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RÉSUMÉ

Au Canada, l’épilepsie affecte environ 3 à 6 enfants par 1000 âgés de 0 à 15 ans dans la
population globale. Quinze à 25 % de ces enfants ont une épilepsie bénigne avec des pointes
centrotemporelles (BECTS), ce qui fait de BECTS le syndrome épileptique focal de l’enfant
bénin le plus fréquent. Initialement, BECTS était considéré comme bénin parmi les autres
épilepsies car il était généralement rapporté que les capacités cognitives ont été préservées
ou ramenées à la normale pendant la rémission. Cependant, certaines études ont trouvé des
déficits cognitifs et comportementaux, qui peuvent bien persister même après la rémission.
Compte tenu des différences neurocognitives chez les enfants atteints de BECTS et de té-
moins normaux, la question est de savoir si des variations morphométriques subtiles dans
les structures cérébrales sont également présentes chez ces patients et si elles expliquent des
variations dans les performence cognitifs. En fait, malgré les preuves accumulées d’une étio-
logie neurodéveloppementale dans le BECTS, peu est connu sur les altérations structurelles
sous-jacentes. À cet égard, la proposition de méthodes avancées en neuroimagerie permettrait
d’évaluer quantitativement les variations de la morphologie cérébrale associées à ce trouble
neurologique. En outre, l’étude du développement morphologique du cerveau et sa relation
avec la cognition peut aider à élucider la base neuroanatomique des déficits cognitifs. Le but
de cette thèse est donc de fournir un ensemble d’outils pour analyser les variations mor-
phologiques sous-corticales subtiles provoquées par différentes maladies, telles que l’épilepsie
bénigne avec des pointes centrotemporelles.

La méthodologie adoptée dans cette thèse a conduit à trois objectifs de recherche spécifiques.
La première étape vise à développer un nouveau cadre automatisé pour segmenter les struc-
tures sous-corticales sur les images à resonance magnètique (IRM). La deuxième étape vise
à concevoir une nouvelle approche basée sur la correspondance spectrale pour capturer pré-
cisément la variabilité de forme chez les sujets épileptiques. La troisième étape conduit à
une analyse de la relation entre les changements morphologiques du cerveau et les indices
cognitifs.

La première contribution vise plus spécifiquement la segmentation automatique des struc-
tures sous-corticales dans un processus de co-recalage et de co-segmentation multi-atlas.
Contrairement aux approches standards de segmentation multi-atlas, la méthode proposée
obtient la segmentation finale en utilisant un recalage en fonction de la population, tandis
que les connaissances à prior basés sur les réseaux neuronaux par convolution (CNNs) sont
incorporées dans la formulation d’énergie en tant que représentation d’image discriminative.
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Ainsi, cette méthode exploite des représentations apprises plus sophistiquées pour conduire
le processus de co-recalage. De plus, étant donné un ensemble de volumes cibles, la méthode
proposée calcule les probabilités de segmentation individuellement, puis segmente tous les
volumes simultanément. Par conséquent, le fardeau de fournir un sous-ensemble de vérité
connue approprié pour effectuer la segmentation multi-atlas est évité. Des résultats promet-
teurs démontrent le potentiel de notre méthode sur deux ensembles de données, contenant
des annotations de structures sous-corticales. L’importance des estimations fiables des an-
notations est également mise en évidence, ce qui motive l’utilisation de réseaux neuronaux
profonds pour remplacer les annotations de vérité connue en co-recalage avec une perte de
performance minimale.

La deuxième contribution vise à saisir la variabilité de forme entre deux populations de sur-
faces en utilisant une analyse morphologique multijoints. La méthode proposée exploite la
représentation spectrale pour établir des correspondances de surface, puisque l’appariement
est plus simple dans le domaine spectral plutôt que dans l’espace euclidien conventionnel.
Le cadre proposé intègre la concordance spectrale à courbure moyenne dans un plateforme
d’analyse de formes sous-corticales multijoints. L’analyse expérimentale sur des données cli-
niques a montré que les différences de groupe extraites étaient similaires avec les résultats
dans d’autres études cliniques, tandis que les sorties d’analyse de forme ont été créées d’une
manière à réduire le temps de calcul.

Enfin, la troisième contribution établit l’association entre les altérations morphologiques sous-
corticales chez les enfants atteints d’épilepsie bénigne et les indices cognitifs. Cette étude per-
met de détecter les changements du putamen et du noyau caudé chez les enfants atteints de
BECTS gauche, droit ou bilatéral. De plus, l ’association des différences volumétriques struc-
turelles et des différences de forme avec la cognition a été étudiée. Les résultats confirment les
altérations de la forme du putamen et du noyau caudé chez les enfants atteints de BECTS.
De plus, nos résultats suggèrent que la variation de la forme sous-corticale affecte les fonc-
tions cognitives. Cette étude démontre que les altérations de la forme et leur relation avec la
cognition dépendent du côté de la focalisation de l’épilepsie.

Ce projet nous a permis d’étudier si de nouvelles méthodes permettraient de traiter auto-
matiquement les informations de neuro-imagerie chez les enfants atteints de BECTS et de
détecter des variations morphologiques subtiles dans leurs structures sous-corticales. De plus,
les résultats obtenus dans le cadre de cette thèse nous ont permis de conclure qu’il existe
une association entre les variations morphologiques et la cognition par rapport au côté de la
focalisation de la crise épileptique.
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ABSTRACT

In Canada, epilepsy affects approximately 3 to 6 children per 1000 aged from 0 to 15 years in
the overall population. Fifteen to 25% of these children have benign epilepsy with centrotem-
poral spikes (BECTS), making BECTS the most common benign childhood focal epileptic
syndrome. Initially, BECTS was considered as benign among other epilepsies since it was
generally reported that cognitive abilities were preserved or brought back to normal dur-
ing remission. However, some studies have found cognitive and behavioral deficits, which
may well persist even after remission. Given neurocognitive differences among children with
BECTS and normal controls, the question is whether subtle morphometric variations in brain
structures are also present in these patients, and whether they explain variations in cogni-
tive indices. In fact, despite the accumulating evidence of a neurodevelopmental etiology
in BECTS, little is known about underlying structural alterations. In this respect, propos-
ing advanced neuroimaging methods will allow for quantitative assessment of variations in
brain morphology associated with this neurological disorder. In addition, studying the brain
morphological development and its relationship with cognition may help elucidate the neu-
roanatomical basis of cognitive deficits. Therefore, the focus of this thesis is to provide a set
of tools for analyzing the subtle sub-cortical morphological alterations in different diseases,
such as benign epilepsy with centrotemporal spikes.

The methodology adopted in this thesis led to addressing three specific research objectives.
The first step develops a new automated framework for segmenting subcortical structures on
MR images. The second step designs a new approach based on spectral correspondence to
precisely capture shape variability in epileptic individuals. The third step finds the associa-
tion between brain morphological changes and cognitive indices.

The first contribution aims more specifically at automatic segmentation of sub-cortical struc-
tures in a groupwise multi-atlas coregistration and cosegmentation process. Contrary to the
standard multi-atlas segmentation approaches, the proposed method obtains the final seg-
mentation using a population-wise registration, while Convolutional Neural Network (CNN)-
based priors are incorporated in the energy formulation as a discriminative image represen-
tation. Thus, this method exploits more sophisticated learned representations to drive the
coregistration process. Furthermore, given a set of target volumes the developed method
computes the segmentation probabilities individually, and then segments all the volumes
simultaneously. Therefore, the burden of providing an appropriate ground truth subset to
perform multi-atlas segmentation is removed. Promising results demonstrate the potential of
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our method on two different datasets, containing annotations of sub-cortical structures. The
importance of reliable label estimations is also highlighted, motivating the use of deep neural
nets to replace ground truth annotations in coregistration with minimal loss in performance.

The second contribution intends to capture shape variability between two population of sur-
faces using groupwise morphological analysis. The proposed method exploits spectral repre-
sentation for establishing surface correspondences, since matching is simpler in the spectral
domain rather than in the conventional Euclidean space. The designed framework integrates
mean curvature-based spectral matching in to a groupwise subcortical shape analysis pipeline.
Experimental analysis on real clinical dataset showed that the extracted group differences
were in parallel with the findings in other clinical studies, while the shape analysis outputs
were created in a computational efficient manner.

Finally, the third contribution establishes the association between sub-cortical morphological
alterations in children with benign epilepsy and cognitive indices. This study detects putamen
and caudate changes in children with left, right, or bilateral BECTS to age and gender
matched healthy individuals. In addition, the association of structural volumetric and shape
differences with cognition is investigated. The findings confirm putamen and caudate shape
alterations in children with BECTS. Also, our results suggest that variation in sub-cortical
shape affects cognitive functions. More importantly, this study demonstrates that shape
alterations and their relation with cognition depend on the side of epilepsy focus.

This project enabled us to investigate whether new methods would allow to automatically
process neuroimaging information from children afflicted with BECTS and detect subtle
morphological variations in their sub-cortical structures. In addition, the results obtained
in this thesis allowed us to conclude the existence of the association between morphological
variations and cognition with respect to the side of seizure focus.
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CHAPTER 1 INTRODUCTION

Benign epilepsy with centrotemporal spikes (BECTS) is one of the most common childhood
epilepsy syndromes (Kramer et al., 1998; Wirrell and Hamiwka, 2006), which occurs in chil-
dren aged from three to 13 years old (Panayiotopoulos et al., 2008). Initially, BECTS was
considered as benign, but recently some studies have found cognitive and behavioral defi-
cits (Weglage et al., 1997; Metz-Lutz and Filippini, 2006), which could affect the quality of
life of these children (Malfait, 2011).

Despite the various studies on neurodevelopmental etiology in BECTS, no research study has
assessed the underlying structural shape alterations and its relation with cognition in this di-
sease. Recent advancements in the neuroimaging have enabled developing reliable frameworks
for investigating neuroanatomical alterations in sub-cortical brain organs. For this purpose,
first the boundary of each sub-cortical structure should be delineated using a segmentation
approach, then a shape analysis process is required to detect the location of morphological
alterations. The detected alterations can be further analyzed to reveal the relation between
structural morphology in BECTS and cognitive impairments.

Manual segmentation of sub-cortical structures on Magnetic Resonance (MR) images is consi-
dered as gold standard. However, manual delineation of structures is costly and requires
trained experts. Therefore, automatically segmenting structures has become of special in-
terest. In recent years, various automatic segmentation methods have been proposed in the
literature. Nonetheless, the accuracy of these approaches is still far from the gold standard.
Among available segmentation techniques, multi-atlas segmentation approaches have been
shown to be amongst the most powerful ones (Iglesias and Sabuncu, 2015). These methods
use a dataset of MR atlases with their corresponding ground truth labels to find the segmen-
tation of an unseen target image. The problem is that these approaches still require manual
annotations on atlas images. In this thesis, a multi atlas segmentation algorithm is propo-
sed that removes the burden of selecting an appropriate ground truth subset. The proposed
coregistration and cosegmentation approach uses prior probability maps in the energy for-
mulation of the registration process to segment multiple unseen images at the same time.
Here, the priors are computed using two classifiers, Convolutional Neural Networks (CNN)
and Random Forests. Contrary to the standard multi-atlas segmentation approaches, which
usually segment one target image at a time, the proposed method performs the segmentation
in a groupwise manner.

Once the sub-cortical structures are segmented, the location of alterations can be identified
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using a shape analysis process. Among morphological analysis approaches, surface-based me-
thods have become more popular because of their ability to represent local shape deformities.
However, the main challenge in these methods is that these approaches are sensitive to the sur-
face correspondences established across a population of meshes for the purpose of groupwise
shape analysis. Recently, spectral matching approach has been proposed (Lombaert et al.,
2013a,b) for mapping surface meshes in a computational efficient manner. In this thesis, the
spectral matching algorithm is employed in a groupwise shape analysis pipeline, designed for
the population-wise comparison between two groups of subcortical structures. In order to
improve the surface matching accuracy, we incorporate the mean curvature information as
an additional features in the spectral matching process.

The proposed groupwise shape analysis framework is applied on BECTS participants to
extract the location of morphological alterations. Contrary to the previous studies that com-
bined participants with different sides of seizure focus (Garcia-Ramos et al., 2015a; Kim
et al., 2014), our experiments are conducted with respect to the location of epilepsy focus,
to reveal the role of epilepsy lateralization on sub-cortical morphometry. In addition, the
association between subcortical alterations and cognitive indices is studied, to verify whether
sub-cortical morphometric alterations explain variations in cognition.

Therefore, this thesis precisely develops new methods for morphological analysis of sub-
cortical structures in BECTS. The next sections provide the main contributions and an
overview of the organization of the manuscript.

1.1 Thesis contributions

This thesis is in the field of biomedical imaging and summarizes the development of a brain
morphological analysis framework, which are applied to the study of BECTS. The main
contributions of this work can be summarized as follows :
— Presenting a data-driven coregistration and cosegmentation framework for automatic

segmentation of sub-cortical structures on MR images. The proposed approach inte-
grates the learned semantic segmentations, defined by convolutional neural networks
(CNN), as priors into the energy formulation to boost the spatial transformation es-
timation in the registration process. Therefore, instead of only using the appearance
features the developed method exploits the sophisticated learned probability maps to
drive the coregistration process. Contrary to the standard multi-atlas segmentation ap-
proaches, which segment one target image at a time, our method considers a target
set of images to be segmented and registered at the same time. Thus, in the case of
large datasets, the burden of selecting an appropriate ground truth subset to perform
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multi-atlas segmentation is removed ; one simply has to compute the probability masks
on the input volumes (Chapter 5).

— Proposing a statistical shape analysis tool based on spectral matching to detect group-
wise morphological changes across population of 3D surfaces. The spectral matching
approach is integrated into a groupwise shape analysis framework, designed for the
population-wise comparison between two groups of subcortical structures. The mean
curvature feature is used as additional information in the spectral matching process
in order to increase the surface matching accuracy. The proposed framework allows
for the detection, localization, and quantification of statistically significant morpho-
logical alterations in brain subcortical structures in a computational efficient manner
(Chapter 6).

— Establishing a relationship between sub-cortical morphometry and neuropsychological
findings in children with benign epilepsy with centrotemporal spikes (BECTS) (Chap-
ter 7). Previous research studies have not assessed the underlying structural shape
alterations and its relation with cognition in this neurological disorder. In this study,
MR imaging and statistical morphological analysis is used to detect morphological
changes in children with left, right, or bilateral BECTS to age and gender matched
healthy individuals. In addition, the association of morphological alterations with neu-
ropsychological performance is investigated.

1.2 Thesis structure

This thesis is composed of nine chapters. Following this introduction, Chapter 2 provides
background information that is necessary for reading this thesis. Chapter 3 presents a critical
review of the literatures and a summary of the state of the art on segmentation, shape
analysis, and previous findings on benign epilepsy with centrotemporal spikes. The research
problem, objectives and hypothesis, along with the general methodology are described in
Chapter 4. The main body of this thesis is presented as three research publications which
are included in Chapter 5 to Chapter 7. The first two papers has been published and the last
one has been submitted for publication. The organization of the chapters is as follows :

The Chapter 5 presents the first article entitled "Prior-based Coregistration and Cosegmenta-
tion" accepted by the International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI 2016). This paper presents a coregistration and cosegmen-
tation approach of 3D MRI data guided by semantic label likelihoods, obtained from a deep
convolutional neural network (CNN).
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The Chapter 6 presents the secondary article entitled "Statistical shape analysis of subcor-
tical structures using spectral matching" published by the journal of Computerized Medical
Imaging and Graphics. This paper presents a new groupwise shape analysis framework for
subcortical surfaces based on spectral matching theory, in order to detect regional morpho-
logical alterations of subcortical structures from patients with neurological conditions.

The Chapter 7 presents the third article entitled "Sub-cortical brain morphometry and its re-
lationship with cognition in rolandic epilepsy" submitted to the journal of Epilepsy Research.
This paper presents a study on sub-cortical morphological alterations in benign epilepsy with
centrotemporal spikes (BECTS) in children with left, right, or bilateral hemispheric focus.
In addition, the link between sub-cortical morphometry and neuropsychological performance
are assessed.

In Chapter 8, the general objectives of the thesis and its benefits to the neuroimaging com-
munity are briefly discussed. Finally, Chapter 9 summarizes the findings, limitations, and
main recommendations for future work.
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CHAPTER 2 BACKGROUND

In this chapter, the background information related to the research project is proposed. First,
the anatomy of the brain will be explained, followed by a brief description of the anatomy
of each sub-cortical structure. Then, benign childhood epilepsy with centrotemporal spikes
and its characteristics will be described. The final section will present the available computer
aided diagnosis systems, which contribute to the study of epilepsy.

Figure 2.1 The brain in coronal view. Sub-cortical structures are underlined in red (Standring,
2016).

2.1 Anatomy of the brain

The human brain consists of two major tissue components : white (WM) and gray matter
(GM), and the brain floats in a clear bodily fluid, which is called the cerebrospinal fluid
(CSF). The cortex is a gray matter layer that covers the outer brain surface, over the white
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matter tracts in the brain. The white matter comprises the connective pathways between
the various processing regions. The sub-cortical structures are groups of grey matter organs
within the brain that are not included as part of the cortex. Figure 2.1 shows the location of
sub-cortical structures in a brain. Figure 2.2 illustrates the 3D view of different sub-cortical
structures.

The anatomy of sub-cortical structures is described in the following paragraphs.

Figure 2.2 3D view of left and right deep gray matter structures (Patenaude et al., 2011a).

The Thalamus

The thalamus is a large egg-shaped nuclear mass, which is located in both hemispheres at
the midline. The two thalami are separated medially by the third ventricle. The thalamus
may be thought of as a relay station for the brain, since it serves as a communication hub
between various regions of the brain (Standring, 2016).
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The Basal Ganglia

The basal ganglia are a group of nuclei, which are located in the medial temporal lobe, above
the thalamus and connected to the cerebral cortex. Typically, the basal ganglia include the
caudate nucleus, putamen, pallidum, and nucleus accumbens. The basic functions of these
nuclei deal with cognition, learning, and motor control and activities. The basal ganglia
are also associated with learning and memory processes, such as motor skills. Damage to
the basal ganglia has been linked to dysfunctional learning of motor and perceptual-motor
skills (Standring, 2016).

The Hippocampus

The hippocampus is a small grey matter (GM) structure that resides symmetrically in the
medial temporal lobes of both hemispheres of the brain (Standring, 2016). The hippocampus
can be subdivided into an anterior section, a medial section, and a posterior section, com-
monly referred to as the head, body, and tail, respectively. The hippocampus is responsible
for carrying out complex behaviour tasks such as declarative and representative memory
processing. It is often related to loss of memory in patients with Alzheimer’s disease.

The Amygdala

The amygdala is located in the medial temporal lobe. It has a rounded shape and is situated
anterior and superior to the hippocampus. The amygdala and hippocampus are two primary
structures that comprise the limbic system. The limbic system is largely involved with emotio-
nal responses as well as transforming short-term memories to long-term memories (Standring,
2016).

2.2 Benign childhood epilepsy with centrotemporal spikes (BECTS)

BECTS (also called rolandic epilepsy) is an age-dependant syndrome. The peak frequency
of onset in 75% of the cases (Panayiotopoulos, 2005) occurs in children aged from three to
13 years old, with a 1.5 male predominance (Panayiotopoulos, 2005) and it is resolved by
mid-adolescence (Sarco et al., 2011).

Epileptic seizures in BECTS are caused by the "hyperexcitability of the somatosensory or
somatomotor system" of a system of neurons in one hemisphere (Capovilla et al., 2009). The
focal seizure can sometimes lead to a generalized tonic-clonic seizure (Chan and Lee, 2011).
Seizures are typically brief, increasing during sleep and drowsiness, lasting in general from 1
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to 3 minutes (Panayiotopoulos, 2005).

The diagnosis of BECTS can be strongly suspected by the distinctive seizure semiology
in addition to the age of onset and nocturnal predominance (Shields and Snead, 2009). A
diagnosis can be confirmed by electroencephalography (EEG). The EEG in BECTS children
is distinctive, showing centrotemporal spike (CTS) discharges with a horizontal dipole that
is negative in the centrotemporal area and positive in the frontal area (Shields and Snead,
2009).

With regards to the aetiologies of RE, the underlying cause of this disease remain largely unk-
nown, although a genetic basis is postulated in the majority of affected RE individuals (Rein-
thaler et al., 2014). Genomic variation at 16p11.2 was found in 1.3% of RE, and the 16p11.2
duplication represented a significant genetic risk factor for children with BECTS (Reinthaler
et al., 2014) . An autosomal dominant inheritance of the EEG trait centrotemporal spikes has
been found in a few studies (Heijbel et al., 1975; Bali et al., 2007), while several other studies
reported a complex mode of inheritance (Vears et al., 2012). Linkage studies identified loci
for centrotemporal spikes on 15q14 and 11p13 (Neubauer et al., 1998; Strug et al., 2009). In
addition, fine mapping CTS revealed an association between CTS and the ELP4 gene, but
causative mutations have not yet been identified (Strug et al., 2009).

Initially, BECTS was considered as benign among other epilepsies, since it was generally
reported that cognitive abilities were preserved or brought back to normal during remis-
sion (Lindgren et al., 2004; Verrotti et al., 2002). However, the relationship between the
neuropsychological disorder and the pediatric epilepsy is well established, with up to a 50%
prevalence of learning difficulties (Sarco et al., 2011). Recently, more and more studies on
BECTS show the presence of cognitive and behavioral deficits. Researches studying BECTS
often report general deficits (Danielsson and Petermann, 2009) in IQ (Weglage et al., 1997),
sleep (Piccinelli et al., 2008), mood and behavioral disabilities (Sarco et al., 2011; Verrotti
et al., 2002), impaired quality of life (Connolly et al., 2006), fine motor dysfunction (Per-
kins et al., 2008), and social behaviour problems (Genizi et al., 2012). Similar results were
obtained in studies investigating a larger population of patients diagnosed with BECTS (Nor-
thcott et al., 2005, 2007). According to the studies, these cognitive deficits may be resolved
or may well persist during remission. Moreover, in BECTS, the earlier in life the onset and
the higher the number of seizures occur, the greater the probability of developing specific
learning impairments is (Piccinelli et al., 2008).
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2.3 Computer aided detection in epilepsy

Advances in medical imaging technology and computer science have greatly enhanced inter-
pretation of medical images, and contributed to early diagnosis of different neuropathologies.
The development of Computer Aided detection (CAD) systems to assist physicians in ma-
king better decisions has been an area of high interest in recent years. CAD systems aim to
provide a computer output used as a second opinion in order to assist physicians in the de-
tection of abnormalities, quantification of disease progress and alternate diagnosis of lesions.
Modern structural and functional brain imaging methodologies have made a great impact
in the diagnosis and management of epilepsies (Panayiotopoulos, 2005). Here, we introduce
the two common techniques (i.e., electroencephalography (EEG) and magnetic resonance
imaging (MRI)), which are used to obtain a proper diagnosis of epilepsy in individuals with
seizures.

Electroencephalography (EEG)

Electroencephalography (EEG) (Schomer and Lopes da Silva, 2010) is the measurement of the
electrical activity of the brain by recording from electrodes placed on the scalp. The resulting
traces are known as an electroencephalogram (EEG) and represent an electrical signal from
a large number of neurons. EEGs are frequently used in experimentation because the process
is non-invasive to the research subject. The EEG is capable of detecting changes in electrical
activity in the brain on a millisecond-level. EEG is the main diagnostic tool for epilepsy and
it can be used for gross localization of epileptogenic area. EEG is one of the few techniques
available that has such high temporal resolution. However, it has poor spatial resolution
in comparison to other imaging techniques. The BECTS EEG shows centrotemporal spike-
wave discharges. It is important to perform a wake-sleep EEG on these children because the
spike-wave discharges are activated as the patient enters the sleep phase (Shields and Snead,
2009).

Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) (Panayiotopoulos, 2005) is a non-invasive imaging tech-
nique that provides high-resolution images of soft tissues. After a patient lies in an MRI
scanner, the scanner creates a strong magnetic field around the body. The protons in the
body line up in the same direction. Then the short bursts of radio waves are sent, knocking
the protons out of alignment. When the radio waves are turned off, the protons realign and
in doing so send out radio signals, which are picked up by receivers. The protons in different
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types of tissue realign at different speeds and produce distinct signals. Thus, these signals
provide information about tissue types.

MRI scanners use magnetic fields, radio waves, and field gradients to generate images of
the body tissues. The protocol for the MRI acquisition process must be set up to produce
the appropriate spatial characteristics for a specific clinical procedure. This includes factors,
such as the number of slices, slice orientation, and the structure within each individual slice.
Multiple MRI sequences exist and each sequence has numerous variations. For instance,
there are image acquisition techniques such as spin-echo and gradient echo, and images can
be acquired one at a time or in a volumetric manner. T1-weighted imaging is one of the
fundamental MR imaging sequences, in which gray matter is relatively darker than white
matter. T1 image is useful for assessing the cerebral cortex and identifying fatty tissue. T2-
weighted imaging is another fundamental MR imaging sequences, where white matter appears
darker than gray matter. T2 contrast is useful for detecting edema, revealing white matter
lesions. Each of MRI scan variations has their strengths and weaknesses, and determining the
optimal imaging strategy may vary by institution, as well as by disease process. In general,
the magnetic resonance imaging scans allow in vivo visualization of structural alterations in
epileptic patients. The sensitivity for detecting subtle abnormalities could be increased by
improvements in scanner hardware, acquisition sequences and post-acquisition processes.

Figure 2.3 T1- and T2- weighted MRI scans.

2.4 Summary

In summary, in a child with epileptic seizures, a recording of brainwave activity using EEG
and an MRI of the brain are usually used to obtain a proper diagnosis. In special circum-
stances, when medication fails to control seizures or the side effects become intolerable,
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surgical intervention may be used. Hence, different medical imaging approaches would help
localize the side of epilepsy and detect the specific location of brain region that generates sei-
zures. Besides, medical analysis approaches could be combined with advanced techniques in
computer science to enhance interpretation of medical images, and contribute to the diagnosis
of neurological disorders.
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CHAPTER 3 CRITICAL LITERATURE REVIEW

3.1 Segmentation of magnetic resonance images

The goal of brain structure segmentation in MR images is to define the boundaries of a specific
neuroanatomical region, so that it could provide informative characteristic of structures,
which could assist physicians in the detection of abnormalities and quantification of disease
progress. Segmentation is a crucial step in a medical image analysis pipeline, since its quality
affects the accuracy of the subsequent analysis. Furthermore, brain structure segmentation in
MR images is a challenging task, due to the fact that the intensity distributions of different
structures show considerable overlap and some boundaries are not visible on MR images.
Therefore, sub-cortical segmentation methods cannot rely on intensity information alone.
They need a priori knowledge to separate the structure of interest from the background.

Before applying a segmentation algorithm on a brain MR image, several preprocessing steps
might be necessary. One preliminary step for many segmentation algorithms is skull stripping
or brain extraction process. In this pre-processing step, skull, fat, and dura mater are removed
from the MR image. The skull stripping process can be performed manually or automatically.
The two common automatic skull stripping tools are Brain Extraction Tool (BET) (Smith
et al., 2004), and Robust Learning-Based Brain Extraction (ROBEX) (Iglesias et al., 2011)
algorithm.

Intensity inhomogeneity correction is another pre-processing step that is usually performed
before applying a segmentation algorithm. Intensity inhomogeneity in MRI is typically cau-
sed by the imperfections of the image acquisition process, such as B1 inhomogeneity, receive
coil non-uniformity, or static field inhomogeneity (Vovk et al., 2007). The N4 algorithm pro-
posed in (Tustison et al., 2010) corrects intensity inhomogeneity on MR images and has been
implemented in the software package of Medical Image Processing Analysis and Visualiza-
tion(MIPAV) 1. Histogram matching is another preprocessing step, which is usually required
in segmentation algorithms based on multiple images. Histogram based intensity normaliza-
tion ensures homogeneity of corresponding tissue type intensities between the images. This
process has also been implemented in MIPAV software package.

Once all the required preprocessing steps are performed on a MR image, a segmentation
approach can be applied to define the boundary of sub-cortical structures. The current brain
structure segmentation literature can be divided into three categories with respect to the level

1. http ://mipav.cit.nih.gov/



13

of human involvement : manual segmentation, semi-automatic segmentation, and automatic
segmentation.

Manual segmentation is usually performed by trained experts, following certain protocols
defining regions of interest (ROIs). The anatomical knowledge of the expert contributes to the
segmentation when the boundaries of the structures are difficult to detect because of the low
tissue contrast between different structures. Although expert delineated segmentations are
considered as the ground truth, in practice, manual approaches are subjected to both intra-
and inter-rater variability (Nugent et al., 2013). Moreover, manually tracing the structures
of interest by experts is a tedious task, which can be time consuming and expensive. This
can make manual segmentation impractical and inefficient, especially when large cohorts of
healthy and diseased population are involved.

Semi-automatic and automatic methods have been developed to reduce the subjectivity in the
manual segmentation, and to increase the efficiency and reproducibility. In semi-automatic
methods, prior knowledge is introduced by a human operator who identifies landmarks, seed
points, or bounding boxes (Chupin et al., 2007; Shen et al., 2002; Ghanei et al., 1998).
However, in automatic methods, the segmentation protocol is fully automated, and there
is no demand of interaction with the user (Konrad et al., 2009). In order to validate the
accuracy of an automatic segmentation approach compared to a ground truth annotation
(manual segmentation), different metrics can be used. For instance, Dice coefficient (Dice,
1945) estimates the amount of volume overlap between the automatically segmented structure
(A) and the corresponding manually annotated one (B) :

Dice(A,B) = 2
∣∣∣∣∣ A ∩B
|A|+ |B|

∣∣∣∣∣ (3.1)

Dice coefficient ranges between [0, 1] and is equal to 1 when the two segmentations of A and
B are completely similar. Contour mean distance (CMD) 2 is another metric that computes
the average vertex-by-vertex Euclidean distance between the automatic annotation A and the
ground truth labeling B in 3D. Hausdorff distance (HD)2 measures the maximum 3D distance
between A and B. Hausdorff distance metric has high sensitivity to positional differences
between two segmentations, while Dice and contour mean distance calculate the average
similarity between two segmentations and ignore tiny over-segmentation error that might
occur in an automatic segmentation process.

The current fully automatic brain structure segmentation literature can roughly be divided

2. http ://plastimatch.org/plastimatch.html
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into five categories based on the type of additional knowledge that they incorporate : voxel
classification, deformable models, shape and appearance models, atlas-based segmentation,
and deep learning based approaches. In the following sections these paradigms will be briefly
introduced.

3.1.1 Voxel classification-based approaches

Voxel classification-based methods segment brain structures voxel-by-voxel based on spa-
tial and appearance information. To segment an unlabeled target image, manually labeled
example images in a feature space are used to train a voxel classifier and find the decision
boundaries that best separate different structures. After training, the classifier is applied to
the unlabeled target images by mapping them in the feature space and labeling them ac-
cording to the decision boundary. The available classification based segmentation methods
vary in terms of the type of features used and the approach applied to derive the decision
boundary.

Arzhaeva et al. (Arzhaeva et al., 2007) presented a supervised voxel classification method
for segmentation of the caudate nucleus from brain MRI images. They used general spatial
and local structure features extracted from image voxels together with a k-nearest neighbor
classifier. Although the method performed well on the test data originating from the same
population as the training images, it failed on data with different intensity ranges. Powell et
al. (Powell et al., 2009) employed features, including probability information, spatial location,
and intensities of voxels and their direct neighbours to delineate the subcortical nuclei and the
cerebellum (See Figure 3.1). They compared the performance of two different machine lear-
ning algorithms, artificial neural networks (ANN) and support vector machines (SVM). Some
reliable segmentation results were achieved using both applied methods. Morra et al. (Morra
et al., 2010) and Maglietta et al. (Maglietta et al., 2016) segmented the hippocampus using
thousands of features and a boosting algorithm(e.g., ADABoost or RUSBoost). Their experi-
ments showed that RUSBoost gave the best results in terms of evaluation metrics and agreed
well with human raters.

