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Abstract

Medical image segmentation has been a very hot research topic over many years. In

general, it is a highly challenging problem. Medical images usually have inhomogeneous

voxel intensities. Boundaries of target objects may be indistinct in some regions. The

shapes of the target objects can be very complex in 3D, and they may have large variance

across different patients. Moreover, medical volume images usually contain 50 to 100

million voxels per data set, which is very challenging for a segmentation algorithm. Many

existing segmentation algorithms are often plagued by the problems mentioned above.

They tend to produce undesired segmentation results. Many of them resort to a global

shape constraint, which enable the segmentation result to resemble a normal shape in such

low contrast regions. This strategy succeeds when the shapes of the target objects are

regular, i.e., close to the normal shape. However, shapes of soft organs are highly variable

across different patients. They are in general very difficult to be modelled statistically

even with a large number of training samples because the shape variations have huge

number of degrees of freedom. With limited number of training samples, they usually

cannot achieve accurate results when segmenting such very different shapes.

This thesis presents a novel approach to the segmentation of soft tissues in 3D vol-

ume images. The proposed approach uses a specially designed 3D quadrilateral mesh

to explicitly represent and segment an object, which is much more efficient compared

to voxel-based segmentation algorithms. Segmentation is achieved by evolving the mesh

to register to the desired object boundary. The mesh evolution-based segmentation is

significantly more efficient than volumetric approaches. The proposed algorithm does

not require any shape constraints, and is flexible for segmenting target organs with large

shape variations among patients.

Test results on using the single-object segmentation algorithm to segment various

abdominal organs show that the proposed algorithm achieved higher accuracy than other

segmentation algorithms such as snake, level set and graph-cut in segmenting individual

organs. It is also more time efficient.

The proposed approach can be extended to segmenting multiple organs simultane-

ously. As the meshes for different organs constraint each other, the proposed approach

is free from the over-segmentation problem. It has no leaking problem and is more noise
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resilient.

Test results on the multiple-object segmentation algorithm demonstrate that it is able

to segment multiple objects simultaneously and to improve the segmentation accuracy

by overcoming the leakage problem that may happen in single-object segmentation.
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Chapter 1

Introduction

1.1 Motivation

Segmentation is a very crucial and the most fundamental stage in medical imaging work

flow, which may include other stages such as quantification, visualization and simulation.

It is not only because segmentation is the very first stage in the work flow, but also

because the accuracy of segmentation will affect greatly the accuracy of subsequent stages.

Therefore, research about medical image segmentation is of particular importance.

In general, segmentation of medical images is a very difficult and challenging task.

As shown in a 2D abdominal CT slice (Fig. 1.1), pixel or voxel intensities are often

inhomogeneous even within the target object (blue dashed box). This suggests that

intensity values of the target object can not be modelled easily. Object boundaries at

some locations may be indistinct (red solid boxes). Such inhomogeneous regions and

indistinct boundaries either prevent these algorithms from capturing fully the target

organs or cause the algorithms to leak out of the target region.

The problem is even more challenging for segmenting 3D soft tissues in 3D volume

images, because soft tissues in 3D have complex shapes in general. Many soft tissues

including brain, liver, kidney etc., contain deeply concave part. Moreover, the 3D shapes

of soft tissues may vary greatly from patient to patient.

Many existing segmentation algorithms are based on local features. These algorithms

are fast and easy to use, but are prone to over-segmentation. An over-segmented result

produced by the watershed algorithm is shown in Fig. 1.2(b), where colored regions

1
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Figure 1.1: Medical image characteristics. Blue dashed box: pixel intensities inside the
target object (liver) are highly inhomogeneous. Red solid boxes: object boundaries in
some locations are indistinct.

represent different image segments.

In comparison, deformable model-based algorithms usually have one model for one

target object. If these algorithms are topology-preserving, the segmentation result will

contain a single region only. Therefore, they are free from over-segmentation. These

models, if not deformed properly, will not stop at the boundary location of the target

object. If the model infiltrates into the neighboring objects, the leakage problem occurs.

This can be illustrated by Fig. 1.3, where the segmented liver boundary (solid red curve)

infiltrates into the kidney region.

Many existing image segmentation methods segment only one single target object.

These methods include region growing, classification and active contours, active shape

and appearance models, etc. These methods are usually very efficient in terms of tempo-

ral complexity. However, these segmentation methods have several intrinsic limitations

which may have problems in segmentation of complex medical images. Firstly, they usu-

ally assume that the region to be segmented is homogeneous inside and inhomogeneous

at its boundary. However, this assumption is often invalid for many complex medical

2
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(a) (b)

Figure 1.2: Result of the watershed algorithm. Over-segmentation is clearly visible.
(a) The input image. (b) The segmentation result (from http://www.itk.org/HTML/

WatershedSegmentationExample.html).

images. As discussed above, Fig. 1.1 shows that the region inside the liver is highly

inhomogeneous, and some boundaries between liver and neighboring organs are almost

indistinct. Such inhomogeneous regions and indistinct boundaries either prevent these

algorithms from capturing the target organs fully or cause the algorithm to leak out.

Secondly, some methods such as active shape models rely on shape priors to aid segmen-

tation. Nevertheless, these methods require a large number of training samples. This

is often impractical for anatomical structures such as soft tissues since their shapes are

highly variable.

Some image segmentation methods such as thresholding, graph cut, etc., can segment

multiple regions at the same time. Segmentation results of these segmentation methods

may contain multiple regions. However, these regions are of the same properties. They

have either similar intensity distributions or similar texture patterns. On the contrary,

different target organs may not exhibit similar properties which can be handled by these

algorithms.

Some segmentation methods deal with multiple objects at the same time. A fraction

of them segment multiple objects one by one. Each object is in fact segmented using

the same algorithm such as region growing, classification and active contours, etc. Such

multiple-object segmentation algorithms are natural transitions from the single-object

segmentation algorithms. They are easy to be implemented and intuitive. However,

inter-object relationships are not taken into account during segmentation, such that seg-

3
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Figure 1.3: Leakage problem. The segmented liver boundary (solid red curve) leaks out
of its real boundary (dashed blue curve) into the kidney region.

mentation for each object is not well constrained. In comparison, some methods consider

multiple-object segmentation as a whole. All the target objects are segmented simulta-

neously, and overlap between different objects are discouraged during the segmentation

process. These methods try to solve the medical image segmentation problem in a global

perspective. These methods are in general more promising to solve the complex medical

image segmentation problem because more information is utilized to constrain segmen-

tation. Existing segmentation methods often impose certain shape priors on each target

object. They also require a large number of training samples and are difficult to segment

objects with highly variable shapes.

There also exist several commercial systems for medical image segmentation, for in-

stance, PathFinder (Fig. 1.4) and IntraSense (Fig. 1.5) for liver segmentation. Detailed

algorithms and source code for most commercial systems are not available. From the

users’ point of view, they are very similar to the region growing algorithm with multiple

initial seeds. They are fast and can be implemented easily. The initial segmentation

results are usually crude, and require manual touch-ups. The touch-up stage usually

includes adding more seeds to increase the target region, or remove some regions that do

not belong to the target. Such a stage sometimes takes a considerable amount of time for

4
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Figure 1.4: PathFinder. Image from http://www.pathsurg.com.

Figure 1.5: IntraSense Myrian software. Image from http://www.intrasense.fr.

users to get an accurate final result. Open source medical image segmentation systems,

e.g., ITK-SNAP [YPCH+06], provides its users with a semi-automatic segmentation en-

vironment based on the level set method. Its level set implementation will be used as a

comparison to the proposed algorithm.

5
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Figure 1.6: ITK-SNAP. Image from http://www.itksnap.org.

1.2 Thesis Objectives

To overcome the limitations of existing segmentation methods, this thesis presents a novel

approach to the segmentation of soft tissues in 3D volume images. The proposed approach

uses a 3D mesh to explicitly represent and segment an object, which is much more

efficient compared to voxel-based segmentation algorithms. Segmentation is achieved by

evolving the mesh to register to the desired object boundary. The mesh evolution-based

segmentation is significantly more efficient than volumetric approaches. The proposed

algorithm does not require any shape constraints, and is flexible for segmenting target

organs with large shape variations among patients. In addition, the proposed approach

can be extended to segmenting multiple organs simultaneously. As the meshes for different

organs constraint each other, the proposed approach is free from the over-segmentation

problem. It has no leaking problem and is more noise resilient.

The major contributions of this research include the following:

• Developed an efficient flipping-free mesh deformation algorithm based on Laplacian

mesh deformation.

6
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• Applied the mesh deformation algorithm to efficiently segment soft organs in medi-

cal volume images. The algorithm can be applied to the segmentation of soft organs

of various shapes.

• Extended the segmentation algorithm to segmenting multiple target objects simul-

taneously. The algorithm constructs a deformation band for each target object

so that inter-object mesh intersection can be avoided. It prevents the segmented

region of one object leaking into another.

1.3 Thesis Organization

To clarify the intrinsic problem of 3D mesh deformation, Chapter 2 presents some tra-

ditional mesh editing and deformation algorithms and possible problems during mesh

deformation. In Chapter 3, a detailed review of existing medical image segmentation

algorithms is presented. The strength and weakness of these methods are discussed. To

overcome the weakness of existing medical image segmentation algorithms, this thesis

presents a novel 3D segmentation algorithm using flipping-free mesh deformation. Chap-

ter 4 presents the flipping-free mesh deformation algorithm based on a specially designed

quadrilateral mesh model. This quadrilateral mesh facilitates the detection and avoidance

of flippings during mesh deformation. Chapter 5 presents the 3D segmentation algorithm

based on the flipping-free mesh deformation algorithm. The algorithm can be applied

to segmenting soft organs of various shapes. The segmentation algorithm is extended in

Chapter 6 to segment multiple soft organs in volume images simultaneously. Chapter 7

concludes this thesis and discusses possible future works for the current algorithm.

7



Chapter 2

Mesh Editing and Deformation

Mesh deformation is an important component of the proposed segmentation method. In

computer graphics, 3D mesh is manipulated by mesh editing algorithms to change its

shape, resulting in mesh deformation. This chapter reviews existing 3D mesh editing

methods and a tricky issue relating to mesh deformation, i.e., self-intersection of mesh

(Section 2.2).

2.1 Generic Mesh Editing Methods

Many mesh editing methods have been proposed in the computer graphics community,

among which free-form deformation-based methods and differential geometry-based meth-

ods are the most widely adopted due to their efficiency and ease of use in 3D object

modelling.

2.1.1 Free-form Deformation

Free-form deformation (FFD) [SP86] deforms a 3D object by altering its underlying 3D

space enclosing the object. The 3D space is sub-divided into parallelpiped regions. The

vertices of these regions function as control points. The deformation of mesh is specified

by displacing the control points to some new locations. The deformed mesh vertices

are then computed based on a trivariate tensor product of Bernstein polynomial. FFD

can work with surface mesh of any degrees, and is in general easy to use. However,
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the deformation is based on moving the control points that are usually not on the mesh

surface. This makes complex deformation of mesh vertices difficult.

In order to ease this problem, and make FFD method more intuitive, direct manip-

ulation of FFD (DMFFD) [HHK92] is proposed. In contrast, DMFFD deforms a 3D

mesh by moving its mesh vertices directly. This is done by representing displacements of

control points by the displacements of mesh vertices using pseudo-inverse matrices. Such

representations allow natural manipulation of mesh itself during modelling.

2.1.2 Differential Geometry Methods

Apart from FFD-based methods, differential geometry mesh editing methods such as

Laplacian-based [SLCO+04] and Poisson-based methods [YZX+04] are also quite popular.

Laplacian-based methods deform a target mesh by displacing some of its vertices to the

designated locations, and try to keep the geometry properties for the rest of the vertices.

By operating on the mesh vertices directly, the deformation is efficient and intuitive.

Poisson-based methods deform a mesh by setting some boundary conditions of a target

region and manipulating the gradient field inside the region. These methods are often used

to combine 2 meshes into a new one, in which the first mesh provides a boundary condition

and the second mesh provides a gradient field within the corresponding boundary.

2.2 Self-intersection of 3D Mesh

Self-intersection problem may happen if a mesh is not deformed properly. Fig. 2.2 shows

a registration of a spherical mesh to a 3D volume (a) resulting in a deformed mesh with

self-intersection problem (b). The deformation is done by displacing vertices naively, i.e.,

moving vertices directly to their designated locations.

A closer look at this problem reveals that it is caused by displacing two neighboring

vertices along “opposite” directions. This can be demonstrated using a 2D case as shown

in Fig. 2.2(a). The vertices on mesh modelM have their estimated corresponding point on

the surface of target object T . Displacing vertices directly based on these correspondences

results in surface normal flipping of the deformed mesh M ′ (red). A more complicated

situation which involves more vertices is illustrated in Fig. 2.2(b).
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(a) (b)

Figure 2.1: Self-intersection problem. (a) Initialization for a binary volume image. (b)
Surface normal flippings occur due to the self-intersection problem.

(a) (b)

Figure 2.2: Flip of surface normals (arrows). It may occur when deforming a mesh surface
(M) towards the surface (dash dotted line) of a target volume object (T ) according to
the estimated vertex displacement directions (dashed lines). (a) A flip caused by two
neighboring vertices. (b) Multiple flips caused by multiple neighboring vertices.
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2.3 Handling of Self-intersection Problem

Below we discuss the segmentation methods based on mesh deformation and focus on their

strategies for handling self-intersections. There are two general approaches to handle self-

intersection of 3D mesh: (1) detection and resolution of self-intersection and (2) avoidance

of self-intersection.

2.3.1 Detection and Resolution of Self-intersection

Some existing segmentation frameworks detect the self-intersections actively but solve

them using simple and straightforward methods. The T-snake model [MT99] discretizes

the space underlying the mesh into grids and detects self-intersections after deformation

by tracking the status of the underlying grid points. It resolves self-intersections by

cancelling such an deformation and exerting repulsion forces for the mesh vertices. The

method in [LM98] imposes proximity conditions between mesh vertices. By displacing

mesh with a very small step size, violation of proximity conditions is detected, and the

model is remeshed to remove self-intersections. The methods in [DM01, JSC04, ZBH07]

detect self-intersections based on collision detection and resolve them by remeshing. In

general, collision detection and remeshing are computationally expensive, and they con-

tribute to most of the computational costs of the algorithms.

2.3.2 Avoidance of Self-intersections

Under Free-Form Deformation (FFD) [SP86], self-intersections can be avoided by im-

posing injectivity condition [HF98, CL00] on the deformation function. The injectivity

condition confines the displacements of FFD control points within regions that do not in-

cur self-intersections. For segmentation, directly displacing mesh vertices, as in Directly

Manipulated FFD [HHK92], is preferred so that the mesh surfaces can be accurately

aligned to the target boundaries. Unfortunately, it is nontrivial to derive the injectivity

condition of mesh vertices from that of the control points. Moreover, the injectivity con-

dition limits the displacements of control points to short ranges, resulting in very slow

convergence.

Another approach is to compute a diffeomorphic deformation function [KAB+05,

11



3D Segmentation of Soft Tissues 2. Mesh Editing and Deformation.

ZRA+08]. As a diffeomorphic function and its inverse are one-to-one and smooth, the

topology of the mesh model will be kept. As a result, self-intersections are avoided. How-

ever, computation of the diffeomorphic function is expensive, especially when it is applied

to the segmentation of complex and noisy 3D volume images.

Observing that the flipping problem can be circumvented for 2D deforming contour

(polygon) by imposing certain constraints, we propose a special quadrilateral mesh where

contours can be easily defined. Based on the regularity of this mesh, the surface flipping

problem can be solved.
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Chapter 3

Related Work

In this chapter, a detailed review of existing medical image segmentation methods is

given. There exist many possible criteria for categorizing these segmentation methods.

This thesis focuses on (a) the interaction mode used and (b) the types of models those

algorithms relying on.

