4,149 research outputs found

    Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images

    Get PDF
    In this work, a new approach to improve the algorithmic efficiency of the Order Statistic-Constant False Alarm Rate (OS-CFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OS-CFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allows that OS-CFAR technique to be more robust in multi-target situations and less sensitive than other methods to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OS-CFAR 2D with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. In this way, the OS-CFAR 2D on-line computation was improved, by means of speeding up the samples sorting problem through the improvement in the calculus of the statistics order. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images.Fil: Villar, Sebastian Aldo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; ArgentinaFil: Menna, Bruno Victorio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; ArgentinaFil: Torcida, Sebastián. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentin

    Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: a review

    Get PDF
    Fish biomass estimation is one of the most common and important practices in aquaculture. The regular acquisition of fish biomass information has been identified as an urgent need for managers to optimize daily feeding, control stocking densities and ultimately determine the optimal time for harvesting. However, it is difficult to estimate fish biomass without human intervention because fishes are sensitive and move freely in an environment where visibility, lighting and stability are uncontrollable. Until now, fish biomass estimation has been mostly based on manual sampling, which is usually invasive, time‐consuming and laborious. Therefore, it is imperative and highly desirable to develop a noninvasive, rapid and cost‐effective means. Machine vision, acoustics, environmental DNA and resistivity counter provide the possibility of developing nonintrusive, faster and cheaper methods for in situ estimation of fish biomass. This article summarizes the development of these nonintrusive methods for fish biomass estimation over the past three decades and presents their basic concepts and principles. The strengths and weaknesses of each method are analysed and future research directions are also presented. Studies show that the applications of information technology such as advanced sensors and communication technologies have great significance to accelerate the development of new means and techniques for more effective biomass estimation. However, the accuracy and intelligence still need to be improved to meet intensive aquaculture requirements. Through close cooperation between fisheries experts and engineers, the precision and the level of intelligence for fish biomass estimation will be further improved based on the above methods

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Looking at the unborn: historical aspects of obstetric ultrasound

    Get PDF
    The obstetric ultrasound scanner had its major origins in a programme of research undertaken in Glasgow in the 1950s and 1960s, under the leadership of the obstetrician, Professor Ian Donald. Donald’s work was characterized by a remarkable series of collaborations between engineers and clinicians, many of whom took part in this Witness Seminar to consider the early history of ultrasound imaging, its technical development and significant clinical applications in the diagnosis of fetal abnormalities. Technical and engineering developments of the scanner were discussed and it was practical demonstrations of the early scanners that gradually convinced the majority of obstetricians to invest time and training in this new technology. Participants include: Mr Usama Abdulla, Mr Thomas Brown, Professor Dugald Cameron, Professor Stuart Campbell, Mr John Fleming, Professor John MacVicar, Professor Peter Wells and Dr James Willocks. Introduction by E M Tansey, v, 80pp. 15 illustrations, glossary, subject and name index

    Towards an optimal design for ecosystem-level ocean observatories

    Get PDF
    Four operational factors, together with high development cost, currently limit the use of ocean observatories in ecological and fisheries applications: 1) limited spatial coverage; 2) limited integration of multiple types of technologies; 3) limitations in the experimental design for in situ studies; and 4) potential unpredicted bias in monitoring outcomes due to the infrastructure’s presence and functioning footprint. To address these limitations, we propose a novel concept of a standardized “ecosystem observatory module” structure composed of a central node and three tethered satellite pods together with permanent mobile platforms. The module would be designed with a rigid spatial configuration to optimize overlap among multiple observation technologies each providing 360° coverage around the module, including permanent stereo-video cameras, acoustic imaging sonar cameras, horizontal multi-beam echosounders and a passive acoustic array. The incorporation of multiple integrated observation technologies would enable unprecedented quantification of macrofaunal composition, abundance and density surrounding the module, as well as the ability to track the movements of individual fishes and macroinvertebrates. Such a standardized modular design would allow for the hierarchical spatial connection of observatory modules into local module clusters and larger geographic module networks, providing synoptic data within and across linked ecosystems suitable for fisheries and ecosystem level monitoring on multiple scales.Peer ReviewedPostprint (author's final draft

    Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance

    Full text link
    We consider a two player game, where a first player has to install a surveillance system within an admissible region. The second player needs to enter the the monitored area, visit a target region, and then leave the area, while minimizing his overall probability of detection. Both players know the target region, and the second player knows the surveillance installation details.Optimal trajectories for the second player are computed using a recently developed variant of the fast marching algorithm, which takes into account curvature constraints modeling the second player vehicle maneuverability. The surveillance system optimization leverages a reverse-mode semi-automatic differentiation procedure, estimating the gradient of the value function related to the sensor location in time N log N
    corecore