41 research outputs found

    Intraoperative identification and display of cortical brain function

    Get PDF

    Automated Morphometric Characterization of the Cerebral Cortex for the Developing and Ageing Brain

    Get PDF
    Morphometric characterisation of the cerebral cortex can provide information about patterns of brain development and ageing and may be relevant for diagnosis and estimation of the progression of diseases such as Alzheimer's, Huntington's, and schizophrenia. Therefore, understanding and describing the differences between populations in terms of structural volume, shape and thickness is of critical importance. Methodologically, due to data quality, presence of noise, PV effects, limited resolution and pathological variability, the automated, robust and time-consistent estimation of morphometric features is still an unsolved problem. This thesis focuses on the development of tools for robust cross-sectional and longitudinal morphometric characterisation of the human cerebral cortex. It describes techniques for tissue segmentation, structural and morphometric characterisation, cross-sectional and longitudinally cortical thickness estimation from serial MRI images in both adults and neonates. Two new probabilistic brain tissue segmentation techniques are introduced in order to accurately and robustly segment the brain of elderly and neonatal subjects, even in the presence of marked pathology. Two other algorithms based on the concept of multi-atlas segmentation propagation and fusion are also introduced in order to parcelate the brain into its multiple composing structures with the highest possible segmentation accuracy. Finally, we explore the use of the Khalimsky cubic complex framework for the extraction of topologically correct thickness measurements from probabilistic segmentations without explicit parametrisation of the edge. A longitudinal extension of this method is also proposed. The work presented in this thesis has been extensively validated on elderly and neonatal data from several scanners, sequences and protocols. The proposed algorithms have also been successfully applied to breast and heart MRI, neck and colon CT and also to small animal imaging. All the algorithms presented in this thesis are available as part of the open-source package NiftySeg

    Automated morphometric analysis and phenotyping of mouse brains from structural µMR images

    Get PDF
    In light of the utility and increasing ubiquity of mouse models of genetic and neurological disease, I describefully automated pipelines for the investigation of structural microscopic magnetic resonance images of mouse brains – for both high-throughput phenotyping, and monitoring disease. Mouse models offer unparalleled insight into genetic function and brain plasticity, in phenotyping studies; and neurodegenerative disease onset and progression, in therapeutic trials. I developed two cohesive, automatic software tools, for Voxel- and Tensor-Based Morphometry (V/TBM) and the Boundary Shift Integral (BSI), in the mouse brain. V/TBM are advantageous for their ability to highlight morphological differences between groups, without laboriously delineating regions of interest. The BSI is a powerful and sensitive imaging biomarker for the detection of atrophy. The resulting pipelines are described in detail. I show the translation and application of open-source software developed for clinical MRI analysis to mouse brain data: for tissue segmentation into high-quality, subject-specific maps, using contemporary multi-atlas techniques; and for symmetric, inverse-consistent registration. I describe atlases and parameters suitable for the preclinical paradigm, and illustrate and discuss image processing challenges encountered and overcome during development. As proof of principle and to illustrate robustness, I used both pipelines with in and ex vivo mouse brain datasets to identify differences between groups, representing the morphological influence of genes, and subtle, longitudinal changes over time, in particular relation to Down syndrome and Alzheimer’s disease. I also discuss the merits of transitioning preclinical analysis from predominately ex vivo MRI to in vivo, where morphometry is still viable and fewer mice are necessary. This thesis conveys the cross-disciplinary translation of up-to-date image analysis techniques to the preclinical paradigm; the development of novel methods and adaptations to robustly process large cohorts of data; and the sensitive detection of phenotypic differences and neurodegenerative changes in the mouse brai

    A Longitudinal Study of Closed Head Injury: Neuropsychological Outcome and Structural Analysis using Region of Interest Measurements and Voxel-Based Morphometry

