to the 

predicted similarity of the concept pair (from its ascribed connection strength). This 

can be given as a numerical relationship between the two measures; the difference 

between activity levels for a pair of nodes & the connection strength between that pair. 

This comparison can be made mathematically to give a similarity score between the 

two measures, which we may call the coherence of the node pair. This coherence 

value can then be summated and scaled over all of the concept pairs to give a single 

index: a coherence value for the entire network. 

Harmony 

" The contribution to H of an inactive atom is zero. The contribution of 

an active atom a is the product of its strength and the consistency between its 

1 Though we could also constrain one concept and look at the changed activity pattern 

in the light of this, in which case we could look at the importance of all concepts to one particular 

concept or more, as opposed to the overall concept. 
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knowledge vector ka and the representational vector r; this is measured by the function 

hk(r,k a)" 2 

Smolensky thus defines a value for the Harmony of a two-tier network 

where a sub-layer of knowledge atoms are linked with unitary strengths to a layer of 

representational features. Harmony is the original value calculated for the 'goodness' 

of a network by the PDP research group, and is a particular way of measuring the 

coherence of a network as previously explained. The value for Harmony, H is 

calculated as follows: 

H(r,a) = s a a a h(r ,ka) , where h K ( r ,k a ) = r.k a - K 
IM 

and r.k a = £ rj (k a ) i , and |k a | = £ Kka)il 

and where r = representational feature vector 

(i.e. the activated nodes from the knowledge base) 

a = activation vector of aa for all a. 

Sa = strength of atom vector 

(i.e. the frequency of an activation pattern appearing 

aa = activation of knowledge atom a (-1,0,1) 

ka = knowledge vector (weights of connections from a to rj) 

in the discrete range of (-1,0,1). 

Looking at the main equation for the value of H, the part of it which is 

Saaa is used to scale the similarity rating, so that it is bounded in the range [-1.+1]. It 

also means that any node not activated from the knowledge base is not included in the 

calculation of a value for Harmony. The other part of the equation is the basic 

2 p 222. "Information Processing in Dynamic Systems: Foundations of Harmony 

Theory", Smolensky, P. Chapter 6 in Parallel Distributed Processing, McClelland, J.L. , Rumelhart, D.E. 

and the PDP Research Group., MIT Press, 1986. 
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similarity rating, h(r.ka). Since \ka\ is purely a scaling device h is also bounded in the 

range [-1.+1], with each non-zero connection of ka for each activated knowledge atom 

a contributing a scaled binary relative to its own state. This is on its own a simple 

rating scheme to yield a Harmony value for a two-tier network. It is modified however 

by the addition of the constant K, also bounded in the range [-1.+1]. If K=0 then H 

remains the simple Harmony equation, being the concordance of those features which 

agree less those that disagree. However, Smolensky identifies that this means if over 

50% of ka agrees with r, then an increase in the activity of a will necessarily mean an 

increase in H, which is not in itself necessarily a good move. If this were the case, 

then an increase to the activity of any node would cause an increase in Harmony, 

regardless of the node's relationship to the rest of the network. Thus in a marginal 

case where only just half of all the input of activated nodes in the knowledge base 

agree with the connection weights there are almost as many nodes which do not agree 

and yet still have the ability to raise the Harmony of the network through an increase in 

their own activity. However, by ranging the value of the constant K, we may alter this 

criteria of percentage agreement through the range of 0-100%, thus giving us greater 

control over the calculation of H. 

Essentially then, Smolensky's work on Harmony may be paraphrased 

thus: If the connection strength and the activation concur, then rj (ka)i = 1.1 or -1.-1 

=1, whilst if they differ then rj (k a ) j = 1.-1 or-1.1 = - 1 . This kind of data manipulation 

and calculation is indeed well served by the matrix mathematics which Smolensky 

employs, as it quickly and efficiently deals with the large number of computations 

involved in any reasonably sized network, and since it is very easy to express in its 

notations. However, this form of calculation will only work because the states are 

represented in a Binary form. The probability of a particular pattern of activity 

occurring is not explicit in the connection strengths in this representation but is instead 

inherent in the outcomes of all possible input values of the network. This also means 

that any scaling has to be applied after the matrix multiplication stage of the 
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calculations has occurred. To use similarity rating on an analogue scale within the 

bounds (-1.+1) could not be treated similarly, since to use a reduction ad absurdia, 7 x 

• 7 * 1 !!! As Smolensky himself puts it, " It will turn out to be convenient to denote 

present and absent respectively by +1 and -1 .... Other values could be used if 

corresponding modifications [my emphasis] were made in the equations ... The use of 

continuous numerical feature variables, while introducing some additional technical 

complexity, would not affect the basic character of the theory". 3 

Symbolic Networks 

The application of such a measure of the internal coherence of a network 

to a symbolic network as used in this research would be most useful as I previously 

stated, and at the 15* n Annual Conference of the Cognitive Science Society a paper 

was presented by Briton & Eisenhart (1993) which claimed to have done just that. In 

their experimental work, a questionnaire was produced which elicited conceptual 

knowledge in the same fashion as in our project's data collection, and which was 

apparently used to create symbolic networks just as we had done. They claimed that 

this showed results which distinguished between experts and novices in two ways -

firstly that the settling rate of their networks was decreased by expertise, and secondly 

that Harmony was increased by expertise. The only difference between their methods 

and ours is that they used a 7 point scale for their data collection where we used 11, 

and that they used the Kintsch and McClelland & Rumelhart system of bounding to [-

1,+1] for the range whereas I followed Holyoak & Thagard in using [0.+1]. Briton & 

Eisenhart expressed their equation for Harmony much as Smolensky did, putting 

3 p 214. "Information Processing in Dynamic Systems: Foundations of Harmony 

Theory", Smolensky, P. Chapter 6 in Parallel Distributed Processing, McClelland, J.L. , Rumelhart, D.E. 

and the PDP Research Group., MIT Press, 1986. 
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forward their own modified version. This is not, however, spelled out formally in 

notation in the conference proceedings, merely in common English. By referring back 

to Kintsch's original work (Kintsch, 1988) though it is not impossible to make a 

formalisation, and as such this is what their formula appears to be: 

H(r) = [ (a a . a a

T ) .W] . 1 

I KRa)il 

where r is the set of features, 

ka is the weight vector for a, 

aa is the activation vector for r (+1 ,-1) & 

a a T is its transpose, 

and where W is the weight matrix. This, from Kintsch, is a matrix 

where the connection weights for the nodes are repeated on both sides of the 

diagonal, but has a null value placed in the diagonal itself, i.e. ., for a 3-D 

matrix, 
W = ( - W21 W31^ 

I W-12 " W32 I 
1 W-13 W 2 3 " J 

In this situation, the similarity rating for any 2 nodes is represented by 

their product multiplied by the connection weight between them (and later summated 

and scaled). Essentially then, this appears to be a barely altered version of 

Smolensky's work cut down for use in a homogenous network: aa-QaT replaces r.kg to 

get around the change from a two-tier network to a homogeneous network; the 

constant K is permanently set at zero, and the scaling factor of £\(kah\ is identical. 

Briton & Eisenhart even re-scaled their original data from the range (0,+1) to (-1.+1) to 

make use of Smolensky's formula. However, to account for the change-over to 

continuous activation energies (even though they actually used a small set of discrete 
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numbers within the range) Briton & Eisenhart have introduced a term to multiply by the 

weight matrix, and then to summate over all nodes before scaling. This appears to 

somewhat blur an individual node's contribution to the overall Harmony, but I have 

worked through the equations with algebraic variables when I found myself unable to 

understand their methods (see Appendix A for the full workings). Simplification of the 

smallest non-trivial network (a 3 node network) demonstrates they are actually using a 

generic formula thus: 

H ( N ) = 3N { W A N + W B N + ... + W N M ) • where there are M nodes 

and where W N N = 0. 

This leaves us with an underlying method which is completely un-sound. 

It is clear now that they are trying to replicate Smolensky's work in a homogeneous 

network utilising continuous activity levels, which as I demonstrated earlier is 

impossible to perform using the matrix multiplication techniques which Smolensky 

successfully employs. However, in their avoidance of this pit-fall they have chosen to 

ignore the similarity rating between nodes completely! Instead they merely compare 

the node's activity to the weights of the surrounding connections, a calculation hardly 

worthy of being called Harmony! 

Implications 

In the light of this discussion it is apparent that a simple measure of 

internal coherence for a homogeneous continuous network is desirable, and 

achievable. We therefore propose to use a simple correlation between each pair of 

nodes summated over the whole network. We express this as 
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H(r)= a a x CL\\h(a\,a$} [i*j] 
I N J 

the activity of node i & aj is the activity of node j ; 

= the connection weight between nodes i & j , 

= the number of non-zero connections (wjj), 

= the percentage of non-zero activity nodes, 

aa, wy, aj & aj are bounded in the range (0,1). 

We also define h(ai,aj) to take the forms of a subtraction difference. That 

is, the similarity between nodes i & j is |ai-aj|, and then h is the smaller of the similarity 

(simjj) / Wjj or Wjj / (simjj). Thus h(ai,aj) = simjj / Wjj ( simjj < W j j ) or Wjj / simjj ( 

simy > W j j ) where simy = |ai-aj|. We also define h(aj i0) & h(0,aj) as 0. 

However to do this loses some of the rigidity of Smolensky's work, since 

the continuous data is experimentally collected from subjects. We thus have no 

guarantee that there is any inherent relationship between the scale as used by the 

subjects, and thus the subtraction comparison is flawed. It will probably be forgivable 

to assume that the scale is (approximately) linear (or at least to assume that it is a 

more defensible approximation than a non-linear scale) but it is no longer the tight 

mathematics that Smolensky's equations were. Also because the mathematics are 

used on a homogeneous and not two-tiered network, the decomposability is not 

assured, especially under the circumstances of the continuous data used. Therefore it 

does not seem appropriate to lay claim to the title of Harmony for this measure of 

internal coherence, as it implies the strictness of Smolensky's work. Instead we shall 

choose to refer to our measure simply as the coherence of the network. 

This then gives us the independent measure of expertise which we 

required to overcome the Overlay Paradigm. Indeed, for the prior example about the 

where aj = 

Wjj 

N 

a a 

& 
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concept of Chair, although the Comfy Chair example is perhaps less prototypical we 

can still see that the representation has a certain amount of coherence to it, as did the 

Desk Chair (see Figures 4.4 & 4.5). Their respective coherence values using the 

formula just given are 0.572 (Comfy) & 0.672 (Desk). By comparison, if a person really 

did not understand what a chair was, only knowing it had a seat for sitting on, then the 

coherence drops to only 0.333 (connection strengths: Seat & Used for Sitting -10 ; all 

other pairs, 0). As a Hypothesis for testing, I believe that the theoretical measure of 

expertise which is derived from the Symbolic Connectionism of Holyoak and Thagard 

and the work on coherence of Smolensky and also Briton & Eisenhart is empirically 

observable and able to discriminate between a group of novices and a group of 

experts within the chosen domain of study, archaeological science. 

In summary, there is an imperative need to aid the teaching of Scientific 

Archaeology, caused mainly by the diversity in student background. We could 

possibly achieve an improvement in teaching by using a computer aided learning 

system (capable of making intelligent judgements as to the learner's level of expertise 

in the domain of Scientific Archaeology). To create such an intelligent tutor it is a pre­

requisite that we can successfully identify novice and expert knowledge in that domain 

and successfully discriminate between them. We have seen that to truly claim that 

such a system accounts for the prior knowledge of the learners coming into the ITS 

environment we must address the problems of the Overlay Paradigm. By using a 

system which is not constrained by a set of expert rules or student mal-rules in making 

that decision but which can identify expert thinking, we can endeavour to tutor 

intelligently. We have shown that by looking at relational judgements it is indeed 

possible that a measure independent of the actual rules of a domain can be taken. If 

this measure does indeed discriminate effectively between experts and novices then 

we can avoid the problems of the Overlay Paradigm, and would have taken the first 

step on the road to an Intelligent Tutoring System for Archaeological Science. We 

must now proceed to confirm or refute this supposition empirically. 
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C h a p t e r 5 

Testing the Symbolic Network 

Introduction 

The purpose of the empirical work is to establish whether a symbolic 

connectionist system can be used to represent knowledge in the field of Scientific 

Archaeology and discriminate effectively between the knowledge of experts and 

novices using a coherence measure (and thus avoiding the problems inherent in the 

Overlay Paradigm). To test our belief that this will indeed be the case we have to elicit 

knowledge from both novices and experts within the domain and endeavour to see if 

our method is indeed capable of performing the distinction. We will also be comparing 

and contrasting its performance with a tried and tested way of interpreting the elicited 

knowledge as a further test of the validity of our methods. 

To elicit the knowledge structure of the subjects in the format required for 

the creation of a symbolic connectionist network, a paired comparison procedure was 

chosen. The data collected can then be represented on a diagonal matrix showing the 

responses to all the possible concept combinations. Previous work has concentrated 

on the interpretation of these similarity matrices through the use of a multidimensional 

scaling technique (or MDS). These techniques compress the data into a two 

dimensional representation of the 'concept space', and have been used both to look at 

the internal cognitive structure of a particular concept area, and to compare the 

structure of novices and experts. This successful use of the similarity matrices to 

distinguish novices from experts will be used as a comparison for the constructed 

network data. The symbolic networks created should be able to differentiate between 

novices and experts through the internal structure of the 'concept space' as the MDS 

techniques do, but also through the identification of the coherence of the knowledge 
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organisation. I shall explore these claims in the light of theory and past work to show 

how this new application is expected to function. 

