906 research outputs found

    Managing the Cost of Usable Data Centers

    Get PDF
    The main topic of this paper is to identify problems and present an overview of Data Center environments. To identify problems and present the overviews of business data environments and the cost of usable data center for small-midsize business organization based type of requirements on the design is one of the most important concepts of managing cost. To maximized data center efficiency administrators implement Blade Server, Virtualization, SOA, and other recent technologies. The project process will focus on most leased data centers with provided space rather than specific applications that trend the way of design, and eliminating the significant impact of multiple physical storage devices. Data Centers are complex systems with a variety of technologies that require constantly evolving skills and knowledge that range from routing and switching to load balancing and security. This project will include research, collecting sources, discussing the issues associated with network attacks Data Centers, and reviewing the other key areas related to data center development will be cover the way server availability will describes how to design a highly available infrastructure, and describes how a load balancing device can monitor the availability of applications and servers

    Cloud Multi-Tenancy: Issues and Developments

    Get PDF
    Cloud Computing (CC) is a computational paradigm that provides pay-per use services to customers from a pool of networked computing resources that are provided on demand. Customers therefore does not need to worry about infrastructure or storage. Cloud Service Providers (CSP) make custom built applications available to customers online. Also, organisations and enterprises can build and deploy applications based on platforms provided by the Cloud service provider. Scalable storage and computing resources is also made available to consumers on the Clouds at a cost. Cloud Computing takes virtualization a step further through the use of virtual machines, it allows several customers share the same physical machine. In addition, it is possible for numerous customers to share applications provided by a CSP; this sharing model is known as multi-tenancy. Though Multi-tenancy has its drawbacks but however, it is highly desirable based on its cost efficiency. This paper presents the comprehensive study of existing literatures on relevant issues and development relating to cloud multitenancy using reliable methods. This study examines recent trends in the area of cloud multi-tenancy and provides a guide for future research. The analyses of this comprehensive study was based on the following questions relating to recent study in multi-tenancy which are: what is the current trend and development in cloud multi-tenancy? Existing publications were analyzed in this area including journals, conferences, white papers and publications in reputable magazines. The expected result at the end of this review is the identification of trends in cloud multi-tenancy. This will be of benefit to prospective cloud users and even cloud providers

    Towards a secure service provisioning framework in a Smart city environment

    Get PDF
    ยฉ 2017 Elsevier B.V. Over the past few years the concept of Smart cities has emerged to transform urban areas into connected and well informed spaces. Services that make smart cities โ€œsmartโ€ are curated by using data streams of smart cities i.e., inhabitantsโ€™ location information, digital engagement, transportation, environment and local government data. Accumulating and processing of these data streams raise security and privacy concerns at individual and community levels. Sizeable attempts have been made to ensure the security and privacy of inhabitantsโ€™ data. However, the security and privacy issues of smart cities are not only confined to inhabitants; service providers and local governments have their own reservations โ€” service provider trust, reliability of the sensed data, and data ownership, to name a few. In this research we identified a comprehensive list of stakeholders and modelled their involvement in smart cities by using the Onion Model approach. Based on the model we present a security and privacy-aware framework for service provisioning in smart cities, namely the โ€˜Smart Secure Service Provisioningโ€™ (SSServProv) Framework. Unlike previous attempts, our framework provides end-to-end security and privacy features for trustable data acquisition, transmission, processing and legitimate service provisioning. The proposed framework ensures inhabitantsโ€™ privacy, and also guarantees integrity of services. It also ensures that public data is never misused by malicious service providers. To demonstrate the efficacy of SSServProv we developed and tested core functionalities of authentication, authorisation and lightweight secure communication protocol for data acquisition and service provisioning. For various smart cities service provisioning scenarios we verified these protocols by an automated security verification tool called Scyther

    Evaluating and Enabling Scalable High Performance Computing Workloads on Commercial Clouds

