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Abstract: In this work, a new approach to improve the algorithmic efficiency of the Order Statistic-Constant False Alarm 
Rate (OS-CFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting 
moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the 
seafloor. OS-CFAR rank orders the samples obtained from a sliding window around a test cell to select a representative 
sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is 
evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allows that 
OS-CFAR technique to be more robust in multi-target situations and less sensitive than other methods to the presence of 
the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the 
contribution of this work is to improve the OS-CFAR 2D with the distributive histograms and the optimal breakdown point 
optimal concept, mainly from the standpoint of efficient computation. In this way, the OS-CFAR 2D on-line computation 
was improved, by means of speeding up the samples sorting problem through the improvement in the calculus of the 
statistics order.  The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, 
this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images. 
 

1. Introduction 

The underwater target detection from acoustic 

images represents a typical process required in different 

automatic applications such as archaeology, resources 

search, inspection and maintenance of pipelines, mine or 

waste detection, and other types of monitoring [1, 2]. Many 

approaches are currently available in acoustic domain such 

as Multi-fractal Analysis [3], Markov Random Field (MRF) 

[4], Local Fourier Histograms [5], Active Contours (AC) [6], 

Gauss–Markov Random Field Model [7], Undecimated 

Discrete Wavelet Transform (UDWT) [8], among others. 

These approaches require computationally expensive 

mathematic models to underwater target detection. On the 

other hand, the Constant False Alarm Rate (CFAR) 

represents an adaptive technique able to perform accurate 

and robust target detection. This technique is commonly 

used in radar technology for detecting moving objects [9, 10] 

as well also in sonar technology applied in acoustic images 

from different sonar’s device for multi-target detection [11–

13], underwater pipeline detection on the seafloor [14, 15], 

acoustic segmentation of several types of regions [16], 

among others. CFAR calculate an adaptive detection 

threshold from interference power values to maintain an 

expected false alarm probability [9]. In the literature there 

are numerous CFAR techniques such as Cell Averaging 

CFAR (CA-CFAR), Order Statistic CFAR (OS-CFAR), 

Greatest Of CFAR (GO-CFAR),  Smallest Of CFAR (SO-

CFAR), Censored Mean-Level Detector CFAR  (CMLD-

CFAR), Trimmed Mean CFAR (TM-CFAR), and others 

variations [9, 17–19]. 

Focusing on the OS-CFAR, for each test cell this 

technique evaluates the presence or absence of a target 

sorting the samples from a sliding window to select a 

representative sample that is used to calculate an adaptive 

detection threshold maintaining a false alarm probability [9]. 

The representative sample could be selected by setting a 

fixed-order statistics threshold, as suggested in [20], or 

automatically estimated, based on the application of the 

Information Theoretic Criteria (ITC) principle which does 

not require any prior information about the number of 

interfering targets [21].  

 In radar OS-CFAR can maintain robust performance 

of clutter suppression and does not suffer large detection 

loss in non-stationary and non-uniform distribution clutter 

environment. Besides, OS-CFAR is suitable for being used 

in multi-target situations because of its high resolution [17–

19, 22]. In sonar OS-CFAR demonstrated to be more robust 

in multi-target situations and less sensitive to the presence of 

the speckle noise [13–16]. The main drawback of OS-CFAR 

is its computational effort because sorting is a time-

consuming task. This computational effort prevents its use 

in real-time applications [11], and therefore the utility of 

OS-CFAR technique decreases. In addition, a two-

dimensional (2D) sliding window is necessary to consider 

more contextual information and hence to improve 

detections. In this case, the computational effort increases 

considerably.  

The bottleneck of OS-CFAR is the sorting problem. 

Many authors in the literature have tried to approach this 

sorting problem. A rather thorough comparison is offered in 

[23, 24], where the efficiency of several methods is 

reviewed in the worst case for a one-dimensional array of 𝑁 

elements: insertion, with a 𝑂(𝑁2); selection, which is also 

𝑂(𝑁2) ; bubble sort, 𝑂(𝑁2) ; bucket sort, decreasing 

complexity to 𝑂(𝑁2) when the distribution of elements is 

assumed constant, quick sort 𝑂(𝑁2) , merge sort 

𝑂(𝑁 𝑙𝑜𝑔 𝑁) , heap sort 𝑂(𝑁 𝑙𝑜𝑔 𝑁) , just to mention the 
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most common approaches [25]. On the other hand, in the 

digital image processing context numerous advances on the 

Median Filter (MF) computation have been made. The 

process of applying a MF is a nonlinear smoothing one, best 

known for reducing impulsive or salt-and-pepper noise from 

a digital image while respecting its edges [26]. Briefly, the 

MF sliding-window visits each image element and places its 

center on it. The intensity values within the window of 

radius size 𝑟 are sorted, and the median intensity value is 

then used to replace the window’s center in the filtered 

image. A rather thorough comparison of MF is offered in 

[25] using the classic sorting methods for a one-dimensional 

array. The main reference of MF for two-dimensional array 

is the Huang et al. method [27], which was the first 

exhibiting in the worst case a 𝑂(𝑟)  per pixel algorithmic 

complexity (where 𝑟  denotes the radius for a two-

dimensional array) using a single histogram. Different 

approaches have since tried to break this linearity: the Weiss 

method [28] uses hierarchical histograms to reach a 

𝑂(𝑙𝑜𝑔 𝑟)  per pixel algorithmic complexity but losing 

simplicity, and the Gil and Werman method [29] has a 

𝑂(𝑙𝑜𝑔2 𝑟) per pixel algorithmic complexity and it is based 

on trees. The Perreault and Herbert method [30] represents 

a variation of Huang et al. algorithm using distributive 

histograms reaching in the worst case the lowest algorithmic 

complexity of 𝑂(𝑏) per pixel (where 𝑏 = 2𝑖𝑚𝑎𝑔𝑒 𝑏𝑖𝑡−𝑑𝑒𝑝𝑡ℎ , 

the number of scale levels). Finally, the Villar et al. method 

[31] demonstrated new improvements and capabilities of 

MF using the optimal breakdown point concept maintaining 

the same algorithmic complexity 𝑂(𝑟) and 𝑂(𝑏) for Huang 

and Perrault and Herbert versions, respectively, but 

reducing objective metrics computational (dynamic memory 

accesses, arithmetic operations, logic comparison and 

transition effort) that clearly outperform the corresponding 

standard versions.  

In this work, a new approach to improve the 

algorithmic efficiency of the OS-CFAR 2D using the 

distributed histograms and the breakdown point optimal 

concept is presented. This efficiency improvement is 

demonstrated performing a theoretical algorithm analysis, as 

well as supported with experimental evidence on real 

images. This analysis allows to claim the highest 

algorithmic efficiency for the OS-CFAR 2D technique to 

date.  

