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Abstract

This paper presents a vision-based approach to recog-

nize speech without evaluating the acoustic signals. The

proposed technique combines motion features and support

vector machines (SVMs) to classify utterances. Segmenta-

tion of utterances is important in a visual speech recog-

nition system. This research proposes a video segmen-

tation method to detect the start and end frames of iso-

lated utterances from an image sequence. Frames that cor-

respond to ‘speaking’ and ‘silence’ phases are identified

based on mouth movement information. The experimental

results demonstrate that the proposed visual speech recog-

nition technique yields high accuracy in a phoneme clas-

sification task. Potential applications of such a system are,

e.g., human computer interface (HCI) for mobility-impaired

users, lip-reading mobile phones, in-vehicle systems, and

improvement of speech-based computer control in noisy en-

vironments.

1. Introduction

Speech technologies represent an important component

in the development of next generation human computer in-

terface (HCI). New HCI techniques emphasize on intelli-

gent systems that can communicate with the users in a natu-

ral and flexible manner. The conventional human computer

interfaces (HCI) such as mice and keyboards may not be

suitable for people with limb disabilities. Users suffering

from diseases or accidents such as strokes, amputations and

amyotrophic lateral sclerosis may not be able to use their

hands yet retaining the ability to speak. Speech-based sys-

tems are useful for such users to control the environment

and to enhance their education and career opportunities.

Nevertheless, speech recognition systems are not widely

used as HCI due to the intrinsic sensitivity of such systems

to variations in acoustic conditions. The performance of

audio speech recognizers degrades when the sound signal

strength is low, or in situations with high ambient noise lev-

els.

Non audio sources can be used to identify utterances in

an effort to overcome the limitations of voice-based speech

systems. Options available are such as visual [19, 20],

recording of vocal cord’s movements [7] and recording of

facial muscle activity [2]. This paper evaluates the use of

images to identify speech. The visual signals are selected

because the acquisitions of such data are non intrusive as

opposed to methods that involves placement of sensors on

users. The advantages of visual speech recognition are, e.g.,

not affected by audio noise and do not require users to make

a sound. Such a system maybe useful for conveying confi-

dential information and for military and defence applica-

tions.

Video recordings of a speaker contain information on the

visible movement of the speech articulators such as lips, fa-

cial muscles, tongue and teeth. Research where audio and

video inputs are combined to recognize large vocabulary,

complex speech patterns are being reported in the literature

[11, 20]. Without the voice signals, such systems have high

error rate using only visual information [11, 20]. This sug-

gest that the visual cues contain far less classification power

for speech compared to audio data and hence it is to be ex-

pected to support only a small vocabulary of utterances.

Comprehensive reviews on speech recognition tech-

niques can be found in [20, 22]. Visual features used in lip-

reading systems can be divided into shape-based, intensity-

based and motion-based. The shape-based features rely on

the geometric shape of the mouth and lips. Such features

usually can be represented by a small number of parame-

ters. The first visual speech recognition system was pro-

posed by Petajan [19] using shape-based features such as

height, width and area of the mouth derived from the binary

images. Researchers have reported on the use of artificial
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markers on speaker’s face to ease the extraction of the lip

contours from the mouth images [1, 13]. The use of artifi-

cial markers is not suitable for practical speech-controlled

applications. In [8], 3D coordinates of feature points such

as lip corners are extracted from stereo images without us-

ing artificial markers. Lip contours can be extracted using

active shape models (ASM) techniques that fit a statistical

lip model into the video frames [17, 18]. Such top-down,

model-based approaches are less sensitive to the view angle

of the camera. An extension to the ASM technique is the

active appearance model (AAM) approach that combines

the shape model with a statistical model of the grey levels

of the mouth region. The performance of AAM is demon-

strated to outperform ASM in lip tracking [17]. Neverthe-

less, AAM and ASM techniques are sensitive to tracking

error and modeling error.

Intensity-based features are obtained from the pixel in-

tensity values of the image around the mouth area [20, 11].

The advantage of intensity-based systems is that accu-

rate tracking and modeling of the lips are not required.