The review begins with a discussion of the user interaction mode of existing segmen-

tation methods. i.e., manual (Section 3.1.1), interactive (Section 3.1.2), semi-automatic

(Section 3.1.3) and automatic (Section 3.1.4). Then based on the types of models used, ex-

isting segmentation algorithms are categorized into (1) local feature-based (Section 3.2.1),

(2) deformable model-based (Section 3.2.2) and (3) atlas-based algorithms (Section 3.2.3).

Both advantages and disadvantages of these methods are discussed.

3.1 User Interaction Mode

In general, based on how many human labors are involved, existing segmentation meth-

ods can be categorized into manual, interactive, semi-automatic and automatic methods.

Manual segmentation methods require full human labors, whereas automatic segmenta-

tion methods require none.
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3.1.1 Manual Segmentation Methods

Manual segmentation methods require doctors to either draw the contours or paint the

regions of the corresponding tissues on computer screens, completely by hand. Manual

segmentation was used to quantify soft and rigid tissues in dual energy x-ray images

[BAA09]. Manual segmentation was also used in [JAA+95, CMA+98, CMB+98] for ra-

diotherapy planning of prostate cancer. Results of manual segmentation are usually con-

sidered the most accurate, and are often used as the ground truth data to evaluate other

segmentation methods. However, manual segmentation methods are very time consum-

ing. Some researchers reported that manual segmentation of series of 1500–2000 images

of 512×512 pixels usually takes two to four hours [SCK+03]. Besides, different users often

give different segmentations of the same image (inter-observer variability), and a single

user may give different segmentations of the same image at different times (intra-observer

variability). An inter-observer variability of 14-22% measured in disagreement ratio was

reported [KWJK98].

3.1.2 Interactive Segmentation Methods

Interactive segmentation methods require doctors to give user input interactively during

segmentation process. If doctors are not satisfied with current segmentation results, they

can give new initializations or parameter values based on previous segmentation results.

These methods can re-compute the results accordingly until an accurate enough result

is produced. These methods are usually very time efficient, and are able to provide fast

feedback to users. They are widely adopted clinically. Accuracy of interactive segmen-

tation methods depends heavily on how much interaction is involved. In general, more

accurate segmentation results can be obtained as more interaction is given. [LMT99]

introduce hard constraints on the snake algorithm. interactively place seed points along

the boundary of the object of interest. [LMT99] manual markup representing foreground

and background of liver tumor, then perform segmentation using graph-cut. If the results

are not satisfying, the user can adjust the manual markup and re-compute segmentation.

Commercial products like PathFinder and IntraSense also segment objects of interest

interactively. They usually incorporate manual touch-up stages, so that users have chance

to modify the results when segmentation is not carried out ideally. The touch-up stage
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usually includes adding more seeds to increase the target region, or mark up some regions

that are not part of the target.

3.1.3 Semi-automatic Segmentation Methods

Semi-automatic segmentation methods [SS04, AB94, YYJH+92, PT01, vGBvR08, KWT88,

XP98, Set99a] require doctors to provide certain degree of initialization, and properly set

parameter values. Semi-automatic methods are similar to interactive methods since hu-

man labors are involved. Compared to interactive methods, semi-automatic methods

do not require users to provide further input and re-compute the results. Both interac-

tive methods and semi-automatic methods are trade offs between fully manual and fully

automatic methods.

3.1.4 Automatic Segmentation Methods

Automatic segmentation methods [GW01, GT95, HAHR08, BL79, BMGNJM+97, FLC91,

XXE+08, TB92, HKR+08, MTA+08, TT07] require no user input. a computer program

does segmentation fully automatically, without any user input. Therefore, segmentation

results of automatic methods are not affected by the users, and the results are repeat-

able. Automatic methods can also save human labors. However, automatic segmentation

methods still have several difficulties which hinders their clinical usage. First, large in-

tensity variance of same target tissue across different patients may happen due to (1)

different image acquisition machine, (2) diverse tissue properties across patients and (3)

different stages of diseases. Second, large shape variance of the same target tissue across

different patients. The shape variance roots from either normal shape variance of different

patients or deformed shapes due to diseases and operations. Thirdly, amount of image

noise is varied. These difficulties usually cause the automatic segmentation methods not

as robust.

3.1.5 Summary

All these types of interactions have their pros and cons. Manual segmentation methods

are accurate, but require user input, which is time consuming. In comparison, automatic
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segmentation approaches are not affected by individual users. However, they are generally

not robust enough, and thus cannot be adopted for clinical use at the present stage.

As a trade-off between manual segmentation and fully-automatic segmentation, inter-

active and semi-automatic methods require minimum user input, thus reducing the inter-

and intra-observer variabilities.

As a matter of fact, for some of the algorithms, these types of interactions may be

interchangeable depend on the their implementations. For example, if a robust initializa-

tion methods can be given, semi-automatic/interactive methods may be converted into

fully automatic methods. If users are not satisfied with the results of fully automatic

methods, they can manually touch up the results, which in fact converts the automatic

methods into interactive/semi-automatic.

This thesis presents a semi-automatic segmentation algorithm which simply requires

its user to place an initial sphere model inside the target object. It can handle large

intensity and shape variance. It is possible to be converted into fully automatic if such

initialization can be carried out robustly and automatically.

3.2 Model Type

Based on the types of model used, existing medical image segmentation methods can be

categorized into model-less, local feature-based (Section 3.2.1), deformable model-based

(Section 3.2.2) and atlas-based (Section 3.2.3).

3.2.1 Local Feature-based (No Model)

Model-less methods, as the name implies, do not rely on any model. These methods

generally make use of local features. They can be further classified into the following

sub-categories [PXP98, Rog00]: thresholding, edge-based, region-based, graph-based and

classification-based.
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(a) (b) (c)

Figure 3.1: Adaptive thresholding. (a) Input image with strong illumination gradient.
(b) Result of global thresholding at t = 80. (c) Adaptive thresholding using 140 × 140
window (from http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm).

Thresholding

Thresholding [SS04] is one of the most basic segmentation techniques. Given an image

I, thresholding method tries to find a threshold t such that pixels with intensity values

greater than or equal to t are categorized into one group, and the rest of the pixels into

the other group. Thresholding requires that the intensity of the image has a bimodal

distribution, and performs well on simple images with such a distribution. However,

most of the medical images do not have bimodal intensity distribution. In this case,

thresholding cannot correctly partition the images into various anatomical structures.

Uneven illumination is another factor that affects the performance of thresholding.

Adaptive thresholding [GW01] handles this problem by subdividing an image into mul-

tiple sub-images and applying different thresholds on the sub-images (Figure 3.1). The

problem with adaptive thresholding is how to subdivide the image and how to estimate

the threshold for each sub-image.

In general, thresholding algorithms do not consider the spatial relationship between

pixels. Moreover, the segmentation result is quite sensitive to noise. Thresholding alone

is seldom used for medical image segmentation. Instead, it usually functions as an image

pre-processing step as in [GT95].

Edge-based

Edge-based segmentation algorithms use edge detectors to find object boundaries in the

image. Traditional Sobel edge detector [GW01] uses a pair of 3 × 3 convolution kernels
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to compute the first order derivatives (gradients) along the x- and y-directions of the

2-D image. Instead of computing first order derivatives, the Laplacian computes the

second order derivatives of the image. Usually, the Laplacian is not applied directly on

the image since it is sensitive to noise. It is often combined with a Gaussian smoothing

kernel, which is then referred to as the Laplacian of Gaussian (LoG) function. Bomans

et al. [BHTR90] used a 3-D extension of the LoG to segment brain structures in 3-D

MR images. Goshtasby and Turner [GT95] used this operator to extract the ventricular

endocardial boundary in cardiac MR images. Similarly, 3D Log-Gabor filter bank was

used to extract ridge features which correspond to tissue/bone interface in 3D ultrasound

image [HAHR08].

More advanced edge detectors have been proposed in the computer vision literature.

Canny edge detector [Can86] uses a double-thresholding technique. A higher threshold t1

is used to detect edges with strict criterion, and a lower threshold t2 is used to generate a

map that helps to link the edges detected in the former step. Harris proposed a combined

corner and edge detector known as the Harris detector [HS88], which finds the edges based

on the eigenvalues of the Hessian matrix.

Edge-based image segmentation algorithms are sensitive to noise and tend to find

edges that are irrelevant to the real boundary of the object. Moreover, the edges extracted

by edge-based algorithms are disjoint and cannot completely represent the boundary of

an object. Additional processing is needed to connect them to form closed and connected

object regions.

Region-based

Typical region-based segmentation algorithms include region growing and watershed.

A. Region Growing. The region growing algorithm begins with selecting n seed pixels.

The seed pixel can be selected either manually or by certain automatic procedures, e.g.,

the converging square algorithm [OS83] as applied in [AB94]. The converging square

algorithm recursively decomposes an n×n square image into four (n−1)× (n−1) square

images and continues with the one with maximum intensity density. This procedure is

repeated until a single point remains. After the seed pixels are selected, each seed pixel

18



3D Segmentation of Soft Tissues 3. Related Work

i is regarded as a region Ai, i ∈ {1, 2, . . . , n}. The region growing algorithm then adds

neighboring pixels to the regions with similar image features, thereby growing the regions.

The choice of homogeneity criterion is crucial for the success of this algorithm. A

homogeneity criterion proposed by Adams and Bischof [AB94] is the difference between

the pixel intensity and the mean intensity of the region. Yu et al. [YYJH+92] proposed

to use the weighted sum of gradient and the contrast between the region and the pixel

as the homogeneity criterion. Pohle and Toennies [PT01] proposed an adaptive region

growing algorithm that incorporates a homogeneity learning process instead of using a

fixed criterion. Ginneken et al. [vGBvR08] labelled airway trees from thoracic CT images

using region growing.

Region growing algorithms are fast, but may produce undesired segments if the images

contain much noise. Furthermore, region-based algorithms will segment objects with

inhomogeneous region into multiple sub-regions, resulting in over-segmentation.

B. Watershed. The watershed algorithm is another region-based image segmentation

approach originally proposed by Beucher and Lantuéjoul [BL79]. It is a popular seg-

mentation method coming from the field of mathematical morphology. According to

Serra [Ser82], the watershed algorithm can be intuitively thought of as a landscape or

topographic relief that is flooded by water. The height of the landscape at each point

represents the pixel’s intensity. Watersheds are the dividing lines of the catchment basins

of rain falling over the regions. The input of the watershed transform is the gradient of

the image, so that the catchment basin boundaries are located at high gradient points

[RM01].

The watershed transform has good properties that make it useful for many image

segmentation applications. It is simple and intuitive. It can also be parallelized [RM01],

and always produces a complete division of the image. However, it has several major

drawbacks. It can result in over-segmentation (Figure 3.2) because each local minimum,

regardless of the size of the region, will form its own catchment basin. It is also sensi-

tivity to noise. Moreover, watershed algorithm does not perform well at detecting thin

structures and structures with low signal-to-noise ratio [GMA+04].

To improve the performance of the watershed algorithm, Najman and Schmitt [NS96]
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(a) (b)

Figure 3.2: Result of the watershed algorithm. Over-segmentation is clearly visible.
(a) The input image. (b) The segmentation result (from http://www.itk.org/HTML/

WatershedSegmentationExample.html).

proposed to use morphological operations to reduce over-segmentation. Grau et al.

[GMA+04] encoded prior information into the algorithm. Part of its cost function is

changed from the gradient between two pixels to the difference of posterior probabilities

of having an edge between two pixels given their intensities as the prior information. Weg-

ner et al. [WHOF96] proposed to perform a second watershed transform on the mosaic

image generated by the first watershed transform to reduce over-segmentation.

Graph-based

Graph-based approach is relatively new in the area of image segmentation. The common

theme underlying this approach is the formation of a weighted graph, where each vertex

corresponds to a pixel or a region and each edge is weighted with respect to the similarity

between neighboring pixels or regions. A graph G = (V,E) can be partitioned into two

disjoint sets A and B, where A ∪ B = V and A ∩ B = ∅, by removing edges between

them. Graph-based algorithms try to minimize certain cost functions, such as a cut,

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (3.2.1)

where w(u, v) is the edge weight between u and v.

Wu and Leahy proposed the minimum cut in [WL93]. A graph is partitioned into

k sub-graphs such that the maximum cut across the subgroups is minimized. However,

based on this cutting criterion, their algorithm tends to cut the graph into small sets of
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nodes because the value of Eq. (3.2.1) is, to some extent, proportional to the size of the

sub-graphs. To avoid this bias, Shi and Malik [SM00] proposed the normalized cut with

a new cost function Ncut,

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(3.2.2)

where assoc(X, V ) =
∑

u∈X,t∈V w(u, t) is the total connection from nodes inX to all nodes

in the graph. In [WS03], Wang and Siskind further improved the graph cut algorithm,

and proposed a new cost function for general image segmentation, namely Ratio Cut.

This scheme finds the minimal ratio of the corresponding sums of two different weights

associated with edges along the cut boundary in an undirected graph:

Rcut(A,B) =
c1(A,B)

c2(A,B)
(3.2.3)

where c1(A,B) is the first boundary cost that measures the homogeneity of A and B,

and c2(A,B) is the second boundary cost that measures the number of links between A

and B. A polynomial-time algorithm is also proposed.

Boykov and Jolly [BJ01] used graph cuts for interactive organ segmentation, e.g.,

bone removal from abdominal CT images. Their segmentation is initialized with some

manual “clicks” and “strokes” on object regions and backgrounds (Figure 3.3). These

clicks and strokes are regarded as seed points, which provide hard constraints for the

segmentation, and intensity distributions for the object and the background. This infor-

mation is later integrated into the proposed graph cut cost function, which is minimized

during segmentation.

Zheng et al. [ZBE+07] proposed to refine the manual coarse segmentation of breast

tumor in MR images using the graph-cut algorithm.

Wels et al. [WCA+08] applied probabilistic boosting trees [Tu05] to compute the

probability of a voxel as foreground or background. The computed probability was then

used in the graph-cut algorithm to segment brain tumors.

Compared to region-based segmentation algorithms, graph-based segmentation algo-

rithms tend to find the global optimal solutions, while region-based algorithms are based

on greedy search. Since graph-based algorithms try to find the global optimum, they are

computationally expensive.
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Figure 3.3: Bone removal in a CT image using interactive graph cut [BJ01]. The regions
marked by “O” and “B” are manually initialized as object and background respectively.
Bone segments are marked by horizontal lines.

The performance of the graph cut method is quite good for images whose foreground

and background intensities are well separable, but often unsatisfactory when the fore-

ground and the background share similar color distributions. Another limit for the graph

cut based method lies in its underlying assumption that an object’s shape is best described

by the shape with smallest boundary length, which does not hold for sophisticated shapes

in medical images.

Classification-based

Ren and Malik proposed to train a classifier to separate “good segmentation” from “bad

segmentation” [RM03]. The criteria used for classification include texture similarity,

brightness similarity, contour energy and curvilinear continuity, etc. A pre-processing step

which groups pixels into “super-pixels” is used to reduce the size of the problem, which

adopts the normalized cut [SM00]. For classification, human segmented natural images

are used as positive examples, while negative examples are constructed by randomly

matching human segmentations and the images. Based on the trained classifier, the
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Figure 3.4: Fuzzy membership functions for linguistic descriptions dark, dim, medium-
bright and bright [FLC91], c1–c4 are the intensity values at which the respective mem-
bership function reaches its maximum.

algorithm groups “super-pixels” into segments.

Fuzzy reasoning methods are proposed to detect the cardiac boundary automatically

[BMGNJM+97, FLC91]. These methods begin with the application of the Laplacian-

of-Gaussian to obtain the zero-crossings of the image. High-level knowledge is usually

represented in linguistic form. For example, intensities are described as “dark”, “dim”,

“medium bright” or “bright”. Fuzzy sets are developed based on the fuzzy membership

functions of these linguistic categories (Figure 3.4). The fuzzy membership function is set

empirically to describe the range of possible intensity values. A rough boundary region is

then obtained from fuzzy reasoning, where a search operation is employed to obtain the

final boundary. Fuzzy C-means was reported to be used for parenchyma segmentation in

breast MR images [XXE+08].