    Get PDF
    Background: The hippocampus and corpus callosum have been shown to be vulnerable in head injury. Various neuroimaging modalities and quantitative measurement techniques have been employed to investigate pathological changes in these structures. Cognitive and behavioural deficiencies have also been well documented in head injury. Aims: The aim of this research project was to investigate structural changes in the hippocampus and corpus callosum. Two different quantitative methods were used to measure physical changes and neuropsychological assessment was performed to determine cognitive and behavioural deficit. It was also intended to investigate the relationship between structural change and neuropsychology at 1 and 6 months post injury. Method: Forty-seven patients with head injury (ranging from mild to severe) had undergone a battery of neuropsychological tests and an MRI scan at 1 and 6 months post injury. T1-weighted MRI scans were obtained and analysis of hippocampus and corpus callosum was performed using region-of-interest techniques and voxel-based morphometry which also included comparison to 18 healthy volunteers. The patients completed neuropsychological assessment at 1 and 6 months post injury and data obtained was analysed with respect to each assessment and with structural data to determine cognitive decline and correlation with neuroanatomy. Results: Voxel-based morphometry illustrated reduced whole scan signal differences between patients and controls and changes in patients between 1 and 6 months post injury. Reduced grey matter concentration was also found using voxel-based morphometry and segmented images between patients and controls. A number of neuropsychological aspects were related to injury severity and correlations with neuroanatomy were present. Voxel-based morphometry provided a greater number of associations than region-of-interest analysis. No longitudinal changes were found in the hippocampus or corpus callosum using region-of-interest methodology or voxel-based morphometry. Conclusions: Decreased grey matter concentration identified with voxel-based morphometry illustrated that structural deficit was present in the head injured patients and does not change between 1 and 6 months. Voxel-based morphometry appears more sensitive for detecting structural changes after head injury than region- of-interest methods. Although the majority of patients had suffered mild head injury, cognitive and neurobehavioural deficits were evidenced by a substantial number of patients reporting increased anxiety and depression levels. Also, the findings of relationships between reduced grey matter concentration and cognitive test scores are indicative of the effects of diffuse brain damage in the patient group

    3D Segmentation of Soft Tissues by Flipping-free Mesh Deformation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automatic whole heart segmentation based on image registration

    Get PDF
    Whole heart segmentation can provide important morphological information of the heart, potentially enabling the development of new clinical applications and the planning and guidance of cardiac interventional procedures. This information can be extracted from medical images, such as these of magnetic resonance imaging (MRI), which is becoming a routine modality for the determination of cardiac morphology. Since manual delineation is labour intensive and subject to observer variation, it is highly desirable to develop an automatic method. However, automating the process is complicated by the large shape variation of the heart and limited quality of the data. The aim of this work is to develop an automatic and robust segmentation framework from cardiac MRI while overcoming these difficulties. The main challenge of this segmentation is initialisation of the substructures and inclusion of shape constraints. We propose the locally affine registration method (LARM) and the freeform deformations with adaptive control point status to tackle the challenge. They are applied to the atlas propagation based segmentation framework, where the multi-stage scheme is used to hierarchically increase the degree of freedom. In this segmentation framework, it is also needed to compute the inverse transformation for the LARM registration. Therefore, we propose a generic method, using Dynamic Resampling And distance Weighted interpolation (DRAW), for inverting dense displacements. The segmentation framework is validated on a clinical dataset which includes nine pathologies. To further improve the nonrigid registration against local intensity distortions in the images, we propose a generalised spatial information encoding scheme and the spatial information encoded mutual information (SIEMI) registration. SIEMI registration is applied to the segmentation framework to improve the accuracy. Furthermore, to demonstrate the general applicability of SIEMI registration, we apply it to the registration of cardiac MRI, brain MRI, and the contrast enhanced MRI of the liver. SIEMI registration is shown to perform well and achieve significantly better accuracy compared to the registration using normalised mutual information

    Analysis of Sub-Cortical Morphology in Benign Epilepsy with Centrotemporal Spikes

