Citation:
Zhang, Z, Thangarajah, J and Padgham, L 2008, 'Automated unit testing intelligent agents in PDT', in Proceedings of the 7th
International Conference on Autonomous Agents and Multi Agent Systems (AAMAS-08), Estoril, Portugal, 12-16 May 2008.

Automated Unit Testing Intelligent Agents in PDT
(Demo Paper)

Zhiyong Zhang John Thangarajah
RMIT University RMIT University
Melbourne, Australia Melbourne, Australia

z.zhang@student.rmit.edu.au johnt@rmit.edu.au

Lin Padgham

RMIT University
_ Melbourne, Australia
lin.padgham@rmit.edu.au

ABSTRACT

The Prometheus Design Tool (PDT) is an agent develop-
ment tool that supports the Prometheus design methodol-
ogy and includes features like automated code generation.
We enhance this tool by adding a feature that allows the
automated unit testing of agents that are built from within
PDT.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents

Keywords

Agent Oriented Software Engineering, Agent platforms and
development environments

1. PROMETHEUSAND PDT

Prometheus [7] is an agent development methodology for
building agent systems. It defines a detailed development
process that consists of System specification, High-level de-
sign and Detailed design.

The Prometheus Design Tool (PDT)* is a freely available
tool that supports the Prometheus methodology. PDT pro-
vides a graphical interface for the specification and design
phases of the methodology, allowing the designer to enter
and edit diagrams and descriptors for entities. PDT also
includes features such as consistency checking, report gen-
eration, protocol specification and code generation.

Code generation is a key feature of PDT that supports the
implementation phase, maintaining consistency between de-
sign and code. Skeleton code can be generated from the de-
tailed design of agents in PDT. Currently the code generated
is in the JACK agent-oriented programming language [3].

We have extended PDT to incorporate a unit testing frame-
work which we have developed [11] that uses both the agent
system design and the implementation of it.

2. THE TESTING FRAMEWORK

"http://www.cs.rmit.edu.au/agents/pdt

Cite as: Automated Unit Testing Intelligent Agents in PDT (Demo Pa-

per), Zhiyong Zhang, John Thangarajah and Lin Padghamg. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems

(AAMAS 2008), Padgham, Parkes, Milller and Parsons (eds.), May, 12-

16.,2008,Estoril,Portugal,pp. 1673-1674.

Copyright(c) 2008, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Agent 1
1 -Messa e
—/ Belief-set] Plan =7 g

‘
l ——
|

Figure 1: Agent Component Hierarchy

The lack of proper testing mechanisms for agent systems
is still a hindrance to the uptake of agent technology. Al-
though some principles can be generalized from testing of
object oriented systems [2], there are also aspects which are
clearly different and that require knowledge of the under-
lying agent paradigm. For example, in many agent system
development paradigms there is a concept of an event which
triggers selection of one of some number of identified plans,
depending on the situation. If one of these plans is actually
never used, then this is likely to indicate an error.

We have developed a testing framework [11], which auto-
matically generates and executes unit test cases for an agent
system based on its design model (developed in PDT). The
testing framework is based on the notion of model based test-
ing [1] which proposes that testing be in some way based on
design models of the system. The Prometheus methodology
has well developed structured models that are suitable as a
basis for model based testing. The design model provides
information against which the implemented system can be
tested, and also provide an indication of the kind of faults
that one might discover as part of a testing process.

Figure 1 outlines the components of an agent within the
Prometheus design 2. An agent may consist of plans, events
and belief-sets, some of which may be encapsulated into ca-
pabilities. Percepts and incoming messages are inputs to
the agent, while actions and outgoing messages are outputs
from the agent. We identify plans, events and belief-sets as
the units subject to testing. In our current implementation
we do not test belief-sets, which is left for future work.

When we consider a plan as a single unit we test if the
plan is ever used, does it complete? and does it post the
events as indicated in its design? Some plans may form a
cyclic structure if plan A posts an event that is handled by
Plan B, and plan B posts an event handled by plan A. For
such plans we test if the cycle exist at run-time, and whether
the cycle is finite. In the case of an event, we test if the event
is handled by some plan (coverage) and if it is handled by

2Qther agent oriented methodologies use similar constructs.

1673


E72964
Typewritten Text

E72964
Typewritten Text
Citation:
Zhang, Z, Thangarajah, J and Padgham, L 2008, 'Automated unit testing intelligent agents in PDT', in Proceedings of the 7th
International Conference on Autonomous Agents and Multi Agent Systems (AAMAS-08), Estoril, Portugal, 12-16 May 2008. 


E72964
Typewritten Text

E72964
Typewritten Text


.
Test driver part | Subsystem under tes
|

) posts
[~ Test-Driver plan—
Activation_Message Event_
Sends
df Plan_1

sends

sends

-

Finished_Message S
=t
Results_Messag

Figure 2: Testing framework: testing a Plan

more than one plan (overlap).

The testing process consists of the following four phases.
Generation of the testing order - The dependency between
units in an agent system determines the order in with the
units are to be tested. For example, a plan may fail because
of the failure of one of its subtask plans. So a plan should
be tested after all its subtask plans to avoid the affects from
the subtasks.