Toulson and Boyce proposed to use a back-propagation neural network in image seg-

mentation [TB92]. The neural network is trained on the set of manually segmented

samples. Segmentation is performed on a pixel basis. The inputs to the neural network

are the class membership probabilities of the pixels from a neighborhood around the pixel

being classified. Therefore, contextual rules can be learned and spatial consistency of the

segmentation can be improved.

Mixture of Gaussians of voxel intensities was estimated by Habas et al. [HKR+08],
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where each Gaussian represented an anatomy class in brain. Segmentation was obtained

by maximizing the posterior probability of a tissue class given the voxel intensity.

A single strong classifier is usually hard to be learned. To counter this problem, boost-

ing algorithms combine multiple weak classifiers into a strong one. AdaBoost was used

to segment sub-cortical structures in brain images [MTA+08]. However, AdaBoost needs

to pick a large number of weak classifiers, and is therefore computational expensive. In

addition, the order of the features selected which may correspond to high level semantics

is not respected. Re-weighting procedure may alter the classification results that are

correct in the earlier stages. Probabilistic Boosting Trees (PBT) [Tu05] was proposed

to tackle these problems. It contains a standard AdaBoost classifier in each of its node.

PBT was used in [TT07] to get an initial rough segmentation of brain structures. The

inputs of the classifiers are sub-volumes of the images.

Classification-based segmentation algorithm requires training. The training parame-

ters are usually set in a trial-and-error manner, which is subjective. The accuracy of this

algorithm largely depends on the selected training samples. In addition, classification-

based segmentation algorithm is more tedious to use.

3.2.2 Deformable Model-based

Deformable model-based segmentation methods are quite popular recently, because such

methods are able to change the shape of the model relatively easily, and thus can handle

shape variability of the target organ. They can also incorporate domain information

(sometimes training shapes) to help handle shape variability if the variability is not very

significant. Many deformable model-based algorithms have been proposed, the most

important of which are discussed below.

Active Contour Models (Snake)

The snake model was first proposed by Kass et al. [KWT88]. It is a controlled continuity

spline which can deform to match any shape under the influence of two kinds of forces.

The internal spline force imposes a piecewise smoothness constraint, while the external

force attracts the snake to the salient image features such as lines, edges and terminations.
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(a) (b)

Figure 3.5: Snake segmentation of bone [AM00]. (a) The initial contour (black curve). (b)
Segmentation result (black curve) (from http://www.cvc.uab.es/~petia/dmcourse.

htm).

The snake algorithm iteratively deforms the model and finds the configuration with the

minimum total energy, which hopefully corresponds to the best fit of the snake to the

object contour in the image (Figure 3.5).

Atkins and Mackiewich [AM00] used the active contour for brain segmentation. The

input image is smoothed, and then an initial mask that determines the brain boundary

is obtained by thresholding. Finally, segmentation is performed by the snake model.

Snake is a good model in edge detection, shape modeling, segmentation and motion

tracking, because it forms a smooth contour that corresponds to the region boundary.

However, it has two intrinsic problems. First, its result is often sensitive to the initial

configuration of the snake. Second, it cannot converge well to concave parts of the regions.

An analysis of the snake model shows that its image force, usually composed of image

intensity gradient, exists in a narrow region near the convex part of the object boundary.

A snake that falls in a region without image forces cannot be pulled towards the object

boundary. Snake with Gradient Vector Flow (GVF), proposed by Xu and Prince [XP98],

partially solved this problem by pre-computing the diffusion of the gradient vectors (gra-

dient vector flow) on the edge map (Figure 3.6). As a result, image forces exist even near
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Figure 3.6: Gradient vector flow [XP98]. Left: deformation of snake with GVF forces.
Middle: GVF external forces. Right: close-up within the boundary concavity.

concave regions, which can pull the snake towards the desired object boundary. GVF is

less sensitive to the initial configuration of the contour than the original snake model.

However, it still requires a good initialization and can still be attracted to undesired

locations by noise.

Level Set

Snake-based deformable model cannot handle evolving object contours that require topo-

logical changes. For example, when two evolving contours merge into one (Figure 3.7),

algorithms that represent the contours by connected points need to remove the points

inside the merged region. This is computationally expensive, especially in 3-D.

Sethian proposed a level set [Set99a] algorithm to solve this problem by embedding

the contour in a higher dimensional surface called the level set function. The contour is

exactly the intersection between the level set function and the x-y plane, and corresponds

to the boundary of the object to be segmented. For 2-D contour, the level set function

z = φ(x, y, t = 0) is represented as a 3-D surface, and is initialized by the signed distance

from point (x, y) to the contour in the x-y plane. The desired object contour is the zero

level set of the level set function, i.e., φ(x, y, t) = 0.

The evolution of the contour is propelled by force F , which may depend on many

factors such as local geometric information and properties of the contour. Once the
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(a) (b)

Figure 3.7: Merging of contours [Set97]. (a) Two initially separate contours. (b) Two
contours are merged together.

level set function is constructed, the evolution of the interface (contour) can be easily

computed. The level set function actually represents all possible states of the evolution

of the contour, which cannot be constructed in advance. To solve this chicken-and-egg

problem, instead of constructing the whole level set function directly, the evolving zero

level set is computed iteratively based on the force F . The iterative algorithm needs to

update only the level set function values near the current object boundary. This leads to

the narrow band method [Set99a]. If the contour propagates only in one direction, the

fast marching algorithm [Set99a] can be used.

The level set method is widely adopted in the literature of medical image segmenta-

tion, and a number of improvements have been proposed. To restrict the evolution of the

zero level set, Yang et al. proposed a Level Set Distribution Model (LSDM) [YSD04],

which is similar to the Point Distribution Model (PDM) described in the next section.

The segmentation process is shown in Figure 3.8. Pluempitiwiriyawej et al. proposed to

segment 2D cardiac MR images using the level set method [PMWH05]. Their method

incorporates stochastic region information (which is similar to that in [CV01]) and edge

information (largest magnitude of the gradient) with an ellipse shape prior. The length

of the contour is also taken into account to keep contour smoothness. The contour of

the heart is represented implicitly such that the energy function can be minimized using

the level set framework. Li et al. [LHD+08] applied the level set framework to perform

segmentation and intensity bias correction for MR images. Level set method was also

adopted to segment vertebrae from thoracic CT images [SLA08]. The average of several
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(a) (b) (c)

Figure 3.8: Level set segmentation of heart image [YSD04]. (a) Initial contour (blue
curve). (b) Evolving contour. (c) Final contour.

registered manually segmented vertebra is used as the initial front. Blockers were de-

rived based on detected ridges and valleys to prevent leakage of the front. To deal with

the noise problem, Droske et al. proposed to incorporate curvature terms in the velocity

function [DMRS01]. They also proposed an adaptive grid to speed up the fast marching

algorithm.

Image segmentation problem can be formulated as an energy minimization problem

as the Mumford-Shah model [MS89]. The energy function in the Mumford-Shah model

contains 3 terms: (1) the difference between the approximation function and the original

image, (2) sum of squared gradient magnitude of the approximation function inside re-

gions, and (3) length of the region boundary. Term (2) and (3) function as regularization

terms. Term (2) assumes the piecewise smooth image model. When term (2) is omitted,

the piecewise constant image model is adopted. In general, it is difficult to minimize such

a functional since the problem is not convex and the dimensionality of the possible region

boundary is high.

Chan and Vese [CV01] proposed to solve the Mumford-Shah model in a reduced

form, i.e., the piecewise constant approximation function was used. The function takes

two values, either the average intensity inside or the average intensity outside the region.

The region boundary was represented implicitly as a level set function. Euler Lagrange

equation can be derived from the energy functional, and the level set function can be

solved by finite difference method.
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The major advantage of the level set approach is that the level set function remains

a single function while the zero level set may change topology, break, merge and form

sharp corners [MSV95]. However, it generally cannot maintain shape information, and is

sensitive to noise.

Fast Marching Method

Fast marching method [Set99b] formulates deformation problem as boundary propaga-

tion. Given an initial boundary, the fast marching method compute the arrival time

of the boundary on each point in the image. The arrival time is computed based on a

speed function derived from the image characteristics at each image point. The iso-curves

(surfaces) at a specific time produces the deformed boundary, i.e., segmentation results.

To use the fast marching method for image segmentation purpose, the user needs to

provide foreground and background strokes in order to compute the speed function. It was

used for fast natural image segmentation [BS09]. It was also used for soft segmentation

of medical volume images [DLCL09].

Fast marching method is time efficient. It can achieve good segmentation results if the

foreground and background of the image has large intensity/color difference. Therefore, it

can obtain good segmentation results for natural images. However, medical images are in

gray-scale, and some boundaries of the target tissues may be of low contrast. Therefore,

the fast marching method used on medical images directly for segmentation is not as

efficient. The fast marching method cannot preserve the topology of the target, resulting

in undesired segmentations.

Active Shape/Appearance Model

Many objects in medical images, such as organs, cells and other biological structures,

have a tendency towards some average shape. When a collection of shapes of the same

organ is available, standard statistical analysis can be applied. The active shape model

(ASM) [CHTJ94] and the active appearance model (AAM) [CET98], both proposed by

Cootes et al., are widely used when a set of training samples are available. ASM is also

know as Statistical Shape Model (SSM).
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(a) (b)

Figure 3.9: Segmentation of cartilage by active shape model [CT04]. (a) Initial contour
(white curve). (b) Resultant contour after 14 iterations.

In ASM, a training shape is usually represented by a 2n-dimensional vector (x1, y1, x2,

y2, . . . , xn, yn) containing coordinates of points on the shape. The shape vector corre-

sponds to a point in a high-dimensional (2n-D) space called the eigen space. Thus, ASM

is also known as the Point Distribution Model (PDM). The training samples form a

point cloud in the eigen space. ASM applies Principal Component Analysis (PCA) on

this point cloud to identify the eigenvectors (eigenshapes) that describe the point cloud.

An arbitrary shape can be represented by linear combination of these eigenshapes with

different coefficients and a model can be deformed by changing these coefficients. More

specifically, an initial guess can be randomly generated [HTC92]. Then, an optimization

algorithm such as the genetic algorithm or direct searching in the eigen space can be used

to find the optimal solution. Segmentation of cartilage on MR images is shown in Figure

3.9. In comparison, AAM incorporates not only shape but also gray level information,

and improves the robustness of ASM.

Based on Cootes’ model, Wang and Staib [WS98] applied the smoothness covariance

matrix to make the neighboring points on the shape correlated, i.e., the neighboring

points on the shape are more likely to move together. To bias the search process in a

certain range, a Bayesian formulation based on prior knowledge is proposed. The prior

of shape and pose parameters is modeled as a zero-mean Gaussian distribution. Similar

work was done by Gleason et al. [GSSA+02] in detecting kidney disease in CT images.
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Shi and Shen [SS08] observed that the test samples may be similar to only sub-

population of the training samples Therefore, hierarchical SSM was proposed. In the

training stage, training samples were clustered by similarity to form shape models repre-

senting sub-population. In the testing stage, the input sample was first deformed accord-

ing to the global SSM, and then deformed according to the most similar sub-population.

Multi-level statistical shape model [OSS+07, OYH+08] has also been proposed. It is

able to increase the variability of the model when the number of training samples is small.

However, the model needs to be partitioned hierarchically into patches. Overlapping

between neighboring patches during deformation has to be taken into account. These

introduce complexities to the algorithm.

Fripp et al. [FCWO07] used statistical shape model to segment femoral head in order

to extract the cartilage. Direct segmentation of the cartilage is hard due to its very thin

structure.

Volumetric Active Appearance Model was adopted to segment brain structures [BCT+08].

A global AAM is used to get an initial segmentation. Individual AAMs are then used

to refine segmentation of each structure. Similar samples were clustered together to

represent sub-population shape models.

The advantage of ASM and AAM is that the shape can be deformed in a more

controllable way compared to snake and level set methods. One of the disadvantages

is that they require a lot of training samples to build a point distribution in the high-

dimensional eigen space. An eigen space with a small number of eigenshapes may not

be able to generate the desired shape, while an eigen space with a large number of

eigenshapes may incur high complexity in finding the optimal solution.

3.2.3 Atlas-based

Atlas-based algorithms are very promising for automated segmentation of healthy organs.

However, it is very difficult to encode information of pathological organs, which may

exhibit large variance in shapes and intensities.

An atlas is a model that contains domain information of anatomical parts. In practice,

an atlas is usually obtained by manually segmenting and labeling one or a set of n-
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dimensional images containing the same anatomical parts. The basic idea of atlas-based

segmentation is to register the atlas to the input images and label the input images

according to the atlas.

Broadly speaking, existing methods use either a non-probabilistic atlas [ANWD99,

BMC+05, CP00, CKRP98, CP04, CCMT01, CPB+04, DHT+99, DLW05, DHT05, GDMW04,

HPMD99, LVSOMR02, LAGBA05, RSOLV+02, SL97, SD00, SHD01, SLZ+04, VJYL03]

or a probabilistic atlas [GMA+04, CHT+03, LVRMSO03, LVSOE+04, PBM03, PGLG05,

SPvG05, SCK+03]. In the probabilistic case, the probability of a voxel belonging to

certain tissue type [GMA+04, PBM03] or probabilistic shape in active shape model are

used. The representations of probability are often Gaussian [GMA+04, PBM03].

Atlas-based segmentation methods consist of two major stages, namely global align-

ment and local refinement. These two stages are discussed in more detail in the following

sections.

Global Alignment

The purpose of global alignment is to align the position, scale and rotation of the atlas

to the input image. “Global” means that each part of the atlas undergoes exactly the

same transformation, which includes scaling, rotation and translation.

Several transformation types, such as similarity transformation and affine transfor-

mation, are frequently applied. Affine transformation [BMC+05, CCMT01, CPB+04,

DLW05, DHT05, LVSOMR02, LAGBA05, VJYL03, LVRMSO03, LVSOE+04] has the

highest Degrees of Freedom (DoF). It captures rotation, scaling, translation and shear-

ing. Similarity transformation [CKRP98, DHT+99, HPMD99, HPS+99] includes rotation,

scaling and translation. These transformations are all linear transformations and have

very low computational complexity. Non-linear transformations (usually low-order poly-

nomial) may also be used [DHT05], since they can capture more variation of the atlas,

thus making the global alignment more accurate. At the same time, their computational

complexity is relatively low. Rigid transformation is seldom used since it only captures

rotation and translation.

The transformation can be performed either manually or automatically. Semi-automatic

methods are also proposed. Gansor et al. applied a manual approach which manipulates
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a grid to match the atlas and input images [GDMW04]. Semi-automatic schemes nor-

mally include a common procedure, which is manually selecting landmark points, and

thus, establishing correspondence between the atlas and the input images. The rest of

this section reviews the automatic methods.

Aboutanos et al. [ANWD99] applied morphological operations to segment the surface

of brains. Their algorithm erodes an initial model with a 2-D circular disk, which has 11

pixels in diameter. The algorithm is claimed to guarantee the placement of the model

inside the cortical area. However, this algorithm assumes that the organ in the atlas and

in the target image are very similar in position. It is very specific and cannot be easily

generalized. Especially when the initial model and the organ in the target image are

quite different, this algorithm will fail inevitably.

For the rest of the automatic methods, we further classify them into two groups.

One group actively searches for correspondence, and the other group does not search for

correspondence explicitly.

Iterative Closest Point (ICP) and optical flow-based algorithms belong to the first

group. When performing registration, for each (sampled) point on the atlas, ICP iter-

atively searches for the nearest point on the target as a possible correspondence, solves

a transformation matrix, and updates, i.e., transforms the atlas, until the sum-squared

difference between the atlas and the target is minimized. ICP can be regarded as a

geometric method. Optical flow-based algorithm, on the other hand, is a photometric

method. It borrows the idea from tracking, and treats the atlas and target image as

neighboring frames in a temporal motion sequence. In each iteration, the algorithm uses

optical flow to search for the correspondence between the atlas image and the target

image, and computes the displacement of each point in the image. A Gaussian filtering

step is often applied to smooth the displacements.