The relational data present in the similarity matrix can be represented 

visually as MDS plots through the application of a scaling formula. The data is scaled 

from a large number of dimensions (as many as 24 in this work) into only two 

dimensions for ease of visualisation. This will almost certainly lead to a large loss of 

data in the final plot unless the original data represented a two dimensional space. An 

example of the technique can illustrate how it can be used. Given a list of the major 

cities of the USA and a list of the air travel distances between all of these cities we 

may construct a similarity matrix, as shown in Figure 5.1. The matrix is diagonal since 

the distance from City A to City B is necessarily the same as the reverse journey, 

making the upper right hand side of the matrix redundant. 

Figure 5.1 - A Similarity Matrix for the air distance between 12 major USA Cities 

City in the USA Atl Bos Cin Col Dal Ind Lit Los Mis StL Spo Tpa 

Atlanta n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Boston 1068 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Cincinatti 461 867 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Columbus 549 769 107 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Dallas 805 1819 943 1050 n/a n/a n/a n/a n/a n/a n/a n/a 

Indianapolis 508 941 108 172 882 n/a n/a n/a n/a n/a n/a n/a 

Little Rock 505 1494 618 725 325 562 n/a n/a n/a n/a n/a n/a 

Los Angeles 2197 3052 2186 2245 1403 2080 1701 n/a n/a n/a n/a n/a 

Memphis 366 1355 502 586 464 436 137 1831 n/a n/a n/a n/a 

St Louis 558 1178 338 409 645 234 353 1848 294 n/a n/a n/a 

Spokane 2467 2747 2067 2131 1891 1959 1988 1227 2042 1820 n/a n/a 

Tampa 467 1379 928 985 1077 975 912 2480 779 1016 2821 n/a 
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By applying the MDS technique, we are given a set of co-ordinates to 

place each of the list members (Cities) in two dimensional space. By charting all of the 

list members together on a plot as in Figure 5.2 (the MDS plot) we can investigate their 

inter-relationships. 

Figure 5.2 - The MDS Plot for the 12 Major US Cities. 
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Figure 5.3 - A US Map for comparison with the MDS plot. 
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We can attempt to discern any common features by attempting to label 

one or more axes on the plot. In this example that is an easy task, as the plot shows 
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the geographical positions of the Cities as if on a map of the USA. By orienting the 

plot we can then resolve the x and y axes as longitudes and latitudes or Northings and 

Eastings. In this case, as Spokane lies due north of Los Angeles we can find that our 

North South axis and then rotate the MDS plot to line this axis vertically up the page 

(as I have done). By then lining up cities on the map (such as LA., Spokane & 

Boston) we can see how the other cities almost match up. This gives us a very useful 

tool for making a qualitative judgement about the content of the knowledge 

investigated. We can quickly see how close any two cities are by air. What we cannot 

see is any data lost in the scaling process. In this example, the air distances over 

such a large area of the globe are going to be heavily dependant upon the curvature of 

the Earth. We are thus missing out on a third dimension, z, being the distance each 

city is displaced from an imaginary section cut through the Earth as demonstrated in 

Figure 5.3. 

Figure 5.3 - A section through the Earth, showing the effect of Curvature upon the 

USA. 

Spokane 
Los Angeles 

Z 
x-axis 

y-axis 

z-axis 

This data has been lost in the scaling process, with no axis left in the 

MDS plot which could show us that data. Indeed, the reason that the MDS plot and 

the map of the USA are not in exact alignment is because the map is drawn to show 

the effects of the Earth's curvature (as is indicated by the latitude and longitude lines) 

and has not been 'flattened' out. As you can imagine, the loss of data is therefore 
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entirely dependent upon the number of different inter-relationships which exist 

between the points in the data set. In this case only one dimension has been lost and 

so the majority of cities do still appear in their correct location (allowing for the 

variation in curvature), although some, notably St Louis & Atlanta, are harder to fit into 

place. In some instances this loss of information can be quite acceptable: imagine 

having to read a road map rendered to show the Earth's curvature as well as the M25! 

MDS plots are thus good for identifying the two major relationships in a visualisable 

way, which will allow us to make non-exact judgements about the data. 

A previous experimental use of the MDS technique should also be 

considered, to show how this scaling of a physical relationship can be applied to 

scaling a belief relationship, and then to the creation of a 'cognitive space1 which 

represents a subject's organisation of knowledge. Such a study was performed in 

1988 by Stevenson, Manktelow & Howard. Concepts important to the area of 

investigation are taken, and all possible pairwise combinations of them are presented 

to the subjects in a booklet or questionnaire. In this case, the field of study was 

computer programming, specifically procedures in PASCAL. The key words used in 

the questionnaire were single words representing important concepts to the topic 

drawn from videos of first year lectures. The subjects were asked to rate the similarity 

of the paired concepts on a scale. The scale used was 1 - 7, where a rating of 1 would 

indicate that the subject knew of no relationship between the pair of concepts, whilst a 

7 would indicate that they believed the two concepts to be intimately related. The rest 

of the range was to represent all intermediate strengths of relationships 

In the study, 8 Novices (1st Year Undergraduates) and 2 Experts 

(Computer Science Lecturers) took part. The similarity matrices produced for the 

subjects were interpreted using the MDS technique to produce a plot of the 'concept 

space' of the key words used. This showed a qualitative difference in the novice and 

expert responses. Both had two prominent groupings of concepts in their concept 
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spaces, but the grouped concepts were different for novices and experts. The 

technique was also employed to interpret the similarity of the novices' and experts' 

responses by interpreting the different use of the two dimensions by the subjects. In 

this plot the novices were seen to place much more weight in one of the identified 

dimensions than the other, whilst the experts were much more consistent in placing 

even weight on both dimensions. Each dimension was also identified in terms of some 

higher order strategy in programming (the exact nature of which is not relevant here). 

However, the data that is needed in multi-dimensional scaling can also 

be used to create a symbolic connectionist network. To do so, we firstly take the same 

similarity matrix we had before. Each concept is then the label for a node in a network, 

and each and every node is connected to each and every other node. The 

connections between nodes are also labelled, with the strength of relationship as 

shown in the similarity matrix. For our previous example of US cities then, a symbolic 

connectionist network would look like Figure 5.4. 

Figure 5.4 - A Symbolic Connectionist Network for the 12 US Cities. 
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As the data in the symbolic network is unchanged from its state in the 

similarity matrix, it is possible to extract it again to create the MDS plots: the 

connection strengths simply being re-interpreted as the original data. This is an 

advantage over the MDS technique as the raw data can be retrieved from the network 

at any time, whilst the MDS plot is a static and irreversible process - you could not 

retrieve the initial data simply from the MDS plot itself. However, the advantage of the 

symbolic network is not in mimicking the MDS technique, but in its ability to yield a 

quantitative description of the novice expert difference through a measure of the 

coherence of the network (see also Chapter 4). 

As we saw in the last chapter, the idea of coherence within a network is 

derived from the work of Smolensky (1986) on Harmony. If a person holds 

inconsistent beliefs about a concept area, such as this paradoxical set of logical 

statements, then we can say that their beliefs are incoherent. 

A = B, B = C, C * A . 

Within a connectionist structure it is possible to make such comparisons 

between concepts throughout the structure, and to ascribe a quantitative value to each 

component part. The sum of these parts is the Harmony of the network (Smolensky). 

This measure of harmony is taken from 0 to 1, where 0 is a completely incoherent set 

of beliefs and 1 is completely coherent. Tied to this measure is a second, that of the 

speed with which the constructed network reaches a stable state. Smolensky's work 

though was concerned with pure connectionist networks and with two-layer (Input-

Output) networks. To make the work suitable for our purposes requires a change to 

the calculation of the coherence, and with deference to Smolensky I chose not to use 

the label of Harmony for our measure. This is because Smolensky's measure is very 

rigorous as a mathematical entity, and this cannot be guaranteed in the same way for 

a symbolic network. Previous work has been carried out though in making this step 
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(Briton and Eisenhart, 1993) and a measure of network coherence for a symbolic 

connectionist network has been produced. Briton and Eisenhart's research indicated 

that both the coherence of a network and also its settling speed are discriminators of 

expertise. 

In the work of Briton and Eisenhart, subjects were presented with paired 

comparison tasks and again asked to rate the material for similarity. The scale they 

used was from 0 - 7 , and they too created a similarity matrix for each subject. They 

then scaled their data to fit boundary values of [-1.+1] after the work of Kintsch (as 

discussed in Chapter 4) and followed his method for the propagation of activity through 

the network to a final stable state. That is, 

A N ( T + 1 ) = ( A N ( T ) + £ (Aj * C N j ) ) / Z A j (Eqn. 1) 

where A N ( T ) = the activity of a node N at a time T, 
Aj = the activity of a node i, 

& C|s|j = the connection strength between nodes N and i, 

and the sum of all activities for all nodes is scaled to total 1 each cycle. 

Briton & Eisenhart expressed their equation for Harmony much as 

Smolensky did, putting forward their own modified version. Essentially they barely 

altered Smolensky's work, but because of the differences in the networks each used 

they ended up with what I earlier argued to be a poor measure of coherence. Each 

node's activity is correlated with the connection strengths between itself and all the 

connected nodes, but no notice is given to the activity of the nodes to which it is 

connected. Thus: 

H ( N ) = 2. N=I-M ( A N { W A N + W B N + ... + W N M } ) i where there are M nodes 

and where W N N = 0. 
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To facilitate the research, a computer program, called NETG, was written 

to construct and run symbolic networks and to calculate their coherence. The program 

was written in PASCAL on a Hewlet Packard Apollo Workstation. The core program 

was created by Mr Simon Lawrence, and was then customised and extended by 

myself. The program in its current form takes the concepts as an input and then 

prompts for the relationship between each pair. This information may be stored to a 

file and retrieved at a later date. The program also allows for the selection of different 

methods of operation - either allowing the network to be run using the Kintsch / 

McClelland & Rumelhart formula (mentioned previously and labelled as Eqn.1) for 

propagation or one based on the formula used by Holyoak&Thagard which is: 

AN(T+1)= (AN(T)* (1-d) + ( 2 ( A | * C N I ) ) * (1 -A N (T ) ) 

In Holyoak and Thagard's formula the differences to the Kintsch / 

McClelland & Rumelhart formula are minor theoretical ideas. Instead of controlling the 

size of activity in each node through scaling of the network to a constant activity, the 

node's activity at a time T+1 is equal to its activity at a time T decreased by a decay 

constant d. The contribution of the other nodes is also scaled by the previous activity 

of the node N, thus making it harder for a node which has already achieved a high 

activity to then lose that activation. 

The NETG programme also allows the selection of different ways to 

calculate the network's coherence, and other functions such as automatic reduction of 

network size and 'clamping' of concepts may be selected. The network may then be 

run, and an output produced detailing the node's final activity states and the network's 

settling rate and coherence. The network may either be run automatically through to a 

stable state, or it may be manually instructed to perform any integer number of cycles 

of the network. 
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Through experiments we intend to collect data for evaluation by the 

standard method of MDS and through my own network program (NETG) which can 

assess the coherence and settling speed of the symbolic network as well as yield the 

relational data inherent in the MDS technique. It is my hypothesis that my program will 

be an effective novice/expert discriminator. 

Experiment 1 

The first data collection was intended to investigate the feasibility of the 

NETG program. A small group of second and third year Archaeology undergraduates 

were given a simple questionnaire on mitochondrial DNA (or mtDNA) theory. The aim 

of this study was to elicit the knowledge which novices and experts have of mtDNA 

theory and to identify it using both the MDS technique and the NETG programme. 

Then the two methods can be compared. 

Method 

Subjects: 

Sixteen subjects were used. One was an expert (a lecturer in scientific 

archaeology) and 15 were novices (Archaeology undergraduates in their second or 

third year of study). 

Materials: 

11 concepts (single words or two word phrases) were selected from the 

lectures given on the subject as contributing to the overall concept of mtDNA theory; 

e.g. mtDNA, Temporal Mutation, 'Eve' and Africa. Each concept was paired with every 

other concept to create 55 pairs. These were presented in a random order to each 

subject in a single questionnaire. The questionnaire (an example of which is in 
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Appendix B) firstly gave a small example of the format of the questionnaire. The 

subjects were requested to indicate on a scale of 0 - 10 how closely related they felt 

each pair of concepts to be, by circling the appropriate number on the scale provided. 

A typical line of the questionnaire was like this: 

Africa & mtDNA - 0 1 2 3 4 5 6 7 8 9 10. 

Design and Procedure: 

Subjects were presented with all 55 word pairs and asked to rate the 

similarity of each pair on a scale from 0 to 10, where 0 indicated dissimilar and 10 

indicated very similar. This task was given to one lecture group and their lecturer in 

the second half of a normal teaching session. The resulting similarity matrix for each 

subject was then analysed using the multidimensional scaling technique and also by 

constructing a symbolic connectionist network. In the network, each concept becomes 

a node, and each link between a pair of nodes has a strength attributed to it equal to 

the subject's rating of the pair in the questionnaire. An initial arbitrary 'activity' is 

assigned to the nodes and allowed to spread though the network according to a 

formula developed from that used by Holyoak and Thagard (1989) and described in 

the introduction of this chapter. When the network reaches a stable state, the 

coherence and settling rates are produced by the programme. 

