
3D Geometric Analysis of Tubular Objects based on

Surface Normal Accumulation
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Abstract. This paper proposes a simple and efficient method for the
reconstruction and extraction of geometric parameters from 3D tubu-
lar objects. Our method constructs an image that accumulates surface
normal information, then peaks within this image are located by track-
ing. Finally, the positions of these are optimized to lie precisely on the
tubular shape centerline. This method is very versatile, and is able to
process various input data types like full or partial mesh acquired from
3D laser scans, 3D height map or discrete volumetric images. The pro-
posed algorithm is simple to implement, contains few parameters and
can be computed in linear time with respect to the number of surface
faces. Since the extracted tube centerline is accurate, we are able to de-
compose the tube into rectilinear parts and torus-like parts. This is done
with a new linear time 3D torus detection algorithm, which follows the
same principle of a previous work on 2D arc circle recognition. Detailed
experiments show the versatility, accuracy and robustness of our new
method.

1 Introduction

Tubular shapes appear in various image application domains. They are com-
mon in the medical imaging field. For instance, blood vessel identification and
measurements are an important object of study [12,17,22]. The wall thickness in
bronchial tree plays also an important role in several lung diseases [19]. Tubular
shapes also occur in CT volumetric images of wood [13]: their segmentation into
knots is exploited by agronomic researchers or in industrial sawmills. Outside
volumetric images, tubular objects are also present in industrial context with the
production of metallic pipes from bending machines. Quality assessment of such
metallic pieces is generally achieved with a direct inspection by a laser scanner.
Such process is also performed for calibration purpose and reverse engineering
tasks.
? This work was partially supported by the ANR grants DigitalSnow ANR-11-BS02-
009



2 B. Kerautret, A. Krähenbühl, I. Debled-Rennesson, J.-O. Lachaud

Geometric properties of tubular structures are extracted in different ways
depending on the application domain and on the nature of input data. From
unorganized set of points, Lee proposed a curve reconstruction exploiting an
Euclidean minimum spanning tree with a thinning algorithm and applies it to
pipe surface reconstruction [15]. Later, Kim and Lee proposed another method
based on shrinking and moving least-squares [16] to improve the reconstruction
of pipes with non constant radius. However, as shown by Bauer and Polthier
[6], such a reconstruction method produced noisy curves in particular for data
extracted from partial scans like the ones of Fig. 1 (b). Another approach esti-
mates the principal curvatures of the set of points in order to detect cylindrical
and toric parts [10]. Although promising, this approach suffers from the quality
of the local curvature estimator. To overcome this limitation, Bauer and Polth-
ier [6] proposed to recover a parametric model based on a tubular spine. Their
method is able to process partial laser scans limited to one particular direction.
The main steps of their method consists in first projecting the mesh points onto
the spinal region of the mesh before reconstructing a spine curve and analyz-
ing it. The method requires as parameter one radius size, and it cannot process
volumetric data (voxel sets) or heightmap data.

(a) (b) (c) (d)

Fig. 1. Different kinds of 3D tubular data: (a) input data obtained from full laser scan,
(b) partial scans from one direction, (c) digital set of voxels and (d) height map.

More generally, classic medial axis extraction looks to be a potential solu-
tion for tubular shape analysis [8]. However such extraction may be sensitive to
noise or to the presence of small defaults in the volumetric discrete object (like
small hole). Fig. 2 shows some results obtained with different methods available
from the implementation given in the authors survey. We can clearly see that
small holes in the digital object significantly degrade the result. More recently,
many advances came from the field of mesh processing with approaches based
on mesh contraction [3,20]. However, they are generally not adapted to surface
with boundaries like the partial scan data of Fig. 1. In the same way, they are
not simple to adapt to volumetric data like digital object made of voxels or
height map. To process volumetric discrete objects, Gradient Vector Flow [24]
was exploited by Hassouna and Farag in order to propose a robust skeleton curve
extraction [11]. This method was also adapted to process gray values volumetric
images used in virtual endoscopy [5]. In the field of discrete geometry we can
mention a method which propose to specifically exploit 3D discrete tools to ex-
tract some medial axis on grey-level images [4]. To sum up approaches on medial
axis, they are designed to process shapes defined as volumes, but they fail when
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processing open surfaces or partial samplings of the shape boundary. To process
such data, we can refer to the work of Tagliasacchi et al. [21], who propose an
algorithm based on surface normals. However the resulting quality depends on
manual parameter tuning.