    Get PDF
    Performance, usability, and accessibility are critical components of high performance computing (HPC). Usability and performance are especially important to academic researchers as they generally have little time to learn a new technology and demand a certain type of performance in order to ensure the quality and quantity of their research results. We have observed that while not all workloads run well in the cloud, some workloads perform well. We have also observed that although commercial cloud adoption by industry has been growing at a rapid pace, its use by academic researchers has not grown as quickly. We aim to help close this gap and enable researchers to utilize the commercial cloud more efficiently and effectively. We present our results on architecting and benchmarking an HPC environment on Amazon Web Services (AWS) where we observe that there are particular types of applications that are and are not suited for the commercial cloud. Then, we present our results on architecting and building a provisioning and workflow management tool (PAW), where we developed an application that enables a user to launch an HPC environment in the cloud, execute a customizable workflow, and after the workflow has completed delete the HPC environment automatically. We then present our results on the scalability of PAW and the commercial cloud for compute intensive workloads by deploying a 1.1 million vCPU cluster. We then discuss our research into the feasibility of utilizing commercial cloud infrastructure to help tackle the large spikes and data-intensive characteristics of Transportation Cyberphysical Systems (TCPS) workloads. Then, we present our research in utilizing the commercial cloud for urgent HPC applications by deploying a 1.5 million vCPU cluster to process 211TB of traffic video data to be utilized by first responders during an evacuation situation. Lastly, we present the contributions and conclusions drawn from this work