Intensity-based features are capable of representing visual

information within the mouth cavity and also surround-

ing face region that are not represented in the high-level,

shaped-based features and lip contours [21]. Directly using

all the pixels from the mouth images will result in very large

size of feature vector. Feature extraction techniques such as

Principal Component Analysis (PCA), Independent Com-

ponent Analysis (ICA) and Discrete Cosine Transforme

(DCT) can be applied on the pixel values of the images to

reduce the dimension of such features. The intensity-based

features are demonstrated to yield better performance than

shape-based features extracted using ASM and AAM algo-

rithms in [17].

Features that represent the visual speech information

through the different static poses of the mouth in individ-

ual frames can be viewed as static features. Features that

directly utilize the dynamics of speech can be categorised

as motion-based features. Few researchers have focused on

motion-based features for visual speech recognition. Gold-

schen et. al. [9] demonstrates that dynamic visual features

are most discriminative when comparing static and motion

features. This paper proposes a visual speech recognition

technique that utilizes a novel motion-based feature. These

features are extracted by cascading multiple signal pro-

cessing techniques including motion segmentation, Zernike

moments and wavelet transform. This study examines a

movement-based technique to detect the start and stop of

utterances from video.

This research investigates the reliability of visual in-

formation in classifying a small set vocabulary of English

phonemes. Earlier work by the authors has demonstrated

a lip-reading technique that is insensitive to translation, ro-

tation and scale changes of the mouth in the images using

multilayer perceptron (MLP) neural network classifier [26].

Supervised neural network approach lends itself for identi-

fying the separability of data even when the statistical prop-

erties and the type of separability (linear or nonlinear) are

not known. While it may be an easy tool to implement as a

first step, it may be suboptimal. To enhance the approach re-

ported in [26], this paper proposes the use of support vector

machines (SVMs) as speech classifier and evaluates the sys-

tem on a larger vocabulary. One of the main advantages of

SVMs is the ability such learning machines to achieve glob-

ally optimal solution. The use of SVMs in lip-reading sys-

tem is reported in [10]. To model the temporal component

of speech, the outputs of the SVM are integrated as nodes

into a Viterbi lattice. This paper model the dynamic speech

information in a different manner by using spatial-temporal

templates named as motion history images (MHI). The pro-

posed approach applies SVMs as discriminative classifier to

classify the MHIs into phonemes.

This paper proposes a system where the camera is at-

tached in place of the microphone to the commonly avail-

able head-sets to record mouth images. An advantage of this

is that it is no longer required to identify the region of inter-

est thereby reducing the computation required. This paper

is organized as follows : Section 2 descibes the proposed

feature extraction method that combined motion history im-

ages, wavelet transform and Zernike moments. Section 3

presents the design of the support vector machines (SVMs)

speech classifier and Section 4 describes the methodology

of the proposed visual speech recognition technique. Sec-

tion 5 discusses the observations and findings from the ex-

periments. Section 6 presents a new method for utterance

segmentation based on movement information and Section

7 describes the conclusion of this paper and future work.

2. Motion feature

The first video processing step involved in the proposed

approach is the segmentation of mouth motion. The facial

movement of each utterance in the video file is represented

using a 2D grayscale image - motion history image (MHI).

MHI is a spatial-temporal template that shows where and

when facial movements occur in the image sequence [3, 26].

MHI is generated using an accumulative image differ-

ence technique. The facial movement is segmented by de-

tecting the changes between consecutive frames. Intensity

values between successive frames of the video are sub-

tracted to generate the difference of frames (DOFs). The

DOFs are converted to binary images by thresholding the

DOFs to obtain a change or no change classification. A

fixed threshold value is determined heuristically through ex-

perimentation. The delimiters for the start and stop of the

motion are manually inserted into the image sequence of ev-

ery articulation. The binarised DOFs will have pixel value
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1 at spatial coordinates where the intensity values between

two consecutive frames are appreciably different. The in-

tensity value of the MHI at pixel location (x, y) of tth frame

is defined by

MHIt(x, y) = max

N−1
⋃

t=1

Bt(x, y).t (1)

where N is the total number of frames of the video.

Bt(x, y) represents the binarised version of the DOF of

frame t. In Eq. 1, Bt(x, y) is multiplied with a linear ramp

of time to implicitly encode the temporal information of the

facial motions into the MHI. Each pixel value is a func-

tion of the temporal history of motion at that point from all

the frames in the image sequence. By computing the MHI

values for all the pixels coordinates (x, y) of the image se-

quence using Eq. 1 will produce a grayscale image (MHI)

where the brightness of the pixels indicates the recency of

motion in the image sequence [3].