This article is organized as follows: Section 2 

discusses the basic concepts about target detection using 

OS-CFAR 2D applied on acoustic image. Section 3 

describes the efficient OS-CFAR 2D approach proposed 

using the distributive histograms and breakdown point 

concept. Section 4 depicts an evaluation of the theoretical 

efficiency analysis of the proposed approach. Section 5 

shows the experimental results on real images. The article 

ends with some final comments in Section 6. 

2. Target detection using OS-CFAR 2D 

The target detection problem in the acoustic image 

consists of analyzing each echo signal with the purpose of to 

detect the presence or absence of a target. Detection is 

usually done through the contextual information analysis of 

each echo signal. In [12] two hypotheses were defined for 

this analysis: (i) the echo signal is the background (𝐻0), and 

(ii) the echo signal is a combination of background and 

echoes of a target (𝐻1). If the detection system decides that 

𝐻0 is validated (target is not present), then hypothesis 𝐻0 is 

stated. Otherwise, if the detection system decides that 𝐻1 is 

validated, then hypothesis 𝐻1 is stated, meaning that a target 

is present.Then k-th order statistic value 𝑥𝑘  is selected as 

representative of the echo signal and a detection threshold �̂� 

is estimated applying a scale factor αOS:  

 

�̂� = 𝛼𝑂𝑆 𝑥𝑘  (1) 

This scale factor 𝛼𝑂𝑆  is a constant value determined from 

false alarm probability 𝑃𝑓𝑎 . As OS-CFAR keeps on a 

constant false alarm probability, this detection threshold 

only varies depending on 𝑥𝑘 value. Therefore, this technique 

considers the contextual information of each cell under test 

𝑥𝑖,𝑗 to determine the adaptive detection threshold. Then, for 

each test cell, the detector system makes a decision 

according to the following decision strategy: For further 

details about this, please refer to [12, 15, 16]. 

 

𝑥𝑖,𝑗

𝐻1

>
<
𝐻0

�̂� (2) 

3. Proposal of an efficient OS-CFAR 2D approach  

The bottleneck of the OS-CFAR 2D technique is 

found in the sorting and selection stage of the k-th order 

statistic value. To solve the sorting problem, in the literature 

there are numerous approaches for one or two dimensional 

array that are classified based on simplicity, algorithmic 

complexity and objective computational metrics [23, 24, 27–

30]. Among all these methods, [27] and [30] are of special 

interest due to they claim the lowest algorithmic complexity 

to date. On the other hand, the selection of k-th order 

statistic value based on [27] and [30] methods can be 

improved significantly using the optimal breakdown point 

[31]. These methods are really useful to enhance the 

algorithmic efficiency of the OS-CFAR 2D technique.  

Fig. 1 shows the proposed architecture of the 

efficient OS-CFAR 2D approach using distributive 

histograms and optimal breakdown point concept.  The input 

image 𝑥  represents a two-dimensional array of size 𝐴𝑥𝐵 

(rows by columns), where 𝑥𝑖,𝑗 denotes the pixel value at the 

intersection of the image i-th row and the j-th column. The 

pixel value is an integer positive quantity 𝑏  (with 𝑏 =
 2𝑖𝑚𝑎𝑔𝑒 𝑏𝑖𝑡−𝑑𝑒𝑝𝑡ℎ ). The sliding window that shifts through 

the whole image 𝑋 have a square radius of size 𝑟 centered at 

𝑥𝑖,𝑗 . The (2𝑟 +  1)2  pixel values (with 𝑖 − 𝑟 ≤  𝑖 ≤  𝑖 + 𝑟 

and 𝑗 − 𝑟 ≤  𝑗 ≤  𝑗 + 𝑟 ) are sorted using the distributive 

columns histograms ℎ and the kernel histogram 𝐻 described 

in Section 3.1. Each column histogram ℎ𝑗  and the kernel 

histogram 𝐻  represent a one-dimensional array of size 𝑏 . 

These histograms store the frequencies of the pixel values 𝑓 

of the current sliding window. The k-th order statistic value 

𝑥𝑘 is selected using the optimal breakdown point described 

in Section 3.2, to estimate the threshold �̂� applying a scale 

factor 𝛼𝑂𝑆. Then, the value of the test cell 𝑥𝑖,𝑗 is compared 

with estimated threshold �̂�  to determine if the target is 

present. Finally, in Section 3.3 the complete procedure for a 

particular pixel of an image based on a flowchart is detailed. 
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Fig. 1 OS-CFAR 2D approach using distributive histograms and optimal breakdown point concept. 

 

3.1. Distributive histograms 
To understand the sorting method proposed for OS-

CFAR 2D, first consider the alternative of using a single 

kernel histogram 𝐻 to store and update all the values from 

the current sliding window [27]. The kernel histogram 𝐻 

express a one-dimensional array of size 𝑏  that store the 

frequencies 𝑓  of the pixel values of the current sliding 

window (where 𝑓0, … , 𝑓𝑏  represents the amount of 0, . . , 𝑏 

pixel values). The computing of k-th order statistic value 𝑥𝑘 

is done by accumulating frequencies 𝑓 of kernel histogram 

𝐻  from one extreme of the scale and stopping when the 

cumulative sum reaches the boundary 𝑘 𝑁𝑐 . The kernel 

histogram 𝐻  is updated with new values as the sliding 

window scrolls through the image. Fig. 2 shows an example 

of a two-dimensional array 𝑥 representing an input image of 

size 𝐴𝑥𝐵  (rows by columns) with a squared window of 

radius  =  2. When the window’s center shifts one pixel to 

the right, e.g., from 𝑥3,3  to 𝑥3,4 , the update of 𝐻  requires 

those values from 𝑥1,1, . . . , 𝑥5,1  to be removed and those 

values from 𝑥1,6, . . . , 𝑥5,6 to be added in 𝐻. Therefore, 2𝑟 +

 1 removals and 2𝑟 +  1 additions need to be carried out. 

Notice that this method maintains the frequency of cell 

values 𝑓0, … , 𝑓𝑏 between columns as sliding window shifts to 

its right, but is not retained between rows, i.e., when the 

sliding window is moved downwards. An alternative to 

improve this method is to maintain one histogram for each 

column in the image [30] and to use the additive property of 

histograms [28]. This property establishes that the union of 

two sets histograms 𝑅1 and 𝑅2 is simply the addition of their 

respective histograms:  

 

𝐻 (𝑅1 ∪ 𝑅2 ) =  𝐻 (𝑅1) +  𝐻 (𝑅2) (3) 

 

In this way, to maintain the frequencies of cell values 

𝑓0, … , 𝑓𝑏  between rows and columns is required one 

histogram ℎ𝑗 (1 ≤  𝑗 ≤  𝐵) for each image column (see Fig. 

1). The column histograms ℎ𝑗  and the kernel histogram 𝐻 

are preserved and updated during all sliding window 

scrolling. Fig. 3 shows an example of a two-dimensional 

array 𝑥  representing an input image of size 𝐴𝑥𝐵  (rows by 

columns) with a squared window of radius  =  2. 