Development of test cases - The test cases are generated uti-
lizing the variables defined in the Prometheus design model
of the system. Existing techniques of variable combinations
and pairwise testing are applied. The test cases are gener-
ated to catch potential faults that occur at run-time. We
have defined the kinds of faults expected for the different
units.

Code augmentation - The code of the agent system under
test is augmented with special testing code to facilitate the
testing process.

Testing and report generation - The test case execution is
also an automated process, similar to all the above. During
this process a report that contains a summary of the testing
and a detailed analysis is generated. Although not currently
implemented we hope to incorporate an interactive feature
where the developer may input test cases to the test system
during this process if necessary.

3. TESTING WITHIN PDT

We have integrated the above testing framework into PDT
and is available under the Tools menu option within PDT.
In order to use the feature, the detailed design of the compo-
nents to be tested should be completed and the code imple-
mented in the JACK agent language (it is recommended that
the code generation feature within PDT is used to generate
the skeleton code). The system may be partial, but must be
executable at runtime as the tests are performed by execut-
ing the components with augmented code. For example, if
the system design has five agents, and only two of them are
to be tested, the user only needs to ensure complete code
for these two agents such that they are executable. This
completed code of the units to be tested is called the system
under test(SUT).

When the SUT is tested, the code is copied to a testing di-
rectory, augmented to incorporate testing specific code and
the test driver component which generates and executes the
test cases. Figure 2 outlines the runtime testing process for
a plan unit of the SUT.

4. DISCUSSION AND RELATED WORK

There has been some research on agent testing. However,
they do not support an existing agent development method-
ology and embedded into a design tool as presented in this

1674

work. Some of them only concentrate on testing for path-
coverage [6] or behavioral properties [12] of abstract BDI
agents. Some look at agents as the base unit, studied the
message-based [9] or state-based [10] model of agents, and
performed black-box testing. Caire et al.[4] describe an orig-
inal testing framework for agent-based system, but do not
discuss the implementation details.

Most of the above work is based on conformance testing,
which tests if the system meets the business requirements
and are restricted to black-boz testing. In contrast to these
approaches, our work looks at fault-directed testing which
tests the internal processes of the system and not the busi-
ness requirements. Our approach is also integrated with the
design methodology and supports testing at early stages of
development.

In this work we have only addressed unit testing, in future
work we will extend this work to include integration testing.
To this end, we expect to build on existing work such as [8,
5]. The former described a debugger which, similar to this
work, used design artefacts of the Prometheus methodology
to provide debugging information at run-time. The latter
presented a unit testing approach for multi-agent systems
based on the use of Mock-Agents, where each Mock-Agent
tests a single role of an agent under various scenarios.

%'1] LREplf:eEaBE I;lngﬁ%oyle. Model Based Testing. In the

10th International Software Quality Week Conference, CA,
USA, 1997.

R. V. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

P. Busetta, R. Rénnquist, A. Hodgson, and A. Lucas.
JACK intelligent agents — components for intelligent
agents in Java. AgentLink News, Issue 2, 1999.

G. Caire, M. Cossentino, A. Negri, A. Poggi, and P. Turci.
Multi-Agent Systems Implementation and Testing. In the
Fourth International Symposium: From Agent Theory to
Agent Implementation, Vienna, April 14-16 2004.

R. Coelho, U. Kulesza, A. von Staa, and C. Lucena. Unit
Testing in Multi-Agent Systems using Mock Agents and
Aspects. In Proceedings of the 2006 International
Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, pages 83-90, 2006.

C. K. Low, T. Y. Chen, and R. Ronnquist. Automated Test
Case Generation for BDI agents. Autonomous Agents and
Multi-Agent Systems, 2(4):311-332, 1999.

L. Padgham and M. Winikoff. Developing Intelligent Agent
Systems: A Practical Guide. John Wiley and Sons, 2004.
L. Padgham, M. Winikoff, and D. Poutakidis. Adding
Debugging Support to the Prometheus Methodology.
Engineering Applications of Artificial Intelligence, special
issue on Agent-Oriented Software Development,
18(2):173-190, March 2005.

C. Rouff. A Test Agent for Testing Agents and their
Communities. Aerospace Conference Proceedings, 2002.
IEFEE, 5:2638, 2002.

H.-S. Seo, T. Araragi, and Y. R. Kwon. Modeling and
Testing Agent Systems Based on Statecharts. volume 3236,
pages 308 — 321, 2004.

Z. Zhang, J. Thangarajah, and L. Padgham. Automated
unit testing for agent systems. In 2nd International
Working Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE-07), pages 10-18, Spain,
July 2007.

M. Zheng and V. S. Alagar. Conformance Testing of BDI
Properties in Agent-based Software Systems. In APSEC
’05: Proceedings of the 12th Asia-Pacific Software
Engineering Conference (APSEC’05), pages 457464,
Washington, 2005. IEEE Computer Society.

2]

(3]

(4]

[6]

(7

8

9

(10]

(11]

(12]