Optimization-based algorithms belong to the second group. The main framework of

optimization-based algorithms is to formulate a similarity or dissimilarity function be-

tween the atlas and the target, and apply optimization algorithm to maximize or minimize

that function. The similarity or dissimilarity functions proposed can be sum of squared

differences between the intensities of corresponding voxels [CKRP98, VJYL03, HPS+99],

chamfer distance [CCMT01, CPB+04], correlation ratio [BMC+05, LAGBA05], or mutual
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information [DHT+99, DHT05, HPMD99, LVSOMR02, LVRMSO03, LVSOE+04]. The

optimization algorithms applied include gradient descent, Levenberg-Marquardt, simu-

lated annealing, etc.

Local Refinement

The purpose of the local refinement is to align the atlas and the target as accurately as

possible. “Local” means that different parts of the atlas may undergo different transfor-

mations. Since accuracy is the main objective, the methods used in this stage have to

focus on the details of the atlas and the target image. Therefore, they are highly complex.

Local deformation and pixel classification are two major approaches used for the local

refinement stage.

A. Local Deformation Local deformation deforms the atlas locally and fits it to

the target image accurately. A number of methods have been proposed to solve the

local deformation problem. Some methods actively search for or guess the corresponding

points in the target image. Thirion [Thi98] named such methods as attraction models,

since the model is attracted by image features and deformed to match the target image.

Ding et al. proposed an Iterative Corresponding Point algorithm [DLW05], which

belongs to the attraction model. The proposed method is similar to the original ICP.

Apart from that, it uses intensity difference distribution (IDD) along the contour to find

possible correspondence. It computes IDD of each point along the contours in the atlas,

and searches for corresponding point in a small neighborhood in the target image that has

the most similar IDD. Once the correspondence is established, an affine transformation

matrix is computed to transform the atlas contours. The process discussed above is

repeated until convergence. Finally, the GVF snake is applied to extract accurate object

boundaries.

Diffusion-based algorithms such as demons algorithm [Thi98] is very popular, and

it is used in [GMA+04, BMC+05, CKRP98, CCMT01, CPB+04, DHT+99, HPMD99,

HPS+99]. In the demons algorithm, the deformable model or image diffuses through

the fixed target image by the action of the effectors called demons located on the object

boundaries in the target image. Demons act locally to pull the deformable models towards
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the target image.

For the attraction method, the points located on the model contour are attracted by

the closest points on the target contour. On the other hand, for the diffusion method, the

model is pulled into the target by the action of the demons located on the target contour.

Demons algorithm has several variations based on the selection of the demons’ positions,

the types of deformations, and the forces of the demons. In the most popular variation,

all pixels in the target image are selected as the demons. For each demon, a displacement

is computed by the optical flow algorithm. A Gaussian filter is then applied to obtain

a smooth displacement field. The above process is iterated until the final displacement

field is obtained, which represents the deformation of the model.

PASHA [CBD+03] proposed by Cachier et al. is used in [LAGBA05]. PASHA algo-

rithm incorporates both geometric features and intensity features. The energy function

of PASHA contains three components: intensity similarity, geometric distance, and a

regularization term. The intensity similarity term measures the local correlation between

the points in the source image and those in the target image. The geometric distance

measures the disagreement between the estimated point correspondence and the com-

puted deformation. The regularization term imposes smoothness constraints. A gradient

descent algorithm is used to optimize the energy function and, in the process, estimate

the point correspondence, and compute the deformation. Large displacement vectors are

not favored. The displacement field produced by PASHA is smoother than that produced

by the demons algorithm.

Some local deformation methods are based on the standard optimization algorithm.

Aboutanos et al. [ANWD99] proposed a cost function that combines intensity, morphol-

ogy, gradient, deviation from previous contour and smoothness. They used an optimiza-

tion algorithm to minimize the cost function and transform the initial contour to fit the

brain.

Standard deformable models are also used in the local refinement stage such as snake

and its modified versions [DLW05, SL97, CHT+03], level set [DHT05, VJYL03]. For

example, Ding et al. [DLW05] applied snake with GVF algorithm for final contour re-

finement. Duay et al. [DHT05] applied level set algorithm to perform local deformation

after global alignment.
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B. Pixel Classification Pixel classification method separates the pixels into several

groups, and each corresponds to an anatomical part. It is usually performed in prob-

abilistic atlas-based segmentation. Classification is based on maximizing a posterior

probability of a pixel belonging to a particular anatomical part. The features used in

pixel classification is usually intensity and position information of the pixel. Park et al.

[PBM03] proposed to classify pixels using a Bayesian framework. Pixels are classified

into 5 groups: liver, right kidney, left kidney, spinal cord and “none of the above”. The

atlas is constructed from manually segmented organs from 32 registered CT slices. The

intensity value of each pixel in the atlas image corresponds to the probability that it

belongs to certain organ. The cost function to be maximized contains a Maximum A

Posteriori (MAP) formulation that estimates the classes of the pixels that best explain

the given input image. It also includes a Markov Random Field (MRF) regularization

term, which penalizes dissimilar adjacent labels.

Lorenzo et al. [LVSOMR02, LVRMSO03, LVSOE+04] proposed a classification algo-

rithm to segment heart images. The intensity distribution of each class that corresponds

to an organ is modeled by a Gaussian distribution. The mean and variance of the distri-

bution are computed by Expectation Maximization (EM) algorithm based on the training

samples. The classification is also followed by a MRF regularization process similar to

[PBM03].

Prastawa et al. [PGLG05] used Minimum Covariance Determinants (MCD) [RD99] to

generate robust mean and variance of uni-modal intensity distribution, and then classified

pixels in a Bayesian framework. The MCD estimator computes the mean and covariance

that have the smallest determinant of covariance.

3.3 Summary

In terms of the interaction modes of current medical image segmentation methods, they

can be categorized into manual, interactive, semi-automatic and fully automatic. Manual

segmentation methods are accurate, but time-consuming. They have relatively large

intra- and inter-observer variabilities. Fully automatic segmentation methods do not

rely on human labor, and can produce repeatable results. However, they are not robust

enough for clinical use at current stage. As a trade off, semi-automatic or interactive
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segmentation methods incorporate minimal user input, and are able to produce clinically

acceptable results.

In terms of the types of model used by current medical image segmentation meth-

ods, they can be categorized into model-less, deformable model-based and atlas-based.

Model-less methods such as thresholding, region-based, edge-based, graph-based and

classification-based methods make use of local features of the image. They are very time

efficient, and can obtain good results dealing with simple natural images, i.e., the fore-

ground and background of the images have high intensity contrast, or the foreground and

background regions are homogeneous. They cannot perform well on medical images which

in general have none of these properties. Deformable model-based methods, in contrast,

formulated the segmentation problem as contour/surface deformation. These methods

make use of more global information, e.g., geometric properties of the contour/surface to

control the segmentation. Therefore, they tend to be more robust to inhomogeneity of

the target regions. These methods have relatively higher computational complexities.

Model-less and deformable model-based methods focus more on segmentation of a

single target object. Their segmentation results may leak into irrelevant regions (leak

problem) or are not able to represent complex shapes once constrained by statistical

shape priors. Some model-less methods such as thresholding may produce results with

multiple regions, but these methods cannot give semantically meaningful interpretation

of the segmented regions.

In contrast, atlas-based methods segment multiple objects at the same time. These

methods are more robust than those segmenting only one object, since the atlas can

provide many information to guide the segmentation process, such as relative position,

orientation, size, intensity, etc, between these objects. However, many atlas-based still

rely statistical shape priors of individual object to constrain their shapes. Therefore, they

are not able to segment complex object with large shape variances using limited training

samples.

This thesis presents a semi-automatic segmentation algorithm, which includes minimal

user input. The segmentation results are less likely affected by the users. It is robust

to image noise and time efficient because it uses a mesh-based deformable model. The

proposed method can segment objects with complex shapes since it does not reply on
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any statistical shape priors. It can segment multiple objects simultaneously without

overlapped regions, thus reducing the leakage problem.
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Chapter 4

Flipping-free Mesh Deformation

This chapter presents a flipping-free mesh deformation algorithm based on a specially

designed quadrilateral mesh model (Section 4.1). This quadrilateral mesh facilitates the

detection and avoidance of flippings during mesh deformation (Section 4.2). Extensive

experiments show that the algorithm can register the mesh to complex volume data

without self-intersection.

4.1 3D Quadrilateral Mesh

The 3D quadrilateral mesh M is initially defined on a cube whose sides are aligned with

the x-, y- and z-axis (Fig. 4.1(a)).

• The mesh is defined by 3 groups Gxy, Gyz, and Gzx of closed contours. Each group

consists of mutually non-intersecting closed contours that are parallel to the xy-,

yz- or zx-plane respectively. The contours in a group are orthogonal to those in

the other groups.

• Each mesh vertex ui in M is an intersection of two contours, each from a different

group.

• Each mesh vertex ui in M has exactly 4 connected neighboring vertices.

• Each cell has four edges, except for those at the 8 corners. Each corner cell has

only 3 edges.
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(a) (b)

Figure 4.1: 3D quadrilateral mesh. (a) The cubical quadrilateral mesh is projected onto
a spherical surface to generate (b) a spherical quadrilateral mesh.

The cubical quadrilateral mesh can be mapped to a spherical quadrilateral mesh

(Fig. 4.1(b)) by projecting its mesh vertices onto a concentric spherical surface along

the radius direction. In fact, any convex quadrilateral mesh can be generated without

flipping from the cubical or spherical mesh by projecting its mesh vertices along appropri-

ately defined directions. For ease of explanation, closed contours in different groups are

still referred to as orthogonal to each other although they are not necessarily physically

orthogonal.

The essence of such a construction is that quadrilateral mesh allows a linear ordering

of the mesh vertices to be defined along any closed contour. Linear ordering of vertices on

a closed contour helps to simplify the detection and avoidance of possible flippings, which

will be discussed in the next section. In contrast, resolution of flippings in a triangular

mesh is much more complex because there is no general way to define linear orderings of

its vertices.

The quadrilateral mesh is regular in the sense that it is pole-free. In contrast, the UV

sphere (Fig. 4.2) that is widely adopted by the computer graphics community, contains

two poles where many mesh edges intersect. The existence of poles may cause difficulties

and complications in the algorithm.
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Figure 4.2: UV sphere. Multiple edges intersects at the north and south poles (image
from http://www.rab3d.com/rab3d/tutorial/608/tutorial_608-3.html).

4.2 Flipping-free Quadrilateral Mesh Deformation

4.2.1 Algorithm Overview

To facilitate explaining the ideas, a list of symbol definition is given. These symbols are

used throughout the thesis.

• I = I(x): an input volume image, where I(x) denotes the intensity of the voxel at

location x,

• M = {ui}: a 3D mesh, where ui = [xi, yi, zi]
T denotes the 3D coordinates of the

vertex i of M .

• M ′: a 3D mesh representing the extracted surface of the segmented organ.

For ease of explanation, this section presents the flipping-free mesh deformation algo-

rithm as an algorithm that registers the quadrilateral mesh M to the known surface of a

3D volumetric object T. In each iteration, the algorithm searches for possible correspon-

dences between mesh vertices and object surface points over long distances. The detected

correspondences are refined before mesh deformation to avoid flipping. Application of the

mesh deformation algorithm to segmentation will be discussed in Chapter 5.
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Algorithm 1 Flipping-free mesh deformation algorithm.

Mesh Initialization.
Repeat until convergence:

Search for correspondence (Section 4.2.2).
For each contour in each group

Detect possible flippings (Section 4.2.3).
Avoid possible flippings (Section 4.2.4).

Perform mesh deformation (Section 4.2.5).

4.2.2 Correspondence Search

This stage searches for the correspondence between the model M and the target T . For

each vertex ui on M , the algorithm searches along the projection line P (ui) for a possible

corresponding point vi on the surface of T . The direction of P (ui) can be defined as the

surface normal at ui. The vector vi−ui is the displacement vector of ui. If the algorithm

cannot find any correspondence for ui, ui is labeled as a solitary vertex; otherwise, ui is

labeled as a non-solitary vertex.

Note that the meshM can be initialized either completely inside or completely outside

T . The search directions are therefore changed accordingly. The correspondence search

stage may find different number of corresponding points on the surface of T along the

search directions and within the search distance. As shown in Fig. 4.3, within the search

distance, vertex a has no corresponding point, vertex b and c have 1 and 2 corresponding

points respectively.

4.2.3 Flip Detection

The flipping of a mesh cell after mesh deformation is characterized by the flipping of

at least one of its edges. Therefore, surface flipping can be identified by detecting edge

flipping. Let ui and uj denote two non-solitary neighbors on a closed contour, and vi

and vj denote their corresponding points on the target object. Then, edge flipping occurs

when the orientations of the edges ui − uj and vi − vj differ significantly:

ui − uj

‖ui − uj‖
·

vi − vj

‖vi − vj‖
≤ τ, (4.2.1)

where τ ∈ [0, 1) is a predefined threshold. The vertices ui and uj that form a flipping
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a
M

T
c

b

Figure 4.3: Search for correspondence. The mesh M is initialized completely outside the
target T . Within the search distance, vertex a has no corresponding point, vertex b and
c have 1 and 2 corresponding points respectively.
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Figure 4.4: Flip detection. Flip of the normal may be characterized by abrupt change of
the orientation of the edge before (uiuj) and after (vivj) the deformation. (a) No abrupt
edge orientation change, no flipping. (b) Abrupt edge orientation change, flipping.
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edge are labeled as flipping vertices; otherwise, non-flipping vertices.

Each vertex ui is an intersection of two orthogonal closed contours on M . Therefore,

each ui will undergo flip detection along both closed contours when the algorithm iterates.

It is labelled as a flipping vertex if it forms a flipping edge along any one of the two

contours.

4.2.4 Flip Avoidance

The basic idea of flip avoidance is to discard the point correspondences of all flipping

vertices. However, this may prevent the mesh model converging to concave target such

as shown in Fig. 4.5. Let ui, ui+1, . . . ,un denote a consecutive sequence of the flipping

vertices on a closed contour, excluding solitary vertices, such that ui−1 and un+1 are

non-flipping. The method identifies the middle flipping vertex um of the sequence, labels

it as non-flipping, and labels the other flipping vertices as solitary, i.e., discarding their

correspondences. As shown in Fig. 4.5, u1, u2 and u3 are a consecutive sequence of

flipping vertices. Therefore, u2 as the middle vertex, is labeled non-flipping. u1 and

u3 are labeled solitary. Note that labeling um alone as non-flipping does not cause

flippings because these solitary vertices will be displaced in such a way that their local

surface shapes are preserved (Section 4.2.5). After repeating this process for every closed

contour, only non-flipping vertices have point correspondences. The rest of the vertices

are deformed by local geometric constraints. Thereafter, deforming the mesh according

to these correspondences does not result in flipping.

This approach can handle flipping self-intersection but cannot handle non-flipping self-

intersection or folding. This can be demonstrated in Fig. 4.6, where under some extreme

cases, non-flipping self-intersections occur. To alleviate this problem, the displacement

vectors of non-flipping vertices are propagated to neighboring solitary vertices, turning

them into non-flipping vertices, by iterative local averaging of displacement vectors:

ṽ′
i = vi +

1

N + 1



v′
i − vi +

∑

vj∈N (vi)

(v′
j − vj)



 , (4.2.2)

where vi is the corresponding point of ui, and v′
i is the corresponding point after diffusion.

This process is analogous to the diffusion of gradient vectors in gradient vector flow
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Figure 4.5: Flip avoidance. (a) u1, u2 and u3 are a consecutive sequence of flipping
vertices. (b) To avoid flipping, u2 as the middle vertex, is labeled non-flipping; u1 and
u3 are labeled solitary.

(a) (b) (c)

Figure 4.6: Folding problem. (a) Displacing non-flipping vertices (dots) around solitary
vertices (circle) may cause (b) folding of the mesh, and in the extreme case, (c) non-
flipping self-intersection.

for the snake algorithm [XP98]. It also smoothens the variation of displacement vectors

among neighboring non-flipping vertices, thus improving noise resilience.