Results 

First, we examined the raw data of the similarity matrix. The distribution 

of strength of relationships as shown in Figure 5.5 shows that the students were more 

likely to stick to the middle of the range. The expert by comparison used the extreme 

values (0 & 10) much more frequently. Both groups did however make full use of the 

range, but where the novices scored greater than 7 it was only for very obvious 

archaeological associations. Additionally, the expert's distribution was equally high 
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across the range of concepts, whereas the learners tended to concentrate their high 

ratings over a small group of concepts. 

Multi-Dimensional Scaling: 

A two dimensional scaling solution was produced for the 11 concepts in 

the questionnaires. As Figures 5.6 & 5.7 show the novices possess a very different 

organisation to the expert in their knowledge. The concepts for novices are distributed 

fairly evenly around the edges of the plots (with some small localised grouping) while 

the expert plot has a central left grouping and two other bunches; one in the middle 

bottom and one to the right. 

Figure 5.5 - Distributions of Strengths of Relationships in the Questionnaire, by group. 
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Figure 5.6 - MDS Plot of the 15 Novices. A 'concept space' for mtDNA Theory. 
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Figure 5.7 - MDS Plot of the Expert. A 'concept space' for mtDNA Theory. 
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Network Data: 

The connection strengths which were elicited from the subjects as paired 

concept similarity ratings were then used to construct a network as described in the 
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earlier chapters. For each of these networks a calculation of the network's coherence 

was then made using the formula which I constructed and which was detailed at the 

end of Chapter 4. The calculation of coherence for the subjects in the novice group 

yields values between .384 and .799 with an average of .629, while for the expert this 

value was .889 as shown in Figure 5.8. We also measured the number of cycles 

needed for the networks of the novices and of the expert to reach stable states (see 

Figure 5.9). The expert's network settled after 39 cycles, while the number of cycles 

needed for the novices ranged from 37 to 46, with a mean of 40. 

Figure 5.8 - - Box and Whisker Plot of Coherence, by group. 
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Figure 5.9 - Box and Whisker Plot of Settling Rate, by group. 
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Comparisons: 

The scaled data of the MDS plots can be compared directly with the data 

derived from the NETG program. Where the MDS plot shows a scaled representation 

of 'cognitive distance' in two dimensions as pure physical distance between any of the 

features, a comparable measure can be drawn from the NETG programme by 

clamping a feature (Holyoak and Thagard, 1986) and then observing the settled 

activities of the other concepts (Table 5.1). By clamping, a single concept has its 

activity set to the maximum value, and then the activity within the network is allowed to 

propagate through it as before. However, on each subsequent cycle, the 'clamped' 

concept retains its maximum activity. Thus, when a stable state is reached, it will 

reflect a vastly increased influence from the clamped concept. It therefore makes the 

final activities for the network data 'centred' upon that particular concept. 

Table 5.1 - A comparison of the NETG and MDS data for the concepts relative to 

mtDNA (Expert's data). 

Network Feature Network Activity MDS Distance 

Ancestry 0.517 .39 

Eve 0.510 .14 

140-280K b.p. 0.507 .16 

Time Scale 0.490 .58 

Rate of Mutation 0.458 .86 

Temporal Mutation 0.434 .91 

Female Heredity 0.432 .49 

Africa 0.406 .50 

Cell Cytoplasm 0.406 .65 

Sexual Reproduction 0.222 .97 
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In table 5.1 the 10 concepts are listed in column 1, and the second and 

third columns contain the original data derived from the technique. In column 2 we see 

the activities of the other 10 concepts after the network has settled with the 11th 

concept, mtDNA clamped. This is a measure of network activity, and higher activity 

represents greater cognitive similarity and hence smaller cognitive distance. The third 

column shows us the distance between mtDNA and the other 10 concepts on the MDS 

plot; the cognitive distance. To compare the two different techniques we perform a 

correlation calculation between them1. This gives us a correlation of -0.6793, which 

with 9 degrees of freedom is significant at less than the .05 level. 

Table 5.2 - A comparison of the NETG and MDS data for the concepts to the overall 

concept of mtDNA Theory (Expert's data). 

Network Feature Network Activity MDS Distance 

Eve 0.112 0.426 

140-280K b.p. 0.111 0.681 

mtDNA 0.109 0.783 

Time Scale 0.105 1.159 

Ancestry 0.104 0.624 

Rate of Mutation 0.092 1.427 

Temporal Mutation 0.086 1.568 

Female Heredity 0.083 1.681 

Africa 0.078 1.823 

Cell Cytoplasm 0.074 1.915 

Sexual Reproduction 0.036 2.274 

- This and all subsequent correlations use the Pearson correlation. 



Chapter 5 Testing the Symbolic Network 144 

Similarly, we can compare the undamped data from the NETG program 

to the distance of the features in the MDS plots from the 'central point' of the plot, 

showing the 'cognitive distance' in both cases of the features from the overall concept. 

This can be seen in table 5.2, where again the features are listed in the first column 

and the next two columns show the same measures as before. This time though, the 

network activity is for an even distribution of activity with no concepts clamped and the 

distances measured off of the MDS plot are from the central point (0,0), not from any of 

the other concepts. Again we can correlate the two techniques, and this gives us a 

correlation value of -0.9909 which for 14 degrees of freedom is significant at less than 

the .001 level. 

Table 5.3 - A comparison of the NETG and MDS data for the concepts to the overall 

concept of mtDNA Theory (Mean Novice data). 

Network Feature Network Activity MDS Distance 

Eve 0.102 1.12 

140-280Kb.p. 0.063 2.05 

mtDNA 0.101 1.15 

Time Scale 0.085 1.39 

Ancestry 0.103 0.81 

Rate of Mutation 0.094 0.97 

Temporal Mutation 0.090 1.19 

Female Heredity 0.104 0.70 

Africa 0.092 1.07 

Cell Cytoplasm 0.076 1.19 

Sexual Reproduction 0.078 1.52 
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We can also perform these correlations for all of the novice subjects. 

The correlation is performed on the mean of the MDS & NETG data for for the 15 

novice subjects as shown in Table 5.3. This yields a correlation significant to the 0.01 

level of -0.8759. 

Discussion 

In the Multi-Dimensional Scaling data, the novice plot (Figure 5.6) can easily be 

resolved into a higher order conceptual grouping. The concepts move from the left 

hand extreme of the plot being Archaeologically related through to the right hand side 

of the plot and being Biologically related. A second axis running from top to bottom of 

the plot can also be resolved as running from chronological events through to non-

chronological events. This axis however is not as obvious a distinction as is the case 

of the first. 

For the expert plot shown in Figure 5.7 the organisation is very different 

and was actually interpreted by the expert himself. This is because the work of Chi, 

Feltovich & Glaser (1981) clearly shows us that it requires an expert in any particular 

field to make sense of the underlying principles which dictate an expert's organisation 

of knowledge. For this plot then, there are three distinct groupings of concepts. The 

main (and central) group is the set of concepts which relate to the process of mtDNA 

inheritance {'Eve', mtDNA, Ancestry, Female heredity & Cell Cytoplasm}. A second 

and also central grouping is related to the Archaeology which accompanies the theory 

{Africa, Time Scale & 140-280 ka b.p.}. The final grouping relates to the underlying 

genetics of the theory {Temporal Mutation & Rate of Mutation}, though it is placed 

further away from the central groupings. The final concept, Sexual Reproduction, is 

viewed as inconsequential in mtDNA dating by the expert, and so is left isolated at a 

greater distance from the other groupings and from the centre of the plot. The MDS 
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technique thus clearly shows a difference between the organisation of concepts in 

novices and the expert. 

The network data yielded two measures of comparison between expert 

and novices. The coherence value derived from their networks shows quite clearly 

that the expert's thinking is logically self consistent to a greater extent than the novices 

as seen in Figure 5.8, and thus is a good measure of expertise. The novice group also 

showed a good distribution of coherence values indicating (possibly) a spread in 

knowledge of the subject ranging from similar levels of 'understanding' to the expert 

through to values only half that of the expert. The settling rate of the network was the 

other measure, and in this instance proved to be less effective as a discriminator. 

Although the expert's rate was below the mean value for the novices, we can see in 

Figure 5.9 that the spread of novice settling rates surrounds the expert's value. 

The attempt to compare the two techniques empirically is shown in the 

correlation test applied between the two sets of data which the techniques yielded. 

This clearly shows in the case of undamped network data and MDS distances from 

centre of a distribution that for the group of novices as a whole there is a significant 

correlation between the two techniques. The expert data also yields a significant 

correlation. In the light of these correlations I am confident to state that the workings 

of the MDS scaling technique operate in the same fashion as the NETG program. 

However, as indicated earlier in the chapter, because of the nature of scaling to two 

dimensions there is necessarily a loss of information where more than two discrete 

dimensions are under examination. It appears, however, that in the case of this first 

experiment where the data size of the knowledge domain (11 nodes only) is small that 

we can easily resolve into two prominent axes with little loss of information. 
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Experiment 2 

Following on from the first experiment, we undertook a larger collection of 

data in an attempt to provide more valid conclusions. To elicit and identify the 

knowledge of the subjects (Archaeologists), we again used the statistical scaling 

technique of Multi-Dimensional Scaling along side the network programme NETG. In 

this collection of data however, the length of the questionnaires was increased and the 

area of interrogation widened to five topics; all concerned with radiometric dating 

techniques in archaeology. It was also our intention to gain an interpretation of 

conceptual understanding both within and between the five areas of radiometric dating 

used :- General Dating Techniques, Uranium Series Dating, Potassium-Argon Dating, 

Advanced Radiocarbon Dating & Normal Radiocarbon Dating (as described in more 

detail in Chapter 4). 

Method 

Subjects: 

36 subjects were used. 3 were experts (lecturers in scientific 

archaeology) and 33 were novices (Students at the end of their first year of studying 

Archaeology). The expert subjects were all university lecturers in England. One was 

from Durham University; the other two were taken from a list produced by the expert 

from the first experiment indicating other lecturers in the country with the appropriate 

expertise in scientific dating. Many were approached by telephone, of whom 5 agreed 

to help out. They were all sent out questionnaires anonymously - of these, only two 

returned , all of whom were suggested by the expert from the first study as 

knowledgeable in the appropriate areas of Archaeology. 
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Type Topic Concepts 

A General 
Radiometric Terms 

(GEN) 

Zeroing Event Clock Mechanism 
Dating Range Radioactive Nuclide 

High Energy Mass Spectroscopy Constant Decay Rate 
Formulae Archaeological Material 

Operating Limits on Range 
B Uranium Series 

Dating 
(USD) 

Uranium Series Dating Uranium 234 
Sedimentary Rocks Several Daughters 

Uranium Present in Rock Daughter (Th) Insoluble 
Thousand Trillion Year Half Life Stalactite Formation 

U Included from Groundwater 350 ka 
Associated Calcite Deposit 

C Potassium Argon 
Dating 
(KAr) 

Potassium Argon Dating Potassium 40 
Potassium Present in Rock Two Daughters 

Thousand Million Year Half Life Volcanic Events 
Drives Argon from Rock 400 ka or older 

Feldspar Crystals in Rock 
D Advanced 

Radiocarbon Dating 
(ARC) 

Isolate Find from Modern C14 Dendrochronology 
Count Atoms instead of Activity Calibration 

Range = 50-80 ka Accelerator Dating 
High Energy Mass Spectroscopy Accelerator Mass 

Range = 30-40 ka Spectroscopy. 
Smaller Sample Required The Decay Method 

E Normal 
Radiocarbon Dating 

(NRC) 

Death of Living Organism Carbon Cycle 
C-14 Produced in Atmosphere C-14 
C-14 Fixed in Organic Matter Organic Matter 

C-14 Reservoir in Oceans Fractionation of Carbon 
Libby's Half Life, 5568 Years Photosynthetic Pathway 
Cessation of CO? Exchange Carbon 14 Dating 
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Materials: 

We selected 5 areas of knowledge from within the field of Radiometric 

Dating Techniques. For each topic, words or short sentences were selected that 

described individual concepts contributing to the overall idea of the area; e.g. for 

Radiocarbon Dating, Carbon 14 and Libby's Half-life of 5568 Years were two of the 

concepts chosen. Table 5.4 show the full set of chosen concepts. These words were 

taken from lectures previously given on the topics to the students and from the 

recommended course text. Ten questionnaires were then produced, each one pairing 

one knowledge topic with another. For each of these questionnaires, each concept 

was paired with every other concept from both topics. Table 5.5 shows how the 

different topics (column 1) had certain numbers of concepts (column 2). To make a 

questionnaire two topics were combined, and since the combination is commutative 

the mirror questionnaire is not necessary. Thus, a questionnaire combining topics C & 

D combines 11 concepts from C with 9 concepts from D (as seen in columns 1 and 2). 

This combined questionnaire, CD, is described at the intersection of row 4 and column 

5, where questionnaire CD has 20 features equalling 190 concept pairs. The reverse 

combination CD is unnecessary, and so row 5 column 4 is left with n/a for both number 

of features and number of questions. The pairs were presented in a single booklet 

and were in a different random order for each subject. The undergraduates each 

received one questionnaire type (of the 10 possible) selected at random. Each 

questionnaire type was completed by 2, 3 or 4 subjects. One lecturer (from Durham) 

completed all 10 of the different questionnaires. This however proved the impossibility 

of collecting such a large bulk of data from busy lecturers, and so a single 

questionnaire type was selected to be given to other experts. From a preliminary 

analysis of the novice data it was clear that many of the concept pairs were completely 

opaque to them, and so the 'easiest' questionnaire for novices was selected for the 

experts to facilitate comparison with the novice data. This was the GEN & NRC 

questionnaire. 
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Table 5.5 - The make-up of the ten different questionnaire types. 