 

Fig 2 Each time the window’s center shifts to its right, the kernel histogram 𝐻 to update requires 2𝑟 +  1 additions to and 

2𝑟 +  1 removals [31]. 

 1 … 𝒋 − 𝑵 … 𝒋 … 𝒋 + 𝑵 … 𝑩 

1 𝑥1,1 … 𝑥1,𝑗−𝑁 … 𝑥1,𝑗 … 𝑥1,𝑗+𝑁 … 𝑥1,𝐵 

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝒊 − 𝑵 𝑥𝑖−𝑁,1 … 𝑥𝑖−𝑁,𝑗−𝑁 … 𝑥𝑖−𝑁,𝑗 … 𝑥𝑖−𝑁,𝑗+𝑁 … 𝑥𝑖−𝑁,𝐵 

⋮ ⋮ … ⋮ ⋱ ⋮ … ⋮ … ⋮ 

𝒊 𝑥𝑖,1 … 𝑥𝑖,𝑗−𝑁 … 𝑥𝑖,𝑗 … 𝑥𝑖,𝑗+𝑁 … 𝑥𝑖,𝐵 

⋮ ⋮ … ⋮ … ⋮ ⋱ ⋮ … ⋮ 

𝒊 + 𝑵 𝑥𝑖+𝑁,1 … 𝑥𝑖+𝑁,𝑗−𝑁 … 𝑥𝑖+𝑁,𝑗 … 𝑥𝑖+𝑁,𝑗+𝑁 … 𝑥𝑖+𝑁,𝐵 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑨 𝑥𝐴,1 … 𝑥𝐴,𝑗−𝑁 … 𝑥𝐴,𝑗 … 𝑥𝐴,𝑗+𝑁 … 𝑥𝐴,𝐵 

 

ℎ 
 1 … 𝒋 − 𝑵 … 𝒋 … 𝒋 + 𝑵 … 𝑩 

0 𝑓0
1 … 𝑓0

𝑗−𝑁
 … 𝑓0

𝑗
 … 𝑓0

𝑗+𝑁
 … 𝑓0

𝐵 

1 𝑓1
1 ⋱ 𝑓1

𝑗−𝑁
 ⋮ 𝑓1

𝑗
 ⋮ 𝑓1

𝑗+𝑁
 ⋮ 𝑓1

𝐵 

𝟐 𝑓2
1 … 𝑓2

𝑗−𝑁
 … 𝑓2

𝑗
 … 𝑓2

𝑗+𝑁
 … 𝑓2

𝐵 

𝟑 𝑓3
1 … 𝑓3

𝑗−𝑁
 ⋱ 𝑓3

𝑗
 … 𝑓3

𝑗+𝑁
 … 𝑓3

𝐵 

𝟒 𝑓4
1 … 𝑓4

𝑗−𝑁
 … 𝑓4

𝑗
 … 𝑓4

𝑗+𝑁
 … 𝑓4

𝐵 

𝟓 𝑓5
1 … 𝑓5

𝑗−𝑁
 … 𝑓5

𝑗
 ⋱ 𝑓5

𝑗+𝑁
 … 𝑓5

𝐵 

𝟔 𝑓6
1 … 𝑓6

𝑗−𝑁
 … 𝑓6

𝑗
 … 𝑓6

𝑗+𝑁
 … 𝑓6

𝐵 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝒃 𝑓𝑏
1 … 𝑓𝑏

𝑗−𝑁
 … 𝑓𝑏

𝑗
 … 𝑓𝑏

𝑗+𝑁
 … 𝑓𝑏

𝐵 

 

𝑥 

 1 

0 𝑓0 

𝟏 𝑓1 

𝟐 𝑓2 

𝟑 𝑓3 

𝟒 𝑓4 

𝟓 𝑓5 

𝟔 𝑓6 

⋮ ⋮ 

𝒃 𝑓𝑏 

 

𝐻 

𝑥𝑖,𝑗 

𝑇 

𝛼𝑂𝑆 

�̂� 

Select 𝑥𝑘 
with 
breakdown 

point 

𝑁𝑜 𝑇𝑎𝑟𝑔𝑒𝑡 

𝑥𝑖,𝑗 ≥ 𝑇 

 

𝑇𝑎𝑟𝑔𝑒𝑡 

2𝑟 + 1 

2𝑟 + 1 

 1 2 𝟑 4 𝟓 6 … 𝑩 

1 𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6 … 𝑥1,𝐵 

𝟐 𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6 … 𝑥2,𝐵 

𝟑 𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6 … 𝑥3,𝐵 

4 𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6 … 𝑥4,𝐵 

𝟓 𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6 … 𝑥5,𝐵 

6 𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6 … 𝑥6,𝐵 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑨 𝑥𝐴,1 𝑥𝐴,2 𝑥𝐴,3 𝑥𝐴,4 𝑥𝐴,5 𝑥𝐴,6 … 𝑥𝐴,𝐵 

 

𝑥  1 

0 𝑓0 

𝟏 𝑓1 

𝟐 𝑓2 

𝟑 𝑓3 

𝟒 𝑓4 

𝟓 𝑓5 

𝟔 𝑓6 

⋮ ⋮ 

𝒃 𝑓𝑏 

 

𝐻 

Select 𝑥𝑘  
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Fig 3 Two steps of the proposed algorithm when the sliding windows shifts one pixel to the right: (a) The column histogram ℎ6 

is updated by adding one pixel value 𝑥6,6 and subtracting another pixel value 𝑥1,6. (b) The kernel histogram 𝐻 is updated by 

adding the modified column histogram ℎ6 and subtracting the leftmost one ℎ1. 

 

When the window’s center shifts one pixel to the 

right, e.g., from 𝑥4,3 to 𝑥4,4, two updates are performed: (a) 

the rightmost column histogram ℎ6 is updated by removing 

and adding an top 𝑥1,6  and an bottom 𝑥6,6  pixel value, 

respectively; (b) the kernel histogram 𝐻  is updated 

removing the leftmost column histogram ℎ1 and adding the 

rightmost column histogram ℎ6. Note that, in the update step 

(a), the pixel values of another rows are retained into the 

column histograms ℎ𝑗. In the same way, the computing of k-

th order statistic value 𝑥𝑘  is done by accumulating 

frequencies 𝑓  of kernel histogram 𝐻  from one extreme of 

the scale and stopping when the cumulative sum reaches the 

boundary 𝑘 𝑁𝑐 . The addition and subtraction of columns 

histograms only depends on the number of histogram bins 𝑏, 

itself a function of the image bit-depth. 

