4,185 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThree-dimensional (3D) models of industrial plant primitives are used extensively in modern asset design, management, and visualization systems. Such systems allow users to efficiently perform tasks in Computer Aided Design (CAD), life-cycle management, construction progress monitoring, virtual reality training, marketing walk-throughs, or other visualization. Thus, capturing industrial plant models has correspondingly become a rapidly growing industry. The purpose of this research was to demonstrate an efficient way to ascertain physical model parameters of reflectance properties of industrial plant primitives for use in CAD and 3D modeling visualization systems. The first part of this research outlines the sources of error corresponding to 3D models created from Light Detection and Ranging (LiDAR) point clouds. Fourier analysis exposes the error due to a LiDAR system's finite sampling rate. Taylor expansion illustrates the errors associated with linearization due to flat polygonal surfaces. Finally, a statistical analysis of the error associated with LiDar scanner hardware is presented. The second part of this research demonstrates a method for determining Phong specular and Oren-Nayar diffuse reflectance parameters for modeling and rendering pipes, the most ubiquitous form of industrial plant primitives. For specular reflectance, the Phong model is used. Estimates of specular and diffuse parameters of two ideal cylinders and one measured cylinder using brightness data acquired from a LiDAR scanner are presented. The estimated reflectance model of the measured cylinder has a mean relative error of 2.88% and a standard deviation of relative error of 4.0%. The final part of this research describes a method for determining specular, diffuse and color material properties and applies the method to seven pipes from an industrial plant. The colorless specular and diffuse properties were estimated by numerically inverting LiDAR brightness data. The color ambient and diffuse properties are estimated using k-means clustering. The colorless properties yielded estimated brightness values that are within an RMS of 3.4% with a maximum of 7.0% and a minimum of 1.6%. The estimated color properties effected an RMS residual of 13.2% with a maximum of 20.3% and a minimum of 9.1%

    Automatic alignment of piping system components and generation of CAD models of industrial site plants

    Get PDF
    The ability to (semi-)automatically obtain CAD models from physical installations has two important benefits: (i) it can be used to identify, as soon as possible during a con struction process, any deviations from the original designs; and (ii) it can be used to document complex installations for which CAD representations are outdated or inexis tent. Both scenarios have important practical and economic value. An ongoing project in our research group aims to reconstruct CAD representations from point clouds of in dustrial sites. However, pose estimation of pipes and piping system components is not perfect, resulting in misalignments in the reconstructed scene, which is unacceptable for a CAD model. For this undergraduate thesis, I propose to use optimization techniques to fix these misalignments. I also propose to convert the detected pipes and piping system components into actual CAD model representations for a popular commercial CAD soft ware, namely AutoCAD Plant 3D

    3D Geometric Analysis of Tubular Objects based on Surface Normal Accumulation

    Get PDF
    This paper proposes a simple and efficient method for the reconstruction and extraction of geometric parameters from 3D tubular objects. Our method constructs an image that accumulates surface normal information, then peaks within this image are located by tracking. Finally, the positions of these are optimized to lie precisely on the tubular shape centerline. This method is very versatile, and is able to process various input data types like full or partial mesh acquired from 3D laser scans, 3D height map or discrete volumetric images. The proposed algorithm is simple to implement, contains few parameters and can be computed in linear time with respect to the number of surface faces. Since the extracted tube centerline is accurate, we are able to decompose the tube into rectilinear parts and torus-like parts. This is done with a new linear time 3D torus detection algorithm, which follows the same principle of a previous work on 2D arc circle recognition. Detailed experiments show the versatility, accuracy and robustness of our new method.Comment: in 18th International Conference on Image Analysis and Processing, Sep 2015, Genova, Italy. 201

    Point to Pipe: Automatic Reconstruction and Classification of Pipes Using Lasergrammetry and Thermogrammetry for Building Information Modeling (BIM)

    Get PDF
    Existing buildings account for 40% of global energy consumption, and two-thirds of them will be still be operational in 2050. As most of these buildings lack the needed documentation for energy upgrades, it is essential to understand and represent the current conditions of their envelopes and mechanical systems. This project proposed a skeleton-based application for reconstructing and classifying pipes in existing buildings using point clouds from laser scanners and thermal images for Building Information Modeling (BIM) applications. MATLAB and Dynamo were used to process and model this information in Revit. Initial results indicate that the application is robust to identifying pipes and connections, and that thermal images can be used to create sematic-rich models. These results can contribute to improving the capabilities of some of the commercially available software for pipe reconstruction in BIM and to expediting the digital reconstruction processes in existing buildings