To further prevent non-flipping self-intersection, for each vertex ui, the algorithm

searches for any neighboring vertex and its corresponding point within a certain distance

D (Fig. 4.7). D is equal to ‖vi−ui‖. If any vertex or its corresponding point within D is

found, e.g., in Fig. 4.7, ‖v2−u1‖ < D, the two displacement vectors v1−u1 and v2−u2

are used to examine whether possible non-flipping self-intersection will happen.

Noticing that such self-intersection can be identified by large orientation difference of

the two vectors, the same criteria as Eqn. 4.2.1 is used to test any possibility. Deformation

according to the displacement vector v1 − u1 and v2 − u2 will cause the original mesh

surface (black solid line) to form non-flipping self-intersection (red dotted line). Based on

the test, if the displacement vectors may cause non-flipping self-intersection, the lengths

of both displacement vectors are reduced by half iteratively until no intersection is going
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Figure 4.7: Non-flipping self-intersection. (a) Deformation according to the displacement
vector v1 − u1 and v2 − u2 will cause the original mesh surface (black solid line) to
form non-flipping self-intersection (red dotted line). The algorithm identifies that v2

is within the search sphere (green dashed line), and v1 − u1 and v2 − u2 have large
orientation difference. (b) Reducing the lengths of both displacement vectors prevents
the intersection.

to happen (Fig. 4.7(b)).

4.2.5 Laplacian Deformation

The Laplacian method [SLCO+04] is adopted for mesh deformation because it is very

efficient, easy to use, and easy to incorporate geometric constraints. During deformation,

non-flipping vertices are displaced towards their target locations, which are regarded

as positional constraints. The other mesh vertices are displaced according to geomet-

ric constraints including Laplacians preservation and uniform vertex distribution. The

deformation problem is then formulated as minimizing the energy

E = λLEL + λpEp + λuEu (4.2.3)

where EL, Ep and Eu are energies for imposing Laplacian preservation, positional con-

straint and uniform vertex distribution respectively. Weighting parameters λL, λp and

λu are chosen empirically.
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Figure 4.8: Laplacian operator. Laplacian of (a) triangular mesh and (b) quadrilateral
mesh. Solid circles: mesh vertices. Dashed circle: centroid of the neighboring vertices uj

of ui. Red arrow: Laplacian L(ui) of ui.

The Laplacian preservation energy EL is defined as:

EL =
∑

i

‖L(ui)− L(u′
i)‖

2
2, (4.2.4)

where u′
i denotes the position of vertex ui after deformation. The Laplacian operator L

is defined as

L(ui) = ui −
1

|N (ui)|

∑

uj∈N (ui)

uj , (4.2.5)

where N (ui) denotes the connected neighboring vertices of ui and |N (ui)| denotes the

number of the neighboring vertices. L(ui) encodes the local shape information of ui.

Fig. 4.8 shows the Laplacian of ui in a triangular mesh (a) and a quadrilateral mesh (b).

Minimizing EL results in local shape preservation.

The positional energy Ep imposes the positional constraint, and is defined as:

Ep =
∑

i

di
d̄
‖u′

i − pi‖
2
2, (4.2.6)

where pi denotes the target position of ui, di is the distance from ui to pi, d̄ is the

average of di for ui of M . Minimizing Ep displaces mesh vertices towards their designated

locations. In addition, positional constraints are weighted according to the distance

between ui and pi, i.e., di/d̄. The further the corresponding point, the larger the weight.
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This weighting scheme ensures that the model can deform towards the target surface

quickly.

The uniform vertex distribution constraint can be formulated as minimizing the energy

Eu:

Eu =
∑

C

uj∈N (i)
∑

ui,uj∈C

‖(u′
i − u′

j)−
l̄

lij
(u′

i − u′
j)‖

2
2, (4.2.7)

where l̄ is the average distance between u′
i and u′

j estimated based on the length of

a closed contour consisting of the corresponding points. lij is the current edge length

between ui and uj on a contour C. If lij is equal to l̄, i.e., the current edge length

lij between vertex ui and uj is equal to the estimated average edge length l̄, the term

‖(u′
i −u′

j)− (u′
i −u′

j)l̄/lij‖
2
2 goes to zero. Otherwise, the larger the difference between lij

and l̄, the larger the term ‖(u′
i−u′

j)− (u′
i −u′

j)l̄/lij‖
2
2. Therefore, minimizing Eu enables

the vertices to distribute more evenly over the mesh surface.

When the mesh vertices are close to the target surface, the positional constraints

become small (Eqn. 4.2.6). In comparison, the constraint of uniform vertex distribution

becomes more significant, and it minimizes the difference between the length lij of a mesh

edge and the average length l̄. Thus, the mesh vertices can displace along directions

tangential to the mesh surface and distribute more evenly.

In the following, we demonstrate how the matrices in the system of equations are

constructed and how they are solved. Consider part of the mesh surface as shown in

Fig. 4.9, which labels 5 vertices as u1 to u5, in which u2 to u5 are 4 neighboring vertices

of u1.

In order to compute preservation of Laplacians, current Laplacians need to be com-

puted, which is obtained by multiplication of the adjacency matrix A and current Carte-

sian coordinates x of all the vertices. The adjacency matrix A representing neighboring

conditions is constructed as follows:

An×n =



















λL −λL/4 −λL/4 −λL/4 −λL/4 0 . . . 0

...
. . .



















(4.2.8)
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Figure 4.9: Example mesh configuration. v2, v3, v4 and v5 are neighboring vertices of
v1.

Row i of A corresponds to vertex ui, and column j in row i corresponds to the coefficient

of uj that contributes to computing L(ui). These coefficients are set based on Eqn. 4.2.5.

Row i of x contains the Cartesian coordinates of ui.

xn×3 =























uT
1

uT
2

uT
3

uT
4

uT
5
...
uT
n























=























x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
...

...
...

xn yn zn























(4.2.9)

Therefore, given A and x, the Laplacian coordinates l of mesh vertices can be com-

puted as:

ln×3 = Ax (4.2.10)

The purpose is to solve the Cartesian coordinates x′ of vertices after deformation.

Base on the current Laplacian coordinate l, the system of equations can be written as:

Ax′ = l (4.2.11)

Suppose that m1 vertices have their estimated correspondences. These correspon-

dences function as the positional constraints. To incorporate the positional constraints
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into the system, i.e., minimizing λpEp, the following equation needs to be solved:

Bx′ = p, (4.2.12)

where

Bm1×n =







λpp1 0 0 0 . . . 0
0 λpp2 0 0 . . . 0
...






, (4.2.13)

and

pm1×3 =





λpx
′
1 λpy

′
1 λpz

′
1

λpx
′
2 λpy

′
2 λpz

′
2

. . .



 (4.2.14)

To incorporate vertex uniform distribution constraints, i.e., minimizing λuEu, the

following equation needs to be solved:

Cx′ = d, (4.2.15)

where

Cm2×n =







λu −λu
l̄
l12

0 0 . . . 0

0 λu −λu
l̄
l23

0 . . . 0
...






, (4.2.16)

and

dm2×3 =





0 0 0
0 0 0

. . .



 (4.2.17)

To minimize the total energy E (Eqn. 4.2.3), the entire system of equations to be

solved is:




A
B
C



x′ =





l
p
d



 . (4.2.18)

For ease of explanation, let

H =





A
B
C



 , (4.2.19)

and

b =





l
p
d



 . (4.2.20)
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Therefore, the entire system is written as

Hx′ = b. (4.2.21)

The usual approach to solve the above equation is to use pseudo inverse,

x′ = (HTH)−1HTb. (4.2.22)

However, evaluating (HTH)−1 is a prohibitive operation since HTH is a huge matrix.

Fortunately, HTH is a sparse matrix, the system can be solved with the help of

Cholesky factorization [HTVF92] of H, which is very efficient. Cholesky factorization

factorizes HTH into the multiplication of a lower triangular matrix and its transpose:

HTH = LLT . (4.2.23)

Cholesky factorization can be computed very efficiently by the Taucs solver (http://

www.tau.ac.il/~stoledo/taucs/).

The system of equations can be re-written as

LLTx′ = HTb. (4.2.24)

Noticing that LT is a triangle matrix, Let

y = LTx′. (4.2.25)

y can be simply solved by back substitution.

Substitute y into Eqn. 4.2.24,

Ly = HTb. (4.2.26)

Again, L is a triangle matrix. Therefore, x′ can be solved by performing back substitution

again. The non-linear total energy E is minimized using Gauss-Newton iteration.

4.3 Experiments and Results

Experiments were carried out to test the algorithm’s capabilities of flip avoidance (Sec-

tion 4.3.1), convergence to deeply concave object (Section 4.3.2), uniform vertex distri-

bution (Section 4.3.2) and time complexity (Section. 4.3.4).
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(a) (b) (c) (d)

Figure 4.10: Registration results of a naive method and the proposed method. (a) Ini-
tialization for a binary volume image. (b) Naive method with λ = 0.3 and 4 iterations.
(c) Naive method with λ = 0.01 and 100 iterations. In (b, c), surface flipping causes
discontinuities. (d) No flipping occurs using the proposed algorithm.

4.3.1 Flip Avoidance

The objective of this experiment is to demonstrate the algorithm’s capabilities to avoid

flipping when registering the spherical mesh to the surface of a binary volume object.

The target volume object is a human head (Maxplanck), which contains multiple

convex and concave parts on this surface. The resolution of the volume image is 256 ×

256× 256. The initial sphere was placed outside of the object (Fig. 4.10(a)).

The spherical mesh was deformed first using a naive method, i.e., moving each vertex

to its corresponding position directly without flip avoidance. The naive algorithm was

stopped once flippings of the surface normals are clearly visible. Test results show that

even with a very small deformation step size, surface discontinuities caused by flipping

occur (Fig. 4.10(b, c)).

The deformed mesh surface was examined qualitatively for any flippings of surface

normals. In comparison, with the same initialization, the mesh was deformed using the

naive deformation method.

In comparison, the spherical mesh was deformed using the proposed flipping-free

algorithm. The algorithm was stopped until all the vertices are fit on to the surface.

i.e., the algorithm converges.

Test result shows that registration using the proposed algorithm is flipping-free (Fig. 4.10(d)).
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(a) #iteration=1 (b) #iteration=2 (c) #iteration=3 (d) #iteration=5

(e) #iteration=10 (f) #iteration=30 (g) #iteration=60 (h) #iteration=99

Figure 4.11: Registration of the quadrilateral mesh to the maxplanck volume. (a)–(g)
Intermediate deformation process. (h) Final result.

To demonstrate that the proposed algorithm is free from flipping during deformation,

several intermediate deformation results are shown in Fig. 4.11. For better illustration

purpose, the meshes are applied with checker board pattern. Fig. 4.12 also shows that

the registration error decreases rapidly as the algorithm iterates. The results show that

the proposed algorithm can avoid flippings during deformation.

4.3.2 Convergence to Deeply Concave Objects

The objective of this experiment is to test the algorithm’s capabilities to handle concave

target object and to demonstrate its robustness under different parameter values, e.g.,

deformation step size (α), mesh resolution (r), iteration number (n), position constraint

weight (λp) and Laplacian constraint weight (λL). The mesh resolution is defined as

the number of contours (n) in one of the three groups that construct the mesh, i.e., the

number of vertices in the mesh is 6 · n2 if each group has exactly the same number of

contours.
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Figure 4.12: Registration error over iterations: registration of the quadrilateral mesh to
the maxplanck volume. The error drops sharply in the first a few iterations, and then
gradually converges.

The target image is a binary cup volume (Fig. 4.13) which has a deep concave part.

The resolution of the volume image is 256 × 256 × 256. The initial spherical mesh was

placed outside of the cup volume manually.

The quality of convergence is measured using the registration error. The lower the

registration error, the higher the quality of convergence. The registration error (Er) is

measured based on the overlap between the ground truth volume (A) and the registration

results (B):

Er = 1−
|A ∩B|

|A|+ |B|
, (4.3.1)

where | · | represents the volume of ·. Er varies between 0 and 1. In order to compute

the volume of the deformed mesh after registration, the mesh was converted to another

binary volume image.

Robustness to Mesh Resolution and Deformation Step Size Changes

The registration was carried out multiple times using various combinations of different

mesh resolution r and deformation step size α, with r ∈ [21, 29] and α ∈ [0.1, 0.9]. In all
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Figure 4.13: Cup volume.

the test cases, the algorithm was executed a fixed number of iterations (99).

between the registration error and the mesh resolution (r) and deformation step size

(α).

The results, i.e., the registration errors are plotted as a 3D surface (Fig. 4.15), where

the light orange area corresponds to higher registration errors and the dark blue area cor-

responds to lower registration errors. As can be observed in this figure, the mesh models

with lower resolution tend to produce larger registration errors compared to those with

higher resolution. This can be attributed to mesh models not having enough vertex to

represent the target volume. This figure also demonstrates that a very small deformation

step size, i.e., α = 0.1 or α = 0.2, results in larger registration errors. It seems that the

algorithm needs a few more iterations to converge using small α. The algorithm using

a mesh with larger r and adopting a larger α generally yields smaller registration errors

(the dark-blue flat region in the figure). The lowest error plotted in Fig. 4.15 is about

0.03. This error can be generated from converting the mesh to a discretely represented

volume image. The plotted error surface is smooth, which suggests the stability of the

proposed algorithm even if the resolution n and deformation step size r are changed in a

broad range. Fig. 4.16 shows some intermediate deformation process of the mesh. Test

results also show that the proposed algorithm can handle concave objects properly.

Fig. 4.17 shows the convergence curves/surfaces under different deformation step size.
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A∩BA BA∩B

Figure 4.14: Error measure. The registration error Er is measured based on the overlap
between the ground truth (A) and the registration result (B). Er = 1− |A∩B|

|A|+|B| .
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Figure 4.15: Robustness to mesh resolution and deformation step size changes when
Registering a spherical quadrilateral mesh to the cup volume. The dark-blue region
represents lower error. The errors are plotted regarding to different mesh resolution and
deformation step size.
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(a) #iteration=1 (b) #iteration=2 (c) #iteration=3 (d) #iteration=5

(e) #iteration=10 (f) #iteration=30 (g) #iteration=60 (h) #iteration=99

Figure 4.16: Registration of the quadrilateral mesh to a cup volume. (a)–(g) Intermediate
deformation process. (h) Final result.

To facilitate viewing the convergence data, the figure is composed of 9 plots, each corre-

sponding to a fixed deformation step size varying from 0.1 to 0.9. As can be observed in

the figure, firstly, in all the plots, the errors decrease as the iteration number increases.

This phenomenon demonstrates that the proposed algorithm can converge well. Sec-

ondly, Fig. 4.17(a) shows a smoothly descending surface. In contrast, Fig. 4.17(i) shows

a rapidly descending surface. This suggests that the algorithm can converge faster if

a larger α is chosen. Thirdly, the mesh resolution has relatively small impact on the

converge property, but we still find that mesh models with higher resolution converges

faster. These observations give some clues for the user to apply better parameter values.

A higher mesh resolution and a larger deformation step size seem to help the algorithm

converge faster and achieve lower errors.

Robustness to Weight of Positional Constraint and Laplacian constraint

This test is to show that the proposed algorithm is not sensitive to the weight of the

positional constraint (λp) and the weight of the positional constraint (λL).
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(e) α = 0.5 (f) α = 0.6

Figure 4.17: Robustness to deformation step size (α) changes. α varies from 0.1 to 0.9.
The larger the α, the faster the algorithm converges. (a–i) Plot of registration errors with
respect to different mesh resolution and iteration number.
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Figure 4.17: Continued.
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Figure 4.18: Convergence with different positional weights. For most weight values, the
algorithm can converge successfully. However, it fails to converge when the weight is 0.1,
which is too small. Larger positional weight results in faster convergence speed.

The mesh resolution was fixed at r = 39, the step size α = 0.5, and the Laplacian

weight λL = 4. λp was varied from 0.1 to 8. For each λp, the registration error in

each deformation is plotted as shown in Fig. 4.18. This figure demonstrates that for

most of the λp values, the deformation algorithm can converge well. For larger λp, the

algorithm converges a bit faster. However, when λp = 0.1, the algorithm fails to converge

simply because the positional constraints is too small and they are compromised by other

constraints such as the Laplacian constraints. When λp = 0.2, the algorithm has some

problem to converge at the first few iterations, but converges successfully finally. This

test suggests the user to select a weight value that is not too small.