 

3.2. Breakdown point concept 
 

Since OS-CFAR 2D uses a sorting method for selection of 

k-th order statistic value 𝑥𝑘, this alternative is hence highly 

more reliable than the classical mean or average as utilized 

by other CFAR methods [9, 17–19]. In fact, the mean of a 

set of numbers changes when at least one of those numbers 

is changed or replaced. However, when using a sorting 

method, the result of selecting an order statistical value 𝑥𝑘 

does not vary substantially when those numbers are changed 

or replaced, always depending on the statistical order 𝑘 

established. E.g., for 𝑘 = 0.5 assume that 𝑛  (odd) ordered 

numbers are at hand; if the 
(𝑛 +1)

2
− 1 lowest numbers are 

replaced by other arbitrary numbers but keeping them below 

the 
(𝑛 +1)

2
 ranked number (the median), the new median will 

remain the same [31]. In general terms, the breakdown point  

concept denotes the percentage of data in a set that could be 

arbitrarily replaced without grossly modifying the value of 

an estimation or a computation [32]. Clearly, the mean has a 

0% breakdown point, the median has almost a 50% 

breakdown point, and the other k-th order statistic has 

almost a min(𝑘; 1 − 𝑘) % breakdown point. 

Each time the sliding window shifts some of its 

values are removed and simultaneously replaced by new 

values, and a new k-th order statistic is computed. The k-th 

order statistic value computation typically uses a bottom-up 

or top-down accumulating strategy (e.g., for an 8-bit 

grayscale where values range from 0 to 255 or 255 to 0 the 

frequencies are accumulated) until the cumulative sum 

reaches the boundary 𝑘 𝑁𝑐).  Thereby, if the sliding window 

eventually processes an image region with most values near 

the top of the gray scale, the algorithm will get slower (an 

analogous problem would take place if frequencies were 

accumulated top-down and image regions with most of low 

pixel values were eventually found). Besides, it seems rather 

inefficient not to take into account that successive windows 

share most of their values and thus resulting in similar k-th 

order statistic. More precisely: the proportion of shared 

values between consecutive sliding windows of radius 𝑟 is 

essentially 
(2𝑟 +1)2−2 (2r +1)

(2r +1)2 . The percentage of shared 

information between successive windows thus increases 

really fast with the radius: a 33% of shared values for a 

radius 𝑟 =  1; a 60% of shared values for a radius 𝑟 =  2 , a 

90% of shared values for a radius 𝑟 =  10 and so on [31].  

These inefficiencies can be overcome by making the 

most of the optimal breakdown point. In this way, the k-th 

order statistic value from a new sliding window can be 

computed significantly faster by retaining the k-th order 

statistic value from the previously processed window and 

updating it; in turn, this strategy enables a more efficient 

processing of those image regions with values in any 

extreme of the scale handling equally both cases. For this it 

is necessary to consider the previous k-th order statistic 

value 𝑃𝑥𝑘 , lower values 𝐿𝑥𝑘  than 𝑃𝑥𝑘  and greater or equal 

values 𝐺𝑥𝑘  than 𝑃𝑥𝑘 . When the sliding window scrolls 

 1 2 𝟑 4 𝟓 6 … 𝑩 

1 𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 𝑥1,5 𝑥1,6 … 𝑥1,𝐵 

2 𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 𝑥2,5 𝑥2,6 … 𝑥2,𝐵 

𝟑 𝑥3,1 𝑥3,2 𝑥3,3 𝑥3,4 𝑥3,5 𝑥3,6 … 𝑥3,𝐵 

𝟒 𝑥4,1 𝑥4,2 𝑥4,3 𝑥4,4 𝑥4,5 𝑥4,6 … 𝑥4,𝐵 

𝟓 𝑥5,1 𝑥5,2 𝑥5,3 𝑥5,4 𝑥5,5 𝑥5,6 … 𝑥5,𝐵 

𝟔 𝑥6,1 𝑥6,2 𝑥6,3 𝑥6,4 𝑥6,5 𝑥6,6 … 𝑥6,𝐵 

𝟕 𝑥7,1 𝑥7,2 𝑥7,3 𝑥7,4 𝑥7,5 𝑥7,6 …  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑨 𝑥𝐴,1 𝑥𝐴,2 𝑥𝐴,3 𝑥𝐴,4 𝑥𝐴,5 𝑥𝐴,6 … 𝑥𝐴,𝐵 

 
ℎ 

 1 

0 𝑓0 

𝟏 𝑓1 

𝟐 𝑓2 

𝟑 𝑓3 

𝟒 𝑓4 

𝟓 𝑓5 

6 𝑓6 

⋮ 𝑓7 

𝒃 𝑓𝑏 

 

𝐻 

Select 𝑥𝑘  
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3 𝑓0
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5 𝑓0
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1 𝑓1

2 𝑓1
3 𝑓1

4 𝑓1
5 𝑓1

6 … 𝑓1
𝐵 

𝟐 𝑓2
1 𝑓2

2 𝑓2
3 𝑓2

4 𝑓2
5 𝑓2

6 … 𝑓2
𝐵 

𝟑 𝑓3
1 𝑓3

2 𝑓3
3 𝑓3

4 𝑓3
5 𝑓3

6 … 𝑓3
𝐵 

𝟒 𝑓4
1 𝑓4

2 𝑓4
3 𝑓4

4 𝑓4
5 𝑓4

6 … 𝑓4
𝐵 

𝟓 𝑓5
1 𝑓5

2 𝑓5
3 𝑓5

4 𝑓5
5 𝑓5

6 … 𝑓5
𝐵 

6 𝑓6
1 𝑓6

2 𝑓6
3 𝑓6

4 𝑓6
5 𝑓6

6 … 𝑓6
𝐵 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝒃 𝑓𝑏
1 𝑓𝑏

2 𝑓𝑏
3 𝑓𝑏

4 𝑓𝑏
5 𝑓𝑏

6 … 𝑓𝑏
𝐵 
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through the image, each new value that is added to the 

kernel histogram 𝐻 is compared with the 𝑃𝑥𝑘: if the value is 

greater or equal than 𝑃𝑥𝑘 , 𝐺𝑥𝑘  is incremented in one and 

otherwise 𝐿𝑥𝑘  is incremented in one. Also, each old value 

that is removed of the kernel histogram 𝐻 is compared with 

the 𝑃𝑥𝑘 : if the value is greater or equal than 𝑃𝑥𝑘 , 𝐺𝑥𝑘  is 

decremented in one and otherwise 𝐿𝑥𝑘  is decremented in 

one. To calculate the new k-th order statistic value, first it is 

needed to compute the threshold 𝑇𝑘  based on k-th order 

statistic using 𝑇 = ⌈𝑘[(2𝑟 + 1)2 + 1]⌉; next, the threshold 

𝑇𝑘 is compared with 𝐿𝑥𝑘: if 𝑇𝑘 ≤  𝐿𝑥𝑘 , the new k-th order 

statistic value will be lower than the previous one and it will 

be found moving downward from the current 𝑃𝑥𝑘 bin in the 

kernel histogram 𝐻; otherwise, the new k-th order statistic 

value will be greater than the previous one and will be found 

moving upward from the current 𝑃𝑥𝑘  bin in 𝐻 . The 

auxiliary variables 𝐿𝑥𝑘 and 𝐺𝑥𝑘  are accordingly updated in 

the process.  