    Citizens Adoption and Intellectual Capital Approach

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๊ธฐ์ˆ ๊ฒฝ์˜ยท๊ฒฝ์ œยท์ •์ฑ…์ „๊ณต, 2019. 2. Hwang, Junseok .The emergence of knowledge intensive industries gave rise to the issue of intellectual capital management which is used as an instrument to identify and measure the hidden sources of value creation at the firm, regional and national level. Knowledge-intensive companies are rated much higher than their book value suggests, and thus need to identify the intangible valuables of the company for the improvement and sustainability of their learning and capitalization system. Intellectual capital components are the key resources that can be leveraged for smart city development which intends to use information and communication technologies in order to bring efficiency and sustainability to the urban functions. The role of intellectual capital components in smart city implementation needs to be studied due to the fact that attributes of intellectual capital components would have a distinguished impact on value creation and the increase in productivity and performance. Despite the existence of a significant number of literatures on intellectual capital, the role of its components in the success of smart city implementation has not been examined. This research aims to investigate the role of intellectual capital components towards smart city success using an analysis of experts preferences for human capital and structural capital. The research also includes the demand-side perspective towards smart city information services characteristics that influences the adoption decision. The analysis is performed using two methodologies: Analytics Hierarchy Process (AHP) for human capital and structural capital and discrete choice analysis using a mixed logit model for the adoption of smart city information services. The first study employs a multidimensional approach to the development of a model for human capital using individual-level characteristics and the collective behavior. The identification of the sources of value in human capital is critical to the success of smart city implementations as these capabilities can be leveraged and upgraded to improve productivity and performance. Human capital components have been categorized into personal qualifications, personal traits, culture and social factors. The findings reveal that the most important category is personal qualifications followed by culture. Moreover, the overall priority weights estimation shows that the existence of domain-specific tacit knowledge gained through experience, the multi-disciplinary scope of education and the density of R&D personnel are the top-three ranked attributes of human capital towards smart city success. The study on the structural capital examined 24 smart city cases across the globe to identify the structural capital elements valuable in the smart city development process. The different orchestration of these structural capital elements can influence the outcome of the development process and its impact on the efficiency of the urban systems. The identified structural capital elements have been categorized into process, relational and infrastructural dimensions. The findings reveal that the infrastructural dimension comprising communication and information system is most critical towards the smart city success, followed by the process category with the most dominant component of policy. The overall ranking of these elements suggest that the decision makers need to focus on city-level policies and the development and enforcement of procedures for innovation generation. Finally, the citizens preferences analysis was performed for the case of Islamabad city in Pakistan which is at the early stage of smart city development