This test is to show that the proposed algorithm is not sensitive to the weight of

the positional constraint (λL). The mesh resolution is fixed at r = 39, the step size

α = 0.5, and the Laplacian weight λp = 4. λL was varied from 0.1 to 8. For each λL,

the registration error in each deformation is plotted as shown in Fig. 4.19. This figure

demonstrates that for all λL, the deformation algorithm can converge well. A smaller λL

results in slightly faster convergence of the algorithm.
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Figure 4.19: Convergence with different Laplacian weights. The algorithm can converge
successfully at all weight values. Smaller Laplacian weight results in slightly faster con-
vergence speed.

4.3.3 Uniform Vertex Distribution

The objective of this test is to investigate the uniform vertex distribution property of the

algorithm with different mesh resolutions and deformation step sizes. The input volume

image is the cup volume since it contains both convex and deeply concave part. The

uniformity is measure by the variance of all the edge lengths in the deformed mesh. The

smaller the variance, the more uniform the vertices are distributed. The test is also to

verify the effectiveness of the weight of uniform vertex distribution. The target image is

the binary cup volume.

The proposed algorithm was executed with different values of mesh resolution and

deformation step size. The results are evaluated using volume overlap error.

In Fig. 4.20, the variance is plotted as a function of mesh resolution and deformation

step size. As can be observed, lower mesh resolution corresponds to higher edge length

variance. This can be interpreted by the lower resolution mesh having longer average

edge length, since the size of the registration target is fixed. Another observation is that

either a small or a large deformation step size results in a larger edge length variance. The
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Figure 4.20: Variance of the edge lengths in the deformed mesh. The variance is measured
with respect to different mesh resolution and deformation step size.

non-uniformity produced by a small step size can attribute to sub-optimal convergence

without enough deformation iterations. The non-uniformity produced by a large step

size can be explained by the fast convergence process such that the vertex redistribution

function has less impact. Therefore, as shown in the figure, a deformation step size in

the middle (from about 0.4 to 0.6) works better.

The algorithm was executed multiple times with increasing values of the uniform

vertex distribution weight. The results were evaluated by computing the variance of

all edge lengths after deformation. Results show that the variance of edge length is in a

descending fashion which suggests a larger weight resulting in more uniformly distributed

vertices (Fig. 4.21).

4.3.4 Time Complexity

This experiment is to investigate the time complexity of the proposed algorithm with

respect to different mesh resolution. The test data is again the binary cup volume. The

execution time was measured on a 2GHz Mac Pro computer.
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Figure 4.21: Edge length variance with different vertex distribution weights. The variance
of edge length is in a descending fashion which suggests a larger weight resulting in more
uniformly distributed vertices.

The algorithm was executed in fixed number of iterations (99) for different mesh

resolution and deformation step size. At each particular mesh resolution, the average

execution time and the variance across difference deformation step size are shown in the

form of error bars (red). The dashed green curve is a cubic smoothened running across

the averages. The execution time is 36.9 ± 0.2 seconds when n = 21, and 261.8 ± 1.5

seconds when n = 49.

As shown in the error bars in Fig. 4.22, the deformation step size r does not affect

the execution time since the variances at all occasions are very small. The execution

time is proportional to the mesh resolution. Within this particular range of r, the time

complexity of the algorithm is close to linear.

4.4 Summary

This chapter presented a 3D flipping-free mesh deformation algorithm. The algorithm is

based on a quadrilateral mesh which consists of 3 groups of contours orthogonal to each
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Figure 4.22: Execution time. Each bar represents the average execution time and variance
across different deformation step size at that particular mesh resolution. The dashed green
curve is a cubic smoothened running across the averages. The time complexity of the
algorithm is close to linear with respect to changes of mesh resolution.
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other. The advantage of such a mesh over triangular mesh is the natural existence of

contours which facilitate solving the flipping problem. In comparison, it is difficult for one

to define contours on a triangular mesh to include all the vertices. The advantage of such

a mesh over the UV-spherical mesh is that it has no poles, i.e., each vertex has exactly

4 neighbors. In comparison, the UV-spherical mesh has two poles, each has significantly

more neighbors than the rest of the vertices do.

The proposed algorithm iteratively deforms the mesh by performing the following

stages: (1) searching correspondence for each vertex, (2) detecting and avoiding possible

flippings, (3) handling of non-flipping self-intersection and (4) performing mesh deforma-

tion based on the Laplacian mesh deformation framework. The correspondences are found

by searching along certain directions (e.g., surface normal directions), and some of the

mesh vertices may not have correspondences. The Laplacian deformation framework can

displace the mesh vertices with correspondence using positional constraints, and deform

the rest of vertices using geometric constraints (Laplacian preservation). The estimated

correspondences my cause flipping and non-flipping self-intersection problems after de-

formation. Stage (2) and (3) try to prevent these problems before each deformation

iteration.

The experiment is focused on deforming a quadrilateral spherical mesh to make it reg-

istered to binary volume images. Experimental results show that the proposed algorithm

can avoid the flipping problem effectively. It can successfully converge to concave targets.

It is stable and efficient regarding to the change of the parameters. These merits make

it possible to be applied to medical volume image segmentation, which is elaborated in

the next two chapters.
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Chapter 5

Segmentation of Single Object

This chapter presents an algorithm for segmenting single object based on the 3D mesh

deformation described in chapter 4. This algorithm begins with user initialization of a

single mesh model (Section 5.1)., followed by extraction of features in volume images

(Section 5.2). Next, the mesh deformation algorithm described in Chapter 4 is executed

to register the mesh to the extracted features. In this case, the correspondence search

algorithm is revised to search for corresponding feature points in the volume image (Sec-

tion 5.3). These correspondences are diffused to smoothen the displacement vector fields

and propagate neighboring displacement vectors to vertices without correspondence. The

proposed segmentation algorithm is tested extensively regarding to its convergence, ac-

curacy and efficiency, and is used to segment various 3D anatomical structures with

significantly different shapes (Section 5.4).

5.1 Mesh Initialization

A specific GUI (Fig. 5.1) was designed to facilitate the initialization process, and to

ensure the spherical mesh is placed inside the target object. This is done by positioning

the 3D spherical mesh in the 3D view, and check whether the corresponding 2D contours

in axial, sagittal and coronal views are completely inside the corresponding 2D regions.

The size of the initial sphere should be reasonably large to contain sufficient numbers of

pixels for the feature extraction stage. Depending on the the segmentation target, the

initial sphere can be initialized completely outside the target (like the one in Chapter 4)
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Figure 5.1: Mesh initialization. The spherical mesh (dark red) is positioned in the 3D
view, and check whether the corresponding 2D contours (dark red) in axial, sagittal and
coronal views are within the corresponding 2D regions.

as well.

5.2 Image Feature Extraction

This stage extracts image features from the volume image for segmentation after image

noise is reduced by image smoothing process.
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5.2.1 Image Smoothing

A Gaussian filter can be used to reduce image noise, and it is quite efficient. However, it

blurs image edges and introduces inaccuracy in the localization of the object’s boundary

in the filtered images. Instead, anisotropic filtering [PM90] is applied to the input image

I to reduce noise.

The purpose of using anisotropic filtering is to reduce the image noise and at the

same time to keep the significant features (such as edges) in the image. The anisotropic

diffusion equation is as follows:

∂I

∂t
= div(c∇I) = c∆I +∇c · ∇I. (5.2.1)

where ∆I represents the Laplacian of image I, and c is the conductance term. c deter-

mines the diffusion speed of image intensities, and it can be defined in such a way that

the diffusion process is stopped at image edges. It is defined as

c(‖∇I‖) =
1

1 + (
‖∇I‖

κ
)2
, (5.2.2)

where κ is a constant that represents the sensitivity to image edges. The larger the

image gradient magnitude ‖∇I‖, the smaller the c(|∇I‖), the slower is the diffusion

speed. Therefore, the diffusion process is slow at the vicinity of edges which usually have

large image gradient magnitude.

5.2.2 Intensity Statistics Estimation

For most of the medical images, the intensities of the target organs are inhomogeneous due

to various tissue properties of the organ and the noise introduced in the image acquisition

stage. Some of the boundaries between neighboring organs may be indistinct if they have

similar tissue properties. These problems prevent the proposed algorithm from finding

correspondence directly. Instead, some features are extracted for modelling the target

organs.

The proposed algorithm can work with any feature including, but not restricted to,

intensity, gradient, edge, texture, etc. The mixture consisting of m Gaussians (i.e., para-

metrically) is chosen to model the intensities because of its compactness and robustness.

68



3D Segmentation of Soft Tissues 5. Segmentation of Single Object

The Gaussian Mixture Model (GMM) is written as follows.

g(x) =

m
∑

i=1

aifi(x), (5.2.3)

where x is the voxel intensity, ai are coefficients, such that
∑

i ai = 1, and fi(x) are

Gaussian distributions with parameters (µi, σi). The number of Gaussians is determined

by the input images and the target organs. Parameters θi = (ai, µi, σi) are estimated by

Expectation Maximization (EM) [DLR77].

The number of Gaussians is determined automatically by an adaptive binning al-

gorithm [LL03]. Given the estimated class radius and class separation, the adaptive

binning algorithm tries to group a new intensity value into its closest cluster if they are

close enough (less than radius R) to each other. The algorithm will create a new cluster

if the intensity value are too far (greater than separation distance S) from any existing

cluster. The unclustered intensity values will be re-considered in subsequent iterations.

The adaptive binning algorithm guarantees that each cluster has a maximum radius and

different clusters can be separated by a certain distance. It automatically determines the

optimal number of clusters (Algorithm 2). This property is highly desirable since the

number of clusters are usually hard to determine based on the user initialization.

Algorithm 2 Adaptive binning.
Repeat:
for each intensity value p do
Find the nearest cluster k to p,
if no cluster is found or distance dkp ≥ S then
create a new cluster with p;

else if dkp ≤ R then
Add p to cluster k

end if
end for

for each cluster i do
if cluster i has at least Nm intensity values then
update centroid ci of cluster i;

else
remove cluster i.

end if
end for
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Given observed of voxel intensities xi(i = 1, . . . , n)), introducing an new variable zij

(unobservable data), the EM algorithm determines the maximum likelihood estimate of

the parameter ai, µi, and σi by iterating the E-step and the M-step:

• E-step: At iteration k, compute the expected value of zij based on the current

estimation of the parameters (or initialization). For i = 1, . . . , m, j = 1, . . . , n,

z
(k)
ij =

a
(k)
i fi(xj ; θ

(k)
i )

g(xj; θ
(k))

(5.2.4)

• M-step: Re-estimate the parameter vector by maximizing the likelihood estimate.

a
(k+1)
i =

1

n

n
∑

j=1

z
(k)
ij (5.2.5)

µ
(k+1)
i =

∑n

j=1 z
(k)
ij xi

∑n

j=1 z
(k)
ij

(5.2.6)

σ
(k+1)
i =

∑n

j=1 z
(k)
ij (xi − µ

(k+1)
i )2

∑n

j=1 z
(k)
ij

(5.2.7)

The initialization (θ(0)) of the EM algorithm is given by the results of Adaptive

binning algorithm. An example of GMM modeling of the input intensity values is shown

in Fig. 5.8(b). Based on the estimated intensity statistics, the correspondence search

stage can be carried out for each mesh vertex.

5.3 Correspondence Search

This stage estimates the correspondence between the model M and the target T . For

each vertex ui on M , the algorithm searches along the projection line P (ui) for a possible

corresponding point vi on T within a search range Rs. The direction of P (ui) is defined

as the mesh surface normal at ui. Rs is pre-defined according to the size of the target

organ. The larger the target organ, the larger the Rs. Since the algorithm is expected to

converge at the vicinity of the surface of T , Rs can be reduced during iterations as the

deformed mesh is close to the target surface. The point vi is the intersection of P (ui)

and the face of a voxel in T that contains the nearest feature point. Nearest feature point

70



3D Segmentation of Soft Tissues 5. Segmentation of Single Object

is chosen because it is more likely to be on the surface of T than feature points further

away. Each vi serves as a target location for ui. In general, P (ui) may be defined along

other appropriate directions.

Assuming that the intensities of the foreground voxels are described by g and while

background voxels cannot, the problem of finding correspondence vi for ui along P (ui)

is formulated as finding the first voxel that its subsequent voxels along P cannot be

described by g consistently. Therefore, the equation describing this can be formulated as

finding the minimum j such that

j+N
∑

i=j,j<R

h(ui) = 0, (5.3.1)

h(ui) =

{

0 g(xi) < Γ
1 otherwise

, (5.3.2)

where xi is the intensity of the voxel containing ui and Γ is a pre-defined threshold.

This equation can be illustrated by Fig. 5.2, where the algorithm searches for corre-

spondence for each vertex (red dot) on the mesh (red contour) in the image (Fig. 5.2(a)).

As can be seen in Fig. 5.2(b), the uj that satisfies Eqn. (5.3.2) is likely on the bound-

ary of the target object, since (N + 1) consecutive voxels starting from position (j + 1)

along the search direction P (ui) all have low probabilities of belonging to the foreground.

Fig. 5.2(c) shows that the search algorithm cannot find any corresponding boundary voxel

within the search range. A larger N can be used for images which are more noisy, but

may have the chance to miss the target boundary if the neighboring organ has a thin

structure as shown in Fig. 5.2(c). In our current implementation, N = 3. If such a j

cannot be found within the search range R due to either indistinct object boundary or

image noise, ui is labeled as a solitary vertex.

In this way, the algorithm can search possible correspondence for each vertex over a

long range, which makes it more noise resilient.

After correspondence search, most mesh vertices have corresponding points, but soli-

tary vertices do not have any. Moreover, some displacement vectors may cross due to

erroneous estimation caused by image noise.

To solve the problems mentioned above, diffusion of correspondence is proposed to

propagate displacement vectors to vertices that have no correspondence. Diffusion of
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(a)

search direction

possible boundary

search range

(b)

search direction

search range

(c)

Figure 5.2: Correspondence search. (a) For each vertex (red dot) on the mesh (red
contour), the algorithm searches for its correspondence within Rs. (b,c) zoom in view of
the voxels along the yellow and green search direction lines. (b) Found correspondence;
(c) Not found.
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(a) (b)

Figure 5.3: Diffusion of correspondence. (a) The solitary vertex (empty circle) has no
correspondence before diffusion. (b) All vertices have correspondence after diffusion from
non-solitary vertices (solid circle).

correspondence over the mesh surfaces can be formulated as a problem similar to gradient

vector flow (GVF) [XP98] over a 2D image space. For efficiency, a simple vector average is

used. For each vertex that has a correspondence, recompute its estimated correspondence

as:

ṽ′
i = vi +

1

N + 1



v′
i − vi +

∑

vj∈N (vi)

(v′
j − vj)



 , (5.3.3)

where vj are neighboring vertices of vi which have correspondence, and N is the number

of such vj . Fig. 5.3 illustrates that diffusion helps to create correspondence for the solitary

vertex (empty circle), which has no correspondence previously. Diffusion of correspon-

dence also helps to smoothen the displacement vectors such that they have less chance to

introduce flipping during deformation. This is because neighboring displacement vectors

tend to point to a locally average direction rather than cross with each other..

Once the problem of correspondence is solved, the rest of the segmentation algorithm

is just the same as the flipping-free deformation algorithm described in Chapter 4.

5.4 Experiments and Discussions

To verify the strength of the segmentation algorithm in terms of convergence (Sec-

tion 5.4.1), accuracy and efficiency (Section 5.4.2), comprehensive tests were conducted.

The experiments were mainly carried out on globular objects such as liver and spleen.