In this work, we propose a unified approach to the reconstruction and the ge-
ometric analysis of tubular objects obtained from various input data types: laser
scans sampling the shape boundary with partial or complete data (Fig. 1 (a,b)),
voxel sets sampling the shape (Fig. 1 (c)) or more specifically from height map
data (Fig. 1 (c,d)). Potential applications of the latter datatype are numerous be-
cause of the increasing development of Kinect R©-like devices. Our main contribu-
tions are first to propose a simple and automatic centerline extraction algorithm,
which mainly relies on a surface normal accumulation image. Like other Hough
transform based applications [7,23], this algorithm can handle various types of
input data. We also propose to extract geometric information along the tubular
object, by segmenting it into rectilinear and toric parts. This is achieved with a
3D extension of a previous work on circular arc detection along 2D curves. In
the following sections, we first introduce the new method of centerline detection,
then we show how to reconstruct the tubular shape and decompose it into mean-
ingful parts. We conclude with representative experiments showing the qualities
of our method.

(a) thinning (b) geometric (c) potential field (d) proposed
1 min 4s 0.5 s 3min 6s+3s

Fig. 2. Skeleton extraction from three different methods presented in [8] with the
implementation given by the authors. Our method is presented on the right.

2 Fast and Simple Centerline Extraction on 3D Tubular
Object

In this section, we present centerline extraction algorithm based on surface nor-
mal accumulation. It consists in three main steps. First, we compute a 3D accu-
mulation image, which counts for each voxel how many faces of input data have
their normal vector pointing through the voxel (i). Depending on input data,
normal vectors can be defined directly from the mesh faces or estimated by a
more robust and accurate estimator (in particular if we process a digital object).
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Then a tracking algorithm (ii) extracts an approximate centerline by following
local maxima in the accumulation image. Finally, to remove digitization effects
due to the 3D discrete accumulation image, we optimize the position of center
points (iii) by a gradient descent method.

2.1 Accumulation Images From Normal Vectors

The first algorithm requires as input a set of faces (a mesh or a digital surface),
their associated normal vectors, and a 3D digital space (the 3D grid that will
store the accumulated values). If the input object is a mesh, the gridstep of
the digitization grid must be specified by the user. Depending on the awaited
accuracy, a default gridstep can be chosen as the median size of mesh faces (with
the face size defined as its longest edge). If the input object is a digital object
or a heightmap, the digitization grid just matches their resolution. Besides, this
algorithm requires as parameter some approximation of the tube radius R.

The whole algorithm is detailed in Algorithm1. It outputs for each voxel the
number of normal vectors going through it as well as a vector estimating the
tube local main directions (i.e. the tangent to the centerline or equivalently the
direction of minimal curvature along the tube boundary). Fig. 3 illustrates the
main steps of the algorithm with the 3D directional scans, starting from the
face origin fk in the direction of its normal vector −→nk along a distance denoted
accRadius (set to R + ε where ε is used to take into account possible small
variations of the radius along the tube, see image (a) of Fig. 1). During the
scan, the accumulation scores are stored for each visited voxel (image (b) of
the same figure). The principal direction −→p of a voxel is also updated for each
scan (image (c)). More precisely, if we denote by −→nj and −→nk the two last normal
vectors intersecting a voxel V for the scans j and k, the principal direction

−→
dk

for the current scan is given by:
−→
dk =

−→
dj + (−→nk ∧ −→nj). In order to ignore non

significant directions induced by near colinear vectors, we add a small constant
(set by default to 0.1) to filter the norm of the resulting vector −→nk ∧ −→nj .

+1
+1+1

+1

+1

+1

+1

+1

+1

+2

(a) directional scan (b) accImage (c) dirImage (d) lastVectors

Fig. 3. Illustration of Algorithm1, which builds an accumulation image whose peaks
match the centerline of the tubular shape.

Fig. 4 illustrates the computations made in Algorithm1 for a mesh input
data, and it shows the resulting accumulation image (image (c)) and vectors
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−→n orthogonal to the tube main direction
−→
d . Since centerline extraction relies

on these accumulation images, we evaluate the robustness of these images with
various input surface types. The first row of Fig. 5 presents the resulting 3D
accumulation images obtained on partial, noisy, digital or on small resolution
mesh. In all these configurations, relative maximal values are indeed well located
near the center of the tubular shape. A fixed threshold was applied in order to
highlight the voxels with accumulation values close to maximal ones. Such voxels
are drawn in black and for a particular selected voxel, we have highlighted their
scanning origin faces with blue lines. All these results confirm the robustness of
the proposed algorithm.We have therefore a solid basis for the tracking algorithm
presented in the following part.

(a) (b) (c) (d)

Fig. 4. Illustration of accumulation images generated from surface normal vectors.
Image (a) (resp. (b)) illustrates some (resp. all) scanning directions defined from mesh
triangles. Image (c) illustrates the values obtained in the 3D accumulation image and
(d) shows some voxels having accumulation score upper than a given threshold. In the
last image we also display the set of faces contributing to the accumulation score.

2.2 Centerline Tracking from Image Accumulation
Even if the maximal values obtained in the pre-

vious part are well centered on the tubular object,
a simple thresholding is not robust enough to ex-
tract directly the centerline. Furthermore it implies
the manual adjustment of the threshold parameter. To illustrate this point, the
image on the side shows different results obtained by choosing various threshold
parameters σ. A too strict threshold implies disconnected points, while a less
restrictive one produces a thick line with parasite voxels.

To better approach the centerline we propose to define a simple tracking al-
gorithm exploiting the output of Algorithm1, i.e. the accumulation image and
the direction vectors image. As described in Algorithm2, the main idea is to
start from a point C0 detected as a maximal accumulation value of the 3D
accumulation image. Then, from a current point Ci of the centerline, the algo-
rithm determines next point Ci+1 as the point having maximal accumulation
value in the 2D patch image Iipatch defined in the plane normal to the direction
dirImage(Ci) at distance trackStep (see Fig. 6 (a,b)).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Experiment of the robustness of the surface normal accumulation algorithm
applied on different types of input surface: on sector filtered mesh (a,f), on partial scan
mesh (b,g), on noisy mesh (c,h), on digital surface (d,i), and on small resolution mesh
(e,j).

Algorithm 1: accumulationFromNormalVectors : From position and nor-
mals of faces of an input mesh, this algorithm computes an accumulation
image (accImage) by a directional scan starting from a face center in the
direction of the face inward normal. It also outputs the image of vectors
representing the local main axis direction of the tubular shape (dirImage).

Input : mesh // Triangular mesh of a tube
accRadius // Accumulation length from center of faces
minNorm = 0.1 // Minimum norm value

Ouput : accImage // Accumulation of normal vector number passing through a coordinate
dirImage // Cross product of all normals passing through a coordinate
maxAcc // Maximum number of normals passing through an (x,y,z) coordinate
maxPt // maxAcc coordinates

Variable: lastVectors // The last considered normal for each (x,y,z) coordinate
mainAxis // Vector contributing to the cross product of a directional vector

lastVectors = Image3D(mesh.dimensions())
maxAcc = 0
foreach face in mesh do

currentPt = face.center
normalVector = face.normalVector().normalized()
while distance(currentPt, face.center) < accRadius do

if accImage[currentPt] != 0 then
mainAxis = lastVectors[currentPt] × normalVector
if norm(mainAxis) > minNorm then

dirImage[currentPt] += mainAxis*sign(mainAxis • dirImage[currentPt])

lastVectors[currentPt] = normalVector
accImage[currentPt]++
if accImage[currentPt] > maxAcc then

maxAcc = accImage[currentPt]
maxPt = currentPt

currentPt += normalVector
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Ci} dkCi+1dk+1

trackStep

Ipi+1 Ipi

Ipi+1 Ipi

Fig. 6. Tracking algorithm step. The patch Ii+1
patch is generated from the maximum Ci

of Ii
patch in the

−→
dk direction at a trackStep distance before to localize the maximum

Ci+1 of this new patch.

Algorithm 2: trackPatchCenter: tracking algorithm in one direction,
given a starting point and an orientation.

Input : accImage // Accumulation of normal vector number passing through a coordinate
dirImage // Cross product of all normals passing through a coordinate
accRadius // Accumulation length from center of faces
startPt, // Start point for tracking (must belong to the centerline)
trackInFront // True if tracking direction is in the startPt vector direction
trackStep // Distance between two consecutive centerline points

Output : centerline // Point set constituting the tube centerline
Variable: continueTracking // True if tracking can continue

patchSize // Dimension of the square patch
currentPt, previousPt // Considered point during an iteration
lastVect // Directional vector associated to previousPt
centerPatch // Patch center finding from currentPt

patchImageSize = 2 * aRadius ;
centerline = emptySet()
continueTracking = true
patchSize = 2 * accRadius
currentPt = startPt
lastVect = trackInFront ? dirImage( startPt ) : - dirImage( startPt )
previousPt = startPt - lastVect * trackStep
while continueTracking do

centerline.append( currentPt )
dirVect = dirImage[currentPt].normalized()
if lastVect.dot(dirVect) < 0 then

dirVect = -dirVect
continueTracking = isInsideTube( accImage, currentPt, previousPt, trackStep, π/3 )
previousPt = currentPt
// Defined the next image patch center point
centerPatch = currentPt + ( dirVect * trackStep )
if not accImage.domain().contains( centerPatch ) then

break
// Extract a 2D image of size 2 * accRadius from the 3D image accImage, centered on
// centerPatch and directed along dirVect
patchImage = extractPatch( accImage, centerPatch, dirVect, 2 * accRadius )
maxCoords = getMaxCoords( patchImage )
lastVect = dirVect
previousPt = currentPt
currentPt = patchSpaceToAccImageSpace( maxCoords)

return centerline

.
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2.3 Skeleton position optimization

Since the resulting tracking skeleton is embedded in a digital space, it suffers
from digitization artefacts and is not perfectly centered within the input mesh.
Moreover, depending on normal mesh quality, the tracking algorithm can poten-
tially be influenced by perturbated normal directions, and may deviate from the
expected centerline. Such perturbations can dramatically degrade the quality of
upcoming geometric analysis, and hence impose some unwanted post processing
tasks. To avoid such a difficulty, we propose to apply an optimization algorithm
in order to obtain a perfectly centered spine line.

The idea is to model the quality of the current fitting by an error Es(C),
defined as the sum of the squared difference between the known tube radius R
and the distance between the tube center C and its associated input mesh points
Mi. We wish to find the best position for center C that minimizes this error.
Otherwise said, we look for the circle of radius R that best fits the data points
Mi in the least-square sense. Hence, the error is

Es(C) =
N−1∑
i=0

(‖−−→CMi‖ −R)2. (1)

This minimization problem is easily solved by a gradient descent algorithm that
follows the direction of steepest descent of the error. By simple derivation, its
gradient is

∇Es(C) = 2
N−1∑
i=0

−−→
CMi

‖
−−→
CMi‖

(R− ‖−−→CMi‖). (2)

The gradient descent can also be interpreted as elastic forces acting on the center
C and pulling or pushing it in the direction of data according to the current
distance. Then the minimization process applies at each step of the process the
sum

−→
f of theses forces on C, giving with the notations of Fig. 7:

−→
f =

∑N
i=0
−−−→
PiMi

By this way, at each step, the total error ES decrease and we iterate the
process until convergence, i.e. the difference of errors between two iterations is
below a fixed εo.

Contrary to a simple average of neighborhood points, the optimization per-
forms well even on partial mesh data, with missing parts or holes. Moreover, it is
possible to ponder each force with its face area in order to better balance forces
in presence of irregular sampling with variable density.

3 Reconstruction Results and Geometric Analysis

Reconstruction results. Several centerline extractions and tubular shape re-
constructions are shown on Fig. 8. Our input dataset contains several types of
metallic tubes numerized with different acquisition tools. In each case, the cen-
terline is always well delineated without the need to tune a special parameter.
When the input data is a complete or partial mesh, the normal is simply esti-
mated as the cross product of face edges. When the input data is a digital object
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Fig. 7. (left) Illustration of the process to optimize the centerline position (point C)
with elastic forces (blue arrows). Each elastic force is attached to one point of the
input mesh sector (a point Mi represented in black) and oriented in the direction of
the center of the virtual circle of center S. (right) evolution of the convergence speed
in the optimization process.

or a height map, we use the digital Voronoi Covariance Measure [9] to estimate
the normal vector. Parameters of this estimator are easily set since we know the
radius of the tubular object; they also have little influence on the result, since the
accumulation image makes the process very robust. The running time was less
than 30s for each experiment. As show on image (j) and (f), few places present
reconstruction errors. Small errors may be found near bent areas. These errors
are less related to the reconstruction method than to the physical shape under
study, since the bending machine has deformed the tube at these places.