 

 

 

Fig. 4  Flowchart of the OS-CFAR 2D approach using distributive histograms and breakdown point optimal concept. 

 

To further understand this method consider an 

example: a sliding window 𝑊  of radius 𝑟 =  1  with 

(2𝑟 +  1)2 = 9  pixel values is given; then 𝑇𝑘  =
⌈𝑘[(2𝑟 + 1)2 + 1]⌉ = 7 with 𝑘 = 0.75. Assume that 𝑊 =
 [1, 3, 3, 4, 5, 5, 7, 7, 9] are current window’s ordered values, 

so 𝑃𝑥𝑘 = 7, 𝐿𝑥𝑘 = 6 and 𝐺𝑥𝑘 = 3. Assume next that new 

values 1, 1 and 1 are added to 𝑊 while old values 5, 5 and 1 

are removed from it. This update of 𝑊  results in 𝑊 =

 [1, 1, 1, 3, 3, 4, 7, 7, 9]  which in turn updates 𝐿𝑥𝑘 = 6  and 

𝐺𝑥𝑘 = 3  following the comparison with 𝑃𝑥𝑘 =  7 . Since 

𝑇𝑘 = 𝐿𝑥𝑘  the k-th order statistic value and no bin-

displacement through 𝐻  is required. On the other hand, 

consider that new values 10, 9 and 8 are added to 𝑊 while 

old values 1, 1 and 1 are removed from it. This update of 𝑊 

results in 𝑊 =  [3, 3, 4, 7, 7, 8, 9, 9, 10]  which in turn 

updates 𝐿𝑥𝑘 = 3  and 𝐺𝑥𝑘 = 6  following the comparison 

6

6 

𝐿𝑥𝑘 = 𝐿𝑥𝑘 +  𝒉𝑗+𝑟(𝑙) − 𝒉𝑗−𝑟−1(𝑙) 
 

𝒉𝑗+𝑟൫𝑥𝑖−𝑟−1,𝑗+𝑟൯ = 𝒉𝑗+𝑟൫𝑥𝑖−𝑟−1,𝑗+𝑟൯ − 1 

𝒉𝑗+𝑟൫𝑥𝑖+𝑟,𝑗+𝑟൯ = 𝒉𝑗+𝑟൫𝑥𝑖+𝑟,𝑗+𝑟൯ + 1 

 

𝑠𝑖𝑛𝑐𝑒 𝑙 = 0 𝑡𝑜 𝑏 𝑑𝑜 

 𝑯(𝑙) = 𝑯(𝑙) +  𝒉𝑗+𝑟(𝑙) − 𝒉𝑗−𝑟−1(𝑙) 

 

𝑙 ≥ 𝑃𝑥𝑘 YES NO 

𝐺𝑥𝑘 = 𝐺𝑥𝑘 +  𝒉𝑗+𝑟(𝑙) − 𝒉𝑗−𝑟−1(𝑙) 
 

𝑥𝑘 = 𝑃𝑥𝑘 

𝑇𝑘 = ቜ𝑘
(2𝑟 + 1)2 + 1

2
ቝ 

 

𝑙 = 𝑃𝑥𝑘 + 1  

YES 

𝑥𝑘 = 𝑙 
𝐿𝑥𝑘 = 𝐿𝑥𝑘 + 𝑯(𝑙) 

𝐺𝑥𝑘 = 𝐺𝑥𝑘 - 𝑯(𝑙) 

𝑙 = 𝑙 + 1 
 

𝑙 = 𝑃𝑥𝑘 

YES 

𝑥𝑘  𝑙 − 1 
𝐿𝑥𝑘  𝐿𝑥𝑘 – 𝑯(𝑙) 

𝐺𝑥𝑘  𝐺𝑥𝑘 + 𝑯(𝑙) 

𝑙 = 𝑙 + 1 
 

 

𝑙<𝑏 
AND  

𝑇𝑘 > 𝐿𝑥𝑘 
 

 

𝑙 ≥ 0 
AND  

𝑇𝑘 ≤ (𝐿𝑥𝑘-𝑯(𝑃𝑥𝑘) 

YES NO 

NO NO 

𝑇𝑘 ≤ 𝐿𝑥𝑘 
 

𝑃𝑥𝑘 = 𝑥𝑘  

𝑇 = 𝑥𝑘𝛼𝑂𝑆 

 

𝑇 ≥ 𝑥𝑖,𝑗 YES NO 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑁𝑜 𝑇𝑎𝑟𝑔𝑒𝑡 

5 

4 
2 

3 
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with 𝑃𝑥𝑘 =  7. Since 𝑇𝑘 = 7 >  3 = 𝐿𝑥𝑘, the new k-th order 

statistic value will be found moving forward from the 𝑃𝑥𝑘 =
 7  bin in the kernel histogram 𝐻 . Here, only three bin-

displacements through 𝐻 are needed to obtain the new k-th 

order statistic value; the auxiliary variables are accordingly 

updated to 𝑃𝑥𝑘  = 9, 𝐿𝑥𝑘  = 6 and 𝐺𝑥𝑘  = 3, respectively. 

Since 𝑇𝑘 is now smaller than 𝐿𝑥𝑘, the displacement will next 

start from 𝑃𝑥𝑘 and backward. 

 

3.3. Complete procedures of efficient OS-CFAR 
2D approach 

Fig. 4 shows the flowchart for the complete 

procedure applied to each pixel value 𝑥𝑖,𝑗 (i-th row and the j-

th column) of an image 𝑋 of size 𝐴𝑥𝐵 using the OS-CFAR 

2D presented. Note that previously it must be created and 

initialized the kernel histogram 𝐻 , column histograms ℎ𝑗 

(1 ≤  𝑗 ≤  𝐵 ) and the previous k-th order statistic value 

𝑃𝑥𝑘 , lower values 𝐿𝑥𝑘 than 𝑃𝑥𝑘  and greater or equal values 

𝐺𝑥𝑘  than 𝑃𝑥𝑘 . Essentially, the flowchart of the Fig. 4 

consists of six steps for each pixel value 𝑥𝑖,𝑗: 

3.3.1. Updating the column histogram ℎ𝑗. The rightmost 

column histogram ℎ𝑗+𝑟  (where r  is the radius size of the 

current sliding window) when the sliding window shifts to 

the right. A top 𝑥𝑖−𝑟−1,𝑗+𝑟 and a bottom 𝑥𝑖+𝑟,𝑗+𝑟 pixel values 

are respectively removed from and added to the rightmost 

column histogram ℎ𝑗+𝑟. 

 

3.3.2. Updating the kernel histogram 𝐻 . For all the 

image bit-depth (since  𝑙 = 0  to 𝑏 ), those values from the 

sliding window leftmost column histogram ℎ𝑗−𝑟−1  are 

removed from while those from the new rightmost column 

histogram ℎ𝑗+𝑟 are added to the kernel histogram 𝐻. 