    Automated segmentation, detection and fitting of piping elements from terrestrial LIDAR data

    Get PDF
    Since the invention of light detection and ranging (LIDAR) in the early 1960s, it has been adopted for use in numerous applications, from topographical mapping with airborne LIDAR platforms to surveying of urban sites with terrestrial LIDAR systems. Static terrestrial LIDAR has become an especially effective tool for surveying, in some cases replacing traditional techniques such as electronic total stations and GPS methods. Current state-of-the-art LIDAR scanners have very fine spatial resolution, generating precise 3D point cloud data with millimeter accuracy. Therefore, LIDAR data can provide 3D details of a scene with an unprecedented level of details. However, automated exploitation of LIDAR data is challenging, due to the non-uniform spatial sampling of the point clouds as well as to the massive volumes of data, which may range from a few million points to hundreds of millions of points depending on the size and complexity of the scene being scanned. ^ This dissertation focuses on addressing these challenges to automatically exploit large LIDAR point clouds of piping systems in industrial sites, such as chemical plants, oil refineries, and steel mills. A complete processing chain is proposed in this work, using raw LIDAR point clouds as input and generating cylinder parameter estimates for pipe segments as the output, which could then be used to produce computer aided design (CAD) models of pipes. The processing chain consists of three stages: (1) segmentation of LIDAR point clouds, (2) detection and identification of piping elements, and (3) cylinder fitting and parameter estimation. The final output of the cylinder fitting stage gives the estimated orientation, position, and radius of each detected pipe element. ^ A robust octree-based split and merge segmentation algorithm is proposed in this dissertation that can efficiently process LIDAR data. Following octree decomposition of the point cloud, graph theory analysis is used during the splitting process to separate points within each octant into components based on spatial connectivity. A series of connectivity criteria (proximity, orientation, and curvature) are developed for the merging process, which exploits contextual information to effectively merge cylindrical segments into complete pipes and planar segments into complete walls. Furthermore, by conducting surface fitting of segments and analyzing their principal curvatures, the proposed segmentation approach is capable of detecting and identifying the piping segments. ^ A novel cylinder fitting technique is proposed to accurately estimate the cylinder parameters for each detected piping segment from the terrestrial LIDAR point cloud. Specifically, the orientation, radius, and position of each piping element must be robustly estimated in the presence of noise. An original formulation has been developed to estimate the cylinder axis orientation using gradient descent optimization of an angular distance cost function. The cost function is based on the concept that surface normals of points in a cylinder point cloud are perpendicular to the cylinder axis. The key contribution of this algorithm is its capability to accurately estimate the cylinder orientation in the presence of noise without requiring a good initial starting point. After estimation of the cylinder\u27s axis orientation, the radius and position are then estimated in the 2D space formed from the projection of the 3D cylinder point cloud onto the plane perpendicular to the cylinder\u27s axis. With these high quality approximations, a least squares estimation in 3D is made for the final cylinder parameters. ^ Following cylinder fitting, the estimated parameters of each detected piping segment are used to generate a CAD model of the piping system. The algorithms and techniques in this dissertation form a complete processing chain that can automatically exploit large LIDAR point cloud of piping systems and generate CAD models

    Reconstruction of industrial piping installations from laser point clouds using profiling techniques

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 143-152).As-built models of industrial piping installations are essential for planning applications in industry. Laser scanning has emerged as the preferred data acquisition method of as built information for creating these three dimensional (3D) models. The product of the scanning process is a cloud of points representing scanned surfaces. From this point cloud, 3D models of the surfaces are reconstructed. Most surfaces are of piping elements e.g. straight pipes, t-junctions, elbows, spheres. The automatic detection of these piping elements in point clouds has the greatest impact on the reconstructed model. Various algorithms have been proposed for detecting piping elements in point clouds. However, most algorithms detect cylinders (straight pipes) and planes which make up a small percentage of piping elements found in industrial installations. In addition, these algorithms do not allow for deformation detection in pipes. Therefore, the work in this research is aimed at the detection of piping elements (straight pipes, elbows, t-junctions and flange) in point clouds including deformation detection
    • …
    corecore