and can benefit from a better understanding of the demand-side perspective. The characteristics of smart city information services considered in the study comprise language, access mode, service ownership, interoperability and security. Willingness-to-pay was used to observe the price sensitivity of the end users choices. The findings reveal that citizens in Islamabad have a higher utility towards the use of the English language, a mobile access mode and a high level of security. In conclusion, the study provides guidelines for policy makers who are concerned with the early stage of smart city development. The demand-side study of Islamabad city provides valuable insights in to existing trends that affect the rapid adoption of smart city services.๊ตญ๋ฌธ์ดˆ๋ก ์ง€์‹์ง‘์•ฝ์  ์‚ฐ์—…์˜ ์ถœํ˜„์œผ๋กœ ๊ธฐ์—…, ์ง€์—ญ ๋ฐ ๊ตญ๊ฐ€ ์ฐจ์›์—์„œ ๊ฐ€์น˜ ์ฐฝ์ถœ์˜ ์ˆจ๊ฒจ์ง„ ์ถœ์ฒ˜๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ์ธก์ •ํ•˜๋Š” ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์ง€์  ์ž๋ณธ ๊ด€๋ฆฌ๊ฐ€ ์Ÿ์ ์œผ๋กœ ๋– ์˜ฌ๋ž๋‹ค. ์ง€์‹์ง‘์•ฝ์  ๊ธฐ์—…์€ ์ˆœ์ž์‚ฐ๋ณด๋‹ค ํ›จ์”ฌ ๋†’์€ ํ‰๊ฐ€๋ฅผ ๋ฐ›๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ๋“ค์˜ ํ•™์Šต๊ณผ ์ž๋ณธํ™” ์‹œ์Šคํ…œ์˜ ๊ฐœ์„ ๊ณผ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ์œ„ํ•ด ํšŒ์‚ฌ์˜ ๋ฌดํ˜• ๊ฐ€์น˜๋ฅผ ํ™•์ธํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ง€์  ์ž๋ณธ์š”์†Œ๋Š” ์ •๋ณดํ†ต์‹  ๊ธฐ์ˆ ์„ ์ด์šฉํ•ด ๋„์‹œ ๊ธฐ๋Šฅ์— ํšจ์œจ์„ฑ๊ณผ ์ง€์†์„ฑ์„ ๋†’์ด๋Š” ์Šค๋งˆํŠธ ์‹œํ‹ฐ ๊ฐœ๋ฐœ์— ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•ต์‹ฌ ์ž์›์ด๋‹ค. ์ง€์  ์ž๋ณธ ์š”์†Œ์˜ ์†์„ฑ์€ ๊ฐ€์น˜ ์ฐฝ์ถœ๊ณผ ์ƒ์‚ฐ์„ฑ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ฐ€๋ณ€์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์Šค๋งˆํŠธ ์‹œํ‹ฐ ๊ตฌํ˜„์—์„œ์˜ ์ง€์  ์ž๋ณธ ์š”์†Œ์˜ ์—ญํ• ์„ ์—ฐ๊ตฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ง€์  ์ž๋ณธ์— ๊ด€ํ•œ ์ค‘์š”ํ•œ ์—ฐ๊ตฌ ๋ฌธํ—Œ๋“ค์ด ์žˆ์ง€๋งŒ ์Šค๋งˆํŠธ ์‹œํ‹ฐ์˜ ์„ฑ๊ณต์ ์ธ ๊ตฌํ˜„์„ ์œ„ํ•œ๊ฐ ์š”์†Œ๋“ค์˜ ์—ญํ• ์€ ๊ฒ€ํ† ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ธ์ ์ž๋ณธ๊ณผ ๊ตฌ์กฐ์ž๋ณธ์— ๋Œ€ํ•œ ์ „๋ฌธ๊ฐ€์˜ ์„ ํ˜ธ๋„ ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ์Šค๋งˆํŠธ ์‹œํ‹ฐ์˜ ์„ฑ๊ณต์„ ์œ„ํ•œ ์ง€์  ์ž๋ณธ ์š”์†Œ์˜ ์—ญํ•  ์กฐ์‚ฌ๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋˜ํ•œ ์ˆ˜์šฉ ์˜์‚ฌ ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์Šค๋งˆํŠธ ์‹œํ‹ฐ ์ •๋ณด ์„œ๋น„์Šค ํŠน์„ฑ์— ๋Œ€ํ•œ ์ˆ˜์š” ์ธก๋ฉด์˜ ๊ด€์ ๋„ ์กฐ์‚ฌํ•œ๋‹ค. ๋ถ„์„์€ ์ธ์  ์ž๋ณธ ๋ฐ ๊ตฌ์กฐ์  ์ž๋ณธ์„ ์œ„ํ•œ ๋ถ„์„ ๊ณ„์ธต ํ”„๋กœ์„ธ์Šค(AHP)์™€ ์Šค๋งˆํŠธ ์‹œํ‹ฐ ์ •๋ณด ์„œ๋น„์Šค ์ฑ„ํƒ์„ ์œ„ํ•œ ํ˜ผํ•ฉ ๋กœ์ง“ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ด์‚ฐ ์„ ํƒ ๋ถ„์„์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋‹ค์ฐจ์›์  ์ ‘๊ทผ๋ฒ•์„ ์‚ฌ์šฉํ•ด ๊ฐœ์ธ ์ˆ˜์ค€์˜ ํŠน์„ฑ๊ณผ ์ง‘๋‹จ ํ–‰๋™์„ ์ด์šฉํ•œ ์ธ์  ์ž๋ณธ์— ๋Œ€ํ•œ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ์ธ์  ์ž๋ณธ์˜ ๊ฐ€์น˜์˜ ๊ทผ์›์„ ์‹๋ณ„ํ•˜๋Š” ๊ฒƒ์€ ์Šค๋งˆํŠธ ์‹œํ‹ฐ ๊ตฌํ˜„ ์„ฑ๊ณต์— ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๋Šฅ๋ ฅ๋“ค์ด ํ™œ์šฉ๋˜๊ณ  ๊ฐœ์„ ๋˜์–ด ์ƒ์‚ฐ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ธ์  ์ž๋ณธ ์š”์†Œ๋Š” ๊ฐœ์ธ์˜ ์ž๊ฒฉ, ์„ฑ๊ฒฉ, ๋ฌธํ™”, ์‚ฌํšŒ์  ์š”์ธ์œผ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ฒซ๋ฒˆ์งธ๋กœ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๊ฐœ์ธ์˜ ์ž๊ฒฉ์š”๊ฑด์ด๋ฉฐ ๋‘๋ฒˆ์งธ๋Š” ๋ฌธํ™”์ž„์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ๋˜ํ•œ, ์ „์ฒด์ ์ธ ์šฐ์„ ์ˆœ์œ„ ๊ฐ€์ค‘์น˜ ์ถ”์ •์€ ๊ฒฝํ—˜์„ ํ†ตํ•ด ์–ป์€ ๋„๋ฉ”์ธ ๊ณ ์œ ์˜ ์•”๋ฌต์  ์ง€์‹์˜ ์กด์žฌ, ๋‹ค๋ถ„์•ผ์˜ ๊ต์œก ๋ฒ”์œ„ ๋ฐ R&D ์ธ๋ ฅ์˜ ๋ฐ€๋„๋Š” ์Šค๋งˆํŠธ ์‹œํ‹ฐ ์„ฑ๊ณต์„ ์œ„ํ•œ ์ธ์  ์ž๋ณธ์˜ ์ƒ์œ„ 3๋Œ€ ์†์„ฑ์ž„์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ตฌ์กฐ์  ์ž๋ณธ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋Š” ์ „ ์„ธ๊ณ„ 24๊ฐœ ์Šค๋งˆํŠธ ์‹œํ‹ฐ ์‚ฌ๋ก€๋ฅผ ์กฐ์‚ฌํ•ด ์Šค๋งˆํŠธ ์‹œํ‹ฐ ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ๊ฐ€์น˜ ์žˆ๋Š” ๊ตฌ์กฐ์  ์ž๋ณธ์˜ ์š”์†Œ๋ฅผ ํ™•์ธํ–ˆ๋‹ค. ์„œ๋กœ ๋‹ค๋ฅธ ๊ตฌ์กฐ์  ์ž๋ณธ ์š”์†Œ์˜ ์กฐ์ •์€ ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค์˜ ๊ฒฐ๊ณผ์™€ ๋„์‹œ ์‹œ์Šคํ…œ์˜ ํšจ์œจ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ํ™•์ธ๋œ ๊ตฌ์กฐ์  ์ž๋ณธ ์š”์†Œ๋Š” ํ”„๋กœ์„ธ์Šค, ๊ด€๊ณ„ ๋ฐ ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ ์ฐจ์›์œผ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. ์ด๋Š” ํ†ต์‹ ๊ณผ ์ •๋ณด ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ์˜ ์ฐจ์›์ด ์Šค๋งˆํŠธ ์‹œํ‹ฐ์˜ ์„ฑ๊ณต์— ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋ฉฐ ๊ทธ ๋‹ค์Œ์œผ๋กœ ์ •์ฑ…์˜ ๊ฐ€์žฅ ์šฐ์„ธํ•œ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ๊ฐ€์ง„ ํ”„๋กœ์„ธ์Šค ๋ฒ”์ฃผ๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋“ค ์š”์†Œ์˜ ์ „์ฒด ์ˆœ์œ„๋Š” ์˜์‚ฌ๊ฒฐ์ •์ž๋“ค์ด ํ˜์‹  ์ƒ์„ฑ์„ ์œ„ํ•œ ๋„์‹œ ์ˆ˜์ค€์˜ ์ •์ฑ…๊ณผ ์ ˆ์ฐจ ๊ฐœ๋ฐœ๊ณผ ์ง‘ํ–‰์— ์ดˆ์ ์„ ๋งž์ถœ ํ•„์š”๊ฐ€ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์Šค๋งˆํŠธ ์‹œํ‹ฐ ๊ฐœ๋ฐœ์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ์žˆ์œผ๋ฉฐ ์ˆ˜์š” ์ธก๋ฉด ๊ด€์ ์—์„œ ์œ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํŒŒํ‚ค์Šคํƒ„์˜ ์ด์Šฌ๋ผ๋งˆ๋ฐ”๋“œ ๋„์‹œ์— ๋Œ€ํ•œ ์‹œ๋ฏผ์˜ ์„ ํ˜ธ ๋ถ„์„์ด ์ด๋ฃจ์–ด์กŒ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ณ ๋ คํ•œ ์Šค๋งˆํŠธ ์‹œํ‹ฐ ์ •๋ณด ์„œ๋น„์Šค์˜ ํŠน์„ฑ์€ ์–ธ์–ด, ์ ‘๊ทผ ๋ชจ๋“œ, ์„œ๋น„์Šค ์†Œ์œ ๊ถŒ, ์ƒํ˜ธ์šด์šฉ์„ฑ ๋ฐ ๋ณด์•ˆ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ง€๋ถˆ ์˜์ง€๋Š” ์ตœ์ข… ์‚ฌ์šฉ์ž์˜ ์„ ํƒ์— ๋”ฐ๋ฅธ ๊ฐ€๊ฒฉ ๋ฏผ๊ฐ๋„๋ฅผ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์ด์Šฌ๋ผ๋งˆ๋ฐ”๋“œ ์‹œ๋ฏผ๋“ค์ด ๋†’์€ ์ˆ˜์ค€์˜ ๋ณด์•ˆ๊ณผ ํ•จ๊ป˜ ์˜์–ด ์‚ฌ์šฉ์— ๋” ๋†’์€ ํšจ์šฉ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ์ด ์—ฐ๊ตฌ๋Š” ํŠน๋ณ„ํžˆ ์Šค๋งˆํŠธ ์‹œํ‹ฐ ๊ฐœ๋ฐœ์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ์žˆ๋Š” ์ •์ฑ… ์ž…์•ˆ์ž๋“ค์„ ์œ„ํ•œ ์ง€์นจ์„ ์ œ๊ณตํ•œ๋‹ค. ์ด์Šฌ๋ผ๋งˆ๋ฐ”๋“œ์‹œ์— ๋Œ€ํ•œ ์ˆ˜์š” ์ธก๋ฉด ์—ฐ๊ตฌ๋Š” ์Šค๋งˆํŠธ ์‹œํ‹ฐ ์„œ๋น„์Šค์˜ ์‹ ์†ํ•œ ์ฑ„ํƒ์„ ์ง€์›ํ•˜๋Š” ๊ธฐ์กด ์ถ”์„ธ์— ๋Œ€ํ•œ ๊ท€์ค‘ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฃผ์š” ๋‹จ์–ด: ์Šค๋งˆํŠธ ์‹œํ‹ฐ, ์ง€์  ์ž๋ณธ, ์ธ์  ์ž๋ณธ, ๊ตฌ์กฐ์  ์ž๋ณธ, ์ •๋ณด ์„œ๋น„์ŠคChapter 1 Introduction 1 1.1 Overview 1 1.2 Purpose of the Research 9 1.3 Contribution of the Research 12 1.4 Research Outline 15 Chapter 2 Literature Review 18 2.1 Smart Cities 18 2.1.1 Smart City Definitions 19 2.1.2 Smart City Components 22 2.1.3 Smart City Systems Architecture 28 2.2 Intellectual Capital 30 2.2.1 Existing Studies on Intellectual Capital 32 2.2.2 Intellectual Capital and Smart Cities 37 2.2.3 Intellectual Capital Components 39 Chapter 3 Study on the Role of Human Capital for Smart City Success 50 3.1 Model 52 3.1.1 Personal Qualifications 54 3.1.2 Personal Traits 57 3.1.3 Culture 58 3.1.4 Social Factors 59 3.2 Methodology 60 3.2.1 Survey for Analytic Hierarchy Process 63 3.3 Estimation of Results 66 Chapter 4 Study on Structural Capital Role for Smart City Success 74 4.1 Model 77 4.1.1 Process Elements 77 4.1.2 Relational Elements 81 4.1.3 Infrastructural Elements 82 4.2 Methodology 85 4.2.1 Survey for Analytic Hierarchy Process 85 4.3 Estimation of Results 87 Chapter 5 Adoption of Smart City Information Services 95 5.1 Citizens Preferences Analysis towards the Adoption of Smart City Information Services 95 5.2 Model 97 5.3 Methodology 101 5.3.1 Random Utility Model 101 5.3.2 Willingness to Pay 104 5.4 Survey Design and Data 105 5.4.1 Survey for Discrete Choice Analysis 105 5.5 Estimation of Results 109 Chapter 6 Discussion and Conclusion 115 6.1 Discussion and Implications 115 6.2 Conclusion 128 6.3 Limitations and Future Work 131 References 134 Appendix A: Description of Attributes for AHP Survey 152 Appendix B: Survey Questionnaire for AHP 155 Appendix C: Conjoint Survey for Citizens Preference Analysis 163 ๊ตญ๋ฌธ์ดˆ๋ก 166 Acknowledgments 169Docto