Applicability of the single-object segmentation algorithm to tubular objects is also dis-

cussed (Section 5.4.3). Results of the segmentation algorithm were compared with those
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of other algorithms. These algorithms includes GVF snake [XP98], level set method as

implemented in ITK-SNAP (www.itksnap.org) and graph cut [RKB04] in terms of noise

resilience, accuracy and efficiency, since they are widely used in the medical image seg-

mentation field and represent the state of the art. Ideally, it would be better to compare

segmentation performance with more advanced variants of the level set method. However,

these variants are not readily available for comparison. Implementing them is beyond the

scope of this thesis. Only 2D version of the graph cut algorithm was tested, because the

3D version can not fit in the physical memory constraints (4GB) of a 32 bit computer. To

further verify its capability to handle different target object, the segmentation algorithm

was used to extract the abdominal walls (Section 5.4.4). All experiments were performed

on an Intel Core 2 Duo 2.33 GHz computer with 4GB memory.

5.4.1 Convergence

This experiment was designed to test the convergence of the segmentation algorithm in

handling real medical images. The single-object segmentation algorithm was performed

to segment the liver from on one abdominal CT scan for 60 iterations. The average

surface distances between the deformed mesh and the surface of the ground truth data

were plotted during these iterations.

Fig. 5.4 shows that the distance decreases rapidly as the algorithm iterates, and the

distance drops close to 0 when the algorithm finishes. This suggests that the segmentation

algorithm can converge when performing segmentation in real medical volume images.

5.4.2 Accuracy and Efficiency

This experiment was designed to test the accuracy and efficiency of the single-object

segmentation algorithm. The test data contains 8 abdominal CT scans with slice thickness

varied from 1mm to 3mm. They were obtained from MICCAI liver segmentation data set

(http://www.silver07.org). The target objects included in this experiment are liver

and kidney.

The single-object segmentation algorithm and level set were applied to the whole CT

volume and initialized with spheres of the same size at the same location (Fig. 5.5(a)).
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Figure 5.4: Convergence curve. The average estimated distance from model vertices to
target points decreases as the algorithm iterates.

GVF snake was applied on a single CT slice because of its 2D nature. It was initialized

with a 2D cross-section of the sphere in the slice. Graph cut was applied to a single CT

slice because its 3D implementation ran out of memory given the input volume images.

It was initialized by manual markups representing foreground and background pixels

(Fig. 5.5(i)). The level set algorithm was stopped immediately by the user when the liver

regions were fully segmented.

Segmentation was first performed on liver. Test results of the single-object segmen-

tation algorithm, the level set algorithm and the graph cut algorithm were evaluated

both qualitatively and quantitatively. Average surface distance and volume overlap error

were measured between the segmented results and the ground truth to test segmentation

accuracy. Segmentation time of the entire volume and per slice time were measured to

test the efficiency of the algorithms.

Figure 5.5(f, g) show two views of the segmented liver which has a complex shape

using the single-object segmentation algorithm.

As shown in Fig. 5.5(h) and (d), indistinct boundaries caused severe leakage problem

for both level set and graph cut. The noise problem prevented the GVF snake contour
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e)

Figure 5.5: Comparison of segmentation algorithms. (a) Initialization for the single-
object segmentation algorithm, level set and GVF snake. (b, f, g) Segmentation results
of the single-object segmentation algorithm, (c, h) level set, (d) graph cut, (e) GVF snake.
(i) Initialization for graph cut: (red) foreground and (blue) background markups. Best
viewed in color.
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Table 5.1: Comparison of level set algorithm (LS), graph cut (GC) and the single-object
segmentation algorithm. V: ground truth volume. D: average symmetric distance. VO:
volume (area for graph cut) overlap. K: number of iterations. T: execution time. T′:
execution time per slice.

V (ml) Algorithm D (mm) VO K T (sec) T′ (sec)

liver

1754.37±
387.57

LS 10.28±3.25 (72.98±
8.12)%

1051±
138

476.29±
116.27

3.58±
2.46

GC 10.49 81.50% 23 17.30 17.30
proposed 1.99±

0.41
(88.7±
3.36)%

43± 6 54.47±
7.38

0.42±
0.26

spleen

367.89±
196.43

LS 4.43± 3.59 (76.10±
15.06)%

519± 75 110.38±
43.60

0.71±
0.27

GC 0.82 96.00% 13 11.56 11.56
proposed 1.00± 0.27 (88.87±

2.98)%
42± 11 17.84±

4.50
0.14±
0.11

left brachi- LS 0.38 81.20% 387 53.04 0.53
ocephalic 6.05 GC 1.36 81.20% 14 10.99 10.99
vein proposed 0.35 83.00% 72 26.01 0.26

from converging to the target boundary (Fig. 5.5(e)). In comparison, our algorithm

has less leakage thanks to the geometric constraints. Segmentation accuracy in terms

of average symmetric distance and volume overlap was computed for level set and our

algorithm (Table 5.1). Our algorithm achieved better accuracy with shorter average

symmetric distance and larger volume overlap. As shown in Table 5.1, the segmented

livers from level set had an average 72.98±8.12% volume overlap with and 10.28±3.25mm

average surface distance to their respective ground truth. In contrast, those of ours have

89.97± 1.52% and 1.69± 0.40mm on average. The much lower variance achieved by our

algorithm also indicates it is more stable. Graph cut has a area overlap of 81.50% and an

average surface distance of 10.49mm on one slice. With regard to efficiency, the level set

algorithm took 1051 iterations in 476.29 seconds on average to segment the whole liver.

In contrast, our algorithm took only 43 iterations in 54.47 seconds on average to segment

the liver. Compared to graph cut, our algorithm also took much less time on per slice

basis. Note that the level set algorithm implemented in ITK-SNAP automatically used

two threads for computation in our PC, whereas graph cut and our algorithm used one
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Segmentation of spleen. (a) Initialization. (b, c) Segmentation results of the
single-object segmentation algorithm in 2D slice view and 3D view. (d, e) Zoom-in views
of artifacts in segmentation results of level set (f).

thread only.

Segmentation was also performed on another abdominal organ, i.e., spleen. As shown

in Table 5.1, the segmented spleens of the level set algorithm have an average 76.10±15.06

volume overlap with and 4.43±3.59mm average surface distance to their respective ground

truth. In contrast, those of ours are 88.87±2.98% and 1.00±0.27mm on average. Graph

cut has 96.00% of area overlap which is due to the clear boundary of the spleen on the

input slice. Results produced by level set (Fig. 5.6(f)) is less smooth than those produced

by our algorithm (Fig. 5.6(c) top) due to voxelization, and they have leakage artifacts.

Our algorithm performed more accurately than level set in segmenting the spleen. Per

slice execution time was also computed across different algorithms. The results shown

in Table 5.1 once again suggest that the single-object segmentation algorithm is much

faster than the level set algorithm and graph cut.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Segmentation of left brachiocephalic vein. (a) Initialization. (b, c) Segmen-
tation results of the single-object segmentation algorithm in 2D slice view and 3D view.
(d, e) Zoom-in views of artifacts in segmentation results of level set (f).
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Figure 5.8: Feature extraction of the abdominal wall. Feature extraction of the abdominal
wall. (a) Extract feature points (red) in the abdominal wall for (b) building intensity
GMM.

5.4.3 Segmentation of Tubular Organ

Segmentation of left brachiocephalic vein which has a tubular shape from real medical

images was performed. The initialization was inside the blood vessel (Fig. 5.7(a)). The

left brachiocephalic vein was successfully segmented (Fig. 5.6(b, c)) thanks to the uni-

form vertex distribution constraint, which facilitated the large shape change. Results

were compared with those obtained by the level set methods and graph cut (Table 5.1).

Segmentation accuracy using our algorithm is only slightly better than that of the level

set algorithm and graph cut because this left brachiocephalic vein sample has a very small

volume (6 cm3) and a segmentation error of a single voxel will result in large error in

volume overlap. Again, our algorithm is more efficient.

5.4.4 Removal of Abdominal Wall

To further test the capability of the single-object segmentation algorithm to handle dif-

ferent shapes, the single-object segmentation algorithm was also applied to segment ab-

dominal walls in abdominal CT images [DLV09]. By removing the wall in the 3D volume,

the organs in the abdomen can be exposed and visualized directly. It also makes seg-

mentation more accurate and efficient by reducing the search space of any segmentation
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algorithm.

The test data include abdominal CT volume images of 1mm to 3mm thickness. The

initial spherical models were manually placed inside the abdominal walls. The feature

extraction stage estimates the intensity distribution of abdominal wall voxels. Since voxels

between the skin surface and the bone structure clearly belong to the abdominal wall,

they were used to build an intensity distribution to approximate that of the abdominal

wall. Therefore, the feature extraction stage contains two steps: (1) identify the skin

surface and the bones , and (2) build the intensity distributions of the body wall voxels.

Identification of the skin surface is straight-forward by using a contour tracing al-

gorithm [SA85]. Since accurate segmentation of the bone structure is not necessary,

identification of bone voxels can simply be performed by applying thresholding with a

high threshold and then by extracting the largest connected component.

To extract the voxels in between, a ray is projected along the inward surface normal

direction until it meets a bone voxel. The voxels along the ray definitely belong to the

body wall and are extracted (Fig. 5.8(a)). If a ray cannot find any bone voxel within

certain distance, all the voxels along the ray are discarded. The extracted voxels are used

to build the GMM model.

Sample results of the extracted inner boundaries of the abdominal walls for two input

CT volumes are shown in Fig. 5.9(b,e) and Fig 5.9(c,f) respectively, in both 3D view and

2D axial view.

The voxels belong to the abdominal wall can be easily removed after the surface of

the abdominal wall is extracted. The removal of the abdominal wall can be applied to

visualization of the organs.

Two examples for the volume rendering of CT images are shown in Fig. 5.10. In

Fig. 5.10(a) and (c), the opacity transfer functions were adjusted so that the abdominal

walls appear transparent and some of the organs can be observed. Since the opacity

transfer functions were applied globally across the whole input volume, other inner or-

gans which have similar voxel intensities such as colons and blood vessels also became

transparent and cannot be observed. In contrast, after removing the abdominal walls

by the single-object segmentation algorithm, they can be clearly visualized as shown in

Fig. 5.10(b) and (d).

81



3D Segmentation of Soft Tissues 5. Segmentation of Single Object

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Extraction of abdominal wall. (a) Initial 3D quadrilateral mesh and (d) its
2D view in one axial slice. (b,c) Extracted 3D surfaces and (e,f) their respective 2D axial
views.
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(a) (b)

(c) (d)

Figure 5.10: Volume rendering. (a,c) Volume rendering of two CT volumes by setting
the abdominal wall to transparent. (b,d) Volume rendering of organs after removing the
abdominal wall. Some of the organs such as colons and blood vessels that cannot be
visualized in the former can be clearly visualized in the latter. Best viewed in color.
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5.5 Summary

This chapter presented a single-object segmentation algorithm to solve the 3D soft organ

segmentation in medical volume images. The proposed segmentation algorithm is based

on the 3D flipping-free mesh deformation algorithm discussed in the previous chapter.

The user is required to initialize the segmentation algorithm by placing a quadrilateral

spherical mesh inside the target organ. The intensities of voxels inside the initial sphere

are used to model the intensity distribution of the target organ. The distribution model

is used for the segmentation algorithm to determine whether a voxel belongs to the

foreground or the background. The segmentation algorithm searches for a corresponding

point for each vertex by examining voxel intensities along the surface normal direction. In

some low contrast regions, the algorithm may not be able to find correspondence for some

vertices. After all the vertices have been examined, the flipping-free mesh deformation

algorithm can be applied.

The single-object segmentation algorithm was tested on segmenting various soft organs

inside the abdomen. Test on segmenting livers show that the proposed algorithm is very

efficient and noise resilient. Compared to the 2D snake segmentation algorithm, the

single-object segmentation algorithm is affected less by the image noise because it looks

for correspondence over a long range. Compared to the level set algorithm, it is shows less

leakage problem thanks to its local geometric constraints. It is faster because it takes a

explicit mesh representation. Compared to the graph cut methods, it is much faster and

uses less memory thanks to the explicit representation as well. The algorithm was used to

segment tubular objects such as blood vessels, suggesting its capability to handle organs

with very different shapes. This property was further verified as the algorithm was also

used to extract and remove the abdominal wall, which has another different shape. The

removal of the abdominal wall helps to visualize the internal soft organs more clearly.

Although the single-object segmentation algorithm demonstrated less leakage problem

than the level set method due to its local shape constraint, leakage may still happen at

a low contrast region. As a result, if the deformation is not stopped at a proper time,

some part of the mesh surface may bleed into the voxels that belong to another organ.

For example, this may happen during liver segmentation between the boundaries of liver

and kidney, liver and heart, liver and gall bladder, liver and abdominal wall, etc. This
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problem can be illustrated by Fig. 6.5 in the next chapter.
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Chapter 6

Segmentation of Multiple Objects

This chapter extends the segmentation algorithm presented in Chapter 5 to simultaneous

segmentation of multiple soft organs. The main idea is that the segmentation of each

organ is performed within its own bounding region. These organs’ bounding regions have

no intersection with each other, and are updated during the segmentation process. Each

bounding region serves as a constraint for segmenting neighboring organs. In this way,

organs are segmented simultaneously and they have no intersections with each other,

which is a highly desired property.

The multiple organ segmentation begins with a manual initialization process (Sec-

tion 6.1). For each target organ, feature extraction is performed as in Chapter 5. This is

followed by an iterative process that (1) computes the bounding region of each organ based

on the organ-specific statistical model and the current position of the respective mesh

surfaces (Section 6.2), and (2) performs single-object segmentation within each bounding

region (Section 6.3) until convergence. The segmentation algorithm was evaluated both

qualitatively and quantitatively, which shows that it can improve the segmentation accu-

racy of an individual organ, and prevent neighboring organs from intersecting each other

(Section 6.4).

The overview of the extended multiple-object segmentation algorithm is as below.
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Algorithm 3 Multiple-object segmentation.

Manual input: put a spherical quadrilateral mesh inside each target object.
Feature extraction: compute image statistics within the initialized sphere.
Repeat until convergence:

Compute the bounding region for each deformable model.
Perform single-object segmentation within the bounding region.

(a) (b)

Figure 6.1: Inter-object collision. Collision happens (b) when two neighboring meshes
deform according to their vertex displacement vectors (red and blue arrows respectively)
(a).

6.1 Initialization of Mesh Models

Just like initialization for single-object segmentation (Section 5.1), initialization of the

multiple-object segmentation algorithm involves manually placing a spherical mesh inside

each target organ. The voxels inside each initial sphere are used to estimate voxel intensity

statistics and construct bounding region (Section 6.2) for each target organ.

6.2 Bounding Region Computation

The single-object segmentation algorithm, if applied directly to segment multiple target

organs simultaneously, will produce inter-object intersections (or collisions) as shown in

Fig. 6.1. The two meshes have a collision(Fig. 6.1(b)) if they are deformed according to

the displacement vectors (red and blue arrows in Fig. 6.1(a)).
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Figure 6.2: Computation of deformation bounding regions. The bounding regions are
computed using distance transform. The darker the pixel, the further the point to the
mesh.

To prevent this, each mesh model is restricted to deform within its own bounding

region, and each bounding region has no intersection with each other.

The Bounding region Bi of Mi can be computed in several ways. Bi can be computed

using distance transform as shown in Fig. 6.2, where the intensities of pixels inside the

region correspond to the distances to the meshes.

To compute Bi mesh Mi, an binary volume which corresponds to the inside part of

the mesh is constructed. From the binary volume, a Euclidean distance transform can

be computed so that each voxel inside the volume image has a scalar value representing

its approximate Euclidean distance to the original mesh surface. A pre-defined threshold

is be set as the width of the bounding region so that the mesh vertices are only allowed

to be displaced inside the bounding region.

However, the location of the computed bounding region relies on the Euclidean posi-

tion of the mesh surface, i.e., it is sensitive to the initialization of the mesh. Therefore,

the applicability of the bounding regions computed using distance transform is limited. It

is inherently unsuitable for segmentation of body soft organs that have complex shapes.