Topic Number of 
Concepts 

GEN 
f q 

USD 
f q 

KAr ARC 
f q 

NRC 
f q 

GEN 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

USD 11 20 190 n/a n/a n/a n/a n/a n/a n/a n/a 

KAr 9 18 153 20 190 n/a n/a n/a n/a n/a n/a 

ARC 11 20 190 22 231 20 190 n/a n/a n/a n/a 

NRC 12 21 210 23 253 21 210 23 253 n/a n/a 

f= Number of Features, q= Number of Questions in Questionnaire. 

Design and Procedure: 

Subjects were presented with all possible word pairs for their particular 

questionnaire (ranging from 153 to 253 pairs as indicated above). They were 

presented in the form of a booklet and were given to the novice group (students) as a 

part of a normally time-tabled lecture. The experts were sent their questionnaire by 

post, with a covering letter asking for their help in completing my experiment (except 

for the one in Durham). They were additionally encouraged by Dr Stevenson 

beforehand by telephone to lend their time to this work. Within the booklet each 

subject was asked to rate the similarity of each concept pair on a scale from 0 to 10, 

where 0 indicated dissimilar and 10 indicated very similar. A 'don't know' category was 

introduced in this study to help students who were unfamiliar with some of the 

technical terminology. This change came from a couple of sessions where I gave 

different preliminary versions of the new questionnaires to undergraduates for 

completion. After they had attempted them I asked for their reaction to the style and 

presentation of the questionnaire, and some changes were instituted because of the 

feedback. Specifically the 'don't know' category was thought to be better than having 

to say a zero relationship when the subjects knew nothing about the concept or 

concepts involved. The zero relationship was kept for those cases where the subjects 



Chapter 5 Testing the Symbolic Network 151 

were familiar with both concepts but thought they were unrelated. Also a breaking up 

of the questionnaires visually into groups of questions for ease of completion was 

requested. Those taking part in these informal session did not take part in the 

experiment proper. 

The resulting similarity matrix for each subject was then analysed using 

both the multidimensional scaling technique and by constructing symbolic 

connectionist networks as before. 

Results 

First, we examined the raw data of the similarity matrix to see whether 

the subjects had made answers to the majority of the paired feature words. We found 

that on average 60% of the responses made in the novice (undergraduate) data were 

'don't knows', though there were tremendous variations across individuals and across 

questionnaire types. These can be seen in table 5.6 to range from 23% - 99% for 

individuals and from an average of 37% (on what had been judged before the data 

gathering to be the easiest questionnaire for the undergraduates to answer) up to 88% 

on a questionnaire looking at much less familiar terms to them (judging from their 

course lectures). Overall, the novices answered 'Don't Know' to 56% of the concept 

pairs. By comparison the experts produced no 'don't knows' at all. It was on the basis 

of this analysis that the GEN & NRC questionnaire was chosen to be sent to the 

experts outside of Durham. 

Multi-Dimensional Scaling: 

A two dimensional scaling solution was produced for all of the concepts 

in every completed questionnaire. These could be compared only with the same 

questionnaire type which had been completed by other subjects. By comparing MDS 
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Table 5.6 - Percentage of 'Don't Knows' scored by the Novice Subjects: type & group. 

Questionnaire Novices 

Type Subject % DK Means 
GEN & USD 1 53 60 

2 47 
3 82 
4 58 

GEN & KAr 5 44 54 
6 56 
7 61 

GEN & ARC 8 43 52 
9 47 
10 65 

GEN & NRC 11 31 37 
12 24 
13 44 
14 50 

USD & KAr 15 80 48 
16 32 
17 33 

USD & ARC 18 72 84 
19 82 
20 97 

USD & NRC 21 23 65 
22 47 
23 91 
24 97 

KAr & ARC 25 86 68 
26 63 
27 56 

KAr & NRC 28 68 67 
29 65 

ARC & NRC 30 54 40 
31 25 

MEAN 56 

Legend: The Questionnaire Type is the two Archaeological Scientific Dating 

Techniques which are combined to make it. For example, GEN & USD implies 

(using the notation from Table 5.4) that the questionnaire is a combination of 

General Dating Concepts and Concepts relating to Uranium Series Dating. 
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plots for the Expert in the questionnaire types with the group plots for the novices it 

can be seen that the organisation of the same concepts is qualitatively different 

between the novice and expert groups. The expert subject from Durham completed an 

additional set of 5 individual questionnaires for the five scientific dating topics which in 

combination produced the main questionnaires. This study was considered having 

observed how the combinations of dating domains affected the relationships within the 

domains themselves. This data gives us valuable information as to how the expert has 

grouped the concepts without combination with another topic. It is presented and 

discussed first, as it allows us to make sense of the combined questionnaires. 

For the one questionnaire, GEN & NRC we have two groups - three 

experts & four novices who completed it. We examine these with the hindsight of the 

individual questionnaires, and in the hope of observing a difference between the 

expert and novice groups. For the other nine questionnaire types we have only one 

expert and a group of novices. This condition are less valid since there is no expert 

group and so are placed in Appendix C with a brief discussion of the concept 

groupings. They are interesting in support of the experiment, but not of sufficient 

weight to place in the main body of this text. 

Individual Questionnaires 

The Durham expert (who completed all ten of the combined 

questionnaires) was also asked to complete five smaller questionnaires looking at the 

five parts of the composite questionnaires individually; thus GEN, USD, KAr, NRC & 

ARC. These are discussed here. 
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GEN 

Figure 5.10 - MDS Plot of the 'Concept Space' for the Expert answers to 

Questionnaire type GEN: General Radiometric Theory. 
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In this plot, according to the expert, the concepts have become 

distributed and grouped according to two criteria. The first grouping is from the centre 

bottom right to the bottom left of concepts which defines the general mechanisms of 

radiometric dating techniques. There always has to be some kind of clock mechanism 

for a radiometric technique to exist, be it charge building up (as in Thermo-

Luminescence) or the rate of decay of a large number of radioactive particles (as in 

nuclear methods such as C14 & Uranium Series Dating). Likewise there must always 

follow some zeroing event which starts the clock 'running'. In all of the cases 

presented, the mechanism of the techniques is nuclear, and so there must necessarily 
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be in each instance a radioactive nuclide whose decay is measured. Finally, it must 

always be the case that the decay rate is assumed to be constant with regards to each 

technique to allow for a time scale to be associated to the measured decay. 

The other grouping which the expert makes is of the general application 

of radiometric dating technique in Archaeology. This revolves entirely around the 

ability of the technique to yield a date to the Archaeologist, and comprises of the 

Archaeological Material, the Dating Range & the Operating Limits on the Range. 

Firstly the actual material itself will constrain the technique which may be applied to it, 

as will the nature of the question which the Archaeologist is asking of it. This must be 

married to the applicable Dating Range of the techniques, as they all operate in 

discrete ranges of time. That on its own though is not sufficient, as there are other 

constraints on the operating limits of the range rather than the purely theoretical 

limitations. There are physical conditions on sample sizes and purities for making any 

dating at all. There are also considerations of the utility of the techniques, as near the 

'top end' of a technique's range there may well be a drop off in the technique's 

precision. 

Of the two other concepts, Formulae are an inescapable part of all 

techniques in the calculation of ages and the defining of limitations, but is viewed by 

the expert as unrelated to the other concepts or groupings. Similarly, High Energy 

Mass Spectroscopy is only viewed as relevant to the particular case of Advanced 

radiocarbon dating, and so although related to dating ranges again, it is not seen as a 

part of that grouping by the expert. 
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USD 

Figure 5.11 - MDS Plot of the 'Concept Space' for the Expert answers to 

Questionnaire type USD: Uranium Series Dating. 
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In the USD plot, the distribution was explained in the following terms. 

The main grouping identified by the expert was taken to include Calcite, Stalactite 

Formation, Thorium Insoluble & Uranium in Groundwater. These run from left to right 

and top to bottom and are grouped for defining the mechanism and zeroing event 

behind Uranium Series Dating. The mechanism functions for two reasons - firstly that 

there is radioactive nuclides of Uranium in groundwater, and that Thorium (a 

radioactive by-product of Uranium) is insoluble. Stalactites, a Calcite compound, form 

a crystalline structure which can trap other elements from within the groundwater. As 
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a stalactite forms it can thus incorporate Uranium into it, but not Thorium (as it is not 

present in the groundwater, being insoluble). Any Thorium subsequently discovered in 

the stalactites is therefore a direct result of radioactive decay of the Uranium in the 

stalactite since the stalactite's formation. Adjoined to this spread in the top right corner 

are Sedimentary Rock, Several Daughters & Uranium in Rock. It is due to the fact that 

Uranium exists in these Sedimentary Rocks, and that water can run over them which 

leaches the Uranium out of the Rocks and into the groundwater. This is a necessary 

condition for the technique, but not critical enough for the expert to associate it to the 

grouping (with Uranium in the Groundwater already given). Likewise, the fact that 

Uranium decays into several different 'daughter' elements is not viewed as an 

essential to the mechanism, given we are concentrating purely on the chain of events 

leading to the production of Radioactive Thorium only. 

The other grouping made by the expert is on the left hand side - Uranium 

Series Dating and U234. These are grouped as they are the fundamental concepts to 

this technique - being the technique's name, and the particular radioactive nuclide 

which is the starting point for the decay mechanism. The dates, although together, are 

not grouped specifically by the expert. They represent to the expert the half-life of 

Uranium - 350 000 years is the half life of U234 (and is also the operating limit of the 

technique); 1 000 000 000 000 years is the half life of another radioactive Uranium 

Element, U238. It is the vast difference in these half-lives which allows us to ignore 

some of the other daughter products of Uranium from our calculations. 
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KAr 

Figure 5.12 - MDS Plot of the 'Concept Space' for the Expert answers to 

Questionnaire type KAr: Potassium Argon Dating. 
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The expert's grouping of the KAr concepts identified two main bodies. 

The first was the set of Potassium Argon Dating, 2 Daughters, 1 000 000 000 years 

and K40. Potassium Argon Dating is obviously the technique's name, and the actual 

radioactive K40 nuclide is the basis of the technique - it has a half-life of 1 000 000 

000 years. It also decays into two different daughter elements, one of which is the gas 

Argon. The other identified grouping is of Potassium in Rock and Feldspar in Rock. 

These together form the necessary conditions for the technique. In rock there is 

Potassium, within the actual crystals of Feldspar itself. Over time the radioactive 



Chapter 5 Testing the Symbolic Network 159 

nuclide of Potassium, K40, decays and the gaseous daughter element Argon is 

trapped in the crystal structure of the Feldspar. This build up gives us our clock 

mechanism. This is then related to Volcanic Events and Drives Argon from Rock 

(although not grouped with them) by the expert. This forms the zeroing event of the 

mechanism, as the intense heat of the Volcanic Event drives the Argon from within the 

Feldspar crystals, allowing for a new build up of trapped Argon to begin. 

The other concept is 400 000 years. This date is the lower end of the 

dating range for the Potassium Argon dating technique. It appears closely next to the 

other date, but is not grouped by the expert. 
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NRC 

Figure 5.13 - MDS Plot of the 'Concept Space' for the Expert answers to 

Questionnaire type NRC: Normal Radio-Carbon Dating. 
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This dating technique was grouped into three main areas by the expert: 

necessary factors for the zeroing, the basics of the technique & the essential 

conditions for the mechanism. Those concepts vital to the zeroing event are grouped 

to the left and the bottom of the plot: Libby's Half Life - 5700 years, Death of Living 

Organism, Cessation of Exchange & Organic Matter. A second grouping is the basic 

part of the technique again - the name, C14 Dating and the C14 nuclide itself upon 

which the technique is built. The third grouping runs from top left to bottom right and 

covers all the remaining concepts. These all relate to the movement of C14 in the 

environment through the Carbon Cycle. 
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ARC 

Figure 5.14 - MDS Plot of the 'Concept Space' for the Expert answers to Questionnaire 

type ARC: Advanced Radio-Carbon Dating. 
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This final technique was the most complex in terms of the expert's 

attempt to group the concepts meaningfully. The main link in the plot was taken to be 

High Energy Mass Spectroscopy. This is the process by which the physical number of 

carbon atoms can be counted, allowing for a more accurate C14/C12 ratio to be 

determined. In normal radio-carbon dating the C14 volume has to be inferred from the 

radioactive count which is much less sensitive and so cannot measure smaller 

quantities of C14 in older samples reliably against the background radioactivity of the 

Earth. This increases the range of carbon dating to 50 000 - 80 000 years. The 

process of High Energy Mass Spectroscopy requires the use of a particle accelerator, 
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and so the technique is often referred to as Accelerator Dating or Accelerator Mass 

Spectroscopy. This grouping thus contained High Energy Mass Spectroscopy, 

Accelerator Mass Spectroscopy, Accelerator Dating, Count Atoms, not Activity, 50 000 

- 80 000 years & Smaller Sample Required. 

