834 research outputs found

    Automated unit testing intelligent agents in PDT

    Get PDF
    The Prometheus Design Tool (PDT) is an agent development tool that supports the Prometheus design methodology and includes features like automated code generation. We enhance this tool by adding a feature that allows the automated unit testing of agents that are built from within PDT

    Automated testing for intelligent agent systems

    Get PDF
    This paper describes an approach to unit testing of plan based agent systems, with a focus on automated generation and execution of test cases. Design artefacts, supplemented with some additional data, provide the basis for specification of a comprehensive suite of test cases. Correctness of execution is evaluated against a design model, and a comprehensive report of errors and warnings is provided to the user. Given that it is impossible to design test suites which execute all possible traces of an agent program, it is extremely important to thoroughly test all units in as wide a variety of situations as possible to ensure acceptable behaviour. We provide details of the information required in design models or related data to enable the automated generation and execution of test cases. We also briefly describe the implemented tool which realises this approach

    Prometheus design tool

    Get PDF
    The Prometheus Design Tool (PDT) supports the structured design of intelligent agent systems. It supports the Prometheus methodology, but can also be used more generally. This paper outlines the tool and some of its many features

    Scenarios for system requirements traceability and testing

    Get PDF
    Scenarios in current design methodologies, provide a natural way for the users to identify the inputs and outputs of the system revolving around a particular interaction process. A scenario typically consists of a sequence of steps which captures a particular run of the system and satisfies some aspect of the requirements. In this work we add additional structure to the scenarios used in the Prometheus agent development methodology. This additional structure then facilitates both traceability and automated testing. We describe our process for mapping the scenarios and their steps to the initial detailed design, where we then maintain the traceability as the design develops. The structured action lists that we define for both scenarios and their variations provides the basis for facilitating automated testing of system behavior. We describe how we use the newly defined structure within the scenarios to facilitate testing, describing how we automate test case generation, execution and analysis

    Model based testing for agent systems

    Get PDF
    Although agent technology is gaining world wide popularity, a hindrance to its uptake is the lack of proper testing mechanisms for agent based systems. While many traditional software testing methods can be generalized to agent systems, there are many aspects that are different and which require an understanding of the underlying agent paradigm. In this paper we present certain aspects of a testing framework that we have developed for agent based systems. The testing framework is a model based approach using the design models of the Prometheus agent development methodology. In this paper we focus on unit testing and identify the appropriate units, present mechanisms for generating suitable test cases and for determining the order in which the units are to be tested, present a brief overview of the unit testing process and an example. Although we use the design artefacts from Prometheus the approach is suitable for any plan and event based agent system

    An Approach to Model Based Testing of Multiagent Systems

    Get PDF
    Autonomous agents perform on behalf of the user to achieve defined goals or objectives. They are situated in dynamic environment and are able to operate autonomously to achieve their goals. In a multiagent system, agents cooperate with each other to achieve a common goal. Testing of multiagent systems is a challenging task due to the autonomous and proactive behavior of agents. However, testing is required to build confidence into the working of a multiagent system. Prometheus methodology is a commonly used approach to design multiagents systems. Systematic and thorough testing of each interaction is necessary. This paper proposes a novel approach to testing of multiagent systems based on Prometheus design artifacts. In the proposed approach, different interactions between the agent and actors are considered to test the multiagent system. These interactions include percepts and actions along with messages between the agents which can be modeled in a protocol diagram. The protocol diagram is converted into a protocol graph, on which different coverage criteria are applied to generate test paths that cover interactions between the agents. A prototype tool has been developed to generate test paths from protocol graph according to the specified coverage criterion

    Development of a Graphical Tool to integrate the Prometheus AEOlus methodology and Jason Platform

    Get PDF
    Software Engineering (SE) is an area that intends to build high-quality software in a systematic way. However, traditional software engineering techniques and methods do not support the demand for developing Multiagent Systems (MAS). Therefore a new subarea has been studied, called Agent Oriented Software Engineering (AOSE). The AOSE area proposes solutions to specific issues related to the development of agent oriented systems. There are several methodologies to model MAS, however, until now, there is not a standard modelling language because they are very complex systems, and involve several different concepts. Another issue of this subarea is that there are very few tools that are able to automatically generate code, reducing its acceptance in the software development market. In this work, we propose a tool to support the Prometheus AEOlus Methodology, because it provides modelling artifacts to all MAS dimensions proposed by ~Demazeau: agents, environment, interactions and organization. The tool supports all Prometheus AEOlus artifacts and it can automatically generated code to the agent and interaction dimensions in the AgentSpeak(L) language, which is the language used in the Jason platform. We have done some validations with the proposed tool and a case study is presented. Our results indicate that our tool has full compatibility with the Jason platform, and it is able to automatic generate code in AgentSpeak(L). As future work, we intend to develop the integration of the artifacts with the JaCaMo framework, enabling a full integration between our tool and the Prometheus AEOlus methodology

    Development of a Graphical Tool to integrate the Prometheus AEOlus methodology and Jason Platform

    Get PDF
    Software Engineering (SE) is an area that intends to build high-quality software in a systematic way. However, traditional software engineering techniques and methods do not support the demand for developing Multiagent Systems (MAS). Therefore a new subarea has been studied, called Agent Oriented Software Engineering (AOSE). The AOSE area proposes solutions to issues related to the development of agent oriented systems. There is still no standardization in this subarea, resulting in several methodologies. Another issue of this subarea is that there are very few tools that are able to automatically generate code. In this work we propose a tool to support the Prometheus AEOlus Methodology because it provides modelling artifacts to all MAS dimensions: agents, environment, interaction, and organization. The tool supports all Prometheus AEOlus artifacts and can automatically generated code to the agent and interaction dimensions in the AgentSpeak Language, which is the language used in the Jason Platform. We have done some validations with the proposed tool and a case study is presented

    Development of an autonomous distributed multiagent monitoring system for the automatic classification of end users

    Get PDF
    The purpose of this study is to investigate the feasibility of constructing a software Multi-Agent based monitoring and classification system and utilizing it to provide an automated and accurate classification for end users developing applications in the spreadsheet domain. Resulting in, is the creation of the Multi-Agent Classification System (MACS). The Microsoft‘s .NET Windows Service based agents were utilized to develop the Monitoring Agents of MACS. These agents function autonomously to provide continuous and periodic monitoring of spreadsheet workbooks by content. .NET Windows Communication Foundation (WCF) Services technology was used together with the Service Oriented Architecture (SOA) approach for the distribution of the agents over the World Wide Web in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus agent oriented design methodology and its accompanying Prometheus Design Tool (PDT) was employed for specifying and designing the agents of MACS, and Visual Studio.NET 2008 for creating the agency using visual C# programming language. MACS was evaluated against classification criteria from the literature with the support of using real-time data collected from a target group of excel spreadsheet developers over a network. The Monitoring Agents were configured to execute automatically, without any user intervention as windows service processes in the .NET web server application of the system. These distributed agents listen to and read the contents of excel spreadsheets development activities in terms of file and author properties, function and formulas used, and Visual Basic for Application (VBA) macro code constructs. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers. Oracle data mining classification algorithms: Naive Bayes, Adaptive Naive Bayes, Decision Trees, and Support Vector Machine were utilized to analyse the results from the data gathering process in order to automate the classification of excel spreadsheet developers. The accuracy of the predictions achieved by the models was compared. The results of the comparison showed that Naive Bayes classifier achieved the best results with accuracy of 0.978. Therefore, the MACS can be utilized to provide a Multi-Agent based automated classification solution to spreadsheet developers with a high degree of accuracy
    corecore