MHI is used to segment the facial movement due to the

ability of MHI to remove static elements and preserve the

short duration facial movement in the video data. The MHI

approach is computationally inexpensive and is insensitive

to skin color due to the image subtraction process.

The speed of phonation of the speaker might vary for

each repetition of the same phone. The variation in the

speed of utterance results in the variation of the overall du-

ration and there maybe variations in the micro phases of

the utterances. The details of such variations are difficult

to model due to the large inter-experiment variations. This

paper suggests a model to approximate such variations by

normalizing the overall duration of the utterance. This is

achieved by normalizing the intensity values of the MHI to

[0...1].

2.1. Wavelet transform

MHI is a view sensitive motion representation technique.

MHI generated from the sequence of images is dependent

on factors such as position, orientation and distance of the

speaker’s mouth from the camera. Also MHI is affected by

small variations of the mouth movements while articulating

the same phone. This paper proposes the use of discrete sta-

tionary wavelet transform (SWT) to obtain a transform rep-

resentation of the MHI that is insensitive to small variations

of the mouth and lip movement. While the classical discrete

wavelet transform (DWT) is suitable for this, DWT results

in translation variance [15]. SWT restores the translation

invariance of the signal by omitting the downsampling pro-

cess of DWT, and results in redundancies.

2-D SWT at level 1 is applied on the MHI to produce a

spatial-frequency representation of the MHI. SWT decom-

position of the MHI generates four images. The approxi-

mate image is the smoothed version of the MHI and carries

the highest amount of information content among the four

images. Haar wavelet has been selected due to its spatial

compactness and localization property. Another advantage

is the low mathematical complexity of this wavelet. Com-

pact features have to be extracted from the approximation

(LL) to reduce the size of the data. The pixel values of an

LL image contain temporal information of the facial move-

ment. Analyzing this information directly from the pixel

values is difficult due to the large size of the data. For ex-

ample, an LL image of size 240 x 240 has 57600 values.

Further, the pixel values are sensitive to changes in scale,

rotation and position of the mouth in the images.

2.2. Zernike moments

Image moments are feature descriptors that are concise,

robust, and easy to compute and match. The proposed tech-

nique adopts Zernike moments as visual features to rep-

resent the SWT approximate image of the MHI. Zernike

moments are selected by MPEG-7 as a robust region-based

shape descriptor [12]. The main advantage of Zernike mo-

ments is the simple rotational property of the features[14].

Zernike moments are computed by projecting the image

function f(x, y) onto the orthogonal Zernike polynomial,

Vnl of order n with repetition l. Vnl is defined within a unit

circle (i.e.: x2 + y2 ≤ 1) given as follows:

Vnl(ρ, θ) = Rnl(ρ)e−ĵlθ; ĵ =
√
−1 (2)

where Rnl is the real-valued radial polynomial

Zernike moments are independent features due to the or-

thogonality of the Zernike polynomial Vnl[24]. |l| ≤ n and

(n − |l|) is even. Zernike moments Znl of order n and rep-

etition l is given by

Znl =

[

n + 1

π

]
∫

2π

0

∫

∞

0

[Vnl(ρ, θ)] f∗(ρ, θ)dρdθ (3)

f(ρ, θ) is the intensity distribution of the approximate im-

age of MHI mapped to a unit circle of radius ρ and angle θ

where x = ρcosθ and y = ρsinθ.

For the Zernike moments to be orthogonal, the approxi-

mate image of the MHI is scaled to be within a unit circle

centered at the origin. The unit circle is bounded by the

square approximate image of the MHI. The center of the

image is taken as the origin and the pixel coordinates are

mapped to the range of the unit circle, i.e., x2 + y2 ≤ 1.

Figure 1 shows the square-to-circular transformation per-

formed for the computation of the Zernike moments that

transform the square image function, f(x, y) to a circular

image function f(ρ, θ). This transformation ensures the

minimal lost of information as the entire square image is

contained within the circular image.