A second grouping was the concepts Decay Method and 30 000 - 40 000 

years. These represent the normal radio-carbon dating technique and it's range. The 

Decay Method concept though appears to be crossed over into the sweep from top left 

to bottom right which mostly defines the first grouping. A third grouping in the central 

bottom part of the plot is Dendrochronology and Calibration. These are grouped as 

the dating technique of dendrochronology has been used to calculate fluctuations in 

the Earth's C14 level and thus calibrated C14 dating where it had been previously 

assumed as a constant level. Both this small grouping and the other concept, Isolate 

Find from Modern Carbon have not been integrated with the other groups. As the 

expert explained however, these are applicable to both normal radiocarbon dating and 

accelerator dating. 
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Interpretations 

The explanations given by the expert as to the groupings identified in the 

MDS technique indicate that the general identification of mechanisms and applications 

seen in the General Dating Methods is extended throughout the other particular 

techniques. This is in agreement with the findings of previous research where experts 

group concepts according to deep conceptual principles rather than surface similarities 

(Chi, Feltovich & Glaser, 1981). In this particular case the concepts were grouped 

according to several deeper conceptual principles - Basis of Technique (Such as name 

and fundamental radioactive nuclide); Mechanism of the Chronometer (Such as 

Zeroing Event, Rate of Decay & the Archaeological Material through which this 

happens) and Utility of the Technique (Such as its Range and necessary 

preconditions). 

In the investigation of the combined questionnaires and of the differences 

between the expert and novice distribution of concepts, it is these deeper conceptual 

principles which we shall expect to see making the difference. 
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GEN & NRC 

Figure 5.15 - MDS Plot of the 'Concept Space' for composite Novice answers to 

Questionnaire type GEN & NRC: General Radiometric Theory & Normal 

Radiocarbon Dating 
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In the novices plot (Figure 5.15) we can see the NRC concepts being 

grouped together in the bottom right quadrant with almost no interconnection between 

it and the GEN concepts. The novices group 9 of the 11 radiocarbon ideas together: 

C14 Dating, 5.7 ka, C14 Reservoir, C14 in Atmosphere, Carbon Cycle, C14, 

Photosynthetic Pathways, Cessation of Exchange & C14 in Organism. The other two 

features seem discarded amongst the rest of the features rather than integrated. They 

(Death of a Living Organism & Fractionation of Carbon) are grouped in an area with 

Operating Limits on Range and High Energy Mass Spectroscopy 

In the NRC part of the plot (right hand side mainly) it is hard to define any 

groupings. Death of the Organism and Fractionation are clearly together and separate 

from the rest of the group. There appears to be a huddle with C14 Dating, 5700 years, 

C14 Reservoir and C14 in atmosphere in the top right, and another with 

Photosynthetic Pathways, C14, Cessation of Exchange & C14 in Organism at the 

bottom right. In the GEN part of the plot (left hand side mainly) High Energy Mass 

Spectroscopy and Organic Matter appear to be stranded together in the bottom left. 

The other concepts appear fairly evenly spread. The main point is that there is little 

differentation within a grouping, only between the two dating topics. 
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Figure 5.16 - MDS Plot of the 'Concept Space' for composite Expert answers to 

Questionnaire type GEN & NRC: General Radiometric Theory & Normal 

Radiocarbon Dating 
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In the Expert's composite MDS plot above we can see that there is a 

much greater interplay between the two parts of the questionnaire - GEN and NRC. 

Both do still retain their own integrity, with GEN coming in from the left of the plot and 

NRC from the right. Within the groupings themselves (allowing for the distortion of the 

boundaries to interlock the two techniques) we can see quite obvious groupings. In 

GEN we have the grouping of Radioactive Nuclide Clock Mechanism and Decay Rate 

at the boundary with NRC. We also have a grouping of High Energy Mass 

Spectroscopy and Formulae away from the border. In NRC we can see Fractionation 

of Carbon, C14 in Atmosphere, C14 Reservoir and C14 in Organism along the GEN 

border at the bottom of the plot. In the two interlocking fingers of the NRC plot we 

have groupings of Organic Matter & Cessation of exchange (top finger) and Libby's 

Half Life - 5700 years & Death of Organism (bottom finger). 

However, they concepts do not stay rigidly in their own topic areas but 

slot together with interlocking fingers. Across these groups there are some locally 

close concepts, such as Zeroing Event (from GEN) and Cessation of Exchange (from 

NRC). There are also some locally close groups, such as Clock Rate, Decay Rate and 

Radioactive Nuclide (from GEN) with Fractionation, C14 in Atmosphere, C14 Reservoir 

and C14 in Organism (from NRC). Here it is apparent that there is a significant 

interaction between the two dating topics. 
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Network Data: 

The coherence and settling rates were calculated using NETG for all the 

data. For the combined questionnaire GEN & NRC the coherence values and settling 

rates for the novice and expert groups is shown in Table 5.7. The mean figures for 

coherence are 0.750 for the novices and 0.607 for the experts. For settling rate the 

means are 56 cycles for the novices & 54 cycles for the experts. 

Table 5.7 - Network Data for Expert Individual Questionnaires. 

Coherence Settling Rate 

Subject Novice Expert Novice Expert 

1 0.937 0.651 56 cycles 53 cycles 

2 0.692 0.509 54 cycles 52 cycles 

3 0.699 0.622 59 cycles 57 cycles 

4 0.671 _ 56 cycles _ 

Means 0.750 0.607 56 cycles 54 cycles 

The calculation of coherence for the all of the combination 

questionnaires subjects in the 1st group (Novices) are shown in Figure 5.16, and yield 

values of between 0.074 and 0.937 with an average of .489. For Group 2 (Expert) this 

value was between 0.509 and 0.662 with an average of 0.632. We also measured the 

number of cycles needed for the networks of the novices and of the expert to reach 

stable states. As can be seen from figure 5.18 the networks of the expert settled after 

63 cycles on average, ranging from 52 to 80 cycles, while the number of cycles 

needed for the novices ranged from 62 to 343, with a mean of 94. 
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Figure 5.17 - Box and Whisker Plot of Coherence for all Combination Questionnaires. 
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Figure 5.18 - Box and Whisker Plot of Settling Rate for all Combination Questionnaires 
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The Coherence Information is also shown as a plot for each of the ten 

questionnaire types in Figure 5.19, and in Figure 5.20 it is compiled for all types 

belonging to one of the basic technique types. 
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Figure 5.19 - Box and Whisker Plot of Coherence for Individual Questionnaire Types. 
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The coherence and settling rates calculated using NETG for the Expert 

on the individual plots are also shown in Table 5.8. The mean figures are 0.716 for 

coherence and 30 cycles for the settling rate. 

Table 5.8 - Network Data for Expert Individual Questionnaires. 

Coherence Settling Rate 

GEN 0.587 27 cycles 

USD 0.681 29 cycles 

KAr 0.724 28 cycles 

ARC 0.772 35 cycles 

NRC 0.815 32 cycles 

Means 0.716 30 cycles 

Discussion 

Multi-Dimensional Scaling 

I wish to focus upon the organisation of Figures 5.15 & 5.16 - the Group 

plots for the Novices & Experts for questionnaire type GEN & NRC. In the novice's 

plot (Figure 5.15) we can see the NRC concepts being grouped together in the bottom 

right quadrant with almost no interconnection between it and the GEN concepts. 9 of 

the 11 NRC concepts occupy this area, with no obvious groupings. Those which we 

might expect are hard to find or justify: C14 Dating & C14 (Basis of Technique) are 

spatially separated; The Zeroing Event concepts area scattered with Death of Living 

Organism in the top left, Organic Matter the bottom left, Cessation of Exchange bottom 

right and Libby's Half Life - 5700 years top right. The remaining concepts which 
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grouped to make the Techniques Mechanism are all in the bottom right hand area (bar 

Fractionation) but even then cannot be resolved into any pattern or arrangement in 

that area. The GEN concepts similarly show a failure to be organised according to 

deeper conceptual principles. Zeroing and the Mechanism of the Technique are 

closely associated according to the expert, but the three related Mechanism concepts 

could only just be grouped together given they fall no further from each other than any 

other concepts. Such a lack of organisation is more apparent in the Dating Concepts, 

which are even further removed from each other within the GEN half of the plot than 

from most of the other GEN concepts. 

As to any links between the two techniques, we could look at the rogue 

NRC concepts in the GEN half of the plot for meaningful groupings. Death of Living 

Organism is clearly a Zeroing Event, but falls closer to 5 other concepts before 

Zeroing Event itself. The other rogue, Fractionation, is a part of the Techniques 

Mechanism and so could be associated to Clock Mechanism, Constant Decay Rate or 

Radioactive Nuclide. It is actually closest to High Energy Mass Spectroscopy, 

although Radioactive Nuclide is a similar distance off. There is definitely though no 

obvious signs of deep conceptual understanding organising the distribution and 

grouping of concepts in this plot. Basically, two main groupings exist for the two dating 

topics involved: GEN & NRC. These are the two most familiar of the 5 to the novices 

as indicated by the low number of DK responses these concepts elicited from the 

subjects, and by observing the groupings of their other questionnaire responses (see 

Appendix C). 

In the Expert's representation (Figure 5.15), there is great distortion of 

the two techniques, GEN & NRC, because of the interplay between them, although 

both do still retain their own integrity: GEN comes in from the left of the plot and NRC 

from the right. However, they do not stay rigidly in their own areas but slot together 

with interlocking fingers. Within the groupings themselves (allowing for the distortion 
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of the boundaries to interlock the two techniques) we can still see quite obvious 

groupings too. In GEN we have the grouping of Radioactive Nuclide, Clock 

Mechanism and Decay Rate (Technique Mechanism concepts) at the boundary with 

NRC above. We also have a grouping of High Energy Mass Spectroscopy and 

Formulae away from the border (lone concepts). In NRC we can see Fractionation of 

Carbon, C14 in Atmosphere, C14 Reservoir and C14 in Organism (Technique 

Mechanism concepts) along the GEN border at the bottom of the plot, where in fact the 

other grouping is the same deep concept. In the two interlocking fingers of the NRC 

plot we have groupings of Organic Matter & Cessation of exchange (top finger) and 

Libby's Half Life - 5700 years & Death of Organism (bottom finger). These together 

are the Zeroing Event concepts, and locally we can see them grouping across the 

techniques too - such as Zeroing Event (from GEN) and Cessation of Exchange (from 

NRC). It is thus obvious how the Expert plot conforms to the expected meaningful 

groupings and distributions of concepts based on the deeper underlying principles of 

radiometric dating techniques. 

The main point being for the expert plot that there is indeed a great 

integrity within the two dating topics, but that in addition there is some interplay 

between the two topics which is both meaningful and valid. 

Network Data 

The Coherence values and for the GEN & NRC condition show the 

reason why the coherence values should be higher for the 'novices' on the 

combination of these two techniques is readily accountable, since they are the two 

topics with which they are most familiar. They are certainly the areas where novices 

would be expected to perform best, but to show higher values than experts is 

surprising. There are several possible explanations for this unexpected result, and 

these will be tackled in the last chapter 
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Over all of the questionnaires the results tend to indicate that the Expert 

does indeed have a higher coherence value than the Novices (means 0.632 & 0.489 

respectively), and indeed the same appears to be the case for settling rates, with 

quicker rates for the Expert (means 80 cycles & 94 cycles respectively). This is only 

true to look at the means of these values though. If we look at the changes in these 

values over different questionnaires (Figure 5.19) and different techniques (Figure 

5.20) we begin to see more of a pattern to the spread of results. For the experts there 

is a tendency to have a high coherence value and a low settling rate over all the 

techniques with little variation around the mean (s.d. 0.052). This demonstrates the 

consistency of the expert's coherence values and is in sharp contrast to the novices. 

For them the results show very high results on the GEN & NRC techniques and very 

low scores on the others (s.d. 0.239). This reflects the greater lack of knowledge they 

have in these other techniques, and also reflects the spread of abilities within the 

novice group. 

Additionally, the plots in Appendix C gives us some further results. 

These contained the MDS results for the other 9 questionnaire types for the expert and 

the novice groups. They demonstrate further that there is little evidence of groupings 

within the novice plots, except in those cases where NRC (and sometimes also GEN) 

are a constituent of the questionnaire. This adds additional weight to the conclusion 

that the novices are particularly lacking in knowledge of these dating topics, most 

especially USD, KAr & ARC. This also amplifies the results showing the high 

percentage of DK responses they made to the questionnaires (Table 5.6). The 

experts' plots by contrast produce groupings for the two topics in each questionnaire 

every time, with occasional meaningful cross-topic groupings too. 

A further point to be made from these expert plots is that the groupings 

within them are not necessarily reflections of the individual plots he made. This 

observation indicates how the similarity ratings for these same concepts appear to 
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have been influenced quite specifically by the context within which they were set. This 

context effect was not anticipated and clearly warrants further study and investigation. 

I shall now move on to the final chapter, chapter 6: the Discussion of all this research 

work. 
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Chapter 6 
Discussion 

The Empirical Work 

Both of our measures revealed differences between the experts and the 

novices. In the first experiment the network data showed that the expert was clearly 

above all of the novice values in the coherence measure, and was marginally below 

the mean for the settling rate. The MDS data also showed that the expert had a 

qualitatively different cognitive organisation of the concepts involved than the novices. 

In addition, we compared the activity values obtained from a stable network of the 

subjects with the conceptual similarity of the concepts to the overall topic of the study 

through the physical displacement of the concepts in the MDS plot from their origin. 

These two measures correlated very highly across the subjects. 

The expert had clearly organised his knowledge along the lines of higher 

order concepts about the knowledge domain, grouping as either Archaeological 

Concepts , mtDNA Inheritance, or Genetic Mutation. One concept, Sexual 

Reproduction is isolated in space and ungrouped by the expert, reflecting the expert's 

belief that this is not relevant to the process of mtDNA dating. Additionally, four of the 

concepts (Ancestry, Eve, mtDNA and 140-280k b.p.) fall very close to the plot centre 

indicating a greater relevance to the overall concept of mtDNA Dating. According to 

the expert, these represent the crucial elements in understanding the application of the 

technique in Archaeology - that all modern humans descend from Eve 

The novices by comparison appeared to group the concepts around a 

single dimension only, concerned with whether the concepts were biological or 

chronological. This dimension, therefore, appears to be based on similarities between 

the concepts that could have existed prior to any training in scientific dating. That is, it 

seems to be based on previously learned biological ideas and ideas about the origins 
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of humans. The expert, on the other hand, revealed a much more complex 

organisation of concepts based on the underlying principles of scientific dating. 

Overall, therefore, the richly organised categorisation of the expert stands in stark 

contrast to the simple pre-theoretical organisation of the novices. 

In the second experiment we again looked at the network data for the 

subjects. Over all of the different questionnaires it transpired that the expert had a 

discernibly higher mean coherence than the novices (0.632 compared to 0.489) and 

lower settling rate (80 cycles compared to 94). In the more closely studied condition 

(GEN & NRC) however the results seemed to be turned on their heads. Here the 

novice mean coherence was much higher than their mean over all of the 

questionnaires (0.750) whilst the expert mean (0.607) was marginally under the mean 

value for all questionnaires. 

The GEN & NRC questionnaire had been specifically chosen for the 

comparison to a group of experts on the grounds that it was the topic combination on 

which the novices would know most (because of the course work they had so far 

undertaken), and so the comparison might be more productive. Indeed the former is 

definitely true. We saw in the breakdown of coherence values by topics and by 

questionnaires that GEN & NRC scored much higher coherence values for the novices 

than the other three topics (KAr, USD & ARC). It may not seem surprising in the light 

of their backgrounds that this was the case. What is more at odds is the fact that the 

Expert's coherence scores are lower than the novice's for GEN & NRC, albeit that they 

are relatively consistent across all of the other questionnaire types & higher than the 

novices. I would suggest that the effect we are seeing is perhaps a false 

representation based upon the beliefs of the subjects rather than true knowledge, and 

will expand upon this view after talking about the MDS plots. 
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The MDS technique again showed us a similar pattern to that found in 

the first Experiment. The expert was clearly grouping the concepts in any one of the 5 

dating topics according to deep conceptual understanding of the knowledge domain as 

shown in the description of individual MDS plots (for which the expert mean coherence 

was 0.716, somewhat above the mean for the combined plots - 0.632). However, the 

groupings on the individual plots (from the individual questionnaires) were not always 

completely apparent in the combined questionnaires, or at least not in exactly the 

same groupings. The expert combined plots showed a distinction between the two 

sets of dating topics, but additionally there were identifiable instances of interactions 

between the concepts from the two different topics. However, the main in-topic 

groupings were not as complex or detailed as they were in the individual questionnaire 

cases. This finer distinction was clearly not achieved in the combined plots and 

indicates the importance of the context in which the similarity ratings are taken. This is 

an area highlighted by this study which warrants further study. 

The novice plots however show little grouping at all, even within the 

individual dating topics in the questionnaires. The exception to this is when NRC 

makes up one part of the questionnaire (and occasionally when GEN does so). It was 

therefore not surprising that it was the NRC & GEN condition on which the novices 

performed best. This brings me back to the anomalously high novice coherence 

values for the novice GEN & NRC questionnaire. It is my consideration that the 

complexity of linking the two different dating topics can cause a drop in coherence. 

Therefore where the expert's individual scores average above 0.7, when looking at the 

more the complicated situation represented by the interaction of the two techniques 

there is a drop off in coherence representing the more uncertain nature of this 

conceptual area. In the case of the novices no attempt appears to be made to 

understand this interaction, and so consequently there is no drop off. To see if this is 

indeed the case a further study could be performed to isolate these aspects and see 

whether the expert performance was indeed greater in the interaction between the 
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dating topics. If so, then either the calculations of coherence need to be modified to 

take into greater account the cases where a subject offers no relationship or else we 

must have another measure with which to aid our interpretation of the coherence 

value. 

Overall our data suggest that the experts had an observably different 

knowledge representation to the novices, both in terms of the network measures and 

also the MDS plots. In addition, the wide spread of novice scores in the network 

measures indicates the spread of understanding they possess. We may infer from this 

that some novices were beginning to shift from an organisation of knowledge 

characterised by prior learning to an understanding based on the deeper conceptual 

basis of the principles of scientific dating. Our results also appear to confirm those 

observed by Chi et al (1981) on expert and novice physicists: that experts group 

concepts according to deep theoretical principles while novices' groupings were based 

on surface similarities. Additionally, in Chi et al the principles underlying the 

groupings of the experts were only discernible to other experts; a fact which was also 

true of this study. 

Some caution must be exercised in drawing firm conclusions from these 

results because only one expert was tested in the first experiment and only three were 

examined for parts of the second experiment. However, previous research has found 

that experts are usually in close agreement with each other on rating tasks like the one 

used here (Stevenson et al., 1988). It is therefore not unreasonable to expect that the 

results gained so far would indeed be replicated with further subjects, and that with a 

full set of expert data we could indeed validate the conclusions of this study. What 

has been shown is that we have two similar methods by which the cognitive 

organisation of relevant concepts can be shown to differ between experts and novices. 

Both are complementary; one (MDS) showing a more detailed account of the 

conceptual groupings visually; the other (NETG) yielding a single index measure 
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(coherence) for expertise but containing all of the information within the MDS plot 

ready for dynamic interrogation. 

Future Directions 

There are, I believe, several ways in which this study could usefully be 

extended to help provide more information on the nature of novice expert differences 

and their application in computer aided learning situations. In so far as the actual 

planning and preparation of the materials are concerned there are several changes 

which would make any future study worth while. Firstly, having identified the 

application by the experts of a deeper level of conceptual organisation to the materials 

any new study would be well served to explicitly draw upon the further aid of other 

experts in designing the concepts to be used for the knowledge elicitation (instead of 

drawing appropriate concepts from the lecture materials without expert advice). This 

would allow concepts which specifically grouped into deeper conceptual sets to be 

identified at the outset. Then with the elicitation of materials based on them the 

conceptual groupings could much more easily be interpreted for a dating topic. 

Likewise, it would also be easier to make a more direct comparison of these groupings 

across more than one particular topic area in a domain, or even across domains. 

A point of great concern with the data collected is the actual sample 

sizes. Even with the help of both my supervisors in encouraging and cajoling 

colleagues over a long period, it was still only possible to find three expert subjects to 

complete one or more questionnaire. There are two ways in which a future study could 

approach this vital problem. The first approach would be to treat the experts subjects 

in a similar way to the novices, by actually sitting with them as they do the 

questionnaire. Most of the possible experts approached took one look at the 

questionnaire (a task requiring some 30 minutes or more to complete) and said they 
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would never find the time to do it. By making an appointment to actually go and elicit 

their knowledge instead as of giving them the questionnaire there is a much greater 

likelihood of their filling it out. Also, by making an appointment it gives the time to 

explain the purpose of the study and try to actually motivate the expert into wanting to 

help out. 

The other alternative is to shorten the length of the questionnaires. This 

could be achieved by decomposing them into smaller parts, and indeed this could 

serve the purpose of examining separately the individual topics as well as the area of 

interaction between them. If such was done then the questionnaire could be 

completed in only 10 minutes perhaps (although there would be more questionnaires 

to fill in eventually), and this may be an acceptable amount of time for a busy lecturer 

to find. Getting three lots of ten minutes of a lecturer's time as separate appointments 

may also be feasible. 

In order to handle the split data an expansion of the current NETG 

program would be required. At the moment it only works with an inputted network on 

which it can perform a coherence run to a stable state using different equations for the 

spread of activity, and then different equations to calculate coherence values. It also 

measures settling rates and is capable of automatically reducing the size of a network 

to speed up the calculations on a large network (discarding nodes below a threshold 

activity after a few cycles, and then continuing with the reduced network to a normal 

conclusion). Looking at individual topics and the interaction separately would be 

within its present grasp, but it would be useful to be able to combine them within the 

program to examine the overall patterns too. Similarly, it would be useful to be able to 

split the networks into smaller sub-networks of specific nodes at the user's request. 

Another useful feature would be to extract sub-networks from the body of data which 

had locally low or high coherence levels (or quick / slow settling rates). These could 
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then be used to infer particular areas in a domain where a subject had need of further 

study or where learning had already been successful. 

Perhaps the most profitable extension of this work would be in a 

longitudinal study of novices to see how their knowledge of certain concepts changed 

over a period of study such as a first or higher degree. Pairwise similarity ratings 

could be taken at critical times or on a regular basis over several years, and the way in 

which the data changed could be studied. I believe that a scenario similar to the 

following would be observed if such a study were undertaken. Initially there would be 

a small set of concepts upon which the novice had some structure from their prior 

learning, but between which there would be little organisation according to the new 

domain principles. As learning occurred these concepts would be re-organised in the 

framework of the new discipline, and this would be reflected in a rise in coherence 

values (NETG) and a shift in concept organisation and groupings (MDS). After 

learning had reached a certain level, new concepts would again be introduced to the 

learner, and the lack of understanding in them would force the coherence of an 

expanded network down (NETG) and place many ungrouped and displaced new 

concepts in amongst the previously existing organisation (MDS). As these concepts 

become learnt there would be an integration of them with the previous knowledge 

(ideally) as well as amongst themselves, resulting in an increase in the coherence of 

the network (NETG) and a further grouping and re-organisation of concepts (MDS). 

This process would repeat itself with new learning forcing a temporary reduction in 

coherence and disorganisation to appear in the MDS plots. 

This model would not mean that an expert learning a new topic 

necessarily will have a total fall-off in their coherence value (or their expertise). The 

way that coherence works means that as the subject's knowledge base grows so to will 

their resilience to the affects of new learning - the proportionate fall in coherence 

becomes less and less. If this model were borne out, and I believe my theoretical and 
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experimental considerations point to it being so, then it would have great implications 

in terms of learning and teaching. For instance, it would be the case that by the value 

of the coherence, certain thresholds could be identified. Below a certain coherence it 

may be that the subject is not yet ready to undertake new learning of a conceptual 

nature, being preoccupied with reorganising their existing knowledge. There may also 

be an upper value beyond which the subject is so sure of their new knowledge that 

they either become bored by their learning or entrenched in their beliefs. A receptive 

area could then be used to define when learning could most profitably be entertained. 

We also have some pedagogical advice based on the findings of our 

study, not just upon predictions for the future. These novice expert differences 

identified highlight the importance of taking the pre-existing knowledge of students into 

account. The novices clearly have some pre-defined conceptual organisation for some 

of the concepts. To develop teaching techniques that are effective they will 

necessarily have to point out how the new domain (like Scientific Archaeology) 

organises concepts in contrast to previously learnt domains (such as Biology, History, 

Chemistry & Physics), where the organisation may well have been different (although 

that is not necessarily going to always be the case). Otherwise it is possible, 

according to the literature (Stevenson & Palmer, 1994), for these previous conceptual 

organisations to persist in spite of the new learning. By pointing this out explicitly 

however and addressing the issue, new learning can be built on prior knowledge 

rather than being in conflict with it. 

The final extension of this work is into the field of Intelligent Tutoring 

Systems, and this was the original inspiration and motivation for the study. If ITSs are 

indeed to live up to their names then it is vital that they are able to address the 

pedagogical issues already raised both in this discussion and in the earlier reviews of 

the literature (Chapters 1 & 3). This can be achieved if the knowledge modelling is 

capable of making the distinctions identified and it is my belief that the NETG program 
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in a future form is more than capable of doing so, and that the idea behind it is 

certainly well grounded now. What would be essential to make it functional in an ITS 

though is the ability for the Tutoring System to make inferences from the learner's 

actions within the learning environment which could either be used as or interpreted to 

yield similarity ratings for concept pairs. From my review of the literature I am certain 

that this is not an impossible task - the work of researchers such as Viau and Larivee 

(1993) point to possible mechanisms for this interpretation: for instance they studied 

the path followed through a HyperText system and the time spent at each of the nodes 

to predict scholastic performance, where the nodes represent concepts in the NETG 

network. 

In final conclusion, I am confident to state that the multiple constraint 

satisfaction network, realised through the NETG program, and the application of multi­

dimensional scaling techniques are both able to effectively discriminate between 

novice and expert conceptual organisation. The way in which these methods work 

allows us to address prior knowledge in the learning process, and the comparison 

between the NETG program and the established MDS technique lends additional 

credence to the methods established in the NETG software. The advantage of the 

NETG technique is in the ability for it to work dynamically with the data and to extract 

different networks from within the data set (a feature not implemented in the current 

version). Moreover, the fact that the network is dynamic allows it to possibly be 

incorporated it into an ITS as a knowledge modelling module, which could provide a 

possible solution to the problems outlined in my criticism of the Overlay Paradigm in 

ITSs. 

Unfortunately, due to the lack of expert subjects willing to partake in the 

study, I cannot make a firm statement as to the results obtained, but am certain that 

they will be replicable in the light of the consistency amongst experts in these kinds of 

concept rating tasks as indicated earlier. I do believe though that I have been 
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successful in making a comparison of the two different methods for interpreting paired 

similarity data, and have made a strong enough case to warrant further exploration of 

the NETG solution. 
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Appendix A 

Simplifications of the Briton & Eisenhart Method for the Calculation of 'Harmony' 

H(r)= f (a A ,a B ) . TaAl . T - W B A 1 ^ - 1 
I LaBJ LWAB - J J 

Z |(ka)il 

H(r) = (TaAaA a B a A l [ - WB A1 ^ . 1 
ll_aAaB a B a B ] LWAB - J J 

|a A | + |a B | 

H(r)= ( a A a A ) W A B + (a B a A ) W B A + (a A a B ) W B A + (a B a B ) W A B 

|a A | + |a B | 

& since W A B = W B A = W, then 

H(r)= _WJa A+a B)2 

|a A | 
+ 

|ae| 

But, from the Kintsch model ]T a\ = 1, and so 

H(r)= W 
|a A | + |a B | 

Also, for only two nodes and one connection, it follows that without a 
decay function a A = a B ,and so a A = a B = 0.5. 

