239 research outputs found

    Comparative Analysis of Arabic Vowels using Formants and an Automatic Speech Recognition System

    Get PDF
    Arabic, the world's second most spoken language in terms of number of speakers, has not received much attention from the traditional speech processing research community. This study is specifically concerned with the analysis of vowels in modern standard Arabic dialect. The first and second formant values in these vowels are investigated and the differences and similarities between the vowels explored using consonant-vowels-consonant (CVC) utterances. For this purpose, a Hidden Markov Model (HMM) based recognizer is built to classify the vowels and the performance of the recognizer analyzed to help understand the similarities and dissimilarities between the phonetic features of vowels. The vowels are also analyzed in both time and frequency domains, and the consistent findings of the analysis are expected to enable future Arabic speech processing tasks such as vowel and speech recognition and classification

    Visual speech recognition and utterance segmentation based on mouth movement

    Get PDF
    This paper presents a vision-based approach to recognize speech without evaluating the acoustic signals. The proposed technique combines motion features and support vector machines (SVMs) to classify utterances. Segmentation of utterances is important in a visual speech recognition system. This research proposes a video segmentation method to detect the start and end frames of isolated utterances from an image sequence. Frames that correspond to `speaking' and `silence' phases are identified based on mouth movement information. The experimental results demonstrate that the proposed visual speech recognition technique yields high accuracy in a phoneme classification task. Potential applications of such a system are, e.g., human computer interface (HCI) for mobility-impaired users, lip-reading mobile phones, in-vehicle systems, and improvement of speech-based computer control in noisy environments

    Emotion recognition based on the energy distribution of plosive syllables

    Get PDF
    We usually encounter two problems during speech emotion recognition (SER): expression and perception problems, which vary considerably between speakers, languages, and sentence pronunciation. In fact, finding an optimal system that characterizes the emotions overcoming all these differences is a promising prospect. In this perspective, we considered two emotional databases: Moroccan Arabic dialect emotional database (MADED), and Ryerson audio-visual database on emotional speech and song (RAVDESS) which present notable differences in terms of type (natural/acted), and language (Arabic/English). We proposed a detection process based on 27 acoustic features extracted from consonant-vowel (CV) syllabic units: \ba, \du, \ki, \ta common to both databases. We tested two classification strategies: multiclass (all emotions combined: joy, sadness, neutral, anger) and binary (neutral vs. others, positive emotions (joy) vs. negative emotions (sadness, anger), sadness vs. anger). These strategies were tested three times: i) on MADED, ii) on RAVDESS, iii) on MADED and RAVDESS. The proposed method gave better recognition accuracy in the case of binary classification. The rates reach an average of 78% for the multi-class classification, 100% for neutral vs. other cases, 100% for the negative emotions (i.e. anger vs. sadness), and 96% for the positive vs. negative emotions

    A motion-based approach for audio-visual automatic speech recognition

    Get PDF
    The research work presented in this thesis introduces novel approaches for both visual region of interest extraction and visual feature extraction for use in audio-visual automatic speech recognition. In particular, the speaker‘s movement that occurs during speech is used to isolate the mouth region in video sequences and motionbased features obtained from this region are used to provide new visual features for audio-visual automatic speech recognition. The mouth region extraction approach proposed in this work is shown to give superior performance compared with existing colour-based lip segmentation methods. The new features are obtained from three separate representations of motion in the region of interest, namely the difference in luminance between successive images, block matching based motion vectors and optical flow. The new visual features are found to improve visual-only and audiovisual speech recognition performance when compared with the commonly-used appearance feature-based methods. In addition, a novel approach is proposed for visual feature extraction from either the discrete cosine transform or discrete wavelet transform representations of the mouth region of the speaker. In this work, the image transform is explored from a new viewpoint of data discrimination; in contrast to the more conventional data preservation viewpoint. The main findings of this work are that audio-visual automatic speech recognition systems using the new features extracted from the frequency bands selected according to their discriminatory abilities generally outperform those using features designed for data preservation. To establish the noise robustness of the new features proposed in this work, their performance has been studied in presence of a range of different types of noise and at various signal-to-noise ratios. In these experiments, the audio-visual automatic speech recognition systems based on the new approaches were found to give superior performance both to audio-visual systems using appearance based features and to audio-only speech recognition systems

    Spoken Word Recognition Using Hidden Markov Model

    Get PDF
    The main aim of this project is to develop isolated spoken word recognition system using Hidden Markov Model (HMM) with a good accuracy at all the possible frequency range of human voice. Here ten different words are recorded by different speakers including male and female and results are compared with different feature extraction methods. Earlier work includes recognition of seven small utterances using HMM with the use only one feature extraction method. This spoken word recognition system mainly divided into two major blocks. First includes recording data base and feature extraction of recorded signals. Here we use Mel frequency cepstral coefficients, linear cepstral coefficients and fundamental frequency as feature extraction methods. To obtain Mel frequency cepstral coefficients signal should go through the following: pre emphasis, framing, applying window function, Fast Fourier transform, filter bank and then discrete cosine transform, where as a linear frequency cepstral coefficients does not use Mel frequency. Second part describes HMM used for modeling and recognizing the spoken words. All the raining samples are clustered using K-means algorithm. Gaussian mixture containing mean, variance and weight are modeling parameters. Here Baum Welch algorithm is used for training the samples and re-estimate the parameters. Finally Viterbi algorithm recognizes best sequence that exactly matches for given sequence there is given spoken utterance to be recognized. Here all the simulations are done by the MATLAB tool and Microsoft window 7 operating system

    Tone classification of syllable -segmented Thai speech based on multilayer perceptron

    Get PDF
    Thai is a monosyllabic and tonal language. Thai makes use of tone to convey lexical information about the meaning of a syllable. Thai has five distinctive tones and each tone is well represented by a single F0 contour pattern. In general, a Thai syllable with a different tone has a different lexical meaning. Thus, to completely recognize a spoken Thai syllable, a speech recognition system has not only to recognize a base syllable but also to correctly identify a tone. Hence, tone classification of Thai speech is an essential part of a Thai speech recognition system.;In this study, a tone classification of syllable-segmented Thai speech which incorporates the effects of tonal coarticulation, stress and intonation was developed. Automatic syllable segmentation, which performs the segmentation on the training and test utterances into syllable units, was also developed. The acoustical features including fundamental frequency (F0), duration, and energy extracted from the processing syllable and neighboring syllables were used as the main discriminating features. A multilayer perceptron (MLP) trained by backpropagation method was employed to classify these features. The proposed system was evaluated on 920 test utterances spoken by five male and three female Thai speakers who also uttered the training speech. The proposed system achieved an average accuracy rate of 91.36%
    corecore