
Research Article
An Approach to Model Based Testing of Multiagent Systems

Shafiq Ur Rehman and Aamer Nadeem

Center for Software Dependability, Mohammad Ali Jinnah University, Islamabad 44000, Pakistan

Correspondence should be addressed to Shafiq Ur Rehman; shafiq.rehmaan@gmail.com

Received 22 June 2014; Revised 11 September 2014; Accepted 14 September 2014

Academic Editor: Shifei Ding

Copyright © 2015 S. Ur Rehman and A. Nadeem. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Autonomous agents perform on behalf of the user to achieve defined goals or objectives.They are situated in dynamic environment
and are able to operate autonomously to achieve their goals. In a multiagent system, agents cooperate with each other to achieve a
common goal. Testing ofmultiagent systems is a challenging task due to the autonomous and proactive behavior of agents. However,
testing is required to build confidence into the working of a multiagent system. Prometheus methodology is a commonly used
approach to design multiagents systems. Systematic and thorough testing of each interaction is necessary. This paper proposes
a novel approach to testing of multiagent systems based on Prometheus design artifacts. In the proposed approach, different
interactions between the agent and actors are considered to test the multiagent system. These interactions include percepts and
actions along with messages between the agents which can be modeled in a protocol diagram. The protocol diagram is converted
into a protocol graph, on which different coverage criteria are applied to generate test paths that cover interactions between the
agents. A prototype tool has been developed to generate test paths fromprotocol graph according to the specified coverage criterion.

1. Introduction

Autonomous agents possess features like reactivity and
proactivity, and they are able to interact with each other
in order to perform certain tasks. Multiagents systems are
used in complex application due to agent’s unique features.
Agents perceive their environment and respond accordingly
to meet their goal. Autonomy is the agent’s ability to operate
independently, without the need for human guidance or
intervention [1]. Application of multiagent systems is seen in
many domains like e-commerce, banking, air traffic control,
informationmanagement, and so forth.There aremany agent
development methodologies in which agent based systems
can bemodeled; one of them is Prometheusmethodology [2].
Prometheus agent oriented software engineering methodol-
ogy has a well-developed process from system specification
to architectural design and then detailed design leading easily
to code.

The term autonomy refers to the goal oriented behavior
of agents. Autonomous agents are programmed to perform
automatically in order to achieve certain goals. All of their
activities converge towards achieving their defined goals.
There are certain commercial agent applications presented in

[3] which show the sensitivity of agent applications as they
are meant to solve the real life problems in almost every
domain. Real-time response and dynamism make testing of
such application very hard. Performance and accuracy of
results must be checked and this can be achieved with the
effective testing of agent applications.

Padgham and Winikoff show that agent systems provide
great flexibility, with over a million ways to achieve a given
goal using only a relatively small hierarchy of goals and
plans [4]. Because agents are autonomous and flexible, agent
systems can be difficult to test. Therefore an approach is
necessary that can test an agent system effectively and
efficiently.

Prometheus is a methodology for designing intelligent
agents from specification to detailed design and implemen-
tation [2]. One can model the agent using the Prometheus
methodology starting from system specification to detailed
design which includes identifying environment or external
actors and scenarios with details of actions and percepts
involved. Scenarios have actions and percepts associated
with them. Different agents are responsible for different
goals and different plans are associated with different goals
[5]. Prometheus also supports the design via tool named

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 925206, 12 pages
http://dx.doi.org/10.1155/2015/925206



2 The Scientific World Journal

Prometheus Design Tool (PDT) [6] in which design activities
can be modeled. We can capture the relationship between
goals and plans of an agent by goal-plan diagram. We have
demonstrated this relationship in our paper [7]. Interac-
tion protocol in detailed design is captured by interaction
pattern/sequence between the agents in a certain scenario.
These interactions occurred between agents and actors in
form of messages, actions, and percepts. Agent systems to
perform correctly these interactions must be tested and their
occurrence in protocol must be verified with test data. Based
on autonomous agents testingwe have two research questions
which we will cover in our proposed testing framework.

(i) How can design artifacts be used to test the interac-
tions in a multiagent system?

This involves illustrating how design artifacts are chosen
to be used to test the different agent interactions. Each
interaction is carried out to meet some defined goals. We
can extract goal-plan diagram as we discussed in our earlier
research [7] and use the flow between goals and plans with
respect to agent interaction. Interactions between agents and
actor include message, action, and percept. Only message
interactions are covered in [8]; actions and percepts have not
been covered. We use the protocol diagram and convert it
to protocol graph to test all sort of interactions between the
agents and actor in specific protocol.

(ii) How can the process of generating such tests be
guided by coverage criteria?

Define the scope coverage of the testing framework;
identify additional coverage criteria with existing criteria
discussed in [8] and probably identifying the additional
coverage criteria which will cover action and percepts as well
in any interactions diagram.