Therefore, 
H(r) = W. 

This is as we should expect from the given example for 2 nodes, but it is 

only an artefact of such a simplistic case. I use it as a demonstration of the workings 
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however since those for three nodes is that much more complex and tedious. 

However, if we look at the reduction for three nodes we find that; 

H(r) = W A B [(a A+a B) 2 + a c a A + a c a B ] + W A C [ (a A +a c ) 2 + a B a A + a B a c ] + W B C [ (a B +a c ) 2 + a A a c + a A a B ]} 

{ |a A | . |a B | . |a c|} 

Then by re-arrangement; 

H(r) = a A { W A B (a A+a B+a c) + W A C (aA+aB+a c)} + a B { W A B (a A+a B+a c) + W B C (a A+a B+a c)} + a c 

{ W A C (a A+a B+a c) + W B C (a A+a B+a c)} 

and since aA+ae+ac = 1, then 

H(r) = a A { WAB + WAC } + 3B { WAB + WBC } + ac { WAC + WBC } 

So we finally get to the generic formula inherent in the process. The 
actual calculation of Harmony used by Britton & Eisenhart is that the Harmony of any 
node n is a simple sum of the activation of it multiplied by the connections to it, thus 

H(N) = SN {WAN + WBN + ••• + WNX} . where there are X nodes 
and where W N N = 0. 

Which gives us the completed formula, 

H(r) = I (a N {WAN + W B N + ... + W N X } ) , for N=1 to x. 
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Appendix B 

Raw Data from Experiment 1. 

Example Questionnaire 

A Questionnaire on Mitochondrial DNA Dating 

On the following pages you will be presented with a list of paired ideas. Each 
pair consists of two ideas which are both associated with Mitochondrial DNA Dating in the 
field of Archaeology. In total there are 55 paired items for you to look at. 

What I would like you to do is to read each pair of ideas, and then indicate on 
the scale provided how closely related to each other you believe them to be. To help 
explain this to you I have included a possible example of a similar task below. If you 
complete it, it should help to clarify in your mind the way in which this survey works. 
Afterwards please do go on to fill in this questionnaire. 

Thank-you for your help. 
Example 

In locating an archaeological site there are many different possible 
approaches. These include the following four techniques: Field walking, Aerial 
Photography, Resistivity and Magnetometry. In total this gives us 6 paired items. 

Please indicate on a scale of 0-10 how closely related you believe each of the following 
pairs of ideas/concepts to be by circling the appropriate number on the scale below. 

Field Walking & 
Resistivity & 

Magnetometry & 
Magnetometry & 
Field Walking & 

Resistivity & 

Aerial Photography 
Magnetometry 
Field Walking 

Aerial Photography 
Resistivity 

Aerial Photography 

0 
0 
0 
0 
0 
0 1 

2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 
4 

5 
5 
5 
5 
5 
5 

6 
6 
6 
6 
6 
6 

7 
7 
7 
7 
7 
7 

8 
8 
8 
8 
8 
8 

9 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 

Could you please use the space below to indicate any salient ideas or concepts which you 
believe are related to locating an archaeological site which were not included in the original 

questionnaire. 

If you have any problems or questions, please ask for help. 
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Please indicate on a scale of 0-10 how closely related you believe each of the following 
pairs of ideas/concepts to be by circling the appropriate number on the scale given. 

Time Scale & 140-280 ka b.p. - 0 1 2 3 4 5 6 7 8 9 10 

Rate of Mutation & 'Eve' - 0 1 2 3 4 5 6 7 8 9 10 

Time Scale & Female Heredity - 0 1 2 3 4 5 6 7 8 9 1 0 

Rate of Mutation & mtDNA - 0 1 2 3 4 5 6 7 8 9 10 

Africa & Female Heredity - 0 1 2 3 4 5 6 7 8 9 1 0 

Sexual reproduction & 140-280 ka b.p. - 0 1 2 3 4 5 6 7 8 9 1 0 

Female Heredity & 'Eve' - 0 1 2 3 4 5 6 7 8 9 1 0 

Female Heredity & Cell Cytoplasm - 0 1 2 3 4 5 6 7 8 9 1 0 

Cell Cytoplasm & Time Scale - 0 1 2 3 4 5 6 7 8 9 1 0 

Ancestry & 140-280 ka b.p. - 0 1 2 3 4 5 6 7 8 9 10 

140-280 ka b.p. & Temporal Mutation - 0 1 2 3 4 5 6 7 8 9 1 0 

'Eve* & Time Scale - 0 1 2 3 4 5 6 7 8 9 10 

140-280 ka b.p. & Rate of Mutation - 0 1 2 3 4 5 6 7 8 9 10 

140-280 ka b.p. & Africa - 0 1 2 3 4 5 6 7 8 9 10 

Ancestry & mtDNA - 0 1 2 3 4 5 6 7 8 9 10 
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Ancestry & Time Scale - 0 1 

Temporal Mutation & Sexual reproduction - 0 1 

Ancestry & 'Eve' - 0 1 

mtDNA & Female Heredity - 0 1 

mtDNA & 140-280 kab.p. - 0 1 

Sexual reproduction & Ancestry - 0 1 

Cell Cytoplasm & 'Eve' - 0 1 

Rate of Mutation & Time Scale - 0 1 

Temporal Mutation & Female Heredity - 0 1 

Sexual reproduction & Time Scale - 0 1 

Africa & Cell Cytoplasm - 0 1 

'Eve' & mtDNA - 0 1 

Cell Cytoplasm & Ancestry - 0 1 

mtDNA & Temporal Mutation - 0 1 

Africa & Rate of Mutation - 0 1 

Sexual reproduction & 'Eve' - 0 1 
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2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 
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Cell Cytoplasm & Sexual reproduction - 0 1 2 3 4 5 6 7 8 9 1 0 

Temporal Mutation & Rate of Mutation - 0 1 2 3 4 5 6 7 8 9 1 0 

Time Scale & Temporal Mutation - 0 1 2 3 4 5 6 7 8 9 1 0 

Sexual reproduction & mtDNA - 0 1 2 3 4 5 6 7 8 9 1 0 

Ancestry & Africa - 0 1 2 3 4 5 6 7 8 9 10 

Africa & Temporal Mutation - 0 1 2 3 4 5 6 7 8 9 1 0 

'Eve' & 140-280 kab.p. - 0 1 2 3 4 5 6 7 8 9 10 

mtDNA & Africa - 0 1 2 3 4 5 6 7 8 9 10 

Female Heredity & Rate of Mutation - 0 1 2 3 4 5 6 7 8 9 1 0 

Temporal Mutation & Cell Cytoplasm - 0 1 2 3 4 5 6 7 8 9 1 0 

'Eve' & Africa - 0 1 2 3 4 5 6 7 8 9 10 

Female Heredity & Ancestry - 0 1 2 3 4 5 6 7 8 9 10 

Cell Cytoplasm & Rate of Mutation - 0 1 2 3 4 5 6 7 8 9 1 0 

'Eve' & Temporal Mutation - 0 1 2 3 4 5 6 7 8 9 1 0 

Rate of Mutation & Sexual reproduction - 0 1 2 3 4 5 6 7 8 9 1 0 

Rate of Mutation & Ancestry - 0 1 2 3 4 5 6 7 8 9 1 0 



mtDNA & 

Time Scale & 

Time Scale & 

Temporal Mutation & 

140-280 kab.p. & 

Africa & 

Female Heredity & 

140-280 kab. p. & 

Appendices 

Cell Cytoplasm 
mtDNA 
Africa 

Ancestry 
Cell Cytoplasm 

Sexual reproduction 
Sexual reproduction 

Female Heredity 
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0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 
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Please indicate below how you have acquired your knowledge of mitochondrial DNA dating:-

(tick as many as are appropriate) 

Lectures in Archaeology - [ ] 

Tutorials in Archaeology - [ ] 

Essays in Archaeology - [ ] 

Anthropology Courses - [ ] 

Biology Courses - [ ] 

Others {Please Specify} 

Could you please also use the space below to indicate any salient ideas or 

concepts which you believe are related to Mitochondrial DNA dating which were not 

included in the original questionnaire. 

Thank you. 
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Appendix C 

The Remaining MDS Plots from Experiment 2. 

Description 

Looking at the original descriptions which the Expert gave on the 

individual techniques it was clear that he was organising concepts by deep conceptual 

principles. In the expert combination plots we can see that this grouping style is still 

very much in evidence, and more we can see that where there is an interaction 

between the two techniques it is often occurring at a point of deeper organisation. For 

example, in Figure 16 we can see that the distribution of concepts within the KAr and 

NRC halves is stretched out of shape to allow for a very specific grouping of Death of 

Living Organism & Drives Argon from Rock. These concepts clearly represent to the 

Expert the actual Zeroing Event of the chronometer for each of the two techniques. 

Even though such cross technique groupings pull the rest of the MDS plot out of 

shape, we can still see recognisable groupings within each technique that conform to 

the deeper conceptual organisation. Both sides show groupings for the Basis of the 

Technique (as described in Chapter 5) and reasonable groupings by the Mechanism of 

the Technique. 

By comparison, the Novice plot for the same questionnaire type (Figure 

15) in no way reflects the same pattern of organisation even without meaningful cross-

technique groupings to distort the individual technique groupings. There is no clear 

organisation to the two techniques as a whole, but instead there are many sporadic 

localised pockets. For instance, the Fractionation of Carbon & Photosynthesis 

concepts form a part of the larger underlying Mechanism concept identified by the 

Expert, and are at a more superficial level linked by their closeness in that particular 
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part of the Mechanism of the Technique. However, they are as far apart from the other 

members of that deeper grouping as is possible, and scattered too. Similar 

comparisons can be made throughout the rest of the combination questionnaire plots 

(Figures 1 -18) to a greater or lesser degree. 

The main difference between the two in realistic and easily observed 

terms, is that the novice plots tend to have no organisation with the concepts equally 

spaced and at a distances from the centre. The experts plots however tend to show 

more deliberate organisation with clusters and groupings, and with more tendency to 

have concepts or groupings nearer the centre of the plots. 
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GEN & USD 

Figure 1 - MDS Group Plot for all USD & GEN Novice Responses. 

2.0i 

1.5' 

1.0 

.51 

1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0 y ^ a r s 

U r a n i u m in G r o u n d w a t e r 

+• C a l c i t e 
T h o r i u m I n s o l u b l e 

C l o c k M e c h a n i s m 

I -f- S e v e r a l D a u g h t e r s 

U r a n i u m P r e s e n t In R o c k 

+ 

Z e r o i n g E v e n t 

+ 

U r a n i u m S e r i e s D a t i n g 

+ 

S e d i m e n t a r y R o c k s 

. 5 ' 

•1.0 

•1.5' 

-2.0 

U 2 3 4 

R a d i o a c t i v e N u c l i d e 

H i g h E n e r g y M a s s S p e c t r o s c o p y 

F o r m u l a e + 

S t a l a c t i t e F o r m a t i o n 

+ 

+ 
3 0 0 , 0 0 0 y e a r s 

C o n s t a n t D e c a y R a t e 

A r c h a e o l o g i c a l I 

+ 

O p e r a t i n g L i m i t 

M i ter ia l 

o n R a n g e 

' D a t i n g R a n g e 

•1.5 -1.0 0.0 .5 1.0 1.5 

In this plot the USD concepts are bounded mainly to the top and also the 

left and right, but at the edge of the plot. The GEN concepts are all closer to the 

middle of the plat and spread mainly at the bottom, but also left and right. The 

distinguishable groupings for GEN are Radioactive Nuclide, Constant Decay Rate, 

Archaeological Material and Operating Limits on Range (bottom left) and High Energy 

Mass Spectroscopy and Formulae (bottom right). For USD they are U234 & Several 

Daughters (left), 1 000 000 000 000 years & Uranium in Groundwater (top) and 

Uranium Series Dating, Sedimentary Rock, Stalactite Formation & 400 000 years 

(right). There are no obvious cross-technique groupings. 
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Figure 2 - MDS Plot for USD & GEN Expert Response. 
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In the expert plot the boundaries between GEN and USD are quite 

interlocked, with USD going from top left through the centre and round to bottom right 

and GEN from bottom right up to top left and centre right. To the left half of GEN we 

have Operating Limit, Dating Range, Archaeological Material, Clock Mechanism, 

Constant Decay Rate & Dating Range; to the right we have Zeroing Event, Formulae 

and High Energy Mass Spectroscopy. In USD we have Calcite, Uranium in 

Groundwater, 400 000 years and Stalactite Formation along the GEN boundary. 
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GEN & KAr 

Figure 3 - MDS Group Plot for all KAr & GEN Novice Responses. 
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In this plot the GEN concepts are grouped to the left (Radioactive 

Nuclide, High Energy Mass Spectroscopy, Archaeological Material & Formulae) and 

centre bottom (Dating Range & Decay Rate) and right (Zeroing Event & Clock 

Mechanism). The KAr concepts are grouped top (Volcanic Events, Operating Limits on 

Range, Potassium 40 & 2 Daughters) and right (Feldspar in Rock & 400 000 years) 

and also bottom left (Drives Argon from Rock, Potassium Argon Dating & 1 000 000 

000 000 years) and top left (Potassium in Rock). Of these, Zeroing Event & Clock 

Mechanism (GEN) are grouped near 400 000 years and Feldspar, whilst Potassium in 

Rock (KAr) is by Radioactive Nuclide & Archaeological Material. 
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Figure 4 - MDS Plot for KAr & GEN Expert Response. 
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In the Expert's plot we have a rough divide with KAr on the left and GEN 

on the right, but there is a finger of KAr top right and of GEN going centre left. On the 

KAr finger Potassium Argon Dating and 1 000 000 000 years group next to Dating 

Range (GEN) whilst the GEN finger groups Zeroing Event and High Energy Mass 

Spectroscopy. This GEN group also sandwiches a KAr grouping of Drives Argon from 

Feldspar and 400 000 years between itself and Clock Mechanism. Radioactive 

Nuclide, Decay Rate and Operating Limits on Range group in the bottom right (GEN). 

Potassium in Rock, Volcanic Events and Feldspar are along the bottom of the GEN 

finger. 
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GEN & ARC 

Figure 5 - MDS Group Plot for all ARC & GEN Novice Responses. 
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In the novice group plot we have groupings of GEN bottom left (Operating 

Limits on Range, Decay Rate & Clock Mechanism) and top right (Zeroing Event, Dating 

Range, Formulae & Archaeological Material). We also have ARC groups left (Smaller 

Sample Needed, 50 000 - 80 000 years & Dendrochronology) and bottom right (Count 

Atoms not Activity, Calibration, Decay Method, 30 000 - 40 000 years & Accelerator 

Mass Spectroscopy). Cross technique groupings are Zeroing Event (GEN) and Isolate 

Find from Modern Carbon at the top, Clock Mechanism & Count Atoms not Activity 

(ARC) at the bottom, Accelerator Mass Spectroscopy (ARC) & Archaeological Material 

and Formula on the right and Operating Limit on Range (GEN) with Dendrochronology, 

50 000 - 80 000 years to the left. 
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Figure 6 - MDS Plot for ARC & GEN Expert Response. 
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In the Expert plot we have ARC predominantly to the right hand side and 

GEN to the left. The exceptions are that Decay Method and Isolate Find from Modern 

Carbon (ARC) are very well into the left and isolated from the rest of ARC. Similarly 30 

000 - 40 000 years is very isolated at the top and left of the ARC right hand side. 

Isolate Find from Modern Carbon is grouped by Operating Limits on Range; Decay 

Method is near Decay Rate; 30 000 - 40 000 years is grouped by Dating Range. In 

ARC, Accelerator Mass Spectroscopy is grouped with 50 000 - 80 000 years. 
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USD & KAr 

Figure 7 - MDS Group Plot for all KAr & USD Novice Responses. 
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The groupings in the novice plot is predominantly left for KAr: Potassium 

40 & Potassium Argon Dating (top left), 400 000 years, 2 Daughters & Potassium in 

Rock (bottom left). There is also 1 000 000 000 years & Feldspar (top right) and 

Volcanic Events & Drives Argon from Rock (bottom right). USD is predominantly right: 

1 000 000 000 000 years, Uranium in Rock & Thorium Insoluble (top right), Several 

Daughters & Stalactite Formation (bottom right). There is also Sedimentary Rock, 

Calcite & 300 000 years (centre bottom) and Uranium Series Dating, U234 & Uranium 

in Groundwater (centre top). Crossover groupings are Several Daughters & Stalactite 

Formation (USD) and Volcanic Events & Drives Argon from Rock (KAr), and 

Sedimentary Rocks (USD) & Potassium in Rock (KAr). 
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Figure 8 - MDS Plot for KAr & USD Expert Response. 

3 0 0 0 0 0 y e a r s 

+ 
+ 

S t a l a c t i t e F o r m a t i o n 

' ' " U r a n i u m in G r o u n d w a t e r 

+ 
, . . . . U r a n i u m S e r i e s Da t i i 

T h o r i u m I n s o l u b l e 

C a l c i t e 

S e v e r a l D a u g h t e r s 

+ 

P o t a s s i u m in R o c k 

+ 
+ 

+ 1 0 0 0 0 0 0 0 0 0 y e a r s 

T w o D a u g h t e r s 

9 

4 0 0 0 0 0 y e a r s 
U r a n i u m in R o c k + 

+ 

S e d i m e 

1 0 0 0 0 0 0 0 0 0 0 0 0 y e a r s ^ 

+ + 
F e l d s p a r 

P o t a s s i u m A r g o n D a t i n g 

+ 

+ V o l c a n i c E v e n t s 

+ 
P o t a s s i u m 4 0 

+ 

rtary R o c k D r i v e s A r 8 o n from R o c k 

+ U 2 3 4 
• • • • 

-2 -1 0 A 2 

The Expert here has roughly a split of USD left and KAr right. The 

grouping of 400 000 years & Feldspar (KAr) encroaches to the left, and 1 000 000 000 

000 years, U234 and Sedimentary Rock (USD) encroaches to the left. There is 

otherwise no merging of the two techniques. Cross technique groupings do exist, with 

Several Daughters (USD) and Two Daughters (KAr) together, aswell as the overlap 

between the two encroaching fingers. Main groupings within techniques are: Two 

Daughters, 1 000 000 000 years & Potassium in Rock (KAr) and Thorium Insoluble, 

Uranium in Groundwater, Stalactite Formation & 300 000 years (USD). 
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USD & ARC 

Figure 9 - MDS Group Plot for all ARC & USD Novice Responses. 
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For this Novice Group plot there are several local groupings. For USD 

Sedimentary Rock, Uranium in Groundwater & Calcite (bottom left) with Calibration, 

Accelerator Dating & Smaller Sample Needed for ARC. There is also a USD grouping 

top left; 300 000 years, Thorium Insoluble, Several Daughters, with an adjacent ARC 

concept - 30 000 - 40 000 years. Left there is a USD grouping too - Stalactite 

Formation, Uranium Series Dating & U234 with an ARC concept - Isolate Find from 

Modern Carbon. There is additionally an ARC grouping top and left: Accelerator Mass 

Spectroscopy, Dendrochronology, Decay Method and High Energy Mass 

Spectroscopy. 
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Figure 10 - MDS Plot for ARC & USD Expert Response. 
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This plot can be roughly divided with USD on the left half and ARC on the 

right half. Stalactite Formation (USD) is grouped with Isolate from Modern Carbon 

though (ARC) right on the right hand side, and Calibration (ARC) is grouped with 1 000 

000 000 years (USD) at the bottom middle. Otherwise, groupings in the techniques are 

as follows. USD: Uranium Series Dating, U234, 300 000 years & Several Daughters 

(left) and Uranium in Groundwater & Thorium Insoluble (top). ARC: High Energy Mass 

Spectroscopy & 30 000 - 40 000 years (top right), Accelerator Mass Spectroscopy & 

Accelerator Dating (bottom right). 
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USD & NRC 

Figure 11 - MDS Group Plot for NRC & USD Novice Responses. 
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This Novice group plot shows a roughly left right split, with USD concepts 

to the left and NRC concepts to the right. The USD concepts group with 1 000 000 000 

000 years & Several Daughters top left; Uranium Series Dating, Sedimentary Rock & 

Uranium in Rock bottom left and with Thorium Insoluble, Stalactite Formation & 

Uranium in Groundwater bottom. Libby's Half Life - 5700 years & 300 000 years also 

group, but they are with the NRC concepts of C14 in Atmosphere & Death of Living 

Organism. NRC also groups with C14 Reservoir, Carbon in Living Organism & Carbon 

Cycle (right), C14 & Fractionation of Carbon (top) and Photosynthetic Pathways, 

Cessation of Exchange and Organic Matter (bottom right) which also group with the 

USD concept Calcite. 
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Figure 12 - MDS Plot for NRC & USD Expert Response. 
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The Expert's plot is mainly divided with USD concepts in the left hand 

side and NRC concepts the right. The main USD grouping is Uranium Series Dating, 

U234, Uranium in Rock, 1 000 000 000 000 years and Several Daughters (left). Two 

fingers of USD go into the right hand side, and around the edge of those fingers are 

Stalactite Formation, 300 000 years, Thorium Insoluble & Uranium in Groundwater. 

The NRC grouping between these fingers is Fractionation of Carbon, C14 & C14 in 

Atmosphere. Death of Living Organism & Cessation of Exchange are split by Uranium 

in Groundwater. Carbon Cycle and Carbon in Living Organism also group closely. 
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ARC & KAr 

Figure 13 - MDS Group Plot for KAr & ARC Novice Responses. 
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The prominent groupings of concepts in this plot are ARC in the top and 

right and KAr in the left and bottom. To the top, the ARC concepts of 50 000 - 80 000 

years, Calibration, Accelerator Mass Spectroscopy, Dendrochronology & Decay 

Method group; to the right it is Smaller Sample Needed & 30 000 - 40 000 years, with 

an interloper of Volcanic Event from KAr in the grouping. In the KAr groupings we 

have Potassium in Rock, Potassium 40 & Feldspar at the bottom with High Energy 

Mass Spectroscopy from ARC. To the left we have Accelerator Dating, Isolate Find 

from Modern Carbon, 1 000 000 000 years, Count Atoms not Activity, 400 000 years 

and Drives Argon from Rock. 
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Figure 14 - MDS Plot for KAr & ARC Expert Response. 
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The Experts plot roughly divides with KAr running from centre right 

through to the left of centre, and with ARC above, below, and to the left of it. For KAr 

400 000 years is Isolated at the bottom below an ARC grouping of Decay Method & 

Smaller Sample Needed. Volcanic Event, Potassium 40 & Feldspar group to the right 

and Potassium Argon Dating, Potassium in Rock, Two Daughters, 1 000 000 000 years 

& Drives Argon from Rock group in the centre. For ARC 50 000 - 80 000 years, Count 

Atoms not Activity & Isolate Find from Modern Carbon are top right, Accelerator Dating 

& Accelerator Mass Spectroscopy are top left and Calibration & Dendrochronology are 

centre left. 
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NRC & KAr 

Figure 15 - MDS Group Plot for KAr & NRC Novice Responses. 
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The Novice representation appears to group the NRC concepts to the 

right and KAr to the left, but with an incursion of NRC into the left at centre, and an 

isolated pocket top left. Photosynthetic Pathways & Fractionation group top left, and 

C14 Reservoir in Oceans, C14 & Death of Living Organism group just under centre. 

To the right C14 Dating & Carbon Cycle group at the bottom, Cessation of Exchange & 

Organic Matter group in the middle and Libby's Half Life - 5700 years & C14 in 

Atmosphere group to the top. For KAr 400 000 years & Potassium Argon Dating group 

top left of centre, Two Daughters & Feldspar groups middle top left and Volcanic 

Event, 1 000 000 000 years & Drives Argon from Rock group bottom left. 
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Figure 16 - MDS Plot for KAr & NRC Expert Response. 
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The Expert plot divides KAr on the left hand side and NRC on the right, 

with one concept grouping, Photosynthetic Pathways & Fractionation of Carbon (NRC) 

incurring on the top left hand side. There is also an obvious boundary grouping 

between techniques of Death of Living Organism (NRC) and Drives Argon from Rock 

(KAr) at the centre. In the KAr half, Volcanic Events & Two Daughters group together 

bottom left, whilst Potassium 40 & Potassium Argon Dating group left of the NRC 

incursion and Feldspar & 400 000 years group to its right. On the NRC half of the plot 

C14 & C14 Dating are at the top; Cessation of Exchange is close to Death of Living 

Organism; C14 Reservoir in Oceans, Carbon Cycle & Organic Matter group centre 

right and C14 in Organism, Libby's Half Life - 5700 years & C14 in Atmosphere are at 

the bottom. 
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NRC & ARC 

Figure 17 - MDS Group Plot for ARC & NRC Novice Responses. 
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The Novice Plot shows us NRC and ARC in all directions. For ARC 

concepts we have a grouping to the left of Dendrochronology & Calibration; to the 

right of Accelerator Dating, Accelerator Mass Spectroscopy, Count Atoms not Activity, 

Smaller Sample Needed & 30 000 - 40 000 years. For NRC concepts we have a 

grouping of C14, C14 Reservoir in Oceans, C14 in Living Organisms, Cessation of 

Exchange & Carbon Cycle to the top; to the bottom we have Fractionation of Carbon & 

Libby's Half Life - 5700 years together with the ARC concept 50 000 - 80 000 years. 

There is also a NRC grouping to the left of Death of Living Organism, Organic Matter & 

C14 in Atmosphere. 
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Figure 18 - MDS Plot for ARC & NRC Expert Response. 
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For the Expert this plot NRC is mainly in the top right with a finger 

extending centrally to the left. ARC is mainly left with an extension bottom right. In 

NRC the main grouping is C14 in Organism, C14, C14 Reservoir in Oceans & Carbon 

Cycle (right middle to top), Photosynthetic Pathways, Cessation of Exchange & 

Fractionation (right middle to bottom), and Libby's Half Life - 5700 years, Organic 

Matter, C14 in Atmosphere & Death of Living Organism (bottom left). For ARC the 

groupings are Accelerator Mass Spectroscopy, Accelerator Dating, Count Atoms not 

Activity, 50 000 - 80 000 years, Calibration and Dendrochronology (top left) and High 

Energy Mass Spectroscopy, 30 000 - 40 000 years, Isolate Find from Modern Carbon & 

Smaller Sample Needed strung out along the bottom of the NRC incursion. 