Instead, we proposed to compute the bounding region based on geodesic distance. The
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Figure 6.3: Computation of deformation bounding regions. The bounding regions are
computed using the fast marching method.

distance metric takes into account the intensities of image voxels. To efficiently compute

the bounding region, the fast marching method [Set99b] is used. It incorporates image

characteristics to compute a soft segmentation based on front propagation starting from

the initial mesh. The propagation of the front is described by

|∇Ti|Si = 1 (6.2.1)

where Ti is the arrival times of the front ofMi, and Si is the corresponding speed functions.

If Si is constant (e.g., Si = 1), i.e., the front propagates with constant speed across the

whole image, Ti corresponds to the Euclidean distance transform of the original binary

volume. In the case of soft segmentation, Si should be large inside the region of the target

organ, and small or zero outside. Therefore, the speed functions are proportional to the

posterior probabilities,

Si(x) ∝ P (Fi|I(x)), (6.2.2)

where

P (Fi|I(x)) =
P (I(x)|Fi)P (Fi)

P (I(x))
, (6.2.3)

P (I(x)) is the normalization constant. P (Fi) can be determined a priori according to the

objects of interest in the volume image and the type of the image. Given Si, solving Ti

produces a volume image in which each voxel records the arrival time of the corresponding
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(a) (b)

Figure 6.4: Bounding Regions (dark pixels) generated by fast marching during liver
segmentation. Bounding Regions (a) and (b) are generated at different iterations. The
darker the intensity, the closer the pixel to the current mesh surface.

front. The initial front is generated using intersection between the initial spherical mesh

and the input volume image.

Each bounding region of the individual object is updated during segmentation process.

It has the shape of a sphere at the beginning, and gradually develops into the shape of

the target object. Examples of computed bounding regions are shown in Fig. 6.4.

Since there are n target organs, there will be n propagating fronts, and n correspond-

ing bounding regions. Each bounding region has an ID i(i = 0, . . . , n). i = 0 means

background. Each voxel x will be assigned with a bounding region ID L. If a voxel x

belongs to bounding region i,

L(x) = i. (6.2.4)

The bounding region ID of each voxel x can be determined by the arrival time at x

(Ti(x)) of each front. If Ti(x) < Tj(x(j = 0, . . . , n|i)), x is more likely a voxel belonging

to organ i instead of the remaining organs. If front i arrives the earliest, L(x) = i.

i = argminTi(x). (6.2.5)
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Since a typical CT or MR volume image takes up hundreds of Megabytes of mem-

ory, computing the arrival time of n fronts will result in n volume. These intermediate

resulting volume will take huge amount of memory. To reduce the memory footprint,

we only compute arrival time of the voxels within a bounding box for each front. Let

BBi = {xmin, xmax, ymin, ymax, zmin, zmax} denote such a bounding box corresponding to

the target organ i, and BB′
i = {x′

min, x
′
max, y

′
min, y

′
max, z

′
min, z

′
max} denote the bounding

box of the mesh Mi, and wi denote the pre-defined width of the bounding region i. BBi

can be computed by offsetting BB′
i by width wi.

xmin = x′
min − wi, (6.2.6)

xmax = x′
max + wi, (6.2.7)

ymin = y′min − wi, (6.2.8)

ymax = y′max + wi, (6.2.9)

zmin = z′min − wi, (6.2.10)

zmax = z′max + wi. (6.2.11)

Front propagation within BBi will greatly reduces the memory footprint and computation

time, especially when the size of the target organ is relatively small compared to the entire

CT/MR volume.

6.3 Segmentation within the Bounding Region

Segmentation of each object in multiple-object segmentation algorithm is similar as that

in the single-object segmentation method. The difference is that the deformed mesh

remains within a bounding region. In order to do this, (1) the algorithm searches corre-

spondence for each mesh vertex within the respective bounding region, (2) mesh vertices

close to the border of neighboring bounding regions will remain in their own bounding

region during deformation.

To satisfy (1), correspondence search for each vertex along the surface normal direction

needs to check whether current voxel belongs to the neighboring bounding regions. If that

is the case, the very last voxel along the direction within its own bounding region will be

its corresponding point, and this vertex is defined as border vertex. To satisfy (2), the

91



3D Segmentation of Soft Tissues 6. Segmentation of Multiple Objects

positional weights for border vertices are increased to a large value so that the positions

of these vertices will not be affected by other constraints such as Laplacian preservation.

6.4 Experiments and Discussions

Experiments have been carried out to verify the effectiveness of the proposed multi-

pleobjects segmentation algorithm regarding to the leakage problem (Section. 6.4.1).

Convergence of the algorithm is also investigated (Section 6.4.2). Results of simulta-

neous segmentation of multiple important soft organs inside abdomen are also given

(Section. 6.4.3).

6.4.1 Alleviation of the Leakage Problem

The objective of this test is to demonstrate that the leakage problem can be alleviated

using the proposed algorithm. The data set was again obtained from the same MICCAI

data as described in the previous chapter.

The test data include all the CT volumes tested for the single-object segmentation

algorithm (Chapter 5). Results produced by the multiple-object segmentation algorithm

are compared with those produced by single-object segmentation algorithm both quali-

tatively and quantitatively. For quantitative evaluation, the volume overlap error (Chap-

ter 5) and the average surface distance are computed between the segmentation results

and the ground-truth data.

The average distance between the surface (A) of the segmented volume and the surface

(B) of the ground truth volume is computed as follows:

d =

∑

a∈A[minb∈B D(a, b)] +
∑

b∈B[mina∈A D(a, b)]

NA +NB

, (6.4.1)

where a and b denote points on surface A and B respectively. NA and NB denote the

number of points on A and B. D(a, b) denotes the distance between point a and b [DD08].

Most of the leakage problems in the liver segmentation experiments happen at the

boundary between the liver and the inferior vena cava (IVC). This is because the intensity

values of IVC is very close to those of livers. Therefore, apart from the initial spherical
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(a) (b)

Figure 6.5: Leakage problem. Liver segmentation result (dark red) produced by the
single-object segmentation algorithm (a) leaks into IVC. The result produced by the
multiple-object segmentation algorithm (b) has no leakage problem thanks to the con-
straint provided by IVC (blue).

model for liver, an extra spherical mesh is placed inside IVC. The multiple-object seg-

mentation algorithm is executed for fixed number of iterations, with exactly the same

parameters across different test volume images.

To show that the leakage problem in the single-object segmentation can be alleviated

by using the multiple-object segmentation algorithm, liver segmentation results using

both of the algorithms from the same input volume image are compared. As shown in

one coronal view (Fig. 6.5(a)), the segmented liver (red) region leaks into IVC. In contrast,

as shown in Fig. 6.5(b), with the constraint provided by IVC (blue), the segmented liver

has no leakage problem, and segmented liver and IVC have no overlap with each other.

To further verify the effectiveness of the multiple-object segmentation algorithm, a

quantitative comparison was also performed. The liver segmentation results produced

by the multiple-object segmentation algorithm were evaluated according to the ground

truth data in terms of average surface distance and volume overlap error. Fig. 6.6 shows

that the multiple-object segmentation algorithm (red) achieved both lower volume overlap

error (a) and smaller average surface distance (b) compared to single-object segmentation

algorithm (green), for all test cases.
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Figure 6.6: Single-object segmentation vs multiple-object segmentation. For all 8 test
cases, multiple-object segmentation algorithm (red) achieved both lower volume overlap
error (a) and smaller average surface distance (b) compared to single-object segmentation
algorithm (green), thanks to alleviated leakage problem.

6.4.2 Convergence

The convergence of the algorithm can be demonstrated by volume overlapping error

curves when the algorithm iterates. The volume overlapping error curves of a segmented

liver using both the single-object segmentation algorithm (green)and the multiple-object

segmentation algorithm (red) were plotted in Fig. 6.7. As can be seen in the figure, the

multiple-object segmentation algorithm can converge as it iterates. It achieved lower error

thanks to simultaneous segmentation of the neighboring organ (IVC), which alleviate the

leakage problem.

6.4.3 Qualitative Segmentation Results

To demonstrate that the proposed multiple-object segmentation algorithm can segment

many objects simultaneously, an experiment on segmenting multiple important abdominal

soft organs including liver, part of the heart chamber, gallbladder, left and right kidneys,

IVC and spleen was carried out using the same testing images.

The algorithm was initialized by placing an initial spherical mesh inside each of the

target object. The segmentation results were examined qualitatively.
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Figure 6.7: Convergence curve. The multiple-object segmentation algorithm (red) can
converge, and it achieves lower segmentation error than the single-object segmentation
algorithm (green) does.

95



3D Segmentation of Soft Tissues 6. Segmentation of Multiple Objects

As shown in Fig. 6.8, multiple abdominal organs, i.e., liver (dark red), part of the

heart chamber (red), gallbladder (green), left and right kidneys (blue), IVC (dark blue)

and spleen (yellow), are successfully segmented. The spine and ribs (white) are extracted

using simple thresholding algorithm and used to indicate the pose of the patient. As

can be seen in the figure, the segmented organs have no intersections with each other.

More multiple-object segmentation examples are given in Fig. 6.9, Fig. 6.10 and Fig. 6.11

where the sizes, shapes, orientations and positions of the segmented organs from various

patients are significantly different. This proves the capabilities of the multiple-object

segmentation algorithm to handle images from different patients.

6.4.4 Execution Time

This test compares the execution time spent on computing the deformation bounding

region and that spent on computing the deformation itself with the current implementa-

tion of the algorithm, which has not been optimized. To measure the time, single-object

segmentation in one test image was performed for just 1 iteration, after bounding region

computation. The required time to compute the bounding region takes about 2.65 times

of that required to compute the deformation itself does. Computation of the bounding

regions using the fast marching algorithm is computationally expensive, but is highly

parallel-able. Accelerating bounding region computation will certainly result in a much

faster multiple-object segmentation algorithm. Possible means for acceleration are dis-

cussed in the future work section (Section 7.2).

6.5 Summary

This chapter presented a multiple-object segmentation algorithm that can segment mul-

tiple objects int he input volume image simultaneously. During the segmentation process,

the proposed algorithm computes a bounding region for each target object using the fast

marching algorithm. These bounding regions are updated during iterations to gradually

resemble the shape of the target object. The border of the neighboring bounding regions is

determined by the neighboring fronts that arrive at the same time. The computed bound-

ing regions are used to constrain the segmentation of each individual object such that
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(a) (b)

(c) (d)

Figure 6.8: Multiple-object segmentation of abdominal organs, first example. (a)–(d)
Different views of the segmented multiple abdominal organs, i.e., liver (dark red), part
of the heart chamber (red), gallbladder (green), left and right kidneys (blue), IVC (dark
blue) and spleen (yellow), using the multiple-object segmentation algorithm. The spine
and ribs (white) are extracted using simple thresholding algorithm and used to indicate
the pose of the patient.
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(a) (b)

(c) (d)

Figure 6.9: Multiple-object segmentation of abdominal organs, second example.
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(a) (b)

(c) (d)

Figure 6.10: Multiple-object segmentation of abdominal organs, third example.
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(a) (b)

(c) (d)

Figure 6.11: Multiple-object segmentation of abdominal organs, fourth example.
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no overlap will happen between neighboring segmented objects. Within each bounding

region, the single-object segmentation algorithm (Chapter 5) is performed with modifi-

cations to satisfy (1) correspondence search is within the bounding region and (2) border

vertices have very large positional weights during segmentation. There conditions ensure

that single-object segmentation is carried out within the respective bounding region.

Experiments were carried out to evaluate the performance of the multiple-object seg-

mentation algorithm in terms of accuracy. Test results show that the algorithm achieved

better liver segmentation results that the single-object segmentation algorithm did. The

results produced by the multiple-object segmentation algorithm have lower volume over-

lap error and smaller average surface distance, thanks to the alleviated leakage problem.

Experiment on segmenting multiple major abdominal soft organs verified its capabilities

in segmenting multiple objects simultaneously.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Medical image segmentation has been a very hot research topic over the years. Many

existing segmentation algorithms make use of statistical shape constraints of target ob-

jects. With appropriate training, these algorithms can perform well on certain objects

with normal shapes. However, shapes of organs can vary significantly among patients.

They can also be greatly deformed due to diseases. Parts of the organs may be removed

by surgical operations. The shapes of these organs are unlikely to be predictable. It

is almost impossible for an algorithm to handle these deformed objects with existing

normally-shaped objects as training samples. This thesis presents a novel 3D segmen-

tation algorithm based on flipping-free mesh deformation to segment organs of various

shapes from different patients. The proposed segmentation algorithm does not rely on

any shape priors, and therefore is able to segment various complex shapes. It is extended

to segment multiple objects simultaneously in medical volume images.

To solve the segmentation problem, a deformable model-based segmentation algo-

rithm is proposed. The model is explicitly represented as a mesh surface. In contrast

to implicit representation such as the level set, the mesh representation is much more

efficient. However, improperly deforming a mesh may produce mesh flipping that will

severely affect the correctness and the usefulness of the segmentation results. To prevent

flipping, a possible flipping detection and avoidance mechanism is introduced before each

deformation iteration. Experiments of the proposed flipping-free mesh deformation algo-
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rithm show that the algorithm is flipping-free, efficient, able to handle concave objects,

and insensitive to parameter setting.

The proposed mesh deformation algorithm is then applied to 3D object segmenta-

tion. The algorithm searches for each vertex its possible correspondence in the image.

The search is based on estimated intensity distribution of the target object constructed

from the initial spherical model. The estimated correspondences function as positional

constraints to displaced the vertices. Vertices with no correspondence can be displaced

according to local geometric properties. Experiments of the single-object segmentation

algorithm demonstrate that it is much faster than other segmentation algorithms such

as snake, level set, and graph-cut. It also produced more accurate segmentation results

compared to these algorithms. Experiments also show that the proposed segmentation

algorithm can segment objects with very different shapes.

To extend the segmentation algorithm to segmenting multiple objects simultaneously,

the proposed algorithm computes a bounding region for each target object using the fast

marching algorithm. These bounding regions are updated during iterations to gradu-

ally resemble the shape of the target object. The borders of the neighboring bounding

regions are determined by the neighboring fronts that arrive at the same time. The com-

puted bounding regions are used to constrain the segmentation of each individual object

such that no overlap will happen between neighboring segmented objects. Within each

bounding region, the single-object segmentation algorithm (Chapter 5) is performed sub-

ject to (a) correspondence search is within the bounding region and (b) border vertices

have very large positional weights during segmentation. There conditions ensure that

single-object segmentation is carried out within the respective bounding region. Test

results show that the multiple-object segmentation algorithm achieved better liver seg-

mentation results than the single-object segmentation algorithm did. It produced results

with lower volume overlap error and smaller average surface distance. Experiment on

segmenting multiple major abdominal soft organs verified its capabilities in segmenting

multiple objects simultaneously.
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7.2 Future Work

The proposed 3D segmentation algorithm can be enhanced and extended to reduce its

execution time and further increase its robustness.

During mesh deformation, solving the linear equations in each iteration takes up most

of the time. In current implementation, the linear system is solved by CPU using the

Taucs library. Solving the linear equation using GPU implementation [BFGS03, JW03]

will reduce the time by a large fraction.

During the segmentation process, computation of bounding regions using the fast

marching method takes a lot of time. The computational complexity of the fast marching

method is O(n logn), where n is the number of voxels in the image. This process can

be speeded up by down sampling the volume since the bounding region needs not to be

of single voxel accuracy. Down sampling may speed up the fast marching algorithm a

lot. Further acceleration is possible if the fast marching algorithm is implemented using

GPU. A GPU-based implementation working on 2D images is currently available [JW07].

To further increase the robustness of the algorithm, different features may be incor-

porated into the algorithm. Current implementation use estimated intensity distribution

to guide correspondence search. Other features such as edges and textures can be eas-

ily incorporated into the current framework. These features may help the algorithm to

differentiate between foreground and background when voxel intensities of neighboring

objects are similar.
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on the GPU: Conjugate gradients and multigrid. ACM Transactions on

Graphics, 22(3):917–924, 2003.

107



3D Segmentation of Soft Tissues BIBLIOGRAPHY

[BHTR90] Michael Bomans, Karl-Heihz Höhne, Ulf Tiede, and Martin Riemer. 3-D
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