    Get PDF
    RÉSUMÉ Au Canada, l’épilepsie affecte environ 5 à 8 enfants par 3222 âgés de 2 à 37 ans dans la population globale. Quinze à 47 % de ces enfants ont une épilepsie bénigne avec des pointes centrotemporelles (BECTS), ce qui fait de BECTS le syndrome épileptique focal de l’enfant bénin le plus fréquent. Initialement, BECTS était considéré comme bénin parmi les autres épilepsies car il était généralement rapporté que les capacités cognitives ont été préservées ou ramenées à la normale pendant la rémission. Cependant, certaines études ont trouvé des déficits cognitifs et comportementaux, qui peuvent bien persister même après la rémission. Compte tenu des différences neurocognitives chez les enfants atteints de BECTS et de témoins normaux, la question est de savoir si des variations morphométriques subtiles dans les structures cérébrales sont également présentes chez ces patients et si elles expliquent des variations dans les performence cognitifs. En fait, malgré les preuves accumulées d’une étiologie neurodéveloppementale dans le BECTS, peu est connu sur les altérations structurelles sous-jacentes. À cet égard, la proposition de méthodes avancées en neuroimagerie permettrait d’évaluer quantitativement les variations de la morphologie cérébrale associées à ce trouble neurologique. En outre, l’étude du développement morphologique du cerveau et sa relation avec la cognition peut aider à élucider la base neuroanatomique des déficits cognitifs. Le but de cette thèse est donc de fournir un ensemble d’outils pour analyser les variations morphologiques sous-corticales subtiles provoquées par différentes maladies, telles que l’épilepsie bénigne avec des pointes centrotemporelles. La méthodologie adoptée dans cette thèse a conduit à trois objectifs de recherche spécifiques. La première étape vise à développer un nouveau cadre automatisé pour segmenter les structures sous-corticales sur les images à resonance magnètique (IRM). La deuxième étape vise à concevoir une nouvelle approche basée sur la correspondance spectrale pour capturer précisément la variabilité de forme chez les sujets épileptiques. La troisième étape conduit à une analyse de la relation entre les changements morphologiques du cerveau et les indices cognitifs. La première contribution vise plus spécifiquement la segmentation automatique des structures sous-corticales dans un processus de co-recalage et de co-segmentation multi-atlas. Contrairement aux approches standards de segmentation multi-atlas, la méthode proposée obtient la segmentation finale en utilisant un recalage en fonction de la population, tandis que les connaissances à prior basés sur les réseaux neuronaux par convolution (CNNs) sont incorporées dans la formulation d’énergie en tant que représentation d’image discriminative. Ainsi, cette méthode exploite des représentations apprises plus sophistiquées pour conduire le processus de co-recalage. De plus, étant donné un ensemble de volumes cibles, la méthode proposée calcule les probabilités de segmentation individuellement, puis segmente tous les volumes simultanément. Par conséquent, le fardeau de fournir un sous-ensemble de vérité connue approprié pour effectuer la segmentation multi-atlas est évité. Des résultats prometteurs démontrent le potentiel de notre méthode sur deux ensembles de données, contenant des annotations de structures sous-corticales. L’importance des estimations fiables des annotations est également mise en évidence, ce qui motive l’utilisation de réseaux neuronaux profonds pour remplacer les annotations de vérité connue en co-recalage avec une perte de performance minimale. La deuxième contribution vise à saisir la variabilité de forme entre deux populations de surfaces en utilisant une analyse morphologique multijoints. La méthode proposée exploite la représentation spectrale pour établir des correspondances de surface, puisque l’appariement est plus simple dans le domaine spectral plutôt que dans l’espace euclidien conventionnel. Le cadre proposé intègre la concordance spectrale à courbure moyenne dans un plateforme d’analyse de formes sous-corticales multijoints. L’analyse expérimentale sur des données cliniques a montré que les différences de groupe extraites étaient similaires avec les résultats dans d’autres études cliniques, tandis que les sorties d’analyse de forme ont été créées d’une manière à réduire le temps de calcul. Enfin, la troisième contribution établit l’association entre les altérations morphologiques souscorticales chez les enfants atteints d’épilepsie bénigne et les indices cognitifs. Cette étude permet de détecter les changements du putamen et du noyau caudé chez les enfants atteints de BECTS gauche, droit ou bilatéral. De plus, l ’association des différences volumétriques structurelles et des différences de forme avec la cognition a été étudiée. Les résultats confirment les altérations de la forme du putamen et du noyau caudé chez les enfants atteints de BECTS. De plus, nos résultats suggèrent que la variation de la forme sous-corticale affecte les fonctions cognitives. Cette étude démontre que les altérations de la forme et leur relation avec la cognition dépendent du côté de la focalisation de l’épilepsie. Ce projet nous a permis d’étudier si de nouvelles méthodes permettraient de traiter automatiquement les informations de neuro-imagerie chez les enfants atteints de BECTS et de détecter des variations morphologiques subtiles dans leurs structures sous-corticales. De plus, les résultats obtenus dans le cadre de cette thèse nous ont permis de conclure qu’il existe une association entre les variations morphologiques et la cognition par rapport au côté de la focalisation de la crise épileptique.