To illustrate the rotational characteristics of Zernike mo-

ments, consider β as an angle that an image is rotated. The
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Figure 1. The square-to-circular transforma-

tion of the SWT approximation of MHI

resulting Zernike moments of the rotated image Z ′

nl are

given by

Z ′

nl = Znle
−ilβ (4)

Znl is the Zernike moment of the original image. Eq. 4

demonstrates that rotation of an image results in a phase

shift on the Zernike moments [23]. Hence, the absolute

value of Zernike moments are rotation invariant [14] where

|Z ′

nl| = |Znl| (5)

This paper uses the absolute value of the Zernike mo-

ments, |Z ′

nl| as features of the SWT of MHI. The appro-

priate number of Zernike moment features to used is deter-

mined. 49 Zernike moments that comprise of 0th order mo-

ments up to 12th order moments have been found to yield

reasonable performance and are used as features to repre-

sent the approximate image of the MHI.

3. Support vector machines classifier

This paper proposes the use of SVMs to classify the

Zernike moments into visemes. SVMs are selected due to

the ability of SVMs to determine the globally optimum hy-

perplanes to separate the different classes of the data. SVMs

are learning machines that are trained based on the statisti-

cal learning theory [25]. The training of SVMs involved

the minimizing the empirical error and complexity of the

classifier simultaneously. Good generalization performance

in SVMs is achieved by asserting bounds on the classifica-

tion error and the capacity of the classifiers [4]. SVMs can

be designed to classify linearly and non-linearly separable

data.

In the case of non-linearly separable data, the data are

not able to be separated using hyper plane in the original

space. In SVM training, the data are projected to a higher-

dimensional Hilbert space through nonlinear mapping. In

the high-dimensional feature space, the data may be linearly

separable using kernel functions [10]. Data that are not

linearly separable in the original input space can be made

to be linearly separable in the new feature space. SVM

training can be carried out without knowing the nonlinear

mapping explicitly. The commonly used non linear kernels

are radial basis function kernels function (RBF) kernel and

polynomial kernel. This paper implements nonlinear SVMs

with polynomial order one kernel functions to classify the

Zernike moment features.

4. Experiments

Experiments were conducted to test the proposed vi-

sual speech recognition technique. The experiments were

approved by the RMIT University’s Human Experiments

Ethics Committee. A video speech database was recorded

using a web camera in a typical office environment. This

was done towards having a practical voiceless communica-

tion system using low resolution video data recorded in a

realistic environment.

4.1. Vocabulary

Experiments were conducted to evaluate the perfor-

mance of the system in classifying 14 English visemes.

Visemes are the atomic units of visual movements asso-

ciated with phonemes. This paper proposes the use of

visemes to model visual speech because visemes can be

concatenated to form words and sentences, thus providing

the flexibility to increase the vocabulary of the system. The

total number of visemes is much less than phonemes as

speech is only partially visible [11]. The articulation of dif-

ferent speech sounds (such as /p/ and /b/) may be associated

with identical facial movements. Each viseme may corre-

sponds to more than one phoneme, resulting in a many-

to-one mapping of phonemes-to-visemes. It is difficult to

differentiate phonemes with identical facial motions based

solely on the visual speech signals and hence other infor-

mation from other sensory components is required to dis-

ambiguate these phonemes. Alternatively, language knowl-

edge and context information may be used to differentiate

such phonemes.

The number of visemes for English varies depending on

factors such as the geographical location, culture, education

background and age of the speakers. This paper adopts a

viseme model established for facial animation applications

by an international audiovisual object-based video repre-

sentation standard known as MPEG-4. This model is se-

lected to enable the proposed visual speech recognition

system to be easily coupled with any MPEG-4 supported

speech synthesis systems to form an interactive speech-

based HCI. Based on the MPEG-4 viseme model shown

in Table 1, the English phonemes can be grouped into 14
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Table 1. Viseme model of the MPEG-4 stan-

dard for English phonemes.
Phonemes Vowel or Consonant

p, b, m consonant

f,v consonant

T , D consonant

t , d consonant

k, g consonant

tS, dZ, S consonant

s , z consonant

n , l consonant

r consonant

A: vowel

e vowel

I vowel

Q vowel

U vowel

visemes. The phonemes in bold fonts of each column are

visemes tested in the experiments. Each visemes are re-

peated twenty times by a speaker. The camera focused

on the mouth region of the speaker and was kept station-

ary throughout the experiment. The following factors were

kept the same during the recording of the videos: window

size and view angle of the camera, background and illumi-

nation. The video files were recorded and stored as true

color (.AVI) files. The frame rate of the AVI files was thirty

frames per second.

4.2. Feature extraction and classification

One MHI was generated from each utterance. SWT at

level-1 using Haar wavelet was applied on the MHIs and

the approximate image (LL) was used for analysis. Fig-

ure 2 shows an example of MHI of the fourteen visemes

tested in the experiments. 49 Zernike moments have been

used as features to represent the SWT approximate image

of the MHI. 49 Zernike moments features were fed into the

support vector machines (SVMs) classifier as input vectors.

LIBSVM toolbox [6] was used in the experiment to design

the c-SVMs. The one-vs-all multi-class SVM technique is

adopted in the training of the SVMs. One SVM was created

to learn each viseme. Three types of SVM kernel functions,

(i) radial basis function, (ii) polynomial order one function

and (iii) polynomial order three function were evaluated and

compared in the experiments. The gamma parameter and

the error term penalty parameter, c of the kernel function

were optimized using ten-fold cross validation on the data.

The performance of the SVM classifiers was evaluated us-

ing the leave-one-out method. 14 SVMs were trained with

Figure 2. Motion history images (MHI) of four-

teen vowels and consonants selected for

experiments based on the MPEG-4 viseme

model

266 training samples and were tested using the 14 remain-

ing samples (1 sample from each viseme group). This pro-

cess is repeated 20 times using different sets of train and test

data. Three types of SVM kernel functions, (i) radial basis

function, (ii) polynomial order one function and (iii) poly-

nomial order three function were evaluated and compared

in the experiments.

5. Results and Discussion

The classification accuracies of SVMs using different

kernel functions are shown in Table 2. The performance of

SVM classifier using polynomial order one kernel outper-

form the other SVM classifiers with radial basis function

(RBF) kernel and polynomial order three kernel. The mean

classification accuracy of the proposed lip-reading method

is 91.4% using SVM classifier with first order polynomial

kernel function. The promising results demonstrate that

the proposed technique is suitable for identifying English

visemes.

Comparing the results of the proposed SVM-based tech-

nique with the results of our earlier work using neural net-

work [26] clearly indicates an improvement in classifica-

tion accuracies. The neural network approach produces a

lower recognition rate of 85% for a smaller vocabulary of

nine consonants. The SVM classifier in our experiments

yields a higher recognition rate for a larger set of vocabulary

of 14 vowels and consonants. One of the possible reasons

for the better performance of the SVM classifier is because

SVM training seeks for an optimal solution as opposed to

the training of neural networks that may be susceptible to

local maxima. The higher accuracies of the SVMs classifier

demonstrate the good generalization and capacity control

of such learning machines. On the other hand, over training
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Table 2. Recognition rates of the SVM Classi-

fier using different kernel function
SVM Kernels Recognition Rates (%)

1st order polynomial 91.4

3rd order polynomial 86.0

Radial basis function 86.8

or under training may occur in MLP neural networks and

hence may results in misclassification of the visemes.

The result of SVM classifier is marginally higher than

the classification accuracies obtained using continuous hid-

den Markov models (HMM) as reported in our previous

work [27]. Approximately 3% improvement is achieved by

using SVM classifier as compared to HMM which may be

due to the smaller amount of training data required for train-

ing SVM.

6. Utterance segmentation

One of the challenges in recognizing speech based on

video recordings is the segmentation of individual utter-

ances, i.e., detecting the start frame and end frame of an

utterance in a video clip containing multiple utterances.

In audio-visual speech recognition techniques, speech seg-

mentation is usually achieved through audio signals or by

using transcribed video corpus (i.e. speech database that

was manually annotated). In situations where audio signals

are not available or highly contaminated by noise, video

segmentation is required. This section describes a temporal

segmentation framework to detect the start and end points

of multiple isolated utterances in an image sequence.

6.1. Measure of mouth activity

The proposed method segment utterances from video

clips based on mouth movement, without using the audio

information. For isolated words (or phones) recognition

task, a short pause is present in between two consecutive

utterances. This pause periods generally consist of mini-

mal mouth movement. When the speaker is pronouncing an

utterance, relatively large mouth movements is produced.

The level of mouth activity can be determined by comput-

ing MHIs for a number of consecutive frames. Figure 3

shows the average magnitude of the 49 Zernike moments

used in the experiments for MHIs of utterances and MHIs

of the ’pause’ periods. Figure 3 indicates that the magni-

tude of Zernike moments corresponding to frames that con-

tain utterances are much greater as compared to frames of

the ‘pause’ or ‘silence’ period. To reduce the computation

required, less number of Zernike moments can be used to

Figure 3. Fourty-nine Zernike moment of

MHIs computed from ‘speaking’ frames ver-

sus ‘pause’ frames.

detect the mouth motion. The first six Zernike moments

of the MHIs of utterances are at least an order of magni-

tude higher than the Zernike moments of MHIs computed

from ‘pause’ period. This paper proposes a measure of the

mouth movements (motion signals) based on a single pa-

rameter : the mean value of the first six Zernike moments

(Z00, Z11, Z20, Z22, Z31, Z33).

6.2. Resolution of mouth motion signals

The ‘resolution’ (temporal details) of the motion can be

adjusted by varying the number of consecutive frames for

computation of MHIs. For example, MHIs calculated from

a time window of 10 frames can represent movement infor-

mation of approximately 333 ms of speed (for video files

with a frame rate of 30 frames per second). This is achieved

by computing one MHIs for every ten consecutive frames

of the video data. If the time window of the MHIs are re-

duced to three frames, the resolution of the motion signals

will be able to capture motion information of up to 100 ms.

Figure 4 shows an example of motion signals of a video

file computed from ten-frames MHIs and Figure 5 indicate

the motion signals of the same video files computed from

three-frames MHIs.

The smallest time-window possible to compute the MHI

is two frames, where each MHI is equivalent to a difference

of frame (DOF). Nevertheless, for 2-frame time window are

found to be more susceptible to noise as compared to the 3-

frame time window. 3-frame time window is selected to

compute the MHI because it provides a good time resolu-

tion to capture the mouth movements for the utterance (for

video data frame rate of 30 frames per second). The rate of

speech differs based on factors related to individual, demo-

graphic, cultural, linguistic, psychological and physiologi-
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Figure 4. Averaged values of Zernike mo-

ments for MHIs computed from ten-frames

time windows.

Figure 5. Averaged values of Zernike mo-

ments for MHIs computed from three-frames

time windows.

cal [16]. An average rate of speech is 155 words per minute

for native speakers of Australian English [5]. Based on this

estimate, the mean period for a word is approximately 390

ms. Hence, the proposed segmentation technique using 3-

frame time window with resolution of 100 ms is sufficient

to capture the motion information of isolated words.

The mouth motion signals can be smoothed by using

curve fitting techniques such as smoothing splines. Figure 6

shows the smoothed mouth motion signal (computed from

MHIs of three-frames time window) for a video file that

contains 3 repetitions of vowel /A/. Each pronunciation of

the vowel is indicated by the shaded rectangular window.

The first peak of the signal within each window represents

the opening movement of the mouth and the second peak of

each window indicates the closing movement of the mouth

when pronouncing the vowel. Thus, based on the mouth ac-

tivity, we can determine the start and stop of the individual

utterances without using audio signals.

Figure 6. Mouth motion signals of 3 repeti-

tions of vowel /A/. Each of the shaded win-

dows represent one utterance.

The segmented utterance can be fed into the recognition

sub-system described in previous sections to be identified

as one of the command. The authors would like to point

out that the proposed utterance segmentation approach are

designed for isolated utterances and not continuous speech.

Nevertheless, such a technique is useful for speech control

for disabled users which may consist of isolated command

words such as “on”, “off”, and digits. Such a technique can

also be used for conveying confidential information such

as pin codes and passwords to security systems and voice-

dialing for mobile phones.

7. Conclusion

This paper describes a visual speech recognition method

using video without evaluating audio signals. The proposed

approach recognizes utterances from mouth images. The

proposed technique identifies utterances based on mouth

images using Zernike moments and support vector ma-

chines (SVMs). The promising results obtained demon-

strate that the proposed technique can reliably identify En-

glish phonemes. The performance of SVM classifier is bet-

ter as compared to neural network. A new framework for

detecting the start and end of utterances from video data is

proposed in this paper. Individual utterances are segmented

based on the magnitude of mouth movement across consec-

utive frames.

For future work, the authors intend incorporate the

segmentation framework into the proposed visual speech

recognition system. Further, the investigation shall be ex-

tended from an English-spoken environment to other lan-

guages, e.g., German and Mandarin. Such a system may be
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implemented for in-vehicle control and for helping disabled

people to control computers. Future applications cover

robotics and defense tasks involving voice-less communi-

cation.
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