An important point in voxel classification based approaches is that, using more features
improves the classifier’s ability to model the structure’s appearance and location. However,
it also tends to increase the complexity of the decision boundary, which increases the risk of
overtraining. One can decrease this risk by increasing the number of examples, constraining
the complexity of the decision boundary, or decreasing the number of features by removing
those that are not very relevant for the classification accuracy.



15

Figure 3.1 An example of an input feature vector including probability information, spherical
coordinates, area iris values, signal intensity along the image gradient (Powell et al., 2009).

3.1.2 Deformable model methods

Deformable model methods iteratively deform the boundaries of an initial shape to find the
true border of the target structure while minimizing an energy function. These methods
use the boundary forces from the gradient image to warp a shape structure to the edges of
the structure (See Figure 3.2). The model can be improved by integrating prior anatomical
knowledge, like shape orientation or landmarks (Pitiot et al., 2004).

A group of deformable model based methods constrained the deformable surface to evolve
within the range of normal shape variations, in order to prevent unreasonable shape defor-
mation. Ghanei et al. (Ghanei et al., 1998), attempted to incorporate the statistical shape
information using a deformable balloon model. Keleman et al. (Kelemen et al., 1999) used
the mean shape of healthy subjects in the initial step and used PCA to guide the deformation
direction. The problem of using prior information based on healthy subjects is that in the
presence of anatomical variants, segmentation method may fall into local minima.

Apart from these parametric models, recently non-parametric models using level-set formu-
lation have been used for this problem (Tsai et al., 2003; Yang and Duncan, 2004). These
models enable more flexible deformations against morphological and topological variations.
However these non-parametric models do not allow for point-wise inter subject correspon-
dences, which complicates local sampling to capture texture and shape characteristics within
separate regional compartments (Yang and Duncan, 2004).
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Figure 3.2 Automatic MR image segmentation of lateral ventricle by deformable model. (a)
initial contours ; (b-e) intermediate results of contour deformation ; (f) final result (McInerney
et al., 2002).

3.1.3 Shape and appearance based methods

The Active Shape Model (ASM) is an automated segmentation method that has been widely
used in medical image segmentation over the past two decades (Cootes et al., 1995) (See
Figure 3.3). The ASM introduced the notion of using a Point Distribution Model (PDM) to
model shape of each structure, where a shape is represented by a surface, which is composed
of a set of connected vertices. Constructing a statistical shape model basically consists of
extracting the mean shape and a number of modes of variation from a collection of training
samples. Images are segmented using the model built from the training data, which specifies
the range of likely shapes.

Active Appearance Model (AAM) is an extension of the ASM framework that incorporates
intensity and texture information in addition to the shape structure of the landmarks (Co-
otes et al., 1998). The AAM relates the shape and intensity models with each other using a
weighting matrix estimated from the training set. Fitting shapes to unseen images is done
by minimizing the square of residual differences between predicted intensities and obser-
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ved image intensities. Many variants of this basic formulation have been presented in the
literature (Heimann and Meinzer, 2009).

Székely et al. (Székely et al., 1996) and Kelemen et al. (Kelemen et al., 1999) employed
spherical harmonic mapping for each training shape rather than using a PDM. The elastic
deformation of the model is used to match the local intensity profile to a prior shape subspace
learned from the training set. The technique has been applied to automatically segment the
left and right hippocampus, thalamus, putamen, and globus pallidus from volumetric magne-
tic resonance scans taken from schizophrenia studies. Staib and Duncan (Staib and Duncan,
1996) employed Fourier surfaces (an extension of the classical 1D and 2D Fourier transforms)
to describe shapes of several different topologies. They used the conjugate gradient (CG) al-
gorithm to fit the statistical shape model to new data. The method was applied to synthetic
images and 3D medical images of the heart and brain (e.g. caudate).

Shen et al. (Shen et al., 2001, 2002) employed local affine transformations, modulated by
a Gaussian envelop function, to adjust the deformable model. The proposed model has the
ability to weight different parts of the model differently during the search process. These
techniques have been used to segment boundaries of the ventricles, the caudate nucleus, the
lenticular nucleus, and hippocampus from volumetric MR images. Duchesne et al. (Duchesne
et al., 2002) proposed an appearance based method, which incorporates analysis of dense 3D
deformation fields from a nonlinear registration algorithm into the framework of appearance-
based segmentation.

Pizer et al. (Pizer et al., 2003) presented a medial model with a coarse-to-fine representation
which consisted of a collection of points on the centerlines and vectors pointing from there
towards the boundary. This approach had a special deformation scheme, where the entire
Statistical Shape Model (SSM) was first fitted globally in a hierarchical procedure. Then
individual subfigures and subsequently the medial atoms are adjusted (all using a conjugate
gradient optimizer). The method was applied to segment the hippocampus from MR images.

A different approach to increase model flexibility is to divide the SSM into several, indepen-
dently modeled parts. The rationale behind this is that smaller parts exhibit less variation,
which can be captured with fewer training samples than the variation for the full shape. Zhao
et al. (Zhao et al., 2005) presented a scheme based on mesh partitioning, in which each part
of the mesh is modeled separately, but parameters for the individual parts are connected by
curves in a combined shape space. The authors claim that limiting these curves to similar
patterns as encountered in the training set helps to prevent invalid shapes of the SSM. The
method applied to MR images of the left thalamus and left hippocampus. Nain et al. (Nain
et al., 2007) presented a novel multi-scale shape representation based on the spherical wavelet
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transform. This methodology found independent shape variation processes at multiple scales.
They applied the algorithm to two different brain structures, the caudate nucleus and the
hippocampus, in the study of schizophrenia. Hu et al. combined a level-set method to model
the brain structures and their variation with active appearance modeling to generate images
that are used to drive the segmentation (Hu and Collins, 2007). This algorithm incorporated
multi-modality images to improve the segmentation performance.

Patenaude et al. (Patenaude et al., 2011a) proposed a segmentation tool (FSL-FISRT), which
uses a Bayesian probabilistic approach. The shape and appearance models in FIRST are
constructed from a library of manually segmented images. The manual labels are paramete-
rized as surface meshes and then modeled as a point distribution. Using the learned models,
FIRST searches through shape deformations that are linear combinations of the modes of
variation to find the most probable shape instance given the observed intensities from the
input image.

The most important difference between the proposed methods in the field of active shape
models is the flexibility of the parameterization. In an ASM approach, a general model
with many degrees of freedom can describe a complex boundary, but requires more labeled
examples to represent the potential shape variations.

Figure 3.3 One iteration of an ASM search : At the beginning, the model is located at the
lower left of the true position. Local appearance models for all landmarks are evaluated.
Finally, model parameters are updated to minimize the squared distances to the found best
positions (Heimann and Meinzer, 2009).
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3.1.4 Atlas-based methods

In atlas-based segmentation approaches, additional knowledge is introduced through an at-
las image, in which an expert has labeled the brain structures of interest. The atlas is first
nonlinearly registered to the target image, and the resulting transformation is then used to
deform the atlas labels to the coordinate system of the target image. Atlas-based segmenta-
tion approaches reported in the literature differ in the type of deformations that is applied.
Registration methods based on elastic (Miller et al., 1993; Losifescu et al., 1997; Christensen
and Johnson, 2001), fluid (Hogan et al., 2000; Crum et al., 2001), and optical flow (Baillard
et al., 2001; Dawant et al., 1999; Hartmann et al., 1999) have been involved in matching the
image with the atlas.

Collins et al. presented a framework (Collins et al., 1995; Collins and Evans, 1997) denoted
as ANIMAL, which is an iterative procedure that estimates a 3D deformation field that
matches a source to a target volume. In this approach, first, the deformations required to
match blurred versions of the source and target data are estimated. Then, this deformation
field is upsampled and used as input to the next iteration, where the blurring is reduced and
the estimation of the deformation field is refined. Khan et al. (Khan et al., 2008) combined
the probabilistic-based FreeSurfer labeling method with the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) (Beg et al., 2005) to search for optimal nonlinear transformation
between the image and the atlas. In another study, an appearance model method has been
used to guide the deformation (Duchesne et al., 2002; Klemencic et al., 2004). Avants et
al. (Avants et al., 2008, 2010) developed a symmetric image normalization method (SyN) for
maximizing the cross-correlation within the space of diffeomorphic maps between a source
and an atlas image. (Ardekani et al., 2005) presented a high-dimensional non-parametric
automatic registration toolbox (ART), which has been used in atlas based segmentation
in (Klein et al., 2009). Klein et al. (Klein et al., 2009) provided a comprehensive evaluation
of the accuracy of atlas-based brain structure segmentation with several different publicly
available registration methods. SyN (Avants et al., 2008, 2010) and ART (Ardekani et al.,
2005) registration techniques were the only methods that attained top rank for all tests in
that large-scale evaluation of brain image registration methods.

As mentioned above, in atlas-based segmentation methods, image information is transferred
from the labeled atlas to subjects through non-rigid image registration. Since the image
registration algorithms are inherently related to the anatomical similarity between atlas and
subject, an atlas that is anatomically similar to a subject would result in better performance
for the segmentation. However, if the anatomy of the atlas is very different from the target,
the accuracy of the segmentation tends to decrease. Therefore, the choice of atlas has a
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vital impact on the accuracy of the final segmentation. To cope with this problem, a group of
studies have demonstrated the use of an optimal atlas in a number of cortical and sub-cortical
segmentation applications (Avants et al., 2010; Wu et al., 2007).

Another way to resolve this issue is the iterative registration of multiple manually labeled
training images into a common space (Joshi et al., 2004). The resulting deformations are then
applied to both the training images and their manual labels. The result of this process would
be a smooth image (atlas) and a probability map, which represents the average anatomical
variation of the training population. This average atlas, along with the probability maps can
then be used to segment an un-labeled target image (Gouttard et al., 2007; Hammers et al.,
2003). In this regard, the FreeSurfer software package (Fischl et al., 2002) uses a probabilistic
atlas of anatomical and tissue classes along with spatial constraints for class labels encoded
using a Markov random field model to segment the entire brain.

Another possible solution to increase the atlas-based segmentation accuracy is to use a multi-
atlas segmentation strategy, in which several atlases are registered to the target image and
the deformed labels are combined to generate the final segmentation (Heckemann et al.,
2006; Rohlfing et al., 2004) (See Figure 3.4). In this context, using a multi-atlas approach
increases the accuracy and robustness of the segmentation, since the anatomical variability
is represented more accurately compared to a single atlas based method. In addition, if a
large number of atlases are available, results could even further be improved by selecting a
subset of atlases that are very similar to the target (Aljabar et al., 2009; Wolz et al., 2010;
Shen et al., 2010; Zikic et al., 2014). In a study by Chakravarty et al. (Chakravarty et al.,
2013) new automatically generated atlases were created from a single labeled brain and the
resulting atlases were used in a multi-atlas segmentation framework. However, this approach
has the disadvantage that segmentation mistakes reinforce themselves. An extensive review
of multi-atlas segmentation methods can be found in (Iglesias and Sabuncu, 2015).

One imperative point in multi-atlas segmentation is how to combine the labels from initial
atlases to generate the final segmentation. Voxel-wise majority voting is a basic method that
has been proposed as a label fusion strategy (Heckemann et al., 2006). A more sophisticated
approach is weighted voting strategies that uses global (Artaechevarria et al., 2009), local (Is-
gum et al., 2009; Sabuncu et al., 2010; Wang et al., 2011), semi-local (Sabuncu et al., 2010;
Wang et al., 2013), and non-local (Coupé et al., 2012) intensity similarity metrics. These
methods have demonstrated consistent improvement in segmentation accuracy (Artaeche-
varria et al., 2009; Sabuncu et al., 2010). In contrast to ad-hoc weighted voting, statistical
fusion strategies have been proposed, which involves simultaneous truth and performance
level estimation (STAPLE) (Warfield et al., 2004). This method estimates the performance
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Figure 3.4 Schematic illustration of a standard multi-atlas segmentation. A set of atlas ana-
tomical images {Atlas1, Atlas2, Atlas3} are registered to the target image. The resulting
transformations are used to transform the corresponding atlas segmentations to the target.
The transformed segmentations are then combined to create an estimate of the target image
segmentation

level of the atlases using an expectation-maximization (EM) algorithm. Non-Local STAPLE
(NLS) (Asman and Landman, 2013) is an extended version of STAPLE, which reformulates
the STAPLE framework from a non-local means perspective in order to learn what label an
atlas would have observed, given perfect correspondence.

In general, using a single atlas has less computational complexity than performing a multi
atlas segmentation. However, segmentation based on a single atlas might be less accurate than
multi atlas segmentation approaches, since in multi-atlas methods each atlas could represent
the anatomical variation of a separate population of subjects.

3.1.5 Deep learning-based methods

Deep neural networks can be considered as complex and highly non-linear mathematical func-
tions which parameters are learned to transfer the input observed variables to the output
variables. In the past few years, deep learning techniques, have shown outstanding results
for feature extraction in many computer vision applications (Krizhevsky et al., 2012a; Chen
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and Lin, 2014). Contrary to traditional machine learning techniques based on hand-crafted
features or shallow networks, deep learning methods automatically learn hierarchies of re-
levant features directly from the raw inputs (Bengio, 2009). Recently, stacked autoencoder
(SAE) (Hinton and Salakhutdinov, 2006) have been widely applied in medical applications
such as multiple organ detection (Shin et al., 2013), brain tissue segmentation (Zhao et al.,
2016), hippocampus segmentation in infants (Guo et al., 2014), and nuclei regions extrac-
tion Xu et al. (2016). A SAE is composed of two processes (Hinton and Salakhutdinov, 2006).
First, an encoding process learns the parameters to map the input vector to a low-resolution
latent representation. Second, a decoding stage regenerates the input vector from the latent
representation.

Convolutional Neural Networks (CNNs) is another deep learning approach, which have hel-
ped set new performance records for many computer vision tasks, such as object detection,
texture recognition and object semantic segmentation (Krizhevsky et al., 2012a). CNNs ap-
plies a series of convolution/pooling/subsampling operations to learn deep feature represen-
tations (Krizhevsky et al., 2012a). Zhang et al. (Zhang et al., 2015) used CNNs for brain
image segmentation of three tissue types (WM, GM, and CSF) in MR images of 6-8 month-
old infants. This method was based on 2D patches extracted from T1-weighted, T2-weighted
and fractional anisotropy images. In another study on T1-weighted MR images, De Brébisson
et al. (Brébisson and Montana, 2015) segmented 134 brain regions using a multiple parallel
networks of 2D patches in orthogonal planes, a 3D patch , and distance to a previous seg-
mentation step. Moeskops et al. (Moeskops et al., 2016) presented a multi-scale approach
to segment brain structures of patients in different age groups. The method used multiple
patch sizes and multiple convolution kernel sizes to acquire multi-scale information about
each voxel. The method attained good results on eight tissue classes, with Dice similarity
coefficients averaging between 0.82 to 0.91 on five different datasets.

In the majority of works in medical imaging domain, use of a deep network has shown to
produce either similar or superior results compared to the state-of-the-art (Tajbakhsh et al.,
2016). However, some major concerns still remain. Since neural networks architectures usually
require large amount of data to train the network, there is a need to provide large datasets
for each medical tasks. Another issue is about providing a strong input representation of
medical images (e.g., 2D vs. 3D, patches vs. whole images).

3.2 Shape analysis on sub-cortical structures

Quantifying morphological characteristics of brain structures is an important and challenging
problem in medical image analysis. The development of sophisticated mathematical and
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algorithmic methods for extracting and modeling brain structures allows for more accurate
findings in medical studies, and the discovery of potential biomarkers for disease diagnosis.
Early morphological studies on the brain structures were based on volumetric analysis, which
had the advantage of simplicity (Shi et al., 2009; Hastings et al., 2004). However, structural
changes at specific locations were not accurately detected using volumetric frameworks. Thus,
shape analysis has emerged as a way of evaluating morphology location in the brain anatomy.
Several works have been proposed for shape analysis in the literature, which can be classified
into three categories : voxel-based, deformation-based, and surface-based analysis. We will
present these categories in the following sections.

3.2.1 Voxel-based morphometry

Voxel-based morphometry (VBM) (Ashburner and Friston, 2000) has been used to assess
structural abnormalities in various types of brain disorders, since it enables the automatic
identification of regional changes in the amount of white matter (WM) and gray matter (GM)
without a priori region of interest (Wilke et al., 2004). After applying preprocessing steps,
such as non-uniformity correction and linear spatial normalization, an automated classifier
is performed on MR images to categorize voxel intensities into GM, WM, or cerebrospinal
fluid (CSF). An isotropic Gaussian kernel is applied to generate tissue density estimates
at each voxel. The density estimates are used for statistical inference in order to assess
differences of GM, WM, and CSF’s tissue concentration among subjects. A set of major
modifications have been applied to generalize the method for detection of changes in small
regions. The detection process included an optimization method based on the integration
of tissue specific templates, as well as a modulation process that adjusted tissue density
estimates with Jacobian determinants computed in the nonlinear registration (Good et al.,
2001).

Some studies have reported inconsistency between the detected atrophy by VBM and the
one found by an expert manually (Kim, 2012). The inconsistent results and lower sensiti-
vity of VBM may be explained by several factors. First, the size of the smoothing kernel
might be large, making the detection of volume variation in smaller regions unlikely. Second,
inaccurate spatial normalization in VBM approach could misplace the location of volume
changes. Third, tissue density computation in VBM is highly dependent on accurate tissue
segmentation (Kim, 2012).
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3.2.2 Deformation-based morphometry

Deformation-based morphometry (DBM) methods evaluate the information contained within
the deformation vector field generated by a non-linear warping of an individual MR image
to a template (Chung et al., 2001). In DBM, the gradients (Jacobian) of the deformation
field is used to identify volumetric structural differences. Figure 3.5 shows the use of DBM
approach in a longitudinal study. DBM techniques have been applied to many brain image
analysis studies to assess morphological changes related to disorders (Chung et al., 2001;
Brambati et al., 2009). In contrast to VBM, DBM approaches do not need segmentation of
a priori region of interest. However, due to the isotropic gaussian kernel-based smoothing
process, DBM suffers from the same limitations as VBM and has low sensitivity in detecting
abnormalities in small sub-cortical regions.

3.2.3 Surface-based approaches

In contrast to the voxel-based and deformation based approaches, surface-based techniques
are able to examine highly localized morphological differences between groups, while preser-
ving point-wise correspondences across subjects (Gerig et al., 2001a).

One type of surface-based method is based on medial surface descriptions, which allows for
the quantification of local positional changes by assessing morphological variation of the
skeleton extracted from a given structure (Bouix et al., 2005). Since this approach relies on
coarse-scale sampling, it may not be sensitive enough to assess high dimensional features.

In addition to these methods, spherical harmonics were used in combination with Point Dis-
tribution Models (PDM) to discover structural differences across a population (Shen et al.,
2003; Styner et al., 2006a). In an approach presented by Styner et al. (Styner et al., 2006a),
namely SPHARM-PDM, a set of binary segmentations of a single brain structure, such as
the hippocampus or caudate were first converted into a corresponding spherical harmonic
description (See Figure 3.6). Then, the correspondence problem was solved by the alignment
of the spherical parametrization using a first order ellipsoid. In this method, the spherical
description of surface meshes was sampled into triangulated surfaces via a icosahedron subdi-
vision. These surfaces were then spatially aligned using rigid Procrustes alignment. Although
these methods have enabled the reliable assessment of local shape variation, they need to
establish correspondence on simplified spherical models of surfaces, which is restricted to
surfaces with spherical topology and is highly time-consuming.

We can conclude that among different shape analysis approaches in the literature, surface-
based approaches enable the most reliable evaluation of regional alteration in brain struc-
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Figure 3.5 The principle of deformation-based morphometry (DBM). Two T1 images of a
patient with schizophrenia are shown at his first episode and after 7 months. DBM warps the
second scan to the baseline scan. The differences between two images are encoded in the defor-
mations. Volume changes is calculated by computing of the Jacobian determinant (Mietchen
and Gaser, 2009).

tures. However, these surface-based frameworks depend on establishing vertex correspon-
dences across subjects, which are prone to inter-subject variability and are more adapted to
sphere-like shapes.
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Figure 3.6 SPHARM-PDM based shape analysis. First, binary segmentations are converted
to surface meshes. Then, the meshes are parameterized using a spherical harmonic descrip-
tion and point distribution models (SPHARM-PDM). Finally, statistical differences between
surface meshes are computed to indicate the local shape variations (Styner et al., 2006a).

3.3 Benign childhood epilepsy

3.3.1 Cognitive impairments

BECTS is a self-limited childhood focal epilepsy associated with subtle cognitive impair-
ments (Vannest et al., 2015). Examples of these cognitive deficits include attention, executive
function, and memory dysfunction (Connolly et al., 2006; Danielsson and Petermann, 2009;
Genizi et al., 2012; Northcott et al., 2005, 2007; Perkins et al., 2008; Piccinelli et al., 2008;
Sarco et al., 2011; Verrotti et al., 2002; Weglage et al., 1997), which are likely responsible for
poorer educational outcomes and behavioural problems (Pinton et al., 2006; Völkl-Kernstock
et al., 2009). Hermann et al. (Hermann et al., 2006) found that regardless of epilepsy syn-
drome, children with new-onset epilepsy scored more poorly than controls across cognitive
domains. Garcia-Ramos et al. (Garcia-Ramos et al., 2015b) also reported cognitive deficits
in children with new-onset BECTS, which remained consistent over two years. Although
children with BECTS typically no longer have seizures or centrotemporal spikes by the time
they reach adulthood, language impairments have been shown to persist even when children
with BECTS were in remission for 1-8 years (Monjauze et al., 2005, 2011). On the contrary,
Volkl-Kernstock et al. (Völkl-Kernstock et al., 2009) found that problems with aggressive be-
haviour, attention problems, and anxiety/depression had resolved one year after remission.
This shows that long-term follow-up studies on cognitive assessments of children with BECTS
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are required to clarify the presence of cognitive and behavioural problems after remission.

A number of studies have focused on the relationship between the frequency and lateraliza-
tion of centrotemporal spikes (CTS) on cognitive and behavioural outcomes in BECTS. A few
studies suggested an association between CTS and poorer cognitive outcomes (Riva et al.,
2007; Piccinelli et al., 2008), however other studies did not confirm this result (Goldberg-Stern
et al., 2010; Jurkevičienė et al., 2012; Liasis et al., 2006). Moreover, Overvliet et al. (Overvliet
et al., 2011) reported that a proportion of children with BECTS had speech and language
therapy before they were diagnosed with rolandic epilepsy. This suggests that language dif-
ficulties may well precede spikes and/ or seizures. Therefore, it remains unclear whether
Rolandic epilepsy (or the nocturnal epileptiform activity) causes the language impairments
or whether the Rolandic epilepsy and the language impairments are both symptoms of an un-
derlying syndrome (Overvliet et al., 2011). Literacy and language deficits might be part of an
inherited set of impairments that accompany rolandic epilepsy, and which may be associated
with delayed neural maturation (Doose et al., 1997).

3.3.2 Neuroanatomical alterations

Different studies have assessed the neuroanatomical alterations in BECTS. In (Sheth et al.,
1997), the authors reported a cortical dysplasia perpendicular to the Sylvian fissure and ipsi-
lateral to the spike lateralization in an eight year old girl with rolandic epilepsy. MRI-assisted
EEG dipole analysis indicated that the discharges originated from the Sylvian fissure and
not from the cortical dysplasia. Sarkis et al. (Sarkis et al., 2010) investigated the brains of
children with benign focal epileptiform discharges. Half of those patients (45 cases) also had
seizures consistent with benign epilepsy with centrotemporal spikes (BECTS). They repor-
ted the existence of abnormalities in 27% (12 cases) of children with BECTS (hippocampal
atrophy, abnormal cortical development, Chiari malformation). Lundberg et al. (1999) found
hippocampal abnormalities ipsilateral to the spike lateralization in six patients out of 18
children with BECTS. In their study, the MR images were reviewed by an experienced neu-
roradiologist, however no control group were included. Another study by Gelisse et al. (2003)
on 71 patients with BECTS demonstrated ventricular enlargement and hippocampal atro-
phy in 14% of subjects. These detected abnormalities were not consistently ipsilateral to the
spike lateralization. In Gelisse et al.’s study, only CT imaging was available for most of the
subjects and no healthy group was included for comparison purposes. Boxerman and col-
leagues (Boxerman et al., 2007) performed a case-control study comparing the MRIs of 25
patients with rolandic epilepsy to 25 controls with migraines. Some structural abnormalities
were found in 52% of rolandic epilepsy cases, but they were not statistically significant. All
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these studies lacked a sufficient control group, due to including control participants with other
pathologies, e.g., migraines Boxerman et al. (2007) or not using any control cohort Lundberg
et al. (1999); Gelisse et al. (2003).

Kanemura et al. (Kanemura et al., 2011) studied the growth of the frontal and prefrontal
lobe in seven children with BECTS with/without cognitive impairments and behavioural
problems. They assessed the volume changes on MR images and evaluated correlations bet-
ween prefrontal lobe growth and active seizure duration compared to 11 normal controls.
Abnormalities in growth of the frontal and prefrontal lobes were found in some of the cases.
In addition, prefrontal-to-frontal lobe volume ratio increased serially in some children with
BECTS (5 cases) similarly to controls, but was stagnant or decreased in others (2 cases). Pre-
frontal growth also revealed more rapid recovery in one BECTS patient with shorter active
seizure period. Thus, the authors reported that longer active seizure period with frequent
spike-waves coupled with the occurrence of frequent seizures may be associated with pre-
frontal lobe growth abnormalities, which relates to neuropsychological problems. In (Pardoe
et al., 2013), a Voxel-Based Morphometry (VBM) analysis indicated increased bilateral grey
matter volume in the superior frontal gyrus, insula and right inferior frontal gyrus regions in
BECTS compared to healthy controls. In this study, Pardoe and colleagues reported that the
magnitude of gray matter volume increase and cortical thickening in BECTS lessened with
age.

In a study on children with bilateral BECTS and healthy controls (Lin et al., 2012), Lin and
colleagues found putamen hypertrophy in children with bilateral BECTS. Moreover, shape
analysis showed dorsoventral elongation of the left caudate and bilateral putamen, with sub-
nuclei expansion in ventral and dorsal striatum. They indicated that larger putamen volumes
were linked to better cognitive performances in executive function tests. However, they focu-
sed on children with bilateral BECTS, and no experiment was conducted on children with left
or right hemispheric seizure location. Kim et al. (Kim et al., 2015) compared MR images of
20 newly diagnosed BECTS to 20 age-matched healthy controls. According to their analysis,
children with BECTS showed significantly thicker right superior frontal, superior temporal,
middle temporal, and left pars triangularis cortices. Also, voxel-based morphometric analysis
detected significantly larger cortical gray matter volumes of the right precuneus, left orbito-
frontal, pars orbitalis, precentral gyri, and bilateral putamen and the amygdala of children
with BCECTS compared to normal controls. Kim et al. combined children with different sides
of epilepsy focus in one group, without considering the epilepsy localization. Garcia-Ramos
et al. (Garcia-Ramos et al., 2015b) performed a longitudinal study comparing 24 children
with new-onset BECTS and 41 age- and gender-matched healthy controls. They reported
left and right putamen volume enlargement persisting over two years in BECTS compared to
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healthy individuals. Baseline neuroimaging revealed thinner cortex in BECTS compared to
controls in frontal, temporal, and occipital regions. Longitudinally, healthy controls showed
widespread cortical thinning in both hemispheres, while BECTS individuals showed sparse
regions of both cortical thinning and thickening. Also, baseline cognitive abnormalities as-
sociated with BECTS persisted over 2 years. Garcia-Ramos et al.’s analysis was based on
volumetric measurements and the side of epilepsy focus was not considered in their work.
Lou et al. (Luo et al., 2015) performed a Voxel-Based Morphometry (VBM) analysis on 21
BECTS and 20 healthy participants. They reported increased GM volume in the bilateral
putamen and fronto-temporo-parietal cortex in patients with BECTS compared to healthy
controls. Lou et al. also did not evaluate the effect of the epilepsy lateralization on their
analysis.

In summary, structural alterations are found at the onset of the disorder, and the structural
abnormalities are persistent over the years (Garcia-Ramos et al., 2015b). This may be related
to the long term existence of cognitive impairments before and after the diagnosis (Overvliet,
2011). Therefore, the structural alterations may be associated with cognitive impairments,
also genetic and heredity may be involved in rolandic epilepsy.

3.4 Summary

In this chapter, we reviewed the literature and the current state-of-the-art methods in dif-
ferent areas of relevant application to the proposed research project.

First, various available image segmentation approaches have been presented and their advan-
tages and disadvantages were mentioned. Secondly, a summary of the different shape analysis
methods, along with their limitations were presented. Thirdly, a review of the available stu-
dies on BECTS was performed to introduce the concepts and highlight the existing methods’
limitations.

In this review, we have observed that one of the main challenges in medical imaging studies
was applying an accurate automatic image segmentation technique. On one hand, manual
labeling is the gold standard, although it requires trained experts and is time-consuming.
On the other hand, according to recent evaluations, the performance of the state-of-the-art
automatic segmentation methods is still far from manual labeling. In regard to morphologi-
cal analysis, we have noticed that surface-based approaches have enabled the most reliable
evaluation of regional alteration in brain. However, the main challenge in surface-based fra-
meworks is to establish precise alignment of structures across subjects, which is prone to
inter-subject variability.
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We also have observed that different studies in the field of benign childhood epilepsy reported
the existence of neuroanatomical abnormalities in children with BECTS, which might be
associated to some cognitive difficulties. Among the existing studies, a great number of them
either included control participants with other neuropathologies or used no control group in
their analysis. In addition, among the rest of the published literature, few studies analyzed
subcortical shape alterations in BECTS and no work assessed the relationships between these
morphological abnormalities and cognition.

In general, we can conclude that despite the development of various approaches in the field of
brain abnormalities detection, there are still some limitations and challenges that need to be
addressed in future studies on neuroanatomical alterations in children with BECTS. In order
to propose an automatic morphological analysis framework in BECTS, several components
in computer vision and shape modeling will be used. These components include, an image
segmentation technique, a 3D morphological analysis algorithm, and a methodology to assess
the association between morphological alterations and cognition.
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CHAPTER 4 PROBLEM, HYPOTHESIS, OBJECTIVES, AND GENERAL
METHOD

4.1 Problem Statement

Studying sub-cortical brain regions in benign epilepsy with centrotemporal spikes (BECTS)
requires designing an accurate brain segmentation technique and a precise groupwise struc-
tural shape analysis framework. After detecting possible structural alterations in BECTS,
the next step is to reveal the relationship between the extracted changes and cognition.

Image segmentation is a crucial step in medical imaging studies, since the quality of this pro-
cess affects the accuracy of subsequent analysis. Manually segmenting sub-cortical regions is
the most accurate technique, however it is time-consuming and requires trained experts. The-
refore, the aim is to automate this process. Furthermore, standard segmentation approaches
usually segment one target image at a time, while it is more preferable to have a framework
that can handle segmenting multiple images simultaneously (cosegmentation). In addition,
multi-atlas segmentation methods typically rely on precise ground truth annotations, while
removing the burden of selecting an appropriate ground truth subset is of special interest.
Thus, the first research question is formulated as : Is it possible to design an automatic
multi-atlas cosegmentation framework, which is accurate enough to detect the
boundary of sub-cortical structures with limited dependency on ground truth
annotations ?

The main challenges in surface based groupwise shape analysis approaches are to extract 3D
meshes, define the point-to-point correspondences across surface meshes, and perform group-
wise comparisons. The precision of the surface extraction and the matching process affects
the accuracy of the detected alteration in brain structures. Therefore, the second question
arises : How to extract sub-cortical surfaces and establish matching across meshes
in order to detect the morphological alterations among the studied populations
with better accuracy ?

Cognitive deficits have been reported in children with BECTS, which may affect the chil-
dren’s quality of life. Despite the accumulating evidence of cognitive studies in BECTS, little
is known about underlying structural alterations in these patients with different epilepsy
focus. Given neurocognitive differences among children with BECTS and normal controls,
the final question is : Are morphometric variations in brain structures present in
BECTS patients, do they explain variations in cognitive functions, and does the
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localization of epilepsy have a role in the structure to cognition link in BECTS ?

4.2 Hypothesis

Considering the explained problem in previous section, the following hypothesis can be for-
mulated :

Hypothesis 1 : An automatic segmentation algorithm can be designed so that it can si-
multaneously perform prior-based cosegmentation of sub-cortical structures on multiple MR
images.

Hypothesis 2 : An accurate automatic groupwise shape analysis can be proposed that can
contribute to the study of subcortical shape variations.

Hypothesis 3 : Neuroanatomical alterations are present in children with BECTS with
respect to normal controls and there is a relationship between structural alterations and
cognition in this pathology.

4.3 Objectives

The general goal of this thesis is to design a framework for the morphological analysis of
subcortical structures in children with benign epilepsy with centrotemporal spikes (BECTS).
The main target is fulfilled in the following three specific objectives.

Objective 1 : Developing an automatic segmentation technique of sub-cortical structures
on T1-weighted MR images.

One of the main challenges in any anatomical alteration study is to detect the boundary of a
structure of interest by applying an accurate segmentation strategy. In this project, a group-
wise coregistration and cosegmentation process is proposed, which enables us to segment
multiple images at the same time. In this approach Convolutional Neural Network (CNN)-
based priors are integrated to the energy formulation to boost the spatial transformation
estimation process (paper 1). In another work, a classifier based on Fully Convolutional
Neural Network (F-CNN) is developed to segment brain sub-cortical structures (Appendix
A). In this method the output of the F-CNN is used as potentials of a Markov Random Field
(MRF).

Objective 2 : Designing a framework for matching 3D sub-cortical surface meshes and in-
vestigating the group-wise structural differences between two populations of surfaces, i.e.,
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healthy and pathological subjects.

Surface-based morphological analysis is challenging, since it requires establishing a reliable
point-to-point correspondences across surface meshes. In addition, surface matching is often
a compromise between accuracy and fast computational time. Therefore, the use of spectral
representations in matching 3D structures can be beneficial in that regard, which have the
advantages of being largely invariant to changes in poses and being computationally effi-
cient in establishing surface correspondences. In this research, a spectral matching approach
is employed in a group-wise shape analysis framework, designed for the population-wise
comparison between two groups of subcortical structures. A preliminary framework of this
approach (Appendix B) uses the spherical representations of input meshes. An extended
and fully validated version of the framework (paper 2) applies a curvature-based mesh smoo-
thing, integrates mean curvature feature into the matching process, and performs a statistical
permutation-based analysis to detect the significant groupwise shape differences. Further-
more, the extracted spectral shape representation of surfaces is employed in two automatic
classification applications in distinguishing healthy subjects from pathological individuals
(Appendix C and D).

Objective 3 : Applying a technique to find the association between brain morphological
changes in children with BECTS and cognition.

Benign epilepsy with centrotemporal spikes (BECTS) is associated with cognitive impair-
ments in children. These cognitive impairments may be linked to the underlying structural
alteration. The objective is to investigate the sub-cortical structures morphology that is
potentially responsible for cognitive deficits or compensatory phenomenon in BECTS. In ad-
dition, the aim is to understand the role of the side of epilepsy on the structure to cognition
link in left vs. right vs. bilateral BECTS. The proposed approach in paper 3 extracts pu-
tamen and caudate shape variations from two populations of BECTS and normal controls.
Then, investigates the association between morphological alterations and cognition conside-
ring epilepsy lateralization in BECTS cohort.

4.4 General methodology

In this research, a set of frameworks is proposed for a study on sub-cortical morphometry in
children with benign epilepsy with centrotemporal spikes (BECTS). Our proposed methodo-
logy consists of three main blocks : (1) Automatic segmentation of sub-cortical structures ;
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(2) Statistical groupwise shape analysis ; and (3) Study of sub-cortical morphometry and its
association with cognition. An overview of the proposed framework is shown in Figure 4.1.
The methodological structure of this thesis is illustrated in Figure 4.2.

The first objective of this project is to design an automatic segmentation of sub-cortical
structures on MR images using a coregistration and cosegmentation process. This method
incorporates segmentation priors, learned by a Convolutional Neural Network (CNN) clas-
sifier, in to the energy formulation of the deformable registration. In this way, the accuracy
of the registration between source and target is improved. This approach is presented in
(Chapter 5) (Shakeri et al., 2016a). In another approach, which is presented in Appendixvo-
lumeSup (Shakeri et al., 2016b) a classifier is designed based on Fully Convolutional Neural
Network (F-CNN) to segment brain sub-cortical structures on 3D MR images . In this method
the output of the F-CNN is used as potentials of a Markov Random Field (MRF) to further
refine the CNN output and impose spatial volumetric homogeneity to the CNN priors. These
methods allow us to segment sub-cortical structures of both BECTS and healthy individuals
with a promising accuracy.

The second objective is to extract 3D surface meshes from segmented sub-cortical structures
and apply statistical groupwise shape analysis across population of healthy and pathological
surfaces. This method employs spectral surface matching approach to establish point-to-point
correspondences across population of surfaces. A preliminary version of our groupwise shape
analysis approach is presented in Appendix B (Shakeri et al., 2014), which uses the spheri-
cal representations of input surfaces. The extended version of the approach is proposed in
Chapter 6 (Shakeri et al., 2016c), which exploits a curvature-based surface smoothing, incor-
porates mean curvature feature into the spectral matching process to improve the matching
accuracy, and applies a statistical permutation-based analysis to detect the significant local
shape differences across populations. The extracted spectral shape representation of surfaces
are used in two classification applications. One approach, trains a discriminant manifold
based on Grassmannian kernels to maximize the class separability between matched 3D sur-
faces of healthy and pathological subjects. Then, a SVM classification technique is applied to
define the decision boundary between classes. The method is tested on classification of sub-
jects with Alzheimer’s disease, mild cognitive impairment, and healthy controls (Appendix
C) (Shakeri et al., 2015). In another work, a deep learning variational auto-encoder network
is applied on the spectral signature of the matched mesh models to learn its low dimensional
feature representation. A multi-layer perceptrons (MLP) using softmax activation function
is simultaneously trained to classify subjects with Alzheimer’s disease from healthy controls
(Appendix D) (Shakeri et al., 2016d).
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The third objective is to investigate the brain morphological alterations in children with
BECTS and reveal the association of the detected morphometry with cognitive functions.
This study considers the epilepsy lateralization in all analysis. This work, presented in Chap-
ter 7, enables us to understand the underlying neurodevelopmental alterations in children
with BECTS, that could be associated with cognitive functions.

The different steps of the project as well as the obtained results are presented in the form
of papers in Chapter 5 (scientific objective 1), Chapter 6 (scientific objective 2), and
Chapter 7 (scientific objective 3). Finally, the discussion, conclusion, and recommendations
are presented in Chapter 8 and Chapter 9.
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Figure 4.1 Proposed framework. (1) Segmentation : The input is a group of MR images. The
output is the segmentation maps of sub-cortical structures. (2) Morphological analysis : The
input is a dataset including segmentation maps of patients and normal controls. The output
is morphological distances between two groups of subjects. (3) Correlation assessment : The
input is morphological alterations detected by shape analysis framework, and the output is
the association between sub-cortical morphometry and cognitive performance.
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Figure 4.2 Methodological organization of the thesis.
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CHAPTER 5 ARTICLE 1 : PRIOR-BASED COREGISTRATION AND
COSEGMENTATION

Contribution of the first author in preparation and writing this paper is evaluated as 80%.
This article has been accepted in the 19th International Conference on Medical Image Compu-
ting and Computer Assisted Intervention (MICCAI 2016) held in Athens, Greece, in October
2016.

Remarks : This works presents an automatic coregistration and cosegmentation framework
which enables us to segment MR images. This approach integrates Convolutional Neural
Network (CNN)-based priors to the energy formulation of the deformable registration to
improve cosegmentation accuracy.

We evaluate our approach on two brain image datasets : IBSR and RE. The Internet Brain
Segmentation Repository (IBSR) dataset (Rohlfing, 2012a) contains 18 labeled T1-weighted
MR images of size 256× 256× 128 with slice thickness of 1.3mm. We specifically use the skull
stripped version of the dataset provided in (Rohlfing, 2012a). The dataset is also supplied
with manual expert segmentations of sub-cortical volumes. In this work, we use the set of
16 primarily subcortical annotations, including left and right lateral ventricle, thalamus,
caudate, putamen, pallidum, hippocampus, amygdala, and accumbens.

The Rolandic Epilepsy (RE) dataset which contains 17 children with epilepsy and 18 matched
healthy individuals. T1-weighted magnetic resonance images (MRI) scans were performed by
a 3 T scanner (Philips Acheiva) with a resolution of 256× 256× 160 and slice thickness of
1mm. The left and right putamen structures were manually annotated by an expert. The
skull-stripping was performed using ROBEX tool (Iglesias et al., 2011).

For both datasets, we performed the standard preprocessing of intensity normalization, and
histogram matching using Medical Image Processing, Analysis, and Visualization tool (MI-
PAV version 1.0) 1. For histogram adaptation, we performed matching to the histogram of
the first image in each dataset as reference.

For validation, we consider the manual segmentations available on each dataset as ground
truth, and estimate how close our automatic segmentation result is to the ground truth an-
notations. Dice coefficient (Dice, 1945) is reported, which indicates the amount of volume
overlap between the automatically segmented structures and the corresponding manually an-
notated ones. In addition, Contour mean distance (CMD) 2 and Hausdorff distance (HD)2 are

1. http ://mipav.cit.nih.gov/
2. http ://plastimatch.org/plastimatch.html
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also calculated as the average and maximum distance between ground truth and automatic
segmentation, respectively.

Experimental evaluations on two datasets in Section 5.4 demonstrate the importance of
reliable segmentation priors. The results show that the label likelihoods extracted with a
deep CNN outperform alternative methods and can replace ground truth annotations in
coregistration process. Other experiments presented in Appendix E, shows the promising
results of the proposed co-registration and co-segmentation algorithm compared to the two
publicly available state-of-the-art automatic segmentation tools, i.e., Freesurfer (Fischl et al.,
2002) and FSL-FIRST (Patenaude et al., 2011a).

Prior-based Coregistration and Cosegmentation

Mahsa Shakeri2,4, Enzo Ferrante1, Stavros Tsogkas1, Sarah Lippe3,4,
Samuel Kadoury2,4, Iasonas Kokkinos1, Nikos Paragios1

1CVN, CentraleSupelec-Inria, Universite Paris-Saclay, France,
2 Polytechnique Montreal, Canada
3University of Montreal, Canada,

4 CHU Sainte-Justine Research Center, Montreal, Canada

5.1 Abstract

We propose a modular and scalable framework for dense coregistration and cosegmentation
with two key characteristics : first, we substitute ground truth data with the semantic map
output of a classifier ; second, we combine this output with population deformable registra-
tion to improve both alignment and segmentation. Our approach deforms all volumes towards
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consensus, taking into account image similarities and label consistency. Our pipeline can in-
corporate any classifier and similarity metric. Results on two datasets, containing annotations
of challenging brain structures, demonstrate the potential of our method.

Keywords coregistration, cosegmentation, discrete optimization, priors.

5.2 Introduction

In recent years, multi-atlas segmentation (MAS) has become a widely used image segmenta-
tion technique for biomedical applications (Iglesias and Sabuncu, 2015). It uses an annotated
dataset of atlases (images with their corresponding ground truth labels) to segment a target
image. The atlases are first registered to the target ; then the deformed segmentation masks
are fused, generating the final mask for the target. Such an approach suffers from two limi-
tations : i) the need of accurate annotations ; ii) the sequential/independent nature of the
mapping between the atlases and the target image.
In this work we propose a coregistration and cosegmentation framework that optimally ali-
gns and segments a set of input volumes. We adopt the standard graph-based deformable
registration framework of Glocker et al. (Glocker et al., 2011). Our novel energy formulation
incorporates discriminative information produced by alternative classifiers, trained to diffe-
rentiate between different cortical structures. We stress the fact that our method is different
than typical MAS : the final segmentations are obtained after population registration, while
the probabilistic segmentations delivered by our classifiers are used as a discriminative image
representation that helps to improve registration performance. Therefore our approach is able
to deal with the bias introduced from inaccurate segmentations while at the same time it
exploits knowledge of the entire dataset simultaneously. Previous works on groupwise regis-
tration and segmentation of MR images have relied on image similarites (Bhatia et al., 2004),
or shape and texture models (Tsai et al., 2004; Babalola and Cootes, 2006). The works that
are most similar to ours are (Heckemann et al., 2010), (Alchatzidis et al., 2014) and (Parisot
et al., 2012). They use probabilistic priors obtained with a pre-trained classifier to improve
segmentation and registration. However, rather than performing prior- and intensity-based
registration steps independently, as in (Heckemann et al., 2010), we consider both types of
data at the same time in a single, compound matching criterion. Furthermore, in (Alchat-
zidis et al., 2014) and (Parisot et al., 2012) segmentation variables are explicitly modeled,
whereas we only model registration variables, thus reducing the number of parameters to be
estimated. More importantly, these works aim at segmenting a single target image ; contrary
to that, we consider a target population of images to be segmented and registered simulta-
neously.
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Our method infers the segmentations of the unseen images on-the-fly using learned clas-
sifiers, and incorporates this information in the energy formulation. As our experimental
results in Section 5.4 demonstrate, our method has considerable advantages over standard
MAS as well. Firstly, given a set of target volumes, MAS would repeatedly register a set of
ground truth masks and perform label fusion individually for each target. Contrary to that,
we compute the segmentation probabilities once, and then segment all the volumes simulta-
neously. If numerous ground truth masks are to be used for the registration step, our method
leads to substantial computational gains, as complexity depends only on the number of vo-
lumes we want to segment. Secondly, in the case of large datasets, the burden of selecting
an appropriate ground truth subset to perform MAS more efficiently is removed ; one simply
has to compute the probability masks on the input volumes. Thirdly, in typical MAS only
appearance features are used to compute the deformation fields between source and target.
We go one step further, exploiting more sophisticated, learned representations to drive the
coregistration process. These features are computed for all volumes involved, and are directly
related to the desired final output. We validate the effectiveness of our approach on the task
of segmenting challenging sub-cortical structures in two different brain imaging datasets.

5.3 Problem formulation using segmentation priors

We formulate our coregistration and cosegmentation algorithm as an energy minimization
problem. The input is a set of 3D images I = {I1, I2, . . . , IN}, Ii : Ω ⊂ R3 → R, and
their corresponding segmentation likelihoods S = {S1, S2, . . . , SN} associated to the possible
segmentation classes c ∈ C = {0, . . . , C} as Si : Ω×C → [0, 1]. Label zero (0) corresponds to
the background. The output is the final multi-label segmentation masks Ŝ =

{
Ŝ1, Ŝ2, ..., ŜN

}
together with the deformation fields M̂ =

{
T̂1, T̂2, ..., T̂N

}
that warp every image to a common

coordinate space through an operation I ◦ T̂ . In addition, let δX be a function that measures
similarity between inputs that lie in some domain X . The objective function we want to
minimize is

E(M; I,S) = EI (M; I) + ES (M;S) + ER (M) . (5.1)

The first two terms seek agreement on the appearance of equivalent voxels and deformed
priors respectively, across all volumes of the registered population :

EI(M; I) =
∑
x∈Ω

δI(I1 ◦ T1(x), I2 ◦ T2(x), . . . , IN ◦ TN(x)), (5.2)

ES(M;S) =
∑
c∈C

∑
x∈Ω

δS(S1 ◦ T1(x, c), S2 ◦ T2(x, c), . . . , SN ◦ TN(x, c)). (5.3)
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Here, δI and δS can be viewed as generalizations of the pairwise similarity, so as to account
for multiple inputs. The deformation fields are applied on the probability map of each label
separately and in the end we sum over all possible semantic labels c ∈ C. The last term,
ER, imposes geometric or anatomical constraints on the deformation fields, e.g. smoothness.
Different types of regularizers R can be used, usually chosen as convex functions of the
gradient of the deformation field. We describe our choice of δI , δS and R in Section 5.3.2.
We apply R to each deformation field Ti independently :

ER(M) =
N∑
i=1

∑
x∈Ω
R(Ti(x)). (5.4)

By minimizing the energy defined in Equation 5.1 with respect to M, we can obtain the
optimal deformation fields M̂ = argminME(M; I,S). The high-order terms that appear in
EI and ES are hard to optimize and diminish the guarantees to obtain the globally optimal
solution. As a remedy we propose the two-step procedure adopted from (Sotiras et al., 2009).
Instead of considering all the deformation fields at the same time, we estimate the deformation
field Tk of a single image, keeping all other images (i 6= k) fixed. This process is iterated for
i = 1, 2, . . . , N , and is reminiscent of the α-expansion algorithm (Boykov et al., 2001) : we
start with an initial solution (in our case, the identity deformation fields) and iteratively
move towards the optimal deformation fields that minimize E.

Once the optimal deformation fields M̂ have been estimated, we can build the final segmen-
tation masks Ŝ. We first warp all segmentation priors in S to the common frame of reference,
generating the deformed segmentation masks Si◦ T̂i. Then, given a target volume Ik whose fi-
nal segmentation we want to estimate, we back-project all warped segmentation masks Si ◦ T̂i
from the common frame, to the coordinate space of Ik using the inverse deformation field
T−1
k . This method is modular with respect to the fusion strategy. We use a simple majority

voting, assigning to every voxel the class c ∈ {0, . . . , C} with the highest number of votes
after back-projection.
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5.3.1 Iterative Algorithm

We now rewrite Equation 5.1 as an iterative process. Et
I , Et

S and Et
R consider a single defor-

mation field Tk at a time t and are computed as

Et+1
I (T tk; I) =

N∑
i=0,i 6=k

∑
x∈Ω

δI(I ti , I tk ◦ T tk(x)) (5.5)

Et+1
S (T tk;S) =

N∑
i=0,i 6=k

∑
c∈C

∑
x∈Ω

δS(Sti , Stk ◦ T tk(x, c)) (5.6)

Et+1
R (T tk) = (N − 1)

∑
x∈Ω
R(T tk(x)). (5.7)

I t, St, T t, denote the current image, segmentation and deformation field respectively, after
applying the updates at iterations 1, 2, . . . , t. The regularization term is scaled by (N − 1)
for normalization purposes. This iterative process is repeated until convergence. After all
images have been aligned in a common reference frame, majority voting produces the final
segmentation masks. For clarity, in the remaining of the text we drop the dependence on t.
A step-by-step description of the procedure is given in Algorithm 1.

5.3.2 Discrete Formulation

We formulate non-rigid registration between two images Ii, Ik as a discrete energy minimiza-
tion problem. Following (Rueckert et al., 1999), we parametrize the deformation fields Tk as
a linear combination of K � |Ω| control points that form a regular 3D grid. We define a first
order discrete MRF by superimposing an undirected graph G = (V, U) on an image, with
V and U denoting the graph nodes and edges respectively. Nodes are interpreted as random
variables that model displacements dp ∈ R3 of the control points, while edges encode the
interaction between these variables, in a 6-way neighborhood Up.

Given a labeling L = {l1, l2, . . . , lK} = {d1,d2, . . . ,dK}, that assigns a label (displacement
vector) to every node p in the MRF, the energy function becomes

EMRF(L;G) =
∑
p∈V

gp(lp) + λ
∑

(p,q)∈Up
fpq(lp, lq), where (5.9)

gp(lp) = gp(dp) =
∑
x∈Ωp

δI(Ii, Ik ◦ Tdp
k (x)) + β

∑
c∈C

∑
x∈Ωp

δS(Si, Sk ◦ Tdp
k (x, c)).

The unary term gp is a combination of terms EI , ES that encode appearance and segmentation
likelihood agreement. In practice, control points have a limited spatial support, therefore p
receives contributions only from pixels inside a region Ωp (e.g. patch) around it. Tdp

k is the
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Algorithm 1 Iterative Coregistration-Cosegmentation algorithm

1: procedure ICS(I = {I1, I2, . . . , IN}, S = {S1, S2, . . . , SN})
2: Initialize the deformation fields

{
T̂1, T̂2, ..., T̂N

}
as null (identity) deformation fields

3: repeat
4: repeat
5: Sample an image Ik ∈ I without replacement
6: Register Ik to all images in I \ {Ik}, optimizing E :

T̈k = argmin
Tk

EI(Tk; I) + ES(Tk;S) + ER(Tk) (5.8)

7: Deform image and corresponding segmentation : Ik ← Ik ◦ T̈k, Sk ← Sk ◦ T̈k
8: Update deformation field T̂k ← T̂k ◦ T̈k
9: until all images have been chosen once

10: until All T remain unchanged or the maximum of iterations is reached
11: for each image Ik ∈ I do
12: for each segmentation prior Si ∈ S do
13: Deform Si to the native space of Ik : S ′i = Si ◦ T̂−1

k

14: end for
15: Apply label fusion (e.g., Majority Voting) on {S ′i}i∈{1,...,N} to obtain Ŝk
16: end for
17: Output : M̂ =

{
T̂1, T̂2, ..., T̂N

}
and Ŝ =

{
Ŝ1, Ŝ2, ..., ŜN

}
18: end procedure

transformation induced by applying the displacement vector dp on the control point p. The β
coefficient determines the influence of segmentation priors on the optimization problem and λ
is a scaling factor. In our experiments we set λ = 5, β = 100 using cross-validation. As δI we
use the sum of absolute difference (SAD), while δS computes the Hamming distance on the
segmentation maps obtained after assigning the semantic class with highest probability to
each pixel. The pairwise term fpq(lp, lq) = fpq(dp,dq) = ||dp−dq|| is a discrete approximation
of the gradient of the spatial transformation and acts as the regularizer R in Equation 5.4.

To infer the best labeling, we employ Fast-PD (Komodakis et al., 2008), an efficient move-
making discrete optimization method based on linear programming relaxation, that has
shown promising results when applied to multi-label problems with similar types of ener-
gies.
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5.4 Experiments

We evaluate the performance of our approach on the task of subcortical brain structure
segmentation on two MRI datasets, IBSR (Rohlfing, 2012a) (18 subjects, slice tickness of
1.3mm) and a Rolandic Epilepsy (RE) study (35 subjects, slice tickness of 1mm). In our ex-
periments we use two types of classifiers to estimate segmentation maps, which are then used
to guide the registration : convolutional neural networks (CNNs) (Shakeri et al., 2016b) and
random forests (RFs) (Alchatzidis et al., 2014). For a description on the CNN architecture,
training methodology and RE dataset, we refer to Appendix A.We focus on a subset of 16
subcortical structures, including left and right lateral ventricle, thalamus, caudate, putamen,
pallidum, hippocampus, amygdala, and accumbens. Below we list the variants compared in
our experiments.

Coreg+CNN and Coreg+RF : We use the terms Coreg+CNN and Coreg+RF to refer
to the variants of our method that use CNN and RF priors respectively. We generate the
CNN and RF priors using the methods described in Appendix A and (Alchatzidis et al.,
2014) respectively.

CNN and RF : To further demonstrate the effect of using the iterative coregistration on
top of CNN/RF priors, we report segmentation results based on the CNN/RF probability
maps without coregistration. In this setting, given a CNN/RF prior, the segmentation class
of every voxel is simply chosen as the class with the highest probability.

Pairwise : As a baseline, we implement the standard MAS based on pairwise registration.
All atlases are independently registered to the target image as in (Glocker et al., 2011) ; then
the ground truth annotations are fused to generate the final segmentation using majority
voting. The use of the actual ground truth annotations offers a clear advantage with respect to
Coreg+CNN and Coreg+RF, that use the estimated segmentation probability maps instead.
Still, Coreg+CNN achieves better performance as shown in in Figures 5.1,A.2.

Coreg+GT (Oracle) : The merit of our approach is that it allows us to guide the core-
gistration process using probability maps as a surrogate for ground truth annotations, which
are not always available. In order to assess the maximum potential of our method, we im-
plemented an oracle that provides us with an upper-bound to its performance. The oracle
makes use of the ground truth segmentation masks for all 3D volumes, except for the target
image, for which we keep the probability maps computed by the CNN.
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We summarize the results of our experiments in Figures 5.1-A.2. We compare performance
using three different metrics : i) average Dice coefficient (DC) ; ii)Hausdorff distance (HD) ;
iii) contour mean distance (CMD). Our results show that Coreg+CNN achieves higher seg-
mentation accuracy compared to both Coreg+RF and the pairwise segmentation baseline.
Respectively, the segmentations obtained using only the CNN classifier output (without any
registration process) are much more accurate than the ones from random forests. Unsurpri-
singly, Coreg+GT outperforms all other variants. Nonetheless, performance of Coreg+CNN
is close to Coreg+GT in most cases, also illustrated visually in Figure 5.3. This evidence
solidifies our original claim, that reliable priors can act as a practical substitute for golden
standard annotations in multi-atlas segmentation.

Another important observation is that our coregistration and cosegmentation framework
significantly improves results of less accurate priors (e.g. the ones produced by RF), especially
in terms of Hausdorff and contour mean distance. Such priors can be learned from weak
annotations that are produced very efficiently compared to precise segmentation masks (e.g.
bounding boxes) and still deliver acceptable results.

5.5 Conclusions

In this paper we have proposed a novel method for cosegmentation and coregistration of
multi-volume data, guided by semantic label likelihoods. Our approach has the following
characteristics : i) infers deformations that are anatomically plausible ; ii) establishes visual
consistencies between all volumes according to any metric ; iii) enforces segmentation consis-
tencies among all volumes according to the predicted likelihoods. Experimental evaluation
on a standard, publicly available benchmark, as well as on an additional clinical dataset, de-
monstrates the effectiveness of our approach. Our experiments also show the value of reliable
segmentation priors. Label likelihoods extracted with a deep CNN outperform alternative
methods and can replace ground truth annotations in coregistration with minimal loss in
performance.

Future research directions include studying the gains of combining different metrics per class
and using them as content-adaptive potentials in the energy function. Explicitly modeling
high-order interactions and simultaneously recovering all deformations with one-shot optimi-
zation are also of great theoretical and practical interest. Finally, an important future goal is
testing the proposed method on a clinical problem where coregistration and cosegmentation
are important, such as adaptive radiotherapy.
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Figure 5.1 Box plots for average Dice coefficient (DC), Hausdorff distance (HD) and contour
mean distance (CMD) for left side subcortical structures in IBSR (best viewed in color).
DC : higher = better. HD/CMD : lower = better. Results for the right-side are included
in Appendix E.
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Figure 5.2 Box plots for average Dice coefficient (DC), Hausdorff distance (HD), and contour
mean distance (CMD)for the left and right putamen in the RE dataset (best viewed in
color). DC : higher = better. HD/CMD : lower = better. Coreg+CNN results approach
the performance of the oracle.

Figure 5.3 Segmentation results in three different views. Coreg+CNN can be used as a reliable
substitute for ground truth annotations in multi-atlas coregistration and cosegmentation
(view in color).
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CHAPTER 6 ARTICLE 2 : STATISTICAL SHAPE ANALYSIS OF
SUBCORTICAL STRUCTURES USING SPECTRAL MATCHING

Contribution of the first author in preparation and writing this paper is evaluated as 90%.
This article has been published by the journal of Computerized Medical Imaging and Gra-
phics on March 2016.

Remarks : This paper presents a groupwise shape analysis framework designed for the
population-wise comparison between two groups of subcortical structures. The proposed me-
thod employs spectral surface matching approach to establish point-to-point correspondences
across population of surfaces. Experiments revealed that the proposed approach could detect
the location of morphological differences similar to state-of-the-art algorithms, but with a
lower computational cost.
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6.1 Abstract

Studying morphological changes of subcortical structures often predicate neurodevelopmen-
tal and neurodegenerative diseases, such as Alzheimer’s disease and schizophrenia. Hence,
methods for quantifying morphological variations in the brain anatomy, including groupwise
shape analyses, are becoming increasingly important for studying neurological disorders. In
this paper, a novel groupwise shape analysis approach is proposed to detect regional mor-
phological alterations in subcortical structures between two study groups, e.g., healthy and
pathological subjects. The proposed scheme extracts smoothed triangulated surface meshes
from segmented binary maps, and establishes reliable point-to-point correspondences among
the population of surfaces using a spectral matching method. Mean curvature features are
incorporated in the matching process, in order to increase the accuracy of the established
surface correspondence. The mean shapes are created as the geometric mean of all surfaces in
each group, and a distance map between these shapes is used to characterize the morpholo-
gical changes between the two study groups. The resulting distance map is further analyzed
to check for statistically significant differences between two populations. The performance of
the proposed framework is evaluated on two separate subcortical structures (hippocampus
and putamen). Furthermore, the proposed methodology is validated in a clinical application
for detecting abnormal subcortical shape variations in Alzheimer’s disease. Experimental re-
sults show that the proposed method is comparable to state-of-the-art algorithms, has less
computational cost, and is more sensitive to small morphological variations in patients with
neuropathologies.

Keywords sub-cortical morphology, groupwise shape analysis, spectral matching, Alzhei-
mer’s disease.

6.2 Introduction

Quantifying groupwise neuroanatomical shape differences has become an important topic in
neuroscience as well as in neuroimaging studies, since brain morphometry has been hypothe-
sized to be linked to various neurological disorders (Nitzken et al., 2014). Recent advances
in medical image analysis have led to several morphological studies on different pathologies
including schizophrenia (Styner et al., 2004) and Alzheimer’s disease (Shi et al., 2009). Early
studies on brain morphology were based on volumetric analysis, which had the advantage
of simplicity (Hastings et al., 2004; Shi et al., 2009). However, these methods lacked regio-
nal shape information, which are potentially important for neurological identification. Thus,
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shape analysis has emerged as an alternative of evaluating morphology location and magni-
tude in the brain anatomy, in order to detect the neuroanatomical changes in specific regions
of a single structure.

Several works have proposed groupwise shape analysis approaches based on creating a tem-
plate image and estimating the deformation field between each individual image and the
template (Allassonnière, 2007; Marsland and Twining, 2004; Rueckert et al., 2003). These
methods non-rigidly register each image to a specific template, and evaluate the informa-
tion contained within the deformation field to detect the location and magnitude of shape
changes. In deformation-based approaches the template creation and the choice of the regis-
tration technique has a critical impact on the quality of the shape analysis results (Gao et al.,
2014). Indeed, deformable registration remains a challenging problem, particularly in smaller
regions such as subcortical structures, which requires a high level of accuracy to precisely
match sub-fields.

Another approach for shape analysis is based on medial surface representations (Joshi et al.,
2002; Bouix et al., 2005; Styner et al., 2003; Terriberry et al., 2007). These methods pro-
vide a compact parameterization of a volumetric object by extracting the 3D skeleton of a
shape. The local positional changes are then quantified by assessing morphological variations
of the skeleton across a population of shapes. The medial surface representation has been
applied to various subcortical structures including the cross sectional images of the corpus
callosum (Joshi et al., 2002) and hippocampus/amygdala complex (Styner et al., 2003), cau-
date (Terriberry et al., 2007), and lateral ventricle (Styner et al., 2005), in order to evaluate
changes in patients diagnosed with schizophrenia. Since medial representation relies on a
coarse-scale sampling of the structure of interest, it may be insensitive to small-scale shape
differences, which might be present in a studied population (Styner et al., 2004).

In addition to the above-mentioned methods, several works have proposed surface paramete-
rization based approaches, in which a parameterization of a shape is performed on a simple
domain such as a sphere. One such approach is the spherical harmonics (SPHARM) method
by Styner et al. (Styner et al., 2006a), which is used in combination with Point Distribu-
tion Models (PDM) to discover structural differences across a populations. In this approach,
which is called SPHARM-PDM, shapes first represented by binary segmentations are conver-
ted into a corresponding spherical harmonic description. Then, the correspondence problem
is solved by the alignment of the spherical parameterization using a first order ellipsoid. In
this method, the spherical description of surface meshes is sampled into triangulated surfaces
using icosahedron subdivision. These surfaces are then spatially aligned using rigid Procrustes
alignment.
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The SPHARM-PDM method has been applied in various clinical applications, such as for stu-
dying shape variations of the hippocampus (Styner et al., 2004) and lateral ventricles (Styner
et al., 2005) in schizophrenia, and analyzing caudate morphological changes (Ong et al., 2012)
in bipolar disorder. Although SPHARM-PDM enabled the reliable assessment of local shape
variation across populations, it requires to establish correspondence on simplified spherical
models of surfaces, which is restricted to surfaces with spherical topology (Paniaguaa et al.,
2012; Cates et al., 2009). In order to overcome this limitation, combining SPHARM-PDM
with an entropy-based particle system correspondence model has been proposed in (Pania-
guaa et al., 2012). Furthermore, Cates et al. (Cates et al., 2009) proposed to model the shape
as sets of particles, where the particles are distributed on the surfaces of the shapes by op-
timizing an entropy-based energy function. According to a recent evaluation in (Gao et al.,
2014), this method was not able to find the location of group differences in some cases.

Chung et al. (Chung et al., 2010) proposed weighted-SPHARM, which expresses surface data
as a weighted linear combination of spherical harmonics. The weighted-SPHARM method
generalizes the traditional SPHARM representation as a special case. This method reduces
ringing artifacts observed with the SPHARM representation especially for the high frequency
components (Chung et al., 2010). However, it is applicable for a limited class of shapes and is
only able to detect the sufficiently large shape difference across populations. SPHARM-MAT
(SPHARM Modeling and Analysis Toolkit) is another shape analysis method, which creates
parametric surface models using spherical harmonics (Shen et al., 2009). This approach is
similar to SPHARM-PDM framework (Styner et al., 2006a) but applies different spherical
parameterization and shape alignment process (Shen et al., 2009). A comparison between
the two spherical harmonics-based methods showed that SPHARM-PDM could capture the
shape differences more accurately rather than SPHARM-MAT (Gao et al., 2014)

In general, despite the development of various approaches in the field of group-wise shape
analysis, there are still some limitations and challenges that need to be addressed. For ins-
tance, the morphometry framework should be robust to different shape topologies and shape
segmentation approaches, while from a computational perspective, the total population-wise
shape analysis process should be determined in an efficient time manner, in order to be
feasibly implemented as a clinical diagnostic tool.

One of the main challenges in a surface-based groupwise shape analysis approach is to esta-
blish reliable one-to-one correspondences among the population of surfaces. Among various
surface matching algorithms in the literature, the recent spectral matching approach pro-
posed in (Lombaert et al., 2013a,b) have shown promising results, which enables mapping
brain cortical surfaces in a computational efficient manner. To the best of our knowledge, no
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studies have been based on spectral matching theory directly for groupwise shape analysis. In
this paper, we employ the spectral matching approach in a groupwise shape analysis pipeline,
designed for the population-wise comparison between two groups of subcortical structures.
In the proposed framework, the mean curvature feature is used as feature information in
the spectral matching process in order to increase the surface matching accuracy. This work
presents a complete pipeline that allows the detection, localization, and quantification of sta-
tistically significant morphological differences in different subcortical brain structures across
various populations.

The main contribution of this paper is to propose a robust and reliable spectral-based shape
analysis framework using curvature features for analyzing simple (e.g., putamen) and complex
(e.g., hippocampus) subcortical structures. Furthermore, in contrast to the above-mentioned
methods, the suggested framework can perform population-wise shape analysis in a computa-
tional efficient fashion and integrates the spectral matching approach with a groupwise shape
analysis framework. This paper is the first work that integrates spectral matching in to a
groupwise subcortical shape analysis pipeline and incorporates curvature features to increase
the surface matching accuracy (methodological contribution). Experimental analysis on real
clinical datasets show that the extracted group differences is similar to the findings of other
clinical studies (clinical contribution). This work would represent a significant forward for
providing an alternative for future clinical studies on sub-cortical brain structures.

The proposed shape analysis framework processes two groups of segmented binary images
from neuroimaging data (e.g., MRI) as input. After converting the images into triangulated
surface meshes and applying the curvature flow smoothing process, the surface correspon-
dence is established between two populations using the spectral matching approach. The
mean curvature features are incorporated in the spectral matching process to improve the
accuracy of the resulting surface correspondence. Then, two mean shapes for each group are
created as the geometric mean of all surfaces, and the distance map between the two mean
shapes is computed. To verify for statistically significant differences between two populations,
a non-parametric permutation testing scheme (Pantazis et al., 2004) is applied, followed an
FDR correction (Styner et al., 2006a) for multiple comparisons. The evaluation of the pro-
posed shape analysis framework is performed on three separate neuroanatomical datasets,
and group differences across populations are detected by point-to-point correspondences. The
output of these analyses is compared to a state-of-the-art method used for group-wise analysis
of anatomical shapes, namely SPHARM-PDM.

A preliminary version of the proposed method has been presented in (Shakeri et al., 2014), but
was dependent of spherical representations of input shapes, integrated a point-based shape
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matching method, and with limited validation. The present paper provides the detailed expla-
nation of the methodology and offers the following major contributions : (i) a curvature-based
surface smoothing is employed to smoothen extracted 3D surfaces, which has less computa-
tional requirements compared to the spherical-based smoothing method used inShakeri et al.
(2014) ; (ii) mean curvature feature was added into the spectral matching process to increase
the surface matching accuracy ; (iii) a statistical permutation-based analysis is applied to
detect the significant shape differences across populations ; (iv) the evaluation of the pro-
posed pipeline is performed on an increased number of clinical datasets with more samples.
The remainder of this paper is organized as follows. In Section D.2, the methodology is pre-
sented, including the overview of the framework, the spectral surface matching approach,
and the detailed description of the proposed population-wise shape analysis framework. The
quantitative evaluation of the shape analysis method is provided in Section 6.4. Section 6.5
presents a discussion on the results obtained from different neuroimaging datasets, followed
by a conclusion in Section D.4.

6.3 Materials and Methods

6.3.1 Framework overview

In this section, an overview of the proposed group-wise shape analysis pipeline is presented
(Figure 6.1). The inputs of the proposed framework are two sets of segmented binary maps of
a particular structure of interest from medical images, obtained either manually or automati-
cally. The output of the proposed pipeline is the extracted local and global shape differences
between two sets.

In the first step, the segmented binary maps are processed to the same image orientation and
isotropic voxel sizes, and then converted into 3D triangulated surfaces using the marching
cube algorithm (Lorensen and Cline, 1987). A smoothing process is subsequently applied
on each surface in order to remove surface noise. Then, a reference surface is defined in
an iterative process, and all triangulated surfaces are aligned to this reference using a rigid
registration algorithm. In order to establish the point-to-point correspondences across all
surfaces, each mesh is matched to a selected reference surface using the spectral matching
algorithm. The vertices of all surfaces are rearranged to create the new reconstructed meshes
with consistent vertex ordering. This enables to create a mean shape of each study group,
and detect any morphological variations between two groups. A distance map between two
mean shapes is computed to capture the local group differences across populations. Moreover,
average and maximum distances, as well as Dice volume overlap are calculated to indicate
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the global group differences between two study groups.

Surface spectral matching

This section presents the theoretical framework of computing the spectral matching between
two surfaces in the spectral domain. The matching between two surfaces S1 and S2 is conduc-
ted in a two-step process (Figure 6.2.a and Figure 6.2.b ). In the first step, an initial map is
calculated between the two surfaces (Lombaert et al., 2013a). This initial map is then used in
the second step to establish a smooth map between the two meshes (Lombaert et al., 2013b).

For each surface mesh Si (i ∈ {1, 2}) composed of the set of vertices Vi and edges Ei (neighbo-
ring points in mesh faces), the corresponding graph Gi = {Vi, Ei} is built. Then, the weighted
adjacency matrixWi is created based on a distance between connected vertices and the graph
Laplacian matrix Li (Grady and Polimeni, 2010) is defined as :

Li = Gi (Di −Wi) . (6.1)

where Di is a diagonal matrix with elements given by the degree of vertices. Gi is another
diagonal matrix, which could be considered as Gi = D−1

i or any other (positive valued) vertex
weights (Lombaert et al., 2013a, 2011). The eigendecomposition of the Laplacian matrix Li
computes the eigenvalues and the associated eigenmodes. The spectrum (spectral represen-
tation) S̃i is defined as the first k eigenmodes associated with the non-zero eigenvalues.

Once the spectrums S̃1 and S̃2 are computed, the reordering and sign adjustment (Lombaert
et al., 2013a) process are performed and the resulting spectrums are aligned using the Co-
herent Point Drift (CPD) method (Myronenko et al., 2009a). Then, the correspondence map
c between two surfaces S1 and S2 is established with a simple nearest-neighbor search in the
spectral domain. An overview of the procedure to find the correspondence map c is shown in
Figure 6.2.a.

Given the initial map c between two surfaces, the final map ϕ (smooth match) is obtained
according to Figure 6.2.b. In this procedure, an association graph Ga = {V1,2, E1,2,c} composed
of the set of vertices and edges of S1 and S2 with the initial links c between the two surface
meshes is created. Then, the Laplacian matrix is created as La = Ga (Da −Wa), where Wa,
Ga, Da could be defined in the similar way as Equation 6.1. The eigendecomposition of the
Laplacian matrix La produces a shared set of eigenvectors that enables a direct mapping
ϕ1→2 between two meshes (See (Lombaert et al., 2013b) for more details).
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Figure 6.1 Shape analysis pipeline based on spectral decomposition between two groups of
subjects (

{
IAi
}
i=1,...,NA

and
{
IBi
}
i=1,...,NB

, whereNA andNB are the number of samples in each

set ). Once 3D triangulated surfaces
{
MA

i

}
i=1,...,NA

and
{
MB

i

}
i=1,...,NB

are extracted, a mesh

smoothing process is performed to create surfaces
{
SAi
}
i=1,...,NA

and
{
SBi
}
i=1,...,NB

. Then, the
reference surface Sr is created and all surface meshes are aligned to the reference. The point-
to-point matching between all surfaces is computed using the spectral matching algorithm to
generate the surfaces

{
S ′Ai

}
i=1,...,NA

and
{
S ′Bi

}
i=1,...,NB

. Finally, the mean surfaces S ′Aµ and
S ′Bµ are created and local and global shape differences are computed.
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According to (Lombaert et al., 2013a, 2011), considering higher node weights in the graph Ga
could improve the spectral matching precision between two surfaces. This could be achieved
by adding extra features on node weights Ga (Lombaert et al., 2013a, 2011). In this paper,
we propose to use the mean curvature (Cohen-Steiner and Morvan, 2003) as an additional
feature, due to it’s ability to represent the pointwise characteristic within a surface. In fact,
the exponential of the mean curvature is added to the node weights in the Laplacian graph
La to assign higher weights to each vertex. In order to compute the mean curvature at each
vertex v, the principal curvatures Cmin (v) and Cmax (v) (Cohen-Steiner and Morvan, 2003)
are calculated as the minimum and maximum curving degrees of the surface Si. Then, the
mean surface curvature C at each vertex v is defined as :

Cv = 1
2 (Cmin (v) + Cmax (v) .) (6.2)

Hence, the mean curvature of surface Si is computed as {C (1) , C (2) , ..., C (n)}, where n is
the total number of vertices in the surface Si. The additional information is incorporated in
the weighting of the nodes by computing the exponential of the mean curvature, and defining
the diagonal node weighting matrix Ga as :

Ga = D−1
a (exp (diag (C (1) , C (2) , ..., C (n)))) (6.3)

The effect of the curvature feature on the matching accuracy will be assessed in the results
section.

6.3.2 Groupwise shape analysis

Preprocessing and surface representation

Let
{
IAi
}
i=1,...,NA

and
{
IBi
}
i=1,...,NB

be two separate sets of segmented binary maps of a
particular subcortical structure, with NA and NB as the number of samples in each set,
respectively. To extract smooth 3D triangulated surface meshes from input binary maps, the
labeled datasets are first reoriented in the same image orientation and resampled to isotropic
voxel sizes of 1×1×1mm3. Then, the isosurfaces of the segmentation are extracted using the
marching cube algorithm (Lorensen and Cline, 1987) to generate 3D surface meshes denoted
as
{
MA

i

}
i=1,...,NA

and
{
MB

i

}
i=1,...,NB

for the two study groups.

The 3D triangulated surface meshes are then smoothed using mean curvature flow algo-
rithm (Desbrun et al., 1999), in order to create the smoothed meshes

{
SAi
}
i=1,...,NA

and{
SBi
}
i=1,...,NB

.This smoothing step is an iterative process, which removes surface irregularities
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Figure 6.2 Surface matching between two surfaces. (a) Initial matching of two meshes. (b) Fi-
nal correspondence mapping between two surfaces based on diffeomorphic spectral matching
approach.

and improves the appearance of surfaces. Given a triangulated surfaceMi and for each mesh
vertex x, the mean curvature flow is computed using the following explicit vertex-updating
scheme :

xnew ← xold + λH (xold) (6.4)

where the step-size λ is a small positive number. This parameter should be chosen small
enough to keep the smoothing process stable. Here, H (xold) is a discrete approximation of
the mean curvature vector at a mesh vertex x, which is defined as :

H (xold) = 1
4∅

∑
i

(cotαi + cot βi) (Qi − xold) (6.5)

where ∅ is the sum of the areas of the triangles surrounding x and Qi are the neighbours of
the vertex xold. Here, αi and βi are the two angles opposite to the edge Qixold. The process
defined in Equation 6.4 is applied to every point of each triangulated surfaceMi iteratively
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to further smooth the mesh. High iterations produce smoother mesh, but it might cause
the loss of fine surface details. Removing fine surface information could mislead a groupwise
morphological study in capturing small shape differences. In this paper, the 3D surfaces are
smoothed after five iterations. This is the least smoothing that is required to avoid failure
in spectral matching process. The parameter λ is set to 1.0 as suggested in (Desbrun et al.,
1999).

Reference surface and alignment

As a prerequisite for any shape analysis study, objects have to be normalized with respect to
a reference coordinate frame. In order to define the reference surface Sr, an arbitrary surface
from the input dataset can be chosen randomly, and used as a reference mesh. Alternatively,
an average template could be created in an iterative process and employed as a reference
surface. In this study, these two different reference selection approaches are tested, in order
to evaluate their impact on the performance of the proposed shape analysis framework.

The step-by-step procedure of the average reference computation is presented in Algorithm
1. This algorithm is based on the approach proposed by (Guimond et al., 2000), in which
an average image was created by alternating between pairwise registrations and updates
of the average image. The input to Algorithm 1 is the union of the two sets

{
SAi
}
i=1,...,NA

and
{
SBi
}
i=1,...,NB

, which is defined as {Si}i=1,...,NA+NB . Starting from an initial reference
surface (e.g., Sr = S1), all other surfaces Si are rigidly aligned to the selected reference mesh.
This rigid alignment is performed using the ICP (iterative closest point) algorithm (Besl,
1992), which finds the optimal rigid transformation between each mesh and the reference
Sr. In the next step, the point-to-point mapping ϕi→r between each surface Si and Sr is
computed based on the spectral matching framework presented in Section 6.3.1. In the final
step, the geometrical mean shape is estimated from all matched structures, and used as an
updated reference shape. This process terminates when no more changes in Sr obtained or
the maximum number of iterations is achieved. According to preliminary experiments, the
maximum iteration value is set as 10.

Once the reference surface Sr is defined, using either random selection or average surface
creation, all surfaces Si are registered rigidly to Sr. This global surface alignment between
each surface Si and reference surface Sr consists of rigid transformations.
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Algorithm 2 Average template

1: Input : N = (NA +NB) triangulated surfaces Si, and an initial reference surface (e.g.,
Sr = S1)

2: repeat
3: Align all surfaces Si to Sr using rigid ICP
4: Find point-to-point mapping ϕi→r between each surface Si and Sr
5: Update reference Sr = 1

N

∑N
i=1 (Si ◦ ϕi→r)

6: until No more changes in Sr obtained or the maximum number of iterations is reached
7: Output : Average template Sr

Groupwise shape analysis

Given two sets of aligned surface meshes
{
SAi
}
i=1,...,NA

and
{
SBi
}
i=1,...,NB

, the point-to-point
correspondences between each surface and the reference Sr is established using the spectral
matching approach presented in Section 6.3.1. Then, the mesh vertices of all surfaces are
rearranged to have the consistent ordering across the populations. The resulting reconstructed
meshes are denoted as

{
S ′Ai

}
i=1,...,NA

and
{
S ′Bi

}
i=1,...,NB

for the two study groups. The mean
shapes S ′Aµ and S ′Bµ are computed by averaging the 3D coordinates of corresponding surface
points across each group :

S ′Aµ = 1
NA

NA∑
i=1
S ′Ai (6.6)

S ′Bµ = 1
NB

NB∑
i=1
S ′Bi (6.7)

with ϕi→r the mapping from instance Si to reference Sr. The local shape differences between
groups can be detected by computing a distance map between two mean shapes S ′Aµ and
S ′Bµ . This will provide the visual assessment of the location and magnitude of the differences
between groups A and B. We use a standard, non-parametric Hotelling T 2 test (Pantazis
et al., 2004) to check for significant group differences, with the null hypothesis that the two
groups are drawn from the same distribution. The resulting raw p-values are then corrected
for multiple comparisons by the false discovery rate (FDR) approach (Styner et al., 2006b).

The performance of the method is further evaluated by significant vertex ratio metric, which
is estimated by computing the ratio of the number of statistically significant vertices over
the total number of surface points of the mesh (Gao et al., 2014).

The global shape difference between two groups is computed by averaging the distances
between the mean surfaces, which results in the mean absolute distance (MAD). The mean
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absolute distance (MAD) attempts to estimate the average distance of surfaces S ′Aµ and S ′Bµ
by projecting the vertices of the first surface on the second one (Gerig et al., 2001b). Moreover,
the Hausdorff distance (Aspert et al., 2002) is calculated as the maximum distance between
two mean shapes. This measure has high sensitivity to positional differences between two
surfaces. In addition, Dice coefficient (Dice, 1945) is reported as a global measure, which
indicates the amount of volume overlap between two mean shapes. The 3D Dice coefficient
metric between two surfaces S ′Aµ and S ′Bµ is defined as the intersection divided by the mean
volume of the two surfaces :

Dice
(
S ′
A
µ , S

′B
µ

)
=

∣∣∣S ′Aµ ∩ S ′Bµ ∣∣∣( |S′Aµ |+|S′Bµ |
2

) (6.8)

For identical surfaces, Dice coefficient achieves its maximum value of 1, with decreasing values
indicating less volume overlap.

6.4 Results

In this section, we will first evaluate the accuracy of the proposed method under different
configurations and initial conditions. Then, the performance of the shape analysis approach
will be evaluated on different subcortical structures (hippocampus, putamen) from various
neuroimaging datasets. Finally, the proposed methodology is applied on a clinical application
of Alzheimer’s disease. This disorder is one of the most widespread diseases in the elderly
population, which gradually damages the brain regions including hippocampus. Here, we
use our framework to quantify subcortical morphological changes in patients diagnosed with
Alzheimer’s and mild cognitive impairment.

6.4.1 Datasets

For accuracy and performance evaluation, two separate neuroimaging datasets were used.
The first dataset includes putamen structures (PT dataset) and the second dataset consists
of hippocampus shapes (HPC dataset).

The PT dataset includes 36 T1-weighted MR images from healthy controls. Subjects were
recruited from a pediatric brain study (mean age 11, 24 males). Acquisition was performed on
a 3.0 TMRI system (Philips Acheiva or Siemens) with an in-plane resolution of 256×256, slice
thickness of 1 mm, and voxel size ranging between 1×0.9677×0.9677 mm3 and 1×1×1 mm3.
In this dataset, the left putamen was segmented using FSL-FIRST automatic segmentation
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toolbox (Patenaude et al., 2011a) and corrected by an experienced user. The segmented
putamen structures in the dataset have been randomly separated into two groups to create
two different groups A and B.

The HPC dataset contains 42 hippocampus shapes obtained from schizophrenic patients and
matched healthy controls (mean age 32, all male gender) (Styner et al., 2004). The hippo-
campi were manually segmented from IR-Prepped SPGR (Inversion Recovery-Prepared Spoi-
led Gradient Echo) data segmented originally at 0.9375×0.9375×1.5 mm3 resolution. In the
HPC dataset, all cases were randomized and group association was performed to create two
different groups (group A and group B). The SPHARM-PDM toolbox developers prepared
this dataset at UNC Neuro Image Analysis Laboratory (see www.nitrc.org/projects/spharm-
pdm), as part of the public UNC Shape Tool distribution for shape analysis studies. Since the
HPC dataset was provided by SPHARM-PDM software developers, it is relevant to assess
the performance of the proposed shape analysis method compared to the SPHARM-PDM
approach on this dataset.

In order to validate the proposed framework on clinical applications, a popular brain ima-
ging dataset in Alzheimer’s disease, namely the Alzheimer’s disease Neuroimaging Initiative
(ADNI) was used. Capturing the structural morphometry have always been a target of inter-
est in Alzheimer’s disease studies, since evaluating the structural changes could provide a clue
for early detection of the pathology. The ADNI database (adni.loni.usc.edu) was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial magnetic resonance ima-
ging (MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org. The database of ADNI consists of cross-sectional and longitudinal data
including 1.5 or 3.0 T structural MR images. The detailed description of the MRI protocol
of ADNI is provided in (Jack Jr et al., 2008). For this study, a subset of screening 1.5 T MR
images is used including 47 normal controls (NC), 47 AD patients, and 47 individuals with
MCI. The three groups are matched approximately by age and gender (NC with mean age
of 76.7± 5.4, 23 males ; AD with mean age of 77.4± 7.2, 21 males ; and MCI with mean age
of 75.0± 6.9, 28 males). For the purpose of reproducibility, the list of the study participants’
identifiers is provided in the Supplementary material. Contributors of ADNI performed addi-
tional post-processing steps on MR images to correct certain image artifacts and to enhance
standardization across sites and platforms. The post-processing steps include gradient non-
linearity correction (Jovicich et al., 2006), intensity inhomogeneity correction (Jack Jr et al.,
2008), bias field correction (Sled et al., 1998), and phantom-based geometrical scaling to
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remove calibration errors (Gunter et al., 2006). Here, we use these processed images. Left
and right hippocampi were segmented using FSL-FIRST automatic segmentation software
package (Patenaude et al., 2011a) and visual inspection was performed on the output binary
masks to ensure the quality of the automatic segmentation.

6.4.2 Validation methodology

The proposed framework was first tested under different configurations using both PT and
HPC datasets. The minimum number of spectral coordinates, which is required for having a
stable output, was determined. Then, the impact of curvature features and different reference
surfaces on the accuracy of the proposed framework was tested. In each case, mean absolute
distance (MAD) measure, along with Hausdorff distance (Aspert et al., 2002) and Dice co-
efficient (Dice, 1945) was computed to assess the group differences between mean shape A
and B. To evaluate the accuracy of the proposed framework, the performance of the spectral
approach under different configurations was compared with a state-of-the-art method used
for groupwise analysis of anatomical shapes, namely SPHARM-PDM (Styner et al., 2006b).
The maximum spherical harmonics degree of the SPHARM-PDM method is set to 15 for
putamen structures and 12 for hippocampus shapes.

Once the configuration of the proposed framework was completed, the proposed framework
was validated on PT and HPC subcortical datasets. In these experiments, both local and
global group differences were analyzed and compared to SPHARM-PDM. Finally, the pro-
posed methodology was applied for quantifying hippocampal morphological variations in
Alzheimer’s disease (AD). Hippocampal morphometry have been increasingly used in the
AD research in the perspective of early detection of the pathology and future treatments.
Here, the proposed framework was applied for detecting the morphological changes in indi-
viduals with Alzheimer’s disease, in order to verify the accuracy of the spectral based shape
analysis approach in the statistical studies of this clinical application.

6.4.3 Framework configurations

Number of spectral coordinates

The number of eigenvectors used to model surfaces in the spectral domain has an impact
on the accuracy of the established surface correspondences in the spectral matching process.
In this experiment, we examine the effect of the number of eigenvectors used as spectral
coordinates on the groupwise shape analysis output. The eigendecomposition process is per-
formed twice in the spectral matching approach : once for generating the initial map c, and
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once for establishing the final map ϕ (see Section 6.3.1). As mentioned in Section 6.3.1, the
first k eigenvectors associated with the smaller non-zero eigenvalues are extracted as spectral
coordinates. The rationale for this choice is that the eigenvectors associated with the lower
non-zero eigenvalues represent coarse intrinsic geometric properties of a shape (i.e., depicting
the global shape model). However, the question remains how many eigenvectors is enough
to represent the surfaces in the initial step, as well as the association graph Ga in the final
process.

Here, we apply our shape analysis framework on both PT and HPC datasets with varying
number of eigenvectors, and evaluate the framework output by measuring the mean absolute
distance between two groups A and B. In this experiment, 10 separate study groups A
and B are created from each dataset, and the average mean absolute distance is reported
under varying number of eigenvectors (Figure 6.3). This experiment demonstrates that the
framework output becomes stable at k = 3 for PT dataset and k = 4 for HPC dataset,
and gains no further significant changes beyond these values. The difference in the sufficient
numbers of eigenvectors between two datasets is due to the higher complexity of hippocampus
structures compared to putamen surfaces. Thus, more eigenvectors are required to model
hippocampus surfaces. Therefore, we consider kinitial = kfinal = 3 for PT, and kinitial =
kfinal = 4 for HPC dataset as the number of eigenvectors for the remainder of the experiments.

Incorporating curvature feature

In this section, the impact of integrating additional features on the performance of the spectral
groupwise approach is first evaluated to understand the value of surface curvature in the
matching process. Then, the robustness of the subcortical surface matching process, both
with and without additional features, is assessed by applying synthetic deformations to the
surfaces.

As mentioned previously in Section 6.3.1, one can include additional information in the
spectral matching process, by establishing a meaningful node weight for each vertex. Here,
we compute the exponential of the mean curvature at each vertex ( Equation 6.3), and use
the combination of curvature and spectral coordinates for surface matching.

In order to evaluate the performance improvement after incorporating additional information,
10 separate subsets are created from 36 putamen structures of PT dataset. Each subset
includes 10 different surfaces, i.e., five surfaces are considered as the member of the study
group A and the rest are marked as group B. The proposed shape analysis framework is then
applied on each subset with and without curvature features. In addition, the accuracy of the
two implementation of the shape analysis framework is compared with the state-of-the-art



65

5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of eigen vectors

M
A

D
 (

m
m

)

final map

 

 
HPC dataset

PT dataset

5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of eigen vectors

M
A

D
 (

m
m

)

Initial map

 

 
HPC dataset

PT dataset

Figure 6.3 Performance of the shape analysis framework under varying number of eigenvectors
used as spectral coordinates. Left : average mean absolute distance obtained for different
number of eigenvectors in creating the initial map. Right : average mean absolute distance
computed for different number of eigenvectors in creating the final map. The framework
result becomes stable with three eigenvectors for PT dataset and four eigenvectors for HPC
dataset.

groupwise shape analysis method, SPHARM-PDM (Styner et al., 2006b). Table 6.1 provides
the average Dice coefficient, Hausdorff distance, and mean absolute distance in 10 separate
subsets. Comparing our framework to SPHARM-PDM approach revealed that the groupwise
shape analysis is more accurate using curvature features (MAD = 0.25 ± 0.09 mm) rather
than using the spectral coordinate alone (MAD = 0.37± 0.14 mm).

We then tested the proposed shape analysis pipeline on the HPC dataset with and without
curvature features, in order to investigate the influence of incorporating additional features.
The extracted group differences show that the groupwise shape analysis integrated with
curvature features (Dice = 0.93, Hausd.Dist. = 1.16 mm, MAD = 0.25± 0.23 mm) is more
accurate rather than using the spectral coordinate alone (Dice = 0.70, Hausd.Dist. = 2.56
mm, MAD = 0.95 ± 0.57 mm). Hence, we can conclude that adding mean curvature has
a significant positive effect on the framework’s precision, when matching the hippocampus
structures.

Now, we evaluate the accuracy of the subcortical surface matching process with and without
additional features by testing for robustness to synthetic deformations on the PT dataset. To
achieve this, we synthetically deform putamen surfaces, and match each putamen structure to
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Figure 6.4 Testing the robustness of the spectral matching approach with respect to added
deformations. Left : deformation on z direction, simulating surface compression ; Right : radial
distortion. The average error at each deformation is shown for two separate implementations
of the spectral approach, one with and another without incorporating additional features
(curvature). This shows that using additional features improves the precision of the surface
matching.

its deformed instance. Since the vertex indexing remains the same, we are able to establish
a ground truth for correspondence maps. Thus, we measure the average distance between
the locations of corresponding points found with spectral matching and the real locations of
corresponding points defined by the ground truth.

Here, each vertex x = (X, Y, Z) of the surface Si is deformed by applying the transforma-
tion Z ′ = (1 + α)Z. This deformation provides surface compression with out changing the
topology of the mesh. All 36 putamen surfaces are deformed by varying α in the range of
[0, 0.4]. Figure 6.4 left shows the accuracy of the surface matching with and without ad-
ditional curvature features. At maximal deformation (α = 0.4), the spectral matching me-
thod achieves an average error of 0.47 ± 0.10 mm with curvature features, and 2.65 ± 0.87
mm without extra information. In the next experiment, a radial distortion of X ′ = X +
β(X2 + Y 2)2

/max
(
(X2 + Y 2)2) is applied to each vertex x = (X, Y, Z) of all 36 putamen

surfaces. This deformation simulates a drastic change in a surface shape, while preserving the
mesh topology. The controlling parameter β is varied in the range of [0, 15] and the surface
matching accuracy is assessed as shown in Figure 6.4 right. These experiment show the per-
formance of the point-to-point spectral matching under synthetic deformation and indicates
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Table 6.1 Shape differences between mean shape A and mean shape B with and without
incorporating curvature features. The average Dice coefficient, Hausdorff distance and MAD
are reported on 10 subsets of PT dataset. p-values of t-test between the spectral method and
SPHARM-PDM framework are also shown. Spectral method without additional features pro-
duces significantly different results compared to SPHARM-PDM, while spectral framework
integrated with curvature features generates similar results to the spherical method.

Spectral method SPHARM-PDM
No additional features With additional features

Dice Coefficient 0.93±0.02 p = 0.02 0.94±0.02 p = 0.03 0.95±0.02
Hausd. Dist. (mm) 2.08±0.90 p <0.01 1.15±0.47 p = 0.18 1.04±0.34
MAD (mm) 0.37±0.14 p = 0.03 0.25±0.09 p = 0.64 0.25±0.09

that using additional curvature features enhances the surface matching accuracy.

Reference surface selection

In this section, we verify that the proposed shape analysis approach is unbiased to the choice
of the reference surface within a study group. To this end, an arbitrary initial reference
is selected as one of the surfaces in the PT dataset. Then, all surfaces are matched to this
reference surface and shape analysis is conducted to estimate group differences. We performed
36 separate tests by iteratively selecting a new putamen surface as reference shape and
computing the average mean distance in multiple runs (see Table 6.2). The average mean
difference for the whole dataset is 0.14±0.005 mm. In order to further examine the impact of
reference surface on the shape analysis accuracy, in the next experiment, an average template
is created in an iterative process, as described in Section 6.3.2. This template is applied as
a reference surface in a shape analysis study on PT dataset, yielding a MAD of 0.14± 0.12
mm (see Table 6.2). These results suggest that the method produces near identical shape
differences even by varying the choice of the initial reference. Therefore, if reducing the
computational time is important in a study, it is possible to choose one of the input surfaces
as a reference surface, instead of creating an average template.

Table 6.2 Shape differences between mean shape A and mean shape B. The average Dice
coefficient, Hausdorff distance and MAD are reported for 36 separate runs by choosing 36
different initial references. In addition, Dice coefficient, Hausdorff distance and MAD are
listed for a shape analysis test using average template as a reference surface.

Different initial references (n = 36) Average template

Dice Coefficient 0.97± 0.001 0.97
Hausd. Dist. (mm) 0.83± 0.12 0.83
MAD (mm) 0.14± 0.005 0.14± 0.12
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6.4.4 Accuracy on subcortical shapes

In this section, we validate the performance of our proposed methodology on localizing struc-
tural morphologies across populations. The spectral based shape analysis framework is ap-
plied on both PT and HPC datasets to detect shape differences between groups A and B

in each dataset. The performance of our spectral-based framework is compared with the
state-of-the-art groupwise shape analysis method, SPHARM-PDM (Styner et al., 2006b).

For putamen shapes, the local group differences produced by both methods are illustra-
ted in Figure 6.5, which shows that both methods capture similar shape differences. Ho-
wever, no significant difference is found after applying statistical analysis (see vertex ra-
tio in Table 6.3). Since PT dataset includes healthy control subjects, detecting no signifi-
cant differences between two groups was expected. The Dice coefficients between A and B
(Dice = 0.97) and the mean absolute distances (MAD = 0.14 ± 0.11 mm in spectral fra-
mework, and MAD = 0.14± 0.12 mm in SPHARM-PDM) were the same for both methods
(see Table 6.3). Also, the Hausdorff distances were 0.87 mm and 0.74 mm for spectral-based
method and SPHARM-PDM, respectively. In order to further verify the accuracy of the
proposed framework in comparing two groups of healthy subjects, we perform another expe-
riment, in which the proposed pipeline is applied on different randomly separated datasets
(i.e., five study group pairs, where each group contain 18 random putamen structures). The
significant vertex ratio is computed on all five separate tests, which results in an average
vertex ratio of zero. This experiment shows that the proposed method is working well by not
detecting any significant shape variations between two healthy groups.

For hippocampus shapes, the location and magnitude of group differences is consistent bet-
ween two methods (see Fig. 6). The p-values maps show a strong significance in tail region
for both methods, while the head region does not show the same significant difference. On
one hand, the subjects in HPC dataset are randomly divided into two groups A and B, thus
we are not able to compare the pattern of hippocampal deformation with the one reported

Table 6.3 Evaluation of shape differences between mean shape A and mean shape B obtained
with spectral method and SPHARM-PDM for the two datasets (HPC and PT). Results are
compared using the Dice coefficient, the Hausdorff distance (Hausd. Dist.), the mean absolute
distance (MAD), and significant vertex ratio.

Hippocampus (HPC) Putamen (PT)
Spectral Method SPHARM-PDM Spectral Method SPHARM-PDM

Dice Coefficient 0.93 0.92 0.97 0.97
Hausd. Dist. (mm) 1.16 1.12 0.87 0.74
MAD (mm) 0.25± 0.23 0.28± 0.23 0.14± 0.11 0.14± 0.12
Vertex Ratio 0.16 0.23 0 0
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Figure 6.5 Putamen shape analysis. Distance maps were computed using the proposed spec-
tral method on the left and SPHARM-PDM on the right. The resulting distance maps are
shown in lateral and medial views. Statistical analysis showed that none of the captured
group differences were significant.

in previous studies on Schizophrenia. On the other hand, inconsistency between groupwise
shape analysis approaches have been reported in the literature (Gao et al., 2014; Styner et al.,
2007). This might be due to the use of different strategies in extracting surface meshes and
establishing surface correspondences between methods. The global shape differences show
considerable agreement between the spectral framework (Dice = 0.93, Hausd.Dist. = 1.16
mm, MAD = 0.25 ± 0.23 mm) and SPHARM-PDM (Dice = 0.92, Hausd.Dist. = 1.12
mm, MAD = 0.28± 0.23 mm) (see Table 6.3). In general the two methods are consistent in
global group difference measures and distance maps, although they show a small difference
in p-value maps.

The computational time of both methods was measured on a 3.2 GHz Core i5 computer with
32GB of RAM. The computational cost of spectral method (PT : 5 min, HPC : 54 min)
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is significantly lower than SPHARM-PDM (PT : 14 min, HPC : 242 min (or 4 hours)),
especially for more complex shapes, like the hippocampus. This significant speed advantage
was achieved without using parallel programing. These results suggest that the proposed
spectral framework not only produces similar groupwise shape differences as SPHARM-PDM,
it also has a clear speed advantage.

6.4.5 Application to Alzheimer’s disease

Alzheimer’s disease (AD) (Du et al., 2001) is the most common form of dementia in the
elderly population. There is evidence that the neuropathological changes in AD damages the
hippocampus structure, which is a brain region crucial to various cognitive functions (Du
et al., 2001; Cho et al., 2011). Mild cognitive impairment (MCI) (Petersen et al., 1999) is
considered as a transition state between normal aging and dementia. The cognitive deficits
in MCI patients are not as severe as those seen in people with AD. However, MCI has a
10-fold risk of a transition to early Alzheimer’s disease (Petersen et al., 1999). According to
neuroanatomical studies, MCI patients have shown hippocampal deformation compared with
healthy elderly people (Du et al., 2001; Kim et al., 2014). Here, our groupwise shape analysis
is applied on the ADNI dataset including 47 AD patients, 47 individuals with MCI, and 47
matched normal controls (NC). The shape variation of left and right hippocampi was studied
between AD and NC, as well as MCI and NC. To correct for head size differences across
populations, each hippocampi surface was scaled by the individual’s total intracranial volume.
The total intracranial volumes were collected from ADNI database (adni.loni.usc.edu).

Figure 6.7 (a) and (b) show shape variations between AD and normal controls for the left
and right hippocampi produced by spectral and SPHARM-PDM methods. In both methods,
hippocampal surfaces of AD patients show inward local deformity mainly in lateral zones
(CA1) and inferior-medial zones (subiculum), which is consistent with findings from previous
studies (Wang et al., 2006; Cho et al., 2011; Kim et al., 2014). Table 6.4 shows the global

Table 6.4 Evaluation of shape differences between AD and control groups obtained with spec-
tral method and SPHARM-PDM for the left and right hippocampus. Results are compared
using the Dice coefficient, the Hausdorff distance (Hausd. Dist.), the mean absolute distance
(MAD), and significant vertex ratio.

Left Hippocampus Right Hippocampus
Spectral Method SPHARM-PDM Spectral Method SPHARM-PDM

Dice Coefficient 0.85 0.86 0.86 0.86
Hausd. Dist. (mm) 1.49 1.50 1.39 1.50
MAD (mm) 0.58± 0.26 0.55± 0.28 0.52± 0.29 0.55± 0.28
Vertex Ratio 0.45 0.40 0.46 0.45
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Figure 6.6 Hippocampus shape analysis. Distance maps are computed using spectral method
and SPHARM-PDM. The resulting distance maps are shown in lateral and medial views.
The respective FDR-corrected p-value maps are shown below distance maps.

shape differences between the spectral framework (Left hippocampi : MAD = 0.58 ± 0.26
mm, Right hippocampi : MAD = 0.55± 0.29 mm) and SPHARM-PDM (Left hippocampi :
MAD = 0.52± 0.28 mm, Right hippocampi : MAD = 0.55± 0.28 mm). The p-values maps
are almost similar between the two methods, however in general both methods limit the
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shape changes to CA1 and subiculum. In addition, the ratio of the statistically significant
vertices over the total number of surface points shows agreement between both methods.

The result of the same comparison performed between MCI patients and normal controls is
shown in Figure 6.8 and Table 6.5. The distance maps produced by both methods are almost
similar, while the p-value maps do not agree. Indeed, the spectral matching approach found
significant inward variation in CA1 and subiculum regions of left and right hippocampi, ho-
wever no significant region was captured by SPHARM-PDM. The amount of vertex ratio is
interestingly different between spectral approach (Left hippocampi = 0.17 and Right hippo-
campi = 0.19) and SPHARM-PDM (Left hippocampi and Right hippocampi = 0). However,
since there is no ground truth for the clinical datasets and the previous neuroanatomical
studies on these pathologies used different input samples, it is unclear which method can
be considered as the gold-standard. However, both methods provided almost the same glo-
bal regional differences (Dice, Hausd. Dist., MAD) and similar distance maps. In addition
both methods are in line with the previous neuroanatomical studies (Xie et al., 2013; Kim
et al., 2014), which reported capturing weaker group differences between MCI and normal
individuals rather than AD and normal controls.

6.5 Discussion

In this work, a new framework for groupwise shape analysis of subcortical structures, such
as the hippocampus or putamen, is proposed in order to detect regional morphological alte-
rations of subcortical structures from patients with neurological conditions, such as schizo-
phrenia and Alzheimer’s. The proposed method extracts the 3D meshes from input binary
maps using the Marching cubes algorithm, which is one of the most popular 3D modeling
algorithms in medical visualization. Since this approach was not able to generate high quality
smoothed surfaces out of subcortical structures, the mean curvature flow algorithm was em-
ployed to smoothen the 3D surface meshes. Mean curvature flow smoothes a surface mesh by

Table 6.5 Evaluation of shape differences between MCI and control groups obtained with
spectral method and SPHARM-PDM for the left and right hippocampus. Results are com-
pared using the Dice coefficient, the Hausdorff distance (Hausd. Dist.), the mean absolute
distance (MAD), and significant vertex ratio.

Left Hippocampus Right Hippocampus
Spectral Method SPHARM-PDM Spectral Method SPHARM-PDM

Dice Coefficient 0.95 0.95 0.95 0.95
Hausd. Dist. (mm) 1.1 1.0 1.17 1.64
MAD (mm) 0.20± 0.18 0.21± 0.21 0.20± 0.20 0.24± 0.24
Vertex Ratio 0.17 0 0.19 0
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moving the surface nodes along the normal direction and achieves the best smoothing result
with respect to the geometric information of the surface. In the next step, all surfaces are
rigidly registered to a reference surface and mean curvature is computed at each node of all
surfaces. Once all shapes are globally aligned, the spectral matching approach as proposed
in (Lombaert et al., 2013a,b) is applied in order to match each surface to the reference mesh.
The proposed pipeline then creates two mean shapes as the geometric mean of all surfaces
in each study group and a standard non-parametric permutation test is applied at every
vertex point to detect significant local group differences. The framework terminates by ap-
plying various metrics in order to assess local and global shape differences across populations.
As suggested by the authors of the spectral matching approach (Lombaert et al., 2013a,b),
adding extra features, such as texture information, anatomical information, or landmark po-
sitions could lead to a better surface correspondence. For instance, in the case of matching
cortical surfaces, the technique in (Lombaert et al., 2013b) proposed to use sulcal depth as
additional feature, which provides information about the depth of the cerebral cortex. There-
fore, the choice of additional features and assessing the effect of incorporating them into the
matching process depends completely on the type of structures under study. In this work, we
included the exponential of the mean curvature features in the node weights of the Laplacian
matrix (Equation 6.1), since it intrinsically describes the local shape information of a 3D
surface, without being too application specific. Experimental analysis in Section 6.4.3 revea-
led that embedding this additional feature significantly improves the matching accuracy to a
greater extent. For instance, adding mean curvature has a significant positive effect on point
correspondence performance, when matching hippocampus shapes. However, this feature is
not crucial for analyzing putamen shapes. Hence, one might conclude that incorporating
curvature features has more relevance to evaluate complex structures. In order to verify the
performance of the proposed approach, the robustness of the shape analysis framework was
evaluated using two reference selection approaches. According to these experiments, the use
of an average reference shape gave slightly better results than using a single reference shape.
However, the differences between average and randomly selected initial shape was not no-
ticeable, indicating that the proposed framework is not significantly sensitive to this initial
choice. Therefore, since computing an average reference is time-consuming, it is preferable
to choose an arbitrary reference surface from input surfaces if the computational time is
a critical issue in a particular study. A series of experiments were conducted in this study
to analyze the performance of the proposed groupwise shape analysis approach. According
to these experiments, the proposed group analysis framework and the state-of-the-art me-
thod SPHARM-PDM have considerable agreement in most of the cases. However, from a
computational perspective, the proposed spectral method has a clear speed advantage over
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the spherical harmonics based method. This speed advantage becomes more noticeable for
more complex structures, such as for example analyzing a complex shape like the hippo-
campus, with a fourfold decrease in time compared to SPHARM-PDM. According to the
experiments, the total running time of SPHARM-PDM could be reduced, by employing lo-
wer number of spherical harmonic coefficients. For instance, groupwise shape analysis on
HPC dataset took on average 5.5 hours, when the structures were represented by 15 spheri-
cal coefficients, compared to 4 hours when 12 spherical coefficients were used. The problem
is that the sufficient number of spherical coefficients must be provided in order to obtain an
appropriate representation of a structure. In this paper, the number of spherical harmonic
descriptions has been chosen in the range of 12 to 15, according to SPHARM-PDM software
manual (www.nitrc.org/ projects/spharm-pdm) (Styner et al., 2006b). Aside from the consis-
tency in the group distance maps produced by the two shape analysis methods, spectral and
SPHARM-PDM methods, the generated p-value maps did not agree in some experiments.
This type of inconsistency, which have been previously reported in the literature (Gao et al.,
2014; Styner et al., 2007), mainly comes from the specific surface representation used by
each method. A method like SPHARM-PDM generates smooth surfaces based on spherical
harmonics, while our approach keeps the original meshes and applies only a slight smoothing
process to remove surface irregularities. Severe smoothing can cause a method to miss small
surface deformations in a groupwise morphological study. This might be the reason why
SPHARM-PDM does not capture any region of group differences in the comparison between
MCI and healthy controls. Another reason for inconsistency in capturing significant group-
wise variations is the choice of surface correspondences across populations. This influence
seems to be higher in studies with lower number of samples, especially when there is large
shape variability due to the high age range and gender differences. Therefore, using relatively
higher number of samples in the input populations, could reduce the inconsistency in group-
wise morphological frameworks. Since there is no ground truth for the clinical datasets, it is
not clear which one of the two methods (spectral group analysis or SPHARM-PDM) are more
accurate. Nonetheless, one should keep in mind that both methods produce similar distance
maps and close global group differences, which shows that the two methods are consistent in
general. In addition, both methods did not detect any significant shape variations when the
two groups of controls were used as inputs. This indicates that the two methods are working
well. As an application, the proposed framework was applied on the ADNI dataset including
AD, MCI, and normal controls. In previous neuroimaging studies, it has been reported that
subjects with AD and MCI could be discriminated from healthy subjects by examining the
pattern of hippocampal surface variations (Du et al., 2001; Cho et al., 2011; Petersen et al.,
1999; Kim et al., 2014; Wang et al., 2006; Xie et al., 2013). Hippocampal atrophy begins
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in lateral zones (CA1) and spreads to inferior-medial zones (subiculum) (Xie et al., 2013).
The superior zones including CA2-4 and Gyrus Dentatus are preserved (Xie et al., 2013).
We validated our scheme through a statistical shape analysis on hippocampal surface defor-
mity in ADNI dataset, by demonstrating a consistency with previous clinical findings. These
results suggest that the proposed spectral-based shape analysis framework could allow for
quantitative assessment of variations in subcortical structures, associated with a neurological
disorder, which leads to the better understanding of a pathology.

An important issue in any surface-based shape analysis approach is the reliance on the seg-
mentation accuracy. This step has a crucial impact on a shape analysis pipeline, since its
quality could affect the accuracy of the detected shape variations. The segmentation pro-
cess becomes more challenging, when we attempt to capture slight group differences across
a population, since small shape variations have greater chances of being lost in a segmenta-
tion process. In this paper, we used an openly-available automatic segmentation tool (FSL-
FIRST (Patenaude et al., 2011a)) for segmenting structures in PT and ADNI datasets. Ho-
wever, in order to ensure about the quality of the structural delineations, we asked a trained
expert user to correct the segmentations. These corrected labels were then used as an input
in the proposed shape analysis framework. As future work, it would be helpful to incorporate
a more accurate segmentation process in the pipeline, which is able to correctly define the
boundary of each structure and extract smoothed meshes directly from MR images.

In summary, the proposed groupwise morphological framework with its methods for surface
extraction, smoothing, matching, and statistical analysis is novel, and produced comparable
results to the state-of-the-art algorithm, while being faster. This paper was the first work that
integrated curvature-based spectral matching in to a groupwise shape analysis pipeline. Ex-
perimental analysis on real clinical dataset even showed that the extracted group differences
were in line with the findings in other clinical studies. This paper proposed an alternative to
the current state-of-the-art groupwise shape analysis framework and provides a new pipeline
for future clinical studies.

6.6 Conclusions

In this paper, a new groupwise shape analysis framework is proposed for subcortical surfaces
based on spectral matching theory. This spectral matching process is able to establish re-
liable correspondences between different surface meshes and may help in the investigation of
groupwise structural differences between two study groups. From a clinical perspective, the
proposed method can contribute to the diagnosis of subcortical shape variations in different
pathologies, like Alzheimer’s disease.
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One important future direction of the proposed framework is to extend the available ap-
proach for diagnosis of different pathologies, which cause morphological variations in sub-
cortical structures. This could be done by modeling the existing shape variations in patients
using a classification approach, and try to distinguish the pathological subjects from normal
individuals. Such a framework would become a complementary technique to other available
diagnosis approaches, which are currently used for identifying different diseases. However,
this kind of diagnosis framework requires incorporating larger datasets to achieve high and
stable classification accuracy.
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Figure 6.7 Left and right hippocampal shape deformations in AD patients compared with
normal controls. Distance maps are computed along with the respective FDR-corrected p-
values maps using spectral method (a) and SPHARM-PDM (b).



78

Figure 6.8 Left and right hippocampal shape deformations in MCI patients compared with
normal controls. Distance maps are computed along with the respective FDR-corrected p-
values maps using spectral method (a) and SPHARM-PDM (b).
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CHAPTER 7 ARTICLE 3 : SUB-CORTICAL BRAIN MORPHOMETRY
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Remarks : This paper contains a study on children with benign epilepsy with centrotemporal
spikes (BECTS). In this paper the morphological alterations in sub-cortical structures are
investigated with respect to the side of the epilepsy focus. In addition, the association between
sub-cortical morphometry and cognitive performances are evaluated. The results confirm the
existence of structural changes in children with BECTS, as well as the correlation between
morphological alterations and cognition.
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7.1 Abstract

Purpose : Rolandic epilepsy (RE), also called benign epilepsy with centrotemporal spikes
(BECTS) is the most common childhood epilepsy syndrome. RE is associated with cognitive
difficulties, which can affect children’s quality of life. The underlying causes of these cognitive
impairments are unclear. The objective of this prospective study is to investigate sub-cortical
morphological alterations in RE children with left, right, or bilateral hemispheric focus and
its association with cognition.

Methods : Participants include 41 children with rolandic epilepsy and 38 healthy controls
(age 8–14 years), recruited from CHU Sainte-Justine Montreal Children Hospital (N = 40)
and Basel’s Children Hospital (N = 39). Quantitative volumetric assessment of putamen and
caudate structures was performed on T1-weighted MR scans along with the morphological
analysis to test for differences between patients and controls. These analysis were performed
considering the side of epilepsy focus in all participants. Correlations were investigated bet-
ween the sub-cortical morphometry and cognitive indices such as intelligence quotient (IQ),
verbal comprehension index (VCI), perceptual reasoning index (PRI), working memory index
(WMI), and processing speed index (PSI).

Results : Children with bilateral BECTS showed statistically significant volume reduction
in right caudate (p < .05), while no statistically significant putamen volumetric changes were
detected in BECTS participants compared to normal controls. According to a spectral-based
groupwise shape analysis, regional alterations were found in both putamen and caudate
structures of children with BECTS. In particular, children with left BECTS showed significant
outward local deformity in left putamen and individuals with bilateral BECTS showed inward
local group differences in both right putamen and right caudate. The correlation assessment
showed positive association between the volume of the left caudate and cognitive indices
in the group containing all BECTS participants. Negative correlation was found between
putamen sub-regional shape alterations and cognition in individuals with right BECTS and
in all BECTS participants. Negative associations between caudate sub-regional morphologies
and cognitive indices were detected in both left and bilateral cohorts.

Significance : We have confirmed putamen and caudate shape alterations in children with
BECTS. However, our results further suggest that variations in sub-cortical shape affect
cognitive functions. Importantly, we have demonstrated that shape alterations and their
relation with cognition depend on the side of epilepsy focus. Our results point to different
syndromic entities in the BECTS population.

Keywords Benign epilepsy with centrotemporal spikes (BECTS), Rolandic Epilepsy (RE),
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Brain morphometry, Neuropsychological assessment.

7.2 Introduction

Rolandic epilepsy (RE), also called benign epilepsy with centro-temporal spikes (BECTS), is
the most common benign childhood focal epileptic syndrome (Kramer et al., 1998; Wirrell and
Hamiwka, 2006), which occurs in children aged from three to 13 years old (Panayiotopoulos
et al., 2008).

BECTS typically show cognitive deficits in language, verbal learning, attention, and executive
function (Metz-Lutz and Filippini, 2006; Weglage et al., 1997), which affect children’s quality
of life (Malfait, 2011). Some studies on sub-cortical structures have shown atypical functional
networks for language processes in BECTS (Datta et al., 2013; Malfait et al., 2015). Of
special interest, the putamen and caudate have been shown to particularly engage in language
cognitive tasks in BECTS, possibly reflecting a compensatory network (Malfait et al., 2015).

Recent studies on sub-cortical structures in BECTS have shown putamen volume enlarge-
ment (Garcia-Ramos et al., 2015a; Lin et al., 2012). Furthermore, Lin et al. (Lin et al., 2012)
found shape changes in both putamen and caudate. They also reported a connection bet-
ween putamen volume and cognitive performances on a complementary executive function
test. Neither Garcia et al. (Garcia-Ramos et al., 2015a) nor Lin et al. (Lin et al., 2012)
considered the side of epilepsy focus of the participants in their analysis, which could affect
their findings. Among other available studies, few have considered the side of epileptic fo-
cus in detecting brain developmental impairment and finding the association between these
morphological differences and cognition (Boxerman et al., 2007; Gelisse et al., 2003; Lund-
berg et al., 1999). These studies lacked a sufficient control group, due to including control
participants with other pathologies, e.g., migraines (Boxerman et al., 2007) or not using any
control cohort (Gelisse et al., 2003; Lundberg et al., 1999).

Given neurocognitive differences among children with BECTS and normal controls and the
involvement of striatum in low and high order cognitive functions (MacDonald et al., 2014),
the question is whether sub-cortical morphometric alterations explain variations in cognition.
In fact, despite the various studies on neurodevelopmental etiology in BECTS, no research
study has assessed the underlying structural shape alterations and its relation with cognition.
Recent advancements in neuroimaging field have enabled subtle analysis of morphological
differences between children with left, right, or bilateral BECTS and healthy controls. In
this study, we use MR imaging and statistical morphological analysis to detect putamen
and caudate changes in children with left, right, or bilateral BECTS compared to age and
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gender matched healthy individuals. In addition, we investigate the association of sub-cortical
volumetric and shape differences with cognitive indices.

7.3 Methods

7.3.1 Participants

Demographic characteristics of participants are shown in Table 7.1. Forty-one patients with
BECTS (mean age 10.34 ± 1.73 years ; range 7.4 years–14 years ; 13 girls) were recruited
from CHU Sainte-Justine Montreal Children Hospital (N = 20) and Basel’s Children Hospital
(N = 21). For all epileptic participants the EEG analysis was performed to locate the seizure
focus. EEG characteristics of patients were according to the latest abnormal EEG. The
epileptic focus was located in the left hemisphere for 13 patients and in the right centro-
temporal areas for 18 patients. Nine children showed bilateral activation in both hemispheres.
For one subject the information about the side of epilepsy focus was not available.

Thirty-eight healthy children (mean age 11.18 ± 1.72 years ; range 8.1 year–14.8 years ; 13
girls) were included as healthy controls (N = 20 from CHU Sainte-Justine Montreal Children
Hospital andN = 18 from Basel’s Children Hospital). Exclusion criteria were any epileptiform
discharges on EEG or any personal or family history of epilepsy or developmental delay. All
participants and their parents gave written informed consent prior to study participation. The
ethics, scientific, and administrative committee of CHU Sainte-Justine Montreal Children
Hospital and Basel’s Children Hospital approved this study.

We created an age, gender, and IQ matched control cohort corresponding to each epileptic
group (i.e.,13 L-BECTS, 18 R-BECTS, 9 B-BECTS, 41 BECTS) and used these matched
control groups in all analysis.

Table 7.1 Demographic characteristics of participants.

NC BECTS

N 38 41
Age (years) 11.18±1.72 10.34±1.73
Gender (F/M) 13/25 13/28
Age at onset – 7.59±1.77
AED (yes/no) a – 26/15

a AED, antiepileptic drug(s).
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7.3.2 Neuropsychological tests

To test cognitive performance, all participants underwent a comprehensive neuropsycho-
logical examination. Intelligence was assessed with the Wechsler Intelligence Scale (WISC
IV (Wechsler, 2005)), which includes four scales : verbal comprehension index (VCI), per-
ceptual reasoning index (PRI), working memory index (WMI), and processing speed index
(PSI).

7.3.3 MRI acquisition

MR data from CHU Sainte-Justine Montreal Children Hospital were obtained on a 3.0-
T Philips Achieva (Philips Healthcare, Best, The Netherlands). The participants (N = 40)
underwent a T1-weighted structural scan (voxels = 1 mm isotropic, TR = 8.1 ms, TE = 3.7
ms, flip angle = 8◦, FOV = 248mm, slice thickness = 1mm, slices = 160, direction = sagittal,
in-plane resolution = 256× 256). Data from Basel’s Children Hospital were acquired using
a 3.0-T Siemens MagnetomVERIO (Siemens Healthcare, Erlangen, Germany) MRI system.
The imaging protocol of the participants (N = 39) included T1-weighted MRI scan (voxels
= 1 mm isotropic, TR = 2000 ms, TE = 3.37 ms, flip angle = 8◦, FOV = 256 mm, slice
thickness = 1 mm, slices = 176, direction = sagittal, in-plane resolution = 256× 256).

7.3.4 MRI Processing

Brain Extraction Tool (BET) (Smith et al., 2004) is used for skull stripping. We perfor-
med the standard preprocessing of intensity normalization, and histogram matching using
Medical Image Processing, Analysis, and Visualization tool (MIPAV version 1.0) 1. For his-
togram adaptation, we performed matching to the histogram of the first image in the da-
taset as reference. Putamen and caudate sub-cortical structures are automatically extracted
using FSL-FIRST segmentation tool from FMRI Software Library (FSL) (Patenaude et al.,
2011a). FIRST is a model-based tool, which uses a template created from manually seg-
mented images, with sub-cortical labels parameterized as surface meshes. A Bayesian Active
Appearance Model (AAM) is also utilized to define the boundary of each sub-cortical mesh
precisely (Patenaude et al., 2011a). Recent studies have shown that the accuracy of the
FIRST segmentation tool can reach up to 88% (Nugent et al., 2013). The output of the
FIRST segmentation framework is a 3D binary mask, that will later be converted to 3D
triangulated mesh model for volumetric and morphometry analysis.

1. http ://mipav.cit.nih.gov/
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7.3.5 Morphological analysis

Volumetric analysis For volumetric analysis, the sub-cortical structure’s volume in each
subject is computed by counting the number of voxels within the region of segmentation.
The volumetric differences between patients with BECTS and healthy controls are assessed
using a student t-test. Differences are considered statistically significant at p < 0.05.

Groupwise shape analysis Sub-cortical shape analysis is performed using a recently pro-
posed spectral-based statistical shape analysis framework for sub-cortical structures (Shakeri
et al., 2016c). The spectral-based method extracts smoothed 3D triangulated surface meshes
from segmented images, and establishes surface correspondences among the population of
surfaces. Mean curvature features are incorporated in the matching process, to improve the
accuracy of the resulting surface matching. Then, the group-wise shape analysis between two
study groups (i.e., epileptic and healthy controls) is performed by creating two mean shapes
as the geometric mean of all matched surfaces in each group, followed by a distance map
computation between these mean surfaces. The sub-cortical surface shape analysis between
children with BECTS and healthy controls are assessed using total intracranial volume as
covariate to compensate for head size differences across participants, as suggested by Styner
et al. (Styner et al., 2006a). Total intracranial volume is calculated using Freesurfer’s software
package (Fischl et al., 2002) by summing the volumes of gray matter, white matter, and CSF.
To verify for statistically significant shape differences, a non-parametric permutation testing
scheme is applied, followed by an FDR correction for multiple comparisons.

Sub-regional shape morphometry In addition to group-wise analysis of the entire struc-
ture, we propose to compute the subregional shape differences to a common template for each
participant. This will produce a representation of the local morphological information for each
individual, which could be used for further analysis, e.g. a study on correlation between struc-
tural morphology and cognition. Computing regional subdivisions are common in local shape
analysis studies (Styner et al., 2007). Most of the time these subdivisions are done manually
and based on landmarks, which is time consuming and not reproducible. Here, we first create
an average template mesh out of a separate group of 10 healthy individuals using the spectral
reference surface creation method suggested by Shakeri et al. (Shakeri et al., 2016c). Since we
are studying putamen and caudate structures (both left and right), we would need to create
four separate templates. Then, we compute three regional subdivisions on each template sur-
face and propagate the sub-regions to the structures of all the individuals in our dataset. The
three sub-regions are defined with equal size by drawing the planes orthogonal to the medial
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axis of the template. The sub-regions include the rostral (1st sub-region), medial dorsal (2nd
sub-region), and caudal (3rd sub-region) part of each structure. The motivation behind this
subdivision was that when we checked the sub-cortical local changes in the dataset, these
sub-regions typically showed distinct alterations across population. Once the regional sub-
divisions are defined on each surface, the mean distance from each mesh to the template is
computed per sub-region. The significant mean differences are used as a representation of
local shape deformation of structures in each sub-region.

7.3.6 Cognitive correlations

Structural volume and sub-regional shape differences were correlated with cognitive indices :
intelligence quotient (IQ), verbal comprehension index (VCI), perceptual reasoning index
(PRI), working memory index (WMI), and processing speed index (PSI). Pearson correlation
analysis was performed using standard statistical software (SPSS version 22, IBM, New York,
NY, U.S.A.), with significance threshold set to p < 0.05.

7.4 Results

7.4.1 Subject characteristics

The mean age at seizure onset in children with BECTS was 7.59 ± 1.77 years (range, 2.67–
11.40 years). No group differences in age, sex, or total brain volume were detected among the
L-BECTS, R-BECTS, B-BECTS, BECTS, and normal control (NC) groups. With regards to
combining participants from two sites (CHU Sainte-Justine Montreal Children Hospital and
Basel’s Children Hospital), we did not find any statistically significant differences between two
datasets by comparing the shape and volume of sub-cortical structures in healthy individuals.
In addition, we included a balanced number of individuals from each site in each cohort (L-
BECTS, R-BECTS, B-BECTS, BECTS, and NC) to eliminate the effect of using separate
scanners on our analysis, as previously suggested (Takao et al., 2014).

The neuropsychological results are shown in Table 7.2 with mean and standard deviation of
patients and healthy controls. The cognitive performances of epileptic patients and controls
were compared using an un-paired t-test with a significant threshold of p = 0.05. No signifi-
cant group differences were found between patients with BECTS and healthy subjects, with
the exception of working memory score (WMI) in children with right BECTS.
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Table 7.2 Neuropsychological results in epileptic patients and healthy controls. The values
are reported as Mean(std).

Group IQ VCI PRI WMI PSI

L-BECTS 105.1(18.9) 103.6(16.5) 111.8(16.2) 102.8(16.5) 101.1(16.8)
R-BECTS 99.8(12.5) 100.3(11.7) 102.1(14.7) 95.6(10.3) a 96.0(13.4)
B-BECTS 96.5(13.9) 94.0(9.7) 99.7(19.3) 100.4(11.1) 94.1(10.9)
BECTS 100.8(15.1) 99.9(13.3) 104.7(16.7) 99.1(12.9) 97.2(14.1)
NC 106.2(7.6) 104.3(10.3) 108.7(10.9) 103.8(8.8) 100.8(11.1)

a Significant difference (p=0.03) to normal controls.

7.4.2 Sub-cortical volumetric and shape analysis

Children with bilateral BECTS showed statistically significant volume reduction in right cau-
date compared to matched healthy controls (B-BECTS = 3556± 534mm, controls = 4069 ±
479mm, p = .048). No significant caudate volumetric changes were detected in other BECTS
group (See Table 1 in Appendix F). In addition, putamen volumetric analysis did not find any
significant differences between children with BECTS and matched healthy individuals (See
Table 2 in Appendix F). However, children with bilateral BECTS showed near significant
putaminal volumetric alterations (p = .07 in left putamen and p = .06 in right putamen).

Figures 7.1 and 7.2 show shape variations between children with BECTS and matched normal
controls for the putamen and caudate structures using spectral group-wise shape analysis.
Individuals with left BECTS (L-BECTS) showed a large area of significant outward local
deformity in left putamen, and small area of hypertrophy in the right caudate. Children with
bilateral BECTS (B-BECTS) showed inward local group differences in both left and right
putamen, as well as atrophy in the right caudate. The combined BECTS participant group
showed outward deformity in both left and right caudate. In order to further analyze the
significant local shape changes, new p-value maps were computed after FDR correction for
multiple comparisons. Results showed that the rostral part of the left putamen in L-BECTS
and the lateral caudal area of the right putamen in B-BECTS remained significant, as well
as the dorsal and caudal part of the right caudate for B-BECTS.

7.4.3 Relationship with cognitive outcomes

Association between sub-cortical volume and cognitive indices was investigated for each
group. The left caudate in the cohort containing all BECTS participants showed positive
correlation with both IQ (r = .35, p = .03) and PRI (r = .34, p = .03). No significant corre-
lations were found for caudate volume in the other groups. Also, investigating correlation
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Figure 7.1 Putamen group-wise shape analysis. The resulting vertex-to-vertex distance maps
are shown in lateral and medial views. The respective p-value maps are shown below distance
maps (best viewed in colour).
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Figure 7.2 Caudate group-wise shape analysis. The resulting vertex-to-vertex distance maps
are shown in lateral and medial views. The respective p-value maps are shown below distance
maps (best viewed in colour).
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between putamen volume and cognitive indices did not detect any significant link in either
BECTS participants or healthy individuals.

In order to find the correlation between structural local shape changes and cognition, first
sub-regional shape differences to a template were computed for each participant, as descri-
bed in Section 7.3.5. Then, the correlation between the sub-regional shape differences and
cognitive indices were computed per group as reported in Table 7.3 and Table 7.4. A strong
negative correlation was found between right putamen and VCI in the medial dorsal area of
R-BECTS. In addition, B-BECTS showed a strong association between caudal part of the
right caudate and WMI. Some moderate links also existed between left and right putamen
sub-regions and cognition in both R-BECTS and BECTS group, as well as between right
caudate and cognitive indices in L-BECTS.

7.5 Discussion

In this work we investigated the morphological alterations in BECTS’s sub-cortical structures
and their relation to cognitive indices. This study aimed to better understand the underlying
structure’s morphology potentially responsible for cognitive compensatory phenomenon in
BECTS, for the putamen and caudate in particular. Furthermore, we aimed at revealing the
role of the side of epileptic focus on the structure to cognition link in left vs. right vs. bilateral
BECTS.

In this study, children with B-BECTS showed statistically significant volume reduction in
right caudate. Positive correlation between the volume of the left caudate and cognitive
indices were found in the group containing all BECTS participants, which is consistent with
the volume reduction reported in Table 1 of the Supplementary materials and the inward
local deformity depicted in Figure 7.2. Meaning that the larger the caudate volume is in the
BECTS, the higher the cognitive performance will be.

Left putamen in L-BECTS showed significant shape alterations, as well as right putamen
and right caudate in B-BECTS. In children with R-BECTS and in the group including all
BECTS participants, negative correlation were found between sub-regional putamen shape
differences to a template and cognitive indices. Furthermore, participants with L-BECTS
and B-BECTS showed negative correlation between the posterior area of the caudate and
cognition. These results confirm that variations in putamen and caudate shape in BECTS
are associated with reduced cognitive performance.
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Table 7.3 Correlation between local putamen difference magnitude and neuropsychological
results. The values are Pearson correlations reported for left (L) and right (R) putamen’s
sub-regions.

Putamen region IQ VCI PRI WMI PSI

L R L R L R L R L R

Region 1
L-BECTS .25 .02 -.18 -.20 .33 .12 .41 .29 .29 .22
R-BECTS .06 -.12 .11 -.36 -.07 -.06 .05 -.47 .25 -.21
B-BECTS .23 .40 .27 .35 -.44 .08 -.39 -.62 -.06 -.14
BECTS .14 .15 -.05 -.11 -.13 .01 .09 -.05 .15 -.03
NC .29 .01 .21 -.02 -.01 .13 .37 .16 .05 -.24

Region 2
L-BECTS .17 .06 -.01 -.03 .06 .22 .18 .05 .22 .19
R-BECTS -.36 -.56 a -.51 a -.70 b -.57 a -.43 -.54 a -.3 .01 -.06
B-BECTS -.38 .20 .18 .31 -.56 .52 -.63 .23 -.57 .41
BECTS -.17 -.09 -.21 -.27 -.41 a -.07 -.29 -.11 -.04 .04
NC -.27 .09 -.39 .11 .06 -16 .17 .14 -.31 .04

Region 3
L-BECTS .18 .25 .07 -.03 -.07 .15 .52 .57 .26 .40
R-BECTS -.35 -.04 -.57 a -.14 -.46 -.02 -.09 -.33 -.21 -.15
B-BECTS -.15 .15 .20 .49 -.08 .51 -.37 -.31 -.25 .02
BECTS -.01 .13 -.09 -.11 -.17 .02 -.14 .05 -.01 .03
NC -.05 -.06 .12 .06 -.21 -.20 .26 -.08 -.26 .03

a P − values < 0.05.
b P − values < 0.005.
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Table 7.4 Correlation between local caudate difference magnitude and neuropsychological
results. The values are pearson correlations reported for left (L) and right (R) caudate’s
sub-regions.

Caudate region IQ VCI PRI WMI PSI

L R L R L R L R L R

Region 1
L-BECTS -.12 .02 -.60 -.20 -.36 -.18 .05 .14 .10 .18
R-BECTS .25 .19 .06 .19 .09 .1 .13 .04 -.08 -.33
B-BECTS -.15 .07 -.01 -.08 .35 .01 -.29 .13 -.12 .24
BECTS .09 .14 -.04 .08 .09 .17 .14 .25 .01 -.01
NC .05 -.09 -.02 -.08 -.04 -.11 .32 .16 .02 -.09
Region 2
L-BECTS .10 -.20 .18 -.39 .14 .08 .02 -.08 -.21 -.18
R-BECTS .33 -.06 .31 .05 .19 -.14 .23 -.12 .03 -.11
B-BECTS .51 .10 .47 -.23 .19 .22 -.21 -.12 .31 .09
BECTS .23 .03 .14 -.07 .21 .16 .24 .18 .07 .01
NC -.12 -.12 -.04 -.08 -.07 -.20 .05 .20 -.13 -.10
Region 3
L-BECTS .03 -.35 .05 -.57 a -.20 -.05 .08 -.24 .10 -.35
R-BECTS .25 .10 .09 .07 .18 .06 .06 -.07 .24 -.18
B-BECTS .25 -.35 .23 .12 .07 -.44 -.01 -.66 a .26 -.58
BECTS .18 -.01 .09 .06 .05 .06 .10 .04 .17 -.14
NC -.06 -.14 .22 -.27 -.27 -.01 -.08 .02 -.13 .08

a P − values < 0.05.
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7.5.1 Morphology analysis

Sub-cortical alterations have been reported in previous studies. Lin et al. (Lin et al., 2012)
found putamen volume and shape hypertrophy, as well as caudate shape enlargement in
BECTS. They reported that the putamen volume enlargement was associated with better
cognitive performance compared to controls. In a recent longitudinal study on putamen
structure, Garcia-Ramos et al. (Garcia-Ramos et al., 2015a) reported that children with
BECTS demonstrated atypical volumetric changes in the putamen. In another study on sub-
cortical structures, Kim et al. (Kim et al., 2015) found hypertrophy in putamen volume
in BECTS participants. All these studies used patients with newly diagnosed BECTS and
combined participants with different side of the epileptic focus, while the current study used
participants with longer epilepsy duration (7 years) and aimed at revealing the role of epileptic
focus in structural volume and shape alterations. Our experimental analysis found caudate
volume reduction in B-BECTS, while no significant putamen volumetric differences were
detected between left, right, bilateral-BECTS and controls. On the other hand, group-wise
spectral-based shape analysis found subtle local shape differences, specially in left putamen of
L-BECTS and right putamen and right caudate of B-BECTS. This meant that the differences
in sub-cortical structure across subjects were focal and not distributed throughout the whole
volume, thus the global volume measure was not able to detect those differences. These
results showed the importance of local shape analysis based methods compared to the global
volumetric tests for revealing subtle group differences in BECTS.

7.5.2 Correlation analysis

Volumetric analyses of the left caudate nucleus in all BECTS was positively associated with
total IQ. This result is similar to MacDonald et al.’s study (MacDonald et al., 2014) of a
large sample of neurotypical children, confirming the general role of striatum in global cogni-
tion. In a further analysis, the distance of each subject to a template was calculated and the
correlations between local shape variations of three sub-regions and cognitive indices were
computed. Negative correlations were found in putamen for the R-BECTS and the combined
BECTS group, as well as the negative association in caudate for L-BECTS and B-BECTS
for the dorsal region of the right caudate, supporting existing studies on caudate cognitive
specific involvement (Robinson et al., 2012). As expected, the negative association showed
that the more distinct the subjects were from the template, the lower the cognitive skills were,
pointing to the fact that both reduction and enlargement in local volumes may interfere with
cognitive performance. We found specific results according to the side of epileptic focus. This
reveals the importance of performing separate analyses for each epilepsy focus in BECTS.
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Nevertheless, the cognitive performance alterations associated with shape variations in the
BECTS population did not respect the right/left hemispheric cognition specialization typi-
cally found in neurotypical individuals. This may further support studies revealing abnormal
lateralization of cognitive functions in this population (Datta et al., 2013).

7.5.3 Limitations of the study

This study was a cross-sectional study with a number of limitations. The number of partici-
pants of the B-BECTS (nine cases) was limited. This might lead to not being able to handle
inter-subject variability in this group. However, the total amount of participants (41 BECTS
and 38 NC) is enviable in this study.

7.6 Conclusions

In this study, we assessed the underlying structural morphology potentially involved in the
cognitive compensatory mechanisms in BECTS. In addition, we investigated the role of the
localization of the epilepsy foci in correlation between structural morphology and cognitive
indices in left vs. right vs. bilateral BECTS. Experiments revealed that shape alterations exist
in left putamen of left BECTS and right putamen and caudate of bilateral BECTS. Corre-
lation study showed negative correlation between cognition and sub-regional shape changes.
Our results suggest possible altered brain maturation in this population and confirm that
subtle brain morphological differences in BECTS are involved in their cognitive functioning.
One important future direction is to perform a longitudinal follow-up on these children to
investigate if the neurodevelopmental alterations related to lateralization persist over years
and how these neurodevelopmental changes affect cognitive impairments in BECTS.
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CHAPTER 8 GENERAL DISCUSSION

The general methodology in this thesis established three research objectives that led to several
original tools and frameworks for sub-cortical brain morphology analysis in benign epilepsy
with centrotemporal spikes (BECTS). Firstly, an automated framework was developed in
order to segment sub-cortical structures on a group of MR images, secondly, a new approach
for investigating statistical groupwise shape analysis on sub-cortical structures was designed,
and thirdly, a clinical study on BECTS revealed morphological alterations in epileptic chil-
dren with left, right, or bilateral hemispheric focus and its association with cognition. The
development of these new tools will be discussed in this chapter.

Our proposed coregistration-cosegmentation method can benefit from segmentation priors
(probability maps) and produce results which are close to those generated using ground truth.
In our method, the segmentation results are a by-product of the co-registration, where context
labels are used to improve registration performance. We have shown that, by using accurate
segmentation priors (e.g., CNN based segmentation maps) we can obtain such results close to
the ground truth. More importantly, we also showed that by using less accurate priors (e.g.,
those learned using RF), we also obtain good results after coregistration-cosegmentation,
especially in terms of Hausdorff and contour mean distances. This is due to our formulation,
which includes a novel energy term that enables any prior to help during registration. Our
proposed method may be used in combination with weak priors learned from weak annota-
tions from non-radiologists, requiring less time to produce sub-optimal segmentation masks,
yet delivering good results. Our further experiments have demonstrated that the proposed
CNN-based coregistration-cosegmentation method produces better results compared to the
state-of-the-art i.e., Freesurfer (Fischl et al., 2002) and FSL-FIRST (Patenaude et al., 2011a),
for three sub-cortical structures. Freesurfer has shown higher segmentation accuracy on cau-
date structure, which might be due to the limitation of the designed 2D CNN in detecting
the fine tail of the caudate structure.

In the developed segmentation method in Chapter 5, we apply two supervised classifiers (CNN
and RF) to obtain prior semantic segmentations. Both of these approaches require manual
annotations on a sub-set of a dataset to compute segmentation priors on the remaining
volumes in the set. An extension to the current method would be to employ an unsupervised
clustering method to extract segmentation priors. An approach starting with a bounding box
around a structure, and maybe a user input drawing a line inside the structure would guide
the unsupervised clustering approach toward the more accurate segmentation priors.
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The proposed coregistration-cosegmentation method has considerable advantages over stan-
dard multi-atlas segmentation methods. Given a set of images, we compute the semantic
segmentation probability maps once, and then segment all the volumes simultaneously. The-
refore, if numerous ground-truth masks were to be used for the registration step, our method
benefits from substantial computational gains, as complexity depends only on the number of
input volumes we want to segment. Another difference is that, in classical multi-atlas seg-
mentation approaches only appearance features are used to compute the deformation fields
during the registration process, while no prior on the target image is available. We exploit
more sophisticated features on all volumes to drive the co-registration process. These show
that our novel method would be an important improvement to the current available automatic
multi-atlas brain segmentation tools for MR images.

The developed coregistration-cosegmentation method applies the majority voting strategy
to combine the semantic priors and compute the final segmentation on each MR volume.
The accuracy of the proposed method could be further improved by exploiting a more so-
phisticated and intelligent label fusion approach. For instance, a strategy similar to the joint
label fusion technique (Wang et al., 2013) that explicitly considers correlations among atlases
would be effective.

Another possible improvement on the current segmentation method would be to repeat the
whole coregistration-cosegmentation process multiple times. At each iteration, the initial
semantic priors are replaced by the final segmentation of all images that have been created in
the previous run. This way, every coregistration-cosegmentation run employs more accurate
prior information that could lead to segmentations of higher quality.

The segmented sub-cortical structures on MR images are extracted as 3D surface meshes in
our shape analysis framework. Then, the smoothed surfaces are matched using a spectral-
based algorithm across a population of healthy and pathological meshes. The significant local
group differences is finally produced as the output of the groupwise shape analysis framework.
Our method incorporates mean curvature features in the spectral matching graph, since it
intrinsically describes the local shape information of a 3D surface. Experimental analysis
revealed that embedding this additional feature significantly improves the spectral surface
matching accuracy. However, incorporating curvature features had more relevance to evaluate
complex structures, such as hippocampus shapes rather than simple ones, like putamen. As an
application, the features extracted from hippocampus surfaces matched by spectral method
used in classification of Alzheimer’s disease, which led to promising results.

A comparison of the proposed spectral-based shape analysis method with available group-
wise shape analysis approaches (e.g., SPHARM-PDM (Styner et al., 2006a)) showed that
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the proposed framework has considerable agreement with state-of-the-art methods, while
being faster. This speed advantage becomes more noticeable for more complex structures,
such as hippocampus shapes, with a fourfold decrease in computation time compared to
SPHARM-PDM. These results suggest that the developed spectral-based shape analysis fra-
mework could allow for quantitative assessment of sub-cortical variations, associated with a
neurological disorder, which leads to the better understanding of a pathology.

One limitation of the proposed shape analysis framework is that the accuracy of the seg-
mentation process and the quality of the extracted 3D surface meshes could directly impact
the final shape analysis results. Therefore, one possible future extension of the proposed me-
thodology would be to combine the proposed segmentation and shape analysis framework,
where 3D surface meshes are created during the segmentation process. This can be done
by modelling the anatomical boundaries of structures using statistical shape models, and
incorporating the anatomical shape consistency component as an additional term in the re-
gistration cost function. Therefore, both the surface extraction and refinement are performed
during the segmentation process, with respect to the surface meshes of all other images in
the set.

The morphological alterations in BECTS’s brain have been investigated using the proposed
groupwise sub-cortical shape analysis framework. Also, the association between the detected
alterations and neuropsychological tests have been studied in depth. Previous studies have
reported sub-cortical volumetric (Lin et al., 2012; Garcia-Ramos et al., 2015a; Kim et al.,
2015) and shape alterations (Lin et al., 2012) in BECTS compared to controls. However, all
these available studies used newly onset BECTS and combined participants with different
sides of the epileptic focus, whereas our study used participants with longer epilepsy duration
and aimed at revealing the role of epileptic focus in sub-cortical volume and shape alterations.

According to our experiments, significant volume reduction was detected in the right cau-
date of children with bilateral BECTS. However, no significant caudate volumetric changes
were detected in other groups. Putamen volumetric analysis did not find any statistically
significant differences between left, right, bilateral-BECTS and controls. On the other hand,
spectral-based shape analysis showed significant shape alterations of left putamen in left
BECTS, as well as significant local deformity of both right putamen and right caudate in bi-
lateral BECTS. These analysis showed that the structural alterations in BECTS were spread
throughout the surface, such that they were not detectable by global volumetric measures.
This reveals the importance of local shape analysis methods compared to global volumetric
tests in capturing slight morphological alterations in sub-cortical structures.

In another analysis, the distance of each subject to a surface template was calculated and
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correlations between sub-regional shape variations and cognition ware computed. Negative
correlations were detected for the right BECTS and the combined BECTS group in putamen
structure. In addition, the caudate of children with bilateral and left BECTS showed negative
association with cognitive indices. These results were expected, showing the fact that the
further away the participants’ sub-cortical structures were from the template, the lower the
cognitive skills were.

Here, we divided each structure into three sub-regions and computed the mean shape dis-
tances to a template. This approach provides the three mean distance value for each sub-
region that were used in a correlation analysis. A more precise approach would be to compute
distances to the template on all vertices of all structures, and then compute the correlation
with cognition in a vertexwise manner. In this way, we could visualize the correlation between
local shape alterations and cognitive indices in 3D sub-cortical structures.

In the current clinical cross-sectional study, we used a limited number of participants per
group with epilepsy spanning of seven years. It would be interesting to increase patients
recruitment in order to create separate groups for each age range. This would provide a better
understanding of the neurodevelopmental alterations in children with BECTS with respect
to normal aging in controls. The present study can be further extended by performing a
longitudinal follow-up on the available cohort to verify if the neuroanatomical alterations
and their correlation with cognition will remain over the years.

Although it is preferred to recruit all MRI scans from one site, in our clinical study we combi-
ned the MR scans from two separate sites (CHU Sainte-Justine Montreal Children Hospital
and Basel’s Children Hospital) to increase the statistical power on conducting evaluations
of neuroanatomical alterations. Multi-center studies could introduce a between-center va-
riance component, which might complicates the interpretation of the results. To eliminate
the multi-scanner effect, we balanced the ratio of the cases to controls across the two scan-
ners. In addition, we verified the existence of any sub-cortical shape or volume differences
between normal subjects scanned by the two scanners, where no significant differences were
detected.

From a global perspective, the new methods proposed in this thesis actually close a loop bet-
ween a) the automatic segmentation tool developed in Chapter 5, which defines the boundary
of sub-cortical structures in a prior-based coregistration and cosegmentation process, b) the
statistical groupwise shape analysis tool, developed in Chapter 6, that extracts 3D surface
meshes from binary segmentation maps and captures local shape alterations in sub-cortical
regions, and c) the clinical study, presented in Chapter 7, that revealed the association bet-
ween BECTS’s brain morphological alterations and cognitive tests with respect to the side
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of seizure focus.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

This thesis addresses the general problem of sub-cortical morphological analysis in children
with benign epilepsy with centrotemporal spikes (BECTS). The literature review presented
in Chapter 3 highlighted the challenges of automatic segmentation and morphological ana-
lysis techniques, and also revealed the current limitations of the state-of-the-art. During this
thesis, a set of tools were developed in order to analyze the sub-cortical brain morphome-
try in BECTS participants. More precisely, the methodology in Chapter 5 proposed a new
automated framework for segmenting sub-cortical structures in a coregistration and coseg-
mentation process based on learned priors. In a second step presented in Chapter 6, a new
spectral-based statistical groupwise morphological analysis approach was developed, that en-
abled capturing subtle local shape variations across two populations of surface meshes. In a
third step in Chapter 7, a clinical study assessed the association between sub-cortical mor-
phological alterations in BECTS and cognitive functions with respect to the side of seizure
focus. The main findings and contributions from these research objectives were discussed in
Chapter 8.

The next sections mention the contributions of the thesis, current limitations, and main
recommendations for future work.

9.1 Advancement of knowledge

In this thesis we propose several contributions for the purpose of brain morphological analysis
in BECTS. The first one (presented in Chapter 5) incorporates prior information to the stan-
dard graph based registration process. This approach demonstrates that semantic and context
specific information can boost the registration algorithms by further improving the accuracy
of the results. Our proposed approach shows how prior information about the anatomical
structures of a given set of images, can be integrated within the energy function of a discrete
population registration algorithm. We seek at performing joint registration-segmentation of
the input images, while exploiting context information provided by pre-trained classifiers. We
performed our experiments using both reliable (learned by Convolutional Neural Networks)
and weak (learned by random forests) priors. Our analysis showed that accurate segmen-
tation priors can produce close results to the ground truth. More importantly, we showed
that less accurate priors would also lead to acceptable results after performing coregistration-
cosegmentation process. The second contribution (presented in Chapter 6), proposed a novel
groupwise morphological framework with its specific way of surface extraction, smoothing,
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matching, and statistical analysis, and produced comparable results to state-of-the-art al-
gorithms, while being faster. This work was the first one that integrated curvature-based
spectral matching in to a groupwise subcortical shape analysis pipeline. Experimental ana-
lysis on real clinical datasets showed that the extracted group differences were concordant
with the findings in other studies. The third contribution (discussed in Chapter 7) presents
a clinical study on investigating morphological alterations and their relation with cognitive
indices in BECTS. This study aimed to better understand the structural morphology that
could potentially be responsible for cognitive compensatory phenomenon in BECTS, the pu-
tamen and caudate in particular. Furthermore, the experiments revealed the role of structural
epilepsy lateralization with respect to cognition in left vs. right vs. bilateral BECTS.

9.2 Limits and constraints

Notwithstanding the advantages of each individual contribution with their identified extents,
there are general limitations to this work.

In our coregistration and cosegmentation framework, we approximated the high-order pro-
blem through a pairwise formulation. However, simultaneously modeling high-order interac-
tions and recovering all deformations with one-shot optimization would be the ideal approach
for this problem. In addition, our framework uses prior probability maps in the energy for-
mulation, and according to our experiments using more accurate classifiers will improve the
registration results. However, it is preferable to further boost the registration performance,
in order to get similar results to the ground truth when either reliable or weak priors are
utilized.

As mentioned in the thesis, our groupwise shape analysis framework is based on spectral
representation of surfaces. The spectral method assumes that the meshes being matched
represent complete structures, that is the topology is equivalent across surfaces. Therefore,
the proposed tool is not currently adopted to handle large structural deformations caused by
severe neurological disorders, which may change the topology of a surface.

The presented clinical study on BECTS was a cross-sectional study with a number of limita-
tions. For instance, the number of participants per group was limited, specially the number
of bilateral BECTS (nine individuals). This might lead to an under-representation of inter-
subject variability. However, the total amount of participants (41 BECTS and 38 NC) was
enviable in this work.



101

9.3 Recommendations

To conclude this work, we present the major recommendations, which give the main lines
and main research questions for future work.

Recommendation 1 : An interesting future direction is to use high-order graphs and in-
ference methods adapted to our segmentation problem. Although the power of expression of
graphical models grows together with their complexity, different types of high-order models
can be efficiently optimized (Komodakis and Paragios, 2009; Dokania and Kumar, 2015).
In Section D.2 we formulate prior based coregistration and cosegmentation as a high-order
problem, which is then approximated through a pairwise formulation. More accurate results
could be obtained if proper high-order inference adapted to the particular type of energy
would be used. Accordingly, dual decomposition methods (Komodakis and Paragios, 2009),
allowing efficient one-shot optimization could be considered as an alternative solution.

Recommendation 2 : Using accurate classifiers in energy function efficiently improves the
registration results. This raises a number of questions. How can prior information be used to
further enhance registration accuracy ? Can we benefit from the results of the coregistration-
cosegmentation process to boost the classifiers used to create the initial priors ? One possible
solution might be to introduce an additional term in the energy function of the deformable
registration . This term could penalize the deformations that lead to disagreement between
the estimated segmentation (priors) and the warped segmentation mask (the results of the
coregistration). In this way the circuit between coregistration and label fusion will be closed,
since it allows segmentation to influence the registration step.

Recommendation 3 : The spectral method used in the groupwise shape analysis framework
in this thesis did not address the problem of using severely deformed surfaces with significant
changes of the organ topology. How can spectral matching method handle these kinds of
data ? One simple solution is to take advantage of user interactions to provide additional
information for matching surfaces. For instance, a user could indicate the approximate pairs
of corresponding points. The computation of eigenmodes could take into consideration such
user inputs.

Recommendation 4 : The detected morphological variations in subcortical structures could
be used for classifying unseen MR examinations into healthy and pathological BECTS in-
dividuals. For instance, the significant vertex ratio could be computed in different regional
subdivisions between each surface and a reference mesh. Then, the computed significant ver-
tex ratios along with other global features, e.g., the total surface volume, would be used to
define a feature descriptor. A classifier, such as a Support Vector Machine (SVM), could be
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designed to define the decision boundaries distinguishing healthy subjects from pathological
patients. However, this kind of framework requires incorporating larger datasets of BECTS
participants to achieve high and stable classification accuracy.

Recommendation 5 : One important future direction is to perform a longitudinal follow-
up on these BECTS participants to investigate whether the neurodevelopmental alterations
related to epilepsy lateralization persist over years. In addition, a longitudinal study could
reveal that how sub-cortical morphological changes affect cognitive functions in children with
BECTS.
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Presentation
This appendix presents the article "Sub-cortical brain structure segmentation using F-CNN’s"
(Shakeri et al., 2016b) published in 13th IEEE International Symposium on Biomedical Ima-
ging, ISBI 2016, held in Prague, Czech Republic, in April 2016. The objective of this article
is to present an automatic sub-cortical segmentation algorithm using Fully Convolutional
Neural Networks and Markov Random Field (MRF).

abstract
In this paper we propose a deep learning approach for segmenting sub-cortical structures
of the human brain in Magnetic Resonance (MR) image data. We draw inspiration from a
state-of-the-art Fully-Convolutional Neural Network (F-CNN) architecture for semantic seg-
mentation of objects in natural images, and adapt it to our task. Unlike previous CNN-based
methods that operate on image patches, our model is applied on a full blown 2D image, wi-
thout any alignment or registration steps at testing time. We further improve segmentation
results by interpreting the CNN output as potentials of a Markov Random Field (MRF),
whose topology corresponds to a volumetric grid. Alpha-expansion is used to perform ap-
proximate inference imposing spatial volumetric homogeneity to the CNN priors. We compare
the performance of the proposed pipeline with a similar system using Random Forest-based
priors, as well as state-of-art segmentation algorithms, and show promising results on two
different brain MRI datasets.

keywords Convolutional neural networks, semantic segmentation, Markov Random Fields,
sub-cortical structures, Magnetic Resonance Imaging

A.1 Introduction

Image segmentation is a fundamental process in several medical applications. Diagnosis, treat-
ment, planning and monitoring, as well as pathology characterization, benefit from accurate
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segmentation. In this paper we are interested in brain sub-cortical structures located at the
frontostriatal system. Previous studies have shown the involvement of the frontostriatal struc-
tures in different neurodegenerative and neuropsychiatric disorders, including schizophrenia,
Alzheimer’s disease, attention deficit, and subtypes of epilepsy (Chudasama and Robbins,
2006). Segmenting these parts of the brain enables a physician to extract various volumetric
and morphological indicators, facilitating the quantitative analysis and characterization of
several neurological diseases and their evolution.

In the past few years, deep learning techniques, and particularly Convolutional Neural Net-
works (CNNs), have rapidly become the tool of choice for tackling challenging computer
vision tasks. CNNs were popularized by Lecun, after delivering state-of-art results on hand-
written digit recognition (LeCun et al., 1998). However, they fell out of favor in the following
years, mostly due to hardware and training data limitations. Nowadays, the availability of
large-scale datasets (e.g. ImageNet), powerful GPUs and appropriate software libraries, have
rekindled the interest in deep learning and have made it possible to harness their power.
Krizhevsky et al. (Krizhevsky et al., 2012b) published results demonstrating clear super-
iority of deep architectures over hand-crafted features or shallow networks, for the task of
image classification. Since then, CNNs have helped set new performance records for many
other tasks ; object detection, texture recognition and object semantic segmentation just to
name a few.

Our work is similar in spirit to (Prasoon et al., 2013), but with some notable differences.
In (Prasoon et al., 2013) the authors train one CNN for each of the three orthogonal views
of MRI scans, for knee cartilage segmentation, with the loss being computed on the conca-
tenated outputs of the three networks. The inputs to each CNN are 28 × 28 image patches
and the output is a softmax probability of the central pixel belonging to the tibial articu-
lar cartilage. In contrast, our method operates on full 2D image slices, exploiting context
information to accurately segment regions of interest in the brain. In addition, we use fully
convolutional CNNs (Long et al., 2015) to construct dense segmentation maps for the whole
image, instead of classifying individual patches. Furthermore, our method handles multiple
class labels instead of delivering a foreground-background segmentation, and it does that
efficiently, performing a single forward pass in 5ms.

CNNs are characterized by large receptive fields that allow us to exploit context information
across the spatial plane. Processing 2D slices individually, however, means that we remain
agnostic to 3D context which is important, since we are dealing with volumetric data. The ob-
vious approach of operating directly on the 3D volume instead of 2D slices, would drastically
reduce the amount of data available for training, making our system prone to overfitting,
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while increasing its computational requirements. Alternatively, we construct a Markov Ran-
dom Field on top of the CNN output in order to impose volumetric homogeneity to the final
results. The CNN scores are considered as unary potentials of a multi-label energy minimi-
zation problem, where spatial homogeneity is propagated through the pair-wise relations of
a 6-neighborhood grid. For inference we choose the popular alpha-expansion technique that
leads to guaranteed optimality bounds for the type of energies we define (Boykov et al., 2001).

A.2 Using CNNs for Semantic Segmentation

Our network is inspired by the Deeplab architecture that was recently proposed for semantic
segmentation of objects (Chen et al., 2014). Due to limited space, we refer the reader to (Chen
et al., 2014) for details. One obvious and straightforward choice for adapting the Deeplab
network to our task, would be to simply fine-tune the last three convolutional layers that
replace their fully connected counterparts in the VGG-16 network, while initializing the rest
of the weights to the VGG-16 values. This is a common approach when adapting an already
existing architecture to a new task, but given the very different nature of natural RGB images
and MR image data (RGB vs. grayscale, varying vs. black background), we decided to train
a fully convolutional network from scratch.

Training a deep network from scratch presents us with some challenges. Medical image da-
tasets tend to be smaller than natural image datasets, and segmentation annotations are
generally hard to obtain. In our case, we only have a few 3D scans at our disposal, which
increases the risk of overfitting. In addition, the repeated pooling and sub-sampling steps
that are applied in the input images as it flows through a CNN network, decrease the output
resolution, making it difficult to detect and segment finer structures in the human brain.
To address these challenges, we make a series of design choices for our network : first, we
opt for a shallower network, composed of five pairs of convolutional/max pooling layers. We
sub-sample the input only for the first two max-pooling layers, and keep a stride of 1 for the
remaining layers, introducing holes, as in (Chen et al., 2014). This allows us to keep increasing
the effective receptive field of filters, without further reducing the resolution of the output
response maps. For a 256× 256 input image, the total sub-sampling factor of the network is
4, resulting in a 64 × 64 × L array, where L is the number of class labels. A 1−pixel stride
is used for all convolutional layers and 0.5 activation probability for all dropout layers. The
complete list of layers and important parameters is given in Table A.1. At test time, a 2D
image is fed to the network and the output is a three-dimensional array of probability maps
(one for each class), obtained via a softmax operation. To obtain a brain segmentation at this
stage, we simply resize the output to the input image dimensions using bilinear interpolation
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and assign at each pixel the label with the highest probability. However, we still need to
impose volumetric homogeneity to the solution. We propose to do it using Markov Random
Fields.

A.2.1 Multi-label segmentation using CNN-based priors

For every slice of a 3D image, the output of the proposed CNN is a softmax map that indicates
the probability of every pixel to be part of a given brain structure l ∈ L (label). We consider
the volume PCNN

i (l) : L → [0, 1] formed by the stacked CNN output slices, as a prior of the
brain 3D structures, where i indicated a voxel from the original image.

Let G = 〈V , E〉 be a graph representing a Markov Random Field, where nodes in V are
variables (voxels) and E is a standard 6-neighborhood system defining a 3D grid. Variables
i ∈ V can take labels li from a labelspace L. A labeling S = {li | i ∈ V} assigns one label to
every variable. We define the energy E(S) which consists of unary potentials Vi and pair-wise
potentials Vij such that it is minimum when S corresponds to the best possible labeling.

Unary terms are defined as Vi(li) = − log(PCNN
i (li)), and they assign low energy to high

probability values. Pair-wise terms encode the spatial homogeneity constraint by simply
encouraging neighbor variables to take the same semantic label. In order to align the seg-
mentation boundaries with intensity edges, we made this term inversely proportional to the
difference of the intensity Ii and Ij associated to the given voxels. The pair-wise formulation
is Vi,j(li, lj) = wij.[li 6= lj] where wij = exp

(
− |(Ii−Ij)|

2

2σ2

)
. Finally, the energy minimization

problem is defined as :

S∗ = argminE(S) = argmin
∑
i∈V

Vi(li) + λ
∑

(i,j)∈E
Vi,j(li, lj). (A.1)

S∗ represents the optimal label assignment. Note that this energy is a metric in the space of
labels L ; thus, it is guaranteed that using alpha-expansion technique we can find a solution
Ŝ whose energy lies within a factor of 2 with respect to the optimal energy (i.e. E(Ŝ) ≤
2.E(S∗)). Alpha-expansion is a well known move-making technique to perform approximate
inference using graph cuts, that has shown to be accurate in a broad range of vision problems.
We refer the reader to (Boykov et al., 2001) for a complete discussion on energy minimization
using alpha-expansion.
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Table A.1 Layers used in our architecture. All convolutional layers have a stride of one pixel ;
a hole stride of "1" means that we introduce no holes.

Block conv kernel # filters hole stride pool kernel pool stride dropout
1 7×7 64 1 3×3 2 no
2 5×5 128 1 3×3 2 no
3 3×3 256 2 3×3 1 yes
4 3×3 512 2 3×3 1 yes
5 3×3 512 2 3×3 1 yes
6 4×4 1024 4 no pooling yes
7 1×1 39 1 no pooling no

Contour Mean Distance (CMD) Hausdorff DistanceDICE

Figure A.1 Average Dice coefficient, Hausdorff distance, and contour mean distance on eight
subcortical structures of IBSR dataset. The proposed CNN-based method outperforms the
RF-based approach (better viewed in color and magnified).

A.3 Experiments and Discussion

We used the proposed method to segment a group of sub-cortical structures located at the
frontostriatal network, including thalamus, caudate, putamen and pallidum. We evaluated
our approach on two brain MRI datasets.

The first one is a publicly available dataset provided by the Internet Brain Segmentation
Repository (IBSR) (Rohlfing, 2012a). It contains 18 labeled 3D T1-weighted MR scans with
slice thickness of around 1.3 mm. In this work we use the subset of 8 primarily subcortical
labels, including left and right thalamus, caudate, putamen, and pallidum. The second dataset
is obtained from a Rolandic Epilepsy (RE) study, including 17 children with epilepsy and 18
matched healthy individuals. For each participant, T1-weighted magnetic resonance images
(MRI) were acquired with a 3 T scanner (Philips Acheiva) with an in-plane resolution of
256× 256 and slice thickness of 1 mm. The left and right putamen structures were manually
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0.2
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Figure A.2 The average Dice coefficient, Hausdorff distance, and contour mean distance on
left and right putamen structure of RE dataset. The proposed CNN-based method generates
more accurate segmentation results compared to the RF-based approach (better viewed in
color and magnified).

annotated by an experienced user. For both datasets, we process volumes slice by slice, after
resizing them to 256× 256 pixels. We treat these 2D slices as individual grayscale images to
train our CNN.

In the first experiment, we compare the performance of our segmentation method using CNN
priors, with an approach based on Random Forest priors, where the same MRF refinement is
applied. The RF-based per-voxel likelihoods are computed in the same way as (Alchatzidis
et al., 2014). Then, the RF probability maps are considered as the unary potentials of a
Markov Random Field and alpha-expansion is used to compute the most likely label for
each voxel, as explained in Section A.2.1. Figure A.1 and Figure A.2 show the average Dice
coefficient, Hausdorff distance, and contour mean distance between output segmentations and
the ground truth for different structures. These results show that the CNN-based approach
achieves higher Dice compared to RF-based method, while producing lower Hausdorff and
contour mean distance.

In the second experiment, we compare the accuracy of our proposed method with two pu-
blicly available state-of-the-art automatic segmentation toolboxes, Freesurfer (Fischl et al.,
2002), and FSL-FIRST (Patenaude et al., 2011a). In Table A.2, we report the average Dice
coefficient for the left and right structures ; these results show that our method provides bet-
ter segmentations compared to the state-of-the-art for three sub-cortical structures in both
IBSR and RE dataset. However, Freesurfer results in better segmentation for caudate in the
IBSR dataset which could be attributed to the limitation of CNN in capturing thin tail areas
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of the caudate structures. In Figure A.3 we show qualitative results.

A.3.1 CNN Training and Evaluation Details

The input to our network is a single 2D slice from a 3D MRI scan, along with the corres-
ponding label map. We apply data augmentation to avoid overfitting : we use horizontally
flipped and translated versions of the input images by 5, 10, 15, 20 pixels, across the x/y
axes. Other transformations, such as rotation, could be considered as well. The MR image
data are centered and the background always takes zero values, so we do not perform mean
image subtraction as is usually the case.

In the case of IBSR, we split the available data into three sets. Each time, we use two of the
sets as training data (approximately 100K training samples) and the third set as test data.
One of the training data volumes is left out and used as validation data. Similarly, we split
RE into two subsets of equal size, using one for training and one for testing, each time. We
train on both datasets for 35 epochs starting with a learning rate of 0.01 and dropping it at
a logarithmic rate until 0.0001. For training, we use standard SGD with a momentum of 0.9
and a softmax loss. For all our experiments we used MATLAB and the deep learning library
MatConvNet (Vedaldi and Lenc, 2014). Code, computed probability maps, and more results
can be found at https://github.com/tsogkas/brainseg.

We also experimented with CNNs trained on 2D slices from the other two views (sagittal and
coronal) but the resulting models performed poorly. The problem is rooted in the inherent
symmetry of some brain structures and the fact that the CNN is evaluated on individual
slices, ignoring 3D structure. For instance, when processing slices across sagittal view, the
right and left putamen appear at roughly the same positions in the image. They are also very
similar in terms of shape and appearance, which fools the system into assigning the same
label to both regions. This simple example demonstrates the need for richer priors that take
into account the full volume structure to assign class labels.

A.4 Conclusion

In this paper, we proposed a deep learning framework for segmenting frontostriatal sub-
cortical structures in MR images of the human brain. We trained a fully convolutional neural
network for segmentation of 2D slices and treated the output probability maps as a proxy
for the respective voxel likelihoods. We further improved segmentation results by using the
CNN outputs as potentials of a Markov Random Field (MRF) to impose spatial volumetric
homogeneity. Our experiments show that the proposed method outperforms approaches based

https://github.com/tsogkas/brainseg
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Figure A.3 2D slice segmentation (IBSR). Left : Groundtruth. Middle : RF-based results.
Right : CNN-based results.

on other learned priors, as well as state-of-the-art segmentation methods. However, we also
note some limitations : the current model is not able to accurately capture thin tail areas
of the caudate structures. Second, symmetric structures confound the CNN training process
when considering views which are parallel to the plane of symmetry. Third, graph-based
methods have to be used to impose volumetric consistency since training is done on 2D
slices. Different network layouts, taking account of volumetric structure can possibly help
overcome these limitations.

Table A.2 The average Dice coefficient of the three methods on different brain structures.
Values are reported as the average of the left and right structures.

Proposed Freesurfer FSL
IBSR-Thalamus 0.87 0.86 0.85
IBSR-Caudate 0.78 0.82 0.68
IBSR-Putamen 0.83 0.81 0.81
IBSR-Pallidum 0.75 0.71 0.73
RE-Putamen 0.89 0.74 0.88
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ANNEXE B ARTICLE 5 : GROUPWISE SHAPE ANALYSIS OF THE
HIPPOCAMPUS USING SPECTRAL MATCHING

Mahsa Shakeria,b, Hervé Lombaertc, Sarah Lippeb,d, Samuel Kadourya,b

a MEDICAL, Polytechnique Montreal, b CHU Sainte-Justine Hospital Research Center,
cCentre for Intelligent Machines, McGill University, d University of Montreal

Presentation
This appendix presents the article "Groupwise shape analysis of the hippocampus using spec-
tral matching" (Shakeri et al., 2014) published in Biomedical Optics and Imaging Proceedings
of SPIE 2014, held in San Diego, California, in February 2014. The objective of this article
is to present a spectral-based group-wise shape analysis to detect morphological changes in
sub-cortical structures.

abstract
The hippocampus is a prominent subcortical feature of interest in many neuroscience studies.
Its subtle morphological changes often predicate illnesses, including Alzheimer’s, schizophre-
nia or epilepsy. The precise location of structural differences requires a reliable correspon-
dence between shapes across a population. In this paper, we propose an automated method
for groupwise hippocampal shape analysis based on a spectral decomposition of a group of
shapes to solve the correspondence problem between sets of meshes. The framework gene-
rates diffeomorphic correspondence maps across a population, which enables us to create a
mean shape. Morphological changes are then located between two groups of subjects. The
performance of the proposed method was evaluated on a dataset of 42 hippocampus shapes
and compared with a state-of-the-art structural shape analysis approach, using spherical har-
monics. Difference maps between mean shapes of two test groups demonstrates that the two
approaches showed results with insignificant differences, while Gaussian curvature measures
calculated between matched vertices showed a better fit and reduced variability with spectral
matching.

Keywords : hippocampus, groupwise shape analysis, correspondence, spectral matching

B.1 Introduction

The hippocampus is the main target of deformation in many neurodegenerative diseases
(Andersen et al., 2009). Extracting its morphological characteristics is an important and
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challenging problem in medical image analysis. Early morphological studies on the hippo-
campus were based on volumetric analysis, which had the advantage of simplicity (Hastings
et al., 2004; Shi et al., 2009). However, structural changes at specific locations were not accu-
rately detected using volumetric frameworks. Thus, hippocampal shape analysis has emerged
as a way of evaluating morphology location and magnitude in the brain anatomy.

Several works have proposed hippocampal shape analysis via deformable registration to a
template, where population-wise comparisons are performed by analyzing the individual de-
formable transformations (Csernansky et al., 1998, 2002). Another type of shape analysis
method is based on medial surface descriptions, which allows for the quantification of lo-
cal positional changes by assessing morphological variation of the skeleton extracted from a
given object (Bouix et al., 2005; Joshi et al., 2002). Besides these, some methods use sphe-
rical harmonics description combined with Point Distribution Models (PDM) to discover
structural differences across a population (Shen et al., 2003; Styner et al., 2006a). However,
these surface-based frameworks depend on establishing vertex correspondence across subjects,
which are prone to inter-subject variability and are more adapted to sphere-like shapes.

SPHARM-PDM is a popular groupwise shape analysis method based on spherical harmonic
combined with point distribution models. This method solves the correspondence problem
by the alignment of the spherical parametrization using a first order ellipsoid (Styner et al.,
2006a). In this method the spherical description of surface meshes is sampled into triangu-
lated surfaces via icosahedron subdivision. These surfaces are then spatially aligned using
rigid Procrustes alignment. However, as this method establishes correspondence on simpli-
fied spherical models of surfaces, it is restricted to surfaces with spherical topology and is
computationally expensive. In this work we propose an alternative groupwise hippocampal
shape analysis approach based on spectral matching in which the correspondence maps are
computed using a new surface matching approach presented in (Lombaert et al., 2013b). In
spectral matching relationships are modeled as graphs and an eigendecomposition of these
graphs enables us to match similar features. The objective of this work is to investigate
whether a shape analysis method based on spectral matching could produce similar shape
geometries on hippocampus and identify groupwise differences to SPHARM-PDM method.

B.2 Method

The inputs to the proposed method include two groups of hippocampus meshes. Our frame-
work establishes correspondences across surface points for each group using spectral matching
and creates two mean shapes as outputs. The workflow for the procedure is illustrated in Fi-
gure B.1
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Figure B.1 Hippocampal shape analysis between two groups of subjects (group A and B)
using spectral matching. At first, an initial reference image is selected randomly in each
group (A(0) and B(0) in top row). Then, all vertices of all meshes are mapped to the reference
image using the spectral matching algorithm (second and third rows). Finally, the mean
surface of each group is created (bottom row).
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In the proposed method, an initial reference is randomly selected and all vertices of all
other surfaces are matched to the reference image. A spectral matching approach presen-
ted in (Lombaert et al., 2013b) is used to find the correspondence between each mesh and
the selected reference image. This approach is able to provide a diffeomorphic correspon-
dence map between two surfaces. Before applying this method, a preliminary correspondence
map has to be generated between two meshes. We used a conventional spectral matching
method presented in (Lombaert et al., 2013a) to compute this initial correspondence map.
In Section B.2.1, the spectral method for matching two surface meshes is briefly described.
Section B.2.2 presents the groupwise hipppocampal shape analysis approach, in which the
vertex correspondence between meshes is established using the spectral matching method
described in Section B.2.1.

B.2.1 Matching two surfaces using spectral matching

Given two surface meshes S(1) and S(2), the matching between these two shapes is conducted
in a two-step process (Figure B.2.a and b). At first, we build the graph g(i) =

{
V (i), E(i))

}
from the set of vertices and edges of each surface S(i). Then, the weighted adjacency matrix
W (i) is defined in terms of node affinities. The diagonal node degree matrix D(i) is determined
as the sum of all point affinities. The general Laplacian operator on a graph g(i) is formulated
with L(i) = G−1

(
D(i) −W (i)

)
where G is a diagonal node weighting matrix (G = D(i)). The

eigendecomposition of each graph’s Laplacian matrix L(i) reveals its spectral components.
After reordering the spectral components by finding the optimal permutation of components
between the pair of meshes, regularization is performed by matching the spectral embeddings.
The correspondence map c between each pair of vertices on S(1) and S(2) is established with
a simple nearest-neighbor search between spectral representation of and . An overview of the
procedure of finding the correspondence map c is shown in Figure B.2.a.

In the next step, the final map (diffeomorphic match) between two surfaces S(1) and S(2) is
obtained as shown in Figure B.2.b. In this procedure, an association graph ga = {V1,2, E1,2,c}
is defined as the union of the set of vertices and edges of two surfaces S(1) and S(2) with
an initial set of correspondence links c between both surfaces. The spectral decomposition
of this unique association graph creates a shared set of eigenvectors that enables a direct
mapping ϕ1→2 between two meshes (see (Lombaert et al., 2013b) for more details).

B.2.2 Morphological Analysis

Let {Si}i=0,...,n be a set of n + 1 surface meshes. We would like to compute the mean shape
S̄ as the geometric mean of all surface meshes in the set. For that purpose, at first an
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initial reference mesh S(0) is selected randomly. Then, all vertices of all meshes S(i) are
matched to the reference mesh S(0), using the spectral mapping {ϕi→0}i=0,...,n described in
Section B.2.1. In the next step, the mean surface S̄ is defined by averaging the 3D coordinates
of corresponding surface points across the group. The position of point on mean surface x̄j
is defined as follows :

x̄j = 1
n+ 1

n∑
i=1

x′
(i)
j (B.1)

Where x′(i)j is the interpolated position of point i on surface S(i) computed using the mapping
ϕi→0.

By applying the proposed approach to two groups of surface meshes (A and B) and obtaining
a mean shape for both groups (Figure B.1), the local shape differences between groups can
be detected by computing a difference map between two mean shapes after registering them
together.

B.3 Results

To evaluate the performance of the proposed spectral matching method, we used a dataset
of 42 hippocampus shapes obtained from schizophrenic patients (Styner et al., 2004). The
hippocampi were segmented from IR-Prepped SPGR (Inversion Recovery-Prepared Spoiled
Gradient Echo) data segmented originally at 0.9375x0.9375x1.5mm resolution as part of an
adult schizophrenia study (mean age 32, all male gender). All cases have been fully rando-
mized and group association has been performed to create two different groups (group A
and group B) with 21 subjects (42 subjects in total). We compared the performance of the
spectral matching approach with a state-of-the-art method used for groupwise analysis of
anatomical shapes, namely SPHARM-PDM (Styner et al., 2006a).

We generated mean shapes, for both groups of subjects, using our spectral groupwise fra-
mework and SPHARM-PDM. The distance maps between the mean shapes produced by
both methods are illustrated in Figure B.3. Dice volume difference measures, Hausdorff dis-
tance, and average absolute distance between the mean shapes of group A and B are listed
in Table B.1. These results suggest that the proposed spectral framework produces similar
groupwise shape differences as SPHARM-PDM.

Figure B.4 presents the comparison between mean shapes computed using spectral matching
and SPHARM-PDM. The Dice coefficient, Hausdorff distance, and average absolute distance
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Figure B.2 (a) Initial matching of two meshes using the algorithm proposed in Lombaert et al.
(2013a). (b) Final correspondence mapping between two surfaces based on diffeomorphic
spectral matching approach in (Lombaert et al., 2013b).

Figure B.3 (a) Distance map between group A and B using SPHARM-PDM. (b) Distance
map between group A and B with spectral matching. The proposed framework based on
spectral matching yield similar results as the state-of-the-art method.

Table B.1 Shape differences between mean shape A and mean shape B.

Spectral Matching SPHARM-PDM
Dice Coefficient 0.92 0.92
Hausdorff Distance (mm) 1.20 1.18
Mean Absolute Distance (mm) 0.03 ± 0.39 0.03 ± 0.38
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are reported in Table B.2. This shows that our method yields similar accuracy than the
method based on spherical harmonics .

In order to assess the variability in curvature between matched vertices in spectral matching
and in SPHARM-PDM, the gaussian curvature was computed at each vertex of all meshes
in the dataset. We computed the minimum, maximum, mean, and the standard deviation
across all correspondent vertices, and obtained the average metrics for vertices (Table B.3).
These show that the measures are similar between both approaches. More importantly, the
spectral matching approach shows a lower standard deviation compared to SPHARM-PDM,
indicated lesser variability in the curvature measure for matched vertices.

In the final experiment, the Euclidean distance was computed between all correspondent
vertices using both spectral matching and SPHARM-PDM. The minimum, maximum, mean,
and the standard deviation across all matched vertices are reported in Table B.4. These
results show that the distances between matched vertices are similar in both methods.

B.4 Discussion

In this work, a new approach for groupwise hippocampal shape analysis is proposed in order
to detect regional alterations of hippocampal morphology in neurological conditions such as
schizophrenia and epilepsy. The proposed scheme finds diffeomorphic correspondences among
a population of surfaces in the spectral domain. This enables us to create a mean shape and
locate the morphological changes between two groups of healthy and pathological subjects.

In this paper the performance of the proposed approach was compared with a state-of-the-
art method, namely SPHARM-PDM (Styner et al., 2006a). Looking at the distance maps
between mean shapes created using spectral matching and SPHARM-PDM methods, we find
that both methods yield differences which are statistically insignificant. In addition to dis-
tance maps, the accuracy of the obtained mean shapes using spectral matching was evaluated
using the Dice volume difference measure. According to the reported Dice coefficient, there
is almost a perfect overlap between the mean shapes computed using spectral matching and
SPHARM-PDM.

Table B.2 Shape differences obtained with spectral matching and SPHARM-PDM.

Spectral Matching SPHARM-PDM
Dice Coefficient 0.99 0.98
Hausdorff Distance (mm) 0.29 0.36
Mean Absolute Distance (mm) 0.0028 ± 0.0459 0.0031 ± 0.0636
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Figure B.4 (a) Difference map for mean shape A. (b) Difference map for mean shape B.
There is a small difference between mean shapes computed using spectral matching and
SPHARM-PDM.

Table B.3 Curvature measures computed with spectral matching and SPHARM-PDM
Group A Group B

Spectral Matching SPHARM-PDM Spectral Matching SPHARM-PDM
Max curvature 5.34 ×10−4 5.46 ×10−4 5.47 ×10−4 5.5 ×10−4

Min curvature 2.9 ×10−4 2.89 ×10−4 2.51 ×10−4 2.42 ×10−4

Mean curvature 4.14 ×10−4 4.16 ×10−4 3.90 ×10−4 3.95 ×10−5

Std curvature 6.54 ×10−5 6.89 ×10−5 7.55 ×10−5 8.05 ×10−5

Table B.4 Distance measures obtained with spectral matching and SPHARM-PDM
Group A Group B

Spectral Matching SPHARM-PDM Spectral Matching SPHARM-PDM
Max distance (mm) 2.61 2.53 3.24 2.91
Min distance (mm) 0.43 0.43 0.57 0.62
Mean distance (mm) 1.36 1.37 1.58 1.61
Std distance (mm) 0.57 0.56 0.66 0.62



147

In order to indicate the variability of correspondent vertices, we computed curvature measures
at each vertex of all meshes in the dataset. Comparing curvature measures obtained from both
spectral matching and SPHARM-PDM method, shows that the matched vertices have close
variability in both methods. However, the average standard deviation of curvature measure for
spectral method is lower compared to SPHARM-PDM, which indicates the reduced variability
and better fit of matched vertices in spectral method.

In order to achieve higher accuracy in surface matching, additional information (e.g., texture,
anatomical information, or landmark positions) can be incorporated in extended spectral
representation. These additional information which can be embedded as weights in graph
nodes and as extra coordinates lead to little computational expenses in the mapping part of
our framework. Further improvements of the method lies in enhancing the quality of input
meshes. The number of vertices, the quality of triangulation, and the smoothing level of the
meshes are the effective factors that play an important role in the accuracy of the result.
The more accurate the input surface meshes are, the more valid the result of hippocampal
shape analysis would be. Therefore, further work seek to incorporate additional features to
help improve the matching, and to propose a strategy to provide proper input surfaces.

B.5 Conclusions

In this paper, a new approach for groupwise hippocampal shape analysis based on spectral
matching is described. Our proposed scheme finds diffeomorphic correspondences among a
population of surfaces in the spectral domain which could be an alternative to the current
hippocampal morphometry analysis methods. The performance of the proposed approach
was compared with the SPHARM-PDM method (Styner et al., 2006a). According to the ex-
periments, the two methods showed results with insignificant differences. In order to improve
the accuracy of our groupwise hippocampal shape analysis approach, we need to incorporate
additional information in spectral matching, as well as enhancing the quality of input meshes.
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ANNEXE C ARTICLE 6 : CLASSIFICATION OF ALZHEIMER’S DISEASE
USING DISCRIMINANT MANIFOLDS OF HIPPOCAMPUS SHAPES

Mahsa Shakeri1,2, Hervé Lombaert3, Samuel Kadoury1,2

1 MEDICAL, Polytechnique Montreal, Montréal, Québec, Canada,2 CHU Sainte-Justine
Hospital Research Center, 3Inria Sophia-Antipolis Méditerranée, Asclepios Team,

Sophia-Antipolis, France,

Presentation
This appendix presents the article "Classification of Alzheimer’s Disease using Discriminant
Manifolds of Hippocampus Shapes" (Shakeri et al., 2015) published in Proceedings of the
First International Machine Learning Meets Medical Imaging Workshop (MLMMI), Held in
Conjunction with ICML 2015, Lille, France, July 11, 2015. The objective of this article is to
describe the morphometric variations of the hippocampus in a discriminant nonlinear graph
embedding with Grassmannian manifolds to detect the presence of Alzheimer’s disease.

abstract
Neurodegenerative pathologies, such as Alzheimer’s disease, are linked with morphological al-
terations of subcortical structures which can be assessed from medical imaging and biological
data. Recent advances in machine learning have helped to improve classification and progno-
sis rates. We present here a classification framework for Alzheimer’s disease which extracts
triangulated surface meshes from segmented binary maps in MRI, and establishes reliable
point-to-point correspondences among a population of hippocampus 3D surfaces using their
spectral representation. Morphological changes between groups are detected using a manifold
learning algorithm based on Grassmannian kernels in order to assess similarity between shape
topology in control normals and patients. A second manifold using discriminant embeddings
is then generated to maximize the class separability between three clinical groups recognized
in dementia. We test the method to classify 47 subjects with Alzheimer’s Disease (AD), 47
with mild cognitive impairment (MCI) and 47 healthy controls enrolled in a clinical study.
Classification rates compare favorably to standard classification methods based on SVM and
traditional manifold learning methods evaluated on the same database.

C.1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia, with an incidence that
doubles every five years after the age of 65 (Bain et al., 2008). As life expectancy increases,
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the number of AD patients increases accordingly, which causes a heavy socioeconomic burden.
It is expected that treatment decisions will greatly benefit from diagnostic and prognostic
tools that identify individuals likely to progress to dementia sooner. This is especially im-
portant in individuals with mild cognitive impairment (MCI), who present a conversion rate
of approximately 15% per year. Towards this end, neuroimaging datasets for AD including
magnetic resonance imaging (MRI) and other types of biomarkers have shown considerable
promise to detect longitudinal changes in subjects scanned repeatedly over time (Wyman
et al., 2013a), by offering rich information on the patient’s morphometric and anatomical
profiles. Their use stems from the premise that longitudinal changes may be more reprodu-
cible and more precisely measured with MRI and other parameters such as in clinical scores,
cerebrospinal fluid (CSF), or proteomic assessments.

A number of studies reported structural changes in the hippocampus, parahippocampal gy-
rus, cingulate, and other brain regions in both MCI and AD patients (Visser et al., 2002).
Other studies have used intensity information to discriminate elderly normal controls (NC)
with patients inflicted with AD or mild cognitive impairment (MCI), based on T1-weighted
MRI (Li et al., 2012). Previous machine learning algorithms using MRI were based on tra-
ditional morphometric measures, such as subcortical volume or shape descriptors of brain
structures (Chupin et al., 2009) and their change over time (Leow et al., 2007). These were
based on finding a low-dimensional representation of complex and high-dimensional data
using principal component analysis (PCA) and multidimensional scaling (MDS). However
these methods are typically linear, making it easy to transform data from image space into
the learned subspace, but lacks the ability to process irregular or abnormal structures, which
tend to follow non-linear patterns of variation. To cope with this limitation, manifold learning
methods on the other hand tend to better model highly non-linear data, such as from neu-
roimaging datasets (Aljabar et al., 2011). Recently, discriminant embeddings exploit within
and between-class similarities to establish correspondences between disparate data, thereby
offering a more accurate relationship of subtile structural alterations in AD.

The objective of this study is to propose a classifier which distinguishes NC subjects from
patients with MCI and patients afflicted with AD. First, segmented hippocampus shapes
from MRI are matched between each other using a spectral representation of the 3D mesh
surface of the sub-cortical surface in order to have one-to-one vertex correspondences between
hippocampus shapes throughout a population. Once a training set of hippocampus shapes is
created for three clinical relevant groups (NC, MCI, AD), a discriminant manifold based on
Grassmannian kernels is trained to maximize the separation between these three groups and
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improve the classification accuracy for any unseen MRI, which can be processed by mapping
the segmented hippocampus onto the trained manifold. Th main contribution of this paper is
to develop a hippocamus classification approach based on their spectral representation which
is classified in the Grassmannian space.

C.2 Methods

C.2.1 Hippocampus shape alignment

In the first step, segmented binary masks obtained from diagnostic T1-weighted MRI are
processed to the same image orientation and isotropic voxel sizes, and then converted into
3D triangulated surfaces using the marching cube algorithm. A Gaussian smoothing process
is subsequently applied on each surface in order to remove surface irregularities. Then, a
reference surface is defined in an iterative process, and all triangulated surfaces are aligned
to this reference using a rigid registration algorithm. In order to establish the point-to-point
correspondences across all surfaces, each mesh is matched to a randomly selected reference
surface using a spectral matching algorithm as proposed in (Lombaert et al., 2013b).

The matching between two surfaces Si and Sj of the hippocampus from two separate subjects
is conducted in a two-step process. In the first step, an initial transformation is calculated
between the two surfaces, followed by a second step to establish a smooth map between the
two meshes based on a diffeomorphic mapping (Lombaert et al., 2013b). First, the spectrums
of the meshes Si and Sj are computed according to spectral representation theory. Meshes are
described by their principal eigenmodes following an eigendecomposition of their respective
Laplacian matrix L. In order to add robustness to the feature matching process, the mean
curvature at each point of the mesh defined as C(i) = 0.5 ∗ (Cmin + Cmax) are calculated,
where the principal curvatures Cmin and Cmax are estimated as the minimum and maximum
curving degrees of a mesh S, respectively. Hence, the mean curvature of C is computed as
{C(1), C(2), · · · , C(n)}, where n is the number vertices. We incorporate these features in the
weighting of the nodes of the spectral graph G by computing the exponential of the mean
curvature, and defining the graph Laplacian as L̃ = GL, where

G = P−1(exp(diag({C(1), C(2), · · · , C(n)})))−1 (C.1)

and P is the diagonal node degree matrix integrating distance weights. Once meshes are des-
cribed in the spectral domain, the first e eigenvectors associated with non-zero eigenvalues
are chosen to define the spectral representations S̃i and S̃j. After reordering and sign adjust-
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ment (Lombaert et al., 2013a) of the resulting spectrums S̃i and S̃j, we perform non-rigid
alignment of the spectral coordinates using Coherent Point Drift (CPD) (Myronenko et al.,
2009b). The CPD approach finds a continuous transformation between the surfaces S̃i and S̃j
in the spectral domain. Once the two spectral representations are aligned, the point-by-point
correspondences between two meshes could be directly established in the Euclidean space,
such that the two closest points in the spectral domain are considered as corresponding points
in the Euclidean space. Thus, the correspondence map c between Si and Sj is established
with a simple nearest-neighbor search in spectral domain.

It was shown in (Lombaert et al., 2013b) that incorporating extra features might create
discontinuities in the correspondence map c. As a solution, a diffeomorphic matching is ap-
plied to find the final map between two shapes. This is obtained by defining an association
graph composed of the set of vertices and edges, based on the initial set of correspondence
links. The graph Laplacian operator is applied on the resulting graph, followed by a spectral
decomposition to produce a shared set of eigenvectors, from which the first and last eigen-
values are used to obtain one-to-one vertex correspondences between the mesh vertices. This
procedure is repeated for all training meshes in the three groups of the database, with (1)
normal controls, (2) MCI patients and (3) AD patients.

C.2.2 Learning the discriminant Grassmannian manifold

Manifold learning algorithms are based on the premise that data are often of artificially high
dimension and can be embedded in a lower dimensional space. However the presence of out-
liers and multi-class information can on the other hand affect the discrimination and/or gene-
ralization ability of the manifold. We propose to learn the optimal separation between three
classes (1) normal controls, (2) MCI patients and (3) AD patients, by using a discriminant
graph-embedding based on Grassmannian manifolds for the classification problem initially
proposed in (Harandi et al., 2011). Each sample mesh surface S, which vertices has been
rearranged using the alignment method in 2.1, can be viewed as the set of low-dimensional
m subspaces of Rn on a Grassmannian manifold and represented by orthonormal matrices,
each with a size of n ×m, with n the higher dimensionality of vertices defined earlier. Two
points on a Grassmannian manifold are equivalent if one can be mapped into the other one
by a m×m orthogonal matrix. In this work, similarity between two surfaces (Si, Sj) on the
manifold is measured as a combination of projection and canonical correlation Grassmannian
kernels Ki,j defined in the Hilbert Space. By describing different features of the hippocampus
shape with each kernel, Ki,j can improve discriminatory accuracy between shapes.