 

3.3.3. Updating the variables 𝐿𝑥𝑘  and 𝐺𝑥𝑘 . For all the 

image bit-depth (since 𝑙 = 0 to 𝑏) is compared with the k-th 

order statistic value 𝑃𝑥𝑘: if the new value is greater or equal 

than 𝑃𝑥𝑘 , 𝐺𝑥𝑘  is updated removing the values of the 

leftmost column histogram ℎ𝑗−𝑟−1 and adding the values of 

rightmost column histogram ℎ𝑗+𝑟  and otherwise 𝐿𝑥𝑘  it is 

updated in a similar way. 

 
3.3.4. Computing the k-th order statistic value 𝑥𝑘. This 

step computes the new k-th order statistic value by using the 

kernel histogram 𝐻  and the variables 𝐿𝑥𝑘 , 𝐺𝑥𝑘  and 𝑃𝑥𝑘 .  

First, the previous k-th order statistic value 𝑃𝑥𝑘 is stored in 

the variable 𝑥𝑘 ; next, the threshold T𝑘  is computed (𝑇𝑘 =

⌈𝑘
(2𝑟+1)2+1

2
⌉) and compared with 𝐿𝑥𝑘: if 𝑇𝑘 ≤ 𝐿𝑥𝑘, the new 

k-th order statistic value will be lower than the previous one 

and it will be found moving downwards from the current 

𝑃𝑥𝑘  bin in the kernel histogram 𝐻; otherwise, the new k-th 

order statistic value will be greater than the previous one 

and will be found moving upwards from the current 𝑃𝑥𝑘  bin 

in 𝐻. The auxiliary variables 𝐿𝑥𝑘  and 𝐺𝑥𝑘  are accordingly 

updated in the process. 

 

3.3.5. Target detection. The new k-th order statistic value 

𝑥𝑘  is stored in the variable 𝑃𝑥𝑘  for the next calculation of 

the k-th order statistic value and the threshold 𝑇 is estimated 

applying a scale factor 𝛼𝑂𝑆. Then, the value of the test cell 

𝑥𝑖,𝑗 is compared with estimated threshold �̂� to determine if 

the target is present.  

4. Theoretical efficiency analysis 

Table 1 exhibits computational metrics for the efficiency 

evaluation of the present OS-CFAR 2D approach. For this, a 

set of metrics based on computational time and space has 

been estimated: algorithmic complexity, dynamic memory, 

static memory, dynamic memory accesses, arithmetic 

operation and logic comparisons [23]. Metrics algorithmic 

complexity, dynamic memory and static memory are 

globally quantified while dynamic memory accesses, 

arithmetic operation and logic comparisons are quantified 

per-pixel. Each operation as update column histogram, 

update kernel histogram, update 𝐿𝑥𝑘  and 𝐺𝑥𝑘 , computing 

the k-th order statistic value and target detection are 

evaluated in the worst, average and best case (see Fig. 4).  

 

 

 

Table 1 Computational metrics of the OS-CFAR 2D approach. 

Algorithmic 

complexity 

Dynamic 

memory 

Static 

memory 
Operation Type case 

Dynamic 

memory 

accesses 

Arithmetic 

operations 

Logic 

comparisons 

𝑂(𝑏) 

𝑋 of size 𝐴𝑥𝐵 

𝐻 of size 𝑏𝑥1 

ℎ𝑗  ( 1 ≤ 𝑗 ≤ 𝐵 ) 

of size 𝑏𝑥1 

𝑖, 𝑗, 𝑟, 𝑙, 𝑏, 𝑘, 

𝑥𝑘, 𝑇𝑘, 𝑇, 𝛼𝑂𝑆 

𝑃𝑥𝑘, 𝐿𝑥𝑘, 

𝐺𝑥𝑘 

Update 

Column 
Histogram 

Worst Case  

Average Case  
Best Case 

8 16 0 

Update 

kernel 
Histogram 

Worst Case  

Average Case  
Best Case 

4𝑏 6𝑏 𝑏 

Update 𝐿𝑥𝑘 

and 𝐺𝑥𝑘 

Worst Case  

Average Case  
Best Case 

2𝑏 5𝑏 𝑏 

Computing 

the k-th order 
statistic value 

Worst Case  3𝑏 5𝑏 + 5 2𝑏 + 1 

Average Case  
3𝑏

2
 

5𝑏 + 5

2
 𝑏 + 1 

Best Case 1 6 3 

Target 

detection 

Worst Case  
Average Case  

Best Case 

0 1 1 
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As shown in Table 1, the algorithmic complexity of the OS-

CFAR 2D approach is 𝑂(𝑏)  per pixel where 𝑏 =
2𝑖𝑚𝑎𝑔𝑒 𝑏𝑖𝑡−𝑑𝑒𝑝𝑡ℎ . To compute the dynamic memory it is 

needed the amount of memory to allocate the input image of 

size 𝐴𝑥𝐵 , the kernel histogram 𝐻  of size 𝑏𝑥1  and the 𝐵 

column histograms ℎ𝑗 (1 ≤  𝑗 ≤  𝐵) of size 𝑏𝑥1. Besides, it 

is needed to allocate static memory for integer (𝑖, 𝑗, 𝑟, 𝑙, 𝑏, 

𝑥𝑘, 𝑃𝑥𝑘 , 𝐿𝑥𝑘 and 𝐺𝑥𝑘) and real (𝑘, 𝑇𝑘, T and αOS) auxiliary 

variables. Focusing in the five operations (see Fig. 4): 

1. Updating the column histogram ℎ𝑗  needs 8 dynamic 

memory accesses (4 accesses for the input image 𝑥 and 

column histogram ℎ𝑗 , respectively) and 16 arithmetic 

operations between addition and subtraction (worst, 

average and best case). 

2. Updating the kernel histogram 𝐻  needs 4𝑏  dynamic 

memory accesses (2𝑏 accesses for the kernel histogram 

ℎ𝑗 and column histogram 𝐻, respectively), 6𝑏 arithmetic 

operations for addition and subtraction and b  logic 

comparisons for loop since  0 to  𝑏  (worst, average and 

best case). 

3. Updating the variables 𝐿𝑥𝑘  and 𝐺𝑥𝑘  needs 2𝑏  dynamic 

memory accesses to column histogram ℎ𝑗, 5𝑏 arithmetic 

operations between addition and subtraction and 𝑏 logic 

comparisons for the conditional 𝑙 ≥ 𝑃𝑥𝑘 (worst, average 

and best case). 

4. Computing the k-th order statistic value 𝑥𝑘 . First, the 

initialization of the threshold 𝑇𝑘  requires 6 arithmetic 

operations and 1 logic comparison for the conditional 

𝑇𝑘 ≤ 𝐿𝑥𝑘. Second, there are needed 3𝑏 dynamic memory 

accesses for histogram 𝐻 , 5𝑏  arithmetic operations 

between addition and subtraction and 2𝑏  logic 

comparisons for the loop. Therefore, the worst case 

needs 3𝑏  dynamic memory accesses, 5𝑏 + 5 arithmetic 

operations 2𝑏 + 1 logic comparisons. The average and 

best case require 
3𝑏

2
 and 1 dynamic memory accesses, 

5𝑏+5

2
 and 6 arithmetic operations, 𝑏 + 1  and 3 logic 

comparisons, respectively. Take into account that in the 

experimental results we will show that using the 

breakdown point optimal concept leads to the likelihood 

that the best case will be produced for the calculation of 

the k-th order statistic value. 