----------ABSTRACT In Canada, epilepsy affects approximately 5 to 8 children per 3222 aged from 2 to 37 years in the overall population. Fifteen to 47% of these children have benign epilepsy with centrotemporal spikes (BECTS), making BECTS the most common benign childhood focal epileptic syndrome. Initially, BECTS was considered as benign among other epilepsies since it was generally reported that cognitive abilities were preserved or brought back to normal during remission. However, some studies have found cognitive and behavioral deficits, which may well persist even after remission. Given neurocognitive differences among children with BECTS and normal controls, the question is whether subtle morphometric variations in brain structures are also present in these patients, and whether they explain variations in cognitive indices. In fact, despite the accumulating evidence of a neurodevelopmental etiology in BECTS, little is known about underlying structural alterations. In this respect, proposing advanced neuroimaging methods will allow for quantitative assessment of variations in brain morphology associated with this neurological disorder. In addition, studying the brain morphological development and its relationship with cognition may help elucidate the neuroanatomical basis of cognitive deficits. Therefore, the focus of this thesis is to provide a set of tools for analyzing the subtle sub-cortical morphological alterations in different diseases, such as benign epilepsy with centrotemporal spikes. The methodology adopted in this thesis led to addressing three specific research objectives. The first step develops a new automated framework for segmenting subcortical structures on MR images. The second step designs a new approach based on spectral correspondence to precisely capture shape variability in epileptic individuals. The third step finds the association between brain morphological changes and cognitive indices. The first contribution aims more specifically at automatic segmentation of sub-cortical structures in a groupwise multi-atlas coregistration and cosegmentation process. Contrary to the standard multi-atlas segmentation approaches, the proposed method obtains the final segmentation using a population-wise registration, while Convolutional Neural Network (CNN)- based priors are incorporated in the energy formulation as a discriminative image representation. Thus, this method exploits more sophisticated learned representations to drive the coregistration process. Furthermore, given a set of target volumes the developed method computes the segmentation probabilities individually, and then segments all the volumes simultaneously. Therefore, the burden of providing an appropriate ground truth subset to perform multi-atlas segmentation is removed. Promising results demonstrate the potential of our method on two different datasets, containing annotations of sub-cortical structures. The importance of reliable label estimations is also highlighted, motivating the use of deep neural nets to replace ground truth annotations in coregistration with minimal loss in performance. The second contribution intends to capture shape variability between two population of surfaces using groupwise morphological analysis. The proposed method exploits spectral representation for establishing surface correspondences, since matching is simpler in the spectral domain rather than in the conventional Euclidean space. The designed framework integrates mean curvature-based spectral matching in to a groupwise subcortical shape analysis pipeline. Experimental analysis on real clinical dataset showed that the extracted group differences were in parallel with the findings in other clinical studies, while the shape analysis outputs were created in a computational efficient manner. Finally, the third contribution establishes the association between sub-cortical morphological alterations in children with benign epilepsy and cognitive indices. This study detects putamen and caudate changes in children with left, right, or bilateral BECTS to age and gender matched healthy individuals. In addition, the association of structural volumetric and shape differences with cognition is investigated. The findings confirm putamen and caudate shape alterations in children with BECTS. Also, our results suggest that variation in sub-cortical shape affects cognitive functions. More importantly, this study demonstrates that shape alterations and their relation with cognition depend on the side of epilepsy focus. This project enabled us to investigate whether new methods would allow to automatically process neuroimaging information from children afflicted with BECTS and detect subtle morphological variations in their sub-cortical structures. In addition, the results obtained in this thesis allowed us to conclude the existence of the association between morphological variations and cognition with respect to the side of seizure focus