Geometric analysis with 3D

(a) input polygonal curve (b) Tangent space representa-
tion

arc detection. We wish to seg-
ment the tubular shape into rec-
tilinear and toric parts. This pro-
blem is equivalent to segment-
ing its centerline into 3D straight
segments and 3D circular arcs. We thus extend to 3D a method presented by
Nguyen et al. [18], which was designed to cut a 2D discrete curve into straight
and circular pieces. It relies on properties of circular arcs in the tangent space
representation that are inspired from Arkin [2] and Latecki [14]. The tangent
space representation of a sequence of points C = {Ci}ni=0 is defined as follows :

Let li be the length of segment CiCi+1 and αi = ∠(−−−−→Ci−1Ci,
−−−−→
CiCi+1). Let us

consider the transformation that associates C with a polygon of R2 constituted
by segments Ti2T(i+1)1, T(i+1)1T(i+1)2, 0 ≤ i < n (upper floating figure) with:
T02 = (0, 0), Ti1 = (T(i−1)2.x + li−1, T(i−1)2.y) for i from 1 to n, and Ti2 =
(Ti1.x, Ti1.y + αi) for i from 1 to n − 1. Moreover, let M = (Mi)n−1

i=0 be the
sequence of midpoints of segments Ti2T(i+1)1 for i from 0 to n − 1. The main
idea of the arc detection method is that if C is a polygon that approximates a
circle or an arc of circle then (Mi)n−1

i=0 is a sequence of (approximately) co-linear
points [18].
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Full mesh Partial mesh
R = 6, t=6.23s, 151 444 faces R = 6, t=2.45s, 37 527 faces

Reduced scaned area Digital object
R = 6, t=4.36s, 52 914 faces R = 4.9, t=6.91s, 60 768 faces

Height map (q) straight (in light blue) and toric
R = 8,t=22.33s, 645 450 faces (in dark blue) segments.

R = 6, t=12.17s, 187 638 faces

Fig. 8. Result of reconstruction from various input data types. Images (a,g,l,p) show
the centerline by transparency through the input surface, (k) and (o) are some input
surfaces. (b,e,i,m) images are the reconstructed tubes built from the centerlines. Images
(j) and (f) show the local squared distance error between the reconstructed tube and the
input shape. Image (q) illustrates the decomposition of a tube into rectilinear and toric
parts. For all experiments, the tracking parameter and epsilon were set respectively to
R and 0.001. Running times correspond to executions on a MacBook computer with a
2,5 GHz Intel Core i7 processor.
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In our work, the sequence (Ci)i of skeleton points obtained in Section 2.3
is considered and the representation of this sequence of points in the tangent
space is computed. If the angles αk, for k from p to q, of consecutive points of
(Ck)qk=p are close to 0, these points belong to a straight line. Otherwise, the co-
linearity of the corresponding midpoints (Mk)qk=p is tested in the tangent space
by using an algorithm presented in [18]. Fig. 8 (q) shows an example of tubular
shape decomposition with this 3D variant of circular arc detection. Toric and
rectilinear parts are correctly identified.

4 Conclusion and Discussion

A new efficient and simple method was presented to solve the problem of de-
lineating the centerline of 3D tubular shapes, for various types of input data
approximating its boundary: mesh, set of voxels or height map. The method is
robust to missing parts in input data as well as perturbations: in these situations,
it still returns accurately the centerline position. To achieve this, we have de-
composed the process in three steps : 1) computing an accumulation map from
faces and their normal vectors, 2) tracking of centerline through cross-section
maximas of the accumulation map and 3) optimization of the centerline position
by a better fitting of the model to the nearest faces along the centerline. The cen-
terline was accurate enough to allow further geometric analysis. We have shown
how to decompose the tubular shape into rectilinear and toric parts by a sim-
ple adaptation of a 2D circular arc detection algorithm. The hypothesis about
constant radius parameter R only influences the skeleton position optimization.
This limitation could be resolved either by direct radius estimation from the ac-
cumulation image or by radius optimization during position optimization. This
is left for future works. The whole process was implemented with the DGtal [1]
framework and will soon be available in its companion DGtalTools.
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