5. Target detection needs 1 arithmetic operation to multiply 

𝑥𝑘  by αOS  and 1 logic comparison for the conditional 

𝑇 ≥ 𝑥𝑖,𝑗 (worst, average and best case). 

5. Experimental results 

The proposed approach for OS-CFAR 2D technique 

using the distributive histograms and breakdown point 

optimal concept was developed in C++ code taking 

advantage of the data structure within OpenCV 2.3 [33]. The 

programming environment (IDE) was Nokia QtCreator for 

GNU/Linux implementation C++ code. The framework was 

executed on a PC with a 2.4 GHz Intel Core i7-3630 CPU 

and 8-GB RAM memory with Ubuntu 14.04 LTS (32 bits) 

operating system.  

The upper part of Fig. 5 shows an acoustic image 

under test. This image was obtained with an Edgetech® 

company side scan sonar device, on-board an autonomous 

underwater vehicle. It shows an underwater pipeline 

deployed on seafloor. The autonomous underwater vehicle 

was sailing at an altitude of 5𝑚 above the seafloor with a 

speed of 2𝑚/𝑠. This acoustic image was cropped for better 

presentation and acquired from the right channel (starboard) 

of the side scan sonar device (note the shadow in the right 

part of underwater pipeline).  The size of test images is 

2000 × 900 (𝐴 ×  𝐵) with 256 levels of the grayscale. In 

addition, useful inspection features can be observed: free 

span, rock dump, and reflective objects on the seafloor. The 

free span feature can be clearly observed where the shadow 

close to the pipeline is not completely defined. In other 

words, a seafloor acoustic reverberation area is between 

pipeline and shadow. From this feature, it can be inferred 

that the pipeline is not deployed on the seafloor and could 

collapse causing economic and environmental disaster. The 

most common method to solve this problem is known as 

rock dumping where the pipeline is wider. Usually, rock 

dumping has to be examined to ensure stability.  

This the test image was processed for different radius 

size 𝑟 (1, 3 and 5) and order statistics 𝑘 (0.5, 0.6, 0.75 and 

0.8) and the resulting image of k-th order statistic value 𝑥𝑘 

are shown in Fig. 5. As it can be seen, when the radius 𝑟 of 

the sliding window grows, more pixel values are used to 

compute the k-th order statistic value 𝑥𝑘. For example, for 

𝑟 =  1 , 3  and 5  there are required 9 , 49  and 121  pixel 

values, respectively. This increment in the size of the sliding 

window produces a fuzzy result because it uses a greater 

amount of pixel values to calculate the same k-th order 

statistic value 𝑥𝑘. Note that, when the smaller the radius size 

is selected, the detection results will include more 

geometrical details but also will be potentially more affected 

by noise. Conversely, the greater the radius size is, the 

higher the noise reduction will be, but the lesser the 

geometrical details retained.  

On the other hand, when the statistical order k-th 

increases (𝑘 = 0.5, 0.6, 0.75 and  0.8) the resulting images 

become brighter due to the selected statistical order value 𝑥𝑘. 

In addition, a greater separation between shadow and 

highlight zones of the acoustic image is produced.
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Fig. 5 Visualization of the k-th order statistic value 𝑥𝑘 for different radius size 𝑟 (1, 3 and 5) and order statistics 𝑘 (0.5, 0.6, 

0.75 and 0.8) for sonar image with an pipeline on seafloor. 

 

In Fig. 6 it is shown a comparison of the standard and the 

breakdown point approaches to compute, for each order 

statistic 𝑘 (0.5, 0.6, 0.75 and 0.8), the order statistic value 

𝑥𝑘  using the column-average bin-displacements 

measurement (vertical axis) versus the column number 

(horizontal axis). For each order statistic 𝑘, the blue, green 

and red curves describe the effort when radius sizes 𝑟 = 1, 3 

and 5 are used, respectively. 
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𝒌 = 𝟎. 𝟓 𝒌 = 𝟎. 𝟔 

  
𝒌 = 𝟎. 𝟕𝟓 𝒌 = 𝟎. 𝟖 

  

Fig. 6 Column-average bin-displacements for calculation of the k-th order statistic value 𝑥𝑘 when different r radius size (1, 3 

and 5) and order statistics k (0.5, 0.6, 0.75 and 0.8) are used. 

 

In addition, the Table 2 shows the minimum and 

maximum column-average bin-displacements from Fig. 6. 

Note that, when the radius increases the curves 

corresponding to the breakdown point version stabilize in 

comparison to the standard version. This is caused by the 

greater number of processed values that allows calculating 

the order statistic value 𝑥𝑘  and therefore the effort to 

achieve it tends to be zero. 

Fig. 7 shows the images detection results of the proposed 

OS-CFAR 2D method for different radius sizes 𝑟 (1, 3 and 

5) and statistical order 𝑘 (0.5, 0.6, 0.75 y 0.8) for a constant 

𝑃𝑓𝑎 = 0.013. The 𝑃𝑓𝑎 was selected as lower as possible to 

avoid false alarms. Besides, the results represent a 

segmentation of three classes: highlight (white color), 

shadow (black color), and seafloor reverberation areas (gray 

color) employing the detection of multiclass strategy 

proposed in [16]. Note that, the intermediate step of the 

selection of the k-th order statistic value 𝑥𝑘  was shown in 

Fig. 5. As it also can be seen in Fig. 7, when the radius 𝑟 of 

the sliding window increases, greater number of pixel values 

are used to calculate the k-th order statistic value 𝑥𝑘 , and 

therefore the number of false detections decreases.  

 

Table 2 Minimum, maximum and mean column-average bin-displacements comparison by radius size 𝑟 and order statistics k-

th order statistic value 𝑥𝑘 for standard and breakdown point versions of the Fig. 6. 

𝒓 𝒙𝒌 
Breakdown Point Standard 

Min Max Mean Min Max Mean 

𝟏 

0.5 5,92 17,42 11,96 18,28 66,16 42,10 

0.6 6,67 19,80 14,13 23,37 81,74 52,58 

0.75 7,92 20,49 16,77 29,63 100,69 66,66 

0.8 8,73 26,03 19,77 38,23 127,00 85,60 

3 

0.5 2,17 7,27 3,94 15,25 63,70 37,62 

0.6 2,74 8,53 4,93 20,38 77,91 48,10 

0.75 3,59 10,76 6,74 32,03 104,98 68,93 

0.8 3,93 10,70 7,68 38,79 119,03 81,65 

5 

0.5 1,10 4,36 2,15 13,87 62,51 36,24 

0.6 1,48 5,66 2,72 18,98 76,48 46,49 

0.75 2,34 7,91 3,95 31,16 104,90 68,96 

0.8 2,56 9,02 4,47 37,43 117,58 79,76 
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Fig. 7 Sonar image for pipeline detections on the seafloor for different radius size r (1, 3 and 5) and order statistics k 

(0.5, 0.6, 0.75 and 0.8). 

  

On the other hand, when the k-th statistical order is 

increased, the amount of false detection is also decreased. 

The combination of in the settings parameters (𝑟, 𝑘 and 𝑃𝑓𝑎) 

depends on the image resolution. Note that the selection of 

the parameters: radius size 𝑟 =  5  ( 121  pixel values), 

statistical order 𝑘 =  0.8  and 𝑃𝑓𝑎 = 0.013  allow to 

demonstrate a good trade-off with the detection results 

obtained. In addition, these parameters configuration allows 

to differentiate clearly the inspection features: free span, 

rock dump, and reflective objects on the seafloor. 

In Fig. 8, three different regions of interest (ROI) 

extracted from the test image (Fig. 5) are shown; their sizes 
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are 200 𝑥 200 (𝐴 × 𝐵) pixel values in every case, and the 

Cartesian coordinates of the corresponding upper-left vertex 

used as reference are, respectively: (50, 50), (460, 460); and 

(500, 1000). These three sampled regions were deliberately 

chosen to capture different inspection features descripted: 

(ROI-1) seabed reverberation; (ROI-2) underwater pipeline 

with rock dumping and (ROI-1) underwater pipeline 

deployed on the seafloor with free span.  

 

 

 
Original Image  

 
ROI 1 ROI 2 ROI 3 

   

 

Fig. 8  Three ROI selected from sonar image with an pipeline on seafloor. 

 
Regarding the ROI-1, the seabed reverberation is 

presented as a noisy image (speckle noise) with variations 

of the pixel values in any range of the gray scale. In the 

ROI-2, the underwater pipeline with rock dumping is 

presented with acoustic highlight close to the maximum 

value of the gray scale range. Also, the presence of rock 

dumping shows a pronounced acoustic shadow greater 

than that of the pipeline close to the minimum value of the 

gray scale range. In the ROI-3, the underwater pipeline 

deployed on the seafloor with free span is presented with 

acoustic reverberation between highlight and shadow. 

Note that the pipeline is not completely supported on the 

seafloor due to the presence of seabed reverberation 

between the pipeline and shadow. 

Fig. 9 exhibits for each ROI previously introduced 

in Fig. 8, the following further details: the result image of 

k-th order statistic value 𝑥𝑘 ; the detection image applied 

the OS-CFAR 2D technique; and the comparison of 

standard and breakdown point versions to calculate the 

order statistic value 𝑥𝑘  using the column-average bin-

displacements measurement (vertical axis) versus the 

column number (horizontal axis). The parameters settings 

for OS-CFAR 2D were 𝑘 = 0.8, 𝑃𝑓𝑎 = 0.013 and different 

radius sizes 𝑟 = 1, 3 and 5. As it can be seen, when the 

radius size increases with a constant order statistic and 

false alarm probability the number of false detections 

decreases. 

Considering the curves of ROI-1, it is shown for 

both versions (standard and breakdown point) that they are 

stable in the presence of seabed reverberation even with a 

large difference in the measurement of column-average 

bin-displacements.  

ROI-2 and ROI-3, shows that the standard version 

has peaks close to the maximum value of the gray scale 

range due to the presence of the pipe and rock dumping, 

then it decays to the minimum value of the gray scale 

range because of the shadow. Finally it grows again due to 

the presence of seabed reverberation. Note that the rock 

dumping peak of the ROI-2 is much wider than the peak of 

pipeline in the ROI-3. On the other hand, the curves of 

breakdown point version are more stable in the presence of 

the pipeline and rock dumping, so they require a smaller 

amount of bin-displacements. 

Towards the application of this approach in real 

time scenarios, these results show that the computational 

effort makes it feasible. However, notice should be taken 

in the fact that a fixed false alarm probability (𝑃𝑓𝑎) yields a 

fixed detection threshold ( �̂� ) for OS-CFAR, and 

consequently, false alarms may appear, as it was presented 

in [15]. Future work on adaptive detection threshold 

selection, in the sense proposed in [21], is still pending. 
Fig. 10 exhibits the experimental results of 

processing time against radius size for the common 

implementation of the five OS-CFAR 2D versions utilized: 

(1) Perreault and Herbert method [30] (colour line blue), 

(2) Weiss method [28] (colour line black) (3) bubble sort 

method [25] (colour line cyan) (4) bucket sort method [25] 

(colour line green) and (5) proposed method (colour line 

red). Note that, only in this context the processing time 

makes sense as a measure of experimental efficiency.  
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Fig. 9 ROI of Fig. 8: the k-th order statistic value 𝑥𝑘 image; the detection image result applying the OS-CFAR 2D technique; and the comparison of standard and breakdown point versions 

to calculate the order statistic value 𝑥𝑘 using the column-average bin-displacements measurement (vertical axis) versus the column number (horizontal axis). 
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These methods were tested on the Fig.5 whose size 

is  2000x900  ( AxB ) pixels from an 8 bit ( b = 256 ) 

grayscale. In Fig. 10, the vertical axis indicates the 

processing time (in seconds) while the horizontal axis 

indicates the MF window’s radius size.  As shown, the 

processing time varies exponentially with the radius size for 

the classical bubble sort and bucket sort methods; the 

processing time varies linearly with the radius size for the 

Weiss method; conversely, the Perreault and Herbert and 

proposed method the processing time is constant due to 

depend on the number of scale levels (𝑏 = 2𝑖𝑚𝑎𝑔𝑒 𝑏𝑖𝑡−𝑑𝑒𝑝𝑡ℎ) 

and not on the radius size. Worth noting that, the processing 

time of the proposed method is reduced by using distributive 

histograms and breakdown point optimal concept. 

 

 
Fig.10 Processing time vs. radius size for OS-CFR 2D using 

the (1) Perreault and Herbert method [30] (colour line 

blue), (2) Weiss method [28] (colour line black) (3) bubble 

sort method [25] (colour line cyan) (4) bucket sort 

method[25] (colour line green) and (5) proposed method 

(colour line red). 

6. Conclusion 

The OS-CFAR 2D technique is extensively used in 

radar and sonar technology to cope with different 

applications although it requires higher computational effort. 

This work presents a new approach to improve the 

algorithmic efficiency of the OS-CFAR 2D using the 

distributive histograms and the optimal breakdown point 

concept. This approach was evaluated using the theoretical 

algorithm analysis as well as its experimental results on 

acoustic images. These studies demonstrate the great 

improvement obtained using the novel proposal presented 

for the OS-CFAR 2D technique, mainly from the 

computation effort standpoint. 
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