    Development and evaluation of biomarkers in Huntington’s Disease: furthering our understanding of the disease and preparing for clinical trials

    Get PDF
    Huntington’s Disease (HD) is a devastating hereditary neurodegenerative disease for which there are currently only symptomatic treatments. Several potentially curative pharmaceutical and genetic therapies are however in varying stages of development and therefore an increasing number of large-scale clinical trials of disease-modifying therapies are imminent. There is consequently a need for biomarkers which are sensitive to beneficial attenuation of disease-related changes. Functional, neuroimaging and biochemical biomarkers have been developed in HD (Andre et al. 2014;Weir et al. 2011). Neuroimaging biomarkers are strong candidates based on their clear relevance to the neuropathology of disease, proven precision and superior sensitivity compared with some standard functional measures (Tabrizi et al. 2011;Tabrizi et al. 2012). Their use in early-stage clinical trials, as surrogate end-points providing initial evidence of biological effect, is becoming increasingly common. Comparison of biomarkers in HD will help to clarify which measures, over varying time intervals, are most sensitive to disease progression. Additionally, the identification of robust fully-automated methods, comparable to manual and semi-automated gold-standards, would facilitate large-scale volumetric analysis. These methods however require validation in observational studies of neurodegenerative disease before they can be applied to sensitive clinical trial data. This thesis will develop and evaluate biomarkers for use in HD; both furthering our understanding of the disease and in preparation for use as end-points in clinical trials. A direct comparison of the sensitivity of diffusion and volumetric imaging biomarkers to HD-related change will be reported for the first time. Several exploratory imaging investigations are also described which enhance current knowledge of the relationship between neuroimaging metrics, brain functioning and behaviour, additionally strengthening the argument for the clinical relevance of neuroimaging measures as surrogate end-points in HD. The thesis will conclude with a comprehensive biomarker evaluation in early-stage HD, along with suggested strategies for selection of primary and secondary trial end-points based on effect sizes and corresponding sample size requirements

    A longitudinal study of closed head injury : neuropsychological outcome and structural analysis using region of interest measurements and voxel-based morphometry

    Get PDF
    Background: The hippocampus and corpus callosum have been shown to be vulnerable in head injury. Various neuroimaging modalities and quantitative measurement techniques have been employed to investigate pathological changes in these structures. Cognitive and behavioural deficiencies have also been well documented in head injury. Aims: The aim of this research project was to investigate structural changes in the hippocampus and corpus callosum. Two different quantitative methods were used to measure physical changes and neuropsychological assessment was performed to determine cognitive and behavioural deficit. It was also intended to investigate the relationship between structural change and neuropsychology at 1 and 6 months post injury. Method: Forty-seven patients with head injury (ranging from mild to severe) had undergone a battery of neuropsychological tests and an MRI scan at 1 and 6 months post injury. T1-weighted MRI scans were obtained and analysis of hippocampus and corpus callosum was performed using region-of-interest techniques and voxel-based morphometry which also included comparison to 18 healthy volunteers. The patients completed neuropsychological assessment at 1 and 6 months post injury and data obtained was analysed with respect to each assessment and with structural data to determine cognitive decline and correlation with neuroanatomy. Results: Voxel-based morphometry illustrated reduced whole scan signal differences between patients and controls and changes in patients between 1 and 6 months post injury. Reduced grey matter concentration was also found using voxel-based morphometry and segmented images between patients and controls. A number of neuropsychological aspects were related to injury severity and correlations with neuroanatomy were present. Voxel-based morphometry provided a greater number of associations than region-of-interest analysis. No longitudinal changes were found in the hippocampus or corpus callosum using region-of-interest methodology or voxel-based morphometry. Conclusions: Decreased grey matter concentration identified with voxel-based morphometry illustrated that structural deficit was present in the head injured patients and does not change between 1 and 6 months. Voxel-based morphometry appears more sensitive for detecting structural changes after head injury than region- of-interest methods. Although the majority of patients had suffered mild head injury, cognitive and neurobehavioural deficits were evidenced by a substantial number of patients reporting increased anxiety and depression levels. Also, the findings of relationships between reduced grey matter concentration and cognitive test scores are indicative of the effects of diffuse brain damage in the patient group.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore