78 research outputs found

    A Survey on Audio-Video based Defect Detection through Deep Learning in Railway Maintenance

    Get PDF
    Within Artificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing unprecedented performance in image and audio processing by supporting or even replacing humans in defect and anomaly detection. The Railway sector is expected to benefit from DL applications, especially in predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct from safety-critical functions. Such separation is crucial, as it allows for improving system dependability with no impact on its safety certification. This is further supported by the development of DL in other transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of data generated by acoustic and visual sensors in railway maintenance applications that have been published until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a structured and systematic method, in order to highlight promising approaches and successful applications, as well as to identify available datasets, current limitations, open issues, challenges, and recommendations about future research directions

    Design analysis of short neutral section through dynamic modelling of performance

    Get PDF
    PhD ThesisUK railway overhead line electrification employs a feature known as ‘short’ neutral section which uses insulators spliced into the contact wire to separate the electrical phases, and they are known as a cause of reliability problems. This research proposes to develop, validate and apply a hitherto unexplored approach to studying short neutral section behaviour. This research briefly initially examines the experience of British Rail with the introduction of the ceramic bead neutral section and its development during the 80s and 90s, and the subsequent introduction and development of a further proprietary type in the early 2000s, which is then assessed in detail. Using information from Network Rail, the significant failures of the main types of neutral sections are examined over a 10 year period for which adequate data exists. European practice is briefly examined. Current methods for analysing the interaction of pantograph and overhead lines are investigated, and the principles are adopted into a bespoke methodology implemented using proprietary software Ansys, rather than custom code as is current widespread practice. This methodology is constructed using finite element and multi-body principles and is successfully validated against ‘benchmarks’, in accordance with current European practice and standards. Mathematical models of a neutral section are constructed using their physical characteristics and data captured in lab tests, and the behaviour against real UK pantographs is simulated using this method. Findings are again successfully validated against real line test data. Using the result, the sensitivity of the neutral section performance to particular parameters of its construction is tested, allowing opportunities for optimisation to be identified, and improvements proposed, successfully demonstrating a (previously untried) validated methodology for examining the neutral section problem. This work has answered all its research questions

    An internet of things enabled system for real-time monitoring and predictive maintenance of railway infrastructure

    Get PDF
    The railway industry plays a pivotal role in the socioeconomic landscape of many countries. However, its operation poses considerable challenges in terms of safety, environmental impact, and the intricacies of intertwined technical and social structures. Addressing these challenges necessitates the adoption of innovative approaches and advanced technologies. This doctoral research delves into the potential of the Internet of Things (IoT) as an enabler for railway infrastructure monitoring and predictive maintenance, aiming to enhance reliability, efficiency, and safety within the industry. Rooted in a pragmatic modelist philosophical stance, this thesis employs an exploratory sequential mixed-method approach incorporating qualitative and quantitative methodologies. The research process involves engaging with key stakeholders to gain insights into the challenges faced in railway maintenance and the opportunities presented by IoT implementation. Following this, an IoT system is developed, and a comprehensive value-creation framework is proposed for its effective implementation within the railway sector. The findings of this investigation underscore the transformative potential of IoT integration in railway infrastructure monitoring, yielding significant improvements in maintenance processes, safety, and operational efficiency. Furthermore, this doctoral research provides a foundation for future innovation and adaptation in the railway industry, contributing to its ongoing evolution and resilience in an ever-changing technological landscape

    Robotic Ultrasound Imaging: State-of-the-Art and Future Perspectives

    Full text link
    Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques.Comment: Accepted by Medical Image Analysi

    MethOds and tools for comprehensive impact Assessment of the CCAM solutions for passengers and goods. D1.1: CCAM solutions review and gaps

    Get PDF
    Review of the state-of-the-art on Cooperative, Connected and Automated mobility use cases, scenarios, business models, Key Performance Indicators, impact evaluation methods, technologies, and user needs (for organisations & citizens)

    Infrastructure Design, Signalling and Security in Railway

    Get PDF
    Railway transportation has become one of the main technological advances of our society. Since the first railway used to carry coal from a mine in Shropshire (England, 1600), a lot of efforts have been made to improve this transportation concept. One of its milestones was the invention and development of the steam locomotive, but commercial rail travels became practical two hundred years later. From these first attempts, railway infrastructures, signalling and security have evolved and become more complex than those performed in its earlier stages. This book will provide readers a comprehensive technical guide, covering these topics and presenting a brief overview of selected railway systems in the world. The objective of the book is to serve as a valuable reference for students, educators, scientists, faculty members, researchers, and engineers
    corecore