    Community rotorcraft air transportation benefits and opportunities

    Get PDF
    Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings

    Data center resilience assessment : storage, networking and security.

    Get PDF
    Data centers (DC) are the core of the national cyber infrastructure. With the incredible growth of critical data volumes in financial institutions, government organizations, and global companies, data centers are becoming larger and more distributed posing more challenges for operational continuity in the presence of experienced cyber attackers and occasional natural disasters. The main objective of this research work is to present a new methodology for data center resilience assessment, this methodology consists of: โ€ข Define Data center resilience requirements. โ€ข Devise a high level metric for data center resilience. โ€ข Design and develop a tool to validate and the metric. Since computer networks are an important component in the data center architecture, this research work was extended to investigate computer network resilience enhancement opportunities within the area of routing protocols, redundancy, and server load to minimize the network down time and increase the time period of resisting attacks. Data center resilience assessment is a complex process as it involves several aspects such as: policies for emergencies, recovery plans, variation in data center operational roles, hosted/processed data types and data center architectures. However, in this dissertation, storage, networking and security are emphasized. The need for resilience assessment emerged due to the gap in existing reliability, availability, and serviceability (RAS) measures. Resilience as an evaluation metric leads to better proactive perspective in system design and management. The proposed Data center resilience assessment portal (DC-RAP) is designed to easily integrate various operational scenarios. DC-RAP features a user friendly interface to assess the resilience in terms of performance analysis and speed recovery by collecting the following information: time to detect attacks, time to resist, time to fail and recovery time. Several set of experiments were performed, results obtained from investigating the impact of routing protocols, server load balancing algorithms on network resilience, showed that using particular routing protocol or server load balancing algorithm can enhance network resilience level in terms of minimizing the downtime and ensure speed recovery. Also experimental results for investigating the use social network analysis (SNA) for identifying important router in computer network showed that the SNA was successful in identifying important routers. This important router list can be used to redundant those routers to ensure high level of resilience. Finally, experimental results for testing and validating the data center resilience assessment methodology using the DC-RAP showed the ability of the methodology quantify data center resilience in terms of providing steady performance, minimal recovery time and maximum resistance-attacks time. The main contributions of this work can be summarized as follows: โ€ข A methodology for evaluation data center resilience has been developed. โ€ข Implemented a Data Center Resilience Assessment Portal (D$-RAP) for resilience evaluations. โ€ข Investigated the usage of Social Network Analysis to Improve the computer network resilience