152

In order to effectively discover the low-dimensional embedding, it is necessary to maintain
the local structure of the data in the new embedding. The structure G = (V ,W ) is an undi-
rected similarity graph, with a collection of nodes V connected by edges, and the symmetric
matrix W with elements describing the relationships between the nodes. The diagonal matrix
D and the Laplacian matrix L are defined as L = D−W , with D(i, i) = ∑

j 6=i W ij∀i. Here,
N labelled points S = {(Si, ci)}Ni=1 are generated from the underlying manifoldM, where ci
denotes the label (NC, MCI or AD). The task at hand is to maximize a measure of discrimina-
tory power by mapping the underlying data into a vector space, while preserving similarities
between data points in the high-dimensional space. Discriminant graph-embedding based on
locally linear embedding (LLE) (Roweis and Saul, 2000) uses graph-preserving criterions to
maintain these similarities, which are included in a sparse and symmetric N × N matrix,
denoted as M .

Within and between similarity graphs : In our work, the geometrical structure of M
can be modeled by building a within-class similarity graph Ww for hippocampus of same
group and a between-class similarity graph W b, to separate hippocampus from the three
classes. When constructing the discriminant LLE graph, elements are partitioned into Ww

and W b classes. The intrinsic graph G is first created by assigning edges only to samples of
the same class (ex : MCI). The local reconstruction coefficient matrix M(i, j) is obtained by
minimizing :

min
M

∑
j∈Nw(i)

‖Si −M(i, j)Sj‖2 ∑
j∈Nw(i)

M(i, j) = 1 ∀i (C.2)

with Nw(i) as the neighborhood of size k1, within the same region as point i (e.g. hippocam-
pus from MCI patient). Each sample is therefore reconstructed only from 3D meshes of the
same clinical group. The local reconstruction coefficients are incorporated in the within-class
similarity graph, such that the matrix Ww is defined as :

Ww(i, j) =

(M +MT −MTM)ij, if Si ∈ Nw(Sj) or xj ∈ Nw(Si)

0, otherwise.
(C.3)

Conversely, the between-class similarity matrix W b depicts the statistical properties to be
avoided in the optimization process and used as a high-order constraint. Distances between
healthy and pathological samples are computed as :
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Wb(i, j) =

1/k2, if Si ∈ Nb(Sj) or Sj ∈ Nb(Si)

0, otherwise
(C.4)

with Nb containing k2 neighbors having different class labels from the ith sample. The ob-
jective is to transform points to a new manifold M of dimensionality d, i.e. Si → yi, by
mapping connected samples from the same group in Ww as close as possible to the class
cluster, while moving NC, MCI and AD meshes of W b as far away from one another. This
results in optimizing the objective functions :

f1 = min 1
2
∑
i,j

(yi − yj)2Ww(i, j) f2 = max 1
2
∑
i,j

(yi − yj)2Wb(i, j) (C.5)

Supervised manifold learning : The optimal projection matrix, mapping new points to
the manifold, is obtained by simultaneously maximizing class separability and preserving
interclass manifold property, as described by the objective functions in Eq.(C.5). Assuming
points on the manifold are known as similarity measures given by the Grassmannian ker-
nel Ki,j, a linear solution can be defined, i.e., yi = (〈α1, Si〉, . . . , 〈αr, Si〉)T for the r largest
eigenvectors with αi = ∑N

j=1 aijSj. Defining the coefficient Al = (al1, . . . , alN)T and ker-
nel K i = (ki1, . . . , kiN)T vectors, the output can be described as yi = 〈αl, Si〉 = AT

l K i.
By replacing the linear solution in the minimization and maximization of the between- and
within-class graphs, the optimal projection matrix A is acquired from the optimization of the
function as proposed in (Harandi et al., 2011). The proposed algorithm uses the points on
the Grassmannian manifold implicitly (i.e., via measuring similarities through a kernel) to
obtain a mapping A. The matrix maximizes a quotient similar to discriminant analysis, while
retaining the overall geometrical structure. Hence for any new segmented surface mesh Sq, a
manifold representation can be obtained using the kernel function based on Sq and mapping
A.

C.3 Experiments and results

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with 1.5 or 3.0
T structural MR images (adni.loni.usc.edu). For this study, a subset of baseline 1.5 T MR
images is used including 47 normal controls (NC), 47 AD patients, and 47 individuals with
MCI. The three groups are matched approximately by age and gender (NC with a mean age
of 76.7 ± 5.4, 23 male ; AD with a mean age of 77.4 ± 7.2, 21 males ; MCI with a mean age
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of 75.0± 6.9, 28 males). Additional post-processing steps were performed on the MR images
to correct certain image artifacts and to enhance standardization across sites and platforms.
The post-processing steps include gradient non-linearity correction, intensity inhomogeneity
correction, bias field correction, and phantom-based geometrical scaling to remove calibra-
tion errors. Here, we use these processed images. Left and right hippocampi were segmented
using FSL-FIRST automatic segmentation (Patenaude et al., 2011b) and visual inspection
was performed on the output binary masks to ensure the quality of the segmentation. Fig.
C.1 shows the shape differences in the left and right hippocampus between NC, MCI and AD.

The optimal size was found at k1 = 7 for within-class neighborhoods (Nw), and k2 = 4 for
between-class neighborhoods (Nb). The optimal manifold dimensionality was set at d = 5,
when the trend of the nonlinear residual reconstruction error curve stabilized for the en-
tire training set. Fig. C.2 shows the resulting manifold with embedded hippocampus shapes
which can be clearly identified into three separate groups, due to the discriminative nature
of the framework. Table C.1 presents accuracy, sensitivity and specificity results for SVM
(nonlinear RBF kernel), LLE and the proposed method between three clinically relevant
pairs of diagnostic groups (NC/AD, NC/MCI, MCI/AD). The classifier performance was
obtained by repeating 100 times a random selection of samples, using 75% of the data for
training and 25% for testing in each run. Results show a significant improvement using the
discriminant manifold embedding compared to standard approaches. It also illustrates that
increased accuracy can be achieved using the discriminant embedding with combined kernel
(α1 = 1, α2 = 5), which suggests the benefit of extracting complementary features from the
dataset for classification purposes compared to different types of classification models (SVM,
LLE).

C.4 Conclusion

Our main contribution consists in describing morphometric variations of the hippocampus
in a discriminant nonlinear graph embedding with Grassmannian manifolds to detect the
presence of Alzheimer’s disease. A spectral matching process based on the eigendecomposi-
tion of the Laplacian matrix of hippocampus shapes extracted from a dataset of MRI images
enabled to establish one-to-one correspondences in mesh vertices. This is critical to construct
a reliable training set of sub-cortical shapes from various pathological groups and normal
controls. A manifold embedding including intrinsic and penalty graphs measuring similarity
within clinical relevant groups and between NC, MCI and AD patients, respectively, was trai-
ned to differentiate between the different hippocampus shapes. A combination of canonical



155

(a)

(b)

Figure C.1 (a) Distance maps of left and right hippocampal shape deformations in AD pa-
tients compared with normal controls. (b) Distance maps of left and right hippocampal shape
deformations in MCI patients compared with normal controls.

Table C.1 Classification results for the classification of NC, MCI and AD patients from
segmented hippocampal regions. We compare a standard SVM classification approach, with
a single LLE method and the proposed discriminant LLE method.

NC/AD NC/MCI MCI/AD All groups
SVM LLE DLLE SVM LLE DLLE SVM LLE DLLE SVM LLE DLLE

Sensitivity tp/(tp+fn) 0.75 0.84 0.90 0.58 0.61 0.69 0.50 0.57 0.60 0.61 0.67 0.73
Specificity tn/(tn+fp) 0.69 0.77 0.85 0.62 0.70 0.77 0.57 0.61 0.67 0.62 0.69 0.77
Overall accuracy 0.72 0.79 0.88 0.60 0.65 0.72 0.54 0.58 0.65 0.62 0.67 0.74

correlation kernels creates a secondary manifold to simplify the deviation estimation from
normality, improving detection of pathology compared to standard LLE. Experiments show
the need of nonlinear embedding of the learning data, and the relevance of the proposed
method for stratifying different stages of dementia progression. In the context of Alzhei-
mer’s disease, the method can improve for the early detection of the disease with promising
classification rates based on ground-truth knowledge. Future work will compare results to
volumetric measurements and improve the deviation metric using high-order tensorization
and investigate into fully automated hippocampus segmentation, as it can affect the precision
of the spectral correspondence process.
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Figure C.2 Resulting manifold embedding with low-dimensional coordinates of samples points
taken from the NC, MCI and AD groups.
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ANNEXE D ARTICLE 7 : DEEP SPECTRAL-BASED SHAPE FEATURES
FOR ALZHEIMER’S DISEASE CLASSIFICATION

Mahsa Shakeri1,2, Herve Lombaert3, Shashank Tripathi1, Samuel Kadoury1,2

1 MEDICAL, Polytechnique Montreal, Montréal, Québec, Canada,2 CHU Sainte-Justine
Hospital Research Center, 3Inria Sophia-Antipolis, France,

Presentation
This appendix presents the article "Deep spectral-based shape features for Alzheimer’s Di-
sease classification" (Shakeri et al., 2016d) accepted in Workshop on Spectral and Shape Ana-
lysis in Medical Imaging (SESAMI 2016), Held in Conjunction with MICCAI 2016, Athens,
Greece, October 12, 2016. The objective of this article is to apply a deep learning variational
auto-encoder on the spectral representation of the vertex coordinates of surface meshes to
learn the low dimensional features. This method simultaneously trains a multi-layer percep-
trons using softmax activation to classify Alzheimer’s patients from normal subjects.

abstract Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are the most pre-
valent neurodegenerative brain diseases in elderly population. Recent studies on medical
imaging and biological data have shown morphological alterations of subcortical structures
in patients with these pathologies. In this work, we take advantage of these structural de-
formations for classification purposes. First, triangulated surface meshes are extracted from
segmented hippocampus structures in MRI and point-to-point correspondences are establi-
shed among population of surfaces using a spectral matching method. Then, a deep learning
variational auto-encoder is applied on the vertex coordinates of the mesh models to learn the
low dimensional feature representation. A multi-layer perceptrons using softmax activation is
trained simultaneously to classify Alzheimer’s patients from normal subjects. Experiments on
ADNI dataset demonstrate the potential of the proposed method in classification of normal
individuals from early MCI (EMCI), late MCI (LMCI), and AD subjects with classification
rates outperforming standard SVM based approach.

keywords classification, spectral matching, variational autoencoder, Alzheimer’s disease.

D.1 Introduction

Alzheimer’s disease (AD) is characterized by progressive impairment of cognitive and memory
functions in elderly population. Considering its worldwide prevalence, early diagnosis of this
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disease might have a huge impact on the overall well-being of the population, and the burden
to caregivers, as well as the associated financial costs to the world’s health system. Studies
reported that AD can be diagnosed by clinical assessments in most of the cases (Ranginwala
et al., 2008), while by the time the patient is diagnosed the disease progression may have
deteriorated. Therefore, early diagnosis of this neuropathology is of special interest.

Mild cognitive impairment (MCI) is considered as a transition state between normal aging
and dementia (Petersen et al., 1999). The cognitive deficits in MCI patients are not as severe
as those seen in individuals with AD. However, studies have suggested that about 10− 12%
of subjects with MCI progress to AD per year (Petersen et al., 1999). Therefore, these in-
dividuals with milder degrees of cognitive and functional impairment than AD patients are
particularly interesting subjects, since biomarker manifestation could potentially be different
at such an early stage of the disease.

Studies have shown that the neuropathological changes in AD and MCI affect the hippo-
campus structure, which is a brain region crucial to various cognitive functions (Du et al.,
2001). Neuroimaging datasets for AD including magnetic resonance imaging (MRI) and other
types of biomarkers have shown considerable promise to detect longitudinal changes in sub-
jects (Wyman et al., 2013b), by offering rich information on the patients morphometric and
anatomical profiles. Their use stems from the premise that morphological changes may be
more reproducible and more precisely measured with MRI than other parameters such as
clinical scores, cerebrospinal fluid (CSF), or proteomic assessments.

Recent advances in medical imaging and classification techniques have led to a better discri-
mination between Alzheimer’s disease and healthy aging. Because of the high dimensionality
of medical image, various dimensionality reduction approaches have been developed to faci-
litate and enhance classification accuracy. A simple method is principal components analysis
(PCA) (Davatzikos et al., 2008), which finds the directions of greatest variance in the dataset
and represents each data point by its coordinates along each of these directions. A nonlinear
generalization of PCA is multi-layer autoencoders (AE) (Bengio, 2009), which is a feedfor-
ward neural network to encode the input into a more compact from and reconstruct the
input with the learned representation. Among available AE architectures, the deep variatio-
nal autoencoder (VAE) (Kingma and Welling, 2013) method has recently become popular in
computer vision due to its capability to learn a manifold without the assumption of linearity
in addition to its generative property.

With respect to surface representation, recent studies have shown the advantage of spectral
shape description compared to Euclidean surface representation (Lombaert et al., 2013a,b,
2015). The use of eigenvalues have led to interesting results for AD classification in (Wachin-
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ger and Reuter, 2016), where Laplace-Beltrami spectrum on the intrinsic geometry of the
structural meshes was computed to define the shape descriptors.The spectral coordinates,
which were derived from the Laplacian eigenfunctions of shapes have been used in (Lom-
baert et al., 2015) to parametrize surfaces explicitly. The authors applied a Random Decision
Forest classifier on spectral representation of surfaces and achieved a significant improve-
ment on cortical parcellations. Also, in (Lombaert et al., 2013a) and Lombaert et al. (2013b),
the eigendecomposion of the surfaces in the spectral domain were used to provide pointwise
information on meshes and establish accurate point-to-point correspondences across surfaces.

In this work, we present a surface-based classification technique based on classification of
spectral features using variational stacked auto-encoders. We first extract 3D surface meshes
of hippocampus structures from segmented binary MR images. Then, the point-to-point
surface correspondences is established across populations (NC, AD, EMCI, LMCI) using
a spectral matching approach. In spectral based shape matching approach, relationships
are modeled as graphs and an eigendecomposition on these graphs enables us to match
similar features. Once the matched surfaces are created, the vertex coordinates are used as
shape feature descriptors. Then, variational autoencoder (VAE) obtains the non-linear low-
dimensional embedding of the shape features. A multi-layer perceptron (MLP) classifier is
simultaneously trained to model the non-linear decision boundaries between classes.

The work follows on the prior work of (Suk and Shen, 2013), which used a Stacked Auto-
Encoder (SAE) to discover the latent representation from the grey matter (GM) tissue den-
sities and voxel intensities. Unlike Suk et al. (Suk and Shen, 2013), which selects intensity
and volume based features from MRI and PET modalities, we create the feature descrip-
tors from matched hippocampi surfaces extracted from MRI. Moreover, instead of training
a separate classifier on the low dimensional features as in (Suk and Shen, 2013), we add a
softmax multi-layer perceptron on top of our variational autoencoder network to obtain both
dimensionality reduction and the classification output at the same time.

The rest of the paper is organized as follows. In Section D.2, we present the morphological
feature extraction method using spectral shape matching, as well as the feature representation
and classification method based on variational autoencoder and multi-layer perceptron. Sec-
tion D.3 includes the description of the dataset, experiments and discussion. Our conclusions
are presented in Section D.4, along with envisioned future research directions.
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D.2 Methodology

Given MR images along with their corresponding hippocampus segmentations (produced ma-
nually or automatically), we first extract features from MRI as explained in Section 2.1. Then,
we use a deep variational autoencoder (VAE) to learn a latent feature representation from
the low-level features and train a multi-layer perceptron (MLP) for classification purposes in
Section 2.2.

D.2.1 Shape feature extraction using spectral matching

Given a reference surface mesh Sr and a population of n surfaces {Si}i=1..n, the spectral
matching between each surface meshe Si and Sr is done in a two step process. First, an
initial map is calculated between the two surfaces (Lombaert et al., 2013a). This initial map
is then used in the second step to establish a smooth map between the two meshes (Lombaert
et al., 2013b).

Here, we consider vertices and neighbouring points in each surface mesh as nodes and edges
of a graph. Then a laplacian graph is created for each surface graph from the set of vertices
and edges of each mesh. The general Laplacian operator Li (Grady and Polimeni, 2010) is
defined on each surface as following :

Li = G−1
i (Di −Wi) (D.1)

where Wi is the weighted adjacency matrix, which is created based on a distance between
connected nodes. The term Di is a diagonal matrix, in which the elements are set by the
degree of vertices. Gi is a node weighting matrix created based on the mean curvature at
each node as described in (Shakeri et al., 2016c).

The eigendecomposition of Laplacian matrix Li provides its spectral components. After reor-
dering the spectral components by finding the optimal permutation of components between
the pair of meshes, regularization is performed by matching the spectral embeddings. The
correspondence initial map c between each pair of vertices on Si and Sr is established with
a simple nearest-neighbour search between their spectral representations.

In the next step, given initial map c, the final smooth map between two surfaces Si and Sr
is obtained. In this process, an association graph is defined as the union of the set of vertices
and edges of two surfaces with an initial set of correspondence links c between both surfaces.
Then, a Laplacian matrix is created for the association graph, and the spectral decomposition
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is computed to produce a shared set of eigenvectors that enables a direct mapping between
two meshes Si and Sr.

Once all 3D meshes are matched to the reference, the vertices of all surfaces are rearranged
to create the new reconstructed meshes with consistent vertex ordering. Now, the shape
descriptor xi will be created for the surface Si as a vector of (X, Y, Z) coordinate of all
vertices.

D.2.2 Feature learning and classification

In this work we use a deep learning-based feature representation method to improve the clas-
sification accuracy. Here, we take inspiration from the variational autoencoder network, which
learns the low-dimensional manifold without the linearity assumption and has a generative
model. In this section, we explain the proposed network architecture, which is a combination
of a variational autoencoder network (VAE) and a softmax multi-layer perceptron (MLP).
The combined VAE-MLP network architecture is shown in Figure D.1.

Deep variational autoencoder and MLP classifier :

Auto-encoders are a type of deep neural networks structurally defined by input, hidden, and
output layers. Given the input data x ∈ RD defined from the spectral representation of
mesh shapes, an auto-encoder maps it to a latent representation z ∈ Rd (encoding), which
could be used for unsupervised learning or for feature extraction. The representation z from
the hidden layer is then mapped back to a vector y ∈ RD (decoding), which approximately
reconstructs the input vector x. The hidden layer in the middle, i.e., z, can be constrained
to be a bottleneck to learn compact representations of the input data.

Variational autoencoder (VAE) assumes that data is generated by a directed graphical model
with a latent variable z. VAE uses the encoder network to map the input x into the continuous
latent variables (qφ(z|x)) and uses decoder network to map latent variables to reconstructed
data (pθ(x|z)), where φ and θ are the parameters of the encoder (recognition model) and
decoder (generative model), respectively.

The lower bound VAE loss function of the variational autoencoder for individual datapoint
xi has the following form :

LV AE(θ, φ;xi) = −DKL (qφ (z|xi) ||pθ (z)) + Eqφ(z|xi) [log pθ (xi|z)] (D.2)

The first component is the regularization term, which is the KL divergence of the approximate
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posterior from the prior, while the second term is the expected reconstruction error. As shown
in (Kingma and Welling, 2013), we assume both pθ (z) and qφ (z|xi) as Gaussian. Given J

as the dimensionality of z and K as the number of samples per datapoint, the resulting
estimator for xi will be as follows :

LV AE(θ, φ;xi) = −1
2

J∑
j=1

(
1 + log

(
σ2
j

)
− µ2

j − σ2
j

)
+ 1
K

K∑
k=1

log pθ (xi|zi,k) (D.3)

where, zi,k = µi + σi � εk and εk ∼ N (0, I).

Here, µ and σ can be computed using the deterministic encoder network. The reconstruction
(decoding) term of log pθ (xi|zi,k) could be set as a bernoulli cross-entropy loss function.

The low dimensional features zi = µi + σi from the latent layer are fed to an MLP classifier
for solving the classification problem. For the last layer, we use the cross entropy loss function
and the softmax activation function, which is standard for classification problems (Bishop,
1995). The softmax function ensures that the network outputs are all between zero and one,
and that they sum to one on every time step. Therefore, they can be interpreted as the
posterior probabilities, given all the inputs up to the current one. We set the number of units
in the classification output layer to be equal to the number of classes of interest (i.e., two).

The network architecture :

Annotated medical image datasets tend to be small and generally hard to obtain. This in-
creases the risk of network overfitting in medical applications. Therefore, we make a series of
design choices for our network to avoid overfitting. Our network includes L2 regularization
at each layer to penalize the squared magnitude of all parameters directly in the objective
function. That is, for every weight w in the network, we add the term 1

2λw
2 to the cost

function, where λ is the regularization strength.

We also add a drop out layer with the probability of 0.5 after each dense layer. During
training, dropout is implemented by only keeping a neurone active with some probability p,
or setting it to zero otherwise. Network weights are set based on the uniform initialization
scaled by the square root of the number of inputs.

We train the network for 100 epochs with batch size of 28 starting with a learning rate of
0.00001 and dropping it at a logarithmic rate to 0.000001. For the deep learning library, we
use Keras and Theano. We determine the number of hidden units based on the classification
results. The optimal structure of the network is shown in Figure D.1.
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Figure D.1 The architecture of our proposed network. The numbers mentioned under each
layer correspond to the layer’s dimension.

D.3 Experiments

We evaluate the performance of our approach on a popular brain imaging dataset in Alzhei-
mer’s disease, namely the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The ADNI
database (adni.loni.usc.edu) was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). For up-to-date information, see www.adni-info.org. The database of ADNI consists
of cross-sectional and longitudinal data including 1.5 or 3.0 T structural MR images. The
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detailed description of the MRI protocol of ADNI is provided in (Jack Jr et al., 2008).

For this study, a subset of latest 1.5 T MR images is used including 150 normal controls
(NC), 90 AD patients, 160 early MCI (EMCI), and 160 individuals with late MCI (LMCI).
ADNI performed additional post-processing steps on MR images to correct certain image
artifacts and to enhance standardization across sites and platforms (Jack Jr et al., 2008).
The post-processing steps include gradient non-linearity correction, intensity inhomogeneity
correction, bias field correction, and phantom-based geometrical scaling to remove calibration
errors. In this work, we use these processed images. Here, hippocampi was segmented using
FSL-FIRST automatic segmentation software package (Patenaude et al., 2011a) and visual
inspection was performed on the output binary masks to ensure the quality of the automatic
segmentation.

Here we consider six binary classification problems : AD vs. NC, NC vs. EMCI, NC vs. LMCI,
AD vs. EMCI, AD vs. LMCI, and EMCI vs. LMCI. We consider 20% of data for test and
the rest for train. Each time 20% of train set is left out and used for validation.The whole
process is repeated five times for unbiased evaluation. The regularization strength λ is set as
0.05 based on experimental results.

We tested different network architectures and realized that going deeper than the proposed
model in Figure D.1 would not help improving the classification accuracy, however the dimen-
sionality of the hidden and the latent unit had direct effect on the classification performance.

In the analysis of the results, the performance of the classifier are measured by its sensitivity
(SE), specificity (SP) and accuracy (AC). Sensitivity, which is the ability of the classifier to
correctly identify positive results, is defined as TP/(TP+FN). Specificity refers to the ability
to correctly identify negative results and is formulated as TN/(FP+ TN). Accuracy is defined
as (TP+ TN)/(TP+TN+FN+FP).

As baseline, we train a linear Support Vector Machines (SVM) on the same dataset after
applying principle components analysis (PCA) for dimensionality reduction. The features are
extracted from 3D surface meshes after applying spectral matching in the same way as our

Table D.1 Comparison of the classification accuracy (AC%), sensitivity (SE%), and specificity
(SP%) with a baseline method using the same spectral-based shape feature descriptor. The
proposed method achieved higher accuracy in most of the cases.

NC/AD NC/EMCI NC/LMCI AD/EMCI AD/LMCI EMCI/LMCI

AC SE SP AC SE SP AC SE SP AC SE SP AC SE SP AC SE SP
Baseline 80 70 86 55 52 58 63 56 75 76 65 71 63 58 66 51 50 52
Proposed 84 73 89 56 52 60 59 52 64 81 70 82 67 58 73 63 62 66
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Figure D.2 Comparison of the classification accuracy with a baseline approach using the
same spectral-based shape feature representation. The VAE-based method achieved higher
accuracy in most of the cases.

proposed method. The classification accuracy for the proposed and the baseline methods is
illustrated in Figure D.2. We summarize the classification accuracy along with the sensitivity
(SE), and specificity (SP) measures in Table D.1.

These results show that our method produces higher accuracy in most of the cases. As
expected, the best classification accuracies are those obtained for groups, which are well
separated diagnostically. For instance, 84% and 81% for the classification of NC versus AD
and EMCI versus AD, respectively. The computational time of both methods is around 60
sec for training on 300 surfaces and less than 5 ms for testing on one surface.

In addition, the obtained results is comparable to the previously proposed approaches that
have used MRI based features. For instance, Suk et al. (Suk and Shen, 2013) and Goryawala
et al. (Goryawala and et al., 2015) found the accuracy of 85% and 84%, respectively for
the classification of NC versus AD. These method have also included additional information
from PET modality or neuropsychological test to improve the classification performance. One
future direction of our proposed approach would be to include a combination of informative
features to reach a higher accuracy.
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D.4 Conclusions

In this paper we have proposed a deep learning method based on a spectral feature repre-
sentation using hippocampus morphology for the classification of Alzheimer’s Disease. The
morphological features were extracted as 3D surface meshes from MR image and spectral
matching process was used to establish point-to-point correspondences in mesh vertices. A
variational autoencoder was trained to find the latent feature representation from hippocam-
pus morphological variations. A softmax classifier was applied to differentiate between NC,
EMCI, LMCI, and AD.

Experimental evaluation on the ADNI dataset demonstrates the effectiveness of our approach
especially in classifying AD vs. NC and AD vs. EMCI. This work shows the importance of
the VAE-based morphological feature representation in improving the diagnosis accuracy
in different stages of dementia. Future research directions include adding other informative
features, such as cognitive information and multimodal data (e.g., PET) to increase the
classification accuracy.
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ANNEXE E SUPPLEMENTARY MATERIALS FOR CHAPTER 5

This section provides the supplementary materials for Chapter 5.

In this supplementary material we demonstrate results that were not included in the paper
due to space constraints. Figures E.1-E.3 compare the six segmentation approaches described
in the paper, in terms of average Dice coefficient (DC), Hausdorff distance (HD) and contour
mean distance (CMD) respectively. We show results for the right side subcortical structures
of IBSR dataset (Rohlfing, 2012b). Note that the subcortical structure symmetry is reflected
on the trend of the results, which is very similar to the one observed in Figure 1 in the paper.

In Table E.1, we include some numerical results corresponding to the experiments repor-
ted in the main paper. As we can observe, when we use accurate priors (Coreg+CNN), we
achieve results close to the ground truth after coregistration and segmentation in the ma-
jority of the cases. Moreover, when we use weak priors like (Coreg+RF), we improve the
initial results given by the thresholded priors, especially in terms of CMD and HD. The
significant differences between the proposed coregistration-cosegmentation method and the
standard multi-atlas segmentation approach (Pairwise) is revealed using statistical t-test with
a significant threshold of p = 0.05.

We also include, in Figure E.4, a diagram explaining the workflow of the co-registration and
segmentation algorithm.

We compare the accuracy of our proposed CNN-based coregistration and cosegmentation
method with our proposed deep CNN/MRF-based method (Appendix A), as well as the two
publicly available state-of-the-art automatic segmentation toolboxes, Freesurfer (Fischl et al.,
2002), and FSL-FIRST (Patenaude et al., 2011a). In Figure E.5, we report the average Dice
coefficient for a group of sub-cortical structures on IBSR dataset. These results show that our
coregistration-cosegmentation method provides better segmentations compared to the state-
of-the-art for three sub-cortical structures. However, Freesurfer produces better segmentation
for caudate, which could be due to the limitation of the designed CNN network in capturing
thin tail areas of the caudate structures.
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Figure E.1 Average Dice (DC) measure for right subcortical structures in IBSR (best viewed
in color). DC : higher = better.
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Figure E.2 Hausdorff distance (HD) for right subcortical structures in IBSR (best viewed in
color). HD : lower = better.
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Figure E.3 Contour mean distance (CMD) for right subcortical structures in IBSR (best
viewed in color). CMD : lower = better.
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Figure E.4 Co-registration and segmentation workflow. The input consists of images Ii and
their corresponding segmentation likelihoods Si. After running the prior co-registration algo-
rithm (which considers the priors in the energy formulation through the semantic consistency
term), the optimal deformation fields are used to deform the maximum-a-posteriori of the
segmentation likelihoods, which are considered as segmentation hypothesis. A label fusion
strategy is then applied to generate the final segmentation mask. The example in this figure
illustrates the process to generate the final segmentation for image I1. The same strategy is
followed to generate the rest of the segmentation.
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Figure E.5 Average Dice coefficient on a group of sub-cortical structures of IBSR dataset.
Comparison of the coregistration and cosegmentation method (Coreg/Coseg ; proposed in
Chapter 5) with CNN segmentation approach (CNN+MRF ; proposed in Appendix A), as
well as two state-of-the-art automatic segmentation toolboxes, Freesurfer (Fischl et al., 2002),
and FSL-FIRST (Patenaude et al., 2011a).
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Table E.1 Comparison of the mean and standard deviation of the Dice coefficient, Hausdorff
distance and contour mean distance on the IBSR and RE datasets, using the 6 different
approaches discussed in the paper. We use bold face to denote the best results (excluding
Coreg+GT which is the oracle). Significant differences between the proposed coregistration-
cosegmentation method and the standard multi-atlas segmentation approach (Pairwise) is
indicated by asterisk (*).

Pairwise RF Coreg+RF CNN Coreg+CNN Coreg+GT
mean 0.70 0.64 0.65* 0.75 0.76* 0.78*Dice std 0.12 0.15 0.14 0.13 0.10 0.09

IBSR mean 1.10 1.79 1.58* 0.87 0.87* 0.81*CMD std 0.37 0.68 0.46 0.26 0.22 0.21
mean 6.80 16.40 9.80* 9.70 6.48 6.09HD std 6.07 10.50 5.73 10.97 5.66 5.88
mean 0.82 0.65 0.65 0.88 0.88* 0.89*Dice std 0.05 0.04 0.03 0.03 0.02 0.03

RE mean 0.81 1.95 1.88* 0.54 0.58* 0.49*CMD std 0.23 0.24 0.19 0.11 0.09 0.12
mean 3.69 11.71 7.70 4.93 4.18* 2.80*HD std 0.86 5.58 0.98 7.48 0.83 0.76

*P-values < 0.05.
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ANNEXE F SUPPLEMENTARY MATERIALS FOR CHAPTER 7

This section provides the supplementary materials for Chapter 7.

Table F.1 Mean caudate volumetric difference (mm3) between epileptic patients and healthy
controls. The values are reported as Mean(std).

Groups Left Caudate Right Caudate
NC vs. L-BECTS 3806(488) vs. 3912(485) p=.58 3853(395) vs. 4043(519) p=.31
NC vs. R-BECTS 3942(535) vs. 3856(398) p=.59 3866(585) vs. 4101(369) p=.16
NC vs. B-BECTS 3888(515) vs. 3464(443) p=.08 4069(479) vs. 3556(534) p=.048
NC vs. BECTS 3905(537) vs. 3786(461) p=.34 4028(410) vs. 3854(568) p=.18

Table F.2 Mean putamen volumetric difference (mm3) between epileptic patients and healthy
controls. The values are reported as Mean(std).

Groups Left Putamen Right putamen

NC vs. L-BECTS 5221(609) vs. 5419(565) p=.40 5264(649) vs. 5480(452) p=.34
NC vs. R-BECTS 5330(508) vs. 5296(665) p=.86 5492(465) vs. 5294(634) p=.29
NC vs. B-BECTS 5353(482) vs. 4866(586) p=.07 5410(469) vs. 4906(583) p=.06
NC vs. BECTS 5224(527) vs. 5239(637) p=.91 5341(547) vs. 5267(595) p=.61
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