Our aim is to test the interactions of agents using their
model specified in terms of interaction protocol. We have
developed a tool which generates test paths based on specified
coverage criterion that will test the interaction between the
agents via some protocol. In order to achieve a goal there can
be interactions between the agent and environment as well.

An agent achieves its goal with the help of plans specified.
A main goal may have some subgoals contributing their part
in achieving the objective. A goal-plan diagram can be used
to describe the behavior of the agent showing all relevant
actions, percepts, messages, and subgoals to be performed
during the execution. Section 2 describes modeling method-
ologies and how Prometheus is a better approach to design
multiagent system. Section 3 focuses on related work done in
testing of autonomous agents. Section 4 describes the details
of testing framework for model based testing of autonomous
agents. In Section 5 a case study has been presented by
applying our testing framework. Section 6 describes the
conclusion and future work; references are shown at the end.

2. Modelling Methodologies

There are several agent-oriented software engineering meth-
odologies, for example, Gaia (Generic Architecture for Infor-
mation Availability) [9], Multi-Agent Systems Engineering
(MaSE) [10, 11], MESSAGE [12], Prometheus [2], Tropos [13],
CoMoMAS [14], SODA (Societies in Open and Distributed

Agent spaces) [15], DESIRE [16], MAS-CommonKADS [17],
and Belief-Desire-Intention (BDI) Model [18]. A method-
ology is collection of activities used to develop the system.
Additionally methodology can be supported by the tool as
well.

Agent architecture shows the behavior of agents, one of
which is Belief-Desire-Intension (BDI) architecture [19]. BDI
agents have certain goals to achieve. Belief-Desire-Intention
properties are used to program intelligent agents. BDI agents
have been widely used since last two decades and various
researchers have explored their behavior. The agents whom
we will discuss and use in our research are BDI agents. We
consider multiagent systems developed by using Prometheus
methodology. Padgham and Winikoff present Prometheus as
an agent oriented methodology based on BDI agents [2].

Requirements are assumed to be known in Gaia method-
ology which forms the basis of analysis and design phases.
Gaia is a methodology which distinguishes between analysis
and design phases. It has Role Model and Interaction Model
in analysis phase and Agent Model, Services Model, and
Acquaintance Model in Design phase. Gaia has no tool
support [9]. MaSE is an extension of the object-oriented
approach that has two phases of analysis and design. MaSE
does not have the view that agents should be autonomous
and instead it assumes agents as only software which interacts
with other softwares, that is, agents. Analysis contains three
steps, that is, Capturing Goals, Applying Use Cases, and
Refining Roles and design contains four steps, that is, Creat-
ing Agent Classes, Constructing Conversations, Assembling
Agent Classes, and System Design [10]. MESSAGE adopts
the life-cycle model of the Rational Unified Process (RUP)
and is limited to analysis and design activities only. It uses
UML as modeling language. It has five different views, for
example, Organization view, Goal/Task view, Agent/Role
view, Interaction view, and Domain view [12].

The Prometheus methodology [2] is a detailed AOSE
methodology, which aims to cover all of the major activities
required in the developing agent systems from system spec-
ification to architectural design and detailed design as well.
Tropos is an AOSE methodology whose main distinction is
the early requirement analysis. Agent related concepts like
goals, plans, and tasks are included in all phases. No detailed
information is available for last process defining agent types
andmapping them to capabilities.Themethodology does not
appear to provide heuristics for any phase [18].

CoMoMAS focus in knowledge engineering problem
arises inmultiagent systems and provides extension in Coop-
eration Modeling Language for agents [14]. SODA focus on
social inter-agent aspects of agent systems and that employs
the concept of coordination models [15, 20]. DESIR contains
expertise model and agents. Once analysis phase has been
done, DESIRE could be used for specifying the design and
implementation [16].

3. Related Work

To gain confidence on a multiagent system, it must be
properly tested. Testing of software agent is an important
and critical task as agents possess dynamic behavior. Basic



The Scientific World Journal 3

agent-oriented concepts, for example, autonomy, mental
attitudes, pro-activeness, and so forth, have been covered
in the above discussed methodologies but there are several
exceptions. Tropos was not perceived as being easy to use
whilst MESSAGE and GAIA were both ranked weakly on
adequacy and expressiveness.MaSEdoes not provide detailed
design. Prometheus methodology is rich enough to provide
detailed design and tool support as well for developers [18].
There is a need of quality assurance issues to be addressed
in multiagent systems designed in Prometheus methodology.
We are aiming to fill the gap of providing quality assurance
and testing support for themultiagent systems designed using
Prometheus methodology.

Agents have run time response and adaptability. Coverage
criteria for testing can be applied to both code and model
[21]. Code base conform that all code are covered in term of
statements, and so forth while model based coverage requires
the different interaction from different states of the system,
represented in specific model [22].

Low et al. consider test coverage criteria for BDI agents
[23]. They derive two types of control-flow graphs: one with
nodes, where node represents plans for BDI agent and arcs
present messages or other events which initiate certain plan,
and another CFG in which node presents statements within
plans and arcs represent control-flow between statements
(a standard control-flow graph). Several coverage criteria
are defined, based on node, arc, and path coverage and
some were based on the success or failure of executing
statements and plans [23]. Different interactions between the
modeling artifacts are not presented. Instead this approach
is not considering interactions between agents; our approach
considers agent interactions in multiagent systems.

Zhang et al. presented an approach for model based
testing for agent system [24]. Testing framework caters the
different sequence of agent program execution. Fault directed
testing approach is used by first identifying appropriate units
of the agent and testing the unit with the definedmechanism.
It considers the plan as a single unit; then it is checked
whether the plan is triggered by the appropriate event or not,
and its precondition, cycles in plan, and plan completeness,
and so forth are checked. Event testing is performed for
numbers of applicable plans for the event. An electronic
bookstore system has been used as the sample system;
testing framework will execute test units in a sequence [24].
No coverage measures have been taken while considering
interactions between agent and external agent or stub. We
are considering interactions between multiagent systems
through coverage measures.

Zheng and Alagar proposed a method for conformance
testing of agent’s BDI properties as alternative to formal
verification [25]. Test cases are generated to check the
implementation with respect to specification. Winikoff and
Cranefield have analyzed the size of behavior space for BDI
agent and found that failure handling has larger impact on
size of behavior space than expected [1]. Failure handling has
been introduced in context of agent’s behavioral space [1].
Both techniques above do not consider interactions between
agents neither have any coverage measures been taken even
in unit testing.

Nguyen et al. build an approach in which autonomous
agents are testedwith the help of evolutionary algorithm tech-
niques in which test cases are represented as chromosomes
[26]. Soft goals are used as the evaluation criteria so that
test cases will be developed keeping in mind to meet the
identified soft goals criteria to test the agent [26]. Each test
case is evaluated through a defined fitness function. Goals are
represented by quality functions and new tests are selected
by reproduction. A framework for testing of autonomous
agents has been presented in [27]. Individual agents have
been tested in [26] and genetic algorithm idea on testing has
been presented. Above technique does not cover multi-agent
systems neither interactions between agents. We will test
multiagent system and cover interactions between them; we
are inspired to use genetic algorithm in our future extension.

Miller et al. state that the interaction between the agents
possesses complex behavior and therefore testing of interac-
tions is important [8]. They defined two sets of test coverage
criteria for multiagent interaction testing. The first uses only
the protocol specification, while the second considers also the
plans that generate and receive the messages in the protocol
[8].

Existing model based testing techniques for multiagent
systems do not cover every aspect of multi-gent systems,
that is, dependencies and interactions. Interactions between
agents in Prometheus methodology have action and percepts
interactions between agents as well which have not been cov-
ered still in existing techniques. Our approach to multiagent
system testing covers such interactions as well and testing
coverage will be done.

4. Proposed Testing Framework

In this section, we discuss our proposed approach for testing
of multiagent system using the Prometheus design artifact
defined in Prometheus Design Tool (PDT). Our proposed
testing framework will address the automated test case gener-
ation of multiagent system using design artifacts. Interaction
protocols will be used to build a test model which covers
messages, actions, and percepts in order to achieve certain
goal. Coverage criteria have been defined on protocol graph,
covering every possible interaction between agents. In future
we will test generated test paths with test data. Test data
generation will be done with evolutionary algorithms. An
algorithm for automated test case generationwill be proposed
and tool has been developed which uses identified coverage
criteria, keeping in mind the messages and percepts and
interaction protocol, and generates test paths.

Figure 1 describes the testing framework of proposed
technique. Our proposed technique has two main processes
namely Protocol Graph Generator (Design Model) and test
path generator. Design Model Generator uses Prometheus
interaction protocol presented in protocol diagram (Figure 2)
and generates a protocol graph (Figure 3) from it. The
generated protocol graph gives a complete representation of
all messages; percepts and action perform between the agents
and actors in a specific protocol. Different coverage criteria
will be defined focusing on percepts and actions as well
along with messages and used as input to test path generator.



4 The Scientific World Journal

Input: Protocol Diagram with AUML syntax
Output: Protocol Graph.
Let PG be the graph containing Percept, Action and Message Nodes.
Start and End denotes the starting and ending states of Graph.
Step 1. For Each actor and Agent
Step 2. Make Percept, Action and Message Nodes.
Step 3. Link each nodes as defined in AUML notation
Step 4. If Loop Box
Step 5. add link last to first node in loop box
Step 6. End If
Step 7. If Box Alternative
Step 8. Add choice between nodes
Step 9. End If
Step 10. If Box Optional
Step 11. Add Different Path from start of optional to end of optional node.
Step 12. End If

Algorithm 1: Converting protocol diagram into protocol graph.

Protocol diagram

Coverage criteria

Test paths

Protocol graph 

Protocol 
graph 

generator

Test path 
generator

Figure 1: Proposed technique architecture.

Coverage criteria have been defined covering all possible
interactions occurring in protocol graph. Test path generator
uses protocol graph and applies different defined coverage
criteria to generate test paths. Test paths will be generated
using our test model, that is, protocol graph which will cater
for interactions, messages, actions, and percepts in order to
achieve certain goal.

Currently only message coverage criteria have been pro-
posed by [8]. In a certain protocol, percepts and actions in
an interaction have their importance and their coverage is
necessary for effective testing. Our approach will uncover
the interaction faults that would lie between the agents and
actors.

4.1. Protocol GraphGenerator. In our proposed testing frame-
work, interaction protocol or protocol diagram is used as
the design artifact which is transformed into a protocol
graph. Protocol diagram contains messages, actions, and
percepts interactions between agents and actors.Messages are
passed only between the agents while actions and percepts
interactions are performed between agents and actors.

4.1.1. Protocol Diagram to Protocol Graph. Protocol dia-
gram shows details of how messages, action, and percepts
are involved in a protocol. In our work we convert the
protocol diagram into protocol graph. Protocol graph has
been introduced by Miller et al. [8]. They defined two sets
of test coverage criteria for multiagent interaction testing.
The first uses only the protocol specification, while the
second considers also the plans that generate and receive
the messages in the protocol. Miller et al. [8] do not cover
the actions and percepts during the interaction. We have
extended the protocol graphwith actions and percepts as they
are a very important part of interaction protocol. Algorithm 1
is used to convert protocol diagram into protocol graph.
We take protocol diagram as input and protocol graph has
been produced by following Algorithm 1. Protocol diagram
is represented in AUML representation as well. Code 2
shows AUML description of protocol graph. Protocol graph
represents interaction protocol in nodes and vertices form, on
which different coverage criteria have been applied.

Once we have successfully converted protocol diagram
into protocol graph, we need to generate test paths from
protocol graph. Algorithm 2 is used to generate test path from
protocol graph.

4.2. Test Paths Generator. In this subsection we describe
second process of our proposed approach named test path
generator. Test path generator takes protocol diagram and
coverage criteria as input and generates test paths for pro-
tocol. We have designed a test path generation Tool for



The Scientific World Journal 5

⟨Request Data⟩

Data Retrieval

Airport sensor Airport Agent Forecaster Forecast agent

ForecastE

loop

opt

⟨Subscribe TAF Source⟩
⟨Subscribe AWS source⟩

⟩TAF Data⟨
⟩AWS readings⟨

Figure 2: Data retrieval protocol diagram.

Input: Coverage Criteria (A set of defined coverage criteria), Graph (Set of nodes and edges)
Output: Test Paths
Step 1. Build an edge list and node list of graph
Step 2. Categorize node with respect to type
Step 3. if all paths from graph = empty
Step 4. find all path from graph
Step 5. End if
Step 6. Sort the paths in ascending order of the path length ending
Step 7. if current path = selected coverage criteria
Step 8. append (current path) in result
Step 9. End if
Step 10. Print Result

Algorithm 2: Test path generation from protocol graph.

automated test path generation. Coverage criteria have been
defined in the following section.

4.2.1. Test Coverage Criteria. Our aim in this research paper
is to test the interaction done in a protocol; those interactions
can be in form of message, action, or percept. Miller et al. [8]
have proposed some coverage criteria on protocol graph like
massage coverage and pair wise message coverage which are
more likely the same.

Additional coverage criteria for protocol graph including
actions and percepts have been defined in testing technique.
Wehave defined the following coverage criteria thatwill cover
all possible aspects of interactions between agents and actors
in the form of message, action, and percept. Figure 4 shows
hierarchy of test coverage criteria used to test multiagent
system.

Test Path. A test path is a complete path in a protocol graph
𝐺 that starts at node 𝑖 and ends at node 𝑓. In following
definitions of coverage criteria, 𝑀 represents the set of all
messages, 𝑃 represents set of percepts and 𝐴 represents set
of all actions.

(1) Message Coverage. A set of test paths (TP) is said to satisfy
message coverage criterion for a protocol graph 𝐺 if each

message node 𝑚 of graph 𝐺 is included in at least one path
𝑃 ∈ TP.

This coverage criterion ensures that every message in
protocol has been traversed at least once. There exists path
from start to traversing all messages in it.

(2) Action Coverage. A set of test paths (TP) is said to satisfy
action coverage criterion for a protocol graph𝐺 if each action
node “𝑎” of graph 𝐺 is included in at least one path 𝑃 ∈ TP.

In this coverage criteria every action included in protocol
graph must be included in generated test path for action
coverage criterion.

(3) Percept Coverage. A set of test paths (TP) is said to satisfy
percept coverage criterion for a protocol graph 𝐺 if each
percept node 𝑝 of graph 𝐺 is included in at least one path
𝑃 ∈ 𝑇𝑃.

In this coverage criteria every percept included in proto-
col graph must be included in generated test path for percept
coverage criterion.

(4) Message-Action Coverage. A set of test paths (TP) is said
to satisfy message-action coverage for protocol graph 𝐺 if for
each edge (𝑚, 𝑎) in𝐺, there is a test path𝑃 ∈ TP that contains
subpath (𝑚, 𝑎), where𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐴.



6 The Scientific World Journal

End

Start

Sub AWS 
source

Request data

AWS readings

Sub TAF 
source

ForecastE

TAF data

Action

Percept

Message

1

2

3

4

5

6

7

8

Figure 3: Protocol graph for data retrieval protocol diagram.

Message 
coverage

Action
coverage

Percept 
coverage

Message-action
coverage

Action-percept
coverage

Percept-message
coverage

Pairwise-message
coverage

All round trip 
paths

All paths coverage

Figure 4: Test Coverage Criteria Hierarchy.

Messages are passed between the agents and actions are
passed between the agent and actor. Agent sends a message
to an agent and agents send the action to actor; this sort of
interactionmust also be covered assuring the message-action
coverage criterion.

(5) Action Percept Coverage. A set of test paths (TP) is said
to satisfy action-percept coverage for protocol graph 𝐺 if for
each edge (𝑎, 𝑝) in𝐺, there is a test path 𝑃 ∈ TP that contains
subpath (𝑎, 𝑝), where 𝑎 ∈ 𝐴 and percept 𝑝 ∈ 𝑃.

Agents send an action to an actor in multiagent system
demanding some task to be completed; in return actor sends
the percept containing the required information or data,
and this sort of communication is covered in action percept
coverage criterion.

(6) Percept-Message Coverage. A set of test paths (TP) is said
to satisfy percept-message coverage for protocol graph𝐺 if for
each edge (𝑝,𝑚) in𝐺, there is a test path𝑃 ∈ TP that contains
subpath (𝑝,𝑚), where 𝑝 ∈ 𝑃 and𝑚 ∈ 𝑀.

While receiving the percept from the actor, agents send
a message to agent with necessary information; this sort
of communication is covered in percept-message coverage
criterion.

(7) Pairwise-Message Coverage. A set of test paths (TP) is said
to satisfy pairwise-message coverage for protocol graph 𝐺 if
for each edge (𝑚, 𝑛) in 𝐺, there is a test path 𝑃 ∈ TP that
contains subpath (𝑚, 𝑛), where𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑀.

In protocol graph, all cases in one message can be
followed by anothermessage are covered in pairwise-message
coverage. Addition of pairwise-message coverage assures arc
coverage which is left in message coverage criterion.

(8) All Round Trip Paths. A set of test paths (TP) is said to
satisfy all round trip paths coverage criterion for a protocol
graph 𝐺 if it loops back on same state in graph 𝐺 in at least
one test path 𝑃 ∈ TP.

Interaction protocol describes the protocol inAUMLpro-
tocol diagram which contains loops as well depending upon
the protocol requirements. All round trip paths coverage
criterion in protocol diagram traverse all loop at least once
and include those paths which loops back on same state in
generated test paths.

(9) All Paths Coverage. A set of test paths (TP) is said to satisfy
all paths coverage criterion for protocol graph𝐺 if it traverses
every complete path 𝑃 ∈ TP in 𝐺 at least once.

All paths from start to end in a protocol graph are covered
in all paths coverage criterion.

5. Case Study

In this research paper we have taken case study of multi-
currency Bank Account system [28] which maintains bank
accounts in nominated currencies and performs currency
conversions to allow transactions against the accounts to
occur in any currency. It consists of a BankAccount agent, a
CurrencyExchange agent, and a Communicator agent which
acts as an interface [28]. We have designed the system
overview diagram of account case study using Prometheus
Design Tool [6]. Figure 5 shows system overview diagram
of multiagent system in which different agents have inter-
acted with each other via account operation protocol. Each
agent has actions, percepts, and messages associated with it.



The Scientific World Journal 7

Info req
Debit account request Credit account request

Amount credited

Amount debited

Account operation protocol

Account operation protocol

Account created

Transport request

Exchange request

Exchange rate set

Exchange rates

Currency exchange agent

Bank account agent

Request error

Accounts

Account open

Account info

Communicator agent

Figure 5: System overview diagram of multiagent system.

Table 1: Test paths for account operation protocol diagram.

S. # Coverage
criteria Test paths

1 Message
coverage (i) 1 → 2 → 3 → 4 → 6 (message) → 7 (message) → 8 → 9 (message) → 11 → 13 → 14

2 Action
coverage

(i) 1 → 2 → 3 (action) → 5 → 6 → 7 → 8 → 9 → 10 (action) → 13 (action) → 14
(ii) 1 → 2 → 3 → 5 → 6 → 7 → 8 → 9 → 12 (action) → 14
(iii) 1 → 2 → 3 (action) → 4 → 6 → 7 → 8 → 9 → 11 (action) → 13 (action) → 14

3 Percept
coverage

(i) 1 → 2 (percept) → 3 → 5 (percept) → 6 → 7 → 8 (percept) → 9 → 10 → 13 → 14
(ii) 1 → 2 (percept) → 3 → 4 (percept) → 6 → 7 → 8 (percept) → 9 → 11 → 13 → 14

4
Message
action

coverage

(i) 1 → 2 → 3 → 5 → 6 → 7 → 8 → 9 (message) → 10 (action) → 13 → 14
(ii) 1 → 2 → 3 → 5 → 6 → 7 → 8 → 9 (message) → 12 (action) → 14
(iii) 1 → 2 → 3 → 4 → 6 → 7 → 8 → 9 (message) → 11 (action) → 13 → 14

5
Action
percept
coverage

(i) 1 → 2 → 3 (action) → 5 (percept) → 6 → 7 → 8 → 9 → 10 → 13 → 14
(ii) 1 → 2 → 3 (action) → 4 (percept) → 6 → 7 → 8 → 9 → 11 → 13 → 14
(iii) 1 → 2 → 3 → 5 → 6 → 7 → 8 → 9 → 12 (action) → 5 (Percept) → 6 → 7 → 8 → 9 → 12 → 14
(iv) 1 → 2 → 3 (action) → 4 (percept) → 6 → 7 → 8 → 9 → 11 → 13 → 4 → 6 → 7 → 8 → 9 → 11 → 13 → 14

6
Percept-
message
coverage

(i) 1 → 2 → 3 → 5 (percept) → 6 (message) → 7 → 8 (percept) → 9 (message) → 10 (action) → 13 → 14
(ii) 1 → 2 → 3 → 4 (percept) → 6 (message) → 7 → 8 (percept) → 9 (message) → 11 (action) → 13 → 14

7
Pairwise-
message
coverage

(i) 1 → 2 → 3 → 5 → 6 (message) → 7 (message) → 8 → 9 → 10 → 13 → 14

8 All round
trip paths

(i) 1 → 2 → 3 → 2 → 3 → 5 → 6 → 7 → 8 → 9 → 10 → 13 → 5 → 12 → 14
(ii) 1 → 2 → 3 → 5 → 11 → 13 → 5 → 12 → 5 → 10 → 13 → 14

9 All paths
coverage (i) Infinite # of Paths



8 The Scientific World Journal

Account operation protocol

user BankAccount agent account owner CurrencyExchange agent Communicator agent

loop

loop

alt

opt

alt

TransportRequest

⟩account open⟨
⟨account created⟩

⟩Debit account request⟨

⟩Credit account request⟨

⟩exchange rates⟨

⟨amount Debited⟩
⟨Account Info⟩

⟨amount credited⟩
⟨Account Info⟩

⟨Request Error⟩

exchangeRequest

exchangeRequest reply

Figure 6: Account operation protocol diagram.

Different interactions between agents and actors are occur-
ring through account operation protocol as depicted in
Figure 5.

Each protocol includes different interactions between
agents and actors to perform specific tasks; such interactions
are modeled in protocol diagram. Content of protocol dia-
gram includes alternatives and loops and other deviations
from a simple sequence are depicted in AUML using nested
boxes [29]. Code 2 shows AUML description of account
operation protocol diagram used in PrometheusDesign Tool.

Figure 6 shows details of account operation protocol
diagram [30] that is further converted to protocol graph
(Figure 7) by protocol graph convertor process.

Table 1 shows test path against each coverage criteria we
have defined and applied on our case study.

5.1. Test Path generator Tool. We have developed a tool to
illustrate our proposed approach. Protocol diagram con-
verted to protocol graph on which different coverage criteria
have been applied to generate paths with respect to coverage
criteria defined above. Our tool takes protocol diagram as
input and generates test paths. Test path generator tool has
two main classes namely Graph Regeneration and Graph
Parser. Graph Regeneration reads the input file and makes
a graph object according to the file. This object is used in
the program to produce the paths. Graph Parser searches all
the possible paths according to the coverage criteria given to
it. Table 2 shows input file for test path generator tool and
Figure 8 shows the process of test path generation tool.

Different coverage criteria precondition andoutcomes are
programmed with respect to protocol graph. Code 1 shows



The Scientific World Journal 9

Start

End

1

2

3

4
5

6

7

8

9

10 11

12

13

14

Account open

Account created

Debit account request Credit account request

Transport request

Exchange request

Exchange rates

Exchange request reply

Amount credited Amount debited Request error

Account info

Message

Percept

Action

Figure 7: Protocol graph for account operation protocol diagram.

function which calculates all paths from protocol graph and
coverage criteria are used to extract relevant path from all
paths.

Protocol graph contains the sequence of percepts, action,
andmessage as described in corresponding protocol diagram
of a certain interaction protocol. Figure 9 shows the screen

shot of our tool which automates the test path generation
from design artifact like protocol graph.

6. Conclusion and Future Directions

In this paper, we have proposed a novel approach to
test multiagent systems based on design artifacts following



10 The Scientific World Journal

def find all paths (names, graph, start, end, pathof=
[“start”, “end”, “message”, “action”, “precept”], path=[]):

path = path + [start]
if start == end:
return [path]

if not graph.has key (start):
return []

paths = []
for node in graph [start]:
if names [node][1]in pathof:
if path. count(node) <2:

newpaths = find all paths (names, graph, node, end, pathof, path)
for newpath in newpaths:

paths. append (newpath)
return paths

Code 1: Find all paths function.

start account operation protocol
actor A user
agent B BankAccount agent
actor C account owner
agent D CurrencyExchange agent
agent E Communicator agent
box loop

percept A B account open
action B A account created

end loop
box loop
box alternative

percept C B Debit account request
next

percept C B Credit account request
end alternative
box opt

message B E TransportRequest
message E D exchangeRequest
percept A D exchange rates
message D E exchangeRequest reply

end opt
box alternative

action B C amount Debited
action B C Account Info

next
action B C amount credited
action B C Account Info

next
action B C Request Error
end alternative

end loop
finish

Code 2: AUML description of account operation protocol.



The Scientific World Journal 11

Table 2: Test path generator tool input file.

14
start, start
account open, precept
account created, action
debit account request,
precept
credit account request,
precept
transport request,
message
exchange request,
message
exchange rates, precept
exchange request
reply, message
amount credited, action
amount debited, action
request error, action
accont info, action
end, end
27

1,2
2,3
3,2
3,4
3,5
4,6
4,10
4,11
4,12
5,6
5,10
5,11
5,12
6,7
7,8
8,9
9,10
9,11
9,12
10,13
11,13

12,14
12,4
12,5
13,14
13,4
13,5

Graph file

Input

Coverage
criteria

Graph 
regeneration

Graph parser 

Test paths

Output

Figure 8: Test path generator tool process.

Figure 9: Test path generator tool.

Prometheus methodology. Testing a multiagent system is a
challenging task due to dynamic behavior of agents. Agents
interact with each other and actors via some protocol.
Interaction protocol diagram contains all sorts of interactions
between agents and actor like message, action, and percepts.
We have proposed a testing framework which transforms the

interaction protocol diagram to a test model named protocol
graph. The previously proposed protocol graph has been
extended to include action and percepts along withmessages.

Messages are passed between agents and percepts/actions
are used as the interaction mechanism between agents and
actors. We have identified different coverage criteria which
include nodes and arcs of the protocol graph. These coverage
criteria are used to generate test paths.

For future work, we plan to automate the generation of
test data to execute the test paths. Test cases then will be
applied to autonomous agents and will uncover the inter-
action faults. Evaluation to testing technique will show the
benefits of applying novel approach in testing of autonomous
agents with help of design artifacts following Prometheus
methodology.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] M. Winikoff and S. Cranefield, “On the testability of BDI
agents,” inProceedings of the EuropeanWorkshop onMulti-Agent
Systems, 2010.

[2] L. Padgham and M. Winikoff, “Prometheus: a methodology
for developing intelligent agents,” in Agent-Oriented Software
Engineering III, vol. 2585 of Lecture Notes in Computer Science,
pp. 174–185, Springer, Berlin, Germany, 2003.

[3] S. Munroe, T. Miller, R. A. Belecheanu, M. Pěchouček, P.
Mcburney, andM. Luck, “Crossing the agent technology chasm:
lessons, experiences and challenges in commercial applications
of agents,”Knowledge Engineering Review, vol. 21, no. 4, pp. 345–
392, 2006.

[4] L. Padgham and M. Winikoff, Developing Intelligent Agent
Systems: A Practical Guide, John Wiley & Sons, New York, NY,
USA, August 2004.

[5] L. Padgham, J.Thangarajah, andM.Winikoff, “The prometheus
design tool—a conference management system case study,”
in Proceedings of the 8th International Conference on Agent-
Oriented Software Engineering VIII, pp. 197–211, 2008.

[6] J. Thangarajah, L. Padgham, and M. Winikoff, “Prometheus
design tool,” in Proceedings of the 4th International Conference
on Autonomous Agents and Multi agent Systems (AAMAS ’05),
Utrecht, The Netherlands, July 2005.

[7] S. U. Rehman and A. Nadeem, “AgentSpeak (L) bases testing
of autonomous agents,” in Proceedings of the International
Conference on Advanced Software Engineering & Its Applications
(ASEA ’11), pp. 11–20, Science and Engineering Research Sup-
port Society, Springer, Jeju Island, Korea, 2011.

[8] T. Miller, L. Padgham, and J. Thangarajah, “Test coverage cri-
teria for agent interaction testing,” in Agent-Oriented Software
Engineering (AOSE) Workshop at AAMAS, 2010.

[9] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia
methodology for agent-oriented analysis and design,”
Autonomous Agents and Multi-Agent Systems, vol. 3, no. 3,
pp. 285–312, 2000.



12 The Scientific World Journal

[10] S. A. Deloach, M. F. Wood, and C. H. Sparkman, “Multiagent
systems engineering,” International Journal of Software Engi-
neering and Knowledge Engineering, vol. 11, no. 3, pp. 231–258,
2001.

[11] S. A. DeLoach, “Multiagent systems engineering: ‘a methodol-
ogy and language for designing agent systems’,” in Proceedings
of the Agent-Oriented Information Systems (AOIS ’99), Seattle,
Wash, USA, May 1998.

[12] G. Caire, F. Leal, P. Chainho et al., “Agent oriented analysis
usingMESSAGE/UM L,” in Proceedings of the 2nd International
Workshop on Agent-Oriented Software Engineering (AOSE ’01),
M. Wooldridge, P. Ciancarini, and G. Weiss, Eds., pp. 101–108,
Montreal, Canada, May 2001.

[13] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini, “Troops: an agent-oriented software development
methodology,” Tech. Rep. DIT-02-0015, University of Trento,
Department of Information and Communication Technology,
2002.

[14] N. Glaser, Contribution to knowledge modelling in a multi-
agent framework (the CoMoMAS approach) [Ph.D. thesis],
L’Universite Henri Poincare, 1996.

[15] A. Omicini, “Societies and infrastructures in the analysis
and design of agent-based systems,” in Proceedings of the 1st
InternationalWorkshop onAgent-Oriented Software Engineering
(AOSE ’00), P. Ciancarini and M. J. Wooldridge, Eds., vol. 1957
of Lecture Notes in Artificial Intelligence, pp. 185–194, Springer,
2001.

[16] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J.
Treur, “Desire: modelling multi-agent systems in a composi-
tional formal framework,” International Journal of Cooperative
Information Systems, vol. 6, no. 1, pp. 67–94, 1997.

[17] C. Iglesias, M. Garijo, J. C. Gonzales, and J. R. Velasco, “Analysis
and design of multiagent systems using MAS-CommonKADS,”
in Intelligent Agents IV Agent Theories, Architectures, and Lan-
guages: Proceedings of the 4th International Workshop, ATAL’97
Providence, Rhode Island, USA, July 24–26, 1997, M. P. Singh,
A. Rao, and M. J. Wooldridge, Eds., vol. 1365 of Lecture Notes in
Computer Science, pp. 313–326, Springer, Berlin, Germany, 1998.

[18] K. H. Dam, Evaluating and comparing agent-oriented software
engineering methodologies [Ph.D. thesis], School of Computer
Science and Information Technology, RMIT University, Mel-
bourne, Australia, 2003.

[19] A. S. Rao, “AgentSpeak (L): BDI agents speak out in a logical
computable language,” in Proceedings of the 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW ’96), W. van de Velde and W. J. Perram,
Eds., vol. 1038 of Lecture Notes in Computer Science, pp. 42–55,
Springer.

[20] S. J. Juneidi and G. A. Vouros, “Survey and evaluation of agent-
oriented software engineering main approaches,” International
Journal of Modelling and Simulation, 2010.

[21] A. Spillner, “Test criteria and coverage measures for software
integration testing,” Software Quality Journal, vol. 4, no. 4, pp.
275–286, 1995.

[22] M.Utting andB. Legeard,PracticalModel-Based Testing: ATools
Approach, Morgan-Kaufmann, San Francisco, Calif, USA, 2007.

[23] C. K. Low, T. Y. Chen, and R. Rönnquist, “Automated test
case generation for BDI agents,” Autonomous Agents andMulti-
Agent Systems, vol. 2, no. 4, pp. 311–332, 1999.

[24] Z. Zhang, J. Thangarajah, and L. Padgham, “Model based
testing for agent systems,” in Software and Data Technologies,

Communications in Computer and Information Science, J. Filipe,
B. Shishkov, M. Helfert, and L. A. Maciaszek, Eds., vol. 22, pp.
399–413, Springer, Berlin, Germany, 2009.

[25] M. Zheng and V. S. Alagar, “Conformance testing of BDI
properties in agent-based software system,” in Proceedings of the
12th Asia-Pacific Software Engineering Conference (APSEC ’05),
December 2005.

[26] C. D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, and
M. Luck, “Evolutionary testing of autonomous software agents,”
Autonomous Agents and Multi-Agent Systems, vol. 25, no. 2, pp.
260–283, 2012.

[27] C. D. Nguyen, A. Perinirini, and P. Tonella, “Automated contin-
uous testing of multi-agent systems,” in Proceedings of the 5th
EuropeanWorkshop onMulti-Agent Systems (EUMAS ’07), 2007.

[28] Jack intelligent agents, http://aosgrp.com/products/jack/.
[29] M.-P. Huget and J. Odell, “Representing agent interaction pro-

tocols with agent UML,” in Proceedings of the 5th International
Workshop on Agent Oriented Software Engineering (AOSE ’04),
July 2004.

[30] RMIT, Agent Research Group, Australia, http://www.cs.rmit
.edu.au/agents/pdt/tutorial/Tutorial.html.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