    Supporting IT Service Fault Recovery with an Automated Planning Method

    Get PDF
    Despite advances in software and hardware technologies, faults are still inevitable in a highly-dependent, human-engineered and administrated IT environment. Given the critical role of IT services today, it is imperative that faults, having once occurred, have to be dealt with eciently and eeffectively to avoid or reduce the actual losses. Nevertheless, the complexities of current IT services, e.g., with regard to their scales, heterogeneity and highly dynamic infrastructures, make the recovery operation a challenging task for operators. Such complexities will eventually outgrow the human capability to manage them. Such diculty is augmented by the fact that there are few well-devised methods available to support fault recovery. To tackle this issue, this thesis aims at providing a computer-aided approach to assist operators with fault recovery planning and, consequently, to increase the eciency of recovery activities.We propose a generic framework based on the automated planning theory to generate plans for recoveries of IT services. At the heart of the framework is a planning component. Assisted by the other participants in the framework, the planning component aggregates the relevant information and computes recovery steps accordingly. The main idea behind the planning component is to sustain the planning operations with automated planning techniques, which is one of the research fields of articial intelligence. Provided with a general planning model, we show theoretically that the service fault recovery problem can be indeed solved by automated planning techniques. The relationship between a planning problem and a fault recovery problem is shown by means of reduction between these problems. After an extensive investigation, we choose a planning paradigm that based on Hierarchical Task Networks (HTN) as the guideline for the design of our main planning algorithm called H2MAP. To sustain the operation of the planner, a set of components revolving around the planning component is provided. These components are responsible for tasks such as translation between dierent knowledge formats, persistent storage of planning knowledge and communication with external systems. To ensure extendibility in our design, we apply dierent design patterns for the components. We sketch and discuss the technical aspects of implementations of the core components. Finally, as proof of the concept, the framework is instantiated to two distinguishing application scenarios

    Rational Cybersecurity for Business

    Get PDF
    Use the guidance in this comprehensive field guide to gain the support of your top executives for aligning a rational cybersecurity plan with your business. You will learn how to improve working relationships with stakeholders in complex digital businesses, IT, and development environments. You will know how to prioritize your security program, and motivate and retain your team. Misalignment between security and your business can start at the top at the C-suite or happen at the line of business, IT, development, or user level. It has a corrosive effect on any security project it touches. But it does not have to be like this. Author Dan Blum presents valuable lessons learned from interviews with over 70 security and business leaders. You will discover how to successfully solve issues related to: risk management, operational security, privacy protection, hybrid cloud management, security culture and user awareness, and communication challenges. This open access book presents six priority areas to focus on to maximize the effectiveness of your cybersecurity program: risk management, control baseline, security culture, IT rationalization, access control, and cyber-resilience. Common challenges and good practices are provided for businesses of different types and sizes. And more than 50 specific keys to alignment are included. What You Will Learn Improve your security culture: clarify security-related roles, communicate effectively to businesspeople, and hire, motivate, or retain outstanding security staff by creating a sense of efficacy Develop a consistent accountability model, information risk taxonomy, and risk management framework Adopt a security and risk governance model consistent with your business structure or culture, manage policy, and optimize security budgeting within the larger business unit and CIO organization IT spend Tailor a control baseline to your organizationโ€™s maturity level, regulatory requirements, scale, circumstances, and critical assets Help CIOs, Chief Digital Officers, and other executives to develop an IT strategy for curating cloud solutions and reducing shadow IT, building up DevSecOps and Disciplined Agile, and more Balance access control and accountability approaches, leverage modern digital identity standards to improve digital relationships, and provide data governance and privacy-enhancing capabilities Plan for cyber-resilience: work with the SOC, IT, business groups, and external sources to coordinate incident response and to recover from outages and come back stronger Integrate your learnings from this book into a quick-hitting rational cybersecurity success plan Who This Book Is For Chief Information Security Officers (CISOs) and other heads of security, security directors and managers, security architects and project leads, and other team members providing security leadership to your busines

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue lT Market Clock for Enterprise Networking lnfrastructure, 2010 Emerging Technology Trends-Finding the Next Big Thing Money and Mobile Access Challenge Community Colleges A Business Perspective on Hosted Communications FMC: Ready to Fly or Flop? Challenges Facing Broadband Wireless Providers Deploying IEEE 802.11n Data and Security Networks Campuswide While Optimizing Energy Efficiency Interview President\u27s Message. From the Executive Director O&A from the CI
    • โ